Sample records for complex dose distributions

  1. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  2. SU-F-T-364: Monte Carlo-Dose Verification of Volumetric Modulated Arc Therapy Plans Using AAPM TG-119 Test Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onizuka, R; Araki, F; Ohno, T

    2016-06-15

    Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less

  3. Complexity metric based on fraction of penumbra dose - initial study

    NASA Astrophysics Data System (ADS)

    Bäck, A.; Nordström, F.; Gustafsson, M.; Götstedt, J.; Karlsson Hauer, A.

    2017-05-01

    Volumetric modulated arc therapy improve radiotherapy outcome for many patients compared to conventional three dimensional conformal radiotherapy but require a more extensive, most often measurement based, quality assurance. Multi leaf collimator (MLC) aperture-based complexity metrics have been suggested to be used to distinguish complex treatment plans unsuitable for treatment without time consuming measurements. This study introduce a spatially resolved complexity score that correlate to the fraction of penumbra dose and will give information on the spatial distribution and the clinical relevance of the calculated complexity. The complexity metric is described and an initial study on the correlation between the complexity score and the difference between measured and calculated dose for 30 MLC openings is presented. The result of an analysis of the complexity scores were found to correlate to differences between measurements and calculations with a Pearson’s r-value of 0.97.

  4. [Polymer Gel Dosimeter].

    PubMed

    Hayashi, Shin-Ichiro

    2017-01-01

    With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.

  5. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms

    PubMed Central

    Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162

  6. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuemann, J; Grassberger, C; Paganetti, H

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less

  7. Effect of americium-241 alpha-particles on the dose-response of chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridization.

    PubMed

    Barquinero, J F; Stephan, G; Schmid, E

    2004-02-01

    To evaluate by the fluorescent in-situ hybridization (FISH) technique the dose-response and intercellular distribution of alpha-particle-induced chromosome aberrations. In particular, the validity of using the yield of characteristic types of chromosome abnormalities in stable cells as quantitative indicators for retrospective dose reconstruction has been evaluated. Monolayers of human peripheral lymphocytes were exposed at doses from 0.02 to 1 Gy to alpha-particles emitted from a source of americium-241. The most probable energy of the alpha-particles entering the cells was 2.7 MeV. FISH painting was performed using DNA probes for chromosomes 2, 4 and 8 in combination with a pan-centromeric probe. In complete first-division cells, identified by harlequin staining, aberrations involving painted target chromosomal material were recorded as well as aberrations involving only unpainted chromosomal material. In total, the percentage of complex aberrations was about 35% and no dose dependence was observed. When complex-type exchanges were reduced to simple base types, the different cell distributions were clearly over-dispersed, and the linear coefficients of the dose-effect curves for translocations were significantly higher than for dicentrics. For past dose reconstruction, only a few complex aberrations were in stable cells. The linear coefficient obtained for transmissible aberrations in stable cells was more than seven times lower than that obtained in all analysed cells, i.e. including unstable cells. FISH-based analysis of complex rearrangements allows discrimination between partial-body exposures to low-linear energy transfer radiation and high-linear energy transfer exposures. In assessing past or chronic exposure to alpha-particles, the use of a dose-effect curve obtained by FISH-based translocation data, which had not excluded data determined in unstable cells, would underestimate the dose. Insertions are ineffective biomarkers because their frequency is too low.

  8. Improved neutron activation prediction code system development

    NASA Technical Reports Server (NTRS)

    Saqui, R. M.

    1971-01-01

    Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.

  9. The effects of small field dosimetry on the biological models used in evaluating IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Cardarelli, Gene A.

    The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.

  10. Semi-3D dosimetry of high dose rate brachytherapy using a novel Gafchromic EBT3 film-array water phantom

    NASA Astrophysics Data System (ADS)

    Palmer, A. L.; Nisbet, A.; Bradley, D. A.

    2013-06-01

    There is a need to modernise clinical brachytherapy dosimetry measurement beyond traditional point dose verification to enable appropriate quality control within 3D treatment environments. This is to keep pace with the 3D clinical and planning approaches which often include significant patient-specific optimisation away from 'standard loading patterns'. A multi-dimension measurement system is required to provide assurance of the complex 3D dose distributions, to verify equipment performance, and to enable quality audits. However, true 3D dose measurements around brachytherapy applicators are often impractical due to their complex shapes and the requirement for close measurement distances. A solution utilising an array of radiochromic film (Gafchromic EBT3) positioned within a water filled phantom is presented. A calibration function for the film has been determined over 0 to 90Gy dose range using three colour channel analysis (FilmQAPro software). Film measurements of the radial dose from a single HDR source agree with TPS and Monte Carlo calculations within 5 % up to 50 mm from the source. Film array measurements of the dose distribution around a cervix applicator agree with TPS calculations generally within 4 mm distance to agreement. The feasibility of film array measurements for semi-3D dosimetry in clinical HDR applications is demonstrated.

  11. Dose calculation of dynamic trajectory radiotherapy using Monte Carlo.

    PubMed

    Manser, P; Frauchiger, D; Frei, D; Volken, W; Terribilini, D; Fix, M K

    2018-04-06

    Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems. Copyright © 2018. Published by Elsevier GmbH.

  12. An assessment of a 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT.

    PubMed

    Stevens, S; Dvorak, P; Spevacek, V; Pilarova, K; Bray-Parry, M; Gesner, J; Richmond, A

    2018-01-01

    To provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT. A 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment 'fluence' EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions. Fluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition. 3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. High Resolution Characterization of Engineered Nanomaterial Dispersions in Complex Media Using Tunable Resistive Pulse Sensing Technology

    PubMed Central

    2015-01-01

    In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano–bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose–response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology. PMID:25093451

  14. Overdose problem associated with treatment planning software for high energy photons in response of Panama's accident.

    PubMed

    Attalla, Ehab M; Lotayef, Mohamed M; Khalil, Ehab M; El-Hosiny, Hesham A; Nazmy, Mohamed S

    2007-06-01

    The purpose of this study was to quantify dose distribution errors by comparing actual dose measurements with the calculated values done by the software. To evaluate the outcome of radiation overexposure related to Panama's accident and in response to ensure that the treatment planning systems (T.P.S.) are being operated in accordance with the appropriate quality assurance programme, we studied the central axis and pripheral depth dose data using complex field shaped with blocks to quantify dose distribution errors. Multidata T.P.S. software versions 2.35 and 2.40 and Helax T.P.S. software version 5.1 B were assesed. The calculated data of the software treatment planning systems were verified by comparing these data with the actual dose measurements for open and blocked high energy photon fields (Co-60, 6MV & 18MV photons). Close calculated and measured results were obtained for the 2-D (Multidata) and 3-D treatment planning (TMS Helax). These results were correct within 1 to 2% for open fields and 0.5 to 2.5% for peripheral blocked fields. Discrepancies between calculated and measured data ranged between 13. to 36% along the central axis of complex blocked fields when normalisation point was selected at the Dmax, when the normalisation point was selected near or under the blocks, the variation between the calculated and the measured data was up to 500% difference. The present results emphasize the importance of the proper selection of the normalization point in the radiation field, as this facilitates detection of aberrant dose distribution (over exposure or under exposure).

  15. A revision of the gamma-evaluation concept for the comparison of dose distributions.

    PubMed

    Bakai, Annemarie; Alber, Markus; Nüsslin, Fridtjof

    2003-11-07

    A method for the quantitative four-dimensional (4D) evaluation of discrete dose data based on gradient-dependent local acceptance thresholds is presented. The method takes into account the local dose gradients of a reference distribution for critical appraisal of misalignment and collimation errors. These contribute to the maximum tolerable dose error at each evaluation point to which the local dose differences between comparison and reference data are compared. As shown, the presented concept is analogous to the gamma-concept of Low et al (1998a Med. Phys. 25 656-61) if extended to (3+1) dimensions. The pointwise dose comparisons of the reformulated concept are easier to perform and speed up the evaluation process considerably, especially for fine-grid evaluations of 3D dose distributions. The occurrences of false negative indications due to the discrete nature of the data are reduced with the method. The presented method was applied to film-measured, clinical data and compared with gamma-evaluations. 4D and 3D evaluations were performed. Comparisons prove that 4D evaluations have to be given priority, especially if complex treatment situations are verified, e.g., non-coplanar beam configurations.

  16. A new transmission methodology for quality assurance in radiotherapy based on radiochromic film measurements

    PubMed Central

    do Amaral, Leonardo L.; Pavoni, Juliana F.; Sampaio, Francisco; Netto, Thomaz Ghilardi

    2015-01-01

    Despite individual quality assurance (QA) being recommended for complex techniques in radiotherapy (RT) treatment, the possibility of errors in dose delivery during therapeutic application has been verified. Therefore, it is fundamentally important to conduct in vivo QA during treatment. This work presents an in vivo transmission quality control methodology, using radiochromic film (RCF) coupled to the linear accelerator (linac) accessory holder. This QA methodology compares the dose distribution measured by the film in the linac accessory holder with the dose distribution expected by the treatment planning software. The calculated dose distribution is obtained in the coronal and central plane of a phantom with the same dimensions of the acrylic support used for positioning the film but in a source‐to‐detector distance (SDD) of 100 cm, as a result of transferring the IMRT plan in question with all the fields positioned with the gantry vertically, that is, perpendicular to the phantom. To validate this procedure, first of all a Monte Carlo simulation using PENELOPE code was done to evaluate the differences between the dose distributions measured by the film in a SDD of 56.8 cm and 100 cm. After that, several simple dose distribution tests were evaluated using the proposed methodology, and finally a study using IMRT treatments was done. In the Monte Carlo simulation, the mean percentage of points approved in the gamma function comparing the dose distribution acquired in the two SDDs were 99.92%±0.14%. In the simple dose distribution tests, the mean percentage of points approved in the gamma function were 99.85%±0.26% and the mean percentage differences in the normalization point doses were −1.41%. The transmission methodology was approved in 24 of 25 IMRT test irradiations. Based on these results, it can be concluded that the proposed methodology using RCFs can be applied for in vivo QA in RT treatments. PACS number: 87.55.Qr, 87.55.km, 87.55.N‐ PMID:26699306

  17. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; hide

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.

  19. Assessment of the dose distribution inside a cardiac cath lab using TLD measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.

    2014-11-01

    Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in view of the optimization principle (and the associated ALARA objective), one of the pillars of the international system of radiological protection.

  20. Geometric parameter analysis to predetermine optimal radiosurgery technique for the treatment of arteriovenous malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia

    2005-11-01

    Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less

  1. Penalization of aperture complexity in inversely planned volumetric modulated arc therapy

    PubMed Central

    Younge, Kelly C.; Matuszak, Martha M.; Moran, Jean M.; McShan, Daniel L.; Fraass, Benedick A.; Roberts, Donald A.

    2012-01-01

    Purpose: Apertures obtained during volumetric modulated arc therapy (VMAT) planning can be small and irregular, resulting in dosimetric inaccuracies during delivery. Our purpose is to develop and integrate an aperture-regularization objective function into the optimization process for VMAT, and to quantify the impact of using this objective function on dose delivery accuracy and optimized dose distributions. Methods: An aperture-based metric (“edge penalty”) was developed that penalizes complex aperture shapes based on the ratio of MLC side edge length and aperture area. To assess the utility of the metric, VMAT plans were created for example paraspinal, brain, and liver SBRT cases with and without incorporating the edge penalty in the cost function. To investigate the dose calculation accuracy, Gafchromic EBT2 film was used to measure the 15 highest weighted apertures individually and as a composite from each of two paraspinal plans: one with and one without the edge penalty applied. Films were analyzed using a triple-channel nonuniformity correction and measurements were compared directly to calculations. Results: Apertures generated with the edge penalty were larger, more regularly shaped and required up to 30% fewer monitor units than those created without the edge penalty. Dose volume histogram analysis showed that the changes in doses to targets, organs at risk, and normal tissues were negligible. Edge penalty apertures that were measured with film for the paraspinal plan showed a notable decrease in the number of pixels disagreeing with calculation by more than 10%. For a 5% dose passing criterion, the number of pixels passing in the composite dose distributions for the non-edge penalty and edge penalty plans were 52% and 96%, respectively. Employing gamma with 3% dose/1 mm distance criteria resulted in a 79.5% (without penalty)/95.4% (with penalty) pass rate for the two plans. Gradient compensation of 3%/1 mm resulted in 83.3%/96.2% pass rates. Conclusions: The use of the edge penalty during optimization has the potential to markedly improve dose delivery accuracy for VMAT plans while still maintaining high quality optimized dose distributions. The penalty regularizes aperture shape and improves delivery efficiency. PMID:23127107

  2. Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations

    NASA Astrophysics Data System (ADS)

    Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.

  3. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  4. Three-Dimensional Electron Beam Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.

  5. Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2011-04-01

    Many models exist for predicting toxicities based on dose-volume histograms (DVHs) or dose-surface histograms (DSHs). This approach has several drawbacks as firstly the reduction of the dose distribution to a histogram results in the loss of spatial information and secondly the bins of the histograms are highly correlated with each other. Furthermore, some of the complex nonlinear models proposed in the past lack a direct physical interpretation and the ability to predict probabilities rather than binary outcomes. We propose a parameterized representation of the 3D distribution of the dose to the rectal wall which explicitly includes geometrical information in the form of the eccentricity of the dose distribution as well as its lateral and longitudinal extent. We use a nonlinear kernel-based probabilistic model to predict late rectal toxicity based on the parameterized dose distribution and assessed its predictive power using data from the MRC RT01 trial (ISCTRN 47772397). The endpoints under consideration were rectal bleeding, loose stools, and a global toxicity score. We extract simple rules identifying 3D dose patterns related to a specifically low risk of complication. Normal tissue complication probability (NTCP) models based on parameterized representations of geometrical and volumetric measures resulted in areas under the curve (AUCs) of 0.66, 0.63 and 0.67 for predicting rectal bleeding, loose stools and global toxicity, respectively. In comparison, NTCP models based on standard DVHs performed worse and resulted in AUCs of 0.59 for all three endpoints. In conclusion, we have presented low-dimensional, interpretable and nonlinear NTCP models based on the parameterized representation of the dose to the rectal wall. These models had a higher predictive power than models based on standard DVHs and their low dimensionality allowed for the identification of 3D dose patterns related to a low risk of complication.

  6. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    NASA Astrophysics Data System (ADS)

    Deufel, Christopher L.; Furutani, Keith M.

    2014-02-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions.

  7. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes.

    PubMed

    Cabral-Marques, Helena; Almeida, Rita

    2009-09-01

    This study aims to develop and characterise a beclomethasone diproprionate:gamma-cyclodextrin (BDP:gamma-CYD) complex and to optimise the variables on the spray-drying process, in order to obtain a powder with the most suitable characteristics for lung delivery. The spray-dried powder--in a mass ratio of 2:5 (BDP:gamma-CYD)--was physically mixed with three carriers of different particle sizes and in different ratios. Particle-size distribution, shape and morphology, moisture content, and uniformity in BDP content of formulations were studied. In vitro aerolisation behaviour of the formulations was evaluated using the Rotahaler, and the performance was characterised based on the uniformity of emitted dose and aerodynamic particle-size distribution (respirable fraction (RF), as a percentage of nominal dose (RFN) and emitted dose (RFE)). The most suitable conditions for the preparation of BDP:gamma-CYD complexes were obtained with the solution flow of 5 ml/min, T(in) of 70 degrees C and T(out) of 50 degrees C. Statistically significant differences in the aerodynamic performances were obtained for formulations containing BDP:gamma-CYD complexes prepared using different solution flows and different T(in) (p<0.05). RFN and RFE vary in direct proportion with T(in), while an inverse relationship was observed for the solution flow. A direct correlation between the RFE and the T(out) was identified. Performance of the formulations was compared with an established commercial product (Beclotaide Rotacaps 100 microg) with improved performance of RF: formulations with respitose carrier attained RFN and RFE twofold greater, and formulations based on 63-90 microm fraction lactose and trehalose achieved a threefold improvement; also, all formulations showed that the percentage of dose of BDP deposited in the "oropharynx" compartment was reduced to half.

  8. Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2018-03-01

    A novel fabrication method for high quality aspheric microlens array (MLA) was developed by combining the dose-modulated DMD-based lithography and surface thermal reflow process. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography. And the dose modulation mainly depends on the distribution of exposure dose of photoresist. Then the pre-shaped aspheric microlens is polished by a following non-contact thermal reflow (NCTR) process. Different from the normal process, the reflow process here is investigated to improve the surface quality while keeping the pre-modeled shape unchanged, and thus will avoid the difficulties in generating the aspheric surface during reflow. Fabrication of a designed aspheric MLA with this method was demonstrated in experiments. Results showed that the obtained aspheric MLA was good in both shape accuracy and surface quality. The presented method may be a promising approach in rapidly fabricating high quality aspheric microlens with complex surface.

  9. Monte Carlo based electron treatment planning and cutout output factor calculations

    NASA Astrophysics Data System (ADS)

    Mitrou, Ellis

    Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.

  10. Unwrapping 3D complex hollow organs for spatial dose surface analysis.

    PubMed

    Witztum, A; George, B; Warren, S; Partridge, M; Hawkins, M A

    2016-11-01

    Toxicity dose-response models describe the correlation between dose delivered to an organ and a given toxic endpoint. Duodenal toxicity is a dose limiting factor in the treatment of pancreatic cancer with radiation but the relationship between dose and toxicity in the duodenum is not well understood. While there have been limited studies into duodenal toxicity through investigations of the volume of the organ receiving dose over a specific threshold, both dose-volume and dose-surface histograms lack spatial information about the dose distribution, which may be important in determining normal tissue response. Due to the complex geometry of the duodenum, previous methods for unwrapping tubular organs for spatial modeling of toxicity are insufficient. A geometrically robust method for producing 2D dose surface maps (DSMs), specifically for the duodenum, has been developed and tested in order to characterize the spatial dose distribution. The organ contour is defined using Delaunay triangulation. The user selects a start and end coordinate in the structure and a path is found by regulating both length and curvature. This path is discretized and rays are cast from each point on the plane normal to the vector between the previous and the next point on the path and the dose at the closest perimeter point recorded. These angular perimeter slices are "unwrapped" from the edge distal to the pancreas to ensure the high dose region (proximal to the tumor) falls in the centre of the dose map. Gamma analysis is used to quantify the robustness of this method and the effect of overlapping planes. This method was used to extract DSMs for 15 duodena, with one esophagus case to illustrate the application to simpler geometries. Visual comparison indicates that a 30 × 30 map provides sufficient resolution to view gross spatial features of interest. A lookup table is created to store the area (cm 2 ) represented by each pixel in the DSMs in order to allow spatial descriptors in absolute size. The method described in this paper is robust, requires minimal human interaction, has been shown to be generalizable to simpler geometries, and uses readily available commercial software. The difference seen in DSMs due to overlapping planes is large and justifies the need for a solution that removes such planes. This is the first time 2D dose surface maps have been produced for the duodenum and provide spatial dose distribution information which can be explored to create models that may improve toxicity prediction in treatments for locally advanced pancreatic cancer.

  11. Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2012-03-01

    A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution, mainly due to the increase in the contribution of coherent scatter with increased spatial variation. Scatter correction using MC-generated scatter distributions demonstrated significant improvement in cupping and streaks. Physical experimentation combined with GPU-accelerated MC simulation provided a sophisticated, yet practical approach in identifying low-dose acquisition techniques, optimizing scatter correction methods, and evaluating patientspecific dose.

  12. SU-C-BRD-07: Three-Dimensional Dose Reconstruction in the Presence of Inhomogeneities Using Fast EPID-Based Back-Projection Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Q; Cao, R; Pei, X

    2015-06-15

    Purpose: Three-dimensional dose verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distribution during the treatment. The aim of the study is to extend a previous in-house developed three-dimensional dose reconstructed model in homogeneous phantom to situtions in which tissue inhomogeneities are present. Methods: The method was based on the portal grey images from an electronic portal imaging device (EPID) and the relationship between beamlets and grey-scoring voxels at the position of the EPID. The relationship was expressed in the form of grey response matrix that was quantified using thickness-dependence scattermore » kernels determined by series of experiments. From the portal grey-value distribution information measured by the EPID the two-dimensional incident fluence distribution was reconstructed based on the grey response matrix using a fast iterative algorithm. The accuracy of this approach was verified using a four-field intensity-modulated radiotherapy (IMRT) plan for the treatment of lung cancer in anthopomorphic phantom. Each field had between twenty and twenty-eight segments and was evaluated by comparing the reconstructed dose distribution with the measured dose. Results: The gamma-evaluation method was used with various evaluation criteria of dose difference and distance-to-agreement: 3%/3mm and 2%/2 mm. The dose comparison for all irradiated fields showed a pass rate of 100% with the criterion of 3%/3mm, and a pass rate of higher than 92% with the criterion of 2%/2mm. Conclusion: Our experimental results demonstrate that our method is capable of accurately reconstructing three-dimensional dose distribution in the presence of inhomogeneities. Using the method, the combined planning and treatment delivery process is verified, offing an easy-to-use tool for the verification of complex treatments.« less

  13. Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.

    PubMed

    Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle

    2014-11-01

    To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.

  14. High-energy neutron depth-dose distribution experiment.

    PubMed

    Ferenci, M S; Hertel, N E

    2003-01-01

    A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 liquid, tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. This experiment is intended to serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.

  15. Dose to the metaphyseal growth complexes in children undergoing /sup 99m/Tc-EHDP bone scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.R.; Gelfand, M.J.; Kerelakes, J.G.

    1978-01-01

    The spatial and temporal distribution of radionuclides in children may differ greatly from that accepted for adults. Following injection of a bone-seeking agent (/sup 99m/Tc-EHDP), radioactivity in the metaphyseal growth complexes of the distal femur and proximal tibia was quantitated in a series of children 4 to 16 years of age, using a gamma camera/computer system. The dose to the growth plate was found to range from 0.8 to 4.7 rads when adjusted to an administered activity of 200 ..mu..ci/kg, compared to approximately 0.6 rad to the adult skeleton for a corresponding study.

  16. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  17. SU-G-TeP3-11: Radiobiological-Cum-Dosimetric Quality Assurance of Complex Radiotherapy Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Narayanasamy, G; Zhang, X

    2016-06-15

    Purpose: Dosimetric gamma-analysis used for QA of complex radiotherapy plans tests the dosimetric equivalence of a delivered plan with the treatment planning system (TPS) optimized plan. It does not examine whether a dosimetric difference results in any radiobiological difference. This study introduces a method to test the radiobiological and dosimetric equivalence between a delivered and the TPS optimized plan. Methods: Six head and neck and seven lung cancer VMAT or IMRT plans optimized for patient treatment were calculated and delivered to an ArcCheck phantom. ArcCheck measured dose distributions were compared with the TPS calculated dose distributions using a 2-D gamma-analysis.more » Dose volume histograms (DVHs) for various patient structures were obtained by using measured data in 3DVH software and compared against the TPS calculated DVHs using 3-D gamma analysis. DVH data were used in the Poisson model to calculate tumor control probability (TCP) for the treatment targets and in the sigmoid dose response model to calculate normal tissue complication probability (NTCP) for the normal structures. Results: Two-D and three-D gamma passing rates among six H&N patient plans differed by 0 to 2.7% and among seven lung plans by 0.1 to 4.5%. Average ± SD TCPs based on measurement and TPS were 0.665±0.018 and 0.674±0.044 for H&N, and 0.791±0.027 and 0.733±0.031 for lung plans, respectively. Differences in NTCPs were usually negligible. The differences in dosimetric results, TCPs and NTCPs were insignificant. Conclusion: The 2-D and 3-D gamma-analysis based agreement between measured and planned dose distributions may indicate their dosimetric equivalence. Small and insignificant differences in TCPs and NTCPs based on measured and planned dose distributions indicate the radiobiological equivalence between the measured and optimized plans. However, patient plans showing larger differences between 2-D and 3-D gamma-analysis can help us make a more definite conclusion through our ongoing research with a larger number of patients.« less

  18. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA

    NASA Astrophysics Data System (ADS)

    Alhazmi, Abdulaziz; Gianoli, Chiara; Neppl, Sebastian; Martins, Juliana; Veloza, Stella; Podesta, Mark; Verhaegen, Frank; Reiner, Michael; Belka, Claus; Parodi, Katia

    2018-06-01

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are relatively complex treatment delivery techniques and require quality assurance (QA) procedures. Pre-treatment dosimetric verification represents a fundamental QA procedure in daily clinical routine in radiation therapy. The purpose of this study is to develop an EPID-based approach to reconstruct a 3D dose distribution as imparted to a virtual cylindrical water phantom to be used for plan-specific pre-treatment dosimetric verification for IMRT and VMAT plans. For each depth, the planar 2D dose distributions acquired in air were back-projected and convolved by depth-specific scatter and attenuation kernels. The kernels were obtained by making use of scatter and attenuation models to iteratively estimate the parameters from a set of reference measurements. The derived parameters served as a look-up table for reconstruction of arbitrary measurements. The summation of the reconstructed 3D dose distributions resulted in the integrated 3D dose distribution of the treatment delivery. The accuracy of the proposed approach was validated in clinical IMRT and VMAT plans by means of gamma evaluation, comparing the reconstructed 3D dose distributions with Octavius measurement. The comparison was carried out using (3%, 3 mm) criteria scoring 99% and 96% passing rates for IMRT and VMAT, respectively. An accuracy comparable to the one of the commercial device for 3D volumetric dosimetry was demonstrated. In addition, five IMRT and five VMAT were validated against the 3D dose calculation performed by the TPS in a water phantom using the same passing rate criteria. The median passing rates within the ten treatment plans was 97.3%, whereas the lowest was 95%. Besides, the reconstructed 3D distribution is obtained without predictions relying on forward dose calculation and without external phantom or dosimetric devices. Thus, the approach provides a fully automated, fast and easy QA procedure for plan-specific pre-treatment dosimetric verification.

  19. USE OF MODELS FOR GAMMA SHIELDING STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifford, C.E.

    1962-02-01

    The use of models for shielding studies of buildings exposed to gamma radiation was evaluated by comparing the dose distributions produced in a blockhouse with movable inside walls exposed to 0.66 Mev gamma radiation with corresponding distributions in an iron 1 to 10 scale model. The effects of air and ground scaling on the readings in the model were also investigated. Iron appeared to be a suitable model material for simple closed buildings but for more complex structures it appeared that the use of iron models would progressively overestimite the gamms shielding protection as the complexity increased. (auth)

  20. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT

    NASA Astrophysics Data System (ADS)

    Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David

    2010-11-01

    Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.

  1. Anatomy-corresponding method of IMRT verification.

    PubMed

    Winiecki, Janusz; Zurawski, Zbigniew; Drzewiecka, Barbara; Slosarek, Krzysztof

    2010-01-01

    During a proper execution of dMLC plans, there occurs an undesired but frequent effect of the dose locally accumulated by tissue being significantly different than expected. The conventional dosimetric QA procedures give only a partial picture of the quality of IMRT treatment, because their solely quantitative outcomes usually correspond more to the total area of the detector than the actually irradiated volume. The aim of this investigation was to develop a procedure of dynamic plans verification which would be able to visualize the potential anomalies of dose distribution and specify which tissue they exactly refer to. The paper presents a method discovered and clinically examined in our department. It is based on a Gamma Evaluation concept and allows accurate localization of deviations between predicted and acquired dose distributions, which were registered by portal as well as film dosimetry. All the calculations were performed on the self-made software GammaEval, the γ-images (2-dimensional distribution of γ-values) and γ-histograms were created as quantitative outcomes of verification. Over 150 maps of dose distribution have been analyzed and the cross-examination of the gamma images with DRRs was performed. It seems, that the complex monitoring of treatment would be possible owing to the images obtained as a cross-examination of γ-images and corresponding DRRs.

  2. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    PubMed

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  3. SYMPOSIUM SESSION PROPOSAL: INCORPORATION OF MODE OF ACTION INTO MECHANISTICALLY-BASED QUANTITATIVE MODELS

    EPA Science Inventory

    The biological processes by which environmental pollutants induce adverse health effects is most likely regulated by complex interactions dependent upon the route of exposure, dose, kinetics of distribution, and multiple cellular responses. To further complicate deciphering thes...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de; Zaragoza, Francisco J.; Sempau, Josep

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Montemore » Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.« less

  5. Dose computation for therapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Glegg, Martin Mackenzie

    The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).

  6. Commissioning and validation of fluence-based 3D VMAT dose reconstruction system using new transmission detector.

    PubMed

    Nakaguchi, Yuji; Oono, Takeshi; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai; Nakamura, Yuya

    2018-06-01

    In this study, we evaluated the basic performance of the three-dimensional dose verification system COMPASS (IBA Dosimetry). This system is capable of reconstructing 3D dose distributions on the patient anatomy based on the fluence measured using a new transmission detector (Dolphin, IBA Dosimetry) during treatment. The stability of the absolute dose and geometric calibrations of the COMPASS system with the Dolphin detector were investigated for fundamental validation. Furthermore, multileaf collimator (MLC) test patterns and a complicated volumetric modulated arc therapy (VMAT) plan were used to evaluate the accuracy of the reconstructed dose distributions determined by the COMPASS. The results from the COMPASS were compared with those of a Monte Carlo simulation (MC), EDR2 film measurement, and a treatment planning system (TPS). The maximum errors for the absolute dose and geometrical position were - 0.28% and 1.0 mm for 3 months, respectively. The Dolphin detector, which consists of ionization chamber detectors, was firmly mounted on the linear accelerator and was very stable. For the MLC test patterns, the TPS showed a > 5% difference at small fields, while the COMPASS showed good agreement with the MC simulation at small fields. However, the COMPASS produced a large error for complex small fields. For a clinical VMAT plan, COMPASS was more accurate than TPS. COMPASS showed real delivered-dose distributions because it uses the measured fluence, a high-resolution detector, and accurate beam modeling. We confirm here that the accuracy and detectability of the delivered dose of the COMPASS system are sufficient for clinical practice.

  7. Gafchromic EBT-XD film: Dosimetry characterization in high-dose, volumetric-modulated arc therapy.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi

    2016-11-08

    Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT-XD films have been designed for optimal performance in the 40-4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose-response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high-dose volumetric-modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0-4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter-free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose-rate dependence. For clinical examinations, we compared the dose distribu-tion measured with EBT-XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT-XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ~ 3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ~ 1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ~ 1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film- measured and treatment planning system (TPS)-calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. © 2016 The Authors.

  8. Poster - Thur Eve - 69: Electron beam dosimetry in heterogeneous phantoms using the MAGIC normoxic polymer gel.

    PubMed

    Nedaie, H A; Ghahraman, A R; Bolouri, B; Arbabi, A

    2012-07-01

    Recently, radiation sensitive polymer gels are being used as a reliable dosimetry method for three-dimensional (3D) verification of radiation doses in clinical use. Some properties of gel dosimeters have made them useful in verifying complex situations in electron therapy. The aim of this study was to experimentally evaluate the influence of tissue inhomogeneities on electron beam dose distributions by use of polymer gel dosimetry. Another purpose was to evaluate the appropriateness of polymer gels for electron beam dosimetry applications. A cylindrical phantom filled with MAGIC polymer gel with a polyacrilic wall (ρ = 1.18 g.cm -3 ) was placed in a Perspex water-filled tank exactly underneath the bone inhomogeneity region .Then, the slab phantom was irradiated with a dose of 5Gy of 8MeV electrons to measure the dose distribution beyond the heterogeneity region. Afterwards, another cylindrical gel phantom similar to the above was used and irradiated with the same dose of 15 MeV electrons to measure the dose distribution beyond the same heterogeneity region. The same mentioned setup was repeated for measurement of the dose distribution beneath the air heterogeneity and homogenous phantom. The results of gel dosimetry under bone inhomogeneity have shown a reduction in dose. This is related to the high mass stopping and mass scattering powers of bone tissue. In addition, dose enhancement is seen laterally near the bone-tissue interface, due to increased side scattering of electrons. Hot and cold scatter lobes under heterogeneity regions are other effects that can be seen. The results of gel dosimetry under the air inhomogeneity have shown an increase in dose. This is related to the low mass stopping and mass scattering powers of the air cavity. When a high energy beam passes through a low-density medium or an air cavity, electronic equilibrium is lost along the central axis of the beam .The dose rebuild up is a consequence of this electronic disequilibrium. An overall good agreement was found between measurements with gel and with a diode detector for the single beam experiment. Electron dose distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities which are related to mass stopping and mass scattering powers of heterogeneous materials. © 2012 American Association of Physicists in Medicine.

  9. Feasibility of online IMPT adaptation using fast, automatic and robust dose restoration

    NASA Astrophysics Data System (ADS)

    Bernatowicz, Kinga; Geets, Xavier; Barragan, Ana; Janssens, Guillaume; Souris, Kevin; Sterpin, Edmond

    2018-04-01

    Intensity-modulated proton therapy (IMPT) offers excellent dose conformity and healthy tissue sparing, but it can be substantially compromised in the presence of anatomical changes. A major dosimetric effect is caused by density changes, which alter the planned proton range in the patient. Three different methods, which automatically restore an IMPT plan dose on a daily CT image were implemented and compared: (1) simple dose restoration (DR) using optimization objectives of the initial plan, (2) voxel-wise dose restoration (vDR), and (3) isodose volume dose restoration (iDR). Dose restorations were calculated for three different clinical cases, selected to test different capabilities of the restoration methods: large range adaptation, complex dose distributions and robust re-optimization. All dose restorations were obtained in less than 5 min, without manual adjustments of the optimization settings. The evaluation of initial plans on repeated CTs showed large dose distortions, which were substantially reduced after restoration. In general, all dose restoration methods improved DVH-based scores in propagated target volumes and OARs. Analysis of local dose differences showed that, although all dose restorations performed similarly in high dose regions, iDR restored the initial dose with higher precision and accuracy in the whole patient anatomy. Median dose errors decreased from 13.55 Gy in distorted plan to 9.75 Gy (vDR), 6.2 Gy (DR) and 4.3 Gy (iDR). High quality dose restoration is essential to minimize or eventually by-pass the physician approval of the restored plan, as long as dose stability can be assumed. Motion (as well as setup and range uncertainties) can be taken into account by including robust optimization in the dose restoration. Restoring clinically-approved dose distribution on repeated CTs does not require new ROI segmentation and is compatible with an online adaptive workflow.

  10. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.

    PubMed

    Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben

    2017-11-01

    Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  11. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3.

    PubMed

    Cusumano, Davide; Fumagalli, Maria L; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-01-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  12. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusumano, Davide, E-mail: davide.cusumano@unimi.it; Fumagalli, Maria L.; Marchetti, Marcello

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses usingmore » this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.« less

  13. Gafchromic EBT‐XD film: Dosimetry characterization in high‐dose, volumetric‐modulated arc therapy

    PubMed Central

    Ozawa, Shuichi; Hosono, Fumika; Sumida, Naoki; Okazue, Toshiya; Yamada, Kiyoshi; Nagata, Yasushi

    2016-01-01

    Radiochromic films are important tools for assessing complex dose distributions. Gafchromic EBT‐XD films have been designed for optimal performance in the 40–4,000 cGy dose range. We investigated the dosimetric characteristics of these films, including their dose‐response, postexposure density growth, and dependence on scanner orientation, beam energy, and dose rate with applications to high‐dose volumetric‐modulated arc therapy (VMAT) verification. A 10 MV beam from a TrueBeam STx linear accelerator was used to irradiate the films with doses in the 0–4,000 cGy range. Postexposure coloration was analyzed at postirradiation times ranging from several minutes to 48 h. The films were also irradiated with 6 MV (dose rate (DR): 600 MU/min), 6 MV flattening filter‐free (FFF) (DR: 1,400 MU/ min), and 10 MV FFF (DR: 2,400 MU/min) beams to determine the energy and dose‐rate dependence. For clinical examinations, we compared the dose distribution measured with EBT‐XD films and calculated by the planning system for four VMAT cases. The red channel of the EBT‐XD film exhibited a wider dynamic range than the green and blue channels. Scanner orientation yielded a variation of ∼3% in the net optical density (OD). The difference between the film front and back scan orientations was negligible, with variation of ∼1.3% in the net OD. The net OD increased sharply within the first 6 hrs after irradiation and gradually afterwards. No significant difference was observed for the beam energy and dose rate, with a variation of ∼1.5% in the net OD. The gamma passing rates (at 3%, 3 mm) between the film‐ measured and treatment planning system (TPS)‐calculated dose distributions under a high dose VMAT plan in the absolute dose mode were more than 98.9%. PACS number(s): 87.56 Fc PMID:27929504

  14. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less

  15. Dietary toxicity of field-contaminated invertebrates to marine fish: effects of metal doses and subcellular metal distribution.

    PubMed

    Dang, Fei; Rainbow, Philip S; Wang, Wen-Xiong

    2012-09-15

    There is growing awareness of the toxicological effects of metal-contaminated invertebrate diets on the health of fish populations in metal-contaminated habitats, yet the mechanisms underlying metal bioaccumulation and toxicity are complex. In the present study, marine fish Terapon jurbua terepon were fed a commercial diet supplemented with specimens of the polychaete Nereis diversicolor or the clam Scrobicularia plana, collected from four metal-impacted estuaries (Tavy, Restronguet Creek, West Looe, Gannel) in southwest England, as environmentally realistic metal sources. A comparative toxicological evaluation of both invertebrates showed that fish fed S. plana for 21 d exhibited evident mortality compared to those fed N. diversicolor. Furthermore, a spatial effect on mortality was observed. Differences in metal doses rather than subcellular metal distributions between N. diversicolor and S. plana appeared to be the cause of such different mortalities. Partial least squares regression was used to evaluate the statistical relationship between multiple-metal doses and fish mortality, revealing that Pb, Fe, Cd and Zn in field-collected invertebrates co-varied most strongly with the observed mortality. This study provides a step toward exploring the underlying mechanism of dietary toxicity and identifying the potential causality in complex metal mixture exposures in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Pharmacokinetics of plasma enfuvirtide after subcutaneous administration to patients with human immunodeficiency virus: Inverse Gaussian density absorption and 2-compartment disposition.

    PubMed

    Zhang, Xiaoping; Nieforth, Keith; Lang, Jean-Marie; Rouzier-Panis, Regine; Reynes, Jacques; Dorr, Albert; Kolis, Stanley; Stiles, Mark R; Kinchelow, Tosca; Patel, Indravadan H

    2002-07-01

    Enfuvirtide (T-20) is the first of a novel class of human immunodeficiency virus (HIV) drugs that block gp41-mediated viral fusion to host cells. The objectives of this study were to develop a structural pharmacokinetic model that would adequately characterize the absorption and disposition of enfuvirtide pharmacokinetics after both intravenous and subcutaneous administration and to evaluate the dose proportionality of enfuvirtide pharmacokinetic parameters at a subcutaneous dose higher than that currently used in phase III studies. Twelve patients with HIV infection received 4 single doses of enfuvirtide separated by a 1-week washout period in an open-label, randomized, 4-way crossover fashion. The doses studied were 90 mg (intravenous) and 45 mg, 90 mg, and 180 mg (subcutaneous). Serial blood samples were collected up to 48 hours after each dose. Plasma enfuvirtide concentrations were measured with use of a validated liquid chromatography-tandem mass spectrometry method. Enfuvirtide plasma concentration-time data after subcutaneous administration were well described by an inverse Gaussian density function-input model linked to a 2-compartment open distribution model with first-order elimination from the central compartment. The model-derived mean pharmacokinetic parameters (+/-SD) were volume of distribution of the central compartment (3.8 +/- 0.8 L), volume of distribution of the peripheral compartment (1.7 +/- 0.6 L), total clearance (1.44 +/- 0.30 L/h), intercompartmental distribution (2.3 +/- 1.1 L/h), bioavailability (89% +/- 11%), and mean absorption time (7.26 hours, 8.65 hours, and 9.79 hours for the 45-mg, 90-mg, and 180-mg dose groups, respectively). The terminal half-life increased from 3.46 to 4.35 hours for the subcutaneous dose range from 45 to 180 mg. An inverse Gaussian density function-input model linked to a 2-compartment open distribution model with first-order elimination from the central compartment was appropriate to describe complex absorption and disposition kinetics of enfuvirtide plasma concentration-time data after subcutaneous administration to patients with HIV infection. Enfuvirtide was nearly completely absorbed from subcutaneous depot, and pharmacokinetic parameters were linear up to a dose of 180 mg in this study.

  17. Monte Carlo evaluation of Acuros XB dose calculation Algorithm for intensity modulated radiation therapy of nasopharyngeal carcinoma

    NASA Astrophysics Data System (ADS)

    Yeh, Peter C. Y.; Lee, C. C.; Chao, T. C.; Tung, C. J.

    2017-11-01

    Intensity-modulated radiation therapy is an effective treatment modality for the nasopharyngeal carcinoma. One important aspect of this cancer treatment is the need to have an accurate dose algorithm dealing with the complex air/bone/tissue interface in the head-neck region to achieve the cure without radiation-induced toxicities. The Acuros XB algorithm explicitly solves the linear Boltzmann transport equation in voxelized volumes to account for the tissue heterogeneities such as lungs, bone, air, and soft tissues in the treatment field receiving radiotherapy. With the single beam setup in phantoms, this algorithm has already been demonstrated to achieve the comparable accuracy with Monte Carlo simulations. In the present study, five nasopharyngeal carcinoma patients treated with the intensity-modulated radiation therapy were examined for their dose distributions calculated using the Acuros XB in the planning target volume and the organ-at-risk. Corresponding results of Monte Carlo simulations were computed from the electronic portal image data and the BEAMnrc/DOSXYZnrc code. Analysis of dose distributions in terms of the clinical indices indicated that the Acuros XB was in comparable accuracy with Monte Carlo simulations and better than the anisotropic analytical algorithm for dose calculations in real patients.

  18. Validation of total skin electron irradiation (TSEI) technique dosimetry data by Monte Carlo simulation

    PubMed Central

    Borzov, Egor; Daniel, Shahar; Bar‐Deroma, Raquel

    2016-01-01

    Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne PMID:27455502

  19. Study of the impact of artificial articulations on the dose distribution under medical irradiation

    NASA Astrophysics Data System (ADS)

    Buffard, E.; Gschwind, R.; Makovicka, L.; Martin, E.; Meunier, C.; David, C.

    2005-02-01

    Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.

  20. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid

    PubMed Central

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  1. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  2. SU-F-T-148: Are the Approximations in Analytic Semi-Empirical Dose Calculation Algorithms for Intensity Modulated Proton Therapy for Complex Heterogeneities of Head and Neck Clinically Significant?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yepes, P; UT MD Anderson Cancer Center, Houston, TX; Titt, U

    2016-06-15

    Purpose: Evaluate the differences in dose distributions between the proton analytic semi-empirical dose calculation algorithm used in the clinic and Monte Carlo calculations for a sample of 50 head-and-neck (H&N) patients and estimate the potential clinical significance of the differences. Methods: A cohort of 50 H&N patients, treated at the University of Texas Cancer Center with Intensity Modulated Proton Therapy (IMPT), were selected for evaluation of clinical significance of approximations in computed dose distributions. H&N site was selected because of the highly inhomogeneous nature of the anatomy. The Fast Dose Calculator (FDC), a fast track-repeating accelerated Monte Carlo algorithm formore » proton therapy, was utilized for the calculation of dose distributions delivered during treatment plans. Because of its short processing time, FDC allows for the processing of large cohorts of patients. FDC has been validated versus GEANT4, a full Monte Carlo system and measurements in water and for inhomogeneous phantoms. A gamma-index analysis, DVHs, EUDs, and TCP and NTCPs computed using published models were utilized to evaluate the differences between the Treatment Plan System (TPS) and FDC. Results: The Monte Carlo results systematically predict lower dose delivered in the target. The observed differences can be as large as 8 Gy, and should have a clinical impact. Gamma analysis also showed significant differences between both approaches, especially for the target volumes. Conclusion: Monte Carlo calculations with fast algorithms is practical and should be considered for the clinic, at least as a treatment plan verification tool.« less

  3. [Soft- and hardware support for the setup for computer tracking of radiation teletherapy].

    PubMed

    Tarutin, I G; Piliavets, V I; Strakh, A G; Minenko, V F; Golubovskiĭ, A I

    1983-06-01

    A hard and soft ware computer assisted complex has been worked out for gamma-beam therapy. The complex included all radiotherapeutic units, including a Siemens program controlled betatron with an energy of 42 MEV computer ES-1022, a Medigraf system of the processing of graphic information, a Mars-256 system for control over the homogeneity of distribution of dose rate on the field of irradiation and a package of mathematical programs to select a plan of irradiation of various tumor sites. The prospects of the utilization of such complexes in the dosimetric support of radiation therapy are discussed.

  4. Comparative Evaluation of U.S. Brand and Generic Intravenous Sodium Ferric Gluconate Complex in Sucrose Injection: Biodistribution after Intravenous Dosing in Rats

    PubMed Central

    Beekman, Christopher R.; Matta, Murali K.; Thomas, Christopher D.; Mohammad, Adil; Stewart, Sharron; Xu, Lin; Chockalingam, Ashok; Shea, Katherine; Sun, Dajun; Jiang, Wenlei; Patel, Vikram; Rouse, Rodney

    2017-01-01

    Relative biodistribution of FDA-approved innovator and generic sodium ferric gluconate (SFG) drug products was investigated to identify differences in tissue distribution of iron after intravenous dosing to rats. Three equal cohorts of 42 male Sprague-Dawley rats were created with each cohort receiving one of three treatments: (1) the innovator SFG product dosed intravenously at a concentration of 40 mg/kg; (2) the generic SFG product dosed intravenously at a concentration of 40 mg/kg; (3) saline dosed intravenously at equivalent volume to SFG products. Sampling time points were 15 min, 1 h, 8 h, 1 week, two weeks, four weeks, and six weeks post-treatment. Six rats from each group were sacrificed at each time point. Serum, femoral bone marrow, lungs, brain, heart, kidneys, liver, and spleen were harvested and evaluated for total iron concentration by ICP-MS. The ICP-MS analytical method was validated with linearity, range, accuracy, and precision. Results were determined for mean iron concentrations (µg/g) and mean total iron (whole tissue) content (µg/tissue) for each tissue of all groups at each time point. A percent of total distribution to each tissue was calculated for both products. At any given time point, the overall percent iron concentration distribution did not vary between the two SFG drugs by more than 7% in any tissue. Overall, this study demonstrated similar tissue biodistribution for the two SFG products in the examined tissues. PMID:29283393

  5. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  6. Development and evaluation of aperture-based complexity metrics using film and EPID measurements of static MLC openings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Götstedt, Julia; Karlsson Hauer, Anna; Bäck, Anna, E-mail: anna.back@vgregion.se

    Purpose: Complexity metrics have been suggested as a complement to measurement-based quality assurance for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). However, these metrics have not yet been sufficiently validated. This study develops and evaluates new aperture-based complexity metrics in the context of static multileaf collimator (MLC) openings and compares them to previously published metrics. Methods: This study develops the converted aperture metric and the edge area metric. The converted aperture metric is based on small and irregular parts within the MLC opening that are quantified as measured distances between MLC leaves. The edge area metricmore » is based on the relative size of the region around the edges defined by the MLC. Another metric suggested in this study is the circumference/area ratio. Earlier defined aperture-based complexity metrics—the modulation complexity score, the edge metric, the ratio monitor units (MU)/Gy, the aperture area, and the aperture irregularity—are compared to the newly proposed metrics. A set of small and irregular static MLC openings are created which simulate individual IMRT/VMAT control points of various complexities. These are measured with both an amorphous silicon electronic portal imaging device and EBT3 film. The differences between calculated and measured dose distributions are evaluated using a pixel-by-pixel comparison with two global dose difference criteria of 3% and 5%. The extent of the dose differences, expressed in terms of pass rate, is used as a measure of the complexity of the MLC openings and used for the evaluation of the metrics compared in this study. The different complexity scores are calculated for each created static MLC opening. The correlation between the calculated complexity scores and the extent of the dose differences (pass rate) are analyzed in scatter plots and using Pearson’s r-values. Results: The complexity scores calculated by the edge area metric, converted aperture metric, circumference/area ratio, edge metric, and MU/Gy ratio show good linear correlation to the complexity of the MLC openings, expressed as the 5% dose difference pass rate, with Pearson’s r-values of −0.94, −0.88, −0.84, −0.89, and −0.82, respectively. The overall trends for the 3% and 5% dose difference evaluations are similar. Conclusions: New complexity metrics are developed. The calculated scores correlate to the complexity of the created static MLC openings. The complexity of the MLC opening is dependent on the penumbra region relative to the area of the opening. The aperture-based complexity metrics that combined either the distances between the MLC leaves or the MLC opening circumference with the aperture area show the best correlation with the complexity of the static MLC openings.« less

  7. A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, Mark, E-mail: mark.oldham@duke.edu; Thomas, Andrew; O'Daniel, Jennifer

    2012-10-01

    Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution wasmore » measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient's anatomy. The latter step represents an important development that advances the clinical relevance of complex treatment QA.« less

  8. Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.

    2011-01-01

    The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.

  9. Dosimetry and field matching for radiotherapy to the breast and superclavicular fossa

    NASA Astrophysics Data System (ADS)

    Winfield, Elizabeth

    Radiotherapy for early breast cancer aims to achieve local disease control and decrease loco-regional recurrence rates. Treatment may be directed to breast or chest wall alone or, include regional lymph nodes. When using tangential fields to treat the breast a separate anterior field directed to the axilla and supraclavicular fossa (SCF) is needed to treat nodal areas. The complex geometry of this region necessitates matching of adjacent radiation fields in three dimensions. The potential exists for zones of overdosage or underdosage along the match line. Cosmetic results may be compromised if treatment fields are not accurately aligned. Techniques for field matching vary between centres in the UK. A study of dosimetry across the match line region using different techniques, as reported in the multi-centre START Trial Quality Assurance (QA) programme, was undertaken. A custom-made anthropomorphic phantom was designed to assess dose distribution in three dimensions using film dosimetry. Methods with varying degrees of complexity were employed to match tangential and SCF beams. Various techniques combined half beam blocking and machine rotations to achieve geometric alignment. Matching of asymmetric beams allowed a single isocentre technique to be used. Where field matching was not undertaken a gap between tangential and SCF fields was employed. Results demonstrated differences between techniques in addition to variations within the same technique between different centres. Geometric alignment techniques produced more homogenous dose distributions in the match region than gap techniques or those techniques not correcting for field divergence. For this multi-centre assessment of match plane techniques film dosimetry used in conjunction with a breast shaped phantom provided relative dose information. This study has highlighted the difficulties of matching treatment fields to achieve homogenous dose distribution through the region of the match plane and the degree of inhomogeneity as a consequence of a gap between treatment fields.

  10. The impact of different dose response parameters on biologically optimized IMRT in breast cancer

    NASA Astrophysics Data System (ADS)

    Costa Ferreira, Brigida; Mavroidis, Panayiotis; Adamus-Górka, Magdalena; Svensson, Roger; Lind, Bengt K.

    2008-05-01

    The full potential of biologically optimized radiation therapy can only be maximized with the prediction of individual patient radiosensitivity prior to treatment. Unfortunately, the available biological parameters, derived from clinical trials, reflect an average radiosensitivity of the examined populations. In the present study, a breast cancer patient of stage I II with positive lymph nodes was chosen in order to analyse the effect of the variation of individual radiosensitivity on the optimal dose distribution. Thus, deviations from the average biological parameters, describing tumour, heart and lung response, were introduced covering the range of patient radiosensitivity reported in the literature. Two treatment configurations of three and seven biologically optimized intensity-modulated beams were employed. The different dose distributions were analysed using biological and physical parameters such as the complication-free tumour control probability (P+), the biologically effective uniform dose (\\bar{\\bar{D}} ), dose volume histograms, mean doses, standard deviations, maximum and minimum doses. In the three-beam plan, the difference in P+ between the optimal dose distribution (when the individual patient radiosensitivity is known) and the reference dose distribution, which is optimal for the average patient biology, ranges up to 13.9% when varying the radiosensitivity of the target volume, up to 0.9% when varying the radiosensitivity of the heart and up to 1.3% when varying the radiosensitivity of the lung. Similarly, in the seven-beam plan, the differences in P+ are up to 13.1% for the target, up to 1.6% for the heart and up to 0.9% for the left lung. When the radiosensitivity of the most important tissues in breast cancer radiation therapy was simultaneously changed, the maximum gain in outcome was as high as 7.7%. The impact of the dose response uncertainties on the treatment outcome was clinically insignificant for the majority of the simulated patients. However, the jump from generalized to individualized radiation therapy may significantly increase the therapeutic window for patients with extreme radio sensitivity or radioresistance, provided that these are identified. Even for radiosensitive patients a simple treatment technique is sufficient to maximize the outcome, since no significant benefits were obtained with a more complex technique using seven intensity-modulated beams portals.

  11. The potential of polymer gel dosimeters for 3D MR-IGRT quality assurance

    NASA Astrophysics Data System (ADS)

    Roed, Y.; Ding, Y.; Wen, Z.; Wang, J.; Pinsky, L.; Ibbott, G.

    2017-05-01

    Advances in radiotherapy technology have enabled more accurate delivery of radiation doses to anatomically complex tumor volumes, while sparing surrounding tissues. The most recent advanced treatment modality combines a radiation delivery system (either Cobalt-60 therapy heads or linear accelerator) with a diagnostic magnetic resonance (MR) scanner to perform MR-image guided radiotherapy (MR-IGRT). For a radiation treatment plan to be delivered successfully with MR-IGRT the compliance with previously established criteria to validate the passing of such plans has to be confirmed. Due to the added strong magnetic field a new set of quality assurance standards has to be developed. Ideal detectors are MR-compatible, can capture complex dose distributions and can be read out with MRI. Polymer gels were investigated as potential three dimensional MR-IGRT quality assurance detectors.

  12. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less

  13. DNA Damage Dependence on the Subcellular Distribution of Low-Energy Beta Emitters

    NASA Astrophysics Data System (ADS)

    Cutaia, Claudia; Alloni, Daniele; Mariotti, Luca; Friedland, Werner; Ottolenghi, Andrea

    One of the main issues of low-energy internal emitters is related to the short ranges of beta particles, compared to the dimensions of the biological targets (e.g. the cell nucleus). Also depending on the chemical form, the radionuclide may be more concentrated in the cytoplasm of the target cell (in our calculations a human fibroblast in interphase) and consequently the conventional dosimetry may overestimate the dose to the nucleus; whereas if the radionuclide is more concentrated in the nuclei of the cells there is a risk of underestimating the nucleus dose. The computer code PARTRAC was modified to calculate the energy depositions in the nucleus and the DNA damage for different relative concentrations of the radionuclide in the nucleus and in the cytoplasm. The nuclides considered in the simulations were Tritium (the electrons emitted due to the β - decay have an average energy of 5.7 keV, corresponding to an average range of 0.42 µm) and Nickel-63 (the electrons emitted have an average energy of 17 keV corresponding to an average range of 5 µm). In the case of Tritium, the dose in the nucleus due the tracks generated outside this region is 15% of the average dose in the cell, whereas in the case of Nickel-63 the dose in the nucleus resulted to be 64% of the average dose in the cell. The distributions of DNA fragments as a function of the relative concentration of the nuclides in the nucleus and in the cytoplasm, were also calculated. In the same conditions, the number of complex lesions (which have a high probability of inducing lethal damage to the cells) per Gy (circa 0.5-1) and the total number of double strand breaks (DSBs) per Gy (circa 40) were also calculated. To complete the characterization of the effects of internal emitters inside the cell the distributions of DSBs per chromosome were studied for different radionuclide distributions in the cell. The results obtained from these simulations show the possible overestimation or underestimation of the risk, (particularly for Tritium intake), due to the distribution of the low energy emitters at subcellular levels.

  14. Monte Carlo simulation of electron beams from an accelerator head using PENELOPE.

    PubMed

    Sempau, J; Sánchez-Reyes, A; Salvat, F; ben Tahar, H O; Jiang, S B; Fernández-Varea, J M

    2001-04-01

    The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the 'latent' variance in the phase-space file, are discussed in detail.

  15. Break Point Distribution on Chromosome 3 of Human Epithelial Cells exposed to Gamma Rays, Neutrons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.

    2007-01-01

    Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.

  16. Melatonin reduces lead levels in blood, brain and bone and increases lead excretion in rats subjected to subacute lead treatment.

    PubMed

    Hernández-Plata, Everardo; Quiroz-Compeán, Fátima; Ramírez-Garcia, Gonzalo; Barrientos, Eunice Yáñez; Rodríguez-Morales, Nadia M; Flores, Alberto; Wrobel, Katarzina; Wrobel, Kazimierz; Méndez, Isabel; Díaz-Muñoz, Mauricio; Robles, Juvencio; Martínez-Alfaro, Minerva

    2015-03-04

    Melatonin, a hormone known for its effects on free radical scavenging and antioxidant activity, can reduce lead toxicity in vivo and in vitro.We examined the effects of melatonin on lead bio-distribution. Rats were intraperitoneally injected with lead acetate (10, 15 or 20mg/kg/day) with or without melatonin (10mg/kg/day) daily for 10 days. In rats intoxicated with the highest lead doses, those treated with melatonin had lower lead levels in blood and higher levels in urine and feces than those treated with lead alone, suggesting that melatonin increases lead excretion. To explore the mechanism underlying this effect, we first assessed whether lead/melatonin complexes were formed directly. Electronic density functional (DFT) calculations showed that a lead/melatonin complex is energetically feasible; however, UV spectroscopy and NMR analysis showed no evidence of such complexes. Next, we examined the liver mRNA levels of metallothioneins (MT) 1 and 2. Melatonin cotreatment increased the MT2 mRNA expression in the liver of rats that received the highest doses of lead. The potential effects of MTs on the tissue distribution and excretion of lead are not well understood. This is the first report to suggest that melatonin directly affects lead levels in organisms exposed to subacute lead intoxication. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. A novel approach to neutron dosimetry.

    PubMed

    Balmer, Matthew J I; Gamage, Kelum A A; Taylor, Graeme C

    2016-11-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of neutron workplace fields. Existing neutron dosimetry instrumentation does not account for this directional distribution, resulting in conservative estimates of dose in neutron workplace fields (by around a factor of 2, although this is heavily dependent on the type of field). This conservatism could influence epidemiological studies on the health effects of radiation exposure. This paper reports on the development of an instrument which can estimate the effective dose of a neutron field, accounting for both the direction and the energy distribution. A 6 Li-loaded scintillator was used to perform neutron assays at a number of locations in a 20 × 20 × 17.5 cm 3 water phantom. The variation in thermal and fast neutron response to different energies and field directions was exploited. The modeled response of the instrument to various neutron fields was used to train an artificial neural network (ANN) to learn the effective dose and ambient dose equivalent of these fields. All experimental data published in this work were measured at the National Physical Laboratory (UK). Experimental results were obtained for a number of radionuclide source based neutron fields to test the performance of the system. The results of experimental neutron assays at 25 locations in a water phantom were fed into the trained ANN. A correlation between neutron counting rates in the phantom and neutron fluence rates was experimentally found to provide dose rate estimates. A radionuclide source behind shadow cone was used to create a more complex field in terms of energy and direction. For all fields, the resulting estimates of effective dose rate were within 45% or better of their calculated values, regardless of energy distribution or direction for measurement times greater than 25 min. This work presents a novel, real-time, approach to workplace neutron dosimetry. It is believed that in the research presented in this paper, for the first time, a single instrument has been able to estimate effective dose.

  18. SU-E-T-551: PTV Is the Worst-Case of CTV in Photon Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, D; Liu, W; Park, P

    2014-06-01

    Purpose: To examine the supposition of the static dose cloud and adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution for photon therapy in head and neck (H and N) plans. Methods: Five diverse H and N plans clinically delivered at our institution were selected. Isocenter for each plan was shifted positively and negatively in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (3 mm) for a total of six shifted plans per original plan. The perturbed plan dose was recalculated inmore » Eclipse (AAA v11.0.30) using the same, fixed fluence map as the original plan. The dose distributions for all plans were exported from the treatment planning system to determine the worst-case CTV dose distributions for each nominal plan. Two worst-case distributions, cold and hot, were defined by selecting the minimum or maximum dose per voxel from all the perturbed plans. The resulting dose volume histograms (DVH) were examined to evaluate the worst-case CTV and nominal PTV dose distributions. Results: Inspection demonstrates that the CTV DVH in the nominal dose distribution is indeed bounded by the CTV DVHs in the worst-case dose distributions. Furthermore, comparison of the D95% for the worst-case (cold) CTV and nominal PTV distributions by Pearson's chi-square test shows excellent agreement for all plans. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the five plans under examination. Although the worst-case dose distributions are unphysical since the dose per voxel is chosen independently, the cold worst-case distribution serves as a lower bound for the worst-case possible CTV coverage. Minor discrepancies between the nominal PTV dose distribution and worst-case CTV dose distribution are expected since the dose cloud is not strictly static. This research was supported by the NCI through grant K25CA168984, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, and by the Fraternal Order of Eagles Cancer Research Fund, the Career Development Award Program at Mayo Clinic.« less

  19. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    PubMed Central

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-01-01

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766

  20. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Algan, O; Ahmad, S

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for themore » stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management techniques such as beam-gating or breath-holding and has potential applications in adaptive radiation therapy.« less

  1. [Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy].

    PubMed

    Renner, Franziska

    2016-09-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.

  2. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    NASA Astrophysics Data System (ADS)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  3. Field-size dependence of doses of therapeutic carbon beams.

    PubMed

    Kusano, Yohsuke; Kanai, Tatsuaki; Yonai, Shunsuke; Komori, Masataka; Ikeda, Noritoshi; Tachikawa, Yuji; Ito, Atsushi; Uchida, Hirohisa

    2007-10-01

    To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.

  4. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans.

    PubMed

    Li, Guangjun; Wu, Kui; Peng, Guang; Zhang, Yingjie; Bai, Sen

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  5. TH-A-19A-11: Validation of GPU-Based Monte Carlo Code (gPMC) Versus Fully Implemented Monte Carlo Code (TOPAS) for Proton Radiation Therapy: Clinical Cases Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D; Schuemann, J; Dowdell, S

    Purpose: For proton radiation therapy, Monte Carlo simulation (MCS) methods are recognized as the gold-standard dose calculation approach. Although previously unrealistic due to limitations in available computing power, GPU-based applications allow MCS of proton treatment fields to be performed in routine clinical use, on time scales comparable to that of conventional pencil-beam algorithms. This study focuses on validating the results of our GPU-based code (gPMC) versus fully implemented proton therapy based MCS code (TOPAS) for clinical patient cases. Methods: Two treatment sites were selected to provide clinical cases for this study: head-and-neck cases due to anatomical geometrical complexity (air cavitiesmore » and density heterogeneities), making dose calculation very challenging, and prostate cases due to higher proton energies used and close proximity of the treatment target to sensitive organs at risk. Both gPMC and TOPAS methods were used to calculate 3-dimensional dose distributions for all patients in this study. Comparisons were performed based on target coverage indices (mean dose, V90 and D90) and gamma index distributions for 2% of the prescription dose and 2mm. Results: For seven out of eight studied cases, mean target dose, V90 and D90 differed less than 2% between TOPAS and gPMC dose distributions. Gamma index analysis for all prostate patients resulted in passing rate of more than 99% of voxels in the target. Four out of five head-neck-cases showed passing rate of gamma index for the target of more than 99%, the fifth having a gamma index passing rate of 93%. Conclusion: Our current work showed excellent agreement between our GPU-based MCS code and fully implemented proton therapy based MC code for a group of dosimetrically challenging patient cases.« less

  6. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guangjun; Wu, Kui; Peng, Guang

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters,more » such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.« less

  7. SU-E-T-504: Intensity-Modulated Radiosurgery Treatments Derived by Optimizing Delivery of Sphere Packing Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermansen, M; Bova, F; John, T St.

    2015-06-15

    Purpose To minimize the number of monitor units required to deliver a sphere packing stereotactic radiosurgery (SRS) plan by eliminating overlaps of individual beam projections. Methods An algorithm was written in C{sup ++} to calculate SRS treatment doses using sphere packing. Three fixed beams were used to approximate each arc in a typical SRS treatment plan. For cases involving multiple isocenters, at each gantry and table angle position beams directed to individual spheres overlap to produce regions of high dose, resulting in intensity modulated beams. These high dose regions were dampened by post-processing of the combined beam profile. The post-processmore » dampening involves removing the excess overlapping fluence from all but the highest contributing beam. The dampened beam profiles at each table and gantry angle position were then summed to produce the new total dose distribution. Results Delivery times for even the most complex multiple sphere plans can be reduced to consistent times of about 20 to 30 minutes. The total MUs required to deliver the plan can also be reduced by as much as 85% of the original plan’s MUs. Conclusion Regions of high dose are removed. Dampening overlapping radiation fluence can produce the new beam profiles that have more uniform dose distributions using less MUs. This results in a treatment that requires significantly fewer intensity values than traditional IMRT or VAMT planning.« less

  8. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    PubMed

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.

  9. Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation.

    PubMed

    Parihar, Vipan K; Pasha, Junaid; Tran, Katherine K; Craver, Brianna M; Acharya, Munjal M; Limoli, Charles L

    2015-03-01

    Cranial radiotherapy is used routinely to control the growth of primary and secondary brain tumors, but often results in serious and debilitating cognitive dysfunction. In part due to the beneficial dose depth distributions that may spare normal tissue damage, the use of protons to treat CNS and other tumor types is rapidly gaining popularity. Astronauts exposed to lower doses of protons in the space radiation environment are also at risk for developing adverse CNS complications. To explore the consequences of whole body proton irradiation, mice were subjected to 0.1 and 1 Gy and analyzed for morphometric changes in hippocampal neurons 10 and 30 days following exposure. Significant dose-dependent reductions (~33 %) in dendritic complexity were found, when dendritic length, branching and area were analyzed 30 days after exposure. At equivalent doses and times, significant reductions in the number (~30 %) and density (50-75 %) of dendritic spines along hippocampal neurons of the dentate gyrus were also observed. Immature spines (filopodia, long) exhibited the greatest sensitivity (1.5- to 3-fold) to irradiation, while more mature spines (mushroom) were more resistant to changes over a 1-month post-irradiation timeframe. Irradiated granule cell neurons spanning the subfields of the dentate gyrus showed significant and dose-responsive reductions in synaptophysin expression, while the expression of postsynaptic density protein (PSD-95) was increased significantly. These findings corroborate our past work using photon irradiation, and demonstrate for the first time, dose-responsive changes in dendritic complexity, spine density and morphology and synaptic protein levels following exposure to low-dose whole body proton irradiation.

  10. Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL

    NASA Technical Reports Server (NTRS)

    Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther

    2010-01-01

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The initial focus of the present experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on, the results of the passive dosimetry within the anthropomorphic phantoms represent the best tool to generate reliable data to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study.

  11. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method

    NASA Astrophysics Data System (ADS)

    Kartashov, Dmitry; Shurshakov, Vyacheslav

    2018-03-01

    A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.

  12. The fate of instilled pulmonary surfactant in normal and quartz-treated rats.

    PubMed Central

    Lewis, R W; Harwood, J L; Richards, R J

    1987-01-01

    Naturally prepared radiolabelled pulmonary surfactant can be rapidly cleared from the alveolar surface to the lung tissue after intratracheal instillation into experimental rats. This clearance is both time- and dose-dependent, a large dose (10 mg/animal) becoming associated with lung tissue more rapidly than a smaller more physiological dose (0.75 mg/animal). The data indicate that extracellular dipalmitoyl-phosphatidylcholine, the major component of pulmonary surfactant, is not catabolized at the alveolar surface. Alveolar free cells (mainly macrophages) appear to play a minor role in surfactant clearance. Quartz-induced phospholipidosis does not lead to an alteration in the rate of bulk surfactant clearance from the alveolar surface, although the initial distribution of the removed phospholipid complex may change in relation to the enlarged heterogenous free cell population. PMID:2821988

  13. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Matthew, E-mail: matthew.schmidt@varian.com; Grzetic, Shelby; Lo, Joseph Y.

    Purpose: Prior work by the authors and other groups has studied the creation of automated intensity modulated radiotherapy (IMRT) plans of equivalent quality to those in a patient database of manually created clinical plans; those database plans provided guidance on the achievable sparing to organs-at-risk (OARs). However, in certain sites, such as head-and-neck, the clinical plans may not be sufficiently optimized because of anatomical complexity and clinical time constraints. This could lead to automated plans that suboptimally exploit OAR sparing. This work investigates a novel dose warping and scaling scheme that attempts to reduce effects of suboptimal sparing in clinicalmore » database plans, thus improving the quality of semiautomated head-and-neck cancer (HNC) plans. Methods: Knowledge-based radiotherapy (KBRT) plans for each of ten “query” patients were semiautomatically generated by identifying the most similar “match” patient in a database of 103 clinical manually created patient plans. The match patient’s plans were adapted to the query case by: (1) deforming the match beam fluences to suit the query target volume and (2) warping the match primary/boost dose distribution to suit the query geometry and using the warped distribution to generate query primary/boost optimization dose-volume constraints. Item (2) included a distance scaling factor to improve query OAR dose sparing with respect to the possibly suboptimal clinical match plan. To further compensate for a component plan of the match case (primary/boost) not optimally sparing OARs, the query dose volume constraints were reduced using a dose scaling factor to be the minimum from either (a) the warped component plan (primary or boost) dose distribution or (b) the warped total plan dose distribution (primary + boost) scaled in proportion to the ratio of component prescription dose to total prescription dose. The dose-volume constraints were used to plan the query case with no human intervention to adjust constraints during plan optimization. Results: KBRT and original clinical plans were dosimetrically equivalent for parotid glands (mean/median doses), spinal cord, and brainstem (maximum doses). KBRT plans significantly reduced larynx median doses (21.5 ± 6.6 Gy to 17.9 ± 3.9 Gy), and oral cavity mean (32.3 ± 6.2 Gy to 28.9 ± 5.4 Gy) and median (28.7 ± 5.7 Gy to 23.2 ± 5.3 Gy) doses. Doses to ipsilateral parotid gland, larynx, oral cavity, and brainstem were lower or equivalent in the KBRT plans for the majority of cases. By contrast, KBRT plans generated without the dose warping and dose scaling steps were not significantly different from the clinical plans. Conclusions: Fast, semiautomatically generated HNC IMRT plans adapted from existing plans in a clinical database can be of equivalent or better quality than manually created plans. The reductions in OAR doses in the semiautomated plans, compared to the clinical plans, indicate that the proposed dose warping and scaling method shows promise in mitigating the impact of suboptimal clinical plans.« less

  14. Depth dose distribution study within a phantom torso after irradiation with a simulated Solar Particle Event at NSRL

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther

    The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).

  15. mBAND analysis of chromosome aberrations in lymphocytes exposed in vitro to alpha-particles and gamma-rays.

    PubMed

    Tawn, E Janet; Janet, E; Whitehouse, Caroline A; Holdsworth, Duncan; De Ruyck, Kim; Vandenbulcke, Katia; Thierens, Hubert

    2008-06-01

    To investigate the profiles of chromosome damage induced in vitro by exposure to alpha-particles and gamma-rays. Human peripheral blood lymphocytes were exposed to three dose regimes: alpha-particle doses of 0.2 and 0.5 Gy and a gamma-ray dose of 1.5 Gy. After culturing for 47 hours, chromosome aberrations involving the number 5 chromosomes were identified using a multi-coloured banding (mBAND) technique. Analysis of the frequencies of chromosome 5 breaks within aberrant cells and within aberrant number 5 chromosomes demonstrated that alpha-particle irradiation is more likely to result in multiple breaks in a chromosome than gamma-irradiation. Additionally, overdispersion was observed for all doses for the distribution of breaks amongst all cells analysed and breaks amongst total number 5 chromosomes, with this being greatest for the 0.2 Gy alpha-particle dose. The ratio of interchanges to intrachanges (F ratio) was 1.4 and 2.4 for 0.2 and 0.5 Gy alpha-particles respectively and 5.5 for 1.5 Gy gamma-rays. Evaluation of simple versus complex exchanges indicated ratios of 1.9 and 2.7 for 0.2 and 0.5 Gy alpha-particles respectively and 10.6 for 1.5 Gy gamma-rays. The majority of the intrachanges involving chromosomes 5 induced by alpha-particle radiation were associated with more complex exchanges. This study has confirmed that exchanges induced by exposure to high linear energy transfer (LET) alpha-particle radiation comprise a greater proportion of intrachanges than those induced by exposure to low LET gamma-rays. However, since the majority of these are associated with complex rearrangements and likely to be non-transmissible, this limits their applicability as a marker of past in vivo exposure.

  16. Unified approach for extrapolation and bridging of adult information in early-phase dose-finding paediatric studies.

    PubMed

    Petit, Caroline; Samson, Adeline; Morita, Satoshi; Ursino, Moreno; Guedj, Jérémie; Jullien, Vincent; Comets, Emmanuelle; Zohar, Sarah

    2018-06-01

    The number of trials conducted and the number of patients per trial are typically small in paediatric clinical studies. This is due to ethical constraints and the complexity of the medical process for treating children. While incorporating prior knowledge from adults may be extremely valuable, this must be done carefully. In this paper, we propose a unified method for designing and analysing dose-finding trials in paediatrics, while bridging information from adults. The dose-range is calculated under three extrapolation options, linear, allometry and maturation adjustment, using adult pharmacokinetic data. To do this, it is assumed that target exposures are the same in both populations. The working model and prior distribution parameters of the dose-toxicity and dose-efficacy relationships are obtained using early-phase adult toxicity and efficacy data at several dose levels. Priors are integrated into the dose-finding process through Bayesian model selection or adaptive priors. This calibrates the model to adjust for misspecification, if the adult and pediatric data are very different. We performed a simulation study which indicates that incorporating prior adult information in this way may improve dose selection in children.

  17. A case study for online plan adaptation using helical tomotherapy

    PubMed Central

    Neilson, Christopher E.; Yartsev, Slav

    2012-01-01

    Helical tomotherapy's ability to provide daily megavoltage (MV) computed tomography (CT) images for patient set-up verification allows for the creation of adapted plans. As plans become more complex by introducing sharper dose gradients in an effort to spare healthy tissue, inter-fraction changes of organ position with respect to plan become a limiting factor in the correct dose delivery to the target. Tomotherapy's planned adaptive option provides the possibility to evaluate the dose distribution for each fraction and subsequently adapt the original plan to the current anatomy. In this study, 30 adapted plans were created using new contours based on the daily MVCT studies of a bladder cancer patient with considerable anatomical variations. Dose to the rectum and two planning target volumes (PTVs) were compared between the original plan, the dose that was actually delivered to the patient, and the theoretical dose from the 30 adapted plans. The adaptation simulation displayed a lower dose to 35% and 50% of the rectum compared to no adaptation at all, while maintaining an equivalent dose to the PTVs. Although online adaptation is currently too time-consuming, it has the potential to improve the effectiveness of radiotherapy. PMID:22557799

  18. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

  19. WE-EF-BRA-07: High Performance Preclinical Irradiation Through Optimized Dual Focal Spot Dose Painting and Online Virtual Isocenter Radiation Field Targeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J; Princess Margaret Cancer Centre, University Health Network, Toronto, CA; Lindsay, P

    Purpose: Advances in radiotherapy practice facilitated by collimation systems to shape radiation fields and image guidance to target these conformal beams have motivated proposals for more complex dose patterns to improve the therapeutic ratio. Recent progress in small animal radiotherapy platforms has provided the foundation to validate the efficacy of such interventions, but robustly delivering heterogeneous dose distributions at the scale and accuracy demanded by preclinical studies remains challenging. This work proposes a dual focal spot optimization method to paint spatially heterogeneous dose regions and an online virtual isocenter targeting method to accurately target the dose distributions. Methods: Two-dimensional dosemore » kernels were empirically measured for the 1 mm diameter circular collimator with radiochromic film in a solid water phantom for the small and large x-ray focal spots on the X-RAD 225Cx microirradiator. These kernels were used in an optimization framework which determined a set of animal stage positions, beam-on times, and focal spot settings to optimally deliver a given desired dose distribution. An online method was developed which defined a virtual treatment isocenter based on a single image projection of the collimated radiation field. The method was demonstrated by optimization of a 6 mm circular 2 Gy target adjoining a 4 mm semicircular avoidance region. Results: The dual focal spot technique improved the optimized dose distribution with the proportion of avoidance region receiving more than 0.5 Gy reduced by 40% compared to the large focal spot technique. Targeting tests performed by irradiating ball bearing targets on radiochromic film pieced revealed the online targeting method improved the three-dimensional accuracy from 0.48 mm to 0.15 mm. Conclusion: The dual focal spot optimization and online virtual isocenter targeting framework is a robust option for delivering dose at the preclinical level and provides a new experimental option for unique radiobiological investigations This work is supported, in part, by the Natural Sciences and Engineering Research Council of Canada and a Mitacs-Accelerate fellowship. P.E. Lindsay, and D.A. Jaffray are listed as inventors of the system described herein. This system has been licensed to Precision X-Ray Inc. for commercial development.« less

  20. Quality assurance in proton beam therapy using a plastic scintillator and a commercially available digital camera.

    PubMed

    Almurayshid, Mansour; Helo, Yusuf; Kacperek, Andrzej; Griffiths, Jennifer; Hebden, Jem; Gibson, Adam

    2017-09-01

    In this article, we evaluate a plastic scintillation detector system for quality assurance in proton therapy using a BC-408 plastic scintillator, a commercial camera, and a computer. The basic characteristics of the system were assessed in a series of proton irradiations. The reproducibility and response to changes of dose, dose-rate, and proton energy were determined. Photographs of the scintillation light distributions were acquired, and compared with Geant4 Monte Carlo simulations and with depth-dose curves measured with an ionization chamber. A quenching effect was observed at the Bragg peak of the 60 MeV proton beam where less light was produced than expected. We developed an approach using Birks equation to correct for this quenching. We simulated the linear energy transfer (LET) as a function of depth in Geant4 and found Birks constant by comparing the calculated LET and measured scintillation light distribution. We then used the derived value of Birks constant to correct the measured scintillation light distribution for quenching using Geant4. The corrected light output from the scintillator increased linearly with dose. The system is stable and offers short-term reproducibility to within 0.80%. No dose rate dependency was observed in this work. This approach offers an effective way to correct for quenching, and could provide a method for rapid, convenient, routine quality assurance for clinical proton beams. Furthermore, the system has the advantage of providing 2D visualization of individual radiation fields, with potential application for quality assurance of complex, time-varying fields. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. A dose error evaluation study for 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Milz, Stefan; Wilkens, Jan J.; Ullrich, Wolfgang

    2014-10-01

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms. The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms. The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex programming structure. The study discloses disadvantages for the bETM and for the DIM. DIM yielded insufficient results for large voxel sizes, while bETM is prone to errors for small voxel sizes.

  2. A dose error evaluation study for 4D dose calculations.

    PubMed

    Milz, Stefan; Wilkens, Jan J; Ullrich, Wolfgang

    2014-11-07

    Previous studies have shown that respiration induced motion is not negligible for Stereotactic Body Radiation Therapy. The intrafractional breathing induced motion influences the delivered dose distribution on the underlying patient geometry such as the lung or the abdomen. If a static geometry is used, a planning process for these indications does not represent the entire dynamic process. The quality of a full 4D dose calculation approach depends on the dose coordinate transformation process between deformable geometries. This article provides an evaluation study that introduces an advanced method to verify the quality of numerical dose transformation generated by four different algorithms.The used transformation metric value is based on the deviation of the dose mass histogram (DMH) and the mean dose throughout dose transformation. The study compares the results of four algorithms. In general, two elementary approaches are used: dose mapping and energy transformation. Dose interpolation (DIM) and an advanced concept, so called divergent dose mapping model (dDMM), are used for dose mapping. The algorithms are compared to the basic energy transformation model (bETM) and the energy mass congruent mapping (EMCM). For evaluation 900 small sample regions of interest (ROI) are generated inside an exemplary lung geometry (4DCT). A homogeneous fluence distribution is assumed for dose calculation inside the ROIs. The dose transformations are performed with the four different algorithms.The study investigates the DMH-metric and the mean dose metric for different scenarios (voxel sizes: 8 mm, 4 mm, 2 mm, 1 mm; 9 different breathing phases). dDMM achieves the best transformation accuracy in all measured test cases with 3-5% lower errors than the other models. The results of dDMM are reasonable and most efficient in this study, although the model is simple and easy to implement. The EMCM model also achieved suitable results, but the approach requires a more complex programming structure. The study discloses disadvantages for the bETM and for the DIM. DIM yielded insufficient results for large voxel sizes, while bETM is prone to errors for small voxel sizes.

  3. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less

  4. Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy.

    PubMed

    Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C; Lomax, Antony J; Zhang, Ye

    2018-03-01

    The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6[Formula: see text] layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with [Formula: see text]5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation selection, and eventually 4D optimisation applications if the correct temporal information is available.

  5. Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy

    NASA Astrophysics Data System (ADS)

    Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C.; Lomax, Antony J.; Zhang, Ye

    2018-03-01

    The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6× layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with > 5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation selection, and eventually 4D optimisation applications if the correct temporal information is available.

  6. The DosiMap, a new 2D scintillating dosimeter for IMRT quality assurance: characterization of two Cerenkov discrimination methods.

    PubMed

    Frelin, A M; Fontbonne, J M; Ban, G; Colin, J; Labalme, M; Batalla, A; Vela, A; Boher, P; Braud, M; Leroux, T

    2008-05-01

    New radiation therapy techniques such as IMRT present significant efficiency due to their highly conformal dose distributions. A consequence of the complexity of their dose distributions (high gradients, small irradiation fields, low dose distribution, ...) is the requirement for better precision quality assurance than in classical radiotherapy in order to compare the conformation of the delivered dose with the planned dose distribution and to guarantee the quality of the treatment. Currently this control is mostly performed by matrices of ionization chambers, diode detectors, dosimetric films, portal imaging, or dosimetric gels. Another approach is scintillation dosimetry, which has been developed in the last 15 years mainly through scintillating fiber devices. Despite having many advantages over other methods it is still at an experimental level for routine dosimetry because the Cerenkov radiation produced under irradiation represents an important stem effect. A new 2D water equivalent scintillating dosimeter, the DosiMap, and two different Cerenkov discrimination methods were developed with the collaboration of the Laboratoire de Physique Corpusculaire of Caen, the Comprehensive Cancer Center François Baclesse, and the ELDIM Co., in the frame of the MAESTRO European project. The DosiMap consists of a plastic scintillating sheet placed inside a transparent polystyrene phantom. The light distribution produced under irradiation is recorded by a CCD camera. Our first Cerenkov discrimination technique is subtractive. It uses a chessboard pattern placed in front of the scintillator, which provides a background signal containing only Cerenkov light. Our second discrimination technique is colorimetric. It performs a spectral analysis of the light signal, which allows the unfolding of the Cerenkov radiation and the scintillation. Tests were carried out with our DosiMap prototype and the performances of the two discrimination methods were assessed. The comparison of the dose measurements performed with the DosiMap and with dosimetric films for three different irradiation configurations showed discrepancies smaller than 3.5% for a 2 mm spatial resolution. Two innovative discrimination solutions were demonstrated to separate the scintillation from the Cerenkov radiation. It was also shown that the DosiMap, which is water equivalent, fast, and user friendly, is a very promising tool for radiotherapy quality assurance.

  7. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.

    PubMed

    Nilsen, Vegard; Wyller, John

    2016-01-01

    Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Liu, B; Liang, B

    Purpose: Current CyberKnife treatment planning system (TPS) provided two dose calculation algorithms: Ray-tracing and Monte Carlo. Ray-tracing algorithm is fast, but less accurate, and also can’t handle irregular fields since a multi-leaf collimator system was recently introduced to CyberKnife M6 system. Monte Carlo method has well-known accuracy, but the current version still takes a long time to finish dose calculations. The purpose of this paper is to develop a GPU-based fast C/S dose engine for CyberKnife system to achieve both accuracy and efficiency. Methods: The TERMA distribution from a poly-energetic source was calculated based on beam’s eye view coordinate system,more » which is GPU friendly and has linear complexity. The dose distribution was then computed by inversely collecting the energy depositions from all TERMA points along 192 collapsed-cone directions. EGSnrc user code was used to pre-calculate energy deposition kernels (EDKs) for a series of mono-energy photons The energy spectrum was reconstructed based on measured tissue maximum ratio (TMR) curve, the TERMA averaged cumulative kernels was then calculated. Beam hardening parameters and intensity profiles were optimized based on measurement data from CyberKnife system. Results: The difference between measured and calculated TMR are less than 1% for all collimators except in the build-up regions. The calculated profiles also showed good agreements with the measured doses within 1% except in the penumbra regions. The developed C/S dose engine was also used to evaluate four clinical CyberKnife treatment plans, the results showed a better dose calculation accuracy than Ray-tracing algorithm compared with Monte Carlo method for heterogeneous cases. For the dose calculation time, it takes about several seconds for one beam depends on collimator size and dose calculation grids. Conclusion: A GPU-based C/S dose engine has been developed for CyberKnife system, which was proven to be efficient and accurate for clinical purpose, and can be easily implemented in TPS.« less

  9. Deep Inspiration Breath Hold—Based Radiation Therapy: A Clinical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boda-Heggemann, Judit, E-mail: judit.boda-heggemann@umm.de; Knopf, Antje-Christin; Simeonova-Chergou, Anna

    Several recent developments in linear accelerator–based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams. Applying complex treatment plans with steep dose gradients requires strategies to mitigate and compensate for motion effectsmore » in general, particularly breathing motion. Intrafractional breathing-related motion results in uncertainties in dose delivery and thus in target coverage. As a consequence, generous margins have been used, which, in turn, increases exposure to organs at risk. Particle therapy, particularly with scanned beams, poses additional problems such as interplay effects and range uncertainties. Among advanced strategies to compensate breathing motion such as beam gating and tracking, deep inspiration breath hold (DIBH) gating is particularly advantageous in several respects, not only for hypofractionated, high single-dose stereotactic body RT of lung, liver, and upper abdominal lesions but also for normofractionated treatment of thoracic tumors such as lung cancer, mediastinal lymphomas, and breast cancer. This review provides an in-depth discussion of the rationale and technical implementation of DIBH gating for hypofractionated and normofractionated RT of intrathoracic and upper abdominal tumors in photon and proton RT.« less

  10. TH-E-BRE-05: Analysis of Dosimetric Characteristics in Two Leaf Motion Calculator Algorithms for Sliding Window IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, L; Huang, B; Rowedder, B

    Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were deliveredmore » using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less

  11. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  12. Vaccine-preventable disease and the under-utilization of immunizations in complex humanitarian emergencies.

    PubMed

    Close, Ryan M; Pearson, Catherine; Cohn, Jennifer

    2016-09-07

    Complex humanitarian emergencies affect 40-60 million people annually and are a growing public health concern worldwide. Despite efforts to provide medical and public health services to populations affected by complex emergencies, significant morbidity and mortality persist. Measles is a major communicable disease threat, but through vaccination of broader target age groups beyond the traditional immunization schedule, measles-related mortality has been significantly reduced during crises. Yet, a limited number of vaccine-preventable diseases continue to contribute disproportionately to morbidity and mortality in complex emergencies. The literature suggests that Streptococcus pneumoniae, Rotavirus, and Haemophilus influenzae type-b should be key targets for vaccination programs. Because of the significant contribution of these three pathogens to complex humanitarian emergencies in low and middle-income countries regardless of disaster type, geography, or population, their vaccines should be considered essential components of the standard emergency response effort. We discuss the barriers to vaccine distribution and provide evidence for strategies to improve distribution, including expanded target age-range and reduced dose schedules. Our review includes specific recommendations for the expanded use of these three vaccines in complex emergencies in low and middle-income countries as a way to guide future policy discussions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A practical three-dimensional dosimetry system for radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need formore » an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE trade mark sign dosimeter ({approx}90% of radius). The EBT and PRESAGE trade mark sign distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE trade mark sign optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.« less

  14. Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media.

    PubMed

    Zeinali-Rafsanjani, B; Mosleh-Shirazi, M A; Faghihi, R; Karbasi, S; Mosalaei, A

    2015-01-01

    To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam.

  15. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    PubMed

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  16. WE-D-BRE-06: Quantification of Dose-Response for High Grade Esophagtis Patients Using a Novel Voxel-To-Voxel Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzielski, J; Martel, M; Tucker, S

    2014-06-15

    Purpose: Radiation induces an inflammatory response in the esophagus, discernible on CT studies. This work objectively quantifies the voxel esophageal radiation-response for patients with acute esophagitis. This knowledge is an important first-step towards predicting the effect of complex dose distributions on patient esophagitis symptoms. Methods: A previously validated voxel-based methodology of quantifying radiation esophagitis severity was used to identify the voxel dose-response for 18 NSCLC patients with severe esophagitis (CTCAE grading criteria, grade2 or higher). The response is quantified as percent voxel volume change for a given dose. During treatment (6–8 weeks), patients had weekly 4DCT studies and esophagitis scoring.more » Planning CT esophageal contours were deformed to each weekly CT using a demons DIR algorithm. An algorithm using the Jacobian Map from the DIR of the planning CT to all weekly CTs was used to quantify voxel-volume change, along with corresponding delivered voxel dose, to the planning voxel. Dose for each voxel for each time-point was calculated on each previous weekly CT image, and accumulated using DIR. Thus, for each voxel, the volume-change and delivered dose was calculated for each time-point. The data was binned according to when the volume-change first increased by a threshold volume (10%–100%, in 10% increments), and the average delivered dose calculated for each bin. Results: The average dose resulting in a voxel volume increase of 10–100% was 21.6 to 45.9Gy, respectively. The mean population dose to give a 50% volume increase was 36.3±4.4Gy, (range:29.8 to 43.5Gy). The average week of 50% response was 4.1 (range:4.9 to 2.8 weeks). All 18 patients showed similar dose to first response curves, showing a common trend in the initial inflammatoryresponse. Conclusion: We extracted the dose-response curve of the esophagus on a voxel-to-voxel level. This may be useful for estimating the esophagus response (and patient symptoms) to complicated dose distributions.« less

  17. Acute, 28days sub acute and genotoxic profiling of Quercetin-Magnesium complex in Swiss albino mice.

    PubMed

    Ghosh, Nilanjan; Sandur, Rajendra; Ghosh, Deepanwita; Roy, Souvik; Janadri, Suresh

    2017-02-01

    Quercetin-Magnesium complex is one of the youngest alkaline rare earth metal (Magnesium) complexes with flavonoids (Quercetin) in organo-metalic family. Earlier studies describe the details of the complex formation, characterization and antioxidant study of the complex but toxicity profile is still under darkness. The present study was taken up to investigate the oral acute toxicity, 28days repeated oral sub-acute toxicity study and genotoxicity study of Quercetin-Magnesium complex in Swiss albino mice. Quercetin-Magnesium complex showed mortality at a dose of 185mg/kg in the Swiss albino mice. In 28days repeated oral toxicity study, Quercetin-Magnesium complex was administered to both sex of Swiss albino mice at dose levels of 150, 130 and 100mg/kg body weight respectively. Where 150mg/kg dose shows increased levels of white blood cells and changes in total protein, serum creatinine and blood urea nitrogen. Histopathological study of Quercetin-Magnesium complex shows minor structural alteration in kidney at 150mg/kg dose. No observed toxic level found in 130mg/kg or below doses. No genotoxic effect found in any doses of the complex. Therefore 130mg/kg or below dose level could be better for further study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874

  19. Measuring dose from radiotherapy treatments in the vicinity of a cardiac pacemaker.

    PubMed

    Peet, Samuel C; Wilks, Rachael; Kairn, Tanya; Crowe, Scott B

    2016-12-01

    This study investigated the dose absorbed by tissues surrounding artificial cardiac pacemakers during external beam radiotherapy procedures. The usefulness of out-of-field reference data, treatment planning systems, and skin dose measurements to estimate the dose in the vicinity of a pacemaker was also examined. Measurements were performed by installing a pacemaker onto an anthropomorphic phantom, and using radiochromic film and optically stimulated luminescence dosimeters to measure the dose in the vicinity of the device during the delivery of square fields and clinical treatment plans. It was found that the dose delivered in the vicinity of the cardiac device was unevenly distributed both laterally and anteroposteriorly. As the device was moved distally from the square field, the dose dropped exponentially, in line with out-of-field reference data in the literature. Treatment planning systems were found to substantially underestimate the dose for volumetric modulated arc therapy, helical tomotherapy, and 3D conformal treatments. The skin dose was observed to be either greater or lesser than the dose received at the depth of the device, depending on the treatment site, and so care should be if skin dose measurements are to be used to estimate the dose to a pacemaker. Square field reference data may be used as an upper estimate of absorbed dose per monitor unit in the vicinity of a cardiac device for complex treatments involving multiple gantry angles. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    NASA Astrophysics Data System (ADS)

    Tang, Grace; Earl, Matthew A.; Yu, Cedric X.

    2009-11-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per sector transition. The results have shown that VDR may not be necessary for single-arc IMAT. Using variable angular spacing, VDR RapidArc plans can be implemented into the clinics that are not equipped with the new VDR-enabled machines without compromising the plan quality or treatment efficiency. With a prospective optimization approach using variable angular spacing, CDR delivery times can be further minimized while maintaining the high delivery efficiency of single-arc IMAT treatment.

  1. Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution.

    PubMed

    Bao, Ande; Zhao, Xia; Phillips, William T; Woolley, F Ross; Otto, Randal A; Goins, Beth; Hevezi, James M

    2005-01-01

    Radioimmunotherapy of hematopoeitic cancers and micrometastases has been shown to have significant therapeutic benefit. The treatment of solid tumors with radionuclide therapy has been less successful. Previous investigations of intratumoral activity distribution and studies on intratumoral drug delivery suggest that a probable reason for the disappointing results in solid tumor treatment is nonuniform intratumoral distribution coupled with restricted intratumoral drug penetrance, thus inhibiting antineoplastic agents from reaching the tumor's center. This paper describes a nonuniform intratumoral activity distribution identified by limited radiolabeled tracer diffusion from tumor surface to tumor center. This activity was simulated using techniques that allowed the absorbed dose distributions to be estimated using different intratumoral diffusion capabilities and calculated for tumors of varying diameters. The influences of these absorbed dose distributions on solid tumor radionuclide therapy are also discussed. The absorbed dose distribution was calculated using the dose point kernel method that provided for the application of a three-dimensional (3D) convolution between a dose rate kernel function and an activity distribution function. These functions were incorporated into 3D matrices with voxels measuring 0.10 x 0.10 x 0.10 mm3. At this point fast Fourier transform (FFT) and multiplication in frequency domain followed by inverse FFT (iFFT) were used to effect this phase of the dose calculation process. The absorbed dose distribution for tumors of 1, 3, 5, 10, and 15 mm in diameter were studied. Using the therapeutic radionuclides of 131I, 186Re, 188Re, and 90Y, the total average dose, center dose, and surface dose for each of the different tumor diameters were reported. The absorbed dose in the nearby normal tissue was also evaluated. When the tumor diameters exceed 15 mm, a much lower tumor center dose is delivered compared with tumors between 3 and 5 mm in diameter. Based on these findings, the use of higher beta-energy radionuclides, such as 188Re and 90Y is more effective in delivering a higher absorbed dose to the tumor center at tumor diameters around 10 mm.

  2. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    NASA Astrophysics Data System (ADS)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.

  3. Minimizing dose variation from the interplay effect in stereotactic radiation therapy using volumetric modulated arc therapy for lung cancer.

    PubMed

    Kubo, Kazuki; Monzen, Hajime; Tamura, Mikoto; Hirata, Makoto; Ishii, Kentaro; Okada, Wataru; Nakahara, Ryuta; Kishimoto, Shun; Kawamorita, Ryu; Nishimura, Yasumasa

    2018-03-01

    It is important to improve the magnitude of dose variation that is caused by the interplay effect. The aim of this study was to investigate the impact of the number of breaths (NBs) to the dose variation for VMAT-SBRT to lung cancer. Data on respiratory motion and multileaf collimator (MLC) sequence were collected from the cases of 30 patients who underwent radiotherapy with VMAT-SBRT for lung cancer. The NBs in the total irradiation time with VMAT and the maximum craniocaudal amplitude of the target were calculated. The MLC sequence complexity was evaluated using the modulation complexity score for VMAT (MCSv). Static and dynamic measurements were performed using a cylindrical respiratory motion phantom and a micro ionization chamber. The 1 standard deviation which were obtained from 10 dynamic measurements for each patient were defined as dose variation caused by the interplay effect. The dose distributions were also verified with radiochromic film to detect undesired hot and cold dose spot. Dose measurements were also performed with different NBs in the same plan for 16 patients in 30 patients. The correlations between dose variations and parameters assessed for each treatment plan including NBs, MCSv, the MCSv/amplitude quotient (TMMCSv), and the MCSv/amplitude quotient × NBs product (IVS) were evaluated. Dose variation was decreased with increasing NBs, and NBs of >40 times maintained the dose variation within 3% in 15 cases. The correlation between dose variation and IVS which were considered NBs was shown stronger (R 2  = 0.43, P < 0.05) than TMMCSv (R 2  = 0.32, P < 0.05). The NBs is an important factor to reduce the dose variation. The patient who breathes >40 times during irradiation of two partial arcs VMAT (i.e., NBs = 16 breaths per minute) may be suitable for VMAT-SBRT for lung cancer. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  4. Three-dimensional radiotherapy of head and neck and esophageal carcinomas: a monoisocentric treatment technique to achieve improved dose distributions.

    PubMed

    Ahmad, M; Nath, R

    2001-02-20

    The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.

  5. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    NASA Astrophysics Data System (ADS)

    Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  6. Effect of Genetic Variants, Especially CYP2C9 and VKORC1, on the Pharmacology of Warfarin

    PubMed Central

    Fung, Erik; Patsopoulos, Nikolaos A.; Belknap, Steven M.; O’Rourke, Daniel J.; Robb, John F.; Anderson, Jeffrey L.; Shworak, Nicholas W.; Moore, Jason H.

    2014-01-01

    The genes encoding the cytochrome P450 2C9 enzyme (CYP2C9) and vitamin K-epoxide reductase complex unit 1 (VKORC1) are major determinants of anticoagulant response to warfarin. Together with patient demographics and clinical information, they account for approximately one-half of the warfarin dose variance in individuals of European descent. Recent prospective and randomized controlled trial data support pharmacogenetic guidance with their use in warfarin dose initiation and titration. Benefits from pharmacogenetics-guided warfarin dosing have been reported to extend beyond the period of initial dosing, with supportive data indicating benefits to at least 3 months. The genetic effects of VKORC1 and CYP2C9 in African and Asian populations are concordant with those in individuals of European ancestry; however, frequency distribution of allelic variants can vary considerably between major populations. Future randomized controlled trials in multiethnic settings using population-specific dosing algorithms will allow us to further ascertain the generalizability and cost-effectiveness of pharmacogenetics-guided warfarin therapy. Additional genome-wide association studies may help us to improve and refine dosing algorithms and potentially identify novel biological pathways. PMID:23041981

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCTmore » scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise. Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.« less

  8. Modality comparison for small animal radiotherapy: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCTmore » scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise. Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.« less

  9. Vanadium distribution in rats and DNA cleavage by vanadyl complex: implication for vanadium toxicity and biological effects.

    PubMed Central

    Sakurai, H

    1994-01-01

    Vanadium ion is toxic to animals. However, vanadium is also an agent used for chemoprotection against cancers in animals. To understand both the toxic and beneficial effects we studied vanadium distribution in rats. Accumulation of vanadium in the liver nuclei of rats given low doses of compounds in the +4 or +5 oxidation state was greater than in the liver nuclei of rats given high doses of vanadium compounds or the vanadate (+5 oxidation state) compound. Vanadium was incorporated exclusively in the vanadyl (+4 oxidation state) form. We also investigated the reactions of vanadyl ion and found that incubation of DNA with vanadyl ion and hydrogen peroxide (H2O2) led to intense DNA cleavage. ESR spin trapping demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion and H2O2. Thus, we propose that the mechanism for vanadium-dependent toxicity and antineoplastic action is due to DNA cleavage by hydroxyl radicals generated in living systems. PMID:7843133

  10. The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation

    NASA Astrophysics Data System (ADS)

    Salman Shahid, Syed; Bikson, Marom; Salman, Humaira; Wen, Peng; Ahfock, Tony

    2014-06-01

    Objectives. Computational methods are increasingly used to optimize transcranial direct current stimulation (tDCS) dose strategies and yet complexities of existing approaches limit their clinical access. Since predictive modelling indicates the relevance of subject/pathology based data and hence the need for subject specific modelling, the incremental clinical value of increasingly complex modelling methods must be balanced against the computational and clinical time and costs. For example, the incorporation of multiple tissue layers and measured diffusion tensor (DTI) based conductivity estimates increase model precision but at the cost of clinical and computational resources. Costs related to such complexities aggregate when considering individual optimization and the myriad of potential montages. Here, rather than considering if additional details change current-flow prediction, we consider when added complexities influence clinical decisions. Approach. Towards developing quantitative and qualitative metrics of value/cost associated with computational model complexity, we considered field distributions generated by two 4 × 1 high-definition montages (m1 = 4 × 1 HD montage with anode at C3 and m2 = 4 × 1 HD montage with anode at C1) and a single conventional (m3 = C3-Fp2) tDCS electrode montage. We evaluated statistical methods, including residual error (RE) and relative difference measure (RDM), to consider the clinical impact and utility of increased complexities, namely the influence of skull, muscle and brain anisotropic conductivities in a volume conductor model. Main results. Anisotropy modulated current-flow in a montage and region dependent manner. However, significant statistical changes, produced within montage by anisotropy, did not change qualitative peak and topographic comparisons across montages. Thus for the examples analysed, clinical decision on which dose to select would not be altered by the omission of anisotropic brain conductivity. Significance. Results illustrate the need to rationally balance the role of model complexity, such as anisotropy in detailed current flow analysis versus value in clinical dose design. However, when extending our analysis to include axonal polarization, the results provide presumably clinically meaningful information. Hence the importance of model complexity may be more relevant with cellular level predictions of neuromodulation.

  11. Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: an analysis of data from the MRC RT01 trial (ISRCTN 47772397)

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Sydes, Matthew R.; Dearnaley, David P.; Partridge, Mike

    2009-11-01

    Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.

  12. Altitudinal characteristics of atmospheric deposition of aerosols in mountainous regions: Lessons from the Fukushima Daiichi Nuclear Power Station accident.

    PubMed

    Sanada, Yukihisa; Katata, Genki; Kaneyasu, Naoki; Nakanishi, Chika; Urabe, Yoshimi; Nishizawa, Yukiyasu

    2018-03-15

    To understand the formation process of radiologically contaminated areas in eastern Japan caused by the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, the deposition mechanisms over complex topography are the key factors to be investigated. To characterize the atmospheric deposition processes of radionuclides over complex mountainous topography, we investigated the altitudinal distributions of the radiocesium deposited during the accident. In five selected areas, altitudinal characteristics of the air dose rates observed using airborne surveys were analyzed. To examine the deposition mechanisms, we supplementarily used vertical profiles of radiocesium deposition in each area calculated in the latest atmospheric dispersion model. In southern Iwate, the vertical profile of the observed air dose rate was uniform regardless of altitude. In western Tochigi, the areas with the highest levels of contamination were characteristically distributed in the middle of the mountains, while in southern Fukushima, the areas with the highest contamination levels were enhanced near the summits of mountains. In central Fukushima, high air dose rates were limited to the bottoms of basin-like valley. In the region northwest of FDNPS, the air dose rate was the highest at the bottom of valley topography and decreased gradually with altitude. The simulation results showed that calculated wet deposition and observed vertical profiles of total deposition were similar in areas of southern Iwate and northwest of FDNPS qualitatively, suggesting that the dominant deposition mechanism was wet deposition. In contrast, the atmospheric dispersion model failed to reproduce either the timing of precipitation events or vertical profiles of radiocesium deposition in three other areas. Although it was difficult to elucidate the deposition mechanisms in these areas due to uncertainties of the present model results, potential mechanisms such as cloud water deposition were still proposed based on circumstantial evidences of limited meteorological data during the early stage of the accident. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. SU-F-T-316: A Model to Deal with Dosimetric and Delivery Uncertainties in Radiotherapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haering, P; Lang, C; Splinter, M

    2016-06-15

    Purpose The conventional way of dealing with uncertainties resulting from dose calculation or beam delivery in IMRT, is to do verification measurements for the plan in question. Here we present an alternative based on recommendations given in the AAPM 142 report and treatment specific parameters that model the uncertainties for the plan delivery. Methods Basis of the model is the assignment of uncertainty parameters to all segment fields or control point sequences of a plan. The given field shape is analyzed for complexity, dose rate, number of MU, field size related output as well as factors for in/out field positionmore » and penumbra regions. Together with depth related uncertainties, a 3D matrix is generated by a projection algorithm. Patient anatomy is included as uncertainty CT data set as well. Therefore, object density is classified in 4 categories close to water, lung, bone and gradient regions with additional uncertainties. The result is then exported as a DICOM dose file by the software tool (written in IDL, Exelis), having the given resolution and target point. Results Uncertainty matrixes for several patient cases have been calculated and compared side by side in the planning system. The result is not quite always intuitive but it clearly indicates high and low uncertainties related to OARs and target volumes as well as to measured gamma distributions.ConclusionThe imported uncertainty datasets may help the treatment planner to understand the complexity of the treatment plan. He then might decide to change the plan to produce a more suited uncertainty distribution, e.g. by changing the beam angles the high uncertainty spots can be influenced or try to use another treatment setup, resulting in a plan with lower uncertainties. A next step could be to include such a model into the optimization algorithm to add a new dose uncertainty constraint.« less

  14. Interaction of chelating agents with cadmium in mice and rats.

    PubMed Central

    Eybl, V; Sýkora, J; Koutenský, J; Caisová, D; Schwartz, A; Mertl, F

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl2 and on the whole body retention and tissue distribution of cadmium after the IV application of 115mCdCl2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatment of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination of the retention and distribution of Cd in mice, it was demonstrated that the combined application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of 115mCd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes. PMID:6734561

  15. Three dimensional dose distribution comparison of simple and complex acquisition trajectories in dedicated breast CT

    PubMed Central

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2015-01-01

    Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm3 voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the central slice. Regardless of phantom material or filled fluid density, dose delivered by the saddle scan was negligibly different than the simple circular, no-tilt scans. The average dose measured in the breast phantom was marginally higher for saddle than the circular no tilt scan at 3.82 and 3.87 mGy, respectively. Conclusions: Not only does nontraditional 3D-trajectory CT scanning yield more complete sampling of the breast volume but also has comparable dose deposition throughout the breast and anterior chest volume, as verified by Monte Carlo simulation and physical measurements. PMID:26233179

  16. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  17. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.

  18. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, M; Aldoohan, S; Sonnad, J

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less

  19. [Diagnostic reference levels in interventional radiology].

    PubMed

    Vañó Carruana, E; Fernández Soto, J M; Sánchez Casanueva, R M; Ten Morón, J I

    2013-12-01

    This article discusses the diagnostic reference levels for radiation exposure proposed by the International Commission on Radiological Protection (ICRP) to facilitate the application of the optimization criteria in diagnostic imaging and interventional procedures. These levels are normally established as the third quartile of the dose distributions to patients in an ample sample of centers and are supposed to be representative of good practice regarding patient exposure. In determining these levels, it is important to evaluate image quality as well to ensure that it is sufficient for diagnostic purposes. When the values for the dose received by patients are systematically higher or much lower than the reference levels, an investigation should determine whether corrective measures need to be applied. The European and Spanish regulations require the use of these reference values in quality assurance programs. For interventional procedures, the dose area product (or kerma area product) values are usually used as reference values together with the time under fluoroscopy and the total number of images acquired. The most modern imaging devices allow the value of the accumulated dose at the entrance to the patient to be calculated to optimize the distribution of the dose on the skin. The ICRP recommends that the complexity of interventional procedures be taken into account when establishing reference levels. In the future, diagnostic imaging departments will have automatic systems to manage patient dosimetric data; these systems will enable continuous dosage auditing and alerts about individual procedures that might involve doses several times above the reference values. This article also discusses aspects that need to be clarified to take better advantage of the reference levels in interventional procedures. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  20. SU-G-BRC-16: Theory and Clinical Implications of the Constant Dosimetric Leaf Gap (DLG) Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaraswamy, L; Xu, Z; Podgorsak, M

    Purpose: Commercial dose calculation algorithms incorporate a single DLG value for a given beam energy that is applied across an entire treatment field. However, the physical processes associated with beam generation and dose delivery suggest that the DLG is not constant. The aim of this study is to evaluate the variation of DLG among all leaf pairs, to quantify how this variation impacts delivered dose, and to establish a novel method to correct dose distributions calculated using the approximation of constant DLG. Methods: A 2D diode array was used to measure the DLG for all 60 leaf pairs at severalmore » points along each leaf pair travel direction. This approach was validated by comparison to DLG values measured at select points using a 0.6 cc ion chamber with the standard formalism. In-house software was developed to enable incorporation of position dependent DLG values into dose distribution optimization and calculation. The accuracy of beam delivery of both the corrected and uncorrected treatment plans was studied through gamma pass rate evaluation. A comparison of DVH statistics in corrected and uncorrected treatment plans was made. Results: The outer 20 MLC leaf pairs (1.0 cm width) have DLG values that are 0.32 mm (mean) to 0.65 mm (maximum) lower than the central leaf-pair. VMAT plans using a large number of 1 cm wide leaves were more accurately delivered (gamma pass rate increased by 5%) and dose coverage was higher (D100 increased by 3%) when the 2D DLG was modeled. Conclusion: Using a constant DLG value for a given beam energy will result in dose optimization, dose calculation and treatment delivery inaccuracies that become significant for treatment plans with high modulation complexity scores delivered with 1 cm wide leaves.« less

  1. [Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].

    PubMed

    Terahara, A; Nakano, T; Tsujii, H

    1998-01-01

    Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.

  2. Chromosome damage in human cells by γ rays, α particles and heavy ions: track interactions in basic dose-response relationships.

    PubMed

    Loucas, Bradford D; Durante, Marco; Bailey, Susan M; Cornforth, Michael N

    2013-01-01

    We irradiated normal human lymphocytes and fibroblasts with (137)Cs γ rays, 3.5 MeV α particles and 1 GeV/amu (56)Fe ions and measured the subsequent formation of chromosome-type aberrations by mFISH at the first mitosis following irradiation. This was done for the purposes of characterizing the shape of dose-response relationships and determining the frequency distribution of various aberration types with respect to the parameters of dose, radiation quality and cell type. Salient results and conclusions include the following. For low-LET γ rays, lymphocytes showed a more robust dose response for overall damage and a higher degree of upward curvature compared to fibroblasts. For both sources of high-LET radiation, and for both cell types, the response for simple and complex exchanges was linear with dose. Independent of all three parameters considered, the most likely damage outcome was the formation of a simple exchange event involving two breaks. However, in terms of the breakpoints making up exchange events, the majority of damage registered following HZE particle irradiation was due to complex aberrations involving multiple chromosomes. This adds a decidedly nonlinear component to the overall breakpoint response, giving it a significant degree of positive curvature, which we interpret as being due to interaction between ionizations of the primary HZE particle track and long-range δ rays produced by other nearby tracks. While such track interaction had been previously theorized, to the best of our knowledge, it has never been demonstrated experimentally.

  3. Chromosome Damage in Human Cells by γ Rays, α Particles and Heavy Ions: Track Interactions in Basic Dose-Response Relationships

    PubMed Central

    Loucas, Bradford D.; Durante, Marco; Bailey, Susan M.; Cornforth, Michael N.

    2013-01-01

    We irradiated normal human lymphocytes and fibroblasts with 137Cs γ rays, 3.5 MeV α particles and 1 GeV/amu 56Fe ions and measured the subsequent formation of chromosome-type aberrations by mFISH at the first mitosis following irradiation. This was done for the purposes of characterizing the shape of dose-response relationships and determining the frequency distribution of various aberration types with respect to the parameters of dose, radiation quality and cell type. Salient results and conclusions include the following. For low-LET γ rays, lymphocytes showed a more robust dose response for overall damage and a higher degree of upward curvature compared to fibroblasts. For both sources of high-LET radiation, and for both cell types, the response for simple and complex exchanges was linear with dose. Independent of all three parameters considered, the most likely damage outcome was the formation of a simple exchange event involving two breaks. However, in terms of the breakpoints making up exchange events, the majority of damage registered following HZE particle irradiation was due to complex aberrations involving multiple chromosomes. This adds a decidedly nonlinear component to the overall breakpoint response, giving it a significant degree of positive curvature, which we interpret as being due to interaction between ionizations of the primary HZE particle track and long-range δ rays produced by other nearby tracks. While such track interaction had been previously theorized, to the best of our knowledge, it has never been demonstrated experimentally. PMID:23198992

  4. Commissioning a CT-compatible LDR tandem and ovoid applicator using Monte Carlo calculation and 3D dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Justus; Newton, Joseph; Yang Yun

    2012-07-15

    Purpose: To determine the geometric and dose attenuation characteristics of a new commercially available CT-compatible LDR tandem and ovoid (T and O) applicator using Monte Carlo calculation and 3D dosimetry. Methods: For geometric characterization, we quantified physical dimensions and investigated a systematic difference found to exist between nominal ovoid angle and the angle at which the afterloading buckets fall within the ovoid. For dosimetric characterization, we determined source attenuation through asymmetric gold shielding in the buckets using Monte Carlo simulations and 3D dosimetry. Monte Carlo code MCNP5 was used to simulate 1.5 Multiplication-Sign 10{sup 9} photon histories from a {supmore » 137}Cs source placed in the bucket to achieve statistical uncertainty of 1% at a 6 cm distance. For 3D dosimetry, the distribution about an unshielded source was first measured to evaluate the system for {sup 137}Cs, after which the distribution was measured about sources placed in each bucket. Cylindrical PRESAGE{sup Registered-Sign} dosimeters (9.5 cm diameter, 9.2 cm height) with a central channel bored for source placement were supplied by Heuris Inc. The dosimeters were scanned with the Duke Large field of view Optical CT-Scanner before and after delivering a nominal dose at 1 cm of 5-8 Gy. During irradiation the dosimeter was placed in a water phantom to provide backscatter. Optical CT scan time lasted 15 min during which 720 projections were acquired at 0.5 Degree-Sign increments, and a 3D distribution was reconstructed with a (0.05 cm){sup 3} isotropic voxel size. The distributions about the buckets were used to calculate a 3D distribution of transmission rate through the bucket, which was applied to a clinical CT-based T and O implant plan. Results: The systematic difference in bucket angle relative to the nominal ovoid angle (105 Degree-Sign ) was 3.1 Degree-Sign -4.7 Degree-Sign . A systematic difference in bucket angle of 1 Degree-Sign , 5 Degree-Sign , and 10 Degree-Sign caused a 1%{+-} 0.1%, 1.7%{+-} 0.4%, and 2.6%{+-} 0.7% increase in rectal dose, respectively, with smaller effect to dose to Point A, bladder, sigmoid, and bowel. For 3D dosimetry, 90.6% of voxels had a 3D {gamma}-index (criteria = 0.1 cm, 3% local signal) below 1.0 when comparing measured and expected dose about the unshielded source. Dose transmission through the gold shielding at a radial distance of 1 cm was 85.9%{+-} 0.2%, 83.4%{+-} 0.7%, and 82.5%{+-} 2.2% for Monte Carlo, and measurement for left and right buckets, respectively. Dose transmission was lowest at oblique angles from the bucket with a minimum of 56.7%{+-} 0.8%, 65.6%{+-} 1.7%, and 57.5%{+-} 1.6%, respectively. For a clinical T and O plan, attenuation from the buckets leads to a decrease in average Point A dose of {approx}3.2% and decrease in D{sub 2cc} to bladder, rectum, bowel, and sigmoid of 5%, 18%, 6%, and 12%, respectively. Conclusions: Differences between dummy and afterloading bucket position in the ovoids is minor compared to effects from asymmetric ovoid shielding, for which rectal dose is most affected. 3D dosimetry can fulfill a novel role in verifying Monte Carlo calculations of complex dose distributions as are common about brachytherapy sources and applicators.« less

  5. Commissioning a CT-compatible LDR tandem and ovoid applicator using Monte Carlo calculation and 3D dosimetry.

    PubMed

    Adamson, Justus; Newton, Joseph; Yang, Yun; Steffey, Beverly; Cai, Jing; Adamovics, John; Oldham, Mark; Chino, Junzo; Craciunescu, Oana

    2012-07-01

    To determine the geometric and dose attenuation characteristics of a new commercially available CT-compatible LDR tandem and ovoid (T&O) applicator using Monte Carlo calculation and 3D dosimetry. For geometric characterization, we quantified physical dimensions and investigated a systematic difference found to exist between nominal ovoid angle and the angle at which the afterloading buckets fall within the ovoid. For dosimetric characterization, we determined source attenuation through asymmetric gold shielding in the buckets using Monte Carlo simulations and 3D dosimetry. Monte Carlo code MCNP5 was used to simulate 1.5 × 10(9) photon histories from a (137)Cs source placed in the bucket to achieve statistical uncertainty of 1% at a 6 cm distance. For 3D dosimetry, the distribution about an unshielded source was first measured to evaluate the system for (137)Cs, after which the distribution was measured about sources placed in each bucket. Cylindrical PRESAGE(®) dosimeters (9.5 cm diameter, 9.2 cm height) with a central channel bored for source placement were supplied by Heuris Inc. The dosimeters were scanned with the Duke Large field of view Optical CT-Scanner before and after delivering a nominal dose at 1 cm of 5-8 Gy. During irradiation the dosimeter was placed in a water phantom to provide backscatter. Optical CT scan time lasted 15 min during which 720 projections were acquired at 0.5° increments, and a 3D distribution was reconstructed with a (0.05 cm)(3) isotropic voxel size. The distributions about the buckets were used to calculate a 3D distribution of transmission rate through the bucket, which was applied to a clinical CT-based T&O implant plan. The systematic difference in bucket angle relative to the nominal ovoid angle (105°) was 3.1°-4.7°. A systematic difference in bucket angle of 1°, 5°, and 10° caused a 1% ± 0.1%, 1.7% ± 0.4%, and 2.6% ± 0.7% increase in rectal dose, respectively, with smaller effect to dose to Point A, bladder, sigmoid, and bowel. For 3D dosimetry, 90.6% of voxels had a 3D γ-index (criteria = 0.1 cm, 3% local signal) below 1.0 when comparing measured and expected dose about the unshielded source. Dose transmission through the gold shielding at a radial distance of 1 cm was 85.9% ± 0.2%, 83.4% ± 0.7%, and 82.5% ± 2.2% for Monte Carlo, and measurement for left and right buckets, respectively. Dose transmission was lowest at oblique angles from the bucket with a minimum of 56.7% ± 0.8%, 65.6% ± 1.7%, and 57.5% ± 1.6%, respectively. For a clinical T&O plan, attenuation from the buckets leads to a decrease in average Point A dose of ∼3.2% and decrease in D(2cc) to bladder, rectum, bowel, and sigmoid of 5%, 18%, 6%, and 12%, respectively. Differences between dummy and afterloading bucket position in the ovoids is minor compared to effects from asymmetric ovoid shielding, for which rectal dose is most affected. 3D dosimetry can fulfill a novel role in verifying Monte Carlo calculations of complex dose distributions as are common about brachytherapy sources and applicators.

  6. Impact of temporal probability in 4D dose calculation for lung tumors.

    PubMed

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwidu, U; Devic, S; Shehadeh, M

    Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended bymore » the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.« less

  8. Improving the Efficiency and Safety of Aspirin by Complexation with the Natural Polysaccharide Arabinogalactan.

    PubMed

    Khvostov, Mikhail V; Tolstikova, Tatjana G; Borisov, Sergey A; Zhukova, Natalja A; Dushkin, Alexander V; Chistyachenko, Yulia S; Polyakov, Nikolay E

    2016-01-01

    The main undesirable side effect of the aspirin is the damage to the gastrointestinal mucosa, leading to the formation of erosions, peptic ulcers, and as a result, bleeding. To overcome this problem "host-guest" complexation with natural polysaccharide arabinogalactan could be applied. The complex with a weight ratio of ASA:AG = 1:10 was prepared by solid phase method in a rotary mill. Complex was administered orally to mice or rats at doses of 250, 500 or 1000 mg/kg. The "acetic acid induced writhing" and "hot plate" tests were used as an in vivo pain models. The antiinflammatory activity was studied using "histamine swelling" test. Also, long-term (30 days) oral introduction of the complex to rats was performed and gastric mucosa damages were evaluated. In all experiments pure aspirin (ASA) was used as a control in appropriate doses. The minimal effective analgesic dose of the complex was 250 mg/kg, equivalent to 23 mg/kg of ASA, a dose in which aspirin itself was not active. The anti-inflammatory effect was found at relatively higher doses: 500 and 1000 mg/kg (46 and 92 mg/kg of ASA respectively) for the complex and only at 100 mg/kg for the ASA. Long-term introduction of the complex at doses of 250 and 500 mg/kg was safe for gastric mucosa, while ASA at the dose of 50 mg/kg showed a strong gastric mucosal damage. The effective analgesic and anti-inflammatory doses of 1:10 aspirin complex with arabinogalactan are twice less compared to pure aspirin and safer for the gastrointestinal mucosa.

  9. SU-F-T-380: Comparing the Effect of Respiration On Dose Distribution Between Conventional Tangent Pair and IMRT Techniques for Adjuvant Radiotherapy in Early Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Ramaseshan, R

    2016-06-15

    Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less

  10. Failure-probability driven dose painting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). Themore » total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.« less

  11. Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43-70 keV electron beam for industrial application

    NASA Astrophysics Data System (ADS)

    Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka

    2018-05-01

    The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.

  12. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp; Yamaguchi, Hajime; Kizaki, Hisao

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV,more » spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.« less

  13. DMLC tracking and gating can improve dose coverage for prostate VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvill, E.; Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065; School of Physics, University of Sydney, NSW 2006

    2014-09-15

    Purpose: To assess and compare the dosimetric impact of dynamic multileaf collimator (DMLC) tracking and gating as motion correction strategies to account for intrafraction motion during conventionally fractionated prostate radiotherapy. Methods: A dose reconstruction method was used to retrospectively assess the dose distributions delivered without motion correction during volumetric modulated arc therapy fractions for 20 fractions of five prostate cancer patients who received conventionally fractionated radiotherapy. These delivered dose distributions were compared with the dose distributions which would have been delivered had DMLC tracking or gating motion correction strategies been implemented. The delivered dose distributions were constructed by incorporating themore » observed prostate motion with the patient's original treatment plan to simulate the treatment delivery. The DMLC tracking dose distributions were constructed using the same dose reconstruction method with the addition of MLC positions from Linac log files obtained during DMLC tracking simulations with the observed prostate motions input to the DMLC tracking software. The gating dose distributions were constructed by altering the prostate motion to simulate the application of a gating threshold of 3 mm for 5 s. Results: The delivered dose distributions showed that dosimetric effects of intrafraction prostate motion could be substantial for some fractions, with an estimated dose decrease of more than 19% and 34% from the planned CTVD{sub 99%} and PTV D{sub 95%} values, respectively, for one fraction. Evaluation of dose distributions for DMLC tracking and gating deliveries showed that both interventions were effective in improving the CTV D{sub 99%} for all of the selected fractions to within 4% of planned value for all fractions. For the delivered dose distributions the difference in rectum V{sub 65%} for the individual fractions from planned ranged from −44% to 101% and for the bladder V{sub 65%} the range was −61% to 26% from planned. The application of tracking decreased the maximum rectum and bladder V{sub 65%} difference to 6% and 4%, respectively. Conclusions: For the first time, the dosimetric impact of DMLC tracking and gating to account for intrafraction motion during prostate radiotherapy has been assessed and compared with no motion correction. Without motion correction intrafraction prostate motion can result in a significant decrease in target dose coverage for a small number of individual fractions. This is unlikely to effect the overall treatment for most patients undergoing conventionally fractionated treatments. Both DMLC tracking and gating demonstrate dose distributions for all assessed fractions that are robust to intrafraction motion.« less

  14. Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.

  15. Dose assessment in environmental radiological protection: State of the art and perspectives.

    PubMed

    Stark, Karolina; Goméz-Ros, José M; Vives I Batlle, Jordi; Lindbo Hansen, Elisabeth; Beaugelin-Seiller, Karine; Kapustka, Lawrence A; Wood, Michael D; Bradshaw, Clare; Real, Almudena; McGuire, Corynne; Hinton, Thomas G

    2017-09-01

    Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Motion induced interplay effects for VMAT radiotherapy.

    PubMed

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-19

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin 6 breathing motion in the superior-inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD 98% and ΔD 2% ) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD 98% and maximum ΔD 2% being  -16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was developed and verified with measurements, which allowed for a large number of treatment scenarios to be investigated. The simulations showed large interplay effects for individual fractions and that the extent of interplay effects varied with the breathing pattern, FFF/FF, dose level, CTV size, collimator angle, and the complexity of the treatment plan.

  17. Motion induced interplay effects for VMAT radiotherapy

    NASA Astrophysics Data System (ADS)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-01

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin6 breathing motion in the superior–inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD98% and ΔD2%) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD98% and maximum ΔD2% being  ‑16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was developed and verified with measurements, which allowed for a large number of treatment scenarios to be investigated. The simulations showed large interplay effects for individual fractions and that the extent of interplay effects varied with the breathing pattern, FFF/FF, dose level, CTV size, collimator angle, and the complexity of the treatment plan.

  18. Monte Carlo study and design of system for implementation of Rotational Total Skin Electron Irradiation technique

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.

    2018-05-01

    Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.

  19. Acute Biological Effects of Simulating the Whole-Body Radiation Dose Distribution from a Solar Particle Event Using a Porcine Model

    PubMed Central

    Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.

    2011-01-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326

  20. Agreement between gamma passing rates using computed tomography in radiotherapy and secondary cancer risk prediction from more advanced dose calculated models

    PubMed Central

    Balosso, Jacques

    2017-01-01

    Background During the past decades, in radiotherapy, the dose distributions were calculated using density correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons transport. Methods Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as (EAR = OED type ‘b’ / OED type ‘a’). Results The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, ranged from 1.08 to 1.13 depending on SCR models. Conclusions The shift of dose calculation in radiotherapy, according to the algorithm, can significantly influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific treatment. The agreement between dose distribution and SCR prediction depends on dose response models and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is still very imprecise, only the EAR ratio could be used to rank radiotherapy plans. PMID:28811995

  1. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.

    2009-04-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of thismore » study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome points were higher for the apex model compared with the non-apex model. Mean doses to the optimization points for both the cylinder models and all the cylinder diameters were 6 Gy, matching with the prescription dose of 6 Gy. Iterative optimization routine resulted in the highest dose to apex point and dome points. The mean dose for optimization point was 6.01 Gy for iterative optimization and was much higher than 5.74 Gy for geometric and equal times routines. Step size of 1 cm gave the highest dose to the apex point. This step size was superior in terms of mean dose to optimization points. Selection of dose optimization points for the derivation of optimized dose distributions for vaginal cylinders affects the dose distributions.« less

  2. SU-F-T-184: 3D Range-Modulator for Scanned Particle Therapy: Development, Monte Carlo Simulations and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simeonov, Y; Penchev, P; Ringbaek, T Printz

    2016-06-15

    Purpose: Active raster scanning in particle therapy results in highly conformal dose distributions. Treatment time, however, is relatively high due to the large number of different iso-energy layers used. By using only one energy and the so called 3D range-modulator irradiation times of a few seconds only can be achieved, thus making delivery of homogeneous dose to moving targets (e.g. lung cancer) more reliable. Methods: A 3D range-modulator consisting of many pins with base area of 2.25 mm2 and different lengths was developed and manufactured with rapid prototyping technique. The form of the 3D range-modulator was optimised for a sphericalmore » target volume with 5 cm diameter placed at 25 cm in a water phantom. Monte Carlo simulations using the FLUKA package were carried out to evaluate the modulating effect of the 3D range-modulator and simulate the resulting dose distribution. The fine and complicated contour form of the 3D range-modulator was taken into account by a specially programmed user routine. Additionally FLUKA was extended with the capability of intensity modulated scanning. To verify the simulation results dose measurements were carried out at the Heidelberg Ion Therapy Center (HIT) with a 400.41 MeV 12C beam. Results: The high resolution measurements show that the 3D range-modulator is capable of producing homogeneous 3D conformal dose distributions, simultaneously reducing significantly irradiation time. Measured dose is in very good agreement with the previously conducted FLUKA simulations, where slight differences were traced back to minor manufacturing deviations from the perfect optimised form. Conclusion: Combined with the advantages of very short treatment time the 3D range-modulator could be an alternative to treat small to medium sized tumours (e.g. lung metastasis) with the same conformity as full raster-scanning treatment. Further simulations and measurements of more complex cases will be conducted to investigate the full potential of the 3D range-modulator.« less

  3. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the bodymore » distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.« less

  4. Algorithms for the optimization of RBE-weighted dose in particle therapy.

    PubMed

    Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M

    2013-01-21

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  5. Algorithms for the optimization of RBE-weighted dose in particle therapy

    NASA Astrophysics Data System (ADS)

    Horcicka, M.; Meyer, C.; Buschbacher, A.; Durante, M.; Krämer, M.

    2013-01-01

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  6. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, M; Kozuka, T; Oguchi, M

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder.more » By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of the scattered light.« less

  7. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film dosimetry and gamma comparison to DICOM RTDose files has been demonstrated as suitable to fulfil this need.« less

  8. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein

    2009-09-15

    Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less

  9. The nonuniformity of antibody distribution in the kidney and its influence on dosimetry.

    PubMed

    Flynn, Aiden A; Pedley, R Barbara; Green, Alan J; Dearling, Jason L; El-Emir, Ethaar; Boxer, Geoffrey M; Boden, Robert; Begent, Richard H J

    2003-02-01

    The therapeutic efficacy of radiolabeled antibody fragments can be limited by nephrotoxicity, particularly when the kidney is the major route of extraction from the circulation. Conventional dose estimates in kidney assume uniform dose deposition, but we have shown increased antibody localization in the cortex after glomerular filtration. The purpose of this study was to measure the radioactivity in cortex relative to medulla for a range of antibodies and to assess the validity of the assumption of uniformity of dose deposition in the whole kidney and in the cortex for these antibodies with a range of radionuclides. Storage phosphor plate technology (radioluminography) was used to acquire images of the distributions of a range of antibodies of various sizes, labeled with 125I, in kidney sections. This allowed the calculation of the antibody concentration in the cortex relative to the medulla. Beta-particle point dose kernels were then used to generate the dose-rate distributions from 14C, 131I, 186Re, 32P and 90Y. The correlation between the actual dose-rate distribution and the corresponding distribution calculated assuming uniform antibody distribution throughout the kidney was used to test the validity of estimating dose by assuming uniformity in the kidney and in the cortex. There was a strong inverse relationship between the ratio of the radioactivity in the cortex relative to that in the medulla and the antibody size. The nonuniformity of dose deposition was greatest with the smallest antibody fragments but became more uniform as the range of the emissions from the radionuclide increased. Furthermore, there was a strong correlation between the actual dose-rate distribution and the distribution when assuming a uniform source in the kidney for intact antibodies along with medium- to long-range radionuclides, but there was no correlation for small antibody fragments with any radioisotope or for short-range radionuclides with any antibody. However, when the cortex was separated from the whole kidney, the correlation between the actual dose-rate distribution and the assumed dose-rate distribution, if the source was uniform, increased significantly. During radioimmunotherapy, the extent of nonuniformity of dose deposition in the kidney depends on the properties of the antibody and radionuclide. For dosimetry estimates, the cortex should be taken as a separate source region when the radiopharmaceutical is small enough to be filtered by the glomerulus.

  10. Preparation and evaluation of Lu-177 phytate Complex for Radiosynovectomy

    PubMed Central

    Yousefnia, Hassan; Jalilian, Amir Reza; Zolghadri, Samaneh

    2014-01-01

    Lu-177 of 2.6-3 GBq/mg specific activity was obtained by irradiation of natural Lu2O3 sample with thermal neutron flux of 4 × 1013 n/cm/s. The product was converted into chloride form which was further used for labeling of Lu-177 phytate complex successfully with high radiochemical purity (>99.9%, instant thin layer chromatography, MeOH: H2O: Acetic acid, 4:4:2, as mobile phase). The complex stability and viscosity were checked in the final solution up to 7 days. The prepared complex solution (100 μCi/100 μl) was injected intra-articularly to the male rat knee joint. Leakage of radioactivity from the injection site and its distribution in organs were investigated up to 7 days. Approximately, all injected dose has remained in injection site 7 days after injection. The complex was proved to be a feasible agent for cavital radiotherapy in oncology and rheumatology. PMID:25191108

  11. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Niatsetski, Y.; Laarse, R. van der

    Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a {sup 192}Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times.more » Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a {sup 192}Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth–dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.« less

  12. A methodological approach to a realistic evaluation of skin absorbed doses during manipulation of radioactive sources by means of GAMOS Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio

    2018-05-01

    The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.

  13. Seasonal influenza vaccine dose distribution in 157 countries (2004-2011).

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Abelin, Atika; Music, Tamara

    2014-11-12

    Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge, attitudes, practices, and communications, are required for VCR targets to be met and benefit public health. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Degradation of the Bragg peak due to inhomogeneities.

    PubMed

    Urie, M; Goitein, M; Holley, W R; Chen, G T

    1986-01-01

    The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles.

  15. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats.

    PubMed

    Cossum, P A; Sasmor, H; Dellinger, D; Truong, L; Cummins, L; Owens, S R; Markham, P M; Shea, J P; Crooke, S

    1993-12-01

    5'-TTGCTTCCATCTTCCTCGTC-3' (ISIS 2105) is a phosphorothioate oligodeoxynucleotide currently being evaluated as an intralesional antiviral drug for the treatment of genital warts that are caused by the human papillomavirus. ISIS 2105, labeled with 14C (at the carbon-2 position of thymine) was administered as a single i.v. injection (3.6 mg/kg) to female Sprague-Dawley rats to assess the disposition of the drug. After i.v. administration of [14C]2105, blood radioactivity disappeared in a multiexponential manner with the half-lives of the phases equal to 0.4, 1.9, 7.1 and 5.1 hr. The initial volume of distribution was 22 ml and the postdistribution volume of distribution was 1076 ml, which indicated an extensive distribution of radioactivity. The apparent blood clearance was 14.7 ml/hr. The radioactivity in the expired air accounted for 51% of the administered dose over the 10-day period. Urinary and fecal radioactivity accounted for 15% and 5% of the administered dose, respectively. The major sites of radioactivity uptake were the liver (up to 22.6% of the dose), kidneys (renal cortex, up to 14% of the dose), bone marrow (up to 14% of the dose), skin (up to 13% of the dose) and skeletal muscle (up to 9% of the dose). Other tissues contained approximately 1% or less of the dose. The overall recovery of radioactivity 10 days postdosing was 95.1 +/- 7.5% (mean +/- S.D.) of the administered single dose. The radioactivity in the blood was almost completely in the plasma during the course of the study. In the plasma, the radioactivity was extensively bound to proteins, as assessed by size-exclusion high-performance liquid chromatography (HPLC), in samples up to 8 hr postdosing. Retention data on size-exclusion HPLC and in vitro incubations using purified proteins suggested that the plasma proteins that bound [14C]2105 were albumin and alpha 2-macroglobulin. The complex formed between the plasma proteins and [14C]2105-derived radioactivity was dissociated on anion-exchange HPLC to indicate that the great majority of plasma radioactivity coeluted with intact [14C]2105 in samples that contained sufficient radioactivity for analysis. There was a time-dependent decrease in the proportion of hepatic and renal radioactivity that coeluted with the intact [14C]2105 during the course of the study. The urine did not contain radioactivity that eluted with intact [14C]2105 on anion-exchange HPLC.

  16. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study.

    PubMed

    Giantsoudi, Drosoula; Schuemann, Jan; Jia, Xun; Dowdell, Stephen; Jiang, Steve; Paganetti, Harald

    2015-03-21

    Monte Carlo (MC) methods are recognized as the gold-standard for dose calculation, however they have not replaced analytical methods up to now due to their lengthy calculation times. GPU-based applications allow MC dose calculations to be performed on time scales comparable to conventional analytical algorithms. This study focuses on validating our GPU-based MC code for proton dose calculation (gPMC) using an experimentally validated multi-purpose MC code (TOPAS) and compare their performance for clinical patient cases. Clinical cases from five treatment sites were selected covering the full range from very homogeneous patient geometries (liver) to patients with high geometrical complexity (air cavities and density heterogeneities in head-and-neck and lung patients) and from short beam range (breast) to large beam range (prostate). Both gPMC and TOPAS were used to calculate 3D dose distributions for all patients. Comparisons were performed based on target coverage indices (mean dose, V95, D98, D50, D02) and gamma index distributions. Dosimetric indices differed less than 2% between TOPAS and gPMC dose distributions for most cases. Gamma index analysis with 1%/1 mm criterion resulted in a passing rate of more than 94% of all patient voxels receiving more than 10% of the mean target dose, for all patients except for prostate cases. Although clinically insignificant, gPMC resulted in systematic underestimation of target dose for prostate cases by 1-2% compared to TOPAS. Correspondingly the gamma index analysis with 1%/1 mm criterion failed for most beams for this site, while for 2%/1 mm criterion passing rates of more than 94.6% of all patient voxels were observed. For the same initial number of simulated particles, calculation time for a single beam for a typical head and neck patient plan decreased from 4 CPU hours per million particles (2.8-2.9 GHz Intel X5600) for TOPAS to 2.4 s per million particles (NVIDIA TESLA C2075) for gPMC. Excellent agreement was demonstrated between our fast GPU-based MC code (gPMC) and a previously extensively validated multi-purpose MC code (TOPAS) for a comprehensive set of clinical patient cases. This shows that MC dose calculations in proton therapy can be performed on time scales comparable to analytical algorithms with accuracy comparable to state-of-the-art CPU-based MC codes.

  17. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

    NASA Astrophysics Data System (ADS)

    Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.

    2010-07-01

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.

  18. SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, S; Asprinio, A; Lu, L

    2014-06-01

    Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less

  19. Methods for Probabilistic Radiological Dose Assessment at a High-Level Radioactive Waste Repository.

    NASA Astrophysics Data System (ADS)

    Maheras, Steven James

    Methods were developed to assess and evaluate the uncertainty in offsite and onsite radiological dose at a high-level radioactive waste repository to show reasonable assurance that compliance with applicable regulatory requirements will be achieved. Uncertainty in offsite dose was assessed by employing a stochastic precode in conjunction with Monte Carlo simulation using an offsite radiological dose assessment code. Uncertainty in onsite dose was assessed by employing a discrete-event simulation model of repository operations in conjunction with an occupational radiological dose assessment model. Complementary cumulative distribution functions of offsite and onsite dose were used to illustrate reasonable assurance. Offsite dose analyses were performed for iodine -129, cesium-137, strontium-90, and plutonium-239. Complementary cumulative distribution functions of offsite dose were constructed; offsite dose was lognormally distributed with a two order of magnitude range. However, plutonium-239 results were not lognormally distributed and exhibited less than one order of magnitude range. Onsite dose analyses were performed for the preliminary inspection, receiving and handling, and the underground areas of the repository. Complementary cumulative distribution functions of onsite dose were constructed and exhibited less than one order of magnitude range. A preliminary sensitivity analysis of the receiving and handling areas was conducted using a regression metamodel. Sensitivity coefficients and partial correlation coefficients were used as measures of sensitivity. Model output was most sensitive to parameters related to cask handling operations. Model output showed little sensitivity to parameters related to cask inspections.

  20. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  1. SU-D-BRC-03: Development and Validation of an Online 2D Dose Verification System for Daily Patient Plan Delivery Accuracy Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J; Hu, W; Xing, Y

    Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, positionmore » and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.« less

  2. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators.

    PubMed

    Eichmann, Marion; Flühs, Dirk; Spaan, Bernhard

    2009-10-01

    The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.

  3. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: Inmore » order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.« less

  4. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification.

    PubMed

    Palmer, Antony L; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H

    2015-11-21

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  5. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H.

    2015-11-01

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  6. The measurement of radiation dose profiles for electron-beam computed tomography using film dosimetry.

    PubMed

    Zink, F E; McCollough, C H

    1994-08-01

    The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.

  7. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.

    2017-09-01

    Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the Bragg peak in the therapeutic energy range. A comparison with measurements taken at the CNAO treatment center shows that the lateral dose tails are reproduced within 2% in the field size factor test up to 20 cm. The tracing kernel can run on GPU hardware, achieving 10 million primary s-1 on a single card. This performance allows one to recalculate a proton treatment plan at 1% of the total particles in just a few minutes.

  8. Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr; Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, 35000 Rennes; Le Maitre, Amandine

    Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimatedmore » in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder.« less

  9. SU-F-P-21: Study of Dosimetry Accuracy of Small Passively Scattered Proton Beam Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Gautam, A; Kerr, M

    2016-06-15

    Purpose: To study the accuracy of the dose distribution of very small irregular fields of passively scattered proton beams calculated by the analytical pencil beam model of the Eclipse treatment planning system (TPS). Methods: An irregular field with a narrow region (width < 1 cm) that was used for the treatment of a small volume adjacent to a previously treated area were chosen for this investigation. Point doses at different locations inside the field were measured with a small volume ion chamber (A26, Standard Imaging). 2-D dose distributions were measured using a 2-D ion chamber array (MatriXX, IBA). All themore » measurements were done in plastic water phantom. The measured dose distributions were compared with the verification plan dose calculated in a water like phantom for the patient treatment field without the use of the compensator. Results: Point doses measured with the ion chamber in the narrowest section of the field were found to differ as much as 10% from the Eclipse calculated dose at some of the points. The 2-D dose distribution measured with the MatriXX which was validated by comparison with limited film measurement, at the proximal 95%, center of the spread out Bragg Peak and distal 90% depths agreed reasonably well with the TPS calculated dose distribution with more than 92% of the pixels passing the 2% / 2 mm dose distance agreement. Conclusion: The dose calculated by the pencil beam model of the Eclipse TPS for narrow irregular fields may not be accurate within 5% at some locations of the field, especially at the points close to the field edge due to the limitation of the dose calculation model. Overall accuracy of the calculated 2-D dose distribution was found to be acceptable for the 2%/2 mm dose/distance agreement with the measurement.« less

  10. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  11. Radiation Damage to Nervous System: Designing Optimal Models for Realistic Neuron Morphology in Hippocampus

    NASA Astrophysics Data System (ADS)

    Batmunkh, Munkhbaatar; Bugay, Alexander; Bayarchimeg, Lkhagvaa; Lkhagva, Oidov

    2018-02-01

    The present study is focused on the development of optimal models of neuron morphology for Monte Carlo microdosimetry simulations of initial radiation-induced events of heavy charged particles in the specific types of cells of the hippocampus, which is the most radiation-sensitive structure of the central nervous system. The neuron geometry and particles track structures were simulated by the Geant4/Geant4-DNA Monte Carlo toolkits. The calculations were made for beams of protons and heavy ions with different energies and doses corresponding to real fluxes of galactic cosmic rays. A simple compartmental model and a complex model with realistic morphology extracted from experimental data were constructed and compared. We estimated the distribution of the energy deposition events and the production of reactive chemical species within the developed models of CA3/CA1 pyramidal neurons and DG granule cells of the rat hippocampus under exposure to different particles with the same dose. Similar distributions of the energy deposition events and concentration of some oxidative radical species were obtained in both the simplified and realistic neuron models.

  12. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy

    NASA Astrophysics Data System (ADS)

    Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.

    2016-12-01

    egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.

  13. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.

    PubMed

    Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M

    2016-12-07

    egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.

  14. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Andrew M., E-mail: amhern@ucdavis.edu; Seibert, J. Anthony; Boone, John M.

    2015-11-15

    Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fitmore » to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgN{sub hetero}) and homogeneous (pDgN{sub homo}) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgN{sub hetero} coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgN{sub homo} coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgN{sub hetero} relative to pDgN{sub homo} of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width in the superior and inferior directions, resulted in a 37.3% and a −26.6% change in the pDgN{sub hetero} coefficient, respectively, relative to the centered distribution for the Mo–Mo spectrum. Lateral displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width, resulted in a 1.5% change in the pDgN{sub hetero} coefficient relative to the centered distribution for the W–Rh spectrum. Conclusions: Introducing bCT-derived heterogeneous glandular distributions into mammography phantom design resulted in decreased glandular dose relative to the widely used homogeneous assumption. A homogeneous distribution overestimates the amount of glandular tissue near the entrant surface of the breast, where dose deposition is exponentially higher. While these findings are based on clinically measured distributions of glandular tissue using a large cohort of women, future work is required to improve the classification of glandular distributions based on breast size and overall glandular fraction.« less

  15. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Adamovics, J; Oldham, M

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, highmore » resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately measuring dose in a deforming structure, and warrants further study to quantify comprehensive accuracy at different levels of deformation. This work was supported by NIH R01CA100835. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  16. Derivation of mean dose tolerances for new fractionation schemes and treatment modalities

    NASA Astrophysics Data System (ADS)

    Perkó, Zoltán; Bortfeld, Thomas; Hong, Theodore; Wolfgang, John; Unkelbach, Jan

    2018-02-01

    Avoiding toxicities in radiotherapy requires the knowledge of tolerable organ doses. For new, experimental fractionation schemes (e.g. hypofractionation) these are typically derived from traditional schedules using the biologically effective dose (BED) model. In this report we investigate the difficulties of establishing mean dose tolerances that arise since the mean BED depends on the entire spatial dose distribution, rather than on the dose level alone. A formula has been derived to establish mean physical dose constraints such that they are mean BED equivalent to a reference treatment scheme. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 24 liver cancer patients for whom both proton and photon IMRT treatment plans were available. The results show that the standard BED equation—neglecting the spatial dose distribution—can overestimate mean dose tolerances for hypofractionated treatments by up to 20%. The shape difference between photon and proton dose distributions can cause 30-40% differences in mean physical dose for plans having identical mean BEDs. Converting hypofractionated, 5/15-fraction proton doses to mean BED equivalent photon doses in traditional 35-fraction regimens resulted in up to 10 Gy higher doses than applying the standard BED formula. The dose shape effect should be accounted for to avoid overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. Additionally, tolerances established for one treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions, such as proton therapy. Last, protons may only allow marginal (5-10%) dose escalation if a fraction-size adjusted organ mean dose is constraining instead of a physical dose.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Z; Bortfeld, T; Hong, T

    Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of themore » spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions.« less

  18. SU-F-P-56: On a New Approach to Reconstruct the Patient Dose From Phantom Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bangtsson, E; Vries, W de

    Purpose: The development of complex radiation treatment schemes emphasizes the need for advanced QA analysis methods to ensure patient safety. One such tool is the Delta4 DVH Anatomy software, where the patient dose is reconstructed from phantom measurements. Deviations in the measured dose are transferred to the patient anatomy and their clinical impact is evaluated in situ. Results from the original algorithm revealed weaknesses that may introduce artefacts in the reconstructed dose. These can lead to false negatives or obscure the effects of minor dose deviations from delivery failures. Here, we will present results from a new patient dose reconstructionmore » algorithm. Methods: The main steps of the new algorithm are: (1) the dose delivered to a phantom is measured in a number of detector positions. (2) The measured dose is compared to an internally calculated dose distribution evaluated in said positions. The so-obtained dose difference is (3) used to calculate an energy fluence difference. This entity is (4) used as input to a patient dose correction calculation routine. Finally, the patient dose is reconstructed by adding said patient dose correction to the planned patient dose. The internal dose calculation in step (2) and (4) is based on the Pencil Beam algorithm. Results: The new patient dose reconstruction algorithm have been tested on a number of patients and the standard metrics dose deviation (DDev), distance-to-agreement (DTA) and Gamma index are improved when compared to the original algorithm. In a certain case the Gamma index (3%/3mm) increases from 72.9% to 96.6%. Conclusion: The patient dose reconstruction algorithm is improved. This leads to a reduction in non-physical artefacts in the reconstructed patient dose. As a consequence, the possibility to detect deviations in the dose that is delivered to the patient is improved. An increase in Gamma index for the PTV can be seen. The corresponding author is an employee of ScandiDos.« less

  19. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imae, T; Haga, A; Saotome, N

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions ofmore » multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.« less

  20. Estimation of the influence of radical effect in the proton beams using a combined approach with physical data and gel data

    NASA Astrophysics Data System (ADS)

    Haneda, K.

    2016-04-01

    The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.

  1. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations used in the spectroscopic technique affect the accuracy of Λ{sub spec}. Results: For all sources studied, the angular and spatial distributions of φ{sub full} were more complex than the distributions used in φ{sub spec}. Differences between Λ{sub spec} and Λ{sub full} ranged from −0.6% to +6.4%, confirming the discrepancies found by Rodriguez and Rogers. The largest contribution to the discrepancy was the assumption of isotropic emission in φ{sub spec}, which caused differences in Λ of up to +5.3% relative to Λ{sub full}. Use of the approximated spatial and energy distributions caused smaller average discrepancies in Λ of −0.4% and +0.1%, respectively. The water-only model introduced an average discrepancy in Λ of −0.4%. Conclusions: The approximations used in φ{sub spec} caused discrepancies between Λ{sub approx,i} and Λ{sub full} of up to 7.8%. With the exception of the energy distribution, the approximations used in φ{sub spec} contributed to this discrepancy for all source models studied. To improve the accuracy of Λ{sub spec}, the spatial and angular distributions of φ{sub full} could be measured, with the measurements replacing the approximated distributions. The methodology used in this work could be used to determine the resolution that such measurements would require by computing the dose-rate constants from phase spaces modified to reflect φ{sub full} binned at different spatial and angular resolutions.« less

  2. A multiscale Bayesian data integration approach for mapping air dose rates around the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Wainwright, Haruko M; Seki, Akiyuki; Chen, Jinsong; Saito, Kimiaki

    2017-02-01

    This paper presents a multiscale data integration method to estimate the spatial distribution of air dose rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the estimates, and to provide the confidence intervals that are critical for robust decision-making. Although this approach is primarily data-driven, it has great flexibility to include mechanistic models for representing radiation transport or other complex correlations. We demonstrate our approach using three types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple neighborhoods. Results show that the method can successfully integrate three types of datasets and create an integrated map (including the confidence intervals) of air dose rates over the domain in high resolution. Moreover, this study provides us with various insights into the characteristics of each dataset, as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the contaminant distribution due to human activities as well as large discrepancy among different surveys due to such heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. First On-Site True Gamma-Ray Imaging-Spectroscopy of Contamination near Fukushima Plant

    PubMed Central

    Tomono, Dai; Mizumoto, Tetsuya; Takada, Atsushi; Komura, Shotaro; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Oda, Makoto; Tanimori, Toru

    2017-01-01

    We have developed an Electron Tracking Compton Camera (ETCC), which provides a well-defined Point Spread Function (PSF) by reconstructing a direction of each gamma as a point and realizes simultaneous measurement of brightness and spectrum of MeV gamma-rays for the first time. Here, we present the results of our on-site pilot gamma-imaging-spectroscopy with ETCC at three contaminated locations in the vicinity of the Fukushima Daiichi Nuclear Power Plants in Japan in 2014. The obtained distribution of brightness (or emissivity) with remote-sensing observations is unambiguously converted into the dose distribution. We confirm that the dose distribution is consistent with the one taken by conventional mapping measurements with a dosimeter physically placed at each grid point. Furthermore, its imaging spectroscopy, boosted by Compton-edge-free spectra, reveals complex radioactive features in a quantitative manner around each individual target point in the background-dominated environment. Notably, we successfully identify a “micro hot spot” of residual caesium contamination even in an already decontaminated area. These results show that the ETCC performs exactly as the geometrical optics predicts, demonstrates its versatility in the field radiation measurement, and reveals potentials for application in many fields, including the nuclear industry, medical field, and astronomy. PMID:28155883

  4. Site-specific range uncertainties caused by dose calculation algorithms for proton therapy

    NASA Astrophysics Data System (ADS)

    Schuemann, J.; Dowdell, S.; Grassberger, C.; Min, C. H.; Paganetti, H.

    2014-08-01

    The purpose of this study was to assess the possibility of introducing site-specific range margins to replace current generic margins in proton therapy. Further, the goal was to study the potential of reducing margins with current analytical dose calculations methods. For this purpose we investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict the range of proton fields. Dose distributions predicted by an analytical pencil-beam algorithm were compared with those obtained using Monte Carlo (MC) simulations (TOPAS). A total of 508 passively scattered treatment fields were analyzed for seven disease sites (liver, prostate, breast, medulloblastoma-spine, medulloblastoma-whole brain, lung and head and neck). Voxel-by-voxel comparisons were performed on two-dimensional distal dose surfaces calculated by pencil-beam and MC algorithms to obtain the average range differences and root mean square deviation for each field for the distal position of the 90% dose level (R90) and the 50% dose level (R50). The average dose degradation of the distal falloff region, defined as the distance between the distal position of the 80% and 20% dose levels (R80-R20), was also analyzed. All ranges were calculated in water-equivalent distances. Considering total range uncertainties and uncertainties from dose calculation alone, we were able to deduce site-specific estimations. For liver, prostate and whole brain fields our results demonstrate that a reduction of currently used uncertainty margins is feasible even without introducing MC dose calculations. We recommend range margins of 2.8% + 1.2 mm for liver and prostate treatments and 3.1% + 1.2 mm for whole brain treatments, respectively. On the other hand, current margins seem to be insufficient for some breast, lung and head and neck patients, at least if used generically. If no case specific adjustments are applied, a generic margin of 6.3% + 1.2 mm would be needed for breast, lung and head and neck treatments. We conclude that the currently used generic range uncertainty margins in proton therapy should be redefined site specific and that complex geometries may require a field specific adjustment. Routine verifications of treatment plans using MC simulations are recommended for patients with heterogeneous geometries.

  5. Dosage and Distribution in Morphosyntax Intervention: Current Evidence and Future Needs

    ERIC Educational Resources Information Center

    Proctor-Williams, Kerry

    2009-01-01

    This article reviews the effectiveness of dose forms and the efficacy of dosage and distribution in morphosyntax intervention for children. Dose forms include the commonly used techniques, procedures, and intervention contexts that constitute teaching episodes; dosage includes the quantitative measures of dose, dose frequency, total intervention…

  6. Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator

    NASA Astrophysics Data System (ADS)

    Bol, G. H.; Hissoiny, S.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2012-03-01

    The MRI accelerator, a combination of a 6 MV linear accelerator with a 1.5 T MRI, facilitates continuous patient anatomy updates regarding translations, rotations and deformations of targets and organs at risk. Accounting for these demands high speed, online intensity-modulated radiotherapy (IMRT) re-optimization. In this paper, a fast IMRT optimization system is described which combines a GPU-based Monte Carlo dose calculation engine for online beamlet generation and a fast inverse dose optimization algorithm. Tightly conformal IMRT plans are generated for four phantom cases and two clinical cases (cervix and kidney) in the presence of the magnetic fields of 0 and 1.5 T. We show that for the presented cases the beamlet generation and optimization routines are fast enough for online IMRT planning. Furthermore, there is no influence of the magnetic field on plan quality and complexity, and equal optimization constraints at 0 and 1.5 T lead to almost identical dose distributions.

  7. Evaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology procedures

    PubMed Central

    Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Kottmaier, Marc; Semmler, Verena; Telishevska, Marta; Brkic, Amir; Grebmer, Christian; Lennerz, Carsten; Kolb, Christof; Hessling, Gabriele; Deisenhofer, Isabel

    2016-01-01

    Aims This study presents and evaluates the impact of a new lowest-dose fluoroscopy protocol (Siemens AG), especially designed for electrophysiology (EP) procedures, on X-ray dose levels. Methods and results From October 2014 to March 2015, 140 patients underwent an EP study on an Artis zee angiography system. The standard low-dose protocol was operated at 23 nGy (fluoroscopy) and at 120 nGy (cine-loop), the new lowest-dose protocol was operated at 8 nGy (fluoroscopy) and at 36 nGy (cine-loop). Procedural data, X-ray times, and doses were analysed in 100 complex left atrial and in 40 standard EP procedures. The resulting dose–area products were 877.9 ± 624.7 µGym² (n = 50 complex procedures, standard low dose), 199 ± 159.6 µGym² (n = 50 complex procedures, lowest dose), 387.7 ± 36.0 µGym² (n = 20 standard procedures, standard low dose), and 90.7 ± 62.3 µGym² (n = 20 standard procedures, lowest dose), P < 0.01. In the low-dose and lowest-dose groups, procedure times were 132.6 ± 35.7 vs. 126.7 ± 34.7 min (P = 0.40, complex procedures) and 72.3 ± 20.9 vs. 85.2 ± 44.1 min (P = 0.24, standard procedures), radiofrequency (RF) times were 53.8 ± 26.1 vs. 50.4 ± 29.4 min (P = 0.54, complex procedures) and 10.1 ± 9.9 vs. 12.2 ± 14.7 min (P = 0.60, standard procedures). One complication occurred in the standard low-dose and lowest-dose groups (P = 1.0). Conclusion The new lowest-dose imaging protocol reduces X-ray dose levels by 77% compared with the currently available standard low-dose protocol. From an operator standpoint, lowest X-ray dose levels create a different, reduced image quality. The new image quality did not significantly affect procedure or RF times and did not result in higher complication rates. Regarding radiological protection, operating at lowest-dose settings should become standard in EP procedures. PMID:26589627

  8. Development of 177Lu-phytate Complex for Radiosynovectomy

    PubMed Central

    Yousefnia, Hassan; Jalilian, Amir Reza; Bahrami-Samani, Ali; Mazidi, Mohammad; Ghannadi Maragheh, Mohammad; Abbasi-Davani, Fereydoun

    2013-01-01

    Objective(s): In this work a new possible agent for radiosynovectomy has been targeted for articular pain palliation. Materials and Methods: Lu-177 of 2.6-3 GBq/mg specific activity was obtained by irradiation of natural Lu2O3 sample with thermal neutron flux of 4 × 1013 n.cm-2.s-1. The product was converted into chloride form which was further used for labeling of 177Lu-phytate complex and checked using ITLC (MeOH: H2O: acetic acid, 4: 4: 2, as mobile phase). The complex stability and viscosity were checked in the final solution up to seven days. The prepared complex solution (100 µCi/100 µl) was injected intra-articularly to male rat knee joint. Leakage of radioactivity from injection site and its distribution in organs were investigated up to seven days. Results: The complex was successfully prepared with high radiochemical purity (>99.9 %). Approximately, the whole injected dose has remained in injection site seven days after injection. Conclusion: The complex was proved to be a feasible agent for cavital radiotherapy in oncology and rheumatology. PMID:23826493

  9. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT imagesmore » in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.« less

  10. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  11. Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.

    PubMed

    Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A

    1999-08-01

    BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A multidimensional dose comparison tool that simultaneously examines the dose-difference and distance-to-agreement was used to evaluate the gel in both low-and high-dose gradient regions. When 3% and 3 mm criteria were used for the comparisons, more than 90% of the TLD measurements agreed with the gel, with the worst of 309 TLD chip measurements disagreeing by 40% of the criteria. All four MRI measurement session gel-measured dose distributions were compared to evaluate the time behavior of the gel. The low-dose regions were evaluated by comparison with TLD measurements at selected points, while high-dose regions were evaluated by directly comparing measured dose distributions. Tests using the multidimensional comparison tool showed detectable degradation beyond one week postirradiation, but all low-dose measurements passed relative to the test criteria and the dose distributions showed few regions that failed.

  12. SU-E-T-374: Evaluation and Verification of Dose Calculation Accuracy with Different Dose Grid Sizes for Intracranial Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, C; Schultheiss, T

    Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) weremore » used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.« less

  13. Probability Distribution of Dose and Dose-Rate Effectiveness Factor for use in Estimating Risks of Solid Cancers From Exposure to Low-Let Radiation.

    PubMed

    Kocher, David C; Apostoaei, A Iulian; Hoffman, F Owen; Trabalka, John R

    2018-06-01

    This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.

  14. Survey of distribution of seasonal influenza vaccine doses in 201 countries (2004-2015): The 2003 World Health Assembly resolution on seasonal influenza vaccination coverage and the 2009 influenza pandemic have had very little impact on improving influenza control and pandemic preparedness.

    PubMed

    Palache, A; Abelin, A; Hollingsworth, R; Cracknell, W; Jacobs, C; Tsai, T; Barbosa, P

    2017-08-24

    There is no global monitoring system for influenza vaccination coverage, making it difficult to assess progress towards the 2003 World Health Assembly (WHA) vaccination coverage target. In 2008, the IFPMA Influenza Vaccine Supply International Task Force (IVS) developed a survey method to assess the global distribution of influenza vaccine doses as a proxy for vaccination coverage rates. The latest dose distribution data for 2014 and 2015 was used to update previous analyses. Data were confidentially collected and aggregated by the IFPMA Secretariat, and combined with previous IFPMA IVS survey data (2004-2013). Data were available from 201 countries over the 2004-2015 period. A "hurdle" rate was defined as the number of doses required to reach 15.9% of the population in 2008. Overall, the number of distributed doses progressively increased between 2004 and 2011, driven by a 150% increase in AMRO, then plateaued. One percent fewer doses were distributed in 2015 than in 2011. Twenty-three countries were above the hurdle rate in 2015, compared to 15 in 2004, but distribution was highly uneven in and across all WHO regions. Three WHO regions (AMRO, EURO and WPRO) accounted for about 95% of doses distributed. But in EURO and WPRO, distribution rates in 2015 were only marginally higher than in 2004, and in EURO there was an overall downward trend in dose distribution. The vast majority of countries cannot meet the 2003WHA coverage targets and are inadequately prepared for a global influenza pandemic. With only 5% of influenza vaccine doses being distributed to 50% of the world's population, there is urgency to redress the gross inequities in disease prevention and in pandemic preparedness. The 2003WHA resolution must be reviewed and revised and a call issued for the renewed commitment of Member States to influenza vaccination coverage targets. Copyright © 2017. Published by Elsevier Ltd.

  15. Proton depth dose distribution: 3-D calculation of dose distributions from solar flare irradiation

    NASA Astrophysics Data System (ADS)

    Leavitt, Dennis D.

    1990-11-01

    Relative depth dose distribution to the head from 3 typical solar flare proton events were calculated for 3 different exposure geometries: (1) single directional radiation incident upon a fixed head; (2) single directional radiation incident upon head rotating axially (2-D rotation); and (3) omnidirectional radiation incident upon head (3-D rotation). Isodose distributions in the transverse plane intersecting isocenter are presented for each of the 3 solar flare events in all 3 exposure geometries. In all 3 calculation configurations the maximum predicted dose occurred on the surface of the head. The dose at the isocenter of the head relative to the surface dose for the 2-D and 3-D rotation geometries ranged from 2 to 19 percent, increasing with increasing energy of the event. The calculations suggest the superficially located organs (lens of the eye and skin) are at greatest risk for the proton events studied here.

  16. The effect of dose heterogeneity on radiation risk in medical imaging.

    PubMed

    Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert

    2013-06-01

    The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. The dose to each organ is assumed to be homogeneous. To take into account the differences in radiation sensitivities, the mean organ doses are weighted by a corresponding tissue-weighting coefficients provided by ICRP to calculate the effective dose, which has been used as a surrogate of radiation risk. However, those coefficients were derived under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical-imaging procedures. In helical chest CT, for example, superficial organs (e.g. breasts) demonstrate a heterogeneous dose distribution, whereas organs on the peripheries of the irradiation field (e.g. liver) might possess a discontinuous dose profile. Projection radiography and mammography involve an even higher level of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ. In this paper, the magnitude of the dose heterogeneity in both CT and projection X-ray imaging was reported, using Monte Carlo methods. The lung dose demonstrated factors of 1.7 and 2.2 difference between the mean and maximum dose for chest CT and radiography, respectively. The corresponding values for the liver were 1.9 and 3.5. For mammography and breast tomosynthesis, the difference between mean glandular dose and maximum glandular dose was 3.1. Risk models based on the mean dose were found to provide a reasonable reflection of cancer risk. However, for leukaemia, they were found to significantly under-represent the risk when the organ dose distribution is heterogeneous. A systematic study is needed to develop a risk model for heterogeneous dose distributions.

  17. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of severe internal exposure, the causation probability of a deterministic health effect can be derived from the dose distribution, and a high statistical value ( e.g., the 95th percentile of the distribution) can be used to determine the appropriate intervention. The distribution-based sensitivity analysis can also be used to quantify the contribution of each factor to the dose uncertainty, which is essential information for reducing and optimizing the uncertainty in the internal dose assessment. Therefore, the present study can contribute to retrospective dose assessment for accidental internal exposure scenarios, as well as to internal dose monitoring optimization and uncertainty reduction.

  18. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Karsten; Bendl, Rolf

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach.

  19. Population dose-response analysis of daily seizure count following vigabatrin therapy in adult and pediatric patients with refractory complex partial seizures.

    PubMed

    Nielsen, Jace C; Hutmacher, Matthew M; Wesche, David L; Tolbert, Dwain; Patel, Mahlaqa; Kowalski, Kenneth G

    2015-01-01

    Vigabatrin is an irreversible inhibitor of γ-aminobutyric acid transaminase (GABA-T) and is used as an adjunctive therapy for adult patients with refractory complex partial seizures (rCPS). The purpose of this investigation was to describe the relationship between vigabatrin dosage and daily seizure rate for adults and children with rCPS and identify relevant covariates that might impact seizure frequency. This population dose-response analysis used seizure-count data from three pediatric and two adult randomized controlled studies of rCPS patients. A negative binomial distribution model adequately described daily seizure data. Mean seizure rate decreased with time after first dose and was described using an asymptotic model. Vigabatrin drug effects were best characterized by a quadratic model using normalized dosage as the exposure metric. Normalized dosage was an estimated parameter that allowed for individualized changes in vigabatrin exposure based on body weight. Baseline seizure rate increased with decreasing age, but age had no impact on vigabatrin drug effects after dosage was normalized for body weight differences. Posterior predictive checks indicated the final model was capable of simulating data consistent with observed daily seizure counts. Total normalized vigabatrin dosages of 1, 3, and 6 g/day were predicted to reduce seizure rates 23.2%, 45.6%, and 48.5%, respectively. © 2014, The American College of Clinical Pharmacology.

  20. In vivo drug metabolite identification in preclinical ADME studies by means of UPLC/TWIMS/high resolution-QTOF MS(E) and control comparison: cost and benefit of vehicle-dosed control samples.

    PubMed

    Fiebig, Lukas; Laux, Ralf; Binder, Rudolf; Ebner, Thomas

    2016-10-01

    1. Liquid chromatography (LC)-high resolution mass spectrometry (HRMS) techniques proved to be well suited for the identification of predicted and unexpected drug metabolites in complex biological matrices. 2. To efficiently discriminate between drug-related and endogenous matrix compounds, however, sophisticated postacquisition data mining tools, such as control comparison techniques are needed. For preclinical absorption, distribution, metabolism and excretion (ADME) studies that usually lack a placebo-dosed control group, the question arises how high-quality control data can be yielded using only a minimum number of control animals. 3. In the present study, the combination of LC-traveling wave ion mobility separation (TWIMS)-HRMS(E) and multivariate data analysis was used to study the polymer patterns of the frequently used formulation constituents polyethylene glycol 400 and polysorbate 80 in rat plasma and urine after oral and intravenous administration, respectively. 4. Complex peak patterns of both constituents were identified underlining the general importance of a vehicle-dosed control group in ADME studies for control comparison. Furthermore, the detailed analysis of administration route, blood sampling time and gender influences on both vehicle peak pattern as well as endogenous matrix background revealed that high-quality control data is obtained when (i) control animals receive an intravenous dose of the vehicle, (ii) the blood sampling time point is the same for analyte and control sample and (iii) analyte and control samples of the same gender are compared.

  1. PROPOSALS FOR THE ESTABLISHMENT OF NATIONAL DIAGNOSTIC REFERENCE LEVELS FOR RADIOGRAPHY FOR ADULT PATIENTS BASED ON REGIONAL DOSE SURVEYS IN RUSSIAN FEDERATION.

    PubMed

    Vodovatov, A V; Balonov, M I; Golikov, V Yu; Shatsky, I G; Chipiga, L A; Bernhardsson, C

    2017-04-01

    In 2009-2014, dose surveys aimed to collect adult patient data and parameters of most common radiographic examinations were performed in six Russian regions. Typical patient doses were estimated for the selected examinations both in entrance surface dose and in effective dose. 75%-percentiles of typical patient effective dose distributions were proposed as preliminary regional diagnostic reference levels (DRLs) for radiography. Differences between the 75%-percentiles of regional typical patient dose distributions did not exceed 30-50% for the examinations with standardized clinical protocols (skull, chest and thoracic spine) and a factor of 1.5 for other examinations. Two different approaches for establishing national DRLs were evaluated: as a 75%-percentile of a pooled regional sample of patient typical doses (pooled method) and as a median of 75%-percentiles of regional typical patient dose distributions (median method). Differences between pooled and median methods for effective dose did not exceed 20%. It was proposed to establish Russian national DRLs in effective dose using a pooled method. In addition, the local authorities were granted an opportunity to establish regional DRLs if the local radiological practice and typical patient dose distributions are significantly different. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less

  3. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  4. Radiation exposure assessment for portsmouth naval shipyard health studies.

    PubMed

    Daniels, R D; Taulbee, T D; Chen, P

    2004-01-01

    Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorissen, BL; Giantsoudi, D; Unkelbach, J

    Purpose: Cell survival experiments suggest that the relative biological effectiveness (RBE) of proton beams depends on linear energy transfer (LET), leading to higher RBE near the end of range. With intensity-modulated proton therapy (IMPT), multiple treatment plans that differ in the dose contribution per field may yield a similar physical dose distribution, but the RBE-weighted dose distribution may be disparate. RBE models currently do not have the required predictive power to be included in an optimization model due to the variations in experimental data. We propose an LET-based planning method that guides IMPT optimization models towards plans with reduced RBE-weightedmore » dose in surrounding organs at risk (OARs) compared to inverse planning based on physical dose alone. Methods: Optimization models for physical dose are extended with a term for dose times LET (doseLET). Monte Carlo code is used to generate the physical dose and doseLET distribution of each individual pencil beam. The method is demonstrated for an atypical meningioma patient where the target volume abuts the brainstem and partially overlaps with the optic nerve. Results: A reference plan optimized based on physical dose alone yields high doseLET values in parts of the brainstem and optic nerve. Minimizing doseLET in these critical structures as an additional planning goal reduces the risk of high RBE-weighted dose. The resulting treatment plan avoids the distal fall-off of the Bragg peaks for shaping the dose distribution in front of critical stuctures. The maximum dose in the OARs evaluated with RBE models from literature is reduced by 8–14\\% with our method compared to conventional planning. Conclusion: LET-based inverse planning for IMPT offers the ability to reduce the RBE-weighted dose in OARs without sacrificing target dose. This project was in part supported by NCI - U19 CA 21239.« less

  6. Mechanistic simulation of normal-tissue damage in radiotherapy—implications for dose-volume analyses

    NASA Astrophysics Data System (ADS)

    Rutkowska, Eva; Baker, Colin; Nahum, Alan

    2010-04-01

    A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

  7. Biological effective dose for comparison and combination of external beam and low-dose rate interstitial brachytherapy prostate cancer treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, Ashesh B.; Hand, Christopher M.; Lujan, Anthony E.

    2004-03-31

    We report a methodology for comparing and combining dose information from external beam radiotherapy (EBRT) and interstitial brachytherapy (IB) components of prostate cancer treatment using the biological effective dose (BED). On a prototype early-stage prostate cancer patient treated with EBRT and low-dose rate I-125 brachytherapy, a 3-dimensional dose distribution was calculated for each of the EBRT and IB portions of treatment. For each component of treatment, the BED was calculated on a point-by-point basis to produce a BED distribution. These individual BED distributions could then be summed for combined therapies. BED dose-volume histograms (DVHs) of the prostate, urethra, rectum, andmore » bladder were produced and compared for various combinations of EBRT and IB. Transformation to BED enabled computation of the relative contribution of each modality to the prostate dose, as the relative weighting of EBRT and IB was varied. The BED-DVHs of the prostate and urethra demonstrated dramatically increased inhomogeneity with the introduction of even a small component of IB. However, increasing the IB portion relative to the EBRT component resulted in lower dose to the surrounding normal structures, as evidenced by the BED-DVHs of the bladder and rectum. Conformal EBRT and low-dose rate IB conventional dose distributions were successfully transformed to the common 'language' of BED distributions for comparison and for merging prostate cancer radiation treatment plans. The results of this analysis can assist physicians in quantitatively determining the best combination and weighting of radiation treatment modalities for individual patients.« less

  8. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  9. SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, K; Corbett, M; Pelletier, C

    2015-06-15

    Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes weremore » analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.« less

  10. Fricke-gel dosimeter: overview of Xylenol Orange chemical behavior

    NASA Astrophysics Data System (ADS)

    Liosi, G. M.; Dondi, D.; Vander Griend, D. A.; Lazzaroni, S.; D'Agostino, G.; Mariani, M.

    2017-11-01

    The complexation between Xylenol Orange (XO) and Fe3+ ions plays a key role in Fricke-gel dosimeters for the determination of the absorbed dose via UV-vis analysis. In this study, the effect of XO and the acidity of the solution on the complexation mechanism was investigated. Moreover, starting from the results of complexation titration and Equilibrium Restricted Factor Analysis, four XO-Fe3+ complexes were identified to contribute to the absorption spectra. Based on the acquired knowledge, a new [Fe3+] vs dose calibration method is proposed. The preliminary results show a significant improvement of the sensitivity and dose threshold with respect to the commonly used Abs vs dose calibration method.

  11. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated.more » Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded in planning.« less

  12. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, H; Tseung, Chan; Beltran, C

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verifiedmore » by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.« less

  13. TH-AB-BRB-04: Quality Assurance for Advanced Digital Linac Implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, V.

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less

  14. TH-AB-BRB-00: Research Opportunities with Digital Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less

  15. Interactions of skin thickness and physicochemical properties of test compounds in percutaneous penetration studies.

    PubMed

    Wilkinson, Simon C; Maas, Wilfred J M; Nielsen, Jesper Bo; Greaves, Laura C; van de Sandt, Johannes J M; Williams, Faith M

    2006-05-01

    To determine the effect of skin thickness on the percutaneous penetration and distribution of test compounds with varying physicochemical properties using in vitro systems. Studies were carried out in accordance with OECD guidelines on skin absorption tests. Percutaneous penetration of caffeine (log P -0.01), testosterone (log P 3.32), propoxur (log P 1.52) (finite dose in ethanol to water vehicle ratio) and butoxyethanol (log P 0.83) (undiluted finite dose or as an infinite dose 50% [v/v] aqueous solution) through skin of varying thicknesses under occluded conditions was measured using flow through cells for 8-24 h. Saline (adjusted to pH 7.4) was used as receptor fluid, with BSA added for studies with testosterone and propoxur. Following exposure, the remaining surface dose was removed by swabbing and the skin digested prior to scintillation counting. The maximum flux of caffeine was increased with decreasing skin thickness, although these differences were found to be non-significant. The presence of caffeine in the skin membrane was not altered by skin thickness. Maximum flux and cumulative dose absorbed of testosterone and butoxyethanol (in both finite and infinite doses) were markedly reduced with full thickness (about 1 mm thick) skin compared with split thickness skin (about 0.5 mm). Maximum flux of propoxur (dissolved in 60% ethanol) was clearly higher through skin of 0.71 mm than through skin of 1.36 mm, but no difference was found between 0.56 and 0.71 mm. The proportion of propoxur present in the membrane after 24 h increased significantly over the complete range of thicknesses tested (0.56-1.36 mm). A complex relationship exists between skin thickness, lipophilicity and percutaneous penetration and distribution. This has implications for risk assessment studies and for the validation of models with data from different sources.

  16. SU-E-T-219: Comprehensive Validation of the Electron Monte Carlo Dose Calculation Algorithm in RayStation Treatment Planning System for An Elekta Linear Accelerator with AgilityTM Treatment Head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Park, Yang-Kyun; Doppke, Karen P.

    2015-06-15

    Purpose: This study evaluated the performance of the electron Monte Carlo dose calculation algorithm in RayStation v4.0 for an Elekta machine with Agility™ treatment head. Methods: The machine has five electron energies (6–8 MeV) and five applicators (6×6 to 25×25 cm {sup 2}). The dose (cGy/MU at d{sub max}), depth dose and profiles were measured in water using an electron diode at 100 cm SSD for nine square fields ≥2×2 cm{sup 2} and four complex fields at normal incidence, and a 14×14 cm{sup 2} field at 15° and 30° incidence. The dose was also measured for three square fields ≥4×4more » cm{sup 2} at 98, 105 and 110 cm SSD. Using selected energies, the EBT3 radiochromic film was used for dose measurements in slab-shaped inhomogeneous phantoms and a breast phantom with surface curvature. The measured and calculated doses were analyzed using a gamma criterion of 3%/3 mm. Results: The calculated and measured doses varied by <3% for 116 of the 120 points, and <5% for the 4×4 cm{sup 2} field at 110 cm SSD at 9–18 MeV. The gamma analysis comparing the 105 pairs of in-water isodoses passed by >98.1%. The planar doses measured from films placed at 0.5 cm below a lung/tissue layer (12 MeV) and 1.0 cm below a bone/air layer (15 MeV) showed excellent agreement with calculations, with gamma passing by 99.9% and 98.5%, respectively. At the breast-tissue interface, the gamma passing rate is >98.8% at 12–18 MeV. The film results directly validated the accuracy of MU calculation and spatial dose distribution in presence of tissue inhomogeneity and surface curvature - situations challenging for simpler pencil-beam algorithms. Conclusion: The electron Monte Carlo algorithm in RayStation v4.0 is fully validated for clinical use for the Elekta Agility™ machine. The comprehensive validation included small fields, complex fields, oblique beams, extended distance, tissue inhomogeneity and surface curvature.« less

  17. Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro

    2015-07-01

    To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.

  18. Development of a Spect-Based Three-Dimensional Treatment Planner for Radionuclide Therapy with Iodine -131.

    NASA Astrophysics Data System (ADS)

    Giap, Huan Bosco

    Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an ^{131}I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of -16.3% to 4.4%. Volume quantitation errors ranged from -4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3 -D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues.

  19. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  20. Evaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology procedures.

    PubMed

    Bourier, Felix; Reents, Tilko; Ammar-Busch, Sonia; Buiatti, Alessandra; Kottmaier, Marc; Semmler, Verena; Telishevska, Marta; Brkic, Amir; Grebmer, Christian; Lennerz, Carsten; Kolb, Christof; Hessling, Gabriele; Deisenhofer, Isabel

    2016-09-01

    This study presents and evaluates the impact of a new lowest-dose fluoroscopy protocol (Siemens AG), especially designed for electrophysiology (EP) procedures, on X-ray dose levels. From October 2014 to March 2015, 140 patients underwent an EP study on an Artis zee angiography system. The standard low-dose protocol was operated at 23 nGy (fluoroscopy) and at 120 nGy (cine-loop), the new lowest-dose protocol was operated at 8 nGy (fluoroscopy) and at 36 nGy (cine-loop). Procedural data, X-ray times, and doses were analysed in 100 complex left atrial and in 40 standard EP procedures. The resulting dose-area products were 877.9 ± 624.7 µGym² (n = 50 complex procedures, standard low dose), 199 ± 159.6 µGym² (n = 50 complex procedures, lowest dose), 387.7 ± 36.0 µGym² (n = 20 standard procedures, standard low dose), and 90.7 ± 62.3 µGym² (n = 20 standard procedures, lowest dose), P < 0.01. In the low-dose and lowest-dose groups, procedure times were 132.6 ± 35.7 vs. 126.7 ± 34.7 min (P = 0.40, complex procedures) and 72.3 ± 20.9 vs. 85.2 ± 44.1 min (P = 0.24, standard procedures), radiofrequency (RF) times were 53.8 ± 26.1 vs. 50.4 ± 29.4 min (P = 0.54, complex procedures) and 10.1 ± 9.9 vs. 12.2 ± 14.7 min (P = 0.60, standard procedures). One complication occurred in the standard low-dose and lowest-dose groups (P = 1.0). The new lowest-dose imaging protocol reduces X-ray dose levels by 77% compared with the currently available standard low-dose protocol. From an operator standpoint, lowest X-ray dose levels create a different, reduced image quality. The new image quality did not significantly affect procedure or RF times and did not result in higher complication rates. Regarding radiological protection, operating at lowest-dose settings should become standard in EP procedures. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  1. Characterization of a novel two dimensional diode array the "magic plate" as a radiation detector for radiation therapy treatment.

    PubMed

    Wong, J H D; Fuduli, I; Carolan, M; Petasecca, M; Lerch, M L F; Perevertaylo, V L; Metcalfe, P; Rosenfeld, A B

    2012-05-01

    Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. The prototype MP is an 11 × 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.

  2. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L; Eldib, A; Li, J

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less

  3. SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.

    PubMed

    Williamson, R; Bluett, J; Niedzielski, J; Liao, Z; Gomez, D; Court, L

    2012-06-01

    To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans. © 2012 American Association of Physicists in Medicine.

  4. [Comparison of SIB-IMRT treatment plans for upper esophageal carcinoma].

    PubMed

    Fu, Wei-hua; Wang, Lv-hua; Zhou, Zong-mei; Dai, Jian-rong; Hu, Yi-min

    2003-06-01

    To implement simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT) plans for upper esophageal carcinoma and investigate the dose profiles of tumor and electively treated region and the dose to organs at risk (OARs). SIB-IMRT plans were designed for two patients with upper esophageal carcinoma. Two target volumes were predefined: PTV1, the target volume of the primary lesion, which was given to 67.2 Gy, and PTV2, the target volume of electively treated region, which was given to 50.4 Gy. With the same dose-volume constraints, but different beams arrangements (3, 5, 7, or 9 equispaced coplanar beams), four plans were generated. Indices, including dose distribution, dose volume histogram (DVH) and conformity index, were used for comparison of these plans. The plan with three intensity-modulated beams could produce good dose distribution for the two target volumes. The dose conformity to targets and the dose to OARs were improved as the beam number increased. The dose distributions in targets changed little when the beam number increased from 7 to 9. Five to seven intensity-modulated beams can produce desirable dose distributions for simultaneous integrated boost (SIB) treatment for upper esophageal carcinoma. The primary tumor can get higher equivalent dose by SIB treatments. It is easier and more efficient to design plans with equispaced coplanar beams. The efficacy of SIB-IMRT remains to be determined by the clinical outcome.

  5. Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases.

    PubMed

    Ziemer, Benjamin P; Sanghvi, Parag; Hattangadi-Gluth, Jona; Moore, Kevin L

    2017-10-01

    Single-isocenter, volumetric-modulated arc therapy (VMAT) stereotactic radiosurgery (SRS) for multiple brain metastases (multimets) can deliver highly conformal dose distributions and reduce overall patient treatment time compared to other techniques. However, treatment planning for multimet cases is highly complex due to variability in numbers and sizes of brain metastases, as well as their relative proximity to organs-at-risk (OARs). The purpose of this study was to automate the VMAT planning of multimet cases through a knowledge-based planning (KBP) approach that adapts single-target SRS dose predictions to multiple target predictions. Using a previously published artificial neural network (ANN) KBP system trained on single-target, linac-based SRS plans, 3D dose distribution predictions for multimet patients were obtained by treating each brain lesion as a solitary target and subsequently combining individual dose predictions into a single distribution. Spatial dose distributions di(r→) for each of the i = 1…N lesions were merged using the combination function d(r→)=∑iNdin(r→)1/n. The optimal value of n was determined by minimizing root-mean squared (RMS) difference between clinical multimet plans and predicted dose per unit length along the line profile joining each lesion in the clinical cohort. The gradient measure GM=[3/4π]1/3V50%1/3-V100%1/3 is the primary quality metric for SRS plan evaluation at our institution and served as the main comparative metric between clinical plans and the KBP results. A total of 41 previously treated multimet plans, with target numbers ranging from N = 2-10, were used to validate the ANN predictions and subsequent KBP auto-planning routine. Fully deliverable KBP plans were developed by converting predicted dose distribution into patient-specific optimization objectives for the clinical treatment planning system (TPS). Plan parity was maintained through identical arc configuration and target normalization. Overall plan quality improvements were quantified by calculating the difference between SRS quality metrics (QMs): ΔQM = QM clinical  - QM KBP . In addition to GM, investigated QMs were: volume of brain receiving ≥ 10 Gy (V 10 Gy ), volume of brain receiving ≥ 5 Gy (ΔV 5 Gy ), heterogeneity index (HI), dose to 0.1 cc of the brainstem (D 0.1 cc ), dose to 1% of the optic chiasm (D 1% ), and interlesion dose (D IL ). In addition to this quantitative analysis, overall plan quality was assessed via blinded plan comparison of the manual and KBP treatment plans by SRS-specializing physicians. A dose combination factor of n = 8 yielded an integrated dose profile RMS difference of 2.9% across the 41-patient cohort. Multimet dose predictions exhibited ΔGM = 0.07 ± 0.10 cm against the clinical sample, implying either further normal tissue sparing was possible or that dose predictions were slightly overestimating achievable dose gradients. The latter is the more likely explanation, as this bias vanished when dose predictions were converted to deliverable KBP plans ΔGM = 0.00 ± 0.08 cm. Remaining QMs were nearly identical or showed modest improvements in the KBP sample. Equivalent QMs included: ΔV 10 Gy  = 0.37 ± 3.78 cc, ΔHI = 0.02 ± 0.08 and ΔD IL  = -2.22 ± 171.4 cGy. The KBP plans showed a greater degree of normal tissue sparing as indicated by brain ΔV 5 Gy  = 4.11± 24.05 cc, brainstem ΔD 0.1 cc  = 42.8 ± 121.4 cGy, and chiasm ΔD 1%  = 50.8 ± 83.0 cGy. In blinded review by SRS-specializing physicians, KBP-generated plans were deemed equivalent or superior in 32/41(78.1%) of the cases. Heuristic KBP-driven automated planning in linac-based, single-isocenter treatments for multiple brain metastases maintained or exceeded overall plan quality. © 2017 American Association of Physicists in Medicine.

  6. Monte Carlo based dosimetry for neutron capture therapy of brain tumors

    NASA Astrophysics Data System (ADS)

    Zaidi, Lilia; Belgaid, Mohamed; Khelifi, Rachid

    2016-11-01

    Boron Neutron Capture Therapy (BNCT) is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET) emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].

  7. Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia

    2010-02-01

    We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).

  8. The Mayak Worker Dosimetry System (MWDS-2013): Implementation of the Dose Calculations.

    PubMed

    Zhdanov, А; Vostrotin, V; Efimov, А; Birchall, A; Puncher, M

    2016-07-15

    The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, H; Ferjani, S; Masssey, V

    Purpose: Perform dosimetric comparison between planned and delivered dose in the junction area, measure daily dose variation in the arc junction area for pediatric patients treated for medulloblastoma using Craniospinal axis irradiation(CSI) Material and methods Dose comparison in the junction area, daily dose variation in the arc junction area for a Rando Phantom and 5 pediatric patients treated using CSI technique were analyzed. Plans were created using the Eclipse treatment planning system. Two arcs for cranium and 1 arc for spine region were used. Planar dose matrix was created by projecting phantom and patient plan into the ArcCheck phantom. EBT3more » film was placed in the middle of ArcCheck plug to measure dose distribution in the junction areaDuring patient treatment, strip of EBT3 film was placed daily at each junction area for verification. EBT3 films were scanned using a flatbed scanner, Epson Expression 10000 XL. Film QA pro software was used to analyze film. Scanning and analysis was performed according to vendor recommendations and AAPM TG-55 report. Films were scanned and analyzed daily after each treatment and at the end of treatment course. Planar dose distributions from films were compared with planar dose distribution from treatment planning system. Results: Comparison of planned vs. measured dose distributions for patients have passing rates of 90%–100% with 3% and 3 mm gamma analysis. In some of the treatment fractions, daily setup film showed variation in dose distribution in the junction area. Conclusion: It is critical to measure dose distribution in the arc junction area and use additional quality assurance measures to verify daily setup for CSI patient where one or more junctions are present. EBT3 film prove to be a good tool to achieve this task considering flexibility associated with the film such as symmetry, self-developing and ease of use.« less

  10. Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system.

    PubMed

    Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe

    2007-11-15

    To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.

  11. A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy.

    PubMed

    Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah

    2017-12-01

    External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A comparison of intensity modulated x-ray therapy to intensity modulated proton therapy for the delivery of non-uniform dose distributions

    NASA Astrophysics Data System (ADS)

    Flynn, Ryan

    2007-12-01

    The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.

  13. SU-F-T-159: Monte Carlo Simulation Studies of Three-Dimensional Dose Distribution for Polymer Gel Dosimeter and Radiochromic Gel Dosimeter in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Jung, H

    Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less

  14. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Ji, Y

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less

  15. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    PubMed

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  16. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9-50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years.

  17. WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, P; Molloy, JA; Rivard, MJ

    Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the centralmore » axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.« less

  18. SU-E-T-109: An Investigation of Including Variable Relative Biological Effectiveness in Intensity Modulated Proton Therapy Planning Optimization for Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, W; Zaghian, M; Lim, G

    2015-06-15

    Purpose: The current practice of considering the relative biological effectiveness (RBE) of protons in intensity modulated proton therapy (IMPT) planning is to use a generic RBE value of 1.1. However, RBE is indeed a variable depending on the dose per fraction, the linear energy transfer, tissue parameters, etc. In this study, we investigate the impact of using variable RBE based optimization (vRBE-OPT) on IMPT dose distributions compared by conventional fixed RBE based optimization (fRBE-OPT). Methods: Proton plans of three head and neck cancer patients were included for our study. In order to calculate variable RBE, tissue specific parameters were obtainedmore » from the literature and dose averaged LET values were calculated by Monte Carlo simulations. Biological effects were calculated using the linear quadratic model and they were utilized in the variable RBE based optimization. We used a Polak-Ribiere conjugate gradient algorithm to solve the model. In fixed RBE based optimization, we used conventional physical dose optimization to optimize doses weighted by 1.1. IMPT plans for each patient were optimized by both methods (vRBE-OPT and fRBE-OPT). Both variable and fixed RBE weighted dose distributions were calculated for both methods and compared by dosimetric measures. Results: The variable RBE weighted dose distributions were more homogenous within the targets, compared with the fixed RBE weighted dose distributions for the plans created by vRBE-OPT. We observed that there were noticeable deviations between variable and fixed RBE weighted dose distributions if the plan were optimized by fRBE-OPT. For organs at risk sparing, dose distributions from both methods were comparable. Conclusion: Biological dose based optimization rather than conventional physical dose based optimization in IMPT planning may bring benefit in improved tumor control when evaluating biologically equivalent dose, without sacrificing OAR sparing, for head and neck cancer patients. The research is supported in part by National Institutes of Health Grant No. 2U19CA021239-35.« less

  19. Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies : A systematic review.

    PubMed

    Yahya, Noorazrul; Chua, Xin-Jane; Manan, Hanani A; Ismail, Fuad

    2018-05-17

    This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies. Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates. A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity. A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.

  20. Patient radiation doses in interventional cardiology in the U.S.: Advisory data sets and possible initial values for U.S. reference levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Donald L.; Hilohi, C. Michael; Spelic, David C.

    2012-10-15

    Purpose: To determine patient radiation doses from interventional cardiology procedures in the U.S and to suggest possible initial values for U.S. benchmarks for patient radiation dose from selected interventional cardiology procedures [fluoroscopically guided diagnostic cardiac catheterization and percutaneous coronary intervention (PCI)]. Methods: Patient radiation dose metrics were derived from analysis of data from the 2008 to 2009 Nationwide Evaluation of X-ray Trends (NEXT) survey of cardiac catheterization. This analysis used deidentified data and did not require review by an IRB. Data from 171 facilities in 30 states were analyzed. The distributions (percentiles) of radiation dose metrics were determined for diagnosticmore » cardiac catheterizations, PCI, and combined diagnostic and PCI procedures. Confidence intervals for these dose distributions were determined using bootstrap resampling. Results: Percentile distributions (advisory data sets) and possible preliminary U.S. reference levels (based on the 75th percentile of the dose distributions) are provided for cumulative air kerma at the reference point (K{sub a,r}), cumulative air kerma-area product (P{sub KA}), fluoroscopy time, and number of cine runs. Dose distributions are sufficiently detailed to permit dose audits as described in National Council on Radiation Protection and Measurements Report No. 168. Fluoroscopy times are consistent with those observed in European studies, but P{sub KA} is higher in the U.S. Conclusions: Sufficient data exist to suggest possible initial benchmarks for patient radiation dose for certain interventional cardiology procedures in the U.S. Our data suggest that patient radiation dose in these procedures is not optimized in U.S. practice.« less

  1. Comparative Analysis of Amphotericin B Lipid Complex and Liposomal Amphotericin B Kinetics of Lung Accumulation and Fungal Clearance in a Murine Model of Acute Invasive Pulmonary Aspergillosis▿

    PubMed Central

    Lewis, Russell E.; Liao, Guangling; Hou, Jinggou; Chamilos, Georgios; Prince, Randall A.; Kontoyiannis, Dimitrios P.

    2007-01-01

    The reformulation of amphotericin B (AMB) into a lipid complex (AMB lipid complex [ABLC]) or liposomal carrier (liposomal AMB [L-AMB]) changes the rate and extent of drug distribution to the lung. The importance of pharmacokinetic differences among the various lipid AMB formulations in the treatment of invasive pulmonary aspergillosis (IPA) remains unknown. We compared the kinetics of AMB lung accumulation and fungal clearance of ABLC- and L-AMB-treated mice with acute IPA. BALB/c mice were immunosuppressed with cyclophosphamide and cortisone before intranasal inoculation with 1.5 × 106 Aspergillus fumigatus 293 conidia. ABLC or L-AMB was administered in daily intravenous doses (1, 5, or 10 mg/kg of body weight), starting 12 h after infection and continuing until day 5. At predetermined times (0, 24, 72, and 120 h), mice were euthanized, and lungs were harvested for determinations of lung fungal burdens (quantitative PCR) and total AMB lung tissue concentrations. Both ABLC and L-AMB were effective at reducing lung fungal burdens at doses of ≥5 mg/kg/day. Clearance of A. fumigatus during the first 24 h was associated with AMB tissue concentrations of >4 μg/g. At 5 mg/kg/day, ABLC produced a more rapid fungal clearance than did L-AMB, but at the end of therapy, fungal burden reductions were similar for both formulations and were not improved with higher dosages. These data suggest that ABLC delivers active AMB to the lung more rapidly than does L-AMB, resulting in faster Aspergillus clearance in an experimental model of IPA. However, pharmacodynamic differences between the two formulations were less apparent when mice were dosed at 10 mg/kg/day. PMID:17261624

  2. SU-E-T-397: Evaluation of Planned Dose Distributions by Monte Carlo (0.5%) and Ray Tracing Algorithm for the Spinal Tumors with CyberKnife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, H; Brindle, J; Hepel, J

    2015-06-15

    Purpose: To analyze and evaluate dose distribution between Ray Tracing (RT) and Monte Carlo (MC) algorithms of 0.5% uncertainty on a critical structure of spinal cord and gross target volume and planning target volume. Methods: Twenty four spinal tumor patients were treated with stereotactic body radiotherapy (SBRT) by CyberKnife in 2013 and 2014. The MC algorithm with 0.5% of uncertainty is used to recalculate the dose distribution for the treatment plan of the patients using the same beams, beam directions, and monitor units (MUs). Results: The prescription doses are uniformly larger for MC plans than RT except one case. Upmore » to a factor of 1.19 for 0.25cc threshold volume and 1.14 for 1.2cc threshold volume of dose differences are observed for the spinal cord. Conclusion: The MC recalculated dose distributions are larger than the original MC calculations for the spinal tumor cases. Based on the accuracy of the MC calculations, more radiation dose might be delivered to the tumor targets and spinal cords with the increase prescription dose.« less

  3. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  4. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.

    PubMed

    Rollet, S; Autischer, M; Beck, P; Latocha, M

    2007-01-01

    The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.

  5. SU-E-T-766: Treatment Planning Comparison Study On Two Different Multileaf Collimators Delivered with Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Xiaomei, F; Bai, W

    2015-06-15

    Purpose: To compare and evaluate the performance of two different multileaf collimators(MLCi2 and Agility) delivery with volumetric modulated arc therapy techniques. Methods: Treatment plans were graded four (Low, Moderate, Moderate-High and High complexity) accorrding to the complexity. This includes 1 Low complexity(brain metastasis), 2 Moderate complexity(Lung and Liver), 1 Moderate-High complexity(prostate) and 1 High complexity ( head and neck) cases. Total dose of 60 Gy was given for all the plans. All cases were desigined two VMAT plans, one with MLCi2(group A) and the other with Agility(group B). All plans were done on Elekta VMAT with Monaco treatment planning system.more » All plans were generated with 6 MV X-rays for both Plan A and Plan B. Plans were evaluated based on the ability to meet the dose volume histogram, radiation conformity index, estimated radiation delivery time, dose homogeneity index(HI) and monitor units(MU) needed to deliver the prescribed dose. Results: Plans of group B achieved the best HI (HI = 1.05 Vs. 1.06) at the Low complexity cases while plans of group A were slightly better at the high complexity cases (HI = 1.12 Vs. 1.14). Faster VMAT plan delivery with Agility than with MLCi2 as plan complexity increased (Low complexity:52s Vs.52s, Moderate complexity:58s Vs. 55s, Moderate-High complexity: 171s Vs.152s, High complexity : 326s Vs. 202s ), especially for the most complex paradigms delivered time can be decresed 38%. No Significant changes were observed between the group B and group A plans in terms of the healthy tissue mean dose and MU. Both plans respected the planning objective for all organs at risk. Conclusion: The study concludes that VMAT plans with the novel Agility MLC can significant decrease the delivering time at the high complexity cases, while a slight compromise in the dose homogeneity index should be noted. This work was supported by The Medical Science Foundation of The health department of Hebei Province (No. 20130253)« less

  6. Verification of the grid size and angular increment effects in lung stereotactic body radiation therapy using the dynamic conformal arc technique

    NASA Astrophysics Data System (ADS)

    Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie

    2013-06-01

    The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.

  7. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom

    NASA Astrophysics Data System (ADS)

    Oancea, C.; Shipulin, K.; Mytsin, G.; Molokanov, A.; Niculae, D.; Ambrožová, I.; Davídková, M.

    2017-03-01

    A dosimetric experiment was performed at the Medico-Technical Complex in the Joint Institute for Nuclear Research, Dubna, to investigate the effects of metallic dental implants in the treatment of head and neck tumours with proton therapy. The goal of the study was to evaluate the 2D dose distributions of different clinical treatment plans measured in an anthropomorphic phantom, and compare them to predictions from a treatment planning system. The anthropomorphic phantom was sliced into horizontal segments. Two grade 4 Titanium implants were inserted between 2 slices, corresponding to a maxillary area. GafChromic EBT2 films were placed between the segments containing the implants to measure the 2D delivered dose. Two different targets were designed: the first target includes the dental implants in the isocentre, and in the second target, the proton beam is delivered through the implants, which are located at the entrance region of the Bragg curve. The experimental results were compared to the treatment plans made using our custom 3D Treatment Planning System, named RayTreat. To quantitatively determine differences in the isodose distributions (measured and calculated), the gamma index (3 mm, 3%) was calculated for each target for the matrix value in the region of high isodose (> 90%): for the experimental setup, which includes the implants in the SOBP region, the result obtained was 84.3%. When the implants were localised in the entrance region of the Bragg curve, the result obtained was 86.4%. In conclusion, the uncertainties introduced by the clinically planned dose distribution are beyond reasonable limits. The linear energy transfer spectra in close proximity to the implants were investigated using solid state nuclear track detectors (TED). Scattered particles outside the target were detected.

  8. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  9. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    PubMed

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  11. Predictive parameters for selection of electronic tissue compensation radiotherapy in early-stage breast cancer patients after breast-conserving surgery.

    PubMed

    Song, Yanbo; Zhang, Miao; Gan, Lu; Chen, Xiaopin; Zhang, Tao; Yue, Ning J; Goyal, Sharad; Haffty, Bruce; Ren, Guosheng

    2016-05-31

    Electronic tissue compensation (eComp) is an external beam planning technique allowing user to manually generate dynamic beam fluence to produce more uniform or modulated dose distribution. In this study, we compared the effectiveness between conventional three-dimensional conformal radiotherapy (3DCRT) and eComp for whole breast irradiation. 3DCRT and eComp planning techniques were used to generate treatment plans for 60 whole breast patients, respectively. The planning goal was to cover 95% of the planning target volume (PTV) with 95% of the prescription dose while minimizing doses to lung, heart, and skin. Comparing to 3DCRT plans, on the average, eComp treatment planning process was about 7 minutes longer, but resulted in lower lung V20Gy, lower mean skin dose, with similar heart dose. The benefits were more pronounced for larger breast patients. Statistical analyses were performed between critical organ doses and patient anatomic features, i.e., central lung distance (CLD), maximal heart distance (MHD), maximal heart length (MHL) and breast separation (BS) to explore any correlations and planning method selection. It was found that to keep the lung V20Gy lower than 20% and mean skin dose lower than 85% of the prescription dose, eComp was the preferred method for patients with more than 2.3 cm CLD or larger than 22.5 cm BS. The study results may be useful in providing a handy criterion in clinical practice allowing us to easily choose between different planning techniques to satisfy the planning goal with minimal increase in complexity and cost.

  12. Determination of spatial dose distribution in UCC treatments with LDR brachytherapy using Monte Carlo methods.

    PubMed

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2018-05-19

    Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. External dose assessment in the Ukraine following the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Frazier, Remi Jordan Lesartre

    While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which parameters were driving the computed results. The mean external effective dose for all individuals in the cohort due to exposure to radiocontamination from the Chernobyl accident between 26 April 1986 and 31 December 2009 was found to be 1.2 mSv; the geometric mean was 0.84 mSv with a geometric standard deviation of 2.1. The mean value is well below the mean external effective dose expected due to typical background radiation (which in the United States over this time period would be 12.0 mSv). Sensitivity analysis suggests that the greatest driver of the distribution of individual dose estimates is lack of specific information about the daily behavior of each individual, specifically the portion of time each individual spent indoors (and shielded from radionuclides deposited on the soil) versus outdoors (and unshielded).

  14. Study of the glow curve structure of the minerals separated from black pepper (Piper nigrum L.)

    NASA Astrophysics Data System (ADS)

    Guzmán, S.; Ruiz Gurrola, B.; Cruz-Zaragoza, E.; Tufiño, A.; Furetta, C.; Favalli, A.; Brown, F.

    2011-04-01

    The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1-25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.

  15. Planning evaluation of radiotherapy for complex lung cancer cases using helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Grigorov, Grigor; Yu, Edward; Yartsev, Slav; Chen, Jeff Z.; Wong, Eugene; Rodrigues, George; Trenka, Kris; Coad, Terry; Bauman, Glenn; Van Dyk, Jake

    2004-08-01

    Lung cancer treatment is one of the most challenging fields in radiotherapy. The aim of the present study was to investigate what role helical tomotherapy (HT), a novel approach to the delivery of highly conformal dose distributions using intensity-modulated radiation fan beams, can play in difficult cases with large target volumes typical for many of these patients. Tomotherapy plans were developed for 15 patients with stage III inoperable non-small-cell lung cancer. While not necessarily clinically indicated, elective nodal irradiation was included for all cases to create the most challenging scenarios with large target volumes. A 2 cm margin was used around the gross tumour volume (GTV) to generate primary planning target volume (PTV2) and 1 cm margin around elective nodes for secondary planning target volume (PTV1) resulting in PTV1 volumes larger than 1000 cm3 in 13 of the 15 patients. Tomotherapy plans were created using an inverse treatment planning system (TomoTherapy Inc.) based on superposition/convolution dose calculation for a fan beam thickness of 25 mm and a pitch factor between 0.3 and 0.8. For comparison, plans were created using an intensity-modulated radiation therapy (IMRT) approach planned on a commercial treatment planning system (TheraplanPlus, Nucletron). Tomotherapy delivery times for the large target volumes were estimated to be between 4 and 19 min. Using a prescribed dose of 60 Gy to PTV2 and 46 Gy to PTV1, the mean lung dose was 23.8 ± 4.6 Gy. A 'dose quality factor' was introduced to correlate the plan outcome with patient specific parameters. A good correlation was found between the quality of the HT plans and the IMRT plans with HT being slightly better in most cases. The overlap between lung and PTV was found to be a good indicator of plan quality for HT. The mean lung dose was found to increase by approximately 0.9 Gy per percent overlap volume. Helical tomotherapy planning resulted in highly conformal dose distributions. It allowed easy achievement of two different dose levels in the target simultaneously. As the overlap between PTV and lung volume is a major predictor of mean lung dose, future work will be directed to control of margins. Work is underway to investigate the possibility of breath-hold techniques for tomotherapy delivery to facilitate this aim.

  16. RBE, reference RBE and clinical RBE: applications of these concepts in hadron therapy.

    PubMed

    Wambersie, A

    1999-06-01

    Introduction of heavy particles (hadrons) into radiation therapy aims at improving the physical selectivity of the irradiation (e.g. proton beams), or the radiobiological differential effect (e.g. fast neutrons), or both (e.g. heavy-ion beams). Each of these new therapy modalities requires several types of information before prescribing safely the doses to patients, as well as for recording and reporting the treatments: (i) absorbed dose measured in a homogeneous phantom in reference conditions; (ii) dose distribution computed at the level of the target volume(s) and the normal tissues at risk; (iii) radiation quality from which a RBE evaluation could be predicted and (iv) RBE measured on biological systems or derived from clinical observation. In hadron therapy, the RBE of the different beams raises specific problems. For fast neutrons, the RBE varies within wide limits (about 2 to 5) depending on the neutron energy spectrum, dose, and biological system. For protons, the RBE values range between smaller limits (about 1.0 to 1.2). A clinical benefit can thus not be expected from RBE differences. However, the proton RBE problem cannot be ignored since dose differences of about 5% can be detected clinically in some cases. The situation is most complex with heavy ions since RBE variations are at least as large as for fast neutrons, as a function of particle type and energy, dose and biological system. In addition, RBE varies with depth. Radiation quality thus has to be taken into account when prescribing and reporting a treatment. This can be done in different ways: (a) description of the method of beam production; (b) computed LET spectra and/or measured microdosimetric spectra at the points clinically relevant; (c) RBE determination. The most relevant RBE data are those obtained for late tolerance of normal tissues at 2 Gy per fraction ("reference RBE"). The "clinical RBE" selected by the radiation oncologist when prescribing the treatment will be close to the reference RBE, but other factors (such as heterogeneity in dose distribution) may influence the selection of the clinical RBE. Combination of microdosimetric data and experimental RBE values improves the confidence in both sets of data.

  17. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason P.; Pope, Chad; Toston, Mary

    2016-12-01

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  18. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason P.; Pope, Chad; Toston, Mary

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  19. Multiple comparisons permutation test for image based data mining in radiotherapy.

    PubMed

    Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel

    2013-12-23

    : Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

  20. SU-F-T-62: Three-Dimensional Dosimetric Gamma Analysis for Impacts of Tissue Inhomogeneity Using Monte Carlo Simulation in Intracavitary Brachytheray for Cervix Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke

    Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less

  1. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is donemore » offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.« less

  2. Comparative dosimetry of diode and diamond detectors in electron beams for intraoperative radiation therapy.

    PubMed

    Björk, P; Knöös, T; Nilsson, P

    2000-11-01

    The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.

  3. Estimation of ambient dose equivalent distribution in the 18F-FDG administration room using Monte Carlo simulation.

    PubMed

    Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko

    2017-03-01

    In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.

  4. Assessment of radiation doses from residential smoke detectors that contain americium-241

    NASA Astrophysics Data System (ADS)

    Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.

  5. Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.

    PubMed

    Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E

    1997-04-01

    In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.

  6. Dose Distribution in Bladder and Surrounding Normal Tissues in Relation to Bladder Volume in Conformal Radiotherapy for Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert

    2009-12-01

    Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with a 'partially empty' than with a 'full' bladder.« less

  7. A 3D isodose manipulation tool for interactive dose shaping

    NASA Astrophysics Data System (ADS)

    Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.

    2014-03-01

    The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.

  8. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident

    PubMed Central

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9–50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years. PMID:28129382

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkelbach, J; Perko, Z; Wolfgang, J

    Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulativemore » BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.« less

  10. SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, R; Sun, B; Zhao, T

    Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculatedmore » on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.« less

  11. SU-F-T-449: Dosimetric Comparison of Acuros XB, Adaptive Convolve in Intensity Modulated Radiotherapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, R; Tachibana, H

    Purpose: There have been several publications focusing on dose calculation in lung for a new dose calculation algorithm of Acuros XB (AXB). AXB could contribute to dose calculation for high-density media for bone and dental prosthesis rather than in lung. We compared the dosimetric performance of AXB, Adaptive Convolve (AC) in head and neck IMRT plans. Methods: In a phantom study, the difference in depth profile between AXB and AC was evaluated using Kodak EDR2 film sandwiched with tough water phantoms. 6 MV x-ray using the TrueBeam was irradiated. In a patient study, 20 head and neck IMRT plans hadmore » been clinically approved in Pinnacle3 and were transferred to Eclipse. Dose distribution was recalculated using AXB in Eclipse while maintaining AC-calculated monitor units and MLC sequence planned in Pinnacle. Subsequently, both the dose-volumetric data obtained using the two different calculation algorithms were compared. Results: The results in the phantom evaluation for the shallow area ahead of the build-up region shows over-dose for AXB and under-dose for AC, respectively. In the patient plans, AXB shows more hot spots especially around the high-density media than AC in terms of PTV (Max difference: 4.0%) and OAR (Max. difference: 1.9%). Compared to AC, there were larger dose deviations in steep dose gradient region and higher skin-dose. Conclusion: In head and neck IMRT plans, AXB and AC show different dosimetric performance for the regions inside the target volume around high-density media, steep dose gradient regions and skin-surface. There are limitations in skin-dose and complex anatomic condition using even inhomogeneous anthropomorphic phantom Thus, there is the potential for an increase of hot-spot in AXB, and an underestimation of dose in substance boundaries and skin regions in AC.« less

  12. The Use of an On-Board MV Imager for Plan Verification of Intensity Modulated Radiation Therapy and Volumetrically Modulated Arc Therapy

    NASA Astrophysics Data System (ADS)

    Walker, Justin A.

    The introduction of complex treatment modalities such as IMRT and VMAT has led to the development of many devices for plan verification. One such innovation in this field is the repurposing of the portal imager to not only be used for tumor localization but for recording dose distributions as well. Several advantages make portal imagers attractive options for this purpose. Very high spatial resolution allows for better verification of small field plans than may be possible with commercially available devices. Because the portal imager is attached to the gantry set up is simpler than any other method available, requiring no additional accessories, and often can be accomplished from outside the treatment room. Dose images capture by the portal imager are in digital format make permanent records that can be analyzed immediately. Portal imaging suffers from a few limitations however that must be overcome. Images captured contain dose information and a calibration must be maintained for image to dose conversion. Dose images can only be taken perpendicular to the treatment beam allowing only for planar dose comparison. Planar dose files are themself difficult to obtain for VMAT treatments and an in-house script had to be developed to create such a file before analysis could be performed. Using the methods described in this study, excellent agreement between planar dose files generated and dose images taken were found. The average agreement for IMRT field analyzed being greater than 97% for non-normalized images at 3mm and 3%. Comparable agreement for VAMT plans was found as well with the average agreement being greater than 98%.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, Anik

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result ofmore » calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.« less

  14. Dosimetry for a uterine cervix cancer treatment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ponce, Miguel; Rodríguez-Villafuerte, Mercedes; Sánchez-Castro, Ricardo

    2003-09-01

    The dose distribution around the 3M 137Cs brachytherapy source as well as the same source inside the Amersham ASN 8231 applicator was measured using thermoluminescent dosimeters and radiochromic films. Some of the results were compared with those obtained from a Monte Carlo simulation and a good agreement was observed. The teletherapy dose distribution was measured using a pin-point ionization chamber. In addition, the experimental measurements and the Monte Carlo results were used to estimate the dose received in the rectum and bladder of an hypothetical patient treated with brachytherapy and compared with the dose distribution obtained from the Hospital's brachytherapy planning system. A 20 % dose reduction to the rectum and bladder was observed in both Monte Carlo and experimental measurements, compared with the results of the planning system, which results in a better dose control to these structures.

  15. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Badkul, R; Jiang, H

    Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beammore » configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with tissue-heterogeneities.The magnitude of variation significantly varies with ‘small-island-tumor’ surrounded by low-density lung tissues -PB algorithms lacks later electron scattering. Dose calculation with XVMC for lung SBRT is routinely performed in our clinic, its performance for head'neck/sinus cases will also be investigated.« less

  17. Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moradi, F.; Khandaker, M. U.; Mahdiraji, G. A.; Ung, N. M.; Bradley, D. A.

    2017-11-01

    In recent years doped silica fibre thermoluminescent dosimeters (TLD) have been demonstrated to have considerable potential for irradiation applications, benefitting from the available sensitivity, spatial resolution and dynamic dose range, with primary focus being on the needs of medical dosimetry. Present study concerns the dose distribution inside a cylindrically shaped gamma-ray irradiator cavity, with irradiator facilities such as the familiar 60Co versions being popularly used in industrial applications. Quality assurance of the radiation dose distribution inside the irradiation cell of such a device is of central importance in respect of the delivered dose to the irradiated material. Silica fibre TLD dose-rates obtained within a Gammacell-220 irradiator cavity show the existence of non-negligible dose distribution heterogeneity, by up to 20% and 26% in the radial and axial directions respectively, Monte Carlo simulations and available literature providing some support for present findings. In practice, it is evident that there is need to consider making corrections to nominal dose-rates in order to avoid the potential for under-dosing.

  18. Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France.

    PubMed

    Etard, Cécile; Bigand, Emeline; Salvat, Cécile; Vidal, Vincent; Beregi, Jean Paul; Hornbeck, Amaury; Greffier, Joël

    2017-10-01

    A national retrospective survey on patient doses was performed by the French Society of Medical physicists to assess reference levels (RLs) in interventional radiology as required by the European Directive 2013/59/Euratom. Fifteen interventional procedures in neuroradiology, vascular radiology and osteoarticular procedures were analysed. Kerma area product (KAP), fluoroscopy time (FT), reference air kerma and number of images were recorded for 10 to 30 patients per procedure. RLs were calculated as the 3rd quartiles of the distributions. Results on 4600 procedures from 36 departments confirmed the large variability in patient dose for the same procedure. RLs were proposed for the four dosimetric estimators and the 15 procedures. RLs in terms of KAP and FT were 90 Gm.cm 2 and 11 mins for cerebral angiography, 35 Gy.cm 2 and 16 mins for biliary drainage, 75 Gy.cm 2 and 6 mins for lower limbs arteriography and 70 Gy.cm 2 and 11 mins for vertebroplasty. For these four procedures, RLs were defined according to the complexity of the procedure. For all the procedures, the results were lower than most of those already published. This study reports RLs in interventional radiology based on a national survey. Continual evolution of practices and technologies requires regular updates of RLs. • Delivered dose in interventional radiology depends on procedure, practice and patient. • National RLs are proposed for 15 interventional procedures. • Reference levels (RLs) are useful to benchmark practices and optimize protocols. • RLs are proposed for kerma area product, air kerma, fluoroscopy time and number of images. • RLs should be adapted to the procedure complexity and updated regularly.

  19. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poder, Joel; Corde, Stéphanie

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods:more » Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing.Conclusions: The doses calculated by PS and RADCALC{sup ®} for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.« less

  20. I-125 ROPES eye plaque dosimetry: validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films.

    PubMed

    Poder, Joel; Corde, Stéphanie

    2013-12-01

    The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing. The doses calculated by PS and RADCALC(®) for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.

  1. Commissioning of intensity modulated neutron radiotherapy (IMNRT).

    PubMed

    Burmeister, Jay; Spink, Robyn; Liang, Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan; Snyder, Michael

    2013-02-01

    Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center∕Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate∕five head and neck) agreed to within -0.8 ± 1.4% and 5.0 ± 6.0% within and outside the target, respectively. Nearly all (22∕24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)∕prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max = 7.0%) and 1.4% (max = 4.1%) in water and virtual water, respectively. The mean gamma pass rate for all cases was 92.8% (min = 88.6%). These pass rates are lower than typically achieved with photon IMRT, warranting development of a planar dosimetry system designed specifically for IMNRT and∕or the improvement of neutron beam modeling in the penumbral region. The fractional photon dose component did not change significantly in a typical IMNRT plan versus a conventional fast neutron therapy plan, and IMNRT delivery is not expected to significantly alter the RBE. All other commissioning results were considered satisfactory for clinical implementation of IMNRT, including the external neutron dose validation, which agreed with the predicted neutron dose to within 1%. IMNRT has been successfully commissioned for clinical use. While current plan quality is inferior to photon IMRT, it is superior to conventional fast neutron therapy. Ion chamber validation results for IMNRT commissioning are also comparable to those typically achieved with photon IMRT. Gamma pass rates for planar dose distributions are lower than typically observed for photon IMRT but may be improved with improved planar dosimetry equipment and beam modeling techniques. In the meantime, patient-specific quality assurance measurements should rely more heavily on point dose measurements with tissue equivalent ionization chambers. No significant technical impediments are anticipated in the clinical implementation of IMNRT as described here.

  2. SU-F-SPS-11: The Dosimetric Comparison of Truebeam 2.0 and Cyberknife M6 Treatment Plans for Brain SRS Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabhouti, H; Sanli, E; Cebe, M

    Purpose: Brain stereotactic radiosurgery involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of Truebeam 2.0 and Cyberknife M6 treatment plans were made. Methods: For Truebeam 2.0 machine, treatment planning were done using 2 full arc VMAT technique with 6 FFF beam on the CT scan of Randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using Eclipse treatment planning system with Acuros XB algorithm. The treatment planningmore » of the same target were also done for Cyberknife M6 machine with Multiplan treatment planning system using Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For Truebeam plans, the gamma analysis passing rates were 99.1% and 95.5% for target and peripheral region of target respectively. Conclusion: Although, target dose distribution calculated accurately by Acuros XB and Monte Carlo algorithms, Monte carlo calculation algorithm predicts dose distribution around the peripheral region of target more accurately than Acuros algorithm.« less

  3. Dosimetry of a Small-Animal Irradiation Model using a 6 MV Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, F. Moran; Martinez-Davalos, A.; Garcia-Garduno, O. A.

    2010-12-07

    A custom made rat-like phantom was used to measure dose distributions using a 6 MV linear accelerator. The phantom has air cavities that simulate the lungs and cylindrical inserts that simulate the backbone. The calculated dose distributions were obtained with the BrainScan v.5.31 TPS software. For the irradiation two cases were considered: (a) near the region where the phantom has two air cavities that simulate the lungs, and (b) with an entirely uniform phantom. The treatment plan consisted of two circular cone arcs that imparted a 500 cGy dose to a simulated lesion in the backbone. We measured dose distributionsmore » using EBT2 GafChromic film and an Epson Perfection V750 scanner working in transmission mode. Vertical and horizontal profiles, isodose curves from 50 to 450 cGy, dose and distance to agreement (DTA) histograms and Gamma index were obtained to compare the dose distributions using DoseLab v4.11. As a result, these calculations show very good agreement between calculated and measured dose distribution in both cases. With a 2% 2 mm criteria 100% of the points pass the Gamma test for the uniform case, while 98.9% of the points do it for the lungs case.« less

  4. Radiological implications of granite of northern Pakistan.

    PubMed

    Asghar, M; Tufail, M; Sabiha-Javied; Abid, A; Waqas, M

    2008-09-01

    Granite is an igneous rock that contains natural radioactivity of primordial radionuclides. In Pakistan, granite is distributed in a vast area called the Ambela Granitic Complex (AGC) in North West Frontier Province (NWFP). Granite is a hard rock that exists in different colours and is used to decorate floors, kitchen counter tops, etc. The use of granite in a building as a decor material is a potential source of radiation dose; therefore, natural radioactivity has been measured in 20 granite samples of the AGC with an HPGe (high purity germanium) based gamma ray spectrometer. The average specific activities and their range (given in parentheses) for primordial radionuclides (40)K, (226)Ra and (232)Th were 1218 (899-1927), 659 (46-6120) and 598 (92-3214) Bq kg(-1), respectively. The measured activity concentrations were used for the assessment of hazard indices and radiation dose which were evaluated based on the permissible limits defined for these parameters. The measured specific activities and the derived quantities, hazard indices and radiation dose, have been compared with those given in the literature for these parameters.

  5. Simulation of DNA Damage in Human Cells from Space Radiation Using a Physical Model of Stochastic Particle Tracks and Chromosomes

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; Hada, Megumi; George, Kerry; Wu, Honglu

    2015-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a recently developed model, in which chromosomes simulated by NASARTI (NASA Radiation Tracks Image) is combined with nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS (Relativistic Ion Tracks) in a voxelized space. The model produces the number of DSBs, as a function of dose for high-energy iron, oxygen, and carbon ions, and He ions. The combined model calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The merged computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The merged model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation.

  6. Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold

    2000-03-01

    Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.

  7. Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Yahya, Khalid; Verhaegen, Frank; Seuntjens, Jan

    2007-12-15

    Despite the capability of energy modulated electron therapy (EMET) to achieve highly conformal dose distributions in superficial targets it has not been widely implemented due to problems inherent in electron beam radiotherapy such as planning dosimetry accuracy, and verification as well as a lack of systems for automated delivery. In previous work we proposed a novel technique to deliver EMET using an automated 'few leaf electron collimator' (FLEC) that consists of four motor-driven leaves fit in a standard clinical electron beam applicator. Integrated with a Monte Carlo based optimization algorithm that utilizes patient-specific dose kernels, a treatment delivery was incorporatedmore » within the linear accelerator operation. The FLEC was envisioned to work as an accessory tool added to the clinical accelerator. In this article the design and construction of the FLEC prototype that match our compact design goals are presented. It is controlled using an in-house developed EMET controller. The structure of the software and the hardware characteristics of the EMET controller are demonstrated. Using a parallel plate ionization chamber, output measurements were obtained to validate the Monte Carlo calculations for a range of fields with different energies and sizes. Further verifications were also performed for comparing 1-D and 2-D dose distributions using energy independent radiochromic films. Comparisons between Monte Carlo calculations and measurements of complex intensity map deliveries show an overall agreement to within {+-}3%. This work confirms our design objectives of the FLEC that allow for automated delivery of EMET. Furthermore, the Monte Carlo dose calculation engine required for EMET planning was validated. The result supports the potential of the prototype FLEC for the planning and delivery of EMET.« less

  8. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  9. Synthesis, Characterization, Antioxidant Status, and Toxicity Study of Vanadium-Rutin Complex in Balb/c Mice.

    PubMed

    Roy, Souvik; Majumdar, Sumana; Singh, Amit Kumar; Ghosh, Balaram; Ghosh, Nilanjan; Manna, Subhadip; Chakraborty, Tania; Mallick, Sougato

    2015-08-01

    A new trend was developed for the formation of a complex between vanadium and flavonoid derivatives in order to increase the intestinal absorption and to reduce the toxicity of vanadium compounds. The vanadium-rutin complex was characterized by several spectroscopic techniques like ultraviolet (UV)-visible, Fourier transform infrared (FTIR), NMR, mass spectrometry, and microscopic evaluation by scanning electron microscopy. The mononuclear complex was formed by the interaction between vanadium and rutin with 1:2 metal to ligand stoichiometry. Antioxidant activity of the complex was evaluated by 1,1-diphenyl-2 picrylhydrazyl, ferric-reducing power, and 2,2'-azin-obis 3-ethylbenzothiazoline-6-sulphonic acid methods. It was shown that radical scavenging activity and ferric-reducing potential of free rutin was lower as compared with vanadium-rutin complex. The study was also investigated for oral acute toxicity and 28 days repeated oral subacute toxicity study of vanadium-rutin complex in balb/c mice. The vanadium-rutin complex showed mortality at a dose of 120 mg/kg in the balb/c mice. In 28 days repeated oral toxicity study, vanadium-rutin complex was administered to both sex of balb/c mice at dose levels of 90, 45, and 20 ppm, respectively. In addition, subacute toxicity study of vanadium-rutin complex (at 90 ppm dose level) showed increase levels of white blood cell (WBC), total bilirubin, alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), creatinine, and blood urea nitrogen and decrease level of total protein (TP) as compared with control group. Histopathological study of vanadium-rutin showed structural alteration in the liver, kidney, and stomach at 90 ppm dose level. No observed toxic level of vanadium-rutin complex at 20 ppm dose level could be good for further study.

  10. Initial Dosing and Taper Complexity of Methadone and Morphine for Treatment of Neonatal Abstinence Syndrome

    PubMed Central

    Ibach, Bethany W.; Johnson, Peter N.; Ernst, Kimberly D.; Harrison, Donald; Miller, Jamie L.

    2016-01-01

    Background: Methadone and morphine are commonly used to treat neonatal abstinence syndrome (NAS). Limited data exist to describe the most appropriate initial doses and taper regimens of these agents. Objectives: Describe the median initial dose and frequency of methadone and morphine for NAS. Compare dose adjustments, time to symptom relief, and taper complexity between groups. Methods: Retrospective study of neonates receiving enteral methadone or morphine for NAS over a 4-year period. Data collection included medication regimen, abstinence scores based on the Modified Finnegan Neonatal Abstinence Scoring Tool, and adverse events. Planned home taper complexity was assessed using the Medication Taper Complexity Score–Revised (MTCS-R). The primary outcome was initial opioid dose. Secondary outcomes included number of dose adjustments, time to symptom relief, and MTCS-R score. Results: Fifty neonates were initially treated for NAS with methadone (n = 36) or morphine (n = 14). The median initial dose was 0.09 mg/kg (range = 0.03-0.2) for methadone and 0.04 mg/kg (range = 0.03-0.4) for morphine. The most common initial dosing interval was q8h for methadone versus q3h for morphine. Number of dose adjustments and time to symptom relief were similar between groups. Median MTCS-R scores were similar between groups. There was no difference in adverse events between groups. Limitations included small sample size, preference toward methadone use, and variability of initial opioid dosing and titration. Conclusions: There was significant variability in initial doses of both agents. Neonates receiving methadone required less frequent dosing than morphine, which may result in easier administration and may allow for safer outpatient administration.

  11. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    PubMed

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  12. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedam, S.; Docef, A.; Fix, M.

    2005-06-15

    The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less

  13. Detailed Analysis of Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T Cells after Proton Irradiation and Treatments with Oxidant Agents and Flavonoids

    PubMed Central

    Baran, Irina; Ganea, Constanta; Privitera, Simona; Scordino, Agata; Barresi, Vincenza; Musumeci, Francesco; Mocanu, Maria Magdalena; Condorelli, Daniele F.; Ursu, Ioan; Grasso, Rosaria; Gulino, Marisa; Garaiman, Alexandru; Musso, Nicolò; Cirrone, Giuseppe A. Pablo; Cuttone, Giacomo

    2012-01-01

    Following previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL) in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H2O2. 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively. We assessed apoptosis, cell cycle distributions, and DL. Menadione, H2O2 and quercetin were potent inducers of apoptosis and DL inhibitors. Quercetin decreased clonogenic survival and the NAD(P)H level in a dose-dependent manner. Proton irradiation with 2 Gy but not 10 Gy increased the apoptotic rate. However, both doses induced a substantial G2/M arrest. Quercetin reduced apoptosis and prolonged the G2/M arrest induced by radiation. DL spectroscopy indicated that proton irradiation disrupted the electron flow within Complex I of the mitochondrial respiratory chain, thus explaining the massive necrosis induced by 10 Gy of protons and also suggested an equivalent action of menadione and quercetin at the level of the Fe/S center N2, which may be mediated by their binding to a common site within Complex I, probably the rotenone-binding site. PMID:22829956

  14. Statistical analysis of radiation dose derived from ingestion of foods

    NASA Astrophysics Data System (ADS)

    Dougherty, Ward L.

    2001-09-01

    This analysis undertook the task of designing and implementing a methodology to determine an individual's probabilistic radiation dose from ingestion of foods utilizing Crystal Ball. A dietary intake model was determined by comparing previous existing models. Two principal radionuclides were considered-Lead210 (Pb-210) and Radium 226 (Ra-226). Samples from three different local grocery stores-Publix, Winn Dixie, and Albertsons-were counted on a gamma spectroscopy system with a GeLi detector. The same food samples were considered as those in the original FIPR database. A statistical analysis, utilizing the Crystal Ball program, was performed on the data to assess the most accurate distribution to use for these data. This allowed a determination of a radiation dose to an individual based on the above-information collected. Based on the analyses performed, radiation dose for grocery store samples was lower for Radium-226 than FIPR debris analyses, 2.7 vs. 5.91 mrem/yr. Lead-210 had a higher dose in the grocery store sample than the FIPR debris analyses, 21.4 vs. 518 mrem/yr. The output radiation dose was higher for all evaluations when an accurate estimation of distributions for each value was considered. Radium-226 radiation dose for FIPR and grocery rose to 9.56 and 4.38 mrem/yr. Radiation dose from ingestion of Pb-210 rose to 34.7 and 854 mrem/yr for FIPR and grocery data, respectively. Lead-210 was higher than initial doses for many reasons: Different peak examined, lower edge of detection limit, and minimum detectable concentration was considered. FIPR did not utilize grocery samples as a control because they calculated radiation dose that appeared unreasonably high. Consideration of distributions with the initial values allowed reevaluation of radiation does and showed a significant difference to original deterministic values. This work shows the value and importance of considering distributions to ensure that a person's radiation dose is accurately calculated. Probabilistic dose methodology was proved to be a more accurate and realistic method of radiation dose determination. This type of methodology provides a visual presentation of dose distribution that can be a vital aid in risk methodology.

  15. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy.

    PubMed

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-01

    The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 × 26 cm(2) grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within ±1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and the treatment planning system were higher than 97.5% when the standard clinical tolerances of 3% or 3 mm were used. Excellent agreement was obtained between the doses measured and calculated when we used the 2D-PSDA for monitoring a MLC sequence from a step-and-shoot IMRT plan. We demonstrated the feasibility of using a large number of PSDs in a new 2D-PSDA for the dosimetry of MV energy photon beams in radiation therapy. The excellent precision, accuracy, and low angular dependence of the device indicate that such a prototype could potentially be used as a high-accuracy quality assurance tool for IMRT and arc therapy patient plan verification. The homogeneity and water-equivalence of the prototype we built suggest that this technology could be extended to multiple detection planes by arranging the fibers into more complex orientations, opening the possibility for 3D dosimetry with PSDs.

  16. Staurosporines decrease ORMDL proteins and enhance sphingomyelin synthesis resulting in depletion of plasmalemmal phosphatidylserine.

    PubMed

    Maekawa, Masashi; Lee, Minhyoung; Wei, Kuiru; Ridgway, Neale D; Fairn, Gregory D

    2016-11-02

    Accumulation of phosphatidylserine in the inner leaflet of the plasma membrane is a hallmark of eukaryotes. Sublethal levels of staurosporine and related compounds deplete phosphatidylserine from the plasma membrane and abrogate K-Ras signaling. Here, we report that low-dose staurosporine and related compounds increase sphingomyelin mass. Mass-spectrometry and metabolic tracer analysis revealed an increase in both the levels and rate of synthesis of sphingomyelin in response to sublethal staurosporine. Mechanistically, it was determined that the abundance of the ORMDL proteins, which negatively regulate serine-palmitoyltransferase, are decreased by low-dose staurosporine. Finally, inhibition of ceramide synthesis, and thus sphingomyelin, prevented the displacement of phosphatidylserine and cholesterol from the inner leaflet of the plasma membrane. The results establish that an optimal level of sphingomyelin is required to maintain the distribution of phosphatidylserine and cholesterol in the plasma membrane and further demonstrate a complex relationship between the trafficking of phosphatidylserine and sphingomyelin.

  17. TU-D-209-02: A Backscatter Point Spread Function for Entrance Skin Dose Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Xiong, Z; Shankar, A

    Purpose: To determine the distribution of backscattered radiation to the skin resulting from a non-uniform distribution of primary radiation through convolution with a backscatter point spread function (PSF). Methods: A backscatter PSF is determined using Monte Carlo simulation of a 1 mm primary beam incident on a 30 × 30 cm × 20 cm thick PMMA phantom using EGSnrc software. A primary profile is similarly obtained without the phantom and the difference from the total provides the backscatter profile. This scatter PSF characterizes the backscatter spread for a “point” primary interaction and can be convolved with the entrance primary dosemore » distribution to obtain the total entrance skin dose. The backscatter PSF was integrated into the skin dose tracking system (DTS), a graphical utility for displaying the color-coded skin dose distribution on a 3D graphic of the patient during interventional fluoroscopic procedures. The backscatter convolution method was validated for the non-uniform beam resulting from the use of an ROI attenuator. The ROI attenuator is a copper sheet with about 20% primary transmission (0.7 mm thick) containing a circular aperture; this attenuator is placed in the beam to reduce dose in the periphery while maintaining full dose in the region of interest. The DTS calculated primary plus backscatter distribution is compared to that measured with GafChromic film and that calculated using EGSnrc Monte-Carlo software. Results: The PSF convolution method used in the DTS software was able to account for the spread of backscatter from the ROI region to the region under the attenuator. The skin dose distribution determined using DTS with the ROI attenuator was in good agreement with the distributions measured with Gafchromic film and determined by Monte Carlo simulation Conclusion: The PSF convolution technique provides an accurate alternative for entrance skin dose determination with non-uniform primary x-ray beams. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  18. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Jung, H; Kim, G

    2014-06-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less

  19. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both physical and clinical dose distributions were compared with regard to the prescribed dose level, beam energy, and SOBP width. Both systems provided uniform clinical dose distributions within the targets consistent with the prescriptions. The mean physical doses delivered to targets by the updated system agreed with the doses by the original system within ±1.5% for all tested conditions. The updated system reflects the physical and biological characteristics of the therapeutic C-ion beam more accurately than the original system, while at the same time allowing the continued use of the dose-fractionation protocols established with the original system at NIRS.

  20. Proposed linear energy transfer areal detector for protons using radiochromic film.

    PubMed

    Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro

    2015-04-01

    Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.

  1. SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, K; Liu, B

    Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less

  2. Pharmacokinetics of ceftriaxone during plasma exchange in polyarteritis nodosa patients.

    PubMed Central

    Fauvelle, F; Lortholary, O; Tod, M; Guillevin, L; Louchahi, M; Léon, A; Petitjean, O

    1994-01-01

    Plasma exchange (PE) is currently being used to treat a variety of disorders involving immune complexes, such as polyarteritis nodosa. This procedure removes endogenous toxic components that accumulate in patients with this disease, but it also removes drugs. Plasma-protein binding and the volume of distribution (V) are two kinetic parameters which strongly affect the efficiency of drug removal by PE. Drugs that are highly bound to plasma proteins and have a low V may show a marked decrease in plasma levels as a result of PE. Because ceftriaxone exhibits saturable plasma-protein binding, which influences its pharmacokinetic parameters, particularly its V, we evaluated its removal during PE therapy in this nonrandomized crossover study. Twelve polyarteritis nodosa patients undergoing PE were studied. Each patient was given ceftriaxone intravenously in doses of 1 and 3 g on days 4 and 11, respectively, immediately before (n = six patients; group I) and 6 h before (n = six patients; group II) PE. Plasma was assayed for ceftriaxone by high-pressure liquid chromatography. The mean amounts eliminated +/- standard deviations were 230.8 +/- 38.5 mg (1 g) and 750.0 +/- 168.5 mg (3 g) for group I and 161.0 +/- 66.0 mg (1 g) and 347.0 +/- 121.0 mg (3 g) for group II. The drug fractions eliminated by PE were 23.0% +/- 3.9% (1-g dose) and 24.9% +/- 5.6% (3-g dose) for group I (P > 0.05), and 16.6% +/- 5.9% (1-g dose) and 11.5% +/- 4.0% (3-g dose) for group II (P < 0.05). These results showed that the drug fraction eliminated decreased when V increased only when the distribution phase of ceftriaxone had been completed (group II). These findings suggest that PE may influence ceftriaxone disposition and that it would be better to administer the drug after PE to assure its therapeutic efficacy. PMID:7979282

  3. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome aberrations.

  4. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    NASA Astrophysics Data System (ADS)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  5. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate.

    PubMed

    Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E

    2017-04-21

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  6. SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar-Deroma, R; Borzov, E; Nevelsky, A

    2015-06-15

    Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC)more » simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less

  7. Helical Tomotherapy for Whole-Brain Irradiation With Integrated Boost to Multiple Brain Metastases: Evaluation of Dose Distribution Characteristics and Comparison With Alternative Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levegrün, Sabine, E-mail: sabine.levegruen@uni-due.de; Pöttgen, Christoph; Wittig, Andrea

    2013-07-15

    Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N{sub mets}) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV{sub mets}) and of the individual metastasis planning target volume (PTV{sub ind} {sub met}) were 8.7 ± 8.9 cm{sup 3} (range, 1.3-35.5more » cm{sup 3}) and 2.5 ± 4.5 cm{sup 3} (range, 0.19-24.7 cm{sup 3}), respectively. Dose distributions in PTV{sub mets} and PTV{sub ind} {sub met} were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N{sub mets} was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV{sub mets} amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV{sub ind} {sub met} were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV{sub mets} (CN = 0.737 for PTV{sub mets} ≤4.32 cm{sup 3} vs CN = 0.848 for PTV{sub mets} >4.32 cm{sup 3}, P=.006), in contrast to N{sub mets}. The achieved dose conformity to PTV{sub mets}, assessed by both CN and PITV, was in all investigated volume strata well within the best quartile of the values reported for alternative irradiation techniques. Conclusions: HT is a well-suited technique to deliver WBRT with IB to multiple brain metastases, yielding high-quality dose distributions. A multi-institutional prospective randomized phase 2 clinical trial to exploit efficacy and safety of the treatment concept is currently under way.« less

  8. SU-F-T-178: Optimized Design of a Diamond Detector Specifically Dedicated to the Dose Distribution Measurements in Clinical Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, C; Pomorski, M; Agelou, M

    2016-06-15

    Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as wellmore » as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device configuration.« less

  9. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  10. High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study

    NASA Astrophysics Data System (ADS)

    Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana

    2017-01-01

    Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased radioresistance caused by hypoxia if fast reoxygenation is assumed.

  11. SU-E-T-02: 90Y Microspheres Dosimetry Calculation with Voxel-S-Value Method: A Simple Use in the Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneru, F; Gracia, M; Gallardo, N

    2015-06-15

    Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more information than other methods of dose calculation usually applied in the clinic.« less

  12. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy.

    PubMed

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku; Zenklusen, Silvan; Nakao, Minoru; Shirai, Toshiyuki; Noda, Koji

    2013-03-01

    Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity and energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCRL) and phase-controlled volumetric rescanning (PCRV) were compared. For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1×PCRL and 1×PCRV) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4×PCRL or more significantly and consistently improved dose distribution. PCRV showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCRL∕PCRV with a sweep direction perpendicular to motion direction showed large hot∕cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI∕AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax∕Dmin, homogeneity index) were improved with an increasing number of PCRL∕PCRV, but with PCRL being more robust. PCRL requires a longer treatment time than PCRV for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.

  13. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy.

    PubMed

    Takada, Kenta; Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji

    2018-01-01

    The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy

    PubMed Central

    Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji

    2018-01-01

    Abstract The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. PMID:29087492

  15. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    PubMed

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Seasonal influenza vaccine dose distribution in 195 countries (2004-2013): Little progress in estimated global vaccination coverage.

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Fino, Mireli; Xydia-Charmanta, Margarita

    2015-10-13

    Seasonal influenza is an important disease which results in 250,000-500,000 annual deaths worldwide. Global targets for vaccination coverage rates (VCRs) in high-risk groups are at least 75% in adults ≥65 years and increased coverage in other risk groups. The International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply (IFPMA IVS) International Task Force developed a survey methodology in 2008, to assess the global distribution of influenza vaccine doses as a proxy for VCRs. This paper updates the previous survey results on absolute numbers of influenza vaccine doses distributed between 2004 and 2013 inclusive, and dose distribution rates per 1000 population, and provides a qualitative assessment of the principal enablers and barriers to seasonal influenza vaccination. The two main findings from the quantitative portion of the survey are the continued negative trend for dose distribution in the EURO region and the perpetuation of appreciable differences in scale of dose distribution between WHO regions, with no observed convergence in the rates of doses distributed per 1000 population over time. The main findings from the qualitative portion of the survey were that actively managing the vaccination program in real-time and ensuring political commitment to vaccination are important enablers of vaccination, whereas insufficient access to vaccination and lack of political commitment to seasonal influenza vaccination programs are likely contributing to vaccination target failures. In all regions of the world, seasonal influenza vaccination is underutilized as a public health tool. The survey provides evidence of lost opportunity to protect populations against potentially serious influenza-associated disease. We call on the national and international public health communities to re-evaluate their political commitment to the prevention of the annual influenza disease burden and to develop a systematic approach to improve vaccine distribution equitably. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  18. Development, validation, and implementation of a patient-specific Monte Carlo 3D internal dosimetry platform

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.

    Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre-clinical and clinical patients and large dosimetric differences resulted when using conventional organ-level methods and the patient-specific voxelized methods described in this work. The dosimetric impact of various steps in the 3D voxelized dosimetry process were evaluated including quantitative imaging acquisition, image coregistration, voxel resampling, ROI contouring, CT-based material segmentation, and pharmacokinetic fitting. Finally, a multi-objective treatment planning optimization framework was developed for multi-radiopharmaceutical combination therapies.

  19. SU-E-T-138: Dosimetric Verification For Volumetric Modulated Arc Therapy Cranio-Spinal Irradiation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goksel, E; Bilge, H; Yildiz, Yarar

    2014-06-01

    Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less

  20. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  1. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  2. Space Radiation and its Associated Health Consequences

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2007-01-01

    During space travel, astronauts are exposed to energetic particles of a complex composition and energy distribution. For the same amount of absorbed dose, these particles can be much more effective than X- or gamma rays in the induction of biological effects, including cell inactivation, genetic mutations, cataracts, and cancer induction. Several of the biological consequences of space radiation exposure have already been observed in astronauts. This presentation will introduce the space radiation environment and discuss its associated health risks. Accurate assessment of the radiation risks and development of respective countermeasures are essential for the success of future exploration missions to the Moon and Mars.

  3. Experimental benchmarking of a Monte Carlo dose simulation code for pediatric CT

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Yoshizumi, Terry; Colsher, James G.; Jones, Robert P.; Frush, Donald P.

    2007-03-01

    In recent years, there has been a desire to reduce CT radiation dose to children because of their susceptibility and prolonged risk for cancer induction. Concerns arise, however, as to the impact of dose reduction on image quality and thus potentially on diagnostic accuracy. To study the dose and image quality relationship, we are developing a simulation code to calculate organ dose in pediatric CT patients. To benchmark this code, a cylindrical phantom was built to represent a pediatric torso, which allows measurements of dose distributions from its center to its periphery. Dose distributions for axial CT scans were measured on a 64-slice multidetector CT (MDCT) scanner (GE Healthcare, Chalfont St. Giles, UK). The same measurements were simulated using a Monte Carlo code (PENELOPE, Universitat de Barcelona) with the applicable CT geometry including bowtie filter. The deviations between simulated and measured dose values were generally within 5%. To our knowledge, this work is one of the first attempts to compare measured radial dose distributions on a cylindrical phantom with Monte Carlo simulated results. It provides a simple and effective method for benchmarking organ dose simulation codes and demonstrates the potential of Monte Carlo simulation for investigating the relationship between dose and image quality for pediatric CT patients.

  4. Assessment of radiation doses from residential smoke detectors that contain americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Svmore » (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).« less

  5. Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators.

    PubMed

    Beierholm, Anders R; Ottosson, Rickard O; Lindvold, Lars R; Behrens, Claus F; Andersen, Claus E

    2011-05-21

    A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse with millimetre spatial resolution. To demonstrate the applicability of the system in complex radiotherapy fields, output factors and per cent depth dose measurements were performed in solid water for a 6 MV photon beam and compared with Monte Carlo simulated doses for square fields down to 0.6 cm × 0.6 cm size. No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm field at 10 cm depth. The dose per pulse behaviour compared well with linac target current measurements and accumulated dose measurements, and the system was able to resolve transient dose delivery differences between two Varian linac builds. The system therefore shows promise for reference dosimetry and quality assurance of complex radiotherapy treatments.

  6. Multiple comparisons permutation test for image based data mining in radiotherapy

    PubMed Central

    2013-01-01

    Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy. PMID:24365155

  7. A mathematical deconvolution formulation for superficial dose distribution measurement by Cerenkov light dosimetry.

    PubMed

    Brost, Eric Edward; Watanabe, Yoichi

    2018-06-01

    Cerenkov photons are created by high-energy radiation beams used for radiation therapy. In this study, we developed a Cerenkov light dosimetry technique to obtain a two-dimensional dose distribution in a superficial region of medium from the images of Cerenkov photons by using a deconvolution method. An integral equation was derived to represent the Cerenkov photon image acquired by a camera for a given incident high-energy photon beam by using convolution kernels. Subsequently, an equation relating the planar dose at a depth to a Cerenkov photon image using the well-known relationship between the incident beam fluence and the dose distribution in a medium was obtained. The final equation contained a convolution kernel called the Cerenkov dose scatter function (CDSF). The CDSF function was obtained by deconvolving the Cerenkov scatter function (CSF) with the dose scatter function (DSF). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo particle simulation software was used to obtain the CSF and DSF. The dose distribution was calculated from the Cerenkov photon intensity data using an iterative deconvolution method with the CDSF. The theoretical formulation was experimentally evaluated by using an optical phantom irradiated by high-energy photon beams. The intensity of the deconvolved Cerenkov photon image showed linear dependence on the dose rate and the photon beam energy. The relative intensity showed a field size dependence similar to the beam output factor. Deconvolved Cerenkov images showed improvement in dose profiles compared with the raw image data. In particular, the deconvolution significantly improved the agreement in the high dose gradient region, such as in the penumbra. Deconvolution with a single iteration was found to provide the most accurate solution of the dose. Two-dimensional dose distributions of the deconvolved Cerenkov images agreed well with the reference distributions for both square fields and a multileaf collimator (MLC) defined, irregularly shaped field. The proposed technique improved the accuracy of the Cerenkov photon dosimetry in the penumbra region. The results of this study showed initial validation of the deconvolution method for beam profile measurements in a homogeneous media. The new formulation accounted for the physical processes of Cerenkov photon transport in the medium more accurately than previously published methods. © 2018 American Association of Physicists in Medicine.

  8. Gamma Radiation Dose Rate in Air due to Terrestrial Radionuclides in Southern Brazil: Synthesis by Geological Units and Lithotypes Covered by the Serra do Mar Sul Aero-Geophysical Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastos, Rodrigo O.; Appoloni, Carlos R.; Pinese, Jose P. P.

    2008-08-07

    The absorbed dose rates in air due to terrestrial radionuclides were estimated from aerial gamma spectrometric data for an area of 48,600 km{sup 2} in Southern Brazil. The source data was the Serra do Mar Sul Aero-Geophysical Project back-calibrated in a cooperative work among the Geological Survey of Brazil, the Geological Survey of Canada, and Paterson, Grant and Watson Ltd. The concentrations of eU (ppm), eTh (ppm) and K (%) were converted to dose rates in air (nGy{center_dot}h{sup -1}) by accounting for the contribution of each element's concentration. Regional variation was interpreted according to lithotypes and a synthesis was performedmore » according to the basic geological units present in the area. Higher values of total dose were estimated for felsic igneous and metamorphic rocks, with average values varying up to 119{+-}24 nGy{center_dot}h{sup -1}, obtained by Anitapolis syenite body. Sedimentary, metasedimentary and metamafic rocks presented the lower dose levels, and some beach deposits reached the lowest average total dose, 18.5{+-}8.2 nGy{center_dot}h{sup -1}. Thorium gives the main average contribution in all geological units, the highest value being reached by the nebulitic gneisses of Atuba Complex, 71{+-}23 nGy{center_dot}h{sup -1}. Potassium presents the lowest average contribution to dose rate in 53 of the 72 units analyzed, the highest contribution being obtained by intrusive alkaline bodies (28{+-}12 nGy{center_dot}h{sup -1}). The general pattern of geographic dose distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.« less

  9. A Generalized QMRA Beta-Poisson Dose-Response Model.

    PubMed

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2016-10-01

    Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0

  10. Effective dose to staff members in a positron emission tomography/CT facility using zirconium-89

    PubMed Central

    2013-01-01

    Objective: Positron emission tomography (PET) using zirconium-89 (89Zr) is complicated by its complex decay scheme. In this study, we quantified the effective dose from 89Zr and compared it with fluorine-18 fludeoxyglucose (18F-FDG). Methods: Effective dose distribution in a PET/CT facility in Riyadh was calculated by Monte Carlo simulations using MCNPX. The positron bremsstrahlung, the annihilation photons, the delayed gammas from 89Zr and those emissions from 18F-FDG were modelled in the simulations but low-energy characteristic X-rays were ignored. Results: On the basis of injected activity, the dose from 89Zr was higher than that of 18F-FDG. However, the dose per scan from 89Zr became less than that from 18F-FDG near the patient, owing to the difference in injected activities. In the corridor and control rooms, the 89Zr dose was much higher than 18F-FDG, owing to the difference in attenuation by the shielding materials. Conclusion: The presence of the high-energy photons from 89Zr-labelled immuno-PET radiopharmaceuticals causes a significantly higher effective dose than 18F-FDG to the staff outside the patient room. Conversely, despite the low administered activity of 89Zr, it gives rise to a comparable or even lower dose than 18F-FDG to the staff near the patient. This interesting result raises apparently contradictory implications in the radiation protection considerations of a PET/CT facility. Advances in knowledge: To the best of our knowledge, radiation exposure to staff and public in the PET/CT unit using 89Zr has not been investigated. The ultimate output of this study will lead to the optimal design of the facility for routine use of 89Zr. PMID:23934963

  11. Cost comparison of unit dose and traditional drug distribution in a long-term-care facility.

    PubMed

    Lepinski, P W; Thielke, T S; Collins, D M; Hanson, A

    1986-11-01

    Unit dose and traditional drug distribution systems were compared in a 352-bed long-term-care facility by analyzing nursing time, medication-error rate, medication costs, and waste. Time spent by nurses in preparing, administering, charting, and other tasks associated with medications was measured with a stop-watch on four different nursing units during six-week periods before and after the nursing home began using unit dose drug distribution. Medication-error rate before and after implementation of the unit dose system was determined by patient profile audits and medication inventories. Medication costs consisted of patient billing costs (acquisition cost plus fee) and cost of medications destroyed. The unit dose system required a projected 1507.2 hours less nursing time per year. Mean medication-error rates were 8.53% and 0.97% for the traditional and unit dose systems, respectively. Potential annual savings because of decreased medication waste with the unit dose system were $2238.72. The net increase in cost for the unit dose system was estimated at $615.05 per year, or approximately $1.75 per patient. The unit dose system appears safer and more time-efficient than the traditional system, although its costs are higher.

  12. The incidence of blood contamination of lead unit dose containers with and without single-use protective inserts used with commercially prepared radiopharmaceutical unit doses.

    PubMed

    Pickett, M W; Kosegi, J E; Thomas, K S; Waterstram-Rich, K M

    1998-09-01

    This investigation evaluated the effectiveness of disposable plastic inserts in radiopharmaceutical unit dose lead containers (pigs) in preventing the distribution of doses in blood-contaminated containers. Technologists commonly dispose of the syringes by placing them into the lead pigs, leaving the needles uncapped. This process raises the question of unsuspected blood contamination of these pigs. Consequently, the distribution of commercially prepared radiopharmaceutical doses in reusable lead pigs may result in radiopharmaceutical doses being distributed in containers that are contaminated with blood. Using a simple chemical wipe test designed to determine the presence or absence of blood contamination, 618 pigs from commercial radiopharmacies throughout the U.S. were tested for contamination. The inside of the pigs and inserts, if present, were wiped before and after dose administration. Of the pigs tested, 292 came from radiopharmacies that used a protective, disposable plastic insert inside the pig, and 326 came from radiopharmacies that did not use an insert. Of those pigs without the protective disposable inserts, 39.3% arrived in the nuclear medicine department in pigs contaminated with blood. Of those pigs with inserts, 1% arrived with blood-contaminated inserts. After dose administration, 46.3% of the pigs without inserts were contaminated with blood and 3% of the protective inserts were contaminated. The proper use of disposable plastic inserts reduces the possibility of distributing radiopharmaceutical unit doses in containers contaminated with blood.

  13. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    NASA Astrophysics Data System (ADS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-08-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.

  14. A missing dimension in measures of vaccination impacts

    USGS Publications Warehouse

    Gomes, M. Gabriela M.; Lipsitch, Marc; Wargo, Andrew R.; Kurath, Gael; Rebelo, Carlota; Medley, Graham F.; Coutinho, Antonio

    2013-01-01

    Immunological protection, acquired from either natural infection or vaccination, varies among hosts, reflecting underlying biological variation and affecting population-level protection. Owing to the nature of resistance mechanisms, distributions of susceptibility and protection entangle with pathogen dose in a way that can be decoupled by adequately representing the dose dimension. Any infectious processes must depend in some fashion on dose, and empirical evidence exists for an effect of exposure dose on the probability of transmission to mumps-vaccinated hosts [1], the case-fatality ratio of measles [2], and the probability of infection and, given infection, of symptoms in cholera [3]. Extreme distributions of vaccine protection have been termed leaky (partially protects all hosts) and all-or-nothing (totally protects a proportion of hosts) [4]. These distributions can be distinguished in vaccine field trials from the time dependence of infections [5]. Frailty mixing models have also been proposed to estimate the distribution of protection from time to event data [6], [7], although the results are not comparable across regions unless there is explicit control for baseline transmission [8]. Distributions of host susceptibility and acquired protection can be estimated from dose-response data generated under controlled experimental conditions [9]–[11] and natural settings [12], [13]. These distributions can guide research on mechanisms of protection, as well as enable model validity across the entire range of transmission intensities. We argue for a shift to a dose-dimension paradigm in infectious disease science and community health.

  15. Linear energy transfer incorporated intensity modulated proton therapy optimization

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT optimization could lead to similar dose distributions as the conventional optimization but superior LET distributions in target volumes and normal tissues. This may have substantial advantages in improving tumor control and reducing normal tissue toxicities.

  16. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.

    PubMed

    Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J

    2010-03-29

    A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.

  17. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Role of particle radiotherapy in the management of head and neck cancer.

    PubMed

    Laramore, George E

    2009-05-01

    Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.

  19. Feasibility of TCP-based dose painting by numbers applied to a prostate case with (18)F-choline PET imaging.

    PubMed

    Dirscherl, Thomas; Rickhey, Mark; Bogner, Ludwig

    2012-02-01

    A biologically adaptive radiation treatment method to maximize the TCP is shown. Functional imaging is used to acquire a heterogeneous dose prescription in terms of Dose Painting by Numbers and to create a patient-specific IMRT plan. Adapted from a method for selective dose escalation under the guidance of spatial biology distribution, a model, which translates heterogeneously distributed radiobiological parameters into voxelwise dose prescriptions, was developed. At the example of a prostate case with (18)F-choline PET imaging, different sets of reported values for the parameters were examined concerning their resulting range of dose values. Furthermore, the influence of each parameter of the linear-quadratic model was investigated. A correlation between PET signal and proliferation as well as cell density was assumed. Using our in-house treatment planning software Direct Monte Carlo Optimization (DMCO), a treatment plan based on the obtained dose prescription was generated. Gafchromic EBT films were irradiated for evaluation. When a TCP of 95% was aimed at, the maximal dose in a voxel of the prescription exceeded 100Gy for most considered parameter sets. One of the parameter sets resulted in a dose range of 87.1Gy to 99.3Gy, yielding a TCP of 94.7%, and was investigated more closely. The TCP of the plan decreased to 73.5% after optimization based on that prescription. The dose difference histogram of optimized and prescribed dose revealed a mean of -1.64Gy and a standard deviation of 4.02Gy. Film verification showed a reasonable agreement of planned and delivered dose. If the distribution of radiobiological parameters within a tumor is known, this model can be used to create a dose-painting by numbers plan which maximizes the TCP. It could be shown, that such a heterogeneous dose distribution is technically feasible. Copyright © 2012. Published by Elsevier GmbH.

  20. Design of a modulated orthovoltage stereotactic radiosurgery system.

    PubMed

    Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S

    2017-07-01

    To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.

  1. Frameless fractionated stereotactic radiation therapy of intracranial lesions: impact of cone beam CT based setup correction on dose distribution

    PubMed Central

    2013-01-01

    Background The purpose of this study was to evaluate the impact of Cone Beam CT (CBCT) based setup correction on total dose distributions in fractionated frameless stereotactic radiation therapy of intracranial lesions. Methods Ten patients with intracranial lesions treated with 30 Gy in 6 fractions were included in this study. Treatment planning was performed with Oncentra® for a SynergyS® (Elekta Ltd, Crawley, UK) linear accelerator with XVI® Cone Beam CT, and HexaPOD™ couch top. Patients were immobilized by thermoplastic masks (BrainLab, Reuther). After initial patient setup with respect to lasers, a CBCT study was acquired and registered to the planning CT (PL-CT) study. Patient positioning was corrected according to the correction values (translational, rotational) calculated by the XVI® system. Afterwards a second CBCT study was acquired and registered to the PL-CT to confirm the accuracy of the corrections. An in-house developed software was used for rigid transformation of the PL-CT to the CBCT geometry, and dose calculations for each fraction were performed on the transformed CT. The total dose distribution was achieved by back-transformation and summation of the dose distributions of each fraction. Dose distributions based on PL-CT, CBCT (laser set-up), and final CBCT were compared to assess the influence of setup inaccuracies. Results The mean displacement vector, calculated over all treatments, was reduced from (4.3 ± 1.3) mm for laser based setup to (0.5 ± 0.2) mm if CBCT corrections were applied. The mean rotational errors around the medial-lateral, superior-inferior, anterior-posterior axis were reduced from (−0.1 ± 1.4)°, (0.1 ± 1.2)° and (−0.2 ± 1.0)°, to (0.04 ± 0.4)°, (0.01 ± 0.4)° and (0.02 ± 0.3)°. As a consequence the mean deviation between planned and delivered dose in the planning target volume (PTV) could be reduced from 12.3% to 0.4% for D95 and from 5.9% to 0.1% for Dav. Maximum deviation was reduced from 31.8% to 0.8% for D95, and from 20.4% to 0.1% for Dav. Conclusion Real dose distributions differ substantially from planned dose distributions, if setup is performed according to lasers only. Thermoplasic masks combined with a daily CBCT enabled a sufficient accuracy in dose distribution. PMID:23800172

  2. Initial characterization, dosimetric benchmark and performance validation of Dynamic Wave Arc.

    PubMed

    Burghelea, Manuela; Verellen, Dirk; Poels, Kenneth; Hung, Cecilia; Nakamura, Mitsuhiro; Dhont, Jennifer; Gevaert, Thierry; Van den Begin, Robbe; Collen, Christine; Matsuo, Yukinori; Kishi, Takahiro; Simon, Viorica; Hiraoka, Masahiro; de Ridder, Mark

    2016-04-29

    Dynamic Wave Arc (DWA) is a clinical approach designed to maximize the versatility of Vero SBRT system by synchronizing the gantry-ring noncoplanar movement with D-MLC optimization. The purpose of this study was to verify the delivery accuracy of DWA approach and to evaluate the potential dosimetric benefits. DWA is an extended form of VMAT with a continuous varying ring position. The main difference in the optimization modules of VMAT and DWA is during the angular spacing, where the DWA algorithm does not consider the gantry spacing, but only the Euclidian norm of the ring and gantry angle. A preclinical version of RayStation v4.6 (RaySearch Laboratories, Sweden) was used to create patient specific wave arc trajectories for 31 patients with various anatomical tumor regions (prostate, oligometatstatic cases, centrally-located non-small cell lung cancer (NSCLC) and locally advanced pancreatic cancer-LAPC). DWA was benchmarked against the current clinical approaches and coplanar VMAT. Each plan was evaluated with regards to dose distribution, modulation complexity (MCS), monitor units and treatment time efficiency. The delivery accuracy was evaluated using a 2D diode array that takes in consideration the multi-dimensionality of DWA during dose reconstruction. In centrally-located NSCLC cases, DWA improved the low dose spillage with 20 %, while the target coverage was increased with 17 % compared to 3D CRT. The structures that significantly benefited from using DWA were proximal bronchus and esophagus, with the maximal dose being reduced by 17 % and 24 %, respectively. For prostate and LAPC, neither technique seemed clearly superior to the other; however, DWA reduced with more than 65 % of the delivery time over IMRT. A steeper dose gradient outside the target was observed for all treatment sites (p < 0.01) with DWA. Except the oligometastatic cases, where the DWA-MCSs indicate a higher modulation, both DWA and VMAT modalities provide plans of similar complexity. The average ɣ (3 % /3 mm) passing rate for DWA plans was 99.2 ± 1 % (range from 96.8 to 100 %). DWA proven to be a fully functional treatment technique, allowing additional flexibility in dose shaping, while preserving dosimetrically robust delivery and treatment times comparable with coplanar VMAT.

  3. Dose response relationship in anti-stress gene regulatory networks.

    PubMed

    Zhang, Qiang; Andersen, Melvin E

    2007-03-02

    To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress, many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables, transcription factors, and gene products) in these gene regulatory networks. Our work indicated that the shape of dose response curves (linear, superlinear, or sublinear) depends on changes in the specific values of local response coefficients (gains) distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear, and depending on the level of local gains, presence of gain-changing events, and degree of feedforward gene activation, this region can appear as superlinear, sublinear, or even J-shaped. The general dose response transition proposed here was further examined in a complex anti-electrophilic stress pathway, which involves multiple genes, enzymes, and metabolic reactions. This work would help biologists and especially toxicologists to better assess and predict the cellular impact brought about by biological stressors.

  4. Neutron emission and dose distribution from natural carbon irradiated with a 12 MeV amu-1 12C5+ ion beam.

    PubMed

    Nandy, Maitreyee; Sarkar, P K; Sanami, T; Takada, M; Shibata, T

    2016-09-01

    Measured neutron energy distribution emitted from a thick stopping target of natural carbon at 0°, 30°, 60° and 90° from nuclear reactions caused by 12 MeV amu -1 incident 12 C 5+ ions were converted to energy differential and total neutron absorbed dose as well as ambient dose equivalent H * (10) using the fluence-to-dose conversion coefficients provided by the ICRP. Theoretical estimates were obtained using the Monte Carlo nuclear reaction model code PACE and a few existing empirical formulations for comparison. Results from the PACE code showed an underestimation of the high-energy part of energy differential dose distributions at forward angles whereas the empirical formulation by Clapier and Zaidins (1983 Nucl. Instrum. Methods 217 489-94) approximated the energy integrated angular distribution of H * (10) satisfactorily. Using the measured data, the neutron doses received by some vital human organs were estimated for anterior-posterior exposure. The estimated energy-averaged quality factors were found to vary for different organs from about 7 to about 13. Emitted neutrons having energies above 20 MeV were found to contribute about 20% of the total dose at 0° while at 90° the contribution was reduced to about 2%.

  5. Validation of Monte Carlo simulation of mammography with TLD measurement and depth dose calculation with a detailed breast model

    NASA Astrophysics Data System (ADS)

    Wang, Wenjing; Qiu, Rui; Ren, Li; Liu, Huan; Wu, Zhen; Li, Chunyan; Li, Junli

    2017-09-01

    Mean glandular dose (MGD) is not only determined by the compressed breast thickness (CBT) and the glandular content, but also by the distribution of glandular tissues in breast. Depth dose inside the breast in mammography has been widely concerned as glandular dose decreases rapidly with increasing depth. In this study, an experiment using thermo luminescent dosimeters (TLDs) was carried out to validate Monte Carlo simulations of mammography. Percent depth doses (PDDs) at different depth values were measured inside simple breast phantoms of different thicknesses. The experimental values were well consistent with the values calculated by Geant4. Then a detailed breast model with a CBT of 4 cm and a glandular content of 50%, which has been constructed in previous work, was used to study the effects of the distribution of glandular tissues in breast with Geant4. The breast model was reversed in direction of compression to get a reverse model with a different distribution of glandular tissues. Depth dose distributions and glandular tissue dose conversion coefficients were calculated. It revealed that the conversion coefficients were about 10% larger when the breast model was reversed, for glandular tissues in the reverse model are concentrated in the upper part of the model.

  6. Finding optimal vaccination strategies for pandemic influenza using genetic algorithms.

    PubMed

    Patel, Rajan; Longini, Ira M; Halloran, M Elizabeth

    2005-05-21

    In the event of pandemic influenza, only limited supplies of vaccine may be available. We use stochastic epidemic simulations, genetic algorithms (GA), and random mutation hill climbing (RMHC) to find optimal vaccine distributions to minimize the number of illnesses or deaths in the population, given limited quantities of vaccine. Due to the non-linearity, complexity and stochasticity of the epidemic process, it is not possible to solve for optimal vaccine distributions mathematically. However, we use GA and RMHC to find near optimal vaccine distributions. We model an influenza pandemic that has age-specific illness attack rates similar to the Asian pandemic in 1957-1958 caused by influenza A(H2N2), as well as a distribution similar to the Hong Kong pandemic in 1968-1969 caused by influenza A(H3N2). We find the optimal vaccine distributions given that the number of doses is limited over the range of 10-90% of the population. While GA and RMHC work well in finding optimal vaccine distributions, GA is significantly more efficient than RMHC. We show that the optimal vaccine distribution found by GA and RMHC is up to 84% more effective than random mass vaccination in the mid range of vaccine availability. GA is generalizable to the optimization of stochastic model parameters for other infectious diseases and population structures.

  7. Correspondence model-based 4D VMAT dose simulation for analysis of local metastasis recurrence after extracranial SBRT

    NASA Astrophysics Data System (ADS)

    Sothmann, T.; Gauer, T.; Wilms, M.; Werner, R.

    2017-12-01

    The purpose of this study is to introduce a novel approach to incorporate patient-specific breathing variability information into 4D dose simulation of volumetric arc therapy (VMAT)-based stereotactic body radiotherapy (SBRT) of extracranial metastases. Feasibility of the approach is illustrated by application to treatment planning and motion data of lung and liver metastasis patients. The novel 4D dose simulation approach makes use of a regression-based correspondence model that allows representing patient motion variability by breathing signal-steered interpolation and extrapolation of deformable image registration motion fields. To predict the internal patient motion during treatment with only external breathing signal measurements being available, the patients’ internal motion information and external breathing signals acquired during 4D CT imaging were correlated. Combining the correspondence model, patient-specific breathing signal measurements during treatment and time-resolved information about dose delivery, reconstruction of a motion variability-affected dose becomes possible. As a proof of concept, the proposed approach is illustrated by a retrospective 4D simulation of VMAT-based SBRT treatment of ten patients with 15 treated lung and liver metastases and known clinical endpoints for the individual metastases (local metastasis recurrence yes/no). Resulting 4D-simulated dose distributions were compared to motion-affected dose distributions estimated by standard 4D CT-only dose accumulation and the originally (i.e. statically) planned dose distributions by means of GTV D98 indices (dose to 98% of the GTV volume). A potential linkage of metastasis-specific endpoints to differences between GTV D98 indices of planned and 4D-simulated dose distributions was analyzed.

  8. Impact of treatment planning with deformable image registration on dose distribution for carbon-ion beam lung treatment using a fixed irradiation port and rotating couch.

    PubMed

    Kumagai, M; Mori, S; Yamamoto, N

    2015-06-01

    When using a fixed irradiation port, treatment couch rotation is necessary to increase beam angle selection. We evaluated dose variations associated with positional morphological changes to organs. We retrospectively chose the data sets of ten patients with lung cancer who underwent respiratory-gated CT at three different couch rotation angles (0°, 20° and -20°). The respective CT data sets are referred to as CT0, CT20 and CT-20. Three treatment plans were generated as follows: in Plan 1, all compensating bolus designs and dose distributions were calculated using CT0. To evaluate the rotation effect without considering morphology changes, in Plan 2, the compensating boli designed using CT0 were applied to the CT±20 images. Plan 3 involved compensating boli designed using the CT±20 images. The accumulated dose distributions were calculated using deformable image registration (DIR). A sufficient prescribed dose was calculated for the planning target volume (PTV) in Plan 1 [minimum dose received by a volume ≥95% (D95) > 95.8%]. By contrast, Plan 2 showed degraded dose conformation to the PTV (D95 > 90%) owing to mismatch of the bolus design to the morphological positional changes in the respective CT. The dose assessment results of Plan 3 were very close to those of Plan 1. Dose distribution is significantly affected by whether or not positional organ morphology changes are factored into dose planning. In treatment planning using multiple CT scans with different couch positions, it is mandatory to calculate the accumulated dose using DIR.

  9. Inverse Planning Approach for 3-D MRI-Based Pulse-Dose Rate Intracavitary Brachytherapy in Cervix Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chajon, Enrique; Dumas, Isabelle; Touleimat, Mahmoud B.Sc.

    2007-11-01

    Purpose: The purpose of this study was to evaluate the inverse planning simulated annealing (IPSA) software for the optimization of dose distribution in patients with cervix carcinoma treated with MRI-based pulsed-dose rate intracavitary brachytherapy. Methods and Materials: Thirty patients treated with a technique using a customized vaginal mold were selected. Dose-volume parameters obtained using the IPSA method were compared with the classic manual optimization method (MOM). Target volumes and organs at risk were delineated according to the Gynecological Brachytherapy Group/European Society for Therapeutic Radiology and Oncology recommendations. Because the pulsed dose rate program was based on clinical experience with lowmore » dose rate, dwell time values were required to be as homogeneous as possible. To achieve this goal, different modifications of the IPSA program were applied. Results: The first dose distribution calculated by the IPSA algorithm proposed a heterogeneous distribution of dwell time positions. The mean D90, D100, and V100 calculated with both methods did not differ significantly when the constraints were applied. For the bladder, doses calculated at the ICRU reference point derived from the MOM differed significantly from the doses calculated by the IPSA method (mean, 58.4 vs. 55 Gy respectively; p = 0.0001). For the rectum, the doses calculated at the ICRU reference point were also significantly lower with the IPSA method. Conclusions: The inverse planning method provided fast and automatic solutions for the optimization of dose distribution. However, the straightforward use of IPSA generated significant heterogeneity in dwell time values. Caution is therefore recommended in the use of inverse optimization tools with clinical relevance study of new dosimetric rules.« less

  10. Proton dose distribution measurements using a MOSFET detector with a simple dose‐weighted correction method for LET effects

    PubMed Central

    Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-01-01

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth‐dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high‐bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L‐shaped bolus. The dose reproducibility, angular dependence and depth‐dose response were evaluated using a 190 MeV proton beam. Depth‐output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose‐weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L‐shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PACS number: 87.56.‐v

  11. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veiga, Catarina; Janssens, Guillaume; Teng, Ching-Ling

    2016-05-01

    Purpose: An adaptive proton therapy workflow using cone beam computed tomography (CBCT) is proposed. It consists of an online evaluation of a fast range-corrected dose distribution based on a virtual CT (vCT) scan. This can be followed by more accurate offline dose recalculation on the vCT scan, which can trigger a rescan CT (rCT) for replanning. Methods and Materials: The workflow was tested retrospectively for 20 consecutive lung cancer patients. A diffeomorphic Morphon algorithm was used to generate the lung vCT by deforming the average planning CT onto the CBCT scan. An additional correction step was applied to account formore » anatomic modifications that cannot be modeled by deformation alone. A set of clinical indicators for replanning were generated according to the water equivalent thickness (WET) and dose statistics and compared with those obtained on the rCT scan. The fast dose approximation consisted of warping the initial planned dose onto the vCT scan according to the changes in WET. The potential under- and over-ranges were assessed as a variation in WET at the target's distal surface. Results: The range-corrected dose from the vCT scan reproduced clinical indicators similar to those of the rCT scan. The workflow performed well under different clinical scenarios, including atelectasis, lung reinflation, and different types of tumor response. Between the vCT and rCT scans, we found a difference in the measured 95% percentile of the over-range distribution of 3.4 ± 2.7 mm. The limitations of the technique consisted of inherent uncertainties in deformable registration and the drawbacks of CBCT imaging. The correction step was adequate when gross errors occurred but could not recover subtle anatomic or density changes in tumors with complex topology. Conclusions: A proton therapy workflow based on CBCT provided clinical indicators similar to those using rCT for patients with lung cancer with considerable anatomic changes.« less

  12. TH-AB-BRB-01: Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hristov, D.

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less

  13. Development of an irradiation method with lateral modulation of SOBP width using a cone-type filter for carbon ion beams.

    PubMed

    Ishizaki, Azusa; Ishii, Keizo; Kanematsu, Nobuyuki; Kanai, Tatsuaki; Yonai, Shunsuke; Kase, Yuki; Takei, Yuka; Komori, Masataka

    2009-06-01

    Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs.

  14. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    PubMed Central

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2018-01-01

    The goal of this study is to develop a generalized source model (GSM) for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology. PMID:28079526

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe, M; Pacaci, P; Mabhouti, H

    Purpose: In this study, the two available calculation algorithms of the Varian Eclipse treatment planning system(TPS), the electron Monte Carlo(eMC) and General Gaussian Pencil Beam(GGPB) algorithms were used to compare measured and calculated peripheral dose distribution of electron beams. Methods: Peripheral dose measurements were carried out for 6, 9, 12, 15, 18 and 22 MeV electron beams of Varian Triology machine using parallel plate ionization chamber and EBT3 films in the slab phantom. Measurements were performed for 6×6, 10×10 and 25×25cm{sup 2} cone sizes at dmax of each energy up to 20cm beyond the field edges. Using the same filmmore » batch, the net OD to dose calibration curve was obtained for each energy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution measured using parallel plate ionization chamber and EBT3 film and calculated by eMC and GGPB algorithms were compared. The measured and calculated data were then compared to find which algorithm calculates peripheral dose distribution more accurately. Results: The agreement between measurement and eMC was better than GGPB. The TPS underestimated the out of field doses. The difference between measured and calculated doses increase with the cone size. The largest deviation between calculated and parallel plate ionization chamber measured dose is less than 4.93% for eMC, but it can increase up to 7.51% for GGPB. For film measurement, the minimum gamma analysis passing rates between measured and calculated dose distributions were 98.2% and 92.7% for eMC and GGPB respectively for all field sizes and energies. Conclusion: Our results show that the Monte Carlo algorithm for electron planning in Eclipse is more accurate than previous algorithms for peripheral dose distributions. It must be emphasized that the use of GGPB for planning large field treatments with 6 MeV could lead to inaccuracies of clinical significance.« less

  16. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    NASA Astrophysics Data System (ADS)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  17. Measurement of the secondary neutron dose distribution from the LET spectrum of recoils using the CR-39 plastic nuclear track detector in 10 MV X-ray medical radiation fields

    NASA Astrophysics Data System (ADS)

    Fujibuchi, Toshioh; Kodaira, Satoshi; Sawaguchi, Fumiya; Abe, Yasuyuki; Obara, Satoshi; Yamaguchi, Masae; Kawashima, Hajime; Kitamura, Hisashi; Kurano, Mieko; Uchihori, Yukio; Yasuda, Nakahiro; Koguchi, Yasuhiro; Nakajima, Masaru; Kitamura, Nozomi; Sato, Tomoharu

    2015-04-01

    We measured the recoil charged particles from secondary neutrons produced by the photonuclear reaction in a water phantom from a 10-MV photon beam from medical linacs. The absorbed dose and the dose equivalent were evaluated from the linear energy transfer (LET) spectrum of recoils using the CR-39 plastic nuclear track detector (PNTD) based on well-established methods in the field of space radiation dosimetry. The contributions and spatial distributions of these in the phantom on nominal photon exposures were verified as the secondary neutron dose and neutron dose equivalent. The neutron dose equivalent normalized to the photon-absorbed dose was 0.261 mSv/100 MU at source to chamber distance 90 cm. The dose equivalent at the surface gave the highest value, and was attenuated to less than 10% at 5 cm from the surface. The dose contribution of the high LET component of ⩾100 keV/μm increased with the depth in water, resulting in an increase of the quality factor. The CR-39 PNTD is a powerful tool that can be used to systematically measure secondary neutron dose distributions in a water phantom from an in-field to out-of-field high-intensity photon beam.

  18. Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J; Lindsay, P; University of Toronto, Toronto

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mmmore » circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations. Funding Support: this work is supported by funding the National Sciences and Engineering Research Council of Canada, and a Mitacs-accelerate fellowship. Conflict of Interest: Dr. Lindsay and Dr. Jaffray are listed as inventors of the small animal microirradiator described herein. This system has been licensed for commercial development.« less

  20. Analytical modeling of relative luminescence efficiency of Al2O3:C optically stimulated luminescence detectors exposed to high-energy heavy charged particles.

    PubMed

    Sawakuchi, Gabriel O; Yukihara, Eduardo G

    2012-01-21

    The objective of this work is to test analytical models to calculate the luminescence efficiency of Al(2)O(3):C optically stimulated luminescence detectors (OSLDs) exposed to heavy charged particles with energies relevant to space dosimetry and particle therapy. We used the track structure model to obtain an analytical expression for the relative luminescence efficiency based on the average radial dose distribution produced by the heavy charged particle. We compared the relative luminescence efficiency calculated using seven different radial dose distribution models, including a modified model introduced in this work, with experimental data. The results obtained using the modified radial dose distribution function agreed within 20% with experimental data from Al(2)O(3):C OSLDs relative luminescence efficiency for particles with atomic number ranging from 1 to 54 and linear energy transfer in water from 0.2 up to 1368 keV µm(-1). In spite of the significant improvement over other radial dose distribution models, understanding of the underlying physical processes associated with these radial dose distribution models remain elusive and may represent a limitation of the track structure model.

  1. Damage pattern as a function of radiation quality and other factors.

    PubMed

    Burkart, W; Jung, T; Frasch, G

    1999-01-01

    An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex primary DNA damage and resulting fixed critical cellular lesions translate into linearity for radiation-induced cancer. To solve this enigma, a quantitative assessment of all genotoxic and harmful non-genotoxic agents affecting the human body would be needed.

  2. Proposed linear energy transfer areal detector for protons using radiochromic film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Rulon; Lin, Liyong; Fager, Marcus

    2015-04-15

    Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured atmore » a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%–10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%–15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.« less

  3. Investigation of effective decision criteria for multiobjective optimization in IMRT.

    PubMed

    Holdsworth, Clay; Stewart, Robert D; Kim, Minsun; Liao, Jay; Phillips, Mark H

    2011-06-01

    To investigate how using different sets of decision criteria impacts the quality of intensity modulated radiation therapy (IMRT) plans obtained by multiobjective optimization. A multiobjective optimization evolutionary algorithm (MOEA) was used to produce sets of IMRT plans. The MOEA consisted of two interacting algorithms: (i) a deterministic inverse planning optimization of beamlet intensities that minimizes a weighted sum of quadratic penalty objectives to generate IMRT plans and (ii) an evolutionary algorithm that selects the superior IMRT plans using decision criteria and uses those plans to determine the new weights and penalty objectives of each new plan. Plans resulting from the deterministic algorithm were evaluated by the evolutionary algorithm using a set of decision criteria for both targets and organs at risk (OARs). Decision criteria used included variation in the target dose distribution, mean dose, maximum dose, generalized equivalent uniform dose (gEUD), an equivalent uniform dose (EUD(alpha,beta) formula derived from the linear-quadratic survival model, and points on dose volume histograms (DVHs). In order to quantatively compare results from trials using different decision criteria, a neutral set of comparison metrics was used. For each set of decision criteria investigated, IMRT plans were calculated for four different cases: two simple prostate cases, one complex prostate Case, and one complex head and neck Case. When smaller numbers of decision criteria, more descriptive decision criteria, or less anti-correlated decision criteria were used to characterize plan quality during multiobjective optimization, dose to OARs and target dose variation were reduced in the final population of plans. Mean OAR dose and gEUD (a = 4) decision criteria were comparable. Using maximum dose decision criteria for OARs near targets resulted in inferior populations that focused solely on low target variance at the expense of high OAR dose. Target dose range, (D(max) - D(min)), decision criteria were found to be most effective for keeping targets uniform. Using target gEUD decision criteria resulted in much lower OAR doses but much higher target dose variation. EUD(alpha,beta) based decision criteria focused on a region of plan space that was a compromise between target and OAR objectives. None of these target decision criteria dominated plans using other criteria, but only focused on approaching a different area of the Pareto front. The choice of decision criteria implemented in the MOEA had a significant impact on the region explored and the rate of convergence toward the Pareto front. When more decision criteria, anticorrelated decision criteria, or decision criteria with insufficient information were implemented, inferior populations are resulted. When more informative decision criteria were used, such as gEUD, EUD(alpha,beta), target dose range, and mean dose, MOEA optimizations focused on approaching different regions of the Pareto front, but did not dominate each other. Using simple OAR decision criteria and target EUD(alpha,beta) decision criteria demonstrated the potential to generate IMRT plans that significantly reduce dose to OARs while achieving the same or better tumor control when clinical requirements on target dose variance can be met or relaxed.

  4. Dose rate estimation around a 60Co gamma-ray irradiation source by means of 115mIn photoactivation.

    PubMed

    Murataka, Ayanori; Endo, Satoru; Kojima, Yasuaki; Shizuma, Kiyoshi

    2010-01-01

    Photoactivation of nuclear isomer (115m)In with a halflife of 4.48 h occurs by (60)Co gamma-ray irradiation. This is because the resonance gamma-ray absorption occurs at 1078 keV level for stable (115)In, and that energy gamma-rays are produced by Compton scattering of (60)Co primary gamma-rays. In this work, photoactivation of (115m)In was applied to estimate the dose rate distribution around a (60)Co irradiation source utilizing a standard dose rate taken by alanine dosimeter. The (115m)In photoactivation was measured at 10 to 160 cm from the (60)Co source. The derived dose rate distribution shows a good agreement with both alanine dosimeter data and Monte Carlo simulation. It is found that angular distribution of the dose rate along a circumference at radius 2.8 cm from the central axis shows +/- 10% periodical variation reflecting the radioactive strength of the source rods, but less periodic distribution at radius 10 and 20 cm. The (115m)In photoactivation along the vertical direction in the central irradiation port strongly depends on the height and radius as indicated by Monte Carlo simulation. It is demonstrated that (115m)In photoactivation is a convenient method to estimate the dose rate distribution around a (60)Co source.

  5. SU-F-19A-05: Experimental and Monte Carlo Characterization of the 1 Cm CivaString 103Pd Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J; Micka, J; Culberson, W

    Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well-loading variability results in minimal variations in the in-water dose distribution according to MC simulations. This work was partially supported by CivaTech Oncology, Inc. through an educational grant for Joshua Reed, John Micka, Wesley Culberson, and Larry DeWerd and through research support for Mark Rivard.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    Purpose: The knowledge of longitudinal dose distribution provides the most direct view of the accumulated dose in computed tomography (CT) scanning. The purpose of this work was to perform a comprehensive study of dose distribution width and energy absorption with a wide range of subject sizes and beam irradiated lengths. Methods: Cumulative dose distribution along the z-axis was calculated based on the previously published CT dose equilibration data by Li, Zhang, and Liu [Med. Phys. 40, 031903 (10pp.) (2013)] and a mechanism for computing dose on axial lines by Li, Zhang, and Liu [Med. Phys. 39, 5347–5352 (2012)]. Full widthmore » at half maximum (FWHM), full width at tenth maximum (FWTM), the total energy (E) absorbed in a small cylinder of unit mass per centimeter square about the central or peripheral axis, and the energy (E{sub in}) absorbed inside irradiated length (L) were subsequently extracted from the dose distribution. Results: Extensive results of FWHM, FWTM, and E{sub in}/E were presented on the central and peripheral axes of infinitely long PMMA (diameters 6–50 cm) and water (diameters 6–55 cm) cylinders with L < 100 cm. FWHM was greater than the primary beam width only on the central axes of large phantoms and also with L ranging from a few centimeter to about 33 cm. FWTM generally increased with phantom diameter, and could be up to 32 cm longer than irradiated length, depending on L, phantom diameter and axis, but was insensitive to phantom material (PMMA or water). E{sub in}/E increased with L and asymptotically approached unity for large L. As phantom diameter increased, E{sub in}/E generally decreased, but asymptotically approached constant levels on the peripheral axes of large phantoms. A heuristic explanation of dose distribution width results was presented. Conclusions: This study enables the reader to gain a comprehensive view of dose distribution width and energy absorption and provides useful data for estimating doses to organs inside or beyond the irradiated region. The dose length product (DLP) presented by CT scanners is equal to neither E nor E{sub in}. Both E and E{sub in} can be evaluated using the equations and results presented in this paper and are robust with both constant and variable tube current scanning techniques.« less

  7. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku

    2013-03-15

    Purpose: Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Methods: Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity andmore » energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCR{sub L}) and phase-controlled volumetric rescanning (PCR{sub V}) were compared. Results: For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1 Multiplication-Sign PCR{sub L} and 1 Multiplication-Sign PCR{sub V}) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4 Multiplication-Sign PCR{sub L} or more significantly and consistently improved dose distribution. PCR{sub V} showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCR{sub L}/PCR{sub V} with a sweep direction perpendicular to motion direction showed large hot/cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI/AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax/Dmin, homogeneity index) were improved with an increasing number of PCR{sub L}/PCR{sub V}, but with PCR{sub L} being more robust. Conclusions: PCR{sub L} requires a longer treatment time than PCR{sub V} for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.« less

  8. SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, M; Salinas Aranda, F; 21st Century Oncology, Ft. Myers, FL

    2014-06-01

    Purpose: To automatically validate megavoltage beams modeled in XiO™ 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse™ Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanningmore » system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use was reduced to a few hours.« less

  9. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    PubMed

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  10. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources: application of superimposition method

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani

    2012-01-01

    Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455

  11. A Comparison of Four Indices for Combining Distance and Dose Differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Simon J., E-mail: simon.thomas@addenbrookes.nhs.uk; Cowley, Ian R.

    2012-04-01

    Purpose: When one is comparing two dose distributions, a number of methods have been published to combine dose difference and distance to agreement into a single measure. Some have been defined as pass/fail indices and some as numeric indices. We show that the pass/fail indices can all be used to derive numeric indices, and we compare the results of using these indices to evaluate one-dimensional (1D) and three-dimensional (3D) dose distributions, with the aim of selecting the most appropriate index for use in different circumstances. Methods and Materials: The indices compared are the gamma index, the kappa index, the indexmore » in International Commission on Radiation Units and Measurements Report 83, and a box index. Comparisons are made for 1D and 3D distributions. The 1D distribution is chosen to have a variety of dose gradients. The 3D distribution is taken from a clinical treatment plan. The effect of offsetting distributions by known distances and doses is studied. Results: The International Commission on Radiation Units and Measurements Report 83 index causes large discontinuities unless the dose gradient cutoff is set to equal the ratio of the dose tolerance to the distance tolerance. If it is so set, it returns identical results to the kappa index. Where the gradient is very high or very low, all the indices studied in this article give similar results for the same tolerance values. For moderate gradients, they differ, with the box index being the least strict, followed by the gamma index, and with the kappa index being the most strict. Conclusions: If the clinical tolerances are much greater than the uncertainties of the measuring system, the kappa index should be used, with tolerance values determined by the clinical tolerances. In cases where the uncertainties of the measuring system dominate, the box index will be best able to determine errors in the delivery system.« less

  12. SU-E-T-626: Accuracy of Dose Calculation Algorithms in MultiPlan Treatment Planning System in Presence of Heterogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, C; Huet, C; Barraux, V

    Purpose: Advanced stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. The purpose of this study was to evaluate the accuracy of dose calculation algorithms, Raytracing and Monte Carlo (MC), implemented in the MultiPlan treatment planning system (TPS) in presence of heterogeneities. Methods: First, the LINAC of a CyberKnife radiotherapy facility was modeled with the PENELOPE MC code. A protocol for the measurement of dose distributions with EBT3 films was established and validated thanks to comparison between experimental dose distributions and calculated dose distributions obtained with MultiPlan Raytracing and MCmore » algorithms as well as with the PENELOPE MC model for treatments planned with the homogenous Easycube phantom. Finally, bones and lungs inserts were used to set up a heterogeneous Easycube phantom. Treatment plans with the 10, 7.5 or the 5 mm field sizes were generated in Multiplan TPS with different tumor localizations (in the lung and at the lung/bone/soft tissue interface). Experimental dose distributions were compared to the PENELOPE MC and Multiplan calculations using the gamma index method. Results: Regarding the experiment in the homogenous phantom, 100% of the points passed for the 3%/3mm tolerance criteria. These criteria include the global error of the method (CT-scan resolution, EBT3 dosimetry, LINAC positionning …), and were used afterwards to estimate the accuracy of the MultiPlan algorithms in heterogeneous media. Comparison of the dose distributions obtained in the heterogeneous phantom is in progress. Conclusion: This work has led to the development of numerical and experimental dosimetric tools for small beam dosimetry. Raytracing and MC algorithms implemented in MultiPlan TPS were evaluated in heterogeneous media.« less

  13. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Kenny S K; Lee, Louis K Y; Xing, L

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less

  14. Practical dose point-based methods to characterize dose distribution in a stationary elliptical body phantom for a cone-beam C-arm CT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jang-Hwan, E-mail: jhchoi21@stanford.edu; Constantin, Dragos; Ganguly, Arundhuti

    2015-08-15

    Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm{sup 3} ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp)more » and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1.0% [±0.6%] difference) and the 6-point case (0.7% [±0.6%] difference) performed best for method 1 and method 2, respectively. Moreover, method 2 demonstrated high-fidelity surface reconstruction with as few as 5 points, showing pixelwise absolute differences of 3.80 mGy (±0.32 mGy). Although the performance was shown to be sensitive to the phantom displacement from the isocenter, the performance changed by less than 2% for shifts up to 2 cm in the x- and y-axes in the central phantom plane. Conclusions: With as few as five points, method 1 and method 2 were able to compute the mean dose with reasonable accuracy, demonstrating differences of 1.7% (±1.2%) and 1.3% (±1.0%), respectively. A larger number of points do not necessarily guarantee better performance of the methods; optimal choice of point placement is necessary. The performance of the methods is sensitive to the alignment of the center of the body phantom relative to the isocenter. In body applications where dose distributions are important, method 2 is a better choice than method 1, as it reconstructs the dose surface with high fidelity, using as few as five points.« less

  15. Dose-distance metric that predicts late rectal bleeding in patients receiving radical prostate external-beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Chan, Elisa K.; Kosztyla, Robert; Liu, Mitchell; Moiseenko, Vitali

    2012-12-01

    The relationship between rectal dose distribution and the incidence of late rectal complications following external-beam radiotherapy has been previously studied using dose-volume histograms or dose-surface histograms. However, they do not account for the spatial dose distribution. This study proposes a metric based on both surface dose and distance that can predict the incidence of rectal bleeding in prostate cancer patients treated with radical radiotherapy. One hundred and forty-four patients treated with radical radiotherapy for prostate cancer were prospectively followed to record the incidence of grade ≥2 rectal bleeding. Radiotherapy plans were used to evaluate a dose-distance metric that accounts for the dose and its spatial distribution on the rectal surface, characterized by a logistic weighting function with slope a and inflection point d0. This was compared to the effective dose obtained from dose-surface histograms, characterized by the parameter n which describes sensitivity to hot spots. The log-rank test was used to determine statistically significant (p < 0.05) cut-off values for the dose-distance metric and effective dose that predict for the occurrence of rectal bleeding. For the dose-distance metric, only d0 = 25 and 30 mm combined with a > 5 led to statistical significant cut-offs. For the effective dose metric, only values of n in the range 0.07-0.35 led to statistically significant cut-offs. The proposed dose-distance metric is a predictor of rectal bleeding in prostate cancer patients treated with radiotherapy. Both the dose-distance metric and the effective dose metric indicate that the incidence of grade ≥2 rectal bleeding is sensitive to localized damage to the rectal surface.

  16. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    NASA Astrophysics Data System (ADS)

    Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.

    2004-12-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.

  17. Development of a facility for high-precision irradiation of cells with carbon ions.

    PubMed

    van Goethem, Marc-Jan; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A; Coppes, Robert P; van Luijk, Peter

    2011-01-01

    Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed +/-1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing the irradiation of cell samples with the specified accuracy. Measurements of the transverse and longitudinal dose distribution showed that the dose variation over the sample volume was +/-0.8% and +/-0.7% in the lateral and longitudinal directions, respectively. The track-averaged LET of 132 +/- 10 keV/microm and dose-averaged LET of 189 +/- 15 keV/microm at the position of the sample were obtained from a GEANT4 simulation, which was validated experimentally. Three separately measured cell-survival curves yielded nearly identical results. With the new facility, high-precision carbon-ion irradiations of biological samples can be performed with highly reproducible results.

  18. Scattered radiation from dental metallic crowns in head and neck radiotherapy.

    PubMed

    Shimozato, T; Igarashi, Y; Itoh, Y; Yamamoto, N; Okudaira, K; Tabushi, K; Obata, Y; Komori, M; Naganawa, S; Ueda, M

    2011-09-07

    We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.

  19. Scattered radiation from dental metallic crowns in head and neck radiotherapy

    NASA Astrophysics Data System (ADS)

    Shimozato, T.; Igarashi, Y.; Itoh, Y.; Yamamoto, N.; Okudaira, K.; Tabushi, K.; Obata, Y.; Komori, M.; Naganawa, S.; Ueda, M.

    2011-09-01

    We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.

  20. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Imad, E-mail: iali@ouhsc.edu; Ahmad, Salahuddin

    2013-10-01

    To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less

  1. Dose optimization of total or partial skin electron irradiation by thermoluminescent dosimetry.

    PubMed

    Schüttrumpf, Lars; Neumaier, Klement; Maihoefer, Cornelius; Niyazi, Maximilian; Ganswindt, Ute; Li, Minglun; Lang, Peter; Reiner, Michael; Belka, Claus; Corradini, Stefanie

    2018-05-01

    Due to the complex surface of the human body, total or partial skin irradiation using large electron fields is challenging. The aim of the present study was to quantify the magnitude of dose optimization required after the application of standard fields. Total skin electron irradiation (TSEI) was applied using the Stanford technique with six dual-fields. Patients presenting with localized lesions were treated with partial skin electron irradiation (PSEI) using large electron fields, which were individually adapted. In order to verify and validate the dose distribution, in vivo dosimetry with thermoluminescent dosimeters (TLD) was performed during the first treatment fraction to detect potential dose heterogeneity and to allow for an individual dose optimization with adjustment of the monitor units (MU). Between 1984 and 2017, a total of 58 patients were treated: 31 patients received TSEI using 12 treatment fields, while 27 patients underwent PSEI and were treated with 4-8 treatment fields. After evaluation of the dosimetric results, an individual dose optimization was necessary in 21 patients. Of these, 7 patients received TSEI (7/31). Monitor units (MU) needed to be corrected by a mean value of 117 MU (±105, range 18-290) uniformly for all 12 treatment fields, corresponding to a mean relative change of 12% of the prescribed MU. In comparison, the other 14 patients received PSEI (14/27) and the mean adjustment of monitor units was 282 MU (±144, range 59-500) to single or multiple fields, corresponding to a mean relative change of 22% of the prescribed MU. A second dose optimization to obtain a satisfying dose at the prescription point was need in 5 patients. Thermoluminescent dosimetry allows an individual dose optimization in TSEI and PSEI to enable a reliable adjustment of the MUs to obtain the prescription dose. Especially in PSEI in vivo dosimetry is of fundamental importance.

  2. SU-E-T-454: Impact of Calculation Grid Size On Dosimetry and Radiobiological Parameters for Head and Neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S; Das, I; Indiana University Health Methodist Hospital, Indianapolis, IN

    2014-06-01

    Purpose: IMRT has become standard of care for complex treatments to optimize dose to target and spare normal tissues. However, the impact of calculation grid size is not widely known especially dose distribution, tumor control probability (TCP) and normal tissue complication probability (NTCP) which is investigated in this study. Methods: Ten head and neck IMRT patients treated with 6 MV photons were chosen for this study. Using Eclipse TPS, treatment plans were generated for different grid sizes in the range 1–5 mm for the same optimization criterion with specific dose-volume constraints. The dose volume histogram (DVH) was calculated for allmore » IMRT plans and dosimetric data were compared. ICRU-83 dose points such as D2%, D50%, D98%, as well as the homogeneity and conformity indices (HI, CI) were calculated. In addition, TCP and NTCP were calculated from DVH data. Results: The PTV mean dose and TCP decreases with increasing grid size with an average decrease in mean dose by 2% and TCP by 3% respectively. Increasing grid size from 1–5 mm grid size, the average mean dose and NTCP for left parotid was increased by 6.0% and 8.0% respectively. Similar patterns were observed for other OARs such as cochlea, parotids and spinal cord. The HI increases up to 60% and CI decreases on average by 3.5% between 1 and 5 mm grid that resulted in decreased TCP and increased NTCP values. The number of points meeting the gamma criteria of ±3% dose difference and ±3mm DTA was higher with a 1 mm on average (97.2%) than with a 5 mm grid (91.3%). Conclusion: A smaller calculation grid provides superior dosimetry with improved TCP and reduced NTCP values. The effect is more pronounced for smaller OARs. Thus, the smallest possible grid size should be used for accurate dose calculation especially in H and N planning.« less

  3. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions.

    PubMed

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki

    2006-09-07

    In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable (12)C, (14)N, (16)O and (20)Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions R(MLE) with a difference between R(MLE) and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an ionization chamber. The good agreement between the derived and the measured distributions implies that the deposited dose distribution in a target can be estimated from the detected annihilation gamma-ray distribution with a positron camera.

  4. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.

  5. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method.

    PubMed

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A; Purdie, Thomas G

    2017-07-06

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.

  6. SU-E-T-409: Evaluation of Tissue Composition Effect On Dose Distribution in Radiotherapy with 6 MV Photon Beam of a Medical Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani

    Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relativemore » to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.« less

  7. Three-dimensional radiochromic film dosimetry for volumetric modulated arc therapy using a spiral water phantom.

    PubMed

    Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo

    2013-11-01

    We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2-84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1-92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification.

  8. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shieldmore » was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.« less

  9. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional fractionation. A tool to analyze dose rate distributions in VMAT plans with sub-second accuracy was successfully developed and validated. Dose rates encountered in clinical VMAT test cases show a continuous spectrum with a mean less than or near 100 cGy min-1 for conventional fractionation.

  10. Pharmacokinetic considerations and recommendations in palliative care, with focus on morphine, midazolam and haloperidol.

    PubMed

    Franken, L G; de Winter, B C M; van Esch, H J; van Zuylen, L; Baar, F P M; Tibboel, D; Mathôt, R A A; van Gelder, T; Koch, B C P

    2016-06-01

    A variety of medications are used for symptom control in palliative care, such as morphine, midazolam and haloperidol. The pharmacokinetics of these drugs may be altered in these patients as a result of physiological changes that occur at the end stage of life. This review gives an overview of how the pharmacokinetics in terminally ill patients may differ from the average population and discusses the effect of terminal illness on each of the four pharmacokinetic processes absorption, distribution, metabolism, and elimination. Specific considerations are also given for three commonly prescribed drugs in palliative care: morphine, midazolam and haloperidol). The pharmacokinetics of drugs in terminally ill patients can be complex and limited evidence exists on guided drug use in this population. To improve the quality of life of these patients, more knowledge and more pharmacokinetic/pharmacodynamics studies in terminally ill patients are needed to develop individualised dosing guidelines. Until then knowledge of pharmacokinetics and the physiological changes that occur in the final days of life can provide a base for dosing adjustments that will improve the quality of life of terminally ill patients. As the interaction of drugs with the physiology of dying is complex, pharmacological treatment is probably best assessed in a multi-disciplinary setting and the advice of a pharmacist, or clinical pharmacologist, is highly recommended.

  11. Inter-patient image registration algorithms to disentangle regional dose bioeffects.

    PubMed

    Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe

    2018-03-20

    Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.

  12. SU-G-201-17: Verification of Dose Distributions From High-Dose-Rate Brachytherapy Ir-192 Source Using a Multiple-Array-Diode-Detector (MapCheck2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpool, K; De La Fuente Herman, T; Ahmad, S

    Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered bymore » an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities in the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may be improved when considering medium heterogeneity and dose-artifact of the diodes. This study demonstrates that multiple-array-diode-detectors provide practical and accurate dosimeter to verify doses delivered from the brachytherapy Ir-192-source.« less

  13. Progress In The Development Of A Tomographic SPECT System For Online Dosimetry In BNCT

    NASA Astrophysics Data System (ADS)

    Minsky, D. M.; Valda, A.; Kreiner, A. J.; Burlon, A. A.; Green, S.; Wojnecki, C.; Ghani, Z.

    2010-08-01

    In boron neutron capture therapy (BNCT) the delivered dose to the patient depends both on the neutron beam characteristics and on the 10B body distribution which, in turn, is governed by the tumor specificity of the 10B drug-carrier. BNCT dosimetry is a complex matter due to the several interactions that neutrons can undergo with the different nuclei present in tissue. However the boron capture reaction 10B(n,α)7Li accounts for about 80 % of the total dose in a tumor with 40 ppm in 10B concentration. Present dosimetric methods are indirect, based on drug biodistribution statistical data and subjected to inter and intra-patient variability. In order to overcome the consequences of the concomitant high dosimetric uncertainties, we propose a SPECT (Single Photon Emission Tomography) approach based on the detection of the prompt gamma-ray (478 keV) emitted in 94 % of the cases from 7Li. For this purpose we designed, built and tested a prototype based on LaBr3(Ce) scintillators. Measurements on a head and tumor phantom were performed in the accelerator-based BNCT facility of the University of Birmingham (UK). They result in the first tomographic image of the 10B capture distribution obtained in a BNCT facility.

  14. Equalizing access to pandemic influenza vaccines through optimal allocation to public health distribution points.

    PubMed

    Huang, Hsin-Chan; Singh, Bismark; Morton, David P; Johnson, Gregory P; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    Vaccines are arguably the most important means of pandemic influenza mitigation. However, as during the 2009 H1N1 pandemic, mass immunization with an effective vaccine may not begin until a pandemic is well underway. In the U.S., state-level public health agencies are responsible for quickly and fairly allocating vaccines as they become available to populations prioritized to receive vaccines. Allocation decisions can be ethically and logistically complex, given several vaccine types in limited and uncertain supply and given competing priority groups with distinct risk profiles and vaccine acceptabilities. We introduce a model for optimizing statewide allocation of multiple vaccine types to multiple priority groups, maximizing equal access. We assume a large fraction of available vaccines are distributed to healthcare providers based on their requests, and then optimize county-level allocation of the remaining doses to achieve equity. We have applied the model to the state of Texas, and incorporated it in a Web-based decision-support tool for the Texas Department of State Health Services (DSHS). Based on vaccine quantities delivered to registered healthcare providers in response to their requests during the 2009 H1N1 pandemic, we find that a relatively small cache of discretionary doses (DSHS reserved 6.8% in 2009) suffices to achieve equity across all counties in Texas.

  15. Dosimetric comparison of lung stereotactic body radiotherapy treatment plans using averaged computed tomography and end-exhalation computed tomography images: Evaluation of the effect of different dose-calculation algorithms and prescription methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsuyoshi, Takamasa; Nakamura, Mitsuhiro, E-mail: m_nkmr@kuhp.kyoto-u.ac.jp; Matsuo, Yukinori

    The purpose of this article is to quantitatively evaluate differences in dose distributions calculated using various computed tomography (CT) datasets, dose-calculation algorithms, and prescription methods in stereotactic body radiotherapy (SBRT) for patients with early-stage lung cancer. Data on 29 patients with early-stage lung cancer treated with SBRT were retrospectively analyzed. Averaged CT (Ave-CT) and expiratory CT (Ex-CT) images were reconstructed for each patient using 4-dimensional CT data. Dose distributions were initially calculated using the Ave-CT images and recalculated (in the same monitor units [MUs]) by employing Ex-CT images with the same beam arrangements. The dose-volume parameters, including D{sub 95}, D{submore » 90}, D{sub 50}, and D{sub 2} of the planning target volume (PTV), were compared between the 2 image sets. To explore the influence of dose-calculation algorithms and prescription methods on the differences in dose distributions evident between Ave-CT and Ex-CT images, we calculated dose distributions using the following 3 different algorithms: x-ray Voxel Monte Carlo (XVMC), Acuros XB (AXB), and the anisotropic analytical algorithm (AAA). We also used 2 different dose-prescription methods; the isocenter prescription and the PTV periphery prescription methods. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data were within 3 percentage points (%pts) employing the isocenter prescription method, and within 1.5%pts using the PTV periphery prescription method, irrespective of which of the 3 algorithms (XVMC, AXB, and AAA) was employed. The frequencies of dose-volume parameters differing by >1%pt when the XVMC and AXB were used were greater than those associated with the use of the AAA, regardless of the dose-prescription method employed. All differences in PTV dose-volume parameters calculated using Ave-CT and Ex-CT data on patients who underwent lung SBRT were within 3%pts, regardless of the dose-calculation algorithm or the dose-prescription method employed.« less

  16. SU-F-T-563: Delivered Dose Reconstruction of Moving Targets for Gated Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H; Cho, S; Jeong, C

    2016-06-15

    Purpose: Actual delivered dose of moving tumors treated with gated volumetric arc therapy (VMAT) may significantly differ from the planned dose assuming static target. In this study, we developed a method which reconstructs actual delivered dose distribution of moving target by taking into account both tumor motion and dynamic beam delivery of gated VMAT, and applied to abdominal tumors. Methods: Fifteen dual-arc VMAT plans (Eclipse, Varian Medical Systems) for 5 lung, 5 pancreatic, and 5 liver cancer patients treated with gated VMAT stereotactic body radiotherapy (SBRT) were studied. For reconstruction of the delivered dose distribution, we divided each original arcmore » beam into control-point-wise sub-beams, and applied beam isocenter shifting to each sub-beam to reflect the tumor motion. The tumor positions as a function of beam delivery were estimated by synchronizing the beam delivery with the respiratory signal which acquired during treatment. For this purpose, an in-house program (MATLAB, Mathworks) was developed to convert the original DICOM plan data into motion-involved treatment plan. The motion-involved DICOM plan was imported into Eclipse for dose calculation. The reconstructed delivered dose was compared to the plan dose using the dose coverage of gross tumor volume (GTV) and dose distribution of organs at risk (OAR). Results: The mean GTV dose coverage difference between the reconstructed delivered dose and the plan dose was 0.2 % in lung and pancreas cases, and no difference in liver cases. Mean D1000cc of ipsilateral lungs was reduced (0.8 ± 1.4cGy). Conclusion: We successfully developed a method of delivered dose reconstruction taking into account both respiratory tumor motion and dynamic beam delivery, and applied it to abdominal tumors treated with gated VAMT. No significant deterioration of delivered dose distribution indicates that interplay effect would be minimal even in the case of gated SBRT. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015038710)« less

  17. Intensity-modulated radiotherapy (IMRT) for carcinoma of the maxillary sinus: A comparison of IMRT planning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Raef S.; Ove, Roger; Duan, Jun

    2006-10-01

    The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanarmore » beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams.« less

  18. Calculation of Dose Deposition in 3D Voxels by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to repair. By applying a threshold on the dose visualization, voxels corresponding to electron track ends are evidenced and the spatial distribution of voxels is very similar to the distribution of DSB observed in gamma H2AX experiments, even if no chromosomes have been included in the simulation. Furthermore, this work has shown that a significant dose is deposited in voxels corresponding to electron track ends. Since some delta-rays from iron ion can travel several millimeters, they may also be of radiobiological importance.

  19. MO-FG-303-06: Evaluation of the Performance of Very High-Energy Electron (VHEE) Beams in Radiotherapy: Five Clinical Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palma, B; Bazalova-Carter, M; Qu, B

    Purpose: To evaluate the performance of 100–120 MeV very-high energy electron (VHEE) scanning pencil beams to radiotherapy by means of Monte Carlo (MC) simulations. Methods: We selected five clinical cases with target sizes of 1.2 cm{sup 3} to 990.4 cm{sup 3}. We calculated VHEE treatment plans using the MC EGSnrc code implemented in a MATLAB-based graphical user interface developed by our group. We generated phase space data for beam energies: 100 and 120 MeV and pencil beam spot sizes of 1, 3, and 5 mm at FWHM. The number of equidistant beams considered in this work was 16 or 32.more » Dose was calculated and then imported into a research version of RayStation where treatment plan optimization was performed. We compared the VHEE plans with the clinically delivered volumetric modulated arc therapy (VMAT) plan to evaluate VHEE plans performance. Results: VHEE plans provided the same PTV coverage and dose homogeneity than VMAT plans for all the cases. In average, the mean dose to organs at risk (OARs) was 24% lower for the VHEE plans. The structures that benefited the most from using VHEE were: large bowel for the esophagus case, chest wall for the liver case, brainstem for the acoustic case, carina for the lung case, and genitalia for the anal case, with 23.7–34.6% lower dose. VHEE dose distributions were more conformal than VMAT solution as confirmed by conformity indices CI100 and CI50. Integral dose to the body was in average 19.6% (9.2%–36.5%) lower for the VHEE plans. Conclusion: We have shown that VHEE plans resulted in similar or superior dose distributions compared to clinical VMAT plans for five different cases and a wide range of target volumes, including a case with a small target (1.2 cm{sup 3}), which represents a challenge for VMAT planning and might require the use of more complex non-coplanar VMAT plans. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Laboratories AB. E Hynning: Employee, RaySearch Laboratories AB. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.« less

  20. The 3D Radiation Dose Analysis For Satellite

    NASA Astrophysics Data System (ADS)

    Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia

    2002-01-01

    the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and hence, it is too simple to guide satellite radiation protection and ground experiments only based on the 1D radiation analysis results. To comprehend the radiation dose status of satellite adequately, it's essential to perform 3D radiation analysis for satellites. using computer software. From this 3D layout, the satellite model can be simplified appropriately. First select the point to be analyzed in the simplified satellite model, and extend many lines to the outside space, which divides the 4 space into many corresponding small areas with a certain solid angle. Then the shielding masses through the satellite equipment and structures along each direction are calculated, resulting in the shielding mass distribution in all space directions based on the satellite layout. Finally, using the relationship between radiation dose and shielding thickness from the 1D analysis, calculate the radiation dose in each area represented by each line. After we obtain the radiation dose and its space distribution for the point of interest, the 3D satellite radiation analysis is completed. radiation analysis based on satellite 3D CAD layout has larger benefit for engineering applications than the 1D analysis based on the solid sphere shielding model. With the 3D model, the analysis of space environment and its effect is combined closely with actual satellite engineering. The 3D radiation analysis not only provides valuable engineering data for satellite radiation design and protection, but also provides possibility to apply new radiation protection approaches, which expands technology horizon and broadens ways for technology development.

  1. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  2. Stochastic Modeling of Radioactive Material Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason; Pope, Chad

    2015-09-01

    Nonreactor nuclear facilities operated under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA was developed using the MATLAB coding framework. The software application has a graphical user input. SODA can be installed on both Windows and Mac computers and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC, rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The work was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  3. TU-H-CAMPUS-TeP3-03: Dose Enhancement by Gold Nanoparticles Around the Bragg Peak of Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, J; Sutherland, K; Hashimoto, T

    2016-06-15

    Purpose: To make clear the spatial distribution of dose enhancement around gold nanoparticles (GNPs) located near the proton Bragg peak, and to evaluate the potential of GNPs as a radio sensitizer. Methods: The dose enhancement by electrons emitted from GNPs under proton irradiation was estimated by Geant4 Monte Carlo simulation toolkit in two steps. In an initial macroscopic step, 100 and 195 MeV proton beams were incident on a water cube, 30 cm on a side. Energy distributions of protons were calculated at four depths, 50% and 75% proximal to the Bragg peak, 100% peak, and 75% distal to themore » peak (P50, P75, Peak, and D75, respectively). In a subsequent microscopic step, protons with the energy distribution calculated above were incident on a 20 nm diameter GNP in a nanometer-size water box and the spatial distribution of dose around the GNP was determined for each energy distribution. The dose enhancement factor (DEF) was also deduced. Results: The dose enhancement effect was spread to several tens of nanometers in the both depth and radial directions. The enhancement area increased in the order of P50, P75, Peak, and D75 for both cases with 100 and 195 MeV protons. In every position around the Bragg peak, the 100 MeV beam resulted in a higher dose enhancement than the 195 MeV beam. At P75, the average and maximum DEF were 3.9 and 17.0 for 100 MeV, and 3.5 and 16.2 for 195 MeV, respectively. These results indicate that lower energy protons caused higher dose enhancement in this incident proton energy range. Conclusion: The dose enhancement around GNPs spread as the position in the Bragg peak region becomes deeper and depends on proton energy. It is expected that GNPs can be used as a radio sensitizer with consideration of the location and proton beam energy.« less

  4. Practical aspects and uncertainty analysis of biological effective dose (BED) regarding its three-dimensional calculation in multiphase radiotherapy treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauweloa, Kevin I., E-mail: Kauweloa@livemail.uthscsa.edu; Gutierrez, Alonso N.; Bergamo, Angelo

    2014-07-15

    Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximatemore » BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning systems due to the inconsistent accuracy of the approximate multiphase BED equation in most of the clinical situations.« less

  5. Innovation and the future of advanced dosimetry: 2D to 5D

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2017-05-01

    Recent years have witnessed a remarkable evolution in the techniques, capabilities and applications of 3D dosimetry. Initially the goal was simple: to innovate new techniques capable of comprehensively measuring and verifying exquisitely intricate dose distributions from a paradigm changing emerging new therapy, IMRT. Basic questions emerged: how well were treatment planning systems modelling the complex delivery, and how could treatments be verified for safe use on patients? Since that time, equally significant leaps of innovation have continued in the technology of treatment delivery. In addition, clinical practice has been transformed by the addition of on-board imaging capabilities, which tend to hypo-fractionation strategies and margin reduction. The net result is a high stakes treatment setting where the clinical morbidity of any unintended treatment deviation is exacerbated by the combination of highly conformal dose distributions given with reduced margins with fractionation regimens unfriendly to healthy tissue. Not surprisingly this scenario is replete with challenges and opportunities for new and improved dosimetry systems. In particular tremendous interest exists in comprehensive 3D dosimetry systems, and systems that can resolve the dose in moving structures (4D) and even in deforming structures (5D). Despite significant progress in the capability of multi-dimensional dosimetry systems, it is striking that true 3D dosimetry systems are today largely found in academic institutions or specialist clinics. The reasons will be explored. We will highlight innovations occurring both in treatment delivery and in advanced dosimetry methods designed to verify them, and explore current and future opportunities for advanced dosimetry tools in clinical practice and translational research.

  6. Pharmacological Evaluation of Naproxen Metal Complexes on Antinociceptive, Anxiolytic, CNS Depressant, and Hypoglycemic Properties

    PubMed Central

    Das, Narhari; Abdur Rahman, S. M.

    2016-01-01

    Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435

  7. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90) agreeing within ±3%, on average. Conclusions: Several aspects of OLINDA/EXM dose calculation were compared with patient-specific dose estimates obtained using Monte Carlo. Differences in patient anatomy led to large differences in cross-organ doses. However, total organ doses were still in good agreement since most of the deposited dose is due to self-irradiation. Comparison of voxelized doses calculated by Monte Carlo and the voxel S value technique showed that the 3D dose distributions produced by the respective methods are nearly identical.« less

  8. Monaco and film dosimetry of 3D CRT, IMRT and VMAT cases in a realistic pelvic prosthetic phantom

    NASA Astrophysics Data System (ADS)

    Ade, Nicholas; du Plessis, F. C. P.

    2018-04-01

    The dosimetry of patients with metallic hip implants during irradiation of pelvic lesions is challenging due to dose distortions caused by implants. This work presents a dosimetric comparison of various multi-field photon-beam dose distributions in the presence of unilateral hip titanium prosthesis (UHTiP) embedded in a unique pelvic phantom made out of water-equivalent nylon slices. The impact of the UHTiP on the accuracy of dose calculations from a Monaco TPS (treatment planning system) using the X-ray voxel Monte Carlo (XVMC) algorithm was benchmarked against measured dose data using Gafchromic EBT3 film. Multi-field beam arrangements including a 4-field box, 5-field 3DCRT (three-dimensional conformal radiation therapy), 6-field IMRT (intensity modulated radiation therapy) and a single-arc VMAT (volumetric modulated arc therapy) plan were set up for 6 MV and 15 MV beams. These plans were generated for the pelvic phantom that contains the prosthesis with film inserted. Compared to Monaco TPS dose calculations, film measurements showed enhanced dose in the prosthesis which was not predicted by Monaco due to its limitation in relative density assignment. The enhanced prosthesis dose increased with increase in beam energy and decreased with the complexity of the treatment plans, with VMAT giving the least escalated dose. The dose increased between 5% and 19% for 6 MV and between 6% and 21% for 15 MV. A gamma index analysis showed that 70-92% of dose points (excluding the prosthesis) were within 3% discrepancy. Increasing the number of treatment fields increases target dose coverage and improves the agreement between film and Monaco. When the relative electron density (RED) in the prosthesis was varied between 3.72 and 15 the dose discrepancy between film and Monaco increased from 30% to 57% for 6 MV and from 30% to 50% for 15 MV. The study indicates that beam weights for fields that pass through the prosthesis should be minimised and its RED must be correct for accurate dose calculation on Monaco.

  9. Skin dosimetry of patients during interventional cardiology procedures in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Sukupova, Lucie; Novak, Leos

    2008-01-01

    The aim of the study is to determine distribution of air kerma-area product, fluoro time and number of frames values for the two most frequent procedures in the interventional cardiology, to reconstruct skin dose distributions for some patients undergoing coronarography and percutaneous transluminal coronary angioplasty procedures. Patient dose data were obtained from X-ray unit dose monitoring software report from one hospital and the reconstructions were performed in MATLAB. Dependence of maximum skin dose on air kerma-area product, fluoro time and number of frames was determined to assess trigger levels of these quantities, which can indicate possible exceeding of the 2 Gy skin dose threshold.

  10. Medical dosimetry in Hungary

    NASA Astrophysics Data System (ADS)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  11. Recent skyshine calculations at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyarenko, P.

    1997-12-01

    New calculations of the skyshine dose distribution of neutrons and secondary photons have been performed at Jefferson Lab using the Monte Carlo method. The dose dependence on neutron energy, distance to the neutron source, polar angle of a source neutron, and azimuthal angle between the observation point and the momentum direction of a source neutron have been studied. The azimuthally asymmetric term in the skyshine dose distribution is shown to be important in the dose calculations around high-energy accelerator facilities. A parameterization formula and corresponding computer code have been developed which can be used for detailed calculations of the skyshinemore » dose maps.« less

  12. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma.

    PubMed

    Das, Arabinda; McDonald, Daniel G; Dixon-Mah, Yaenette N; Jacqmin, Dustin J; Samant, Vikram N; Vandergrift, William A; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Vanek, Kenneth N; Banik, Naren L; Jenrette, Joseph M; Raizer, Jeffery J; Giglio, Pierre; Patel, Sunil J

    2016-06-01

    Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.

  13. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions

    PubMed Central

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei

    2013-01-01

    Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. Results: IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. Conclusions: In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled. PMID:23635256

  14. Maximizing the biological effect of proton dose delivered with scanned beams via inhomogeneous daily dose distributions.

    PubMed

    Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei

    2013-05-01

    Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled.

  15. Dose rate evaluation of workers on the operation floor in Fukushima-Daiichi Unit 3

    NASA Astrophysics Data System (ADS)

    Matsushita, Kaoru; Kurosawa, Masahiko; Shirai, Keisuke; Matsuoka, Ippei; Mukaida, Naoki

    2017-09-01

    At Fukushima Daiichi Nuclear Power Plant Unit 3, installation of a fuel handling machine is planned to support the removal of spent fuel. The dose rates at the workplace were calculated based on the source distribution measured using a collimator in order to confirm that the dose rates on the operation floor were within a manageable range. It was confirmed that the accuracy of the source distribution was C/M = 1.0-2.4. These dose rates were then used to plan the work on the operation floor.

  16. Distribution of ingested americium in chickens and transport to eggs. Final report, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, A.A.; Lloyd, S.R.; Mosley, R.E.

    1976-05-01

    The soluble citrate complex of americium-241 was orally administered to 20 white Leghorn laying hens daily for two weeks. The yolks, whites, and shells from the eggs were analyzed for their americium content. Yolk was the only egg fraction in which radioactivity was observed. The americium-241 activity in yolks reached a maximum on the 14th day of dosing. Biological half-times of 2.00 plus or minus 0.18 days and greater than 33 days were indicated by the average concentration values of americium-241 in yolks laid after the maximum activity was reached. The hens were serially sacrificed at 1, 10, and 20more » days after the final administration of americium-241. Tissue samples were collected and the americium content determined in the edible portions and feathers of the hens. Americium was detected in most tissues shortly after dosing; the main concentrations were found in the liver and the skeleton. The highest concentration per organ (3.03 X 0.001 percent of the dose) occurred in the liver of the hens sacrificed 10 days after final administration of americium-241. (GRA)« less

  17. Analysis of Radiation Transport Due to Activated Coolant in the ITER Neutral Beam Injection Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royston, Katherine; Wilson, Stephen C.; Risner, Joel M.

    Detailed spatial distributions of the biological dose rate due to a variety of sources are required for the design of the ITER tokamak facility to ensure that all radiological zoning limits are met. During operation, water in the Integrated loop of Blanket, Edge-localized mode and vertical stabilization coils, and Divertor (IBED) cooling system will be activated by plasma neutrons and will flow out of the bioshield through a complex system of pipes and heat exchangers. This paper discusses the methods used to characterize the biological dose rate outside the tokamak complex due to 16N gamma radiation emitted by the activatedmore » coolant in the Neutral Beam Injection (NBI) cell of the tokamak building. Activated coolant will enter the NBI cell through the IBED Primary Heat Transfer System (PHTS), and the NBI PHTS will also become activated due to radiation streaming through the NBI system. To properly characterize these gamma sources, the production of 16N, the decay of 16N, and the flow of activated water through the coolant loops were modeled. The impact of conservative approximations on the solution was also examined. Once the source due to activated coolant was calculated, the resulting biological dose rate outside the north wall of the NBI cell was determined through the use of sophisticated variance reduction techniques. The AutomateD VAriaNce reducTion Generator (ADVANTG) software implements methods developed specifically to provide highly effective variance reduction for complex radiation transport simulations such as those encountered with ITER. Using ADVANTG with the Monte Carlo N-particle (MCNP) radiation transport code, radiation responses were calculated on a fine spatial mesh with a high degree of statistical accuracy. In conclusion, advanced visualization tools were also developed and used to determine pipe cell connectivity, to facilitate model checking, and to post-process the transport simulation results.« less

  18. Analysis of Radiation Transport Due to Activated Coolant in the ITER Neutral Beam Injection Cell

    DOE PAGES

    Royston, Katherine; Wilson, Stephen C.; Risner, Joel M.; ...

    2017-07-26

    Detailed spatial distributions of the biological dose rate due to a variety of sources are required for the design of the ITER tokamak facility to ensure that all radiological zoning limits are met. During operation, water in the Integrated loop of Blanket, Edge-localized mode and vertical stabilization coils, and Divertor (IBED) cooling system will be activated by plasma neutrons and will flow out of the bioshield through a complex system of pipes and heat exchangers. This paper discusses the methods used to characterize the biological dose rate outside the tokamak complex due to 16N gamma radiation emitted by the activatedmore » coolant in the Neutral Beam Injection (NBI) cell of the tokamak building. Activated coolant will enter the NBI cell through the IBED Primary Heat Transfer System (PHTS), and the NBI PHTS will also become activated due to radiation streaming through the NBI system. To properly characterize these gamma sources, the production of 16N, the decay of 16N, and the flow of activated water through the coolant loops were modeled. The impact of conservative approximations on the solution was also examined. Once the source due to activated coolant was calculated, the resulting biological dose rate outside the north wall of the NBI cell was determined through the use of sophisticated variance reduction techniques. The AutomateD VAriaNce reducTion Generator (ADVANTG) software implements methods developed specifically to provide highly effective variance reduction for complex radiation transport simulations such as those encountered with ITER. Using ADVANTG with the Monte Carlo N-particle (MCNP) radiation transport code, radiation responses were calculated on a fine spatial mesh with a high degree of statistical accuracy. In conclusion, advanced visualization tools were also developed and used to determine pipe cell connectivity, to facilitate model checking, and to post-process the transport simulation results.« less

  19. Fieldable computer system for determining gamma-ray pulse-height distributions, flux spectra, and dose rates from Little Boy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.

    1984-01-01

    Our system consists of a LeCroy 3500 data acquisition system with a built-in CAMAC crate and eight bismuth-germanate detectors 7.62 cm in diameter and 7.62 cm long. Gamma-ray pulse-height distributions are acquired simultaneously for up to eight positions. The system was very carefully calibrated and characterized from 0.1 to 8.3 MeV using gamma-ray spectra from a variety of radioactive sources. By fitting the pulse-height distributions from the sources with a function containing 17 parameters, we determined theoretical repsonse functions. We use these response functions to unfold the distributions to obtain flux spectra. A flux-to-dose-rate conversion curve based on the workmore » of Dimbylow and Francis is then used to obtain dose rates. Direct use of measured spectra and flux-to-dose-rate curves to obtain dose rates avoids the errors that can arise from spectrum dependence in simple gamma-ray dosimeter instruments. We present some gamma-ray doses for the Little Boy assembly operated at low power. These results can be used to determine the exposures of the Hiroshima survivors and thus aid in the establishment of radation exposure limits for the nuclear industry.« less

  20. Spatiotemporal radiotherapy planning using a global optimization approach

    NASA Astrophysics Data System (ADS)

    Adibi, Ali; Salari, Ehsan

    2018-02-01

    This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.

  1. An analytical dose-averaged LET calculation algorithm considering the off-axis LET enhancement by secondary protons for spot-scanning proton therapy.

    PubMed

    Hirayama, Shusuke; Matsuura, Taeko; Ueda, Hideaki; Fujii, Yusuke; Fujii, Takaaki; Takao, Seishin; Miyamoto, Naoki; Shimizu, Shinichi; Fujimoto, Rintaro; Umegaki, Kikuo; Shirato, Hiroki

    2018-05-22

    To evaluate the biological effects of proton beams as part of daily clinical routine, fast and accurate calculation of dose-averaged linear energy transfer (LET d ) is required. In this study, we have developed the analytical LET d calculation method based on the pencil-beam algorithm (PBA) considering the off-axis enhancement by secondary protons. This algorithm (PBA-dLET) was then validated using Monte Carlo simulation (MCS) results. In PBA-dLET, LET values were assigned separately for each individual dose kernel based on the PBA. For the dose kernel, we employed a triple Gaussian model which consists of the primary component (protons that undergo the multiple Coulomb scattering) and the halo component (protons that undergo inelastic, nonelastic and elastic nuclear reaction); the primary and halo components were represented by a single Gaussian and the sum of two Gaussian distributions, respectively. Although the previous analytical approaches assumed a constant LET d value for the lateral distribution of a pencil beam, the actual LET d increases away from the beam axis, because there are more scattered and therefore lower energy protons with higher stopping powers. To reflect this LET d behavior, we have assumed that the LETs of primary and halo components can take different values (LET p and LET halo ), which vary only along the depth direction. The values of dual-LET kernels were determined such that the PBA-dLET reproduced the MCS-generated LET d distribution in both small and large fields. These values were generated at intervals of 1 mm in depth for 96 energies from 70.2 to 220 MeV and collected in the look-up table. Finally, we compared the LET d distributions and mean LET d (LET d,mean ) values of targets and organs at risk between PBA-dLET and MCS. Both homogeneous phantom and patient geometries (prostate, liver, and lung cases) were used to validate the present method. In the homogeneous phantom, the LET d profiles obtained by the dual-LET kernels agree well with the MCS results except for the low-dose region in the lateral penumbra, where the actual dose was below 10% of the maximum dose. In the patient geometry, the LET d profiles calculated with the developed method reproduces MCS with the similar accuracy as in the homogeneous phantom. The maximum differences in LET d,mean for each structure between the PBA-dLET and the MCS were 0.06 keV/μm in homogeneous phantoms and 0.08 keV/μm in patient geometries under all tested conditions, respectively. We confirmed that the dual-LET-kernel model well reproduced the MCS, not only in the homogeneous phantom but also in complex patient geometries. The accuracy of the LET d was largely improved from the single-LET-kernel model, especially at the lateral penumbra. The model is expected to be useful, especially for proper recognition of the risk of side effects when the target is next to critical organs. © 2018 American Association of Physicists in Medicine.

  2. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less

  3. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography.

    PubMed

    Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard

    2013-08-01

    Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.

  4. Three-dimensional electron diffraction of plant light-harvesting complex

    PubMed Central

    Wang, Da Neng; Kühlbrandt, Werner

    1992-01-01

    Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817

  5. 60Co contamination in recycled steel resulting in elevated civilian radiation doses: causes and challenges.

    PubMed

    Chang, W P; Chan, C C; Wang, J D

    1997-09-01

    Since late 1992, more than 100 building complexes containing public and private schools and nearly 1,000 apartments have been identified in Taiwan with elevated levels of gamma-radiation from construction steel contaminated with 60Co. Due to improper handling of 60Co contaminated scrap steel in late 1982 and 1983, contaminated construction materials have been widely distributed throughout the country. These contaminated construction materials have generated elevated radiation exposures to members of the public in Taiwan. As of early 1996, more than 4,000 people, including young students, have been identified as receiving more than 1 mSv y(-1) above the local background for up to 12 y. This report provides a detailed discussion of the sources of the 60Co contamination in construction steel, its discovery in the building complexes, and preliminary evaluation and remediation activities.

  6. Analysis of the NAEG model of transuranic radionuclide transport and dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kercher, J.R.; Anspaugh, L.R.

    We analyze the model for estimating the dose from /sup 239/Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the air pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The air pathway accounts for 100% of the dose to lung, upper respiratory tract, and thoracic lymph nodes; and 95% of its dose via ingestion.more » Leafy vegetable ingestion accounts for 70% of the dose from the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5%; ingestion of beef liver 4%; beef muscle 1%. Only a handful of model parameters control the dose for any one organ. The number of important parameters is usually less than 10. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph modes. 16 references, 9 figures, 13 tables.« less

  7. Concentration rather than dose defines the local brain toxicity of agents that are effectively distributed by convection-enhanced delivery.

    PubMed

    Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji

    2014-01-30

    Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.

    PubMed

    Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank

    2016-05-01

    To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.

  9. Latent uncertainties of the precalculated track Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, Marc-André; Seuntjens, Jan; Roberge, David

    Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited numbermore » of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. Conclusions: The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.« less

  10. Latent uncertainties of the precalculated track Monte Carlo method.

    PubMed

    Renaud, Marc-André; Roberge, David; Seuntjens, Jan

    2015-01-01

    While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Particle tracks were pregenerated for electrons and protons using EGSnrc and geant4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (cuda) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a "ground truth" benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of Dmax. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤ 1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.

  11. Evaluation of material heterogeneity dosimetric effects using radiochromic film for COMS eye plaques loaded with {sup 125}I seeds (model I25.S16)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail

    Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less

  12. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am-Be neutron source.

    PubMed

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2015-01-01

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am-Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am-Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Evaluation of the effect of patient dose from cone beam computed tomography on prostate IMRT using Monte Carlo simulation.

    PubMed

    Chow, James C L; Leung, Michael K K; Islam, Mohammad K; Norrlinger, Bernhard D; Jaffray, David A

    2008-01-01

    The aim of this study is to evaluate the impact of the patient dose due to the kilovoltage cone beam computed tomography (kV-CBCT) in a prostate intensity-modulated radiation therapy (IMRT). The dose distributions for the five prostate IMRTs were calculated using the Pinnacle treatment planning system. To calculate the patient dose from CBCT, phase-space beams of a CBCT head based on the ELEKTA x-ray volume imaging system were generated using the Monte Carlo BEAMnr code for 100, 120, 130, and 140 kVp energies. An in-house graphical user interface called DOSCTP (DOSXYZnrc-based) developed using MATLAB was used to calculate the dose distributions due to a 360 degrees photon arc from the CBCT beam with the same patient CT image sets as used in Pinnacle. The two calculated dose distributions were added together by setting the CBCT doses equal to 1%, 1.5%, 2%, and 2.5% of the prescription dose of the prostate IMRT. The prostate plan and the summed dose distributions were then processed in the CERR platform to determine the dose-volume histograms (DVHs) of the regions of interest. Moreover, dose profiles along the x- and y-axes crossing the isocenter with and without addition of the CBCT dose were determined. It was found that the added doses due to CBCT are most significant at the femur heads. Higher doses were found at the bones for a relatively low energy CBCT beam such as 100 kVp. Apart from the bones, the CBCT dose was observed to be most concentrated on the anterior and posterior side of the patient anatomy. Analysis of the DVHs for the prostate and other critical tissues showed that they vary only slightly with the added CBCT dose at different beam energies. On the other hand, the changes of the DVHs for the femur heads due to the CBCT dose and beam energy were more significant than those of rectal and bladder wall. By analyzing the vertical and horizontal dose profiles crossing the femur heads and isocenter, with and without the CBCT dose equal to 2% of the prescribed dose, it was found that there is about a 5% increase of dose at the femur head. Still, such an increase in the femur head dose is well below the dose limit of the bone in our IMRT plans. Therefore, under these dose fractionation conditions, it is concluded that, though CBCT causes a higher dose deposited at the bones, there may be no significant effect in the DVHs of critical tissues in the prostate IMRT.

  14. High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors.

    PubMed

    Timmermand, Oskar V; Nilsson, Jenny; Strand, Sven-Erik; Elgqvist, Jörgen

    2016-12-01

    The first main aim of this study was to illustrate the absorbed dose rate distribution from 177 Lu in sections of xenografted prostate cancer (PCa) tumors using high resolution digital autoradiography (DAR) and compare it with hypothetical identical radioactivity distributions of 90 Y or 7 MeV alpha-particles. Three dosimetry models based on either dose point kernels or Monte Carlo simulations were used and evaluated. The second and overlapping aim, was to perform DAR imaging and dosimetric analysis of the distribution of radioactivity, and hence the absorbed dose rate, in tumor sections at an early time point after injection during radioimmunotherapy using 177 Lu-h11B6, directed against the human kallikrein 2 antigen. Male immunodeficient BALB/c nude mice, aged 6-8 w, were inoculated by subcutaneous injection of ∼10 7 LNCaP cells in a 200 μl suspension of a 1:1 mixture of medium and Matrigel. The antibody h11B6 was conjugated with the chelator CHX-A″-DTPA after which conjugated h11B6 was mixed with 177 LuCl 3 . The incubation was performed at room temperature for 2 h, after which the labeling was terminated and the solution was purified on a NAP-5 column. About 20 MBq 177 Lu-h11B6 was injected intravenously in the tail vein. At approximately 10 h postinjection (hpi), the mice were sacrificed and one tumor was collected from each of the five animals and cryosectioned into 10 μm thick slices. The tumor slices were measured and imaged using the DAR MicroImager system and the M3Vision software. Then the absorbed dose rate was calculated using a dose point kernel generated with the Monte Carlo code gate v7.0. The DAR system produced high resolution images of the radioactivity distribution, close to the resolution of single PCa cells. The DAR images revealed a pronounced heterogeneous radioactivity distribution, i.e., count rate per area, in the tumors, indicated by the normalized intensity variations along cross sections as mean ± SD: 0.15 ± 0.15, 0.20 ± 0.18, 0.12 ± 0.17, 0.15 ± 0.16, and 0.23 ± 0.22, for each tumor section, respectively. The absorbed dose rate distribution for 177 Lu at the time of dissection 10 hpi showed a maximum value of 2.9 ± 0.4 Gy/h (mean ± SD), compared to 6.0 ± 0.9 and 159 ± 25 Gy/h for the hypothetical 90 Y and 7 MeV alpha-particle cases assuming the same count rate densities. Mean absorbed dose rate values were 0.13, 0.53, and 6.43 Gy/h for 177 Lu, 90 Y, and alpha-particles, respectively. The initial uptake of 177 Lu-h11B6 produces a high absorbed dose rate, which is important for a successful therapeutic outcome. The hypothetical 90 Y case indicates a less heterogeneous absorbed dose rate distribution and a higher mean absorbed dose rate compared to 177 Lu, although with a potentially increased irradiation of surrounding healthy tissue. The hypothetical alpha-particle case indicates the possibility of a higher maximum absorbed dose rate, although with a more heterogeneous absorbed dose rate distribution.

  15. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment.

    PubMed

    Winkler-Heil, R; Hussain, M; Hofmann, W

    2015-05-01

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM(-1). If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas.

  16. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakalyar, D; McKenney, S; Feng, W

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution canmore » be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.« less

  17. Water-filled balloon in the postoperative resection cavity improves dose distribution to target volumes in radiotherapy of maxillary sinus carcinoma.

    PubMed

    Zhang, Qun; Lin, Shi-Rong; He, Fang; Kang, De-Hua; Chen, Guo-Zhang; Luo, Wei

    2011-11-01

    Postoperative radiotherapy is a major treatment for patients with maxillary sinus carcinoma. However, the irregular resection cavity poses a technical difficulty for this treatment, causing uneven dose distribution to target volumes. In this study, we evaluated the dose distribution to target volumes and normal tissues in postoperative intensity-modulated radiotherapy (IMRT) after placing a water-filled balloon into the resection cavity. Three postoperative patients with advanced maxillary sinus carcinoma were selected in this trial. Water-filled balloons and supporting dental stents were fabricated according to the size of the maxillary resection cavity. Simulation CT scans were performed with or without water-filled balloons, IMRT treatment plans were established, and dose distribution to target volumes and organs at risk were evaluated. Compared to those in the treatment plan without balloons, the dose (D98) delivered to 98% of the gross tumor volume (GTV) increased by 2.1 Gy (P = 0.009), homogeneity index (HI) improved by 2.3% (P = 0.001), and target volume conformity index (TCI) of 68 Gy increased by 18.5% (P = 0.011) in the plan with balloons. Dosimetry endpoints of normal tissues around target regions in both plans were not significantly different (P > 0.05) except for the optic chiasm. In the plan without balloons, 68 Gy high-dose regions did not entirely cover target volumes in the ethmoid sinus, posteromedial wall of the maxillary sinus, or surgical margin of the hard palate. In contrast, 68 Gy high-dose regions entirely covered the GTV in the plan with balloons. These results suggest that placing a water-filled balloon in the resection cavity for postoperative IMRT of maxillary sinus carcinoma can reduce low-dose regions and markedly and simultaneously increase dose homogeneity and conformity of target volumes.

  18. Dosimetric verification for intensity-modulated arc therapy plans by use of 2D diode array, radiochromic film and radiosensitive polymer gel.

    PubMed

    Hayashi, Naoki; Malmin, Ryan L; Watanabe, Yoichi

    2014-05-01

    Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements.

  19. Three-dimensional radiochromic film dosimetry for volumetric modulated arc therapy using a spiral water phantom

    PubMed Central

    Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo

    2013-01-01

    We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2–84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1–92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification. PMID:23685667

  20. SU-F-T-442: Dose Distribution Comparison for Post-Laryngectomy Stoma Area Between Conventional AP and VMAT Plans with Or Without Bolus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B; Zhang, J; Cho-Lim, J

    Purpose: To compare dose distributions of conventional AP vs. VMAT treatment plans with or without bolus around post-laryngectomy stoma. Methods: Radiation dose coverage for post-laryngectomy stoma was analyzed using a set of real-case CT-simulation images. After meticulous contouring of the catheter cuff, stoma lumen, peri-stoma skin and subclinical tumor bed at the larynx, the resulting dosimetry plans were analyzed with or without a 5 mm bolus placement. Wet gauze was used to minimize the effect of any air gap. Four plans were generated: AP superclavicular (SCV) plan with or without bolus, and VMAT plan with or without bolus. A dosemore » of 60Gy in 30 fractions was prescribed at 3 cm depth for AP SCV plan, and to 95% of the PTV volume for VMAT plan. Results: For the conventional AP SCV plan, the peri-stoma skin dose is sensitive to bolus placement as well as air gap compensation by wetted gauze (V95% of 20.7%, 33.0% and 94.8% for no bolus, bolus without and with air gap compensation, respectively). For stoma lumen, the dose drops off rapidly in depth. The catheter cuff may have certain dose-buildup effect, but air gap around it and under the bolus placed can pose a more serious problem. The dose distributions of the two VMAT plans are moderately different for peri-stoma skin (V95% of 95.0% with bolus and air gap compensation, and 82.3% without bolus), but nearly identical for stoma lumen (V95% of 91.5% and 92.0%, respectively). VMAT allows beamlets with different angles of incidence that helped achieve such dose distribution around the stoma even without bolus placement. Conclusion: Overall, the dose coverage around the stoma in the VMAT plan is better than the conventional AP SCV plan. To achieve optimal dose distribution, it is still recommended to place physical bolus and reduce the air gaps.« less

  1. Dosimetric quality, accuracy, and deliverability of modulated radiotherapy treatments for spinal metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel

    2016-10-01

    Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number of monitor units (MU) per beam at the optimization stage, and thereby limiting beam modulation complexity. The VMAT arcs that were optimized with MU limitation had higher QA pass rates as well as higher modulation complexity scores (less complexity), lower modulation indices (less modulation), lower MU per beam, larger beam segments, and fewer small apertures than the VMAT arcs that were optimized without MU limitation. It is recommended that VMAT treatments for vertebral volumes, where the PTV abuts or surrounds the spinal cord, should be optimized with MU limitation. IMRT treatments may be preferable to the VMAT treatments, for dosimetry and deliverability reasons, but may be inappropriate for some patients because of their increased treatment delivery time.« less

  2. SU-E-T-586: Optimal Determination of Tolerance Level for Radiation Dose Delivery Verification in An in Vivo Dosimetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Souri, S; Gill, G

    Purpose: To statistically determine the optimal tolerance level in the verification of delivery dose compared to the planned dose in an in vivo dosimetry system in radiotherapy. Methods: The LANDAUER MicroSTARii dosimetry system with screened nanoDots (optically stimulated luminescence dosimeters) was used for in vivo dose measurements. Ideally, the measured dose should match with the planned dose and falls within a normal distribution. Any deviation from the normal distribution may be redeemed as a mismatch, therefore a potential sign of the dose misadministration. Randomly mis-positioned nanoDots can yield a continuum background distribution. A percentage difference of the measured dose tomore » its corresponding planned dose (ΔD) can be used to analyze combined data sets for different patients. A model of a Gaussian plus a flat function was used to fit the ΔD distribution. Results: Total 434 nanoDot measurements for breast cancer patients were collected across a period of three months. The fit yields a Gaussian mean of 2.9% and a standard deviation (SD) of 5.3%. The observed shift of the mean from zero is attributed to the machine output bias and calibration of the dosimetry system. A pass interval of −2SD to +2SD was applied and a mismatch background was estimated to be 4.8%. With such a tolerance level, one can expect that 99.99% of patients should pass the verification and at most 0.011% might have a potential dose misadministration that may not be detected after 3 times of repeated measurements. After implementation, a number of new start breast cancer patients were monitored and the measured pass rate is consistent with the model prediction. Conclusion: It is feasible to implement an optimal tolerance level in order to maintain a low limit of potential dose misadministration while still to keep a relatively high pass rate in radiotherapy delivery verification.« less

  3. New method for estimation of fluence complexity in IMRT fields and correlation with gamma analysis

    NASA Astrophysics Data System (ADS)

    Hanušová, T.; Vondráček, V.; Badraoui-Čuprová, K.; Horáková, I.; Koniarová, I.

    2015-01-01

    A new method for estimation of fluence complexity in Intensity Modulated Radiation Therapy (IMRT) fields is proposed. Unlike other previously published works, it is based on portal images calculated by the Portal Dose Calculation algorithm in Eclipse (version 8.6, Varian Medical Systems) in the plane of the EPID aS500 detector (Varian Medical Systems). Fluence complexity is given by the number and the amplitudes of dose gradients in these matrices. Our method is validated using a set of clinical plans where fluence has been smoothed manually so that each plan has a different level of complexity. Fluence complexity calculated with our tool is in accordance with the different levels of smoothing as well as results of gamma analysis, when calculated and measured dose matrices are compared. Thus, it is possible to estimate plan complexity before carrying out the measurement. If appropriate thresholds are determined which would distinguish between acceptably and overly modulated plans, this might save time in the re-planning and re-measuring process.

  4. Poster — Thur Eve — 11: Validation of the orthopedic metallic artifact reduction tool for CT simulations at the Ottawa Hospital Cancer Centre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J; Foottit, C

    Metallic implants in patients can produce image artifacts in kilovoltage CT simulation images which can introduce noise and inaccuracies in CT number, affecting anatomical segmentation and dose distributions. The commercial orthopedic metal artifact reduction algorithm (O-MAR) (Philips Healthcare System) was recently made available on CT simulation scanners at our institution. This study validated the clinical use of O-MAR by investigating its effects on CT number and dose distributions. O-MAR corrected and uncorrected images were acquired with a Philips Brilliance Big Bore CT simulator of a cylindrical solid water phantom that contained various plugs (including metal) of known density. CT numbermore » accuracy was investigated by determining the mean and standard deviation in regions of interest (ROI) within each plug for uncorrected and O-MAR corrected images and comparing with no-metal image values. Dose distributions were calculated using the Monaco treatment planning system. Seven open fields were equally spaced about the phantom around a ROI near the center of the phantom. These were compared to a “correct” dose distribution calculated by overriding electron densities a no-metal phantom image to produce an image containing metal but no artifacts. An overall improvement in CT number and dose distribution accuracy was achieved by applying the O-MAR correction. Mean CT numbers and standard deviations were found to be generally improved. Exceptions included lung equivalent media, which is consistent with vendor specified contraindications. Dose profiles were found to vary by ±4% between uncorrected or O-MAR corrected images with O-MAR producing doses closer to ground truth.« less

  5. Dose distribution verification for GYN brachytherapy using EBT Gafchromic film and TG-43 calculation.

    PubMed

    Gholami, Somayeh; Mirzaei, Hamid Reza; Jabbary Arfaee, Ali; Jaberi, Ramin; Nedaie, Hassan Ali; Rabi Mahdavi, Seied; Rajab Bolookat, Eftekhar; Meigooni, Ali S

    2016-01-01

    Verification of dose distributions for gynecological (GYN) brachytherapy implants using EBT Gafchromic film. One major challenge in brachytherapy is to verify the accuracy of dose distributions calculated by a treatment planning system. A new phantom was designed and fabricated using 90 slabs of 18 cm × 16 cm × 0.2 cm Perspex to accommodate a tandem and Ovoid assembly, which is normally used for GYN brachytherapy treatment. This phantom design allows the use of EBT Gafchromic films for dosimetric verification of GYN implants with a cobalt-60 HDR system or a LDR Cs-137 system. Gafchromic films were exposed using a plan that was designed to deliver 1.5 Gy of dose to 0.5 cm distance from the lateral surface of ovoids from a pair of ovoid assembly that was used for treatment vaginal cuff. For a quantitative analysis of the results for both LDR and HDR systems, the measured dose values at several points of interests were compared with the calculated data from a commercially available treatment planning system. This planning system was utilizing the TG-43 formalism and parameters for calculation of dose distributions around a brachytherapy implant. The results of these investigations indicated that the differences between the calculated and measured data at different points were ranging from 2.4% to 3.8% for the LDR Cs-137 and HDR Co-60 systems, respectively. The EBT Gafchromic films combined with the newly designed phantom could be utilized for verification of the dose distributions around different GYN implants treated with either LDR or HDR brachytherapy procedures.

  6. Reevaluation of the AAPM TG-43 brachytherapy dosimetry parameters for an 125I seed, and the influence of eye plaque design on dose distributions and dose-volume histograms

    NASA Astrophysics Data System (ADS)

    Aryal, Prakash

    The TG-43 dosimetry parameters of the Advantage(TM) 125I model IAI-125A brachytherapy seed were studied. An investigation using modern MCNP radiation transport code with updated cross-section libraries was performed. Twelve different simulation conditions were studied for a single seed by varying the coating thickness, mass density, photon energy spectrum and cross-section library. The dose rate was found to be 6.3% lower at 1 cm in comparison to published results. New TG-43 dosimetry parameters are proposed. The dose distribution for a brachytherapy eye plaque, model EP917, was investigated, including the effects of collimation from high-Z slots. Dose distributions for 26 slot designs were determined using Monte Carlo methods and compared between the published literature, a clinical treatment planning system, and physical measurements. The dosimetric effect of the composition and mass density of the gold backing was shown to be less than 3%. Slot depth, width, and length changed the central axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the 125I-laden silver rod within the seed had the greatest impact on the CAX dose distribution, changing it by 14%, 9%, 4.3%, and 2.7% at 1, 2, 5, and 10 mm, respectively, from the inner scleral surface. The measured, full plaque slot geometry delivered 2.4% +/- 1.1% higher dose along the plaque's CAX than the geometry provided by the manufacturer and 2.2%+/-2.3% higher than Plaque Simulator(TM) (PS) treatment planning software (version 5.7.6). The D10 for the simulated tumor, inner sclera, and outer sclera for the measured slot plaque to manufacturer provided slot design was 9%, 10%, and 19% higher, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D 10 doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at --1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.72, 1.50, and 1.39, respectively. The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. KEYWORDS: Monte Carlo methods, dosimetry, 125I, TG-43, eye plaque brachytherapy.

  7. Leaf position optimization for step-and-shoot IMRT.

    PubMed

    De Gersem, W; Claus, F; De Wagter, C; Van Duyse, B; De Neve, W

    2001-12-01

    To describe the theoretical basis, the algorithm, and implementation of a tool that optimizes segment shapes and weights for step-and-shoot intensity-modulated radiation therapy delivered by multileaf collimators. The tool, called SOWAT (Segment Outline and Weight Adapting Tool) is applied to a set of segments, segment weights, and corresponding dose distribution, computed by an external dose computation engine. SOWAT evaluates the effects of changing the position of each collimating leaf of each segment on an objective function, as follows. Changing a leaf position causes a change in the segment-specific dose matrix, which is calculated by a fast dose computation algorithm. A weighted sum of all segment-specific dose matrices provides the dose distribution and allows computation of the value of the objective function. Only leaf position changes that comply with the multileaf collimator constraints are evaluated. Leaf position changes that tend to decrease the value of the objective function are retained. After several possible positions have been evaluated for all collimating leaves of all segments, an external dose engine recomputes the dose distribution, based on the adapted leaf positions and weights. The plan is evaluated. If the plan is accepted, a segment sequencer is used to make the prescription files for the treatment machine. Otherwise, the user can restart SOWAT using the new set of segments, segment weights, and corresponding dose distribution. The implementation was illustrated using two example cases. The first example is a T1N0M0 supraglottic cancer case that was distributed as a multicenter planning exercise by investigators from Rotterdam, The Netherlands. The exercise involved a two-phase plan. Phase 1 involved the delivery of 46 Gy to a concave-shaped planning target volume (PTV) consisting of the primary tumor volume and the elective lymph nodal regions II-IV on both sides of the neck. Phase 2 involved a boost of 24 Gy to the primary tumor region only. SOWAT was applied to the Phase 1 plan. Parotid sparing was a planning goal. The second implementation example is an ethmoid sinus cancer case, planned with the intent of bilateral visus sparing. The median PTV prescription dose was 70 Gy with a maximum dose constraint to the optic pathway structures of 60 Gy. The initial set of segments, segment weights, and corresponding dose distribution were obtained, respectively, by an anatomy-based segmentation tool, a segment weight optimization tool, and a differential scatter-air ratio dose computation algorithm as external dose engine. For the supraglottic case, this resulted in a plan that proved to be comparable to the plans obtained at the other institutes by forward or inverse planning techniques. After using SOWAT, the minimum PTV dose and PTV dose homogeneity increased; the maximum dose to the spinal cord decreased from 38 Gy to 32 Gy. The left parotid mean dose decreased from 22 Gy to 19 Gy and the right parotid mean dose from 20 to 18 Gy. For the ethmoid sinus case, the target homogeneity increased by leaf position optimization, together with a better sparing of the optical tracts. By using SOWAT, the plans improved with respect to all plan evaluation end points. Compliance with the multileaf collimator constraints is guaranteed. The treatment delivery time remains almost unchanged, because no additional segments are created.

  8. In vivo dosimetry using Gafchromic films during pelvic intraoperative electron radiation therapy (IOERT)

    PubMed Central

    Costa, Filipa; Gomes, Dora; Magalhães, Helena; Arrais, Rosário; Moreira, Graciete; Cruz, Maria Fátima; Silva, José Pedro; Santos, Lúcio; Sousa, Olga

    2016-01-01

    Objective: To characterize in vivo dose distributions during pelvic intraoperative electron radiation therapy (IOERT) for rectal cancer and to assess the alterations introduced by irregular irradiation surfaces in the presence of bevelled applicators. Methods: In vivo measurements were performed with Gafchromic films during 32 IOERT procedures. 1 film per procedure was used for the first 20 procedures. The methodology was then optimized for the remaining 12 procedures by using a set of 3 films. Both the average dose and two-dimensional dose distributions for each film were determined. Phantom measurements were performed for comparison. Results: For flat and concave surfaces, the doses measured in vivo agree with expected values. For concave surfaces with step-like irregularities, measured doses tend to be higher than expected doses. Results obtained with three films per procedure show a large variability along the irradiated surface, with important differences from expected profiles. These results are consistent with the presence of surface hotspots, such as those observed in phantoms in the presence of step-like irregularities, as well as fluid build-up. Conclusion: Clinical dose distributions in the IOERT of rectal cancer are often different from the references used for prescription. Further studies are necessary to assess the impact of these differences on treatment outcomes. In vivo measurements are important, but need to be accompanied by accurate imaging of positioning and irradiated surfaces. Advances in knowledge: These results confirm that surface irregularities occur frequently in rectal cancer IOERT and have a measurable effect on the dose distribution. PMID:27188847

  9. SU-E-T-248: An Extended Generalized Equivalent Uniform Dose Accounting for Dose-Range Dependency of Radio-Biological Parameters.

    PubMed

    Troeller, A; Soehn, M; Yan, D

    2012-06-01

    Introducing an extended, phenomenological, generalized equivalent uniform dose (eEUD) that incorporates multiple volume-effect parameters for different dose-ranges. The generalized EUD (gEUD) was introduced as an estimate of the EUD that incorporates a single, tissue-specific parameter - the volume-effect-parameter (VEP) 'a'. As a purely phenomenological concept, its radio-biological equivalency to a given inhomogeneous dose distribution is not a priori clear and mechanistic models based on radio-biological parameters are assumed to better resemble the underlying biology. However, for normal organs mechanistic models are hard to derive, since the structural organization of the tissue plays a significant role. Consequently, phenomenological approaches might be especially useful in order to describe dose-response for normal tissues. However, the single parameter used to estimate the gEUD may not suffice in accurately representing more complex biological effects that have been discussed in the literature. For instance, radio-biological parameters and hence the effects of fractionation are known to be dose-range dependent. Therefore, we propose an extended phenomenological eEUD formula that incorporates multiple VEPs accounting for dose-range dependency. The eEUD introduced is a piecewise polynomial expansion of the gEUD formula. In general, it allows for an arbitrary number of VEPs, each valid for a certain dose-range. We proved that the formula fulfills required mathematical and physical criteria such as invertibility of the underlying dose-effect and continuity in dose. Furthermore, it contains the gEUD as a special case, if all VEPs are equal to 'a' from the gEUD model. The eEUD is a concept that expands the gEUD such that it can theoretically represent dose-range dependent effects. Its practicality, however, remains to be shown. As a next step, this will be done by estimating the eEUD from patient data using maximum-likelihood based NTCP modelling in the same way it is commonly done for the gEUD. © 2012 American Association of Physicists in Medicine.

  10. Preliminary evaluation of the dosimetric accuracy of cone-beam computed tomography for cases with respiratory motion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Bae, Sunhyun; Chung, Weon Kuu; Lee, Yoonhee

    2014-04-01

    Cone-beam computed tomography (CBCT) images are currently used for patient positioning and adaptive dose calculation; however, the degree of CBCT uncertainty in cases of respiratory motion remains an interesting issue. This study evaluated the uncertainty of CBCT-based dose calculations for a moving target. Using a phantom, we estimated differences in the geometries and the Hounsfield units (HU) between CT and CBCT. The calculated dose distributions based on CT and CBCT images were also compared using a radiation treatment planning system, and the comparison included cases with respiratory motion. The geometrical uncertainties of the CT and the CBCT images were less than 0.15 cm. The HU differences between CT and CBCT images for standard-dose-head, high-quality-head, normal-pelvis, and low-dose-thorax modes were 31, 36, 23, and 33 HU, respectively. The gamma (3%, 0.3 cm)-dose distribution between CT and CBCT was greater than 1 in 99% of the area. The gamma-dose distribution between CT and CBCT during respiratory motion was also greater than 1 in 99% of the area. The uncertainty of the CBCT-based dose calculation was evaluated for cases with respiratory motion. In conclusion, image distortion due to motion did not significantly influence dosimetric parameters.

  11. Oxidative mutagenesis of doxorubicin-Fe(III) complex.

    PubMed

    Kostoryz, E L; Yourtee, D M

    2001-02-20

    Doxorubicin has a high affinity for inorganic iron, Fe(III), and has potential to form doxorubicin-Fe(III) complexes in biological systems. Indirect involvement of iron has been substantiated in the oxidative mutagenicity of doxorubicin. In this study, however, direct involvement of Fe(III) was evaluated in mutagenicity studies with the doxorubicin-Fe(III) complex. The Salmonella mutagenicity assay with strain TA102 was used with a pre-incubation step. The highest mutagenicity of doxorubicin-Fe(III) complex was observed at the dose of 2.5nmol/plate of the complex. The S9-mix decreased this highest mutagenicity but increased the number of revertants at a higher dose of 10nmol/plate of the complex. On the other hand, the mutagenicity of the doxorubicin-Fe(III) complex at the doses of 0.25, 0.5, 1 and 2nmol/plate was enhanced about twice by the addition of glutathione plus H(2)O(2). This enhanced mutagenicity as well as of the complex itself, the complex plus glutathione, and the complex plus H(2)O(2) were reduced by the addition of ADR-529, an Fe(III) chelator, and potassium iodide, a hydroxyl radical scavenger. These results indicate that doxorubicin-Fe(III) complex exert the mutagenicity through oxidative DNA damage and that Fe(III) is a required element in the mutagenesis of doxorubicin.

  12. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    PubMed

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  13. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.

  14. Using spatial information about recurrence risk for robust optimization of dose-painting prescription functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Edward T.

    Purpose: To develop a robust method for deriving dose-painting prescription functions using spatial information about the risk for disease recurrence. Methods: Spatial distributions of radiobiological model parameters are derived from distributions of recurrence risk after uniform irradiation. These model parameters are then used to derive optimal dose-painting prescription functions given a constant mean biologically effective dose. Results: An estimate for the optimal dose distribution can be derived based on spatial information about recurrence risk. Dose painting based on imaging markers that are moderately or poorly correlated with recurrence risk are predicted to potentially result in inferior disease control when comparedmore » the same mean biologically effective dose delivered uniformly. A robust optimization approach may partially mitigate this issue. Conclusions: The methods described here can be used to derive an estimate for a robust, patient-specific prescription function for use in dose painting. Two approximate scaling relationships were observed: First, the optimal choice for the maximum dose differential when using either a linear or two-compartment prescription function is proportional to R, where R is the Pearson correlation coefficient between a given imaging marker and recurrence risk after uniform irradiation. Second, the predicted maximum possible gain in tumor control probability for any robust optimization technique is nearly proportional to the square of R.« less

  15. A case study of radiotherapy planning for Intensity Modulation Radiation Therapy for the whole scalp with matching electron treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponseller, Patricia, E-mail: sponselp@uw.edu; Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA; Paravathaneni, Upendra

    2013-07-01

    The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of themore » IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.« less

  16. Stochastic dosimetry model for radon progeny in the rat lung.

    PubMed

    Winkler-HeiI, R; Hofmann, W; Hussain, M

    2014-07-01

    The stochastic dosimetry model presented here considers the distinctly asymmetric, stochastic branching pattern reported in morphometric measurements. This monopodial structure suggests that an airway diameter is a more appropriate morphometric parameter to classify bronchial dose distributions for inhaled radon progeny than the commonly assigned airway generation numbers. Bronchial doses were calculated for the typical exposure conditions reported for the Pacific Northwest National Laboratory rat inhalation studies, yielding an average bronchial dose of 7.75 mGy WLM(-1). If plotted as functions of airway generations, the resulting dose distributions are highest in the central bronchial airways, while significantly decreasing towards peripheral generations. However, if plotted as functions of airway diameters, doses are much more uniformly distributed among bronchial airways. The comparison between rat and human lungs indicates that dose conversion coefficients for the rat lung are higher than the corresponding values for the human lung by a factor of 1.34 for the experimental PNNL exposure conditions, and of 1.25 for typical human indoor conditions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A preliminary Monte Carlo study for the treatment head of a carbon-ion radiotherapy facility using TOPAS

    NASA Astrophysics Data System (ADS)

    Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George

    2017-09-01

    In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.

  18. A method for the assessment of specific energy distribution in a model tumor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noska, M.A.

    1996-12-31

    Due to the short range of alpha particles in tissue, the calculation of dose from internally deposited alpha emitters requires a detailed analysis of the microscopic distribution of the radionuclide in order to determine the spatial distribution of energy emission events and, from this, the spatial distribution of dose. In the present study, the authors used quantitative autoradiography (QAR) to assess the microdistribution of a radiolabeled monoclonal antibody (MAb) fragment in human glioma xenografts in mice.

  19. Pharmacokinetics and concentration-effect relationships of therapeutic monoclonal antibodies and fusion proteins.

    PubMed

    Ternant, David; Paintaud, Gilles

    2005-09-01

    Although monoclonal antibodies (mAbs) constitute a major advance in therapeutics, their pharmacokinetic (PK) and pharmacodynamic (PD) properties are not fully understood. Saturable mechanisms are thought to occur in distribution and elimination of mAbs, which are protected from degradation by the Brambell's receptor (FcRn). The binding of mAbs to their target antigen explains part of their nonlinear PK and PD properties. The interindividual variability in mAb PK can be explained by several factors, including immune response against the biodrug and differences in the number of antigenic sites. The concentration-effect relationships of mAbs are complex and dependent on their mechanism of action. Interindividual differences in mAb PD can be explained by factors such as genetics and clinical status. PK and concentration-effect studies are necessary to design optimal dosing regimens. Because of their above-mentioned characteristics, the interindividual variability in their dose-response relationships must be studied by PK-PD modelling.

  20. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy.

    PubMed

    Kanematsu, Nobuyuki

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  1. SU-F-T-680: Radiobiological Analysis of the Impact of Daily Patient Deformation and Setup Variations Through the Use of the Cone Beam CT and Deformable Image Registration in Lung Cancer IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurkovic, I; Stathakis, S; Markovic, M

    Purpose: To estimate the dose distributions delivered to the patient in each treatment fraction using deformable image registration (DIR) and assess the radiobiological impact of the inter-fraction variations due to patient deformation and setup. Methods: The work is based on the cone beam CT (CBCT) images and treatment plans of two lung cancer patients. Both patients were treated with intensity modulated radiation therapy (IMRT) to 66Gy in 2Gy/fraction. The treatment plans were exported from the treatment planning system (TPS) to the Velocity AI where DIR was performed and the same deformation matrix was used for the deformation of the plannedmore » dose distribution and organ contours to each CBCT dataset. A radiobiological analysis was performed based on the radiobiological parameters of the involved organs at risk (OARs) and planning target volume (PTV). Using the complication free tumor control probability (P+) index, differences in P+ were observed between each CBCT as well as between CBCT and planning dose distributions. Results: The optimal CBCT P? values ranged from 91.6 % to 94.8 % for patient #1 and from 88.8 % to 90.6 % for patient #2. At the dose level of the clinical prescription, the CBCT P+ values ranged from 80.3% to 80.7% for patient #1 and from 80.7% to 81.0% for the patient #2. The planning CT P+ values were 81.0% and 80.7% for the two patients, respectively. These differences emphasize the significance of using the radiobiological analysis when assessing changes in the dose distribution due to the tumor motion and lung deformations. Conclusion: Daily setup variations yield to differences in the actual dose delivered versus the planned one. The observed differences were rather small when only looking at the dosimetric comparison of the dose distributions, however the radiobiology analysis was able to detect clinically relevant differences among the studied dose distributions.« less

  2. SU-E-T-625: Robustness Evaluation and Robust Optimization of IMPT Plans Based on Per-Voxel Standard Deviation of Dose Distributions.

    PubMed

    Liu, W; Mohan, R

    2012-06-01

    Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD Anderson Cancer Center, and MD Anderson’s cancer center support grant CA016672. © 2012 American Association of Physicists in Medicine.

  3. Dose impact in radiographic lung injury following lung SBRT: Statistical analysis and geometric interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Victoria; Kishan, Amar U.; Cao, Minsong

    2014-03-15

    Purpose: To demonstrate a new method of evaluating dose response of treatment-induced lung radiographic injury post-SBRT (stereotactic body radiotherapy) treatment and the discovery of bimodal dose behavior within clinically identified injury volumes. Methods: Follow-up CT scans at 3, 6, and 12 months were acquired from 24 patients treated with SBRT for stage-1 primary lung cancers or oligometastic lesions. Injury regions in these scans were propagated to the planning CT coordinates by performing deformable registration of the follow-ups to the planning CTs. A bimodal behavior was repeatedly observed from the probability distribution for dose values within the deformed injury regions. Basedmore » on a mixture-Gaussian assumption, an Expectation-Maximization (EM) algorithm was used to obtain characteristic parameters for such distribution. Geometric analysis was performed to interpret such parameters and infer the critical dose level that is potentially inductive of post-SBRT lung injury. Results: The Gaussian mixture obtained from the EM algorithm closely approximates the empirical dose histogram within the injury volume with good consistency. The average Kullback-Leibler divergence values between the empirical differential dose volume histogram and the EM-obtained Gaussian mixture distribution were calculated to be 0.069, 0.063, and 0.092 for the 3, 6, and 12 month follow-up groups, respectively. The lower Gaussian component was located at approximately 70% prescription dose (35 Gy) for all three follow-up time points. The higher Gaussian component, contributed by the dose received by planning target volume, was located at around 107% of the prescription dose. Geometrical analysis suggests the mean of the lower Gaussian component, located at 35 Gy, as a possible indicator for a critical dose that induces lung injury after SBRT. Conclusions: An innovative and improved method for analyzing the correspondence between lung radiographic injury and SBRT treatment dose has been demonstrated. Bimodal behavior was observed in the dose distribution of lung injury after SBRT. Novel statistical and geometrical analysis has shown that the systematically quantified low-dose peak at approximately 35 Gy, or 70% prescription dose, is a good indication of a critical dose for injury. The determined critical dose of 35 Gy resembles the critical dose volume limit of 30 Gy for ipsilateral bronchus in RTOG 0618 and results from previous studies. The authors seek to further extend this improved analysis method to a larger cohort to better understand the interpatient variation in radiographic lung injury dose response post-SBRT.« less

  4. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy

    PubMed Central

    Bai, Penggang; Du, Min; Ni, Xiaolei; Ke, Dongzhong; Tong, Tong

    2017-01-01

    The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg), which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency. PMID:28388623

  5. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy.

    PubMed

    Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L

    2017-05-07

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  6. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy

    NASA Astrophysics Data System (ADS)

    Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.

    2017-05-01

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  7. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning.

    PubMed

    Inaniwa, T; Kanematsu, N

    2015-01-07

    In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20  ×  20  ×  40 mm(3) was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.

  8. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.

    2015-01-01

    In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20  ×  20  ×  40 mm3 was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.

  9. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    PubMed

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  10. Dose calculation accuracy of the Monte Carlo algorithm for CyberKnife compared with other commercially available dose calculation algorithms.

    PubMed

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. New developments in EPID-based 3D dosimetry in The Netherlands Cancer Institute

    NASA Astrophysics Data System (ADS)

    Mijnheer, B.; Rozendaal, R.; Olaciregui-Ruiz, I.; González, P.; van Oers, R.; Mans, A.

    2017-05-01

    EPID-based offline 3D in vivo dosimetry is performed routinely in The Netherlands Cancer Institute for almost all RT treatments. The 3D dose distribution is reconstructed using the EPID primary dose in combination with a back-projection algorithm and compared with the planned dose distribution. Recently the method was adapted for real-time dose verification, performing 3D dose verification in less than 300 ms, which is faster than the current portal frame acquisition rate. In this way a possibility is created for halting the linac in case of large delivery errors. Furthermore, a new method for pre-treatment QA was developed in which the EPID primary dose behind a phantom or patient is predicted using the CT data of that phantom or patient in combination with in-air EPID measurements. This virtual EPID primary transit dose is then used to reconstruct the 3D dose distribution within the phantom or patient geometry using the same dose engine as applied offline. In order to assess the relevance of our clinically applied alert criteria, we investigated the sensitivity of our EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. This was done through simulation by modifying patient treatment plans, as well as experimentally by performing EPID measurements during the irradiation of an Alderson phantom, both after deliberately introducing errors during VMAT delivery. In this presentation these new developments will be elucidated.

  12. A preliminary study on the use of FX-Glycine gel and an in-house optical cone beam CT readout for IMRT and RapidArc verification

    NASA Astrophysics Data System (ADS)

    Ravindran, Paul B.; Ebenezer, Suman Babu S.; Winfred, Michael Raj; Amalan, S.

    2017-05-01

    The radiochromic FX gel with Optical CT readout has been investigated by several authors and has shown promising results for 3D dosimetry. One of the applications of the gel dosimeters is their use in 3D dose verification for IMRT and RapidArc quality assurance. Though polymer gel has been used successfully for clinical dose verification, the use of FX gel for clinical dose verification with optical cone beam CT needs further validation. In this work, we have used FX gel and an in- house optical readout system for gamma analysis between the dose matrices of measured dose distribution and a treatment planning system (TPS) calculated dose distribution for a few test cases.

  13. SU-F-T-513: Dosimetric Validation of Spatially Fractionated Radiotherapy Using Gel Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papanikolaou, P; Watts, L; Kirby, N

    2016-06-15

    Purpose: Spatially fractionated radiation therapy, also known as GRID therapy, is used to treat large solid tumors by irradiating the target to a single dose of 10–20Gy through spatially distributed beamlets. We have investigated the use of a 3D gel for dosimetric characterization of GRID therapy. Methods: GRID therapy is an external beam analog of volumetric brachytherapy, whereby we produce a distribution of hot and cold dose columns inside the tumor volume. Such distribution can be produced with a block or by using a checker-like pattern with MLC. We have studied both types of GRID delivery. A cube shaped acrylicmore » phantom was filled with polymer gel and served as a 3D dosimeter. The phantom was scanned and the CT images were used to produce two plans in Pinnacle, one with the grid block and one with the MLC defined grid. A 6MV beam was used for the plan with a prescription of 1500cGy at dmax. The irradiated phantom was scanned in a 3T MRI scanner. Results: 3D dose maps were derived from the MR scans of the gel dosimeter and were found to be in good agreement with the predicted dose distribution from the RTP system. Gamma analysis showed a passing rate of 93% for 5% dose and 2mm DTA scoring criteria. Both relative and absolute dose profiles are in good agreement, except in the peripheral beamlets where the gel measured slightly higher dose, possibly because of the changing head scatter conditions that the RTP is not fully accounting for. Our results have also been benchmarked against ionization chamber measurements. Conclusion: We have investigated the use of a polymer gel for the 3D dosimetric characterization and evaluation of GRID therapy. Our results demonstrated that the planning system can predict fairly accurately the dose distribution for GRID type therapy.« less

  14. SU-E-J-92: Validating Dose Uncertainty Estimates Produced by AUTODIRECT, An Automated Program to Evaluate Deformable Image Registration Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chen, J; Pouliot, J

    2015-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then,more » AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.« less

  15. SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popple, R; Brezovich, I; Wu, X

    2014-06-01

    Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantommore » containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.« less

  16. [Accuracy Check of Monte Carlo Simulation in Particle Therapy Using Gel Dosimeters].

    PubMed

    Furuta, Takuya

    2017-01-01

    Gel dosimeters are a three-dimensional imaging tool for dose distribution induced by radiations. They can be used for accuracy check of Monte Carlo simulation in particle therapy. An application was reviewed in this article. An inhomogeneous biological sample placing a gel dosimeter behind it was irradiated by carbon beam. The recorded dose distribution in the gel dosimeter reflected the inhomogeneity of the biological sample. Monte Carlo simulation was conducted by reconstructing the biological sample from its CT image. The accuracy of the particle transport by Monte Carlo simulation was checked by comparing the dose distribution in the gel dosimeter between simulation and experiment.

  17. Wringing the last drop of optically stimulated luminescence response for accurate dating of glacial sediments

    NASA Astrophysics Data System (ADS)

    Medialdea, Alicia; Bateman, Mark D.; Evans, David J.; Roberts, David H.; Chiverrell, Richard C.; Clark, Chris D.

    2017-04-01

    BRITICE-CHRONO is a NERC-funded consortium project of more than 40 researchers aiming to establish the retreat patterns of the last British and Irish Ice Sheet. For this purpose, optically stimulated luminescence (OSL) dating, among other dating techniques, has been used in order to establish accurate chronology. More than 150 samples from glacial environments have been dated and provide key information for modelling of the ice retreat. Nevertheless, luminescence dating of glacial sediments has proven to be challenging: first, glacial sediments were often affected by incomplete bleaching and secondly, quartz grains within the sediments sampled were often characterized by complex luminescence behaviour; characterized by dim signal and low reproducibility. Specific statistical approaches have been used to over come the former to enable the estimated ages to be based on grain populations most likely to have been well bleached. This latest work presents how issues surrounding complex luminescence behaviour were over-come in order to obtain accurate OSL ages. This study has been performed on two samples of bedded sand originated on an ice walled lake plain, in Lincolnshire, UK. Quartz extracts from each sample were artificially bleached and irradiated to known doses. Dose recovery tests have been carried out under different conditions to study the effect of: preheat temperature, thermal quenching, contribution of slow components, hot bleach after a measuring cycles and IR stimulation. Measurements have been performed on different luminescence readers to study the possible contribution of instrument reproducibility. These have shown that a great variability can be observed not only among the studied samples but also within a specific site and even a specific sample. In order to determine an accurate chronology and realistic uncertainties to the estimated ages, this variability must be taken into account. Tight acceptance criteria to measured doses from natural, not exposed, aliquots have been applied. These derived on reproducible dose distributions from which accurate ages could be estimated.

  18. Robust optimization based upon statistical theory.

    PubMed

    Sobotta, B; Söhn, M; Alber, M

    2010-08-01

    Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose distributions that are robust against interfraction and intrafraction motion alike, effectively removing the need for indiscriminate safety margins.

  19. ULTRAVIOLET RADIATION DOSE AND AMPHIBIAN DISTRIBUTIONS IN NATIONAL PARKS

    EPA Science Inventory

    Ultraviolet Radiation Dose and Amphibian Distributions in National Parks. Diamond, S. A., Detenbeck, N. E., USEPA, Duluth, MN, USA, Bradford, D. F., USEPA, Las Vegas, NV, USA, Trenham, P. C., University of California, Davis, CA., USA, Adams, M. J., Corn, P. S., Hossack, B., USGS,...

  20. Feasibility assessment of the interactive use of a Monte Carlo algorithm in treatment planning for intraoperative electron radiation therapy

    NASA Astrophysics Data System (ADS)

    Guerra, Pedro; Udías, José M.; Herranz, Elena; Santos-Miranda, Juan Antonio; Herraiz, Joaquín L.; Valdivieso, Manlio F.; Rodríguez, Raúl; Calama, Juan A.; Pascau, Javier; Calvo, Felipe A.; Illana, Carlos; Ledesma-Carbayo, María J.; Santos, Andrés

    2014-12-01

    This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.

Top