Ideal gas behavior of a strongly coupled complex (dusty) plasma.
Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry
2013-07-05
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing
2017-09-01
The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.
Charged dust phenomena in the near-Earth space environment.
Scales, W A; Mahmoudian, A
2016-10-01
Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.
NASA Astrophysics Data System (ADS)
Thomas, Edward; Williams, Jeremiah; Silver, Jennifer
2004-11-01
Over the past five years, the Auburn Plasma Sciences Laboratory (PSL) has applied two-dimensional particle image velocimetry (2D-PIV) techniques [E. Thomas, Phys. Plasmas, 6, 2672 (1999)] to make measurements of particle transport in dusty plasmas. Although important information was obtained from these earlier studies, the complex behavior of the charged microparticles clearly indicated that three-dimensional velocity information is needed. The PSL has recently acquired and installed a stereoscopic PIV (stereo-PIV) diagnostic tool for dusty plasma investigations [E. Thomas. et al, Phys. Plasmas, L37 (2004)]. It employs a synchronized dual-laser, dual-camera system for measuring particle transport in three dimensions. Results will be presented on the initial application of stereo-PIV to dusty plasma studies. Additional results will be presented on the use of stereo-PIV for measuring the controlled interaction of two dust clouds.
Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow
NASA Astrophysics Data System (ADS)
Jaiswal, S.; Bandyopadhyay, P.; Sen, A.
2015-11-01
A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.
A survey of dusty plasma physics
NASA Astrophysics Data System (ADS)
Shukla, P. K.
2001-05-01
Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in several laboratory experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty-first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multidisciplinary areas of science.
ICPP: Introduction to Dusty Plasma Physics
NASA Astrophysics Data System (ADS)
Kant Shukla, Padma
2000-10-01
Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in microgravity experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multi-disciplinary areas of science.
Dusty (complex) plasmas: recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, Sergey
The area of dusty (complex) plasma research is a vibrant subfield of plasma physics that be-longs to frontier research in physical sciences. This area is intrinsically interdisciplinary and encompasses astrophysics, planetary science, atmospheric science, magnetic fusion energy sci-ence, and various applied technologies. The research in dusty plasma started after two major discoveries in very different areas: (1) the discovery by the Voyager 2 spacecraft in 1980 of the radial spokes in Saturn's B ring, and (2) the discovery of the early 80's growth of contaminating dust particles in plasma processing. Dusty plasmas are ubiquitous in the universe; examples are proto-planetary and solar nebulae, molecular clouds, supernovae explosions, interplanetary medium, circumsolar rings, and asteroids. Within the solar system, we have planetary rings (e.g., Saturn and Jupiter), Martian atmosphere, cometary tails and comae, dust clouds on the Moon, etc. Close to the Earth, there are noctilucent clouds and polar mesospheric summer echoes, which are clouds of tiny (charged) ice particles that are formed in the summer polar mesosphere at the altitudes of about 82-95 km. Dust and dusty plasmas are also found in the vicinity of artificial satellites and space stations. Dust also turns out to be common in labo-ratory plasmas, such as in the processing of semiconductors and in tokamaks. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. An example of the relevance of industrial dusty plasmas is the growth of silicon microcrystals for improved solar cells in the future. In fact, nanostructured polymorphous sili-con films provide solar cells with high and time stable efficiency. These nano-materials can also be used for the fabrication of ultra-large-scale integration circuits, display devices, single elec-tron devices, light emitting diodes, laser diodes, and others. In microelectronic industries, dust has to be kept under control in the manufacture of microchips, otherwise charged dust particles (also known as killer particles) can destroy electronic circuits. In magnetic fusion research using tokamaks, one realizes that the absorption of tritium by dust fragments could cause a serious health hazard. The evaporation of dust particles could also lead to bremsstrahlung adversely affecting the energy gain of the tokamaks or other fusion devices. The specific features of dusty plasmas are a possibility of the formation of dust Coulomb lattices and the anomalous dissi-pation arising due to the interplay between plasmas and charged dust grains. These features determine new physics of dusty plasmas including, in particular, phase transitions and critical point phenomena, wave propagation, nonlinear effects and turbulence, dissipative and coherent structures, etc. The present review covers the main aspects of the area of dusty (complex) plasma research. The author acknowledges the financial support of the Division of Earth Sci-ences, Russian Academy of Sciences (the basic research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mech-anisms of formation"'), of the Division of Physical Sciences, Russian Academy of Sciences (the basic research program "Plasma physics in the Solar system"), of the Dynasty Foundation, as well as of the Russian Foundation for Basic Research.
The Lunar dusty plasmas -levitation and transport.
NASA Astrophysics Data System (ADS)
Atamaniuk, Barbara; Rothkaehl, Hanna
Lunar dust can exhibit unusual behavior -due to electron photoemission via solar-UV radiation the lunar surface represents a complex plasma -"dusty plasma". The dust grains and lunar surface are electrostatically charged by the Moon's interaction with the local plasma environ-ment and the photoemission of electrons due to solar UV and X-rays. This effect causes the like-charged surface and dust particles to repel each other, and creates a near-surface electric field. Lunar dust must be treated as a dusty plasma. Using analytic (kinetic (Vlasov) and magnetohydrodynamic theory ) and numerical modeling we show physical processes related to levitation and transport dusty plasma on the Moon. These dust grains could affect the lunar environment for radio wave and plasma diagnostics and interfere with exploration activities. References: 1. Wilson T.L. (1992), in Analysis of Interplanetary Dust, M. Zolensky et al. AIP Conf.Proc. 310, 33-44 (AIP, NY), 2.Wilson T.L."LUNAR DUST AND DUSTY PLASMA PHYSICS".40th Lunar and Planetary Science Conference (2009), 3. Grün E., et al.(1993),Nature 363, 144. 4. Morfill G. and Grün E.(1979), Planet. Space Sci.. 27, 1269, 1283, 5. Manka R. and Michel F. (1971), Proc. 2nd Lun. Sci. Conf. 2, 1717 (MIT Press, Cambridge). 6. Manka R. et al.(1973), Lun. Sci.-III, 504. 7. Barbara Atamaniuk "Kinetic Description of Localized Plasma Structure in Dusty Plasmas". Czechoslovak Journal of Physics Vol.54 C 2004
Salient features of solitary waves in dusty plasma under the influence of Coriolis force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G. C.; Nag, Apratim; Department of Physics, G. C. College, Silchar-788004
The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variationmore » caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.« less
Preliminary measurements of kinetic dust temperature using stereoscopic particle image velocimetry
NASA Astrophysics Data System (ADS)
Williams, Jeremiah; Thomas, Edward
2004-11-01
A dusty (or complex) plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of the microparticle (i.e., dust) component alters the plasma environment, giving rise to a wide variety of new plasma phenomena. Recently, the Auburn Plasma Sciences Laboratory (PSL) has acquired and installed a stereoscopic PIV (stereo-PIV) diagnostic tool for dusty plasma investigations [Thomas, et. al., Phys. Plasmas, 11, L37 (2004)]. This presentation discusses the use of the stereo-PIV technique for determining the velocity space distribution function of the microparticle component of a dc glow discharge dusty plasma. These distribution functions are then used to make preliminary estimates of the kinetic temperature of the dust component. The data is compared to a simple energy balance model that relates the dust temperature to the electric field and neutral pressure.
Measurement of the thermal effects in the dispersion relation of the dust acoustic wave
NASA Astrophysics Data System (ADS)
Hoyng, Joshua; Williams, Jeremiah
2017-10-01
A complex (dusty) plasma is a four-component plasma system composed of ions, electrons, neutral particles and charged microparticles. The charged microparticles interact with, and self- consistently modify, the surrounding plasma medium; resulting in a new and unique state of matter that can support a wide range of physical phenomena. Among these is a new wave mode known as the dust acoustic, or dust density, wave (DAW). The DAW is a low- frequency, longitudinal mode that propagates through the microparticle component of the dusty plasma system and is self-excited by the energy from the ions streaming through this component. Over the past twenty years, the dust acoustic wave has been a subject of intense study and recent studies have shown that thermal effects can, in some cases, have a significant role in the measured dispersion relation. A recent theoretical model suggest that the thermal effects are, in part, due to the finite size of the dusty plasma systems that support this wave mode. In this poster, we report the results of an experimental study examining this effect over a range of experimental conditions in a weakly-coupled dusty plasma system in an rf discharge plasma. This work is supported by US National Science Foundation through Grant No. PHY-1615420.
The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation
NASA Technical Reports Server (NTRS)
Whipple, E. C.
1986-01-01
Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin
2016-04-15
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause themore » attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.« less
Laboratory Investigation of Space and Planetary Dust Grains
NASA Technical Reports Server (NTRS)
Spann, James
2005-01-01
Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.
Turbulent complex (dusty) plasma
NASA Astrophysics Data System (ADS)
Zhdanov, Sergey; Schwabe, Mierk
2017-04-01
As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.
Merging and Splitting of Plasma Spheroids in a Dusty Plasma
NASA Astrophysics Data System (ADS)
Mikikian, Maxime; Tawidian, Hagop; Lecas, Thomas
2012-12-01
Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering. The instability consists of well-defined regions of enhanced optical emission that emerge from the electrode vicinity and propagate towards the discharge center. These plasma spheroids have complex motions resulting from their mutual interaction that can also lead to the merging of two plasma spheroids into a single one. The reverse situation is also observed with the splitting of a plasma spheroid into two parts. These results are presented for the first time and reveal new behaviors in dusty plasmas.
Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma
NASA Astrophysics Data System (ADS)
Thomas, Edward; Leblanc, Spencer; Lynch, Brian; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene
2015-11-01
The Magnetized Dusty Plasma Experiment (MDPX) device has been in operation for just over one year. In that time, the MDPX device has been operating using a uniform magnetic field configuration up to 3.0 Tesla and has successfully produced plasmas and dusty plasmas at high magnetic fields. In these experimental studies, we have made observations of a new type of imposed, ordered structure in a dusty plasma at magnetic fields above 1 T. These dusty plasma structures are shown to scale inversely with neutral pressure and are shown to reflect the spatial structure of a wire mesh placed in the plasma. Additionally, recent measurements have been made that give insights into the effective potential that establishes the ordered structures in the plasma. In this presentation, we report on details of the imposed, ordered dusty plasma structure as well as filamentary features that also appear in the plasma and modify the confinement of the dusty plasma. This work is supported with funding from the NSF and Department of Energy.
Cooperative particle motion in complex (dusty) plasmas
NASA Astrophysics Data System (ADS)
Zhdanov, Sergey; Morfill, Gregor
2014-05-01
Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.
Propagation characteristics of electromagnetic waves in dusty plasma with full ionization
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting
2018-01-01
This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.
NASA Astrophysics Data System (ADS)
Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua
2018-05-01
The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.
Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation
NASA Astrophysics Data System (ADS)
Land, V.
2007-12-01
About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.
Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons
NASA Astrophysics Data System (ADS)
Ahmadi, Abrishami S.; Nouri, Kadijani M.
2014-06-01
In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.
Dusty-Plasma Particle Accelerator
NASA Technical Reports Server (NTRS)
Foster, John E.
2005-01-01
A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.
Self-diffusion in a stochastically heated two-dimensional dusty plasma
NASA Astrophysics Data System (ADS)
Sheridan, T. E.
2016-09-01
Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.
Preliminary investigation of single-file diffusion in complex plasma rings
NASA Astrophysics Data System (ADS)
Theisen, W. L.; Sheridan, T. E.
2010-04-01
Particles in one-dimensional (1D) systems cannot pass each other. However, it is still possible to define a diffusion process where the mean-squared displacement (msd) of an ensemble of particles in a 1D chain increases with time t. This process is called single-file diffusion. In contrast to diffusive processes that follow Fick's law, msdt, single-file diffusion is sub-Fickean and the msd is predicted to increase as t^1/2. We have recently created 1D dusty (complex) plasma rings in the DONUT (Dusty ONU experimenT) apparatus. Particle position data from these rings will be analyzed to determine the scaling of the msd with time and results will be compared with predictions of single-file diffusion theory.
Application of Dusty Plasmas for Space
NASA Astrophysics Data System (ADS)
Bhavasar, Hemang; Ahuja, Smariti
In space, dust particles alone are affected by gravity and radiation pressure when near stars and planets. When the dust particles are immersed in plasma, the dust is usually charged either by photo ionization, due to incident UV radiation, secondary electron emission, due to collisions with energetic ions and electrons, or absorption of charged particles, due to collisions with thermal ions and electrons. A 1 micron radius dust particle in a plasma with an electron temperature of a few eV, will have a charge corresponding to a few thousand electron volts, with a resulting charge to mass ratio, Q/m ¡1. They will also be affected by electric and magnetic fields. Since the electrons are magnetized in these regions, electron E B or diamagnetic cross-field drifts may drive instabilities. Dust grains (micron to sub-micron sized solid particles) in plasma and/or radiative environments can be electrically charged by processes such as plasma current collection or photoemission. The effect of charged dust on known electrojet instabil-ities and low frequency dust acoustic and dust drift instabilities. As the plasma affects the dust particles, the dust particles can affect the plasma environment. In Dust Plasma, Plasma is Combination of ions and electrons. Dusty plasmas (also known as complex plasmas) are ordinary plasmas with embedded solid particles consisting of electrons, ions, and neutrals. The particles can be made of either dielectric or conducting materials, and can have any shape. The typical size range is anywhere from 100 nm up to say 100 m. Most often, these small objects or dust particles are electrically charged. Dusty plasmas are ubiquitous in the universe as proto-planetary and solar nebulae, molecular clouds, supernova explosions, interplanetary medium, circumsolar rings, and steroids. Closer to earth, there are the noctilucent clouds, clouds of tiny (charged) ice particles that form in the summer polar mesosphere at an altitude of about 85 km. In processing plasmas, dust particles are actually grown in the discharge from the reactive gases used to form the plasmas. Perhaps the most intriguing aspect of dusty plasmas is that the particles can be directly imaged and their dynamic behavior recorded as digital images. This is accomplished by laser light scattering from the particles. Since the particle mass is relatively high, their dynamical timescales are much longer than that of the ions or electrons. Dusty plasmas has a broad range of applications including interplanetary space dust, comets, planetary rings, dusty surfaces in space, and aerosols in the atmosphere.
Self-similar expansion of adiabatic electronegative dusty plasma
NASA Astrophysics Data System (ADS)
Shahmansouri, M.; Bemooni, A.; Mamun, A. A.
2017-12-01
The self-similar expansion of an adiabatic electronegative dusty plasma (consisting of inertialess adiabatic electrons, inertialess adiabatic ions and inertial adiabatic negatively charged dust fluids) is theoretically investigated by employing the self-similar approach. It is found that the effects of the plasma adiabaticity (represented by the adiabatic index ) and dusty plasma parameters (determined by dust temperature and initial dust population) significantly modify the nature of the plasma expansion. The implications of our results are expected to play an important role in understanding the physics of the expansion of space and laboratory electronegative dusty plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseini Jenab, S. M., E-mail: mehdi.jenab@yahoo.com; Kourakis, I., E-mail: IoannisKourakisSci@gmail.com
2014-04-15
A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on Bernstein–Greene–Kruskal (BGK) modes generated during the simulations. In particular, we aim at investigating the parametric dependence of the characteristics of BGK structures, namely of their time periodicity (τ{sub trap}) and their amplitude, on the electron-to-ion temperature ratio andmore » on the dust concentration. In electron-ion plasma, an exponential relation between τ{sub trap} and the amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that both characteristics, namely, the periodicity τ{sub trap} and amplitude, are also related to the size of the phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes characteristics appear to depend on the dust particle density linearly.« less
Structuring in complex plasma for nonlinearly screened dust particles
NASA Astrophysics Data System (ADS)
Tsytovich, Vadim; Gusein-zade, Namik
2014-03-01
An explanation is proposed for the recently discovered effect of spontaneous dusty plasma structuring (and the appearance of compact dust structures) under conditions of nonlinear dust screening. Physical processes are considered that make homogenous dusty plasma universally unstable and lead to the appearance of structures. It is shown for the first time that the efficiency of structuring increases substantially in the presence of plasma flows caused by the charging of nonlinearly screened dust grains. General results are obtained for arbitrary nonlinear screening, and special attention is paid to the model of nonlinear screening often used since 1964. The growth rate of structuring instability is derived. It is shown that, in the case of nonlinear screening, the structuring has a threshold determined by the friction of grains against the neutral gas. The theoretically obtained threshold agrees with recent experimental observations. The dispersion relation for dusty plasma structuring is shown to be similar to the dispersion relation for gravitational instability with an effective gravitational constant. The effective dust attraction caused by this instability is shown to be collective, and the dependence of the effective gravitational constant on the dust-to-ion density ratio is found explicitly for the first time. It is demonstrated that the proposed method of calculation of dust attraction by using the effective gravitational constant is the most efficient and straightforward. Understanding of the role of nonlinear screening gives deeper physical grounds for the theoretical interpretation of the observed phenomenon of dust crystal formation in complex plasmas.
Summary of initial results from the Magnetized Dusty Plasma Experiment (MDPX) device
NASA Astrophysics Data System (ADS)
Thomas, Edward
2015-11-01
Dusty (or complex) plasmas are four-component plasma systems consisting of electrons, ions, neutral atoms and charged, solid particulates. These particulates, i.e., the ``dust,'' become charged through interactions with the surrounding plasma particles and are therefore fully coupled to the background. The study of dusty plasmas began with astrophysical studies and has developed into a distinct area of plasma science with contributions to industrial, space, and fundamental plasma science. However, the vast majority of the laboratory studies are performed without the presence of a magnetic field. This is because, compared to the masses of the electrons and ions, the dust particles are significantly more massive and therefore the charge-to-mass ratio of the dust is very small. As a result, large (B > 1 T) magnetic fields are required to achieve conditions in which the dynamics of electrons, ions, and dust particles are dominated by the magnetic field. This presentation will provide a brief description of the design of the large bore (50 cm diameter x 158 cm long), multi-configuration, 4-Tesla class, superconducting magnet and integrated plasma chamber optimized for the study of dusty plasmas at high magnetic field - the MDPX device. The presentation will then focus on initial results of measurements made using MDPX - including observations of a new type of imposed ordered structures formed by the dust particles in a magnetized plasma, E x B driven flows of the particles, and observations of instabilities. This work is a collaboration of the author with Uwe Konopka (Auburn), Robert L. Merlino (Univ. of Iowa), Marlene Rosenberg (UCSD), and the MDPX team at Auburn University. Construction of the MDPX device was supported by the NSF-MRI program. Operations are supported by the NSF and DOE.
Equations of state and diagrams of two-dimensional liquid dusty plasmas
NASA Astrophysics Data System (ADS)
Feng, Yan; Lin, Wei; Li, Wei; Wang, Qiaoling
2016-09-01
Recently, the pressure of two-dimensional (2D) Yukawa liquids has been calculated from the simulations of isochores [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016)], which is applicable to 2D dusty plasmas. Thus, the equation of state for 2D strongly coupled liquid dusty plasmas is obtained. Isobars and isotherms of 2D liquid dusty plasmas are derived from this equation of state. For 2D liquid dusty plasmas, the surface corresponding to this equation of state has also been obtained in the 3D space of the pressure, the temperature, and the screening parameter which is related to the volume in the equilibrium state.
Sub-Fickean Diffusion in a One-Dimensional Plasma Ring
NASA Astrophysics Data System (ADS)
Theisen, W. L.
2013-12-01
A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.
Twisted waves and instabilities in a permeating dusty plasma
NASA Astrophysics Data System (ADS)
Bukhari, S.; Ali, S.; Khan, S. A.; Mendonca, J. T.
2018-04-01
New features of the twisted dusty plasma modes and associated instabilities are investigated in permeating plasmas. Using the Vlasov-Poisson model equations, a generalized dispersion relation is obtained for a Maxwellian distributed plasma to analyse the dust-acoustic and dust-ion-acoustic waves with finite orbital angular momentum (OAM) states. Existence conditions for damping/growth rates are discussed and showed significant modifications in twisted dusty modes as compared to straight propagating dusty modes. Numerically, the instability growth rate, which depends on particle streaming and twist effects in the wave potential, is significantly modified due to the Laguerre-Gaussian profiles. Relevance of the study to wave excitations due to penetration of solar wind into cometary clouds or interstellar dusty plasmas is discussed.
Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; China Research Institute of Radio Wave Propagation; Wu, Jian
The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.
Equation of state for two-dimensional dusty plasma liquids and its applications
NASA Astrophysics Data System (ADS)
Feng, Yan
2017-10-01
Laboratory dusty plasma consists of free electrons, free ions, and micro-sized dust particles with thousands of negative elementary charges. Due to their extremely low charge-to-mass ratio, these dust particles are strongly coupled, arranging themselves like atoms in liquids or solids. Due to the shielding effects of electrons and ions, dust particles interact with each other through the Yukawa potential, so that simulations of Yukawa liquids or solids are used to study properties of dusty plasmas. In the past two decades, the properties of liquid 2D dusty plasmas have been widely studied from experiments to theories and simulations. However, from our literature search, we have not found a quantitative and comprehensive study of properties of 2D liquid dusty plasmas over a wide range of plasma conditions. Here, from molecular-dynamics simulations of Yukawa liquids, we have obtained a concise equation of state (EOS) for the 2D liquid dusty plasmas from empirical fitting, which contains three quantities of the internal pressure, the coupling parameter, and the screening parameter. From this EOS, different thermodynamical processes can be directly derived, such as isotherms, isobars and isochores. Also, various physical properties of 2D liquid dusty plasmas, like the bulk modulus of elasticity, can be analytically derived, so that the sound speeds can be obtained. Finally, an analytical expression of the specific heat for 2D liquid dusty plasmas has been achieved. Work supported by the National Natural Science Foundation of China under Grant No. 11505124, the 1000 Youth Talents Plan, and the startup funds from Soochow University.
Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong Jingyu; Du Jiulin; Liu Zhipeng
2012-08-15
The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution ofmore » each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.« less
NASA Astrophysics Data System (ADS)
Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.
2017-05-01
The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma.
Final Technical Report for Grant DE-FG02-04ER54795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlino, Robert L
This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less
Magnetic field effects and waves in complex plasmas
NASA Astrophysics Data System (ADS)
Kählert, Hanno; Melzer, André; Puttscher, Marian; Ott, Torben; Bonitz, Michael
2018-05-01
Magnetic fields can modify the physical properties of a complex plasma in various different ways. Weak magnetic fields in the mT range affect only the electrons while strong fields in the Tesla regime also magnetize the ions. In a rotating dusty plasma, the Coriolis force substitutes the Lorentz force and can be used to create an effective magnetization for the strongly coupled dust particles while leaving electrons and ions unaffected. Here, we present a summary of our recent experimental and theoretical work on magnetized complex plasmas. We discuss the dynamics of dust particles in magnetized discharges, the wave spectra of strongly coupled plasmas, and the excitations in confined plasmas. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Modulational instability of an electron plasma wave in a dusty plasma
NASA Astrophysics Data System (ADS)
Amin, M. R.; Ferdous, T.; Salimullah, M.
1997-03-01
The modulational instability of an electron plasma wave in a homogeneous, unmagnetized, hot, and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles with random static distribution of massive and charged dust grains having certain correlation. It is noticed that the growth rate of the modulational instability of the electron plasma wave through a new ultra-low-frequency dust mode is more efficient than that through the usual ion-acoustic mode in the dusty plasma.
Dusty Plasmas in Planetary Magnetospheres Award
NASA Technical Reports Server (NTRS)
Horanyi, Mihaly
2005-01-01
This is my final report for the grant Dusty Plasmas in Planetary Magnetospheres. The funding from this grant supported our research on dusty plasmas to study: a) dust plasma interactions in general plasma environments, and b) dusty plasma processes in planetary magnetospheres (Earth, Jupiter and Saturn). We have developed a general purpose transport code in order to follow the spatial and temporal evolution of dust density distributions in magnetized plasma environments. The code allows the central body to be represented by a multipole expansion of its gravitational and magnetic fields. The density and the temperature of the possibly many-component plasma environment can be pre-defined as a function of coordinates and, if necessary, the time as well. The code simultaneously integrates the equations of motion with the equations describing the charging processes. The charging currents are dependent not only on the instantaneous plasma parameters but on the velocity, as well as on the previous charging history of the dust grains.
On the stability of self-gravitating magnetized dusty plasmas
NASA Astrophysics Data System (ADS)
Salimullah, M.; Shukla, P. K.
1999-03-01
The effects of a homogeneous magnetic field and the plasma nonuniformity on the dispersion relations of various electrostatic waves in self-gravitating magnetized dusty plasmas have been investigated. For this purpose, the kinetic dielectric response functions for the electrons and ions distributions have been used and the dielectric response function for the magnetized dust grains has been derived from the hydrodynamic equations that include the self-gravitational potential. Thus, extremely massive charged dust grains are subjected to both the electromagnetic and gravitational forces. Analytical studies of the dispersion relations in various frequency and wave number regimes reveal that both the magnetic fields and plasma inhomogeneities contribute to the stability of a self-gravitating dusty plasma system. The results of this investigation should be useful in understanding the stability of dusty proto-stars and dusty dark molecular clouds, which are held in strong magnetic fields and equilibrium density gradients.
Effect of polarization force on the Jeans instability in collisional dusty plasmas
NASA Astrophysics Data System (ADS)
A, ABBASI; M, R. RASHIDIAN VAZIRI
2018-03-01
The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.
Collapse of the surface dusty plasma waves under the plasma-beam instability
NASA Astrophysics Data System (ADS)
Grimalsky, Volodymyr; Kotsarenko, Anatoliy; Koshevaya, Svetlana; Escobedo-A., Jesus
2017-12-01
The nonlinear dynamics of the dusty plasma-dusty beam instability is investigated in the dusty plasma waveguides bounded by dielectrics. The dusty plasma includes the positive ions as the light component and the negative dust as the heavy component. A beam of dust particles moves along the waveguide. The set of hydrodynamic equations for the dust and beam particles, namely, the continuity equations and the equations for the momentum jointly with the Poisson one are used. The Boltzmann distribution is used for the ions. The electric and hydrodynamic boundary conditions are applied at the interfaces. The simulations have demonstrated that the dusty sound waves of small amplitudes are the subject to amplification with a high increment due to the convective instability, even when the concentration of the beam particles is ≤0.1 of the uniform dust concentration. The amplification very rapidly transits to the regime of strong surface nonlinearity, and near the interfaces the variations of the dust concentration reach extremely high values, where the collapse of the beam dust component occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Saurav, E-mail: sauravtsk.bhattacharjee@gmail.com; Das, Nilakshi
2015-10-15
A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping ofmore » DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.« less
A white paper on dusty plasmas
NASA Technical Reports Server (NTRS)
Whipple, E. C. (Compiler)
1986-01-01
Dusty plasmas is the name given to plasmas heavily laden with charged dust grains which together with the surrounding ions and electrons constitute a kind of plasma regime. This field of study is receiving increased attention because of the observation of dust during recent spacecraft missions to the planets and comets, together with the dawning recognition that the evolution of dusty plasma clouds in space may be quite different from that of nondusty clouds. Recent work in this field is reviewed and recommendations are made on the kind of research that is needed in the immediate future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, K.; Mizuno, Y.; Hibino, S.
2006-01-15
Simulations of dusty plasmas were performed using GRAPE-6, a special-purpose computer designed for gravitational N-body problems. The collective behavior of dust particles, which are injected into the plasma, was studied by means of three-dimensional computer simulations. As an example of a dusty plasma simulation, experiments on Coulomb crystals in plasmas are simulated. Formation of a quasi-two-dimensional Coulomb crystal has been observed under typical laboratory conditions. Another example was to simulate movement of dust particles in plasmas under microgravity conditions. Fully three-dimensional spherical structures of dust clouds have been observed. For the simulation of a dusty plasma in microgravity with 3x10{supmore » 4} particles, GRAPE-6 can perform the whole operation 1000 times faster than by using a Pentium 4 1.6 GHz processor.« less
NASA Astrophysics Data System (ADS)
El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.
2018-05-01
The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.
On the possibility of collective attraction in complex plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, M.; Morfill, G. E.; Kompaneets, R.
2010-06-15
An investigation on the possible collective electric attraction between like-charged dust particles has been performed in an isotropic homogeneous complex (dusty) plasma in which a balance between plasma creation due to ionization and plasma loss due to the absorption on dust particles has been reached. The analysis is made on the basis of a self-consistent fluid model, which includes plasma ionization, plasma loss on dust particles, dust charge variations, and ion-neutral friction. It is shown that the interaction potential can have an attractive part in the stability regime of the ionization-absorption balance with respect to ion perturbations only under verymore » limited circumstances.« less
Construction and implementation of a novel dust dropper for the PPPL Dusty Plasma Experiment
NASA Astrophysics Data System (ADS)
Tinguely, Roy; Dominguez, Arturo; Carpe, Andrew; Zwicker, Andrew
2013-10-01
The applications of dusty plasma research are far-reaching, from understanding astrophysical systems to studying plasma-wall interactions in magnetically confined plasma experiments. Unfortunately, dusty plasma environments can be difficult to control and replicate in laboratory settings. This poster details the construction, vacuum operation, and initial results of a multifaceted dust dropper, which is being implemented in the PPPL Dusty Plasma Experiment and is expected to improve the reproducibility and characterization of dust cloud formation. The cylindrical plastic shaker comprises four pairings of electromagnets and neodymium magnets, with eight stabilizing springs. The amplitude and frequency of a pulsed current determine the dust dispersal rate, while a biased metallic mesh regulates the area of dispersion and size and charge of dropped particles. Preliminary testing shows that, for 44 micron silica dust, steady dispersal rates as fast as 0.2 mg/s (approximately 1700 particles/s) can be achieved.
Freak oscillation in a dusty plasma.
Zhang, Heng; Yang, Yang; Hong, Xue-Ren; Qi, Xin; Duan, Wen-Shan; Yang, Lei
2017-05-01
The freak oscillation in one-dimensional dusty plasma is studied numerically by particle-in-cell method. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which is proposed as an effective tool for studying the rogue waves in dusty plasma. Additionally, the application scope of the analytical solution of the rogue wave described by the NLSE is given.
The dielectric function of weakly ionized dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; China Research Institute of Radio wave Propagation; Wu, Jian
2016-07-15
Using classical Boltzmann kinetic theory, the dielectric function of weakly ionized unmagnetized dusty plasma is derived. The elastic Coulomb collision and inelastic charging collision of electrons with charged dust particle as well as charge variation on dust surface are taken into account. The theoretical result is applied to analyze the propagation of electromagnetic wave in a dusty plasma. It is demonstrated that the additional collision mechanism provided by charged dust particle can significantly increase the absorbed power of electromagnetic wave. These increases are mainly determined by the dust radius, density, and the charge numbers on the dust surface. The obtainedmore » results will support an enhanced understanding of the wave propagation processes in space and laboratory dusty plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
Based on the quantum hydrodynamics (QHD) model, a new relationship between the electrostatic-potential and the electron-density in the ultradense plasma is derived. Propagation of arbitrary amplitude nonlinear ion waves is, then, investigated in a completely degenerate dense dusty electron-ion plasma, using this new energy relation for the relativistic electrons, in the ground of quantum hydrodynamics model and the results are compared to the case of semiclassical Thomas-Fermi dusty plasma. Based on the standard pseudopotential approach, it is remarked that the Fermi-Dirac plasma, in contrast to the Thomas-Fermi counterpart, accommodates a wide variety of nonlinear excitations such as positive/negative-potential ion solitarymore » and periodic waves, double-layers, and double-wells. It is also remarked that the relativistic degeneracy parameter which relates to the mass-density of plasma has significant effects on the allowed matching-speed range in Fermi-Dirac dusty plasmas.« less
NASA Astrophysics Data System (ADS)
El-Bedwehy, N. A.
2016-07-01
The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev-Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com
2016-07-15
The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev–Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.
3D dust clouds (Yukawa Balls) in strongly coupled dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melzer, A.; Passvogel, M.; Miksch, T.
2010-06-16
Three-dimensional finite systems of charged dust particles confined to concentric spherical shells in a dusty plasma, so-called 'Yukawa balls', have been studied with respect to their static and dynamic properties. Here, we review the charging of particles in a dusty plasma discharge by computer simulations and the respective particle arrangements. The normal mode spectrum of Yukawa balls is measured from the 3D thermal Brownian motion of the dust particles around their equilibrium positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorranian, Davoud; Sabetkar, Akbar
The nonlinear dust acoustic solitary waves in a dusty plasma with two nonthermal ion species at different temperatures is studied analytically. Using reductive perturbation method, the Kadomtsev-Petviashivili (KP) equation is derived, and the effects of nonthermal coefficient, ions temperature, and ions number density on the amplitude and width of soliton in dusty plasma are investigated. It is shown that the amplitude of solitary wave of KP equation diverges at critical points of plasma parameters. The modified KP equation is also derived, and from there, the soliton like solutions of modified KP equation with finite amplitude is extracted. Results show thatmore » generation of rarefactive or compressive solitary waves strongly depends on the number and temperature of nonthermal ions. Results of KP equation confirm that for different magnitudes of ions temperature (mass) and number density, mostly compressive solitary waves are generated in a dusty plasma. In this case, the amplitude of solitary wave is decreased, while the width of solitary waves is increased. According to the results of modified KP equation for some certain magnitudes of parameters, there is a condition for generation of an evanescent solitary wave in a dusty plasma.« less
Dusty plasma sheath-like structure in the region of lunar terminator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popel, S. I.; Zelenyi, L. M.; Atamaniuk, B.
2015-12-15
The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of 2–3 μm up to an altitude of about 30 cm over the lunar surfacemore » that explains the effect of “horizon glow” observed at the terminator by Surveyor lunar lander.« less
Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Ticoş, Cǎtǎlin M.; Wurden, Glen A.
2007-10-01
Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 1015m-3 electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas (˜10eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry.
Effect of magnetic field on the phase transition in a dusty plasma
NASA Astrophysics Data System (ADS)
Jaiswal, S.; Hall, T.; LeBlanc, S.; Mukherjee, R.; Thomas, E.
2017-11-01
The formation of a self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments, the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of the externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with the increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At a higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe to lead to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.
Ion- and dust-acoustic instabilities in dusty plasmas
NASA Technical Reports Server (NTRS)
Rosenberg, M.
1993-01-01
Dust ion-acoustic and dust-acoustic instabilities in dusty plasmas are investigated using a standard Vlasov approach. Possible applications of these instabilities to various cosmic environments, including protostellar clouds and planetary rings, are briefly discussed.
Decay instability of an electron plasma wave in a dusty plasma
NASA Astrophysics Data System (ADS)
Amin, M. R.; Ferdous, T.; Salimullah, M.
1996-03-01
The parametric decay instability of an electron plasma wave in a homogeneous, unmagnetized, hot and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the charged dust grains introduces a background inhomogeneous electric field that significantly influences the dispersive properties of the plasma and the decay process. The growth rate of the decay instability through the usual ion-acoustic mode is modified, and depends upon the dust perturbation parameter μi, dust correlation length q0, and the related ion motion. However, the decay process of the electron plasma wave through the ultralow frequency dust mode, excited due to the presence of the dust particles, is more efficient than the decay through the usual ion-acoustic mode in the dusty plasma.
Jeans instability of a dusty plasma with dust charge variations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakimi Pajouh, H., E-mail: hakimi@alzahra.ac.ir; Afshari, N.
2015-09-15
The effect of the dust charge variations on the stability of a self-gravitating dusty plasma has been theoretically investigated. The dispersion relation for the dust-acoustic waves in a self-gravitating dusty plasma is obtained. It is shown that the dust charge variations have significant effects. It increases the growth rate of instability and the instability cutoff wavenumbers. It is found that by increasing the value of the ions temperature and the absolute value of the equilibrium dust charge, the cutoff wavenumber decreases and the stability region is extended.
NASA Astrophysics Data System (ADS)
Mishra, Rinku; Dey, M.
2018-04-01
An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.
NASA Astrophysics Data System (ADS)
Feng, Yan; Lin, Wei; Murillo, M. S.
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikary, N. C., E-mail: nirab-iasst@yahoo.co.in; Deka, M. K.; Dev, A. N.
2014-08-15
In this report, the investigation of the properties of dust acoustic (DA) solitary wave propagation in an adiabatic dusty plasma including the effect of the non-thermal ions and trapped electrons is presented. The reductive perturbation method has been employed to derive the modified Korteweg–de Vries (mK-dV) equation for dust acoustic solitary waves in a homogeneous, unmagnetized, and collisionless plasma whose constituents are electrons, singly charged positive ions, singly charged negative ions, and massive charged dust particles. The stationary analytical solution of the mK-dV equation is numerically analyzed and where the effect of various dusty plasma constituents DA solitary wave propagationmore » is taken into account. It is observed that both the ions in dusty plasma play as a key role for the formation of both rarefactive as well as the compressive DA solitary waves and also the ion concentration controls the transformation of negative to positive potentials of the waves.« less
Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems
2011-07-01
data in what concerns its consequences. Definitively the BG entropy can only be understood nowadays as a first, most important, step, but not as the...applications to natural systems (trapped ions, spin-glass, dusty plasma, earthquakes, turbulence, astrophysical objects, cosmology , black holes, etc
Final Progress Report for Ionospheric Dusty Plasma In the Laboratory [Smokey Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Scott
2010-07-31
“Ionospheric Dusty Plasma in the Laboratory” is a research project with the purpose of finding and reproducing the characteristics of plasma in the polar mesosphere that is unusually cold (down to 140 K) and contains nanometer-sized dust particles. This final progress report summarizes results from four years of effort that include a final year with a no-cost extension.
Characterization of Imposed Ordered Structures in MDPX
NASA Astrophysics Data System (ADS)
Hall, Taylor; Thomas, Edward; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene
2016-10-01
It is well understood that the microparticles in complex, or dusty, plasmas will form self-consistent crystalline patterns at the proper plasma parameters. In the Magnetized Dusty Plasma Experiment (MDPX) device, studies have been made of imposed, ordered structuring of the dust particles to a two dimensional grid. At high magnetic field (B >1 Tesla), the dust particles are shown to become spatially oriented to the structure of a wire mesh embedded in an electrically floating, upper electrode while the particles are suspended in a plasma that is generated by the powered, lower electrode in the experiment. With even higher magnetic field (B >2 Tesla), the particles become strongly confined to the mesh pattern with the particles constrained to a quasi-discreet motion that closely follows the mesh pattern. This presentation characterizes the structure of the potential energy well in which the dust particles are trapped through observation of particle motion and measurement of the thermal properties of the particles. This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.
Theory of void formation in dusty plasmas
NASA Astrophysics Data System (ADS)
Hu, Zuquan; Chen, Yinhua; Zheng, Xiang; Huang, Feng; Shi, Gei-fen; Yu, M. Y.
2009-06-01
A fluid theory of void formation in dusty plasmas taking into account ionization is proposed. It is shown that if the ionization rate is larger than a threshold, an initial steady-state dust-density distribution can evolve into a stable distribution containing a void. As the ionization rate is further increased, the time required for void formation decreases. The void size first increases, but then decreases. However, for still larger ionization rates, the dusty region of the plasma becomes ringlike, including the convection term in dust momentum equation. The results are in agreement with existing experiments and theories.
Jeans instability with exchange effects in quantum dusty magnetoplasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamil, M., E-mail: jamil.gcu@gmail.com; Rasheed, A.; Rozina, Ch.
2015-08-15
Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems.
Design of an open-ended plenoptic camera for three-dimensional imaging of dusty plasmas
NASA Astrophysics Data System (ADS)
Sanpei, Akio; Tokunaga, Kazuya; Hayashi, Yasuaki
2017-08-01
Herein, the design of a plenoptic imaging system for three-dimensional reconstructions of dusty plasmas using an integral photography technique has been reported. This open-ended system is constructed with a multi-convex lens array and a typical reflex CMOS camera. We validated the design of the reconstruction system using known target particles. Additionally, the system has been applied to observations of fine particles floating in a horizontal, parallel-plate radio-frequency plasma. Furthermore, the system works well in the range of our dusty plasma experiment. We can identify the three-dimensional positions of dust particles from a single-exposure image obtained from one viewing port.
Slow test charge response in a dusty plasma with Kappa distributed electrons and ions
NASA Astrophysics Data System (ADS)
Ali, S.; Eliasson, B.
2017-08-01
The electrostatic potential around a slowly moving test charge is studied in a dusty plasma where the ions and electrons follow a powerlaw Kappa distribution in velocity space. A test charge moving with a speed much smaller than the dust thermal speed gives rise to a short-scale Debye-Hückel potential as well as a long-range far-field potential decreasing as inverse cube of the distance to the test charge along the propagation direction. The potentials are significantly modified in the presence of high-energy tails, modeled by lower spectral indices in the ion and electron Kappa distribution functions. Plasma parameters relevant to laboratory dusty plasmas are discussed.
Nonmodal phenomena in differentially rotating dusty plasmas
NASA Astrophysics Data System (ADS)
Poedts, Stefaan; Rogava, Andria D.
2000-10-01
In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .
Plasmakristall-4: A microgravity complex plasma facility on the way to launch
NASA Astrophysics Data System (ADS)
Pustylnik, Mikhail; Thomas, Hubertus; Fortov, Vladimir; Thoma, Markus; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Usachev, Alexander; Zobnin, Andrey; Tarantik, Karl; Albrecht, Sebastian; Deysenroth, Christian; Rau, Christian; Mitic, Slobodan; Nosenko, Vladimir; Fink, Martin; Prof
Complex plasmas, a special case of dusty plasmas, are one of the most interesting physical objects to be studied under microgravity conditions. A way from dusty plasmas to complex plasmas was revealed when strong coupling phenomena in the dust subsystem were first theoretically predicted and then observed under ground laboratory conditions. Complex plasmas are, therefore, dusty plasmas, which are prepared intentionally to study generic phenomena of condensed matter physics. Complex plasmas have several advantages in this respect: Real-time, virtually undamped dynamics of the system can be resolved on the kinetic level, i.e. on the level of single microparticles. Under ground laboratory conditions the microparticles are strongly affected by the gravitational force, which has to be compensated by strong electrostatic forces. Therefore, the volume occupied by the microparticles is limited to sheath region. This makes formation of uniform 3D structures under ground condition almost impossible. Microgravity is therefore essential for studying 3D complex plasma systems. The next lab for complex plasma research under mug-conditions will be PK-4, a joint Russian-European project. The special feature of PK-4 (with respect to its predecessor PK-3 Plus on the ISS) is that it will allow to study the fluid phenomena. Geometry of the plasma chamber (a glass tube with the working part of about 200 mm long and 30 mm diameter) implies presence of micropaticle flows along its axis. A custom-made power supply will create either a DC or polarity-switched discharge inside the chamber filled with either neon or argon. In the DC mode the negatively-charged microparticles will drift opposite to the electric field. Polarity switching can be done with up to several kHz frequency, which will allow the discharge to change polarity, whereas heavy microparticles will be insensitive to such fast variations of the electric field. In this way, microparticles will be trapped inside the plasma chamber. For the diagnostics of the microparticles, two CCD cameras and an illumination laser sheet are available. Cameras and the laser focal plane are movable along the plasma chamber and cover almost the entire working area. Moving the laser sheet and cameras across the plasma chamber axis will allow to obtain information on the 3D structure of the microparticle clouds. Background plasma may be monitored by the so-called plasma glow camera, which produces three kaleidoscopic images of the plasma. Two of these images are filtered for two neon spectral lines and the third one represents the integral glow. Also, a spectrometer whose receiving optics is movable together with the cameras is available as a diagnostic means. Several microparticles manipulation techniques are implemented in PK-4, starting from simple discharge current modulation to using a powerful infrared laser exerting radiation pressure on microparticles. The experiment is going to be conducted on board of the International Space Station. The launch is scheduled to October 2014. Even before being launched into orbit, the PK-4 project already delivered lots of interesting scientific results, obtained in ground laboratory and parabolic flight experiments and numerical simulations. First of all, the kinetic model of the discharge was built and the discharge parameters, such as electron density and temperature, number density of metastable atoms were measured. Diagnostic methods are being further developed to be used on orbit. Then, the microscopic properties of the microparticles (i.e. their charge and forces acting on them) were determined using dynamic methods. Size dynamics (growth and etching) of microparticles in PK-4 discharges were studied. Collective plasma phenomena (such as e.g. dust-acoustic) waves were investigated. And, finally, the interdisciplinary experiments, making a link between the PK-4 plasmas and real condensed matter were conducted. Such phenomenon as electrorheology was successfully modelled with PK-4 complex plasmas in a parabolic flight. A review of the results and a roadmap for future orbital operations will be presented in this contribution.
Effect of magnetic field on the phase transition in dusty plasma
NASA Astrophysics Data System (ADS)
Jaiswal, Surabhi; Thomas, Edward; Mukherjee, Rupak
2017-10-01
The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameter in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure formed within the confining ring, but ramping the magnetic field up to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field. This work was supported by the US Dept. of Energy, DE - SC0010485.
Single-Camera Stereoscopy Setup to Visualize 3D Dusty Plasma Flows
NASA Astrophysics Data System (ADS)
Romero-Talamas, C. A.; Lemma, T.; Bates, E. M.; Birmingham, W. J.; Rivera, W. F.
2016-10-01
A setup to visualize and track individual particles in multi-layered dusty plasma flows is presented. The setup consists of a single camera with variable frame rate, and a pair of adjustable mirrors that project the same field of view from two different angles to the camera, allowing for three-dimensional tracking of particles. Flows are generated by inclining the plane in which the dust is levitated using a specially designed setup that allows for external motion control without compromising vacuum. Dust illumination is achieved with an optics arrangement that includes a Powell lens that creates a laser fan with adjustable thickness and with approximately constant intensity everywhere. Both the illumination and the stereoscopy setup allow for the camera to be placed at right angles with respect to the levitation plane, in preparation for magnetized dusty plasma experiments in which there will be no direct optical access to the levitation plane. Image data and analysis of unmagnetized dusty plasma flows acquired with this setup are presented.
A dusty plasma 1-ring to rule them all
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Gallagher, James C.
2010-04-01
One-dimensional and quasi-one-dimensional strongly-coupled dusty plasma rings have been created experimentally in the DONUT (Dusty ONU experimenT) apparatus. Longitudinal (acoustic) and transverse (optical) dispersion relations for the 1-ring were measured and found to be in very good agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-H"uckel) potential. These rings provide a new system in which to study one-dimensional and quasi-one-dimensional physics.
Design and Fabrication of a Magnetic System to Investigate Magnetized Dusty Plasmas
NASA Astrophysics Data System (ADS)
Bates, Evan M.; Romero-Talamas, Carlos A.
2013-10-01
The interest in researching the dynamics and equilibrium of magnetized dusty plasma crystallization has led to the design and fabrication of a novel experimental setup at UMBC. The proposed magnets will be an important subsystem of this setup, and will produce a uniform magnetic field of several tesla for a duration of several seconds. The magnets will be arranged in the Helmholtz configuration and will have a cooling system for temperature compensation of the coils, as well as the ability to adjust the orientation of the magnetic field with respect to gravity. Planned experiments include propagation of magnetized waves in dusty plasma crystals under various boundary conditions.
Kinetic theory of Jeans instability of a dusty plasma.
Pandey, B P; Lakhina, G S; Krishan, V
1999-12-01
A kinetic theory of the Jeans instability of a dusty plasma has been developed in the present work. The effect of grain charge fluctuations due to the attachment of electrons and ions to the grain surface has been considered in the framework of Krook's collisional model. We demonstrate that the grain charge fluctuations alter the growth rate of the gravitational collapse of the dusty plasma. The Jeans length has been derived under limiting cases, and its dependence on the attachment frequency is shown. In the absence of gravity, we see that the damping rate of the dust acoustic mode is proportional to the electron-dust collision frequency.
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2018-05-01
In the present paper we derive the plasma dispersion equation under the effect of ionization rate in a dust plasma to investigate the electrostatic ion cyclotron instability, where dust charge fluctuation is absent. It has one of the lowest threshold drift velocities among all the current-driven instabilities in isothermal plasma. The Electrostatic ion cyclotron instability in a dusty plasma containing electrons, light ions, and massive negatively charged dust grains which can be investigated both experimentally and theoretically.
Studies on Charge Variation and Waves in Dusty Plasmas
NASA Astrophysics Data System (ADS)
Kausik, Siddhartha Sankar
Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move upward in the form of a collimated beam. Argon plasma is produced in an experimental setup consisting of a dust chamber, a plasma chamber and a diagnostic chamber (also called deflection chamber) by striking a discharge between incandescent tungsten filaments and the magnetic cage, which is grounded. Plasma thus produced is confined by a full line cusped magnetic field confinement system consisting of a cylindrically shaped cage made up of stainless steel channels filled up with cube shaped having 1.2 kG field strength at its surface.
A two-dimensional particle-in-cell model of a dusty plasma
NASA Technical Reports Server (NTRS)
Young, B.; Cravens, T. E.; Armstrong, T. P.; Friauf, R. J.
1994-01-01
Dusty plasmas are present in comets, in the ring systems of the outer planets, and in the interstellar medium. A two-dimensional particle-in-cell (PIC) model of a dusty plasma is presented in this paper. The PIC code is best suited for modeling the plasma-dust interaction for large grains, with diameters of the order of a centimeter. We have modeled the charging process for an individual dust grain and the associated potential pattern in the surrounding plasma. We have also considered the case of a large number of grains in a plasma, with intergrain separations of the order of the Debye length, and have shown that the plasma becomes depleted and the charge on a dust grain is reduced, as other workers in this field have predicted (cf. C. K. Goertz, 1989). We examine the electron and ion distribution functions in the vicinity of a charged grain and demonstrate that the ions near a grain have clearly been accelerated by the electrostatic potential.
Solitary waves and double layers in a dusty electronegative plasma.
Mamun, A A; Shukla, P K; Eliasson, B
2009-10-01
A dusty electronegative plasma containing Boltzmann electrons, Boltzmann negative ions, cold mobile positive ions, and negatively charged stationary dust has been considered. The basic features of arbitrary amplitude solitary waves (SWs) and double layers (DLs), which have been found to exist in such a dusty electronegative plasma, have been investigated by the pseudopotential method. The small amplitude limit has also been considered in order to study the small amplitude SWs and DLs analytically. It has been shown that under certain conditions, DLs do not exist, which is in good agreement with the experimental observations of Ghim and Hershkowitz [Y. Ghim (Kim) and N. Hershkowitz, Appl. Phys. Lett. 94, 151503 (2009)].
Dusty plasma sheath-like structure in the lunar terminator region
NASA Astrophysics Data System (ADS)
Popel, Sergey; Zelenyi, Lev; Atamaniuk, Barbara
2016-07-01
The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure [1] in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of a few micrometers up to an altitude of about 30 cm over the lunar surface that explains the effect of ``horizon glow" observed at the terminator by Surveyor lunar lander. This work was supported in part by the Presidium of the Russian Academy of Sciences (under Fundamental Research Program No. 7, ``Experimental and Theoretical Study of the Solar System Objects and Stellar Planet Systems. Transient Explosion Processes in Astrophysics" and the Russian Foundation for Basic Research (Project No. 15-02-05627-a). [1] S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015); doi: 10.1063/1.4937368.
Shock-like pulse experiment in a strongly coupled dusty plasma
NASA Astrophysics Data System (ADS)
Kananovich, Anton; Goree, J.
2017-10-01
Compressional pulses are excited in a dusty plasma using a wire moved at a supersonic speed. The dusty plasma consists of a 2D monolayer of polymer microspheres electrically levitated in a low-temperature argon RF plasma. The microspheres gained a large negative charge so that they interacted with each other as a strongly coupled component, partly shielded by the electrons and ions. The wire, which had a negative potential that repelled microspheres, was moved at a constant speed, causing a compressional pulse to propagate. This pulse had shock-like properties because the wire was moved faster than the longitudinal sound speed in the microspheres. The experiment was repeated for the dusty plasma both in liquid and solid states, all of the controlled parameters except for the dust kinetic temperature being equal. The laser rastering method was used to change the kinetic temperature. Several experimental runs were done with different wire speeds for the both cases. An increase in the wire propagation speed increased the propagation speed of the compressional pulse. High pulse propagation speeds were obtained with Mach numbers up to 5. For high pulse propagation speeds crystal buckling was observed. Video microscopy was the main diagnostic. Supported by U.S. Dept. of Energy.
Lunar Dust and Dusty Plasma Physics
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
2009-01-01
In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.
Low frequency wave propagation in a cold magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Sarkar, S.; Ghosh, S.; Khan, M.
1998-12-01
In this paper several characteristics of low frequency waves in a cold magnetized dusty plasma propagating parallel and perpendicular to the static background magnetic field have been investigated. In the case of parallel propagation the negatively charged dust particles resonate with the right circularly polarized (RCP) component of em waves when the wave frequency equals the dust cyclotron frequency. It has been shown that an RCP wave in dusty plasma consists of two branches and there exists a region where an RCP wave propagation is not possible. Dispersion relation, phase velocity and group velocity of RCP waves have been obtained and propagation characteristics have been shown graphically. Poynting flux and Faraday rotation angles have been calculated for both lower and upper branches of the RCP wave. It has been observed that sense of rotation of the plane of polarization of the RCP wave corresponding to two distinct branches are opposite. Finally, the effect of dust particles on the induced magnetization from the inverse Faraday effect (IFE) due to the interaction of low frequency propagating and standing em waves with dusty plasmas has been evaluated.
Characteristics of the surface plasma wave in a self-gravitating magnetized dusty plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
2015-11-15
The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma slab are investigated. The dispersion relation is derived by using the low-frequency magnetized dusty dielectric function and the surface wave dispersion integral for the slab geometry. We find that the self-gravitating effect suppresses the frequency of surface dust ion-acoustic wave for the symmetric mode in the long wavelength regime, whereas it hardly changes the frequency for the anti-symmetric mode. As the slab thickness and the wave number increase, the surface wave frequency slowly decreases for the symmetric mode but increases significantly for the anti-symmetric mode. Themore » influence of external magnetic field is also investigated in the case of symmetric mode. We find that the strength of the magnetic field enhances the frequency of the symmetric-mode of the surface plasma wave. The increase of magnetic field reduces the self-gravitational effect and thus the self-gravitating collapse may be suppressed and the stability of dusty objects in space is enhanced.« less
FDTD Simulation on Terahertz Waves Propagation Through a Dusty Plasma
NASA Astrophysics Data System (ADS)
Wang, Maoyan; Zhang, Meng; Li, Guiping; Jiang, Baojun; Zhang, Xiaochuan; Xu, Jun
2016-08-01
The frequency dependent permittivity for dusty plasmas is provided by introducing the charging response factor and charge relaxation rate of airborne particles. The field equations that describe the characteristics of Terahertz (THz) waves propagation in a dusty plasma sheath are derived and discretized on the basis of the auxiliary differential equation (ADE) in the finite difference time domain (FDTD) method. Compared with numerical solutions in reference, the accuracy for the ADE FDTD method is validated. The reflection property of the metal Aluminum interlayer of the sheath at THz frequencies is discussed. The effects of the thickness, effective collision frequency, airborne particle density, and charge relaxation rate of airborne particles on the electromagnetic properties of Terahertz waves through a dusty plasma slab are investigated. Finally, some potential applications for Terahertz waves in information and communication are analyzed. supported by National Natural Science Foundation of China (Nos. 41104097, 11504252, 61201007, 41304119), the Fundamental Research Funds for the Central Universities (Nos. ZYGX2015J039, ZYGX2015J041), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120185120012)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
2015-02-15
The nonthermal and geometric effects on the propagation of the surface dust acoustic waves are investigated in a Lorentzian dusty plasma slab. The symmetric and anti-symmetric dispersion modes of the dust acoustic waves are obtained by the plasma dielectric function with the spectral reflection conditions the slab geometry. The variation of the nonthermal and geometric effects on the symmetric and the anti-symmetric modes of the surface plasma waves is also discussed.
Laser-excited pulse propagation in a crystallized complex plasma
NASA Astrophysics Data System (ADS)
Nosenko, V.; Nunomura, S.; Goree, J.
2000-10-01
A complex plasma, so-called in analogy with complex fluids, is an ionized gas containing small solid particles. This medium is also called a dusty plasma. The particles acquire a large negative electric charge. In an experiment, polymer microspheres were shaken into a parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, and were arranged in a hexagonal lattice. They were imaged using a video camera to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. By modulating an argon laser beam directed tangentially at the lattice, we launched a pulsed wave in the lattice. We evaluated the pulse shape and propagation speed, while varying the pulse power and duration. This allowed a test for dispersion and nonlinearity, as well as a test of whether the pulse has the properties of a shock.
Simulation of dust voids in complex plasmas
NASA Astrophysics Data System (ADS)
Goedheer, W. J.; Land, V.
2008-12-01
In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.
A hypothetical dusty plasma mechanism of Hessdalen lights
NASA Astrophysics Data System (ADS)
Paiva, G. S.; Taft, C. A.
2010-10-01
Hessdalen lights (HL) are unexplained light balls usually seen in the valley of Hessdalen, Norway. In this work, it is suggested that HL are formed by a cluster of macroscopic Coulomb crystals in a plasma produced by the ionization of air and dust by alpha particles during radon decay in the dusty atmosphere. Several physical properties (oscillation, geometric structure, and light spectrum) observed in HL phenomenon can be explained through the dust plasma model.
Dust-gas Interactions in Dusty X-ray Emitting Plasmas
NASA Technical Reports Server (NTRS)
Dwek, Eli
2006-01-01
Dusty shocked plasmas cool primarily by infrared emission from dust that is collisionally heated by the ambient hot gas. The infrared emission provides therefore an excellent diagnostic of the conditions (density and temperature) of the shocked gas. In this review I will discuss the physical processes in these plasmas, with a particular emphasis on recent infrared observations of the interaction between the blast wave of SN1987a and its equatorial ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Despax, B.; Makasheva, K.; CNRS, LAPLACE, F-31062 Toulouse cedex 09
2012-11-01
A new approach of periodic production of dusty plasma consisting of pulsed injection of hexamethyldisiloxane (HMDSO) in argon axially asymmetric radiofrequency (RF) discharge was investigated in this work. The range of plasma operating conditions in which this dusty plasma can exist was closely examined. The obtained results clearly show that a net periodicity in the formation/disappearance of dust particles in the plasma can be maintained on a very large scale of discharge duration. The significance of discharge axial asymmetry to the dust particles behaviour in the plasma is revealed by the development of an asymmetric in shape void shifted towardsmore » the powered RF electrode. The key role of the reactive gas and its pulsed injection on each stage of the oscillating process of formation/disappearance of dust particles is disclosed by optical and electrical measurements. It is shown that the period of dusty plasma formation/disappearance is inversely related to the HMDSO injection time. Moreover, the impact of time injection over short period (5 s) is examined. It indicates the conflicting role played by the HMDSO on the reduction of dusty plasma during the reactive gas injection and the reappearance of particles in the plasma during the time off. The electronegative behavior of the plasma in the presence of negatively charged particles seems to explain the energetic modifications in the discharge. A frequency analysis of the floating potential reveals all these cyclic processes. Particularly, in the 10-200 Hz frequency range, the presence and the evolution of dust particles in the plasma over one generation can be observed.« less
Lab- and space-based researchers discuss plasma experiments
NASA Astrophysics Data System (ADS)
Baker, D. N.; Yamada, M.
Plasma physics provides a common language and set of approaches that tie together all scientists who study the acceleration, transport, and loss processes of the plasma state. Some years ago, researchers from the laboratory and space research communities suggested a workshop to bring together the diverse researchers in the respective fields. A series of workshops on the “Interrelationship between Plasma Experiments in the Laboratory and Space” (IPELS) was established, and the third meeting was held July 24-28, 1995, in the beautiful and historic town of Pitlochry in the Scottish Highlands.The conference reestablished the critical point that plasma physics is an important but surprisingly diversified research discipline. Meetings attendees discussed a number of new approaches to plasma research, including novel diagnostic techniques for use in space, such as active antennas and electric field sounding devices. Detailed discussions covered spacecraft-plasma environment interactions, including vehicle charging and neutral gas release; fundamental aspects of industrial application of dusty plasmas and waves in dusty plasmas; a very distinctive phase transition of coulomb crystals (from solid state to liquid state) in dusty plasmas; and terrella experiments to simulate and study chaotic transport in the ionosphere.
Plasma Physics Applied (New Book)
NASA Astrophysics Data System (ADS)
Grabbe, Crockett
2007-03-01
0.5cm Plasma physics applications are one of the most rapidly growing fields in engineering & applied science today. The last decade alone has seen the rapid emergence of new applications such as dusty plasmas in the semiconductor and microchip industries, and plasma TVs. In addition, this last decade saw the achievement of the 50-year Lawson breakeven condition for fusion. With new discoveries in space plasma physics and applications to spacecraft for worldwide communication and space weather, as well as new applications being discovered, this diversity is always expanding. The new book Plasma Physics Applied reviews developments in several of these areas. Chapter 1 reviews the content and its authors, and is followed by a more comprehensive review of plasma physics applications in general in Chapter 2. Plasma applications in combustion and environmental uses are presented in Chapter 3. Lightning effects in planetary magnetospheres and potential application are described in Chapter 4. The area of dusty plasmas in both industrial and space plasmas and their applications are reviewed in Chapter 5. The particular area of Coulomb clusters in dusty plasmas is presented in Chapter 6. The variety of approaches to plasma confinement in magnetic devices for fusion are laid out in Chapter 7. Finally, an overview of plasma accelerator developments and their applications are presented in Chapter 8.
Dressed soliton in quantum dusty pair-ion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Prasanta; Muniandy, S. V.; Wong, C. S.
Nonlinear propagation of a quantum ion-acoustic dressed soliton is studied in a dusty pair-ion plasma. The Korteweg-de Vries (KdV) equation is derived using reductive perturbation technique. A higher order inhomogeneous differential equation is obtained for the higher order correction. The expression for a dressed soliton is calculated using a renormalization method. The expressions for higher order correction are determined using a series solution technique developed by Chatterjee et al. [Phys. Plasmas 16, 072102 (2009)].
Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu
2008-08-15
The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.
Solar wind interaction with dusty plasmas produces instabilities and solitary structures
NASA Astrophysics Data System (ADS)
Saleem, H.; Ali, S.
2017-12-01
It is pointed out that the solar wind interaction with dusty magnetospheres of the planets can give rise to purely growing instabilities as well as nonlinear electric field structures. Linear dispersion relation of the low frequency electrostatic ion-acoustic wave (IAW) is modified in the presence of stationary dust and its frequency becomes larger than its frequency in usual electron ion plasma even if ion temperature is equal to the electron temperature. This dust-ion-acoustic wave (DIAW) either becomes a purely growing electrostatic instability or turns out to be the modified dust-ion-acoustic wave (mDIAW) depending upon the magnitude of shear flow scale length and its direction. Growth rate of shear flow-driven electrostatic instability in a plasma having negatively charged stationary dust is larger than the usual D'Angelo instability of electron-ion plasma. It is shown that shear modified dust ion acoustic wave (mDIAW) produces electrostatic solitons in the nonlinear regime. The fluid theory predicts the existence of electrostatic solitons in the dusty plasmas in those regions where the inhomogeneous solar wind flow is parallel to the planetary or cometary magnetic field lines. The amplitude and width of the solitary structure depends upon dust density and magnitude of shear in the flow. This is a general theoretical model which is applied to dusty plasma of Saturn's F-ring for illustration.
Backward propagating branch of surface waves in a semi-bounded streaming plasma system
NASA Astrophysics Data System (ADS)
Lim, Young Kyung; Lee, Myoung-Jae; Seo, Ki Wan; Jung, Young-Dae
2017-06-01
The influence of wake and magnetic field on the surface ion-cyclotron wave is kinetically investigated in a semi-bounded streaming dusty magnetoplasma in the presence of the ion wake-field. The analytic expressions of the frequency and the group velocity are derived by the plasma dielectric function with the spectral reflection condition. The result shows that the ion wake-field enhances the wave frequency and the group velocity of the surface ion-cyclotron wave in a semi-bounded dusty plasma. It is found that the frequency and the group velocity of the surface electrostatic-ion-cyclotron wave increase with an increase of the strength of the magnetic field. It is interesting to find out that the group velocity without the ion flow has the backward propagation mode in a semi-bounded dusty plasma. The variations due to the frequency and the group velocity of the surface ion-cyclotron wave are also discussed.
NASA Astrophysics Data System (ADS)
Dev, A. N.; Deka, M. K.; Sarma, J.; Saikia, D.; Adhikary, N. C.
2016-10-01
The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.
Low frequency waves in streaming quantum dusty plasmas
NASA Astrophysics Data System (ADS)
Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.
2017-09-01
The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
NASA Astrophysics Data System (ADS)
Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.
2012-09-01
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
Instability of Longitudinal Wave in Magnetized Strongly Coupled Dusty Plasma
NASA Astrophysics Data System (ADS)
Xie, Bai-Song
2003-12-01
Instability of longitudinal wave in magnetized strongly coupled dusty plasmas is investigated. The dust charging relaxation is taken into account. It is found that there exists threshold of interdust distance for the instability of wave, which is determined significantly by the dust charging relaxation, the coupling parameter of high correlation of dust as well the strength of magnetic field.
Rogue waves in space dusty plasmas
NASA Astrophysics Data System (ADS)
Chowdhury, N. A.; Mannan, A.; Mamun, A. A.
2017-11-01
The modulational instability of dust-acoustic (DA) waves (DAWs) and corresponding DA rogue waves (DARWs) in a realistic space dusty plasma system (containing inertial warm positively and negatively charged dust, isothermal ions, and super-thermal kappa distributed electrons) has been theoretically investigated. The nonlinear Schrödinger equation is derived by using a reductive perturbation method for this investigation. It is observed that the dusty plasma system under consideration supports two branches of modes, namely, fast and slow DA modes, and that both of these two modes can be stable or unstable depending on the sign of ratio of the dispersive and nonlinear coefficients. The numerical analysis has shown that the basic features (viz., stability/instability, growth rate, amplitude, and width of the rogue structures, etc.) of the DAWs associated with the fast DA modes are significantly modified by super-thermal parameter (κ) and other various plasma parameters. The results of our present investigation should be useful for understanding DARWs in space plasma systems, viz., mesosphere and ionosphere.
Modified KdV equation for trapped ions in polarized dusty plasma
NASA Astrophysics Data System (ADS)
Singh, K.; Kaur, N.; Sethi, P.; Saini, N. S.
2018-01-01
In this investigation, the effect of polarization force on dust acoustic solitary waves (DASWs) has been presented in a dusty plasma composed of Maxwellian electrons, vortex-like (trapped) ions, and negatively charged mobile dust grains. It has been found that from the Maxwellian ions distribution to a vortex-like one, the dynamics of small but finite amplitude DA solitary waves is governed by a nonlinear equation of modified Korteweg-de Vries (mKdV) type instead of KdV. The combined effect of trapped ions and polarization force strongly influence the characteristics of DASWs. Only rarefactive solitary structures are formed under the influence of ions trapping and polarization force. The implications of our results are useful in real astrophysical situations of space and laboratory dusty plasmas.
Mach Cones in a Coulomb Lattice and a Dusty Plasma
NASA Astrophysics Data System (ADS)
Samsonov, D.; Goree, J.; Ma, Z. W.; Bhattacharjee, A.; Thomas, H. M.; Morfill, G. E.
1999-11-01
Mach cones, or V-shaped disturbances created by supersonic objects, have been detected in a two-dimensional Coulomb crystal. Electrically charged microspheres levitated in a glow-discharge plasma formed a dusty plasma, with particles arranged in a hexagonal lattice in a horizontal plane. Beneath this lattice plane, a sphere moved faster than the lattice sound speed. Mach cones were double, first compressive then rarefactive, due to the strongly coupled crystalline state. Molecular dynamics simulations using a Yukawa potential also show multiple Mach cones.
Highly resolved fluid flows: "liquid plasmas" at the kinetic level.
Morfill, Gregor E; Rubin-Zuzic, Milenko; Rothermel, Hermann; Ivlev, Alexei V; Klumov, Boris A; Thomas, Hubertus M; Konopka, Uwe; Steinberg, Victor
2004-04-30
Fluid flow around an obstacle was observed at the kinetic (individual particle) level using "complex (dusty) plasmas" in their liquid state. These "liquid plasmas" have bulk properties similar to water (e.g., viscosity), and a comparison in terms of similarity parameters suggests that they can provide a unique tool to model classical fluids. This allows us to study "nanofluidics" at the most elementary-the particle-level, including the transition from fluid behavior to purely kinetic transport. In this (first) experimental investigation we describe the kinetic flow topology, discuss our observations in terms of fluid theories, and follow this up with numerical simulations.
Layer Splitting in a Complex Plasma
NASA Astrophysics Data System (ADS)
Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy
2009-11-01
Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.
The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
2016-05-15
The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-chargemore » wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.« less
Collective dynamics and transport in extremely magnetized dusty plasmas
NASA Astrophysics Data System (ADS)
Hartmann, Peter
2016-09-01
We have built an experimental setup to realize and observe rotating dusty plasmas in a co-rotating frame. Based on the Larmor theorem, the ``RotoDust'' setup is able to create effective magnetizations, mimicked by the Coriolis inertial force, in strongly coupled dusty plasmas that are impossible to approach with superconducting magnets. At the highest rotation speed, we have achieved effective magnetic fields of 3200 T. The effective magnetization β =ωc /ωp (ratio of cyclotron to plasma frequency) reaches 0.76 which is typical for many strongly magnetized and strongly correlated plasmas in compact astrophysical objects. The analysis of the wave spectra as observed in the rotating frame clearly shows the equivalence of the rotating dust cloud and a magnetized plasma. Further, the analysis of the mean square displacement (MSD) and the velocity autocorrelation function (VAC) revealed the transport parameters diffusion and viscosity, which are in reasonable agreement with numerical predictions for magnetized 2D Yukawa systems. Small degree of super-diffusion is observed. This research was supported by grant NKFIH K-115805 and the Janos Bolyai Research Scholarship of the HAS.
Measuring particle charge in an rf dusty plasma
NASA Astrophysics Data System (ADS)
Fung, Jerome; Liu, Bin; Goree, John; Nosenko, Vladimir
2004-11-01
A dusty plasma is an ionized gas containing micron-size particles of solid matter. A particle gains a large negative charge by collecting electrons and ions from the plasma. In a gas discharge, particles can be levitated by the sheath electric field above a horizontal planar electrode. Most dusty plasma experiments require a knowledge of the particle charge, which is a key parameter for all interactions with other particles and the plasma electric field. Several methods have been developed in the literature to measure the charge. The vertical resonance method uses Langmuir probe measurements of the ion density and video camera measurements of the amplitude of vertical particle oscillations, which are excited by modulating the rf voltage. Here, we report a new method that is a variation of the vertical resonance method. It uses the plasma potential and particle height, which can be measured more accurately than the ion density. We tested this method and compared the resulting charge to values obtained using the original resonance method as well as sound speed methods. Work supported by an NSF REU grant, NASA and DOE.
Complex (dusty) plasmas-kinetic studies of strong coupling phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.
2012-05-15
'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics ofmore » strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.« less
RF attenuation as a dusty plasma diagnostic
NASA Astrophysics Data System (ADS)
Doyle, Brandon; Konopka, Uwe; Thomas, Edward
2017-10-01
When a dusty plasma is formed by adding dust to a plasma environment, the electron density of the background plasma is depleted as the dust particles acquire their negative charge. The magnitude of the electron depletion depends on the dust particle charge, and thus its properties, as well as the dust number density. A direct measurement of the electron density in a dusty plasma therefore contains information about the charging state of the dust particles. This measurement is difficult to obtain without influencing the system. For example, Langmuir probes influence the system by creating voids, or they become unreliable due to their potential contamination with dust. A less invasive diagnostic tool might be realized using plasma chamber electrodes for a plasma impedance measurement as it depends on the excitation frequency: the spatially averaged electron density is derived from the electron plasma frequency, which is related to the radio frequency attenuation characteristic. We present preliminary experiments using two impedance probe designs: probes immersed in a plasma and electrodes located at the edge of the plasma. We evaluate the potential application of this method for ground-based laboratory experiments and future microgravity experiment facilities aboard the ISS. This work was supported by JPL/NASA (JPL-RSA 1571699) the US Dept. of Energy (DE-SC0016330) and NSF (PHY-1613087).
NASA Astrophysics Data System (ADS)
Boltnev, R. E.; Vasiliev, M. M.; Kononov, E. A.; Petrov, O. F.
2018-04-01
The dusty plasma structures in a glow discharge of helium in a tube cooled by superfluid helium at a temperature of 1.6 K and higher have been studied experimentally. The bimodal dust plasma formed by clouds of polydisperse cerium dioxide particles and polymer nanoparticles has been analyzed. We have observed wave oscillations in the cloud of polymer nanoparticles (with a size up to 100 nm), which existed in a narrow temperature range from 1.6 to 2.17 K. Vortices have been observed in the dusty plasma structures at helium temperatures.
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order.more » It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.« less
A Novel Experimental Setup to Investigate Magnetized Dusty Plasmas
NASA Astrophysics Data System (ADS)
Romero-Talamas, C. A.; Larocque, P.; Alvarez, J.; Sardin, J.
2013-10-01
Progress on the design and construction of a novel experimental setup to investigate dusty plasmas at the University of Maryland, Baltimore County (UMBC) is presented. The setup includes separation adjustability of discharge electrodes and their orientation with respect to gravity without breaking vacuum, and a pair of water-cooled coils to produce magnetic fields with strengths of up to several Tesla. The coils' orientation is also designed to be adjustable with respect to gravity. A pulse-forming network to power the coils with flattop times of several seconds is under design. The setup is mounted inside a large glass bell jar to provide wide optical access to the dusty plasmas, and to minimize interference of chamber walls and mounts with imposed electric or magnetic fields. Planned experiments include crystallization and wave propagation under strong magnetic fields.
Adiabatic bulk modulus of elasticity for 2D liquid dusty plasmas
NASA Astrophysics Data System (ADS)
Feng, Yan; Huang, Dong; Li, Wei
2018-05-01
From the recently obtained equation of state (EOS) for two-dimensional (2D) liquid dusty plasmas, their various physical quantities have been derived analytically, such as the specific heat CV, the Grüneisen parameter, the bulk modulus of elasticity, and the isothermal compressibility. Here, the coefficient of volumetric thermal expansion αV and the relative pressure coefficient αP of 2D liquid dusty plasmas are derived from their EOS. Using the obtained CV, αV, and αP, the analytical expression of their heat capacity under constant-pressure conditions CP is obtained. Thus, the heat capacity ratio, expressed as CP/CV , is analytically achieved. Then the adiabatic bulk modulus of elasticity is derived, so that the adiabatic sound speeds are obtained. These obtained results are compared with previous findings using a different approach.
Dusty plasma in a glow discharge in helium in temperature range of 5–300 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samoilov, I. S.; Baev, V. P.; Timofeev, A. V., E-mail: timofeevalvl@gmail.com
2017-03-15
Dusty plasma structures in glow discharge in helium in the temperature range of 5–300 K are investigated experimentally. We have described the experimental setup that makes it possible to continuously vary the temperature regime. The method for experimental data processing has been described. We have measured interparticle distances in the temperature range of 9–295 K and compared them with the Debye radius. We indicate the ranges of variations in experimental parameters in which plasma–dust structures are formed and various types of their behavior are manifested (rotation, vibrations of structures, formation of vertical linear chains, etc.). The applicability of the Yukawamore » potential to the description of the structural properties of a dusty plasma in the experimental conditions is discussed.« less
Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions
NASA Astrophysics Data System (ADS)
Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly
The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in dusty plasmas over the lunar surface. This work was supported by the Presidium of the Russian Academy of Sciences (basic research program no. 22 “Fundamental Problems of Research and Exploration of the Solar System”) and by the Russian Foundation for Basic Research (project 12-02-00270-a).
Parametric Excitation of Electrostatic Dust-Modes by Ion-Cyclotron Waves in a Dusty Plasma
NASA Astrophysics Data System (ADS)
Islam, M. K.; Salahuddin, M.; Ferdous, T.; Salimullah, M.
A large amplitude electrostatic ion-cyclotron wave propagating through a magnetized and collisional dusty plasma undergoes strong parametric instability off the low-frequency dust-modes. The presence of the dust-component has effect on the nonlinear coupling via the dust-modes. The ion-neutral collisions are seen to have significant effect on the damping and consequent overall growth of the parametric excitation process.
Dust acoustic and drift waves in a non-Maxwellian dusty plasma with dust charge fluctuation
NASA Astrophysics Data System (ADS)
Zakir, U.; Haque, Q.; Imtiaz, N.; Qamar, A.
2015-12-01
> ) on the wave dispersion and instability are presented. It is found that the presence of the non-thermal electron and ion populations reduce the growth rate of the instability which arises due to the dust charging effect. In addition, the nonlinear vortex solutions are also obtained. For illustration, the results are analysed by using the dusty plasma parameters of Saturn's magnetosphere.
Future lunar missions and investigation of dusty plasma processes on the Moon
NASA Astrophysics Data System (ADS)
Popel, Sergey I.; Zelenyi, Lev M.; Zelenyi
2013-08-01
From the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to ``horizon glow'' and ``streamers'' above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2018-02-01
In this paper, the collective dynamics of large aspect ratio dusty plasma is studied over a wide range of discharge parameters. An inductively coupled diffused plasma, which creates an electrostatic trap to confine the negatively charged grains, is used to form a large volume (or large aspect ratio) dusty plasma at low pressure. For introducing the dust grains into the potential well, a unique technique using secondary DC glow discharge plasma is employed. The dust dynamics is recorded in a two-dimension (2D) plane at a given axial location. The dust fluid exhibits wave-like behavior at low pressure (p < 0.06 mbar) and high rf power (P > 3 W). The mixed motion, waves and vortices, is observed at an intermediate gas pressure (p ˜ 0.08 mbar) and low power (P < 3 W). Above the threshold value of gas pressure (p > 0.1 mbar), the clockwise and anti-clockwise co-rotating vortex series are observed on edges of the dust cloud, whereas the particles in the central region show random motion. These vortices are only observed above the threshold width of the dust cloud. The occurrence of the co-rotating vortices is understood on the basis of the charge gradient of dust particles, which is orthogonal to the gravity. The charge gradient is a consequence of the plasma inhomogeneity from the central region to the outer edge of the dust fluid. Since a vortex has the characteristic size in the dissipative medium; therefore, a series of the co-rotating vortex on both sides of dusty plasma is observed. The experimental results on the vortex formation and its multiplicity are compared to an available theoretical model and are found to be in close agreement.
Jeans stability in collisional quantum dusty magnetoplasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamil, M.; Asif, M.; Mir, Zahid
2014-09-15
Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.
NASA Astrophysics Data System (ADS)
Khan, Shahab Ullah; Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad
2016-07-01
The propagation of linear and nonlinear electrostatic waves is investigated in magnetized dusty plasma with stationary negatively or positively charged dust, cold mobile ions and non-extensive electrons. Two normal modes are predicted in the linear regime, whose characteristics are investigated parametrically, focusing on the effect of electrons non-extensivity, dust charge polarity, concentration of dust and magnetic field strength. Using the reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived which governs the dynamics of small-amplitude solitary waves in magnetized dusty plasma. The properties of the solitary wave structures are analyzed numerically with the system parameters i.e. electrons non-extensivity, concentration of dust, polarity of dust and magnetic field strength. Following Allen and Rowlands (J. Plasma Phys. 53:63, 1995), we have shown that the pulse soliton solution of the ZK equation is unstable, and have analytically traced the dependence of the instability growth rate on the nonextensive parameter q for electrons, dust charge polarity and magnetic field strength. The results should be useful for understanding the nonlinear propagation of DIA solitary waves in laboratory and space plasmas.
Dusty Plasmas on the Lunar Surface
NASA Astrophysics Data System (ADS)
Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.
2006-12-01
The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment
Surface-Plasma Interaction on the Moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horanyi, M.; Wang, X.; Robertson, S.
2008-09-07
The electrostatic levitation and transport of lunar dust remains a controversial science issue since the Apollo era. As a function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface emit and absorb plasma particles and are exposed to solar UV photons. There are several in situ and remote sensing observations that indicate that dusty plasma processes are responsible for the mobilization and transport of lunar soil. We briefly discuss the existing observations, and report on a series of experiments that addressmore » some of the most relevant processes acting on dusty surfaces exposed to plasmas and UV radiation.« less
Mobility in a strongly coupled dusty plasma with gas.
Liu, Bin; Goree, J
2014-04-01
The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.
Characteristics of dust voids in a strongly coupled laboratory dusty plasma
NASA Astrophysics Data System (ADS)
Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.
2018-05-01
A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.
Mobility in a strongly coupled dusty plasma with gas
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, J.
2014-04-01
The mobility of a charged projectile in a strongly coupled dusty plasma is simulated. A net force F, opposed by a combination of collisional scattering and gas friction, causes projectiles to drift at a mobility-limited velocity up. The mobility μp=up/F of the projectile's motion is obtained. Two regimes depending on F are identified. In the high-force regime, μp∝F0.23, and the scattering cross section σs diminishes as up-6/5. Results for σs are compared with those for a weakly coupled plasma and for two-body collisions in a Yukawa potential. The simulation parameters are based on microgravity plasma experiments.
Observations of dusty plasmas with magnetized dust grains
NASA Astrophysics Data System (ADS)
Luo, Q.-Z.; D'Angelo, N.
2000-11-01
We report a newly observed phenomenon in a dusty plasma device of the \\mbox{Q-machine} type. At low plasma densities the time required by the plasma to return to its no-dust conditions, after the dust dispenser is turned off, can be as long as many tens of seconds or longer. A tentative interpretation of this observation in terms of magnetized dust grains is advanced. It appears that an important loss mechanism of fine dust grains is by ion drag along the magnetic field lines. The effect of ion drag is somewhat counteracted by the -µ∇B force present when the magnetic field has a mirror geometry.
Laser-induced rocket force on a microparticle in a complex (dusty) plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nosenko, V.; Ivlev, A. V.; Morfill, G. E.
2010-12-15
The interaction of a focused powerful laser beam with micron-sized melamine formaldehyde (MF) particles was studied experimentally. The microspheres had a thin palladium coating on their surface and were suspended in a radio frequency argon plasma as a single layer (plasma crystal). A particle hit by the laser beam usually accelerated in the direction of the laser beam, consistent with the radiation pressure force mechanism. However, random-direction acceleration up to the speeds on the order 1 m/s was sometimes observed. Rocket-force mechanism is proposed to account for the random-direction acceleration. Similar, but much less pronounced, effect was also observed formore » MF particles without palladium coating.« less
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Gallagher, James C.
2016-11-01
One-dimensional and quasi-one-dimensional strongly coupled dusty plasma rings have been created experimentally. Longitudinal (acoustic) and transverse (optical) dispersion relations for the one-ring are measured and found to be in excellent agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-Hückel) potential. These rings provide a new experimental system to directly study one-dimensional and quasi-one-dimensional linear and nonlinear phenomena.
Linear study of the nonmodal growth of drift waves in dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, P.; Greiner, F.
2010-06-15
The main effect of dust on drift wave turbulence is the enhancement of the nonadiabaticity. Previous work found that nonmodal behavior is important in the nonadiabatic regime of the drift wave system. Here, the modal and nonmodal properties of the linear Hasegawa-Wakatani system of dusty plasmas are investigated. The non-normality of the linear evolution operator can lead to enhanced transient growth rates compared to the modal growth rates.
Electrostatic twisted modes in multi-component dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784
Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less
Dust characteristics of dusty plasma ring of Saturn
NASA Astrophysics Data System (ADS)
Morooka, M.; Wahlund, J.-E.; Ye, S.-Y.; Persoon, A. M.; Kurth, W. S.
2017-09-01
During the Ring Grazing orbit, starting from December 2016, Cassini carried out twenty of the faint Saturn ring crossing observations at the distance of 2.45-2.51 RS (1RS 60,268 km) from Saturn center. We will show the electron and the ion density measurements of the RPWS/Langmuir Probe (LP) during these orbits. In most of the orbits significant ion/electron density differences have been observed, which indicates the presence of the charged nm and µm sized grains. The relationship between the observed charge densities and the electrical potential of the grains shows that the grains and the ambient electrons and ions are electro dynamical ensemble, a dusty plasma. The results show that characteristic dust size changes depending on the distance from the ring center. The result suggests that a dusty plasma state is related to the dynamics of the grain sizes.
The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma
NASA Astrophysics Data System (ADS)
Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao
2018-05-01
The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.
Observation of frequency cutoff for self-excited dust acoustic waves
NASA Astrophysics Data System (ADS)
Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.
2009-11-01
Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.
Transient bow shock around a cylinder in a supersonic dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, John K.; Merlino, Robert L.
2013-07-15
Visual observations of the formation of a bow shock in the transient supersonic flow of a dusty plasma incident on a biased cylinder are presented. The bow shock formed when the advancing front of a streaming dust cloud was reflected by the obstacle. After its formation, the density jump of the bow shock increased as it moved upstream of the obstacle. A physical picture for the formation of the electrohydrodynamic bow shock is discussed.
Quasi-electrostatic twisted waves in Lorentzian dusty plasmas
NASA Astrophysics Data System (ADS)
Arshad, Kashif; Lazar, M.; Poedts, S.
2018-07-01
The quasi electrostatic modes are investigated in non thermal dusty plasma using non-gyrotropic Kappa distribution in the presence of helical electric field. The Laguerre Gaussian (LG) mode function is employed to decompose the perturbed distribution function and helical electric field. The modified dielectric function is obtained for the dust ion acoustic (DIA) and dust acoustic (DA) twisted modes from the solution of Vlasov-Poisson equation. The threshold conditions for the growing modes is also illustrated.
Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, L., E-mail: louiskavitha@yahoo.co.in; The Abdus Salam International Centre for Theoretical Physics, Trieste; Lavanya, C.
We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales muchmore » shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.« less
Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems
NASA Astrophysics Data System (ADS)
Popel, S. I.; Zelenyi, L. M.; Golub', A. P.; Dubinskii, A. Yu.
2018-07-01
A renaissance is being observed currently in investigations of the Moon. The Luna-25 and Luna-27 missions are being prepared in Russia. At the same time, in connection with the future lunar missions, theory investigations of dust and dusty plasmas at the Moon are being carried out by scientists of the Space Research Institute of the Russian Academy of Sciences. Here, the corresponding results are reviewed briefly. We present the main theory results of these investigations concerning the lunar dusty plasmas. We show, in particular, the absence of the dead zone near a lunar latitude of 80° where, as was assumed earlier, dust particles cannot rise over the surface of the Moon. This indicates that there are no significant constraints on the Moon landing sites for future lunar missions that will study dust in the surface layer of the Moon. We demonstrate that the electrostatically ejected dust population can exist in the near-surface layer over the Moon while the dust appearing in the lunar exosphere owing to impacts of meteoroids present everywhere. The calculated values of number densities at high altitudes of the particles formed as a result of the impacts of meteoroids with the lunar surface are in accordance (up to an order of magnitude) with the data obtained by the recent NASA mission LADEE. Finally, we formulate new problems concerning the dusty plasma over the lunar surface.
NASA Astrophysics Data System (ADS)
El-Bedwehy, N. A.; El-Attafi, M. A.; El-Labany, S. K.
2016-09-01
The properties of solitary waves in an unmagnetized, collisionless dusty plasma consisting of nonthermal ions, cold and hot dust grains and Maxwellian electrons have been investigated. Under a suitable coordinate transformation, the three-dimensional cylindrical Kadomtsev-Petviashvili (3D-CKP) equation is obtained. The effect of the nonthermal parameter, the negative charge number of hot and cold dust on the solitary properties are investigated. Furthermore, the solitary profile in the radial, axial, and polar angle coordinates with the time is examined. The present investigation may be applicable in space plasma such as F-ring of Saturn.
Laboratory Studies on the Charging of Dust Grains in a Plasma
NASA Astrophysics Data System (ADS)
Xu, Wenjun
1993-01-01
The charging of dust grains by the surrounding plasma is studied in a dusty plasma device (DPD) (Xu, W., B. Song, R. L. Merlino, and N. D'Angelo, Rev. Sci. Instrum., 63, 5266, 1992). The dusty plasma device consists of a rotating-drum dust dispersal device used in conjunction with an existing Q-machine, to produce extended, steady state, magnetized plasma columns. The dust density in the dust chamber is controlled by the drum rotation speed. The device is capable of generating a dusty plasma in which as much as about 90% of the negative charge is attached to the dust grains of 1-10mu m size. Measurements of the dust parameter eta, the percentage of negative charge on free electrons in the dusty plasma, are presented. The dust parameter eta is found to depend on the rotational speed of the dust chamber, plasma density and the type and size of different dust. The dust parameter eta is calculated from a pair of Langmuir curves taken with and without dust under the same conditions. The operation of the dust chamber as described above has been confirmed by the agreement between the measurements of eta and the direct mechanical measurements consisting of weighing dust samples collected within the rotation dust chamber, at different rotation rates. By varying the ratio d/lambda_ {rm D} between the intergrain distance and the plasma Debye length, the effects predicted by Goertz and Ip (Goertz, C. K., and W-H. Ip, Geophys. Res. Lett., 11, 349, 1984), and subsequently reanalyzed in a more general fashion by Whipple et al. (Whipple, E. C., T. G. Northrop, and D. A. Mendis, J. Geophys. Rev., 90, 7405, 1985), as "isolated" dust grains become "closely packed" grains, have been demonstrated experimentally (Xu, W., N. D'Angelo, and R. L. Merlino, J. Geophys. Rev., 98, 7843, 1993). Similar results are presented and compared for two types of dust, kaolin and Al_2O _3, which have been studied in the experiment.
Landau damping of the dust-acoustic surface waves in a Lorentzian dusty plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2016-01-15
Landau damping of a dust-acoustic surface wave propagating at the interfaces of generalized Lorentzian dusty plasma slab bounded by a vacuum is kinetically derived as the surface wave displays the symmetric and the anti-symmetric mode in a plasma slab. In the limiting case of small scaled wave number, we have found that Landau damping is enhanced as the slab thickness is increased. In particular, the damping of anti-symmetric mode is much stronger for a Lorentzian plasma than for a Maxwellian plasma. We have also found that the damping is more affected by superthermal particles in a Lorentzian plasma than bymore » a Maxwellian plasma for both of the symmetric and the anti-symmetric cases. The variations of Landau damping with various parameters are also discussed.« less
NASA Astrophysics Data System (ADS)
Dove, A.; Colwell, J. E.
2013-12-01
Dynamic charging conditions exist on the dusty surfaces of planetary bodies such as the Moon, asteroids, and the moons of Mars. On these so-called 'airless bodies', the motions of dust particles above the surface become complex due to grain-grain and grain-plasma interactions. For example, tribocharging and other charge transfer processes can occur due to relative dust grain movements, and charged dust grains immersed in plasma interact with local electromagnetic forces. This is thought to lead to effects such as the lunar 'horizon glow,' (Rennilson and Criswell, 1974, The Moon, 10) and potential dusty 'fountains' above the lunar surface (Stubbs et al., 2006, Adv. Sp. Res., 37). Regolith grains can be mobilized by impacts or other mechanical disturbances, or simply by the Coulomb force acting on grains. Previous work has increased our theoretical understanding of the behavior of charged particles in these low-gravity environments (i.e. Poppe and Horanyi, 2010, JGR, A115; Colwell et al., 2007, Rev. Geophys., 45 (and references therein)). Experimental work has also analyzed grain surface charging due to plasma or tribocharging (Sickafoose et al., 2001, JGR, 106) and the motion of grains on surfaces in the presence of an electric field (Wang et al., 2009, JGR, 114). Occasionally, there is disagreement between theoretical predictions and observations. We present the results of new laboratory experiments aimed at understanding particle charging and the dynamics of charged particles on the surfaces of airless bodies. In the initial experiments, we analyze the motion of particles in the presence of an electric field in vacuum, either in a bell-jar or in a 0.75-second microgravity drop tower experiment box. Prior to motion, particles may be charged due to triboelectric effects, plasma interactions, or a combination of the two. Motion is induced by shaking or by low-velocity impacts in order to simulate the natural motion of slow-moving objects on regolith surfaces, or induced motion such as that due to a spacecraft. The resulting particle dynamics are tracked using high-speed, high-resolution video. Future exploration on or near the surfaces of airless bodies will certainly experience complications arising from these dusty environments, where particles may contaminate or interfere with the operation of almost any mechanical equipment. By exploring the dynamic behavior of charged particles in these environments, we can work towards solutions that will enable exploration.
NASA Astrophysics Data System (ADS)
Tsytovich, V. N.; Gusein-zade, N. G.; Ignatov, A. M.
2017-10-01
The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, S.; Bukhari, S.; Department of Physics, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Azad Kashmir
Keeping in view the kinetic treatment for plasma particles, the electrostatic twisted dust-acoustic (DA) and dust-ion-acoustic (DIA) waves are investigated in a collisionless unmagnetized multi-component dusty plasma, whose constituents are the electrons, singly ionized positive ions, and negatively charged massive dust particulates. With this background, the Vlasov–Poisson equations are coupled together to derive a generalized dielectric constant by utilizing the Laguerre-Gaussian perturbed distribution function and electrostatic potential in the paraxial limit. The dispersion and damping rates of twisted DA and DIA waves are analyzed with finite orbital angular momentum states in a multi-component dusty plasma. Significant modifications concerning the realmore » wave frequencies and damping rates appeared with varying twisted dimensionless parameter and dust concentration. In particular, it is shown that dust concentration enhances the phase speed of the DIA waves in contrary to DA waves, whereas the impact of twisted parameter reduces the frequencies of both DA and DIA waves. The results should be useful for the understanding of particle transport and trapping phenomena caused by wave excitation in laboratory dusty plasmas.« less
KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge
NASA Astrophysics Data System (ADS)
El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed
2017-12-01
In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.
Jeans instability of rotating magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Sharma, S.; Sutar, D. L.; Kumar, V.; Pensia, R. K.
2018-05-01
It has been shown that rotation has to play a predominant important role in the formation of many astrophysical objects and the stability of molecular clouds. In this paper the theoretical investigation of the presence of rotation in the magnetized dusty plasma. The general dispersion relation is obtained normal mode analysis technique, and we found the Alfven mode is modified due to the presence of rotation and magnetic field. The graphical presentation shows that rotation and Alfven wave velocity have a stabilizing in the system.
Effect of rotating electric field on 3D complex (dusty) plasma
NASA Astrophysics Data System (ADS)
Wörner, L.; Nosenko, V.; Ivlev, A. V.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Kroll, M.; Schablinski, J.; Block, D.
2011-06-01
The effect of rotating electric field on 3D particle clusters suspended in rf plasma was studied experimentally. Spheroidal clusters were suspended inside a glass box mounted on the lower horizontal rf electrode, with gravity partially balanced by thermophoretic force. Clusters rotated in the horizontal plane, in response to rotating electric field that was created inside the box using conducting coating on its inner surfaces ("rotating wall" technique). Cluster rotation was always in the direction of applied field and had a shear in the vertical direction. The angular speed of rotation was 104-107 times lower than applied frequency. The experiment is compared to a recent theory.
Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station
NASA Astrophysics Data System (ADS)
Pustylnik, M. Y.; Fink, M. A.; Nosenko, V.; Antonova, T.; Hagl, T.; Thomas, H. M.; Zobnin, A. V.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Rau, C.; Deysenroth, C.; Albrecht, S.; Kretschmer, M.; Thoma, M. H.; Morfill, G. E.; Seurig, R.; Stettner, A.; Alyamovskaya, V. A.; Orr, A.; Kufner, E.; Lavrenko, E. G.; Padalka, G. I.; Serova, E. O.; Samokutyayev, A. M.; Christoforetti, S.
2016-09-01
New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.
Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station.
Pustylnik, M Y; Fink, M A; Nosenko, V; Antonova, T; Hagl, T; Thomas, H M; Zobnin, A V; Lipaev, A M; Usachev, A D; Molotkov, V I; Petrov, O F; Fortov, V E; Rau, C; Deysenroth, C; Albrecht, S; Kretschmer, M; Thoma, M H; Morfill, G E; Seurig, R; Stettner, A; Alyamovskaya, V A; Orr, A; Kufner, E; Lavrenko, E G; Padalka, G I; Serova, E O; Samokutyayev, A M; Christoforetti, S
2016-09-01
New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10 3 -10 4 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.
Development of a Split Bitter-type Magnet System for Dusty Plasma Experiments
NASA Astrophysics Data System (ADS)
Bates, Evan; Romero-Talamas, Carlos A.; Birmingham, William J.; Rivera, William F.
2014-10-01
A 10 Tesla Bitter-type magnetic system is under development at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County (UMBC). We present here an optimization technique that uses differential evolution to minimize the omhic heating produced by the coils, while constraining the magnetic field in the experimental volume. The code gives us the optimal dimensions for the coil system including: coil length, turn thickness, disks radii, resistance, and total current required for a constant magnetic field. Finite element parametric optimization is then used to establish the optimal design for water cooling holes. Placement of the cooling holes will also take into consideration the magnetic forces acting on the copper alloy disks to ensure the material strength is not compromised during operation. The proposed power and cooling water delivery subsystems for the coils are also presented. Upon completion and testing of the magnet system, planned experiments include the propagation of magnetized waves in dusty plasma crystals under various boundary conditions, and viscosity in rotational shear flow, among others.
On the existence of vapor-liquid phase transition in dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, M.; Sen, A.; Ganesh, R.
2014-10-15
The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram formore » a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.« less
Influence of particle velocity on the conductivity of dusty plasma
NASA Astrophysics Data System (ADS)
Xu, C. M.; Chen, Y. Y.; Yu, R. J.; Zhang, Y. Y.
2018-06-01
Conductivity is a popular branch of dusty plasma research. In this paper, on the basis of considering the influence of charged particles' (electrons and ions) flow velocity, the conductivity of dusty plasma is derived and studied. Firstly, the charging currents are deduced on considering the influence of flow velocity, and the theoretical results manifest that it increases with the increase of flow velocity. Secondly, both the real and imaginary parts of the conductivity are derived, based on which, the dependence of conductivity on the flow velocity is discussed. In further, it is found that both the real and imaginary parts have a turning point. Finally, a ratio defined as charged particles' flow velocity to thermal velocity is proposed to analyze the dependence of the conductivity on the velocities. The involved results reveal that both the real and imaginary parts of the conductivity have a turning point in their dependence on the ratio, but the specific ratio value is different.
Probing a dusty magnetized plasma with self-excited dust-density waves
NASA Astrophysics Data System (ADS)
Tadsen, Benjamin; Greiner, Franko; Piel, Alexander
2018-03-01
A cloud of nanodust particles is created in a reactive argon-acetylene plasma. It is then transformed into a dusty magnetized argon plasma. Plasma parameters are obtained with the dust-density wave diagnostic introduced by Tadsen et al. [Phys. Plasmas 22, 113701 (2015), 10.1063/1.4934927]. A change from an open to a cylindrically enclosed nanodust cloud, which was observed earlier, can now be explained by a stronger electric confinement if a vertical magnetic field is present. Using two-dimensional extinction measurements and the inverse Abel transform to determine the dust density, a redistribution of the dust with increasing magnetic induction is found. The dust-density profile changes from being peaked around the central void to being peaked at an outer torus ring resulting in a hollow profile. As the plasma parameters cannot explain this behavior, we propose a rotation of the nanodust cloud in the magnetized plasma as the origin of the modified profile.
Excitation of lower hybrid waves by a spiraling ion beam in a magnetized dusty plasma cylinder
NASA Astrophysics Data System (ADS)
Sharma, Suresh C.; Walia, Ritu
2008-09-01
A spiraling ion beam propagating through a magnetized dusty plasma cylinder drives electrostatic lower hybrid waves to instability via cyclotron interaction. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the Princeton Q-1 device using the experimental dusty plasma parameters [e.g., Barkan et al., Planet. Space Sci. 43, 905 (1995)]. It is found that as the density ratio δ(=nio/neo, where ni0 is the ion plasma density and ne0 is the electron density) of negatively charged dust grains to electrons increases, the unstable mode frequency of the lower hybrid waves increases. In addition, the growth rate of the instability also increases with the density ratio δ. In other words, the presence of negatively charged dust grains can further destabilize the lower hybrid wave instability. The growth rate has the largest value for the modes where Jl(pnro) is maximum [here pn=xn/r0, where pn is the perpendicular wave number in cm-1, r0 is the plasma radius, and xn are the zeros of the Bessel function J1(x )] i.e., whose eigenfunctions peak at the location of the beam. The growth rate scales as one third power of the beam current.
Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma
NASA Astrophysics Data System (ADS)
Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.
2008-11-01
In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)
Is the compressibility positive or negative in a strongly-coupled dusty plasma?
NASA Astrophysics Data System (ADS)
Goree, John; Ruhunusiri, W. D. Suranga
2014-10-01
In dusty plasmas, dust particles are often strongly coupled with a large Coulomb coupling parameter Γ, while the electrons and ions that share the same volume are weakly coupled. In most substances, compressibility β must be positive; otherwise there would be an explosive instability. In a multicomponent plasma, however, one could entertain the idea that β for a single strongly coupled component could be negative, provided that the restoring force from charge separation overwhelms the destabilizing effect. Indeed, the compressibility for a strongly-coupled dust component is assumed to be negative in three theories we identified in the literature for dust acoustic waves. These theories use a multi-fluid model, with an OCP (one component plasma) or Yukawa-OCP approach for the dust fluid. We performed dusty plasma experiments designed to determine the value of the inverse compressibility β-1, and in particular its sign. We fit an experimentally measured dispersion relation to theory, with β-1 as a free parameter, taking into account the systematic errors in the experiment and model. We find that β-1 is either positive, or it has a negligibly small negative value, which is not in agreement with the assumptions of the OCP-based theories. Supported by NSF and NASA.
Single exposure three-dimensional imaging of dusty plasma clusters.
Hartmann, Peter; Donkó, István; Donkó, Zoltán
2013-02-01
We have worked out the details of a single camera, single exposure method to perform three-dimensional imaging of a finite particle cluster. The procedure is based on the plenoptic imaging principle and utilizes a commercial Lytro light field still camera. We demonstrate the capabilities of our technique on a single layer particle cluster in a dusty plasma, where the camera is aligned and inclined at a small angle to the particle layer. The reconstruction of the third coordinate (depth) is found to be accurate and even shadowing particles can be identified.
Wave propagation in strongly dispersive superthermal dusty plasma
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Shewy, E. K.; Abd El-Razek, H. N.; El-Rahman, A. A.
2017-04-01
The attributes of acoustic envelope waves in a collisionless dust ion unmagnetized plasmas model composed of cold ions, superthermal electrons and positive-negative dust grains have been studied. Using the derivative expansion technique in a strong dispersive medium, the system model is reduced to a nonlinearly form of Schrodinger equation (NLSE). Rational solution of NLSE in unstable region is responsible for the creation of large shape waves; namely rogue waves. The subjection of instability regions upon electron superthermality (via κ), carrier wave number and dusty grains charge is discussed.
Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring
NASA Astrophysics Data System (ADS)
Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.
2011-11-01
Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.
High frequency drift instabilities in a dusty plasma
NASA Technical Reports Server (NTRS)
Rosenberg, M.; Krall, N. A.
1994-01-01
High frequency drift instabilities with omega(sub ce) much greater than omega which is greater than omega(sub ci) are investigated in a dusty magnetized plasma in which locally there is an electron density gradient which is opposite in sign to a dust density gradient. Two different equilibria are considered, characterized by rho(sub d) greater than L(sub d) and less than L(sub d), where rho(sub d) is the dust gyroradius and L(sub nd) is the dust density scale length. Possible application to Saturn's F-ring is discussed.
Electrostatic shock structures in dissipative multi-ion dusty plasmas
NASA Astrophysics Data System (ADS)
Elkamash, I. S.; Kourakis, I.
2018-06-01
A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.
Design and Assembly of the Magnetized Dusty Plasma Experiment (MDPX)
NASA Astrophysics Data System (ADS)
Fisher, Ross; Artis, Darrick; Lynch, Brian; Wood, Keith; Shaw, Joseph; Gilmore, Kevin; Robinson, Daniel; Polka, Christian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene
2013-10-01
Over the last two years, the Magnetized Dusty Plasma Experiment (MDPX) has been under construction at Auburn University. This new research device, whose assembly will be completed in late Summer, 2013, uses a four-coil, superconducting, high magnetic field system (|B | >= 4 Tesla) to investigate the confinement, charging, transport, and instabilities in a dusty plasma. A new feature of the MDPX device is the ability to operate the magnetic coils independently to allow a variety of magnetic configurations from highly uniform to quadrapole-like. Envisioned as a multi-user facility, the MDPX device features a cylindrical vacuum vessel whose primary experimental region is an octagonal chamber that has a 35.5 cm inner diameter and is 19 cm tall. There is substantial diagnostics and optical access through eight, 10.2 cm × 12.7 cm side ports. The chamber can also be equipped with two 15.2 cm diameter, 76 cm long extensions to allow long plasma column experiments, particularly long wavelength dust wave studies. This presentation will discuss the final design, assembly, and installation of the MDPX device and will describe its supporting laboratory facility. This work is supported by a National Science Foundation - Major Research Instrumentation (NSF-MRI) award, PHY-1126067.
Dusty plasma in the region of the lunar terminator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popel, S. I., E-mail: popel@iki.rssi.ru; Zelenyi, L. M.; Atamaniuk, B.
2016-05-15
Dusty plasma in the region of the lunar terminator is considered. It is shown that, in this region, a structure resembling a plasma sheath forms near the lunar surface. This sheath creates a potential barrier, due to which electrons over the illuminated part of the Moon are confined by electrostatic forces. The width of the sheath-like structure is on the order of the ion Debye length. In this structure, significant (about several hundred V/m) electric fields arise, which lift charged micron-size dust grains to heights of several tens of centimeters. The suggested effect may be used to explain the glowmore » observed by the Surveyor spacecraft over the lunar terminator.« less
Generation of two-dimensional binary mixtures in complex plasmas
NASA Astrophysics Data System (ADS)
Wieben, Frank; Block, Dietmar
2016-10-01
Complex plasmas are an excellent model system for strong coupling phenomena. Under certain conditions the dust particles immersed into the plasma form crystals which can be analyzed in terms of structure and dynamics. Previous experiments focussed mostly on monodisperse particle systems whereas dusty plasmas in nature and technology are polydisperse. Thus, a first and important step towards experiments in polydisperse systems are binary mixtures. Recent experiments on binary mixtures under microgravity conditions observed a phase separation of particle species with different radii even for small size disparities. This contradicts several numerical studies of 2D binary mixtures. Therefore, dedicated experiments are required to gain more insight into the physics of polydisperse systems. In this contribution first ground based experiments on two-dimensional binary mixtures are presented. Particular attention is paid to the requirements for the generation of such systems which involve the consideration of the temporal evolution of the particle properties. Furthermore, the structure of these two-component crystals is analyzed and compared to simulations. This work was supported by the Deutsche Forschungsgemeinschaft DFG in the framework of the SFB TR24 Greifswald Kiel, Project A3b.
Reversed Hall effect and plasma conductivity in the presence of charged impurities
NASA Astrophysics Data System (ADS)
Yaroshenko, V. V.; Lühr, H.
2018-01-01
The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.
Ion acoustic solitons in magnetized collisional non-thermal dusty plasmas
NASA Astrophysics Data System (ADS)
Sultana, S.
2018-05-01
The oblique propagation of ion-acoustic solitary waves (IASWs) is considered, in a magnetized non-thermal collisional dusty plasma, composed of non-Maxwelian κ-distributed electrons, inertial ions, and stationary dust. The reductive perturbation approach is adopted to derive the damped Korteweg de-Vries (dKdV) equation, and the dissipative oblique ion-acoustic wave properties are investigated in terms of different key plasma parameters via the numerical solution of the dKdV equation. The collisional effect, describing the ion-neutral collision in the plasma, is taken into account, and seen to influence the dynamics of IASWs significantly. The basic features of IASWs are observed to modify, and the polarity of the wave is seen to change due to the variation of dust to that of ion number density and also due to the variation of the supethermality index κ in the considered plasma system.
A new mathematical approach for shock-wave solution in a dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G.C.; Dwivedi, C.B.; Talukdar, M.
1997-12-01
The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust chargemore » fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}« less
Coupling of an acoustic wave to shear motion due to viscous heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Goree, J.
2016-07-15
Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less
Interaction of UV laser pulses with reactive dusty plasmas
NASA Astrophysics Data System (ADS)
van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes
2016-09-01
This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Guangjun; Duan Wenshan; Tian Duoxiang
2008-04-15
For unmagnetized dusty plasma with many different dust grain species containing both hot isothermal electrons and ions, both the linear dispersion relation and the Kadomtsev-Petviashvili equation for small, but finite amplitude dust acoustic waves are obtained. The linear dispersion relation is investigated numerically. Furthermore, the variations of amplitude, width, and propagation velocity of the nonlinear solitary wave with an arbitrary dust size distribution function are studied as well. Moreover, both the power law distribution and the Gaussian distribution are approximately simulated by using appropriate arbitrary dust size distribution functions.
Langmuir wave phase-mixing in warm electron-positron-dusty plasmas
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Maity, Chandan
2018-04-01
An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.
New Large Diameter RF Complex Plasma Device
NASA Astrophysics Data System (ADS)
Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus
2016-10-01
The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emadi, E.; Zahed, H.
2016-08-15
The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantummore » diffraction parameter H can lead to the creation of compressive solitary waves.« less
Oblique Interaction of Dust-ion Acoustic Solitons with Superthermal Electrons in a Magnetized Plasma
NASA Astrophysics Data System (ADS)
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2018-01-01
The oblique interaction between two dust-ion acoustic (DIA) solitons travelling in the opposite direction, in a collisionless magnetized plasma composed of dynamic ions, static dust (positive/negative) charged particles and interialess kappa distributed electrons is investigated. By employing extended Poincaré-Lighthill-Kuo (PLK) method, Korteweg-de Vries (KdV) equations are derived for the right and left moving low amplitude DIA solitons. Their trajectories and corresponding phase shifts before and after their interaction are also obtained. It is found that in negatively charged dusty plasma above the critical dust charged to ion density ratio the positive polarity pulse is formed, while below the critical dust charged density ratio the negative polarity pulse of DIA soliton exist. However it is found that only positive polarity pulse of DIA solitons exist for the positively charged dust particles case in a magnetized nonthermal plasma. The nonlinearity coefficient in the KdV equation vanishes for the negatively charged dusty plasma case for a particular set of parameters. Therefore, at critical plasma density composition for negatively charged dust particles case, the modified Korteweg-de Vries (mKdV) equations having cubic nonlinearity coefficient of the DIA solitons, and their corresponding phase shifts are derived for the left and right moving solitons. The effects of the system parameters including the obliqueness of solitons propagation with respect to magnetic field direction, superthermality of electrons and concentration of positively/negatively static dust charged particles on the phase shifts of the colliding solitons are also discussed and presented numerically. The results are applicable to space magnetized dusty plasma regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Edward, E-mail: etjr@auburn.edu; Konopka, Uwe; Lynch, Brian
Dusty plasmas have been studied in argon, radio frequency (rf) glow discharge plasmas at magnetic fields up to 2.5 T where the electrons and ions are strongly magnetized. Plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper electrode supports a dual mesh consisting of #24 brass and #30 aluminum wire cloth. In this experiment, we study the formation of imposed ordered structures and particle dynamics as a function of magnetic field. Through observations of trapped particles and the quasi-discrete (i.e., “hopping”) motion of particles between the trapping locations, it is possible tomore » make a preliminary estimate of the potential structure that confines the particles to a grid structure in the plasma. This information is used to gain insight into the formation of the imposed grid pattern of the dust particles in the plasma.« less
The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions
NASA Astrophysics Data System (ADS)
Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.
2013-12-01
The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2017-03-01
We report an experimental observation of multiple co-rotating vortices in an extended dust column in the background of an inhomogeneous diffused plasma. An inductively coupled rf discharge is initiated in the background of argon gas in the source region. This plasma was later found to diffuse into the main experimental chamber. A secondary DC glow discharge plasma is produced to introduce dust particles into the plasma volume. These micron-sized poly-disperse dust particles get charged in the background of the DC plasma and are transported by the ambipolar electric field of the diffused plasma. These transported particles are found to be confined in an electrostatic potential well, where the resultant electric field due to the diffused plasma (ambipolar E-field) and glass wall charging (sheath E-field) holds the micron-sized particles against the gravity. Multiple co-rotating (anti-clockwise) dust vortices are observed in the dust cloud for a particular discharge condition. The transition from multiple vortices to a single dust vortex is observed when input rf power is lowered. The occurrence of these vortices is explained on the basis of the charge gradient of dust particles, which is orthogonal to the ion drag force. The charge gradient is a consequence of the plasma inhomogeneity along the dust cloud length. The detailed nature and the reason for multiple vortices are still under investigation through further experiments; however, preliminary qualitative understanding is discussed based on the characteristic scale length of the dust vortex. There is a characteristic size of the vortex in the dusty plasma; therefore, multiple vortices could possibly be formed in an extended dusty plasma with inhomogeneous plasma background. The experimental results on the vortex motion of particles are compared with a theoretical model and are found to be in close agreement.
Dust Charging in Saturn's Rings: Observations and Theory
NASA Astrophysics Data System (ADS)
Horanyi, M.
2008-12-01
Saturn's rings show a variety of dusty plasma processes. The electrostatic charging and subsequent orbital dynamics of small grains can establish their size and spatial distributions, for example. Simultaneously, dust can alter the composition, density and temperature of the plasma surrounding it. The dynamics of charged dust particles can be surprisingly complex and fundamentally different from the well understood limits of gravitationally dominated motions of neutral particles or the adiabatic motion of electrons and ions in electromagnetic fields that dominate gravity. This talk will focus on recent Cassini observations at Saturn that are best explained by theories describing the effects of the magnetospheric fields and plasmas on the rings. As our best examples, we will discuss the physics describing the large-scale structure of the E-ring, and the formation of 'spokes' over the dense rings of Saturn.
NASA Astrophysics Data System (ADS)
Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel
2017-11-01
The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.
NASA Astrophysics Data System (ADS)
Misra, A. P.; Chowdhury, A. Roy; Paul, S. N.
2004-09-01
Characteristic features of low frequency transverse wave propagating in a magnetised dusty plasma have been analysed considering the effect of dust-charge fluctu- ation. The distinctive behaviours of both the left circularly polarised and right circularly polarised waves have been exhibited through the analysis of linear and non-linear disper- sion relations. The phase velocity, group velocity, and group travel time for the waves have been obtained and their propagation characteristics have been shown graphically with the variations of wave frequency, dust density and amplitude of the wave. The change in non-linear wave number shift and Faraday rotation angle have also been exhibited with respect to the plasma parameters. It is observed that the effects of dust particles are significant only when the higher order contributions are considered. This may be referred to as the `dust regime' in plasma.
Laser-excited pulses in a crystallized dusty plasma
NASA Astrophysics Data System (ADS)
Nosenko, V.; Nunomura, S.; Goree, J.
2000-10-01
A dusty plasma is an ionized gas containing small particles of solid matter. These particles acquire a large negative electric charge. Polymer microspheres were shaken into a capacitively-coupled parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, arranged in a hexagonal lattice. They were imaged using a video camera, to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. There are several ways these waves can be excited, including applying a force from the radiation pressure of a laser beam. By chopping an argon laser beam that is directed at the lattice, it is possible to launch a pulsed wave in the lattice. We evaluate the pulse's shape and propagation speed, and test whether it has the properties of a shock.
Effect of a Dusty Layer on Surface-Wave Produced Plasmas
NASA Astrophysics Data System (ADS)
Ostrikov, Kostyantyn; Yu, Ming; Xu, Shuyan
2000-10-01
The effect of near-sheath dusts on the RF power loss in a surface-wave sustained gas discharge is studied. The planar plasma is bounded by a dielectric and consists of an inhomogeneous near-wall transition layer (sheath), a dusty plasma layer, and the outer dust-free plasma. The discharge is maintained by high-frequency axially-symmetric surface waves. The surface-wave power loss from the most relevant dissipative mechanisms in typical discharge plasmas is analyzed. Our model allows one to consider the main effects of dust particles on surface-wave produced discharge plasmas. We demonstrate that the dusts released in the discharge can strongly modify the plasma conductivity and lead to a significant redistribution of the total charge. They affect the electron quasi-momenta, but do not absorb the energy transmitted to the plasma through elastic collisions, and therefore they remain cold at the room temperature. It is shown that the improvement of the efficiency of energy transfer from the wave source to the plasma can be achieved by selecting operation regimes when the efficiency of the power loss in the plasma through electron-neutral collisions is higher than that through electron-dust interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahmansouri, M.; Alinejad, H.
2015-04-15
We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.
Characterization of single-file diffusion in one-dimensional dusty plasma
NASA Astrophysics Data System (ADS)
Theisen, W. L.; Sheridan, T. E.
2010-11-01
Single-file diffusion occurs in one-dimensional systems when particles cannot pass each other and the mean-squared displacement (msd) of these particles increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^1/2. One-dimensional dusty plasma rings have been created under strongly coupled, over-damped conditions. Particle position data from these rings will be analyzed to determine the scaling of the msd with time. Results will be compared with predictions of single-file diffusion theory.
Bulk modulus of two-dimensional liquid dusty plasmas and its application
NASA Astrophysics Data System (ADS)
Li, Wei; Lin, Wei; Feng, Yan
2017-04-01
From the recently obtained equation of state [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016) and Feng et al., Phys. Plasmas 23, 093705 (2016); Erratum 23, 119904 (2016)], the bulk modulus of elasticity K of 2D liquid dusty plasmas is analytically derived as the expression of the temperature and the screening parameter. Exact values of the obtained bulk modulus of elasticity K are reported and also plotted in the 2D plane of the temperature and the screening parameter. As the temperature and the screening parameter change, the variation trend of K is reported and the corresponding interpretation is suggested. It has been demonstrated that the obtained bulk modulus of elasticity K can be used to predict the longitudinal sound speed, which agrees well with previous studies.
NASA Astrophysics Data System (ADS)
Nikolaev, V. S.; Timofeev, A. V.
2018-01-01
It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.
Magnetic reconnection as a chondrule heating mechanism
NASA Astrophysics Data System (ADS)
Lazerson, Samuel A.
2010-12-01
The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains today an open question despite over century of examination. The age of these proto-solar relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the oldest solids in the solar system. Chemical examination indicates that they experienced heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by extending periods of cooling. Additional examination indicates the presence of large magnetic fields during their formation. Most attempts to explain chondrule formation in the proto-solar nebula neglect the existence of a plasma environment, with even less mention of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar nebula. Here large dust-neutral relative velocities are found in the reconnection region. These flows are associated with the dynamics of reconnection. The high Knudsen number of the dust particles allows for a direct calculation of frictional heating due to collisions with neutrals (allowing for the neglect of boundary layer formation around the particle). Test particle simulations produce heating equivalent to that recorded in the chondrule mineral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental importance to the formation of the most primitive solids in the solar system.
Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma
NASA Astrophysics Data System (ADS)
Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.
2015-10-01
> Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.
Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen
2007-11-01
Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.
The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
NASA Astrophysics Data System (ADS)
Rasheed, A.; Jamil, M.; Jung, Young-Dae; Sahar, A.; Asif, M.
2017-09-01
Jeans instability with magnetosonic perturbations is discussed in quantum dusty magnetoplasmas. The quantum and smaller thermal effects are associated only with electrons. The quantum characteristics include exchange-correlation potential, recoil effect, and Fermi degenerate pressure. The multifluid model of plasmas is used for the analytical study of this problem. The significant contribution of electron exchange is noticed on the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effects reduce the time to stabilise the phenomenon of self-gravitational collapse of massive species. The results of Jeans instability by magnetosonic perturbations at quantum scale help to disclose the details of the self-gravitating dusty magnetoplasma systems.
Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boruah, A.; Sharma, S. K., E-mail: sumita-sharma82@yahoo.com; Bailung, H.
2015-09-15
The oblique collision between two equal amplitude dust acoustic solitons is observed in a strongly coupled dusty plasma. The solitons are subjected to oblique interaction at different colliding angles. We observe a resonance structure during oblique collision at a critical colliding angle which is described by the idea of three wave resonance interaction modeled by Kadomtsev-Petviashvili equation. After collision, the solitons preserve their identity. The amplitude of the resultant wave formed during interaction is measured for different collision angles as well as for different colliding soliton amplitudes. At resonance, the maximum amplitude of the new soliton formed is nearly 3.7more » times the initial soliton amplitude.« less
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, J.
2014-06-01
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
NASA Astrophysics Data System (ADS)
Kosarev, V. A.; Kuznetsova, E. E.
2014-02-01
The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.
Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas
NASA Astrophysics Data System (ADS)
Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene
2016-10-01
Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.
NASA Astrophysics Data System (ADS)
Bilik, Narula
This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main difficulties in maintaining an APGD is ensuring its uniformity over large discharge volume. By examining past atmospheric pressure plasma reactor designs and looking into the details of the atmospheric pressure gas breakdown mechanism, three design features are proposed to ensure the APGD uniformity. These include the use of a dielectric barrier and the RF driving frequency, as well as a pre-ionization technique achieved by having a non-uniform gap spacing in a capacitively-coupled concentric cylinder reactor. The resulting APGD reactor operates stably in the abnormal glow regime using either helium or argon as the carrier gas. Diethylzinc (DEZ) and oxygen precursors are injected into the APGD to form zinc oxide nanocrystals. The physical and optical properties of these nanocrystals are characterized, and the system parameters that impact the nanoparticle size and deposition rate are identified.
Dressing effects on the occurrence scattering time retardation and advance in a dusty plasma
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae; Hanyang Plasma Team
2017-10-01
The dressing effects on the occurrence scattering time for the dust-dust interaction are investigated in a complex plasma. The first-order eikonal analysis is applied to obtain the scattering amplitude and the occurrence scattering time for the dust-dust interaction. The result shows that dressing effect enhances the retardation phenomena of the occurrence scattering time in the forward scattering domain. It is shown that the oscillatory behavior of the scaled occurrence scattering time is getting more significant with an increase of the Debye length. It is also found that the retardation domain of the occurrence scattering time increases with a decrease of the Debye length. The variation of the occurrence scattering time retardation and advance due to the dressing effect is also discussed.
Dust acoustic shock waves in magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Yashika, GHAI; Nimardeep, KAUR; Kuldeep, SINGH; N, S. SAINI
2018-07-01
We have presented a theoretical study of the dust acoustic (DA) shock structures in a magnetized, electron depleted dusty plasma in the presence of two temperature superthermal ions. By deriving a Korteweg–de Vries–Burgers equation and studying its shock solution, we aim to highlight the effects of magnetic field and obliqueness on various properties of the DA shock structures in the presence of kappa-distributed two temperature ion population. The present model is motivated by the observations of Geotail spacecraft in the Earth's magnetotail and it is seen that the different physical parameters such as superthermality of the cold and hot ions, the cold to hot ion temperature ratio, the magnetic field strength, obliqueness and the dust kinematic viscosity greatly influence the dynamics of the shock structures so formed. The results suggest that the variation of superthermalities of the cold and hot ions have contrasting effects on both positive and negative polarity shock structures. Moreover, it is noted that the presence of the ambient magnetic field affects the dispersive properties of the medium and tends to make the shock structures less wide and more abrupt. The findings of present investigation may be useful in understanding the dynamics of shock waves in dusty plasma environments containing two temperature ions where the electrons are significantly depleted.
NASA Astrophysics Data System (ADS)
E. K., El-Shewy; M. I. Abo el, Maaty; H. G., Abdelwahed; M. A., Elmessary
2011-01-01
Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated. The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation. At the critical hot dusty plasma density Nh0, the KdV equation is not appropriate for describing the system. Hence, a set of stretched coordinates is considered to derive the modified KdV equation. It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical hot dusty plasma density Nh0, neither KdV nor mKdV equation is appropriate for describing the DAWs. Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.
Statistical Physics Experiments Using Dusty Plasmas
NASA Astrophysics Data System (ADS)
Goree, John
2016-10-01
Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states. Third, we performed the first experimental test of a statistical physics theory (the Green-Kubo model) that is widely used by physical chemists to compute viscosity coefficients, and we found that it fails. Work supported by the U.S. Department of Energy, NSF, and NASA.
Cluster formation in Hessdalen lights
NASA Astrophysics Data System (ADS)
Paiva, G. S.; Taft, C. A.
2012-05-01
In this paper we show a mechanism of light ball cluster formation in Hessdalen lights (HL) by the nonlinear interaction of ion-acoustic and dusty-acoustic waves with low frequency geoelectromagnetic waves in dusty plasmas. Our theoretical model shows that the velocity of ejected light balls by HL cluster is of about 104 m s-1 in a good agreement with the observed velocity of some ejected light balls, which is estimated as 2×104 m s-1.
Possible method for diagnosing waves in dusty plasmas with magnetized charged dust particulates
NASA Astrophysics Data System (ADS)
Rosenberg, M.; Shukla, P. K.
2005-05-01
We discuss theoretically a possible method for diagnosing some features of dust wave behavior in a magnetized plasma containing small (tens of nm) charged dust grains whose motion is magnetized. It is easier to magnetize a small dust particle because its charge-to-mass ratio increases as its size decreases. However, it is more difficult to use the backscattering of light from the dust as a diagnostic as the dust size decreases below the diffraction limit. The idea proposed here is to measure the reduction in transmitted UV or optical light intensity due to enhanced extinction by small metal dust particles that have surface plasmon resonances at those wavelengths. Such measurements could indicate the spatial location of the dust density compressions or rarefactions, which may yield information on the dust wave behavior, or perhaps even charged dust transport. Parameters that may be relevant to possible laboratory dusty plasma experiments are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
The dispersion relation for the dust ion-acoustic surface waves propagating at the interface of semi-bounded Lorentzian dusty plasma with supersonic ion flow has been kinetically derived to investigate the nonthermal property and the ion wake field effect. We found that the supersonic ion flow creates the upper and the lower modes. The increase in the nonthermal particles decreases the wave frequency for the upper mode whereas it increases the frequency for the lower mode. The increase in the supersonic ion flow velocity is found to enhance the wave frequency for both modes. We also found that the increase in nonthermalmore » plasmas is found to enhance the group velocity of the upper mode. However, the nonthermal particles suppress the lower mode group velocity. The nonthermal effects on the group velocity will be reduced in the limit of small or large wavelength limit.« less
NASA Astrophysics Data System (ADS)
Deka, Manoj Kr.
2016-12-01
In this report, a detailed investigation on the study of dust acoustics solitary waves solution with negatively dust charge fluctuation in dusty plasma corresponding to lower and higher temperature nonthermal ions with trapped electrons is presented. We consider temporal variation of dust charge as a source of dissipation term to derive the lower order modified Kadomtsev-Petviashvili equation by using the reductive perturbation technique. Solitary wave solution is obtained with the help of sech method in presence of trapped electrons and low (and high) temperature nonthermal ions. Both nonthermality of ions and trapped state of the electrons are found to have an imperative control on the nonlinear coefficient, dissipative coefficient as well as height of the wave potential.
The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas
NASA Astrophysics Data System (ADS)
Haider, Md. Masum; Ferdous, Tahmina; Duha, Syed S.
2014-09-01
The nonlinear propagation of small but finite amplitude dust-ion-acoustic solitary waves in a magnetized, collisionless dusty plasma is investigated theoretically. It has been assumed that the electrons are trapped following the vortex-like distribution and that the negatively and positively charged ions are mobile with the presence of charge fluctuating stationary dusts, where ions mass provide the inertia and restoring forces are provided by the thermal pressure of hot electrons. A reductive perturbation method was employed to obtain a modified Korteweg-de Vries (mK-dV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of trapped electrons, negatively and positively charged ions and arbitrary charged dust grains are discussed.
Dust-acoustic shock waves in a dusty plasma with non-thermal ions and super-thermal electrons
NASA Astrophysics Data System (ADS)
Emamuddin, M.; Mamun, A. A.
2018-01-01
The propagation of dust-acoustic shock waves (DASWs) in a collisionless unmagnetized dusty plasma (containing super-thermal electrons of two distinct temperatures, non-thermal ions, and a negatively charged viscous dust fluid) has been theoretically investigated by deriving and solving the nonlinear Burgers' equation. It has been observed that the viscous force acting on the dust fluid is a source of dissipation, and is responsible for the formation of DASWs, and that the basic features (viz., amplitude, polarity, width, etc.) of the DASWs are significantly modified by the presence of super-thermal electrons and non-thermal ions. The possible applications of this investigation in Earth's mesosphere, the solar atmosphere, Saturn's magnetosphere, etc., have also been briefly addressed.
Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations
NASA Astrophysics Data System (ADS)
Atamaniuk, Barbara; Turski, Andrzej J.
2011-11-01
The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.
Charging of dust grains in a plasma with negative ions
NASA Astrophysics Data System (ADS)
Kim, Su-Hyun; Merlino, Robert L.
2006-05-01
The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.
On the rogue waves propagation in non-Maxwellian complex space plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com; El-Awady, E. I., E-mail: eielawady@hotmail.com; Tribeche, M., E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz
2015-11-15
The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that themore » RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.« less
Solitons and Vortices of Shear-Flow-Modified Dust Acoustic Wave
NASA Astrophysics Data System (ADS)
Saeed, Usman; Saleem, Hamid; Shan, Shaukat Ali
2018-01-01
Shear-flow-driven instability and a modified nonlinear dust acoustic wave (mDAW) are investigated in a dusty plasma. In the nonlinear regime a one dimensional mDAW produces pulse-type solitons and in the two-dimensional case, the dipolar vortex solutions are obtained. This investigation is relevant to magnetospheres of planets such as Saturn and Jupiter as well as dusty interstellar clouds. Here, the theoretical model is applied to Saturn's F-rings, and shape of the nonlinear electric field structures is discussed.
Comment on "Electromagnetic convective cells in a nonuniform dusty plasma".
Shukla, P K; Stenflo, L; Pokhotelov, O A; Onishchenko, O G
2001-04-01
Recently, Saleem and Haque [Phys. Rev. E 60, 7612 (1999)] concluded that in the presence of a perturbed electron current parallel to an external magnetic field, the dispersion relation of the electrostatic convective cell and the magnetostatic modes is not modified. In the present Comment, the properties of electromagnetic as well as electrostatic waves in a nonuniform dusty magnetoplasma are reexamined, to demonstrate that Eq. (13) of the paper by Saleem and Haque as well as their conclusions are erroneous.
Investigation of Plasmas Having Complex, Dynamic Evolving Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellan, Paul M.
2017-01-03
Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing inmore » the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.« less
An equation for pressure of a two-dimensional Yukawa liquid
NASA Astrophysics Data System (ADS)
Feng, Yan; Li, Wei; Wang, Qiaoling; Lin, Wei; Goree, John; Liu, Bin
2016-10-01
Thermodynamic behavior of two-dimensional (2D) dusty plasmas has been studied experimentally and theoretically recently. As a crucial parameter in thermodynamics, the pressure of dusty plasmas arises from frequent collisions of individual dust particles. Here, equilibrium molecular dynamical simulations were performed to study the pressure of 2D Yukawa liquids. A simple analytical expression for the pressure of a 2D Yukawa liquid is found by fitting the obtained pressure data over a wide range of temperatures, from the coldest close to the melting point, to the hottest about 70 times higher than the melting points. The obtained expression verifies that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of Wigner-Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytical expression, with its empirically determined coefficients, is plotted as isochors, or curves of constant area. These results should be applicable to 2D dusty plasmas. Work in China supported by by the National Natural Science Foundation of China under Grant No. 11505124, the 1000 Youth Talents Plan, and startup funds from Soochow University. Work in the US supported by DOE & NSF.
Transmission characteristics of microwave in a glow-discharge dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin
2016-07-15
In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (n{sub e}) of 10{sup 17 }m{sup −3} and electron temperatures (T{sub e}) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al{sub 2}O{sub 3}) particles into the helium plasma. The density of the dust particle (n{sub d}) in the device is about 10{sup 11}–10{sup 12 }m{sup −3}. Themore » propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4–6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.« less
Initial Results from the Magnetized Dusty Plasma Experiment (MDPX)
NASA Astrophysics Data System (ADS)
Thomas, Edward; Konopka, Uwe; Lynch, Brian; Adams, Stephen; Leblanc, Spencer; Artis, Darrick; Dubois, Ami; Merlino, Robert; Rosenberg, Marlene
2014-10-01
The MDPX device is envisioned as a flexible, multi-user, research instrument that can perform a wide range of studies in fundamental and applied plasma physics. The MDPX device consists of two main components. The first is a four-coil, open bore, superconducting magnet system that is designed to produce uniform magnetic fields of up to 4 Tesla and non-uniform magnetic fields with gradients up to up to 2 T/m configurations. Within the warm bore of the magnet is placed an octagonal vacuum chamber that has a 46 cm outer diameter and is 22 cm tall. The primary missions of the MDPX device are to: (1) investigate the structural, thermal, charging, and collective properties of a plasma as the electrons, ions, and finally charged microparticles become magnetized; (2) study the evolution of a dusty plasma containing magnetic particles (paramagnetic, super-paramagnetic, or ferromagnetic particles) in the presence of uniform and non-uniform magnetic fields; and, (3) explore the fundamental properties of strongly magnetized plasmas (``i.e., dust-free'' plasmas). This presentation will summarize the initial characterization of the magnetic field structure, initial plasma parameter measurements, and the development of in-situ and optical diagnostics. This work is supported by funding from the NSF and the DOE.
Excitation of nonlinear wave patterns in flowing complex plasmas
NASA Astrophysics Data System (ADS)
Jaiswal, S.; Bandyopadhyay, P.; Sen, A.
2018-01-01
We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.
Glass transition of charged particles in two-dimensional confinement.
Yazdi, Anoosheh; Heinen, Marco; Ivlev, Alexei; Löwen, Hartmut; Sperl, Matthias
2015-05-01
The glass transition of mesoscopic charged particles in two-dimensional confinement is studied by mode-coupling theory. We consider two types of effective interactions between the particles, corresponding to two different models for the distribution of surrounding ions that are integrated out in coarse-grained descriptions. In the first model, a planar monolayer of charged particles is immersed in an unbounded isotropic bath of ions, giving rise to an isotropically screened Debye-Hückel (Yukawa)-type effective interaction. The second, experimentally more relevant system is a monolayer of negatively charged particles that levitate atop a flat horizontal electrode, as frequently encountered in laboratory experiments with complex (dusty) plasmas. A steady plasma current toward the electrode gives rise to an anisotropic effective interaction potential between the particles, with an algebraically long-ranged in-plane decay. In a comprehensive parameter scan that covers the typical range of experimentally accessible plasma conditions, we calculate and compare the mode-coupling predictions for the glass transition in both kinds of systems.
Observation of dust acoustic shock wave in a strongly coupled dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.
2016-05-15
Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less
Beam-Plasma Interaction and Instabilities in a 2D Yukawa Plasma
NASA Astrophysics Data System (ADS)
Kyrkos, S.; Kalman, G.; Rosenberg, M.
2008-11-01
In a complex plasma, penetrating charged particle beams may lead to beam-plasma instabilities. When either the plasma, the beam, or both, are strongly interacting [1], the features of the instability are different from those in a weakly coupled plasma. We consider the case when a 2D dusty plasma forms a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a Yukawa potential; the beam particles are weakly coupled to each other and to the lattice. The system develops both a longitudinal and a transverse instability. Based on the phonon spectrum of a 2D hexagonal Yukawa lattice [2], we determine and compare the transverse and longitudinal growth rates. As a function of the wavenumber, the growth rates exhibit remarkable gaps, where no instability is excited. The gap locations are governed by the ratio of the lattice and the beam plasma frequencies. The behavior of the growth rates also depends on the direction of the beam and on the relationship between the beam speed and the longitudinal and transverse sound speeds. [1] GJ Kalman, M Rosenberg, JPA 36, 5963 (2003). [2] T Sullivan, GJ Kalman, S Kyrkos, P Bakshi, M Rosenberg, Z Donko, JPA 39, 4607 (2006).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garofano, V.; Stafford, L., E-mail: luc.stafford@umontreal.ca, E-mail: kremena.makasheva@laplace.univ-tlse.fr; Despax, B.
2015-11-02
Optical emission spectroscopy was used to analyze the very-low-frequency cyclic evolution of the electron energy and density caused by repetitive formation and loss of dust nanoparticles in argon plasmas with pulsed injection of hexamethyldisiloxane (HMDSO, [CH{sub 3}]{sub 6}Si{sub 2}O). After elaborating a Boltzmann diagram for Ar high-lying levels and a collisional-radiative model for Ar 2p (Paschen notation) states, temperatures characterizing the low- and high-energy parts of the electron population were calculated. Relative electron densities were also estimated from relative line emission intensities. Both temperatures increase when the dust occupation increases, and then decrease when dust is lost. The opposite trendmore » was observed for the electron density. Such cyclic behaviors of the electron energy and electron density in the HMDSO-containing plasmas are in good agreement with the evolution processes in dusty plasmas, in which the formation of negative ions followed by an electron attachment on the surfaces of the nanoparticles is a critical phenomenon driving dust growth.« less
Two solitons oblique collision in anisotropic non-extensive dusty plasma
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E.; Fouda, S. M.
2017-03-01
Using an extended Poincaré-Lighthill-Kue method, the oblique collision of two dust acoustic solitons (DASs) in a magnetized non-extensive plasma with the effect of dust pressure anisotropy is studied. The dust fluid is supposed to have an arbitrary charge. A couple of Korteweg-de Vries (KdV) equations are derived for the colliding DASs. The phase shift of each soliton is obtained. It is found that the dust pressure anisotropy, the non-extensive parameter for electrons and ions, plays an important role in determining the collision phase shifts. The present results show that, for the negative dust case, the phase shift of the first soliton decreases, while that of the second soliton increases as either the dust pressure ratio increases or the ion non-extensive parameter decreases. On the other hand, for the positive dust case, the phase shift of the first soliton decreases, while the phase shift of the second soliton increases as either the dust pressure ratio or the ion non-extensive parameter increases. The application of the present findings to some dusty plasma phenomena occurring in space and laboratory plasmas is briefly discussed.
Dusty plasma effects in Saturn's rings
NASA Astrophysics Data System (ADS)
Horanyi, M.; Morfill, G. E.
Saturn's rings show a variety of dusty plasma processes. The electrostatic charging and subsequent orbital dynamics of small grains can establish their size and spatial distributions, for example. Simultaneously, dust can alter the composition, density and temperature of the plasma surrounding it. The dynamics of charged dust particles can be surprisingly complex and fundamentally different from the well understood limits of gravitationally dominated motions of neutral particles or the adiabatic motion of electrons and ions in electromagnetic fields that dominate gravity. This talk will focus on recent Cassini observations at Saturn that are best explained by theories describing the effects of the magnetospheric fields and plasmas on the rings. As our best example, we will discuss the physics describing the formation of the `spokes' and their apparent lack to date (at the time of the submission of this abstract) in the Cassini images, as well as our expectations of their return (by the time this talk is presented). Spokes are intermittently appearing radial markings in Saturn's B ring which are believed to form when micron sized dust particles are levitated above the ring by electrostatic forces. First observed by the Voyagers, and subsequently by the Hubble space telescope, the spokes disappeared between October 1998 and September 2005, when the Cassini spacecraft saw them reappear. These observations show spokes that are much fainter and smaller than those seen by the Voyagers. We will review the original ideas of spoke formation dating back to the Voyager era. We will focus on the expected new observations that might be used to constrain and complete our ideas on the triggering mechanisms for spoke formation and their evolution. In particular we will point to outstanding issues related to: a) the properties of impact generated plasmas and their importance as a source of plasma in the magnetosphere; b) the role of the shadow region; c) the asymmetry between the sunlit side of the rings and the shadowed side underneath; d) the coupling of the rings to the ionosphere that ultimately limits the magnitude of the azimuthal electric field, which is thought to be responsible for the apparent radial propagation of the spokes.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2018-05-01
The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.
NASA Astrophysics Data System (ADS)
Su, Yen-Shuo; Liu, Yu-Hsuan; I, Lin
2012-11-01
Whether the static microstructural order information is strongly correlated with the subsequent structural rearrangement (SR) and their predicting power for SR are investigated experimentally in the quenched dusty plasma liquid with microheterogeneities. The poor local structural order is found to be a good alarm to identify the soft spot and predict the short term SR. For the site with good structural order, the persistent time for sustaining the structural memory until SR has a large mean value but a broad distribution. The deviation of the local structural order from that averaged over nearest neighbors serves as a good second alarm to further sort out the short time SR sites. It has the similar sorting power to that using the temporal fluctuation of the local structural order over a small time interval.
Dispersion relations for circular single and double dusty plasma chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkachenko, D. V.; Misko, V. R.; Sheridan, T. E.
2011-10-15
We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branchesmore » of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.« less
Dispersion relations for circular single and double dusty plasma chains
NASA Astrophysics Data System (ADS)
Tkachenko, D. V.; Sheridan, T. E.; Misko, V. R.
2011-10-01
We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.
NASA Astrophysics Data System (ADS)
Sheridan, T. E.
2009-12-01
A model of a dusty plasma (Yukawa) ring is presented. We consider n identical particles confined in a two-dimensional (2D) annular potential well and interacting through a Debye (i.e. Yukawa or screened Coulomb) potential. Equilibrium configurations are computed versus n, the Debye shielding parameter and the trap radius. When the particle separation exceeds a critical value the particles form a 1D chain with a ring topology. Below the critical separation the zigzag instability gives a 2D configuration. Computed critical separations are shown to agree well with a theoretical prediction for the zigzag threshold. Normal mode spectra for 1D rings are computed and found to be in excellent agreement with the longitudinal and transverse dispersion relations for unbounded straight chains. When the longitudinal and transverse dispersion relations intersect we observe a resonance due to the finite curvature of the ring.
Visco-instability of shear viscoelastic collisional dusty plasma systems
NASA Astrophysics Data System (ADS)
Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.
2018-04-01
In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.
Plasma column and nano-powder generation from solid titanium by localized microwaves in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda
2015-07-14
This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less
The Plasma Environment at Enceladus and Europa Compared
NASA Astrophysics Data System (ADS)
Rymer, Abigail; Persoon, Ann; Morooka, Michiko; Heuer, Steven; Westlake, Joseph H.
2017-10-01
The plasma environment near Enceladus is complex, as revealed during 16 encounters of the Cassini spacecraft. The well documented Enceladus plumes create a dusty, asymmetric exosphere in which electrons can attach to small ice particles - forming anions, and negatively charged nanograins and dust - to the extent that cations can be the lightest charged particles present and, as a result, the dominant current carriers. Several instruments on the Cassini spacecraft are able to measure this environment in both expected and unexpected ways. Cassini Plasma Spectrometer (CAPS) is designed and calibrated to measure the thermal plasma ions and electrons and also measures the energy/charge of charged nanograins when present. Cassini Radio Plasma Wave Sensor (RPWS) measures electron density as derived from the ‘upper hybrid frequency’ which is a function of the total free electron density and magnetic field strength and provides a vital ground truth measurement for Cassini calibration when the density is sufficiently high for it to be well measured. Cassini Langmuir Probe (LP) measures the electron density and temperature via direct current measurement, and both CAPS and LP can provide estimates for the spacecraft potential which we compare. The plasma environment near Europa is similarly complex and, although not so comprehensively equipped and hampered by the non-deployment of its high gain antenna, the Galileo spacecraft made similar measurements during 9 Europa flybys and recent observations have suggested that, like Enceladus, Europa might have active plume activity. We present a detailed comparison of data from the Cassini and Galileo sensors in order to assess the plasma environment observed by the different instruments, discuss what is consistent and otherwise, and the implications for the plasma environment at Enceladus and Europa in the context of work to date as well as implications for future studies.
High-Speed Imaging of Dusty Plasma Instabilities
NASA Astrophysics Data System (ADS)
Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.
2011-11-01
Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).
NASA Astrophysics Data System (ADS)
Lee, Seungjun; Lee, Myoung-Jae
2012-10-01
The electrostatic dust-cyclotron (EDC) waves in a magnetized dusty plasma was reported that they could be excited by gravity in a collisional plasma [1]. Rosenberg suggested that EDC waves could be excited by ions drifting along the magnetic field in a collisional plasma containing dust grains with large thermal speeds [2]. The existing investigations, however, focus on EDC volume waves in which the boundary effects are not considered. In this work, we attempt to obtain some physical results concerning the fundamental mode of EDC surface wave and the stability of wave by utilizing a kinetic method. The EDC surface wave is assumed to propagate along an external magnetic field at the interface between the plasma and the vacuum. The plasma is comprised of drifting ions flowing along an external magnetic field. To derive the growth rate of surface waves, we employ the specular reflection boundary conditions. The EDC surface wave is found to be unstable when the ion drift velocity is larger than the phase velocity of the wave. In addition, the wave becomes to be more unstable if dust particles carry more negative charges.[4pt] [1] N. D'Angelo, Phys. Lett. A 323, 445 (2004).[0pt] [2] M. Rosenberg, Phys. Scr. 82, 035505 (2010).
Instability due to trapped electrons in magnetized multi-ion dusty plasmas
NASA Astrophysics Data System (ADS)
Haider, M. M.; Ferdous, T.; Duha, S. S.
2015-05-01
An attempt has been made to find out the effects of trapped electrons in dust-ion-acoustic solitary waves in magnetized multi-ion plasmas, as in most space plasmas, the hot electrons follow the trapped/vortex-like distribution. To do so, we have derived modified Zakharov-Kuznetsov equation using reductive perturbation method and its solution. A small- perturbation technique was employed to find out the instability criterion and growth rate of such a wave.
Dust particles interaction with plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticos, C. M.; Jepu, I.; Lungu, C. P.
2009-11-10
The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.
Ion and aerosol precursor densities in Titan's ionosphere: A multi-instrument case study
NASA Astrophysics Data System (ADS)
Shebanits, O.; Wahlund, J.-E.; Edberg, N. J. T.; Crary, F. J.; Wellbrock, A.; Andrews, D. J.; Vigren, E.; Desai, R. T.; Coates, A. J.; Mandt, K. E.; Waite, J. H.
2016-10-01
The importance of the heavy ions and dust grains for the chemistry and aerosol formation in Titan's ionosphere has been well established in the recent years of the Cassini mission. In this study we combine independent in situ plasma (Radio Plasma and Wave Science Langmuir Probe (RPWS/LP)) and particle (Cassini Plasma Science Electron Spectrometer, Cassini Plasma Science Ion Beam Spectrometer, and Ion and Neutral Mass Spectrometer) measurements of Titan's ionosphere for selected flybys (T16, T29, T40, and T56) to produce altitude profiles of mean ion masses including heavy ions and develop a Titan-specific method for detailed analysis of the RPWS/LP measurements (applicable to all flybys) to further constrain ion charge densities and produce the first empirical estimate of the average charge of negative ions and/or dust grains. Our results reveal the presence of an ion-ion (dusty) plasma below 1100 km altitude, with charge densities exceeding the primary ionization peak densities by a factor ≥2 in the terminator and nightside ionosphere (ne/ni ≤ 0.1). We suggest that ion-ion (dusty) plasma may also be present in the dayside ionosphere below 900 km (ne/ni < 0.5 at 1000 km altitude). The average charge of the dust grains (≥1000 amu) is estimated to be between -2.5 and -1.5 elementary charges, increasing toward lower altitudes.
Using dust as probes to determine sheath extent and structure
NASA Astrophysics Data System (ADS)
Douglass, Angela; Land, V.; Qiao, K.; Matthews, L.; Hyde, T.
2016-08-01
Two in situ experimental methods are presented in which dust particles are used to determine the extent of the sheath and gain information about the time-averaged electric force profile within a radio frequency (RF) plasma sheath. These methods are advantageous because they are not only simple and quick to carry out, but they also can be performed using standard dusty plasma experimental equipment. In the first method, dust particles are tracked as they fall through the plasma towards the lower electrode. These trajectories are then used to determine the electric force on the particle as a function of height as well as the extent of the sheath. In the second method, dust particle levitation height is measured across a wide range of RF voltages. Similarities were observed between the two experiments, but in order to understand the underlying physics behind these observations, the same conditions were replicated using a self-consistent fluid model. Through comparison of the fluid model and experimental results, it is shown that the particles exhibiting a levitation height that is independent of RF voltage indicate the sheath edge - the boundary between the quasineutral bulk plasma and the sheath. Therefore, both of these simple and inexpensive, yet effective, methods can be applied across a wide range of experimental parameters in any ground-based RF plasma chamber to gain useful information regarding the sheath, which is needed for interpretation of dusty plasma experiments.
Modified screening interaction potential on dust lattice waves in dusty plasma ring
NASA Astrophysics Data System (ADS)
He, Kerong; Chen, Hui; Liu, Sanqiu
2017-05-01
In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.
Energy transport in a shear flow of particles in a two-dimensional dusty plasma.
Feng, Yan; Goree, J; Liu, Bin
2012-11-01
A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.
NASA Astrophysics Data System (ADS)
EL-Kalaawy, O. H.; Moawad, S. M.; Wael, Shrouk
The propagation of nonlinear waves in unmagnetized strongly coupled dusty plasma with Boltzmann distributed electrons, iso-nonthermal distributed ions and negatively charged dust grains is considered. The basic set of fluid equations is reduced to the Schamel Kadomtsev-Petviashvili (S-KP) equation by using the reductive perturbation method. The variational principle and conservation laws of S-KP equation are obtained. It is shown that the S-KP equation is non-integrable using Painlevé analysis. A set of new exact solutions are obtained by auto-Bäcklund transformations. The stability analysis is discussed for the existence of dust acoustic solitary waves (DASWs) and it is found that the physical parameters have strong effects on the stability criterion. In additional to, the electric field and the true Mach number of this solution are investigated. Finally, we will study the physical meanings of solutions.
On the effects of suprathermal populations in dusty plasmas: The case of dust-ion-acoustic waves
NASA Astrophysics Data System (ADS)
Lazar, M.; Kourakis, I.; Poedts, S.; Fichtner, H.
2018-07-01
Suprathermal populations with energetic distributions deviating from a standard Maxwellian are ubiquitous in dusty plasmas from space environments, as a proof that these systems are out of thermal equilibrium. The excess of free energy may have important implications in the relaxation processes by the plasma waves and fluctuations, as well as in their dissipation. In order to emphasize the effects of suprathermal populations a new realistic interpretation is proposed on the basis of an advanced Kappa modeling in accord with the observations. This article is focused on the kinetic description of dust-modified ion acoustic (DIA) waves in the presence of Kappa-distributed (suprathermal) particles. Our methodology follows closely recent considerations on the structural characteristics of Kappa distributions, contrasting the high-energy tails enhanced by the suprathermal populations with the Maxwellian (thermal) core of the distribution. The effects on DIA waves are found to be highly dependent on the nature of suprathermal particles: both the wave-frequency and Landau damping rate are inhibited by the suprathermal electrons, while the suprathermal ions have an opposite influence.
Dusty Plasma Dynamics Near Surfaces in Space
NASA Technical Reports Server (NTRS)
Colwell, Joshua E.; Robertson, S.; Horanyi, M.; Nahra, Henry (Technical Monitor)
1998-01-01
The investigation 'Dusty Plasma Dynamics Near Surfaces in Space' is an experimental and theoretical study of the dynamics of dust particles on airless bodies in the solar system in the presence of a photoelectron sheath generated by solar ultraviolet light impinging on the surface. Solar UV illumination of natural and manmade surfaces in space produces photoelectrons which form a plasma sheath near the surface. Dust particles on the surface acquire a charge and may be transported by electric fields in the photoelectron sheath generated by inhomogeneities in the surface or the illumination (such as shadows). The sheath itself has a finite vertical extent leading to (at least) an electric field normal to the illuminated surface. If dust particles are launched from the surface by some other process, such as meteoroid impact, or spacecraft activity on the surface, these grains become charged and move under the influence of gravity and the electric field. This can give rise to suspension of the particles above the surface, loss from the parent body entirely (if accelerated beyond escape velocity), and a different distribution of dust ejecta from what would be expected with purely gravitational dynamics.
NASA Astrophysics Data System (ADS)
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong
2018-02-01
On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.
Fundamentals of Plasma Physics
NASA Astrophysics Data System (ADS)
Bellan, Paul M.
2008-07-01
Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.
Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.
2016-05-23
Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10{sup −6}%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.
NASA Astrophysics Data System (ADS)
Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud
2016-03-01
The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK-dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.
NASA Astrophysics Data System (ADS)
Tribeche, Mouloud; Mayout, Saliha
2016-07-01
The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.
Caltech water-ice dusty plasma: preliminary results
NASA Astrophysics Data System (ADS)
Bellan, Paul; Chai, Kilbyoung
2013-10-01
A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.
Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment
NASA Astrophysics Data System (ADS)
Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul
2016-10-01
The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.
Image charge effects on electron capture by dust grains in dusty plasmas.
Jung, Y D; Tawara, H
2001-07-01
Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borhanian, J.; Shahmansouri, M.
2013-01-15
A theoretical investigation is carried out to study the existence and characteristics of propagation of dust-acoustic (DA) waves in an electron-depleted dusty plasma with two-temperature ions, which are modeled by kappa distribution functions. A three-dimensional cylindrical Kadomtsev-Petviashvili equation governing evolution of small but finite amplitude DA waves is derived by means of a reductive perturbation method. The influence of physical parameters on solitary wave structure is examined. Furthermore, the energy integral equation is used to study the existence domains of the localized structures. It is found that the present model can be employed to describe the existence of positive asmore » well as negative polarity DA solitary waves by selecting special values for parameters of the system, e.g., superthermal index of cold and/or hot ions, cold to hot ion density ratio, and hot to cold ion temperature ratio. This model may be useful to understand the excitation of nonlinear DA waves in astrophysical objects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin
2011-03-15
The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake wave excitation increases with the decreasing projectile speed. The excited wave then leads the slowed down projectile after the projectilemore » speed is decreased below the resonant speed of wave excitation. The wave-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest trapping by the externally excited large amplitude solitary wave is also demonstrated.« less
Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma
NASA Astrophysics Data System (ADS)
Bezbaruah, P.; Das, N.
2018-05-01
The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.
Formation of pseudo-microgravity environment for dusty plasmas in supercritical carbon dioxide
NASA Astrophysics Data System (ADS)
Sakakibara, Noritaka; Matsubayashi, Yasuhito; Ito, Tsuyohito; Terashima, Kazuo
2018-01-01
We realized a pseudo-microgravity environment for dusty plasmas in a ground-based experiment, using the field-emitting regime of a surface dielectric barrier discharge in high-pressure carbon dioxide (CO2) including supercritical conditions. Using the high and adjustable density of high-pressure CO2, the balance between gravitational force and buoyancy was controlled. When changing the density of CO2 in the range of 0.234 g/cm3 to 0.668 g/cm3, i.e., smaller and larger than that of the particles (0.5 g/cm3), a particle arrangement in the direction of the gravitational force was formed only when the density of CO2 was in the range of ±0.17 g/cm3 with respect to that of the particles. This experimentally demonstrates that the pseudo-microgravity that emerges due to the buoyancy from the high-pressure CO2 contributes to the particle arrangement in the gravitational direction, and hence, it compensates the gravity-induced anisotropy.
Formation and dissociation of dust molecules in dusty plasma
NASA Astrophysics Data System (ADS)
Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng
2016-09-01
Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.
Transient slowing down relaxation dynamics of the supercooled dusty plasma liquid after quenching.
Su, Yen-Shuo; Io, Chong-Wai; I, Lin
2012-07-01
The spatiotemporal evolutions of microstructure and motion in the transient relaxation toward the steady supercooled liquid state after quenching a dusty plasma Wigner liquid, formed by charged dust particles suspended in a low pressure discharge, are experimentally investigated through direct optical microscopy. It is found that the quenched liquid slowly evolves to a colder state with more heterogeneities in structure and motion. Hopping particles and defects appear in the form of clusters with multiscale cluster size distributions. Via the structure rearrangement induced by the reduced thermal agitation from the cold thermal bath after quenching, the temporarily stored strain energy can be cascaded through the network to different newly distorted regions and dissipated after transferring to nonlinearly coupled motions with different scales. It leads to the observed self-similar multiscale slowing down relaxation with power law increases of structural order and structural relaxation time, the similar power law decreases of particle motions at different time scales, and the stronger and slower fluctuations with increasing waiting time toward the new steady state.
ICPP: Charge and Density Coupling in Nonideal Plasmas
NASA Astrophysics Data System (ADS)
Fortov, V. E.
2000-10-01
Plasmas with Strong Coulomb Interaction (SCI) are found in astrophysics, planetary physics, inertial confinement fusion, advanced energetics and elsewhere[1]. SCI plasmas can be achieved in: I Dusty plasmas, II Shock-compressed plasmas. I. SCI in low-density dusty (colloidal) plasmas arises from the high charge of micron-size macroparticles[2]. Experiments use glow and inductive RF discharges, combustion flames of gas and solid propellant, ultraviolet light beams, and radioactive decay fluxes. Liquid- and solid-like structures are seen, and phase diagrams and transitions investigated by experiment and simulation. Zero-g experiments on space station Mir and in aircraft clarified the gravity effect on plasma crystal formation. II. Plasma SCI can arise in shock compression of solid and porous metals, noble gases, hydrogen, sulphur, and iodine at megabar pressures [3,4], using high explosive drive. Phase diagram regions were examined, where thermal and pressure ionization exist. Multiple-shock-compressed hydrogen can show metal-like conductivity from pressure ionization. The ``metal-to-dielectric" transition in shock-compressed lithium at 0.5 Mbar was detected and analyzed. Thermodynamics, equation of state, plasma composition, electrical and radiative properties show SCI suppression of discrete electron spectra and strong lowering of ionization potentials, evoking the ``confined-atom" model[5] for SCI and other models[6]. [1] V.E.Fortov, I.T.Yakubov, Physics of Nonideal Plasmas, Hemisphere, N.Y.-London (1989). [2] V.E.Fortov, A.P.Nefedov, O.F.Petrov, Soviet Physics-Uspekhy, 167(1997)1215. [3] V.Gryaznov, I.Iosilevsky, V.Fortov, Contrib. Plasma Physics, 39(1999)89. [4] V.Ya.Temovoi, A.S. Filimonov, V.E.Fortov et al. Proc. XXXVI EHPRG Meeting, Catania, Italy (1998). [5] V.K.Gryaznov, M.V.Zhernokletov et al. Zh. Exp. Teor. Fiz. (Soviet JETP) 78(1980) 573. [6] V.Ebeling, A.Foerster, V.Fortov et al. Thermodynamical Properties of Hot Dense Plasmas, Teubner Verlaggeselschaft , Berlin-Stuttgart, 1991.
Dust grain characterization — Direct measurement of light scattering
NASA Astrophysics Data System (ADS)
BartoÅ, P.; Pavlů, J.
2018-01-01
Dust grains play a key role in dusty plasma since they interact with the plasma we can use them to study plasma itself. The grains are illuminated by visible light (e.g., a laser sheet) and the situation is captured with camera. Despite of simplicity, light scattering on similar-to-wavelength sized grains is complex phenomenon. Interaction of the electromagnetic wave with material has to be computed with respect to Maxwell equations — analytic solution is nowadays available only for several selected shapes like sphere, coated sphere, or infinite cylinder. Moreover, material constants needed for computations are usually unknown. For computation result verification and material constant determination, we designed and developed a device directly measuring light scattering profiles. Single dust grains are trapped in the ultrasonic field (so called "acoustic levitation") and illuminated by the laser beam. Scattered light is then measured by a photodiode mounted on rotating platform. Synchronous detection is employed for a noise reduction. This setup brings several benefits against conventional methods: (1) it works in the free air, (2) the measured grain is captured for a long time, and (3) the grain could be of arbitrary shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg; El-Shewy, E. K.
2015-10-15
Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions aremore » related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Kavita; Sharma, Suresh C.
2015-02-15
An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.
Dusty waves and vortices in rf magnetron discharge plasma
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.; Shugaev, F. V.
2018-01-01
The appearance and subsequent growth of metallic particles in plasma of planar rf magnetron sputter were observed. The origin of the particles is sputtering of the rf electrode by ion flux from the plasma. In some regions of formed dust cloud the particles were involved in the horizontal or vertical circular movement. The horizontal rotation along the sputtered track in the cyclotron drift direction was observed close to the main magnetron plasma. The torus-shaped dust vortex ring engirdled the secondary plasma of the discharge at height of a few centimeters over the electrode. Close to this region particle density waves propagated through the cloud. The possible role of discharge plasma azimuthal inhomogeneity and gas dynamics effects in the forming the observed structures was considered.
Effect of energetic electrons on dust charging in hot cathode filament discharge
NASA Astrophysics Data System (ADS)
Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.
2011-03-01
The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.
Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge
NASA Astrophysics Data System (ADS)
Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André
2018-02-01
An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Dong-Ning; Yang, Yang; Yan, Qiang
Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.
Recombination of H atoms on the dust in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir
2015-07-15
We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.
Green-Kubo relation for viscosity tested using experimental data for a two-dimensional dusty plasma
NASA Astrophysics Data System (ADS)
Feng, Yan; Goree, J.; Liu, Bin; Cohen, E. G. D.
2011-10-01
The theoretical Green-Kubo relation for viscosity is tested using experimentally obtained data. In a dusty plasma experiment, micron-sized dust particles are introduced into a partially ionized argon plasma, where they become negatively charged. They are electrically levitated to form a single-layer Wigner crystal, which is subsequently melted using laser heating. In the liquid phase, these dust particles experience interparticle electric repulsion, laser heating, and friction from the ambient neutral argon gas, and they can be considered to be in a nonequilibrium steady state. Direct measurements of the positions and velocities of individual dust particles are then used to obtain a time series for an off-diagonal element of the stress tensor and its time autocorrelation function. This calculation also requires the interparticle potential, which was not measured experimentally but was obtained using a Debye-Hückel-type model with experimentally determined parameters. Integrating the autocorrelation function over time yields the viscosity for shearing motion among dust particles. The viscosity so obtained is found to agree with results from a previous experiment using a hydrodynamical Navier-Stokes equation. This comparison serves as a test of the Green-Kubo relation for viscosity. Our result is also compared to the predictions of several simulations.
Electromagnetic instabilities in solar wind interaction with dusty cometary plasmas
NASA Technical Reports Server (NTRS)
Verheest, Frank; Meuris, Peter
1995-01-01
Dusty plasmas contain charged dust grains which are much more massive than protons, carry high negative charges due to preferential capture of electrons, and do not have a fixed charge. Fluctuations in the grain charges due to liberation or capture of additional electrons and protons translate as mass and momentum losses or gains for these species, which can render linear modes unstable. On the other hand, many authors have addressed the pickup of ions of cometary origin by the solar wind, which for the parallel part is due to relative streaming between cometary and solar wind ions which excites low-frequency electromagnetic turbulence. In the present work we look again at those instabilities by including effects due to the presence of charged dust in the cometary environments. We have investigated several frequency regimes: nonresonant below the cometary watergroup gyrofrequency, nonresonant below the cometary charged dust gyrofrequency (new and interesting but highly unlikely!) and resonant with the cometary watergroup ions. For most parameter ranges either the existing instabilities are enhanced, showing that the presence of charged dust facilitates the cometary ion pickup by the solar wind, or new instabilities have been shown to exist. Similar conclusions might be relevant for other kinds of astrophysical and heliospheric plasmas containing charged dust, as in planetary rings.
NASA Astrophysics Data System (ADS)
Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.
2001-08-01
The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.
NASA Astrophysics Data System (ADS)
Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.
2017-03-01
The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.
Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, John
2015-09-01
We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.
Spherical crystals in dusty plasmas - Simulation and theory
NASA Astrophysics Data System (ADS)
Bonitz, M.; Henning, C.; Golubnychiy, V.; Baumgartner, H.; Ludwig, P.; Arp, O.; Block, D.; Piel, A.; Melzer, A.; Kraeft, W. D.
2006-10-01
Coulomb crystals in spherically symmetric traps have been found in trapped cold ions and, recently, in dusty plasmas at room temperature [1] allowing for precision measurements, including individual particle positions and trajectories. Thus, for the first time, strong correlation phenomena can be studied directly on the microscopic level which allows for detailed comparisons with theoretical results and computer simulations. We present molecular dynamics and Monte Carlo simulations of Coulomb crystals in the range from 10 to 10,000 particles which agree very well with the measurements [3]. The results include the ground state shell configurations and symmetry properties [2,3], the crystal stability and melting behavior. Finally, a thermodynamic theory is developed and compared to simpler models, such as shell models [4]. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] P. Ludwig, S. Kosse, and M. Bonitz, Phys. Rev. E 71, 046403 (2005). [3] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [4] C. Henning et al., submitted for publication.
BETA (Bitter Electromagnet Testing Apparatus) Design and Testing
NASA Astrophysics Data System (ADS)
Bates, Evan; Birmingham, William; Rivera, William; Romero-Talamas, Carlos
2016-10-01
BETA is a 1T water cooled Bitter-type magnetic system that has been designed and constructed at the Dusty Plasma Laboratory of the University of Maryland, Baltimore County to serve as a prototype of a scaled 10T version. Currently the system is undergoing magnetic, thermal and mechanical testing to ensure safe operating conditions and to prove analytical design optimizations. These magnets will function as experimental tools for future dusty plasma based and collaborative experiments. An overview of design methods used for building a custom made Bitter magnet with user defined experimental constraints is reviewed. The three main design methods consist of minimizing the following: ohmic power, peak conductor temperatures, and stresses induced by Lorentz forces. We will also discuss the design of BETA which includes: the magnet core, pressure vessel, cooling system, power storage bank, high powered switching system, diagnostics with safety cutoff feedback, and data acquisition (DAQ)/magnet control Matlab code. Furthermore, we present experimental data from diagnostics for validation of our analytical preliminary design methodologies and finite element analysis calculations. BETA will contribute to the knowledge necessary to finalize the 10 T magnet design.
Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, A. P.; Banerjee, S.
The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as wellmore » as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajapati, R. P., E-mail: prajapati-iter@yahoo.co.in; Bhakta, S.; Chhajlani, R. K.
2016-05-15
The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss,more » but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com; Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha; Al-Asbali, A. M., E-mail: aliaa-ma@hotmail.com
A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended Poincaré–Lighthill–Kuo method, a couple of Korteweg–deVries–Burgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dustmore » temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.« less
Transport and mixing in strongly coupled dusty plasma medium
NASA Astrophysics Data System (ADS)
Dharodi, Vikram; Das, Amita; Patel, Bhavesh
2016-10-01
The generalized hydrodynamic (GHD) fluid model has been employed to study the transport and mixing properties of Dusty plasma medium in strong coupling limit. The response of lighter electron and ion species to the dust motion is taken to be instantaneous i.e. inertia-less. Thus the electron and ion density are presumed to follow the Boltzman relation. In the incompressible limit (i-GHD) the model supports Transverse Shear wave in contrast to the Hydrodynamic fluids. It has been shown that the presence of these waves leads to a better mixing of fluid in this case. Several cases of flow configuration have been considered for the study. The transport and mixing attributes have been quantified by studying the dynamical evolution of tracer particles in the system. The diffusion and clustering of these test particles are directly linked to the mixing characteristic of a medium. The displacement of these particles provides for a quantitative estimate of the diffusion coefficient of the medium. It is shown that these test particles often organize themselves in spatially inhomogeneous pattern leading to the phenomena of clustering.
NASA Astrophysics Data System (ADS)
Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.
2018-01-01
Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.
NASA Astrophysics Data System (ADS)
Ghannad, Z.; Hakimi Pajouh, H.
2017-12-01
In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.
Dynamics of streaming instability with quantum correction
NASA Astrophysics Data System (ADS)
Goutam, H. P.; Karmakar, P. K.
2017-05-01
A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.
Particle velocity distribution in a three-dimensional dusty plasma under microgravity conditions
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, J.; Pustylnik, M. Y.; Thomas, H. M.; Fortov, V. E.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Thoma, M. H.
2018-01-01
The velocity distribution function of dust particles immersed in a plasma was investigated under microgravity conditions. A three-dimensional (3D) cloud of polymer microspheres was suspended in a neon plasma, in the PK-4 instrument onboard the International Space Station (ISS). These dust particles were tracked using video microscopy in a cross section of the 3D dust cloud. The velocity distribution function (VDF) is found to have a non-Maxwellian shape with high-energy tails; it is fit well by a combination of low-energy Maxwellian core and a high-energy non-Gaussian Kappa-distribution halo. Similar non-Maxwellian VDFs are typically observed in space plasmas.
Oscillatory wake potential with exchange-correlation in plasmas
NASA Astrophysics Data System (ADS)
Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.
2017-12-01
The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.
NASA Astrophysics Data System (ADS)
Frisch, P. C.; Ogasawara, K.; Livadiotis, G.; Slavin, J. D.; McComas, D. J.; Funsten, H. O.; Schwadron, N.; Heerikhuisen, J.
2017-12-01
Dusty bow waves are common around stars and anticipated around the heliosphere due to the deficit of low-mass interstellar dust grains in the inner heliosphere. Interstellar grains entering the heliosphere must first cross barriers of non-Maxwellian plasma in the heliosheath regions where collisional charging of grains is highly effective. IBEX measures 0.1-6 keV ENAs in the heliosheath plasma, providing an in situ sample of the heliosheath plasma thermodynamics that can be used for grain-charging calculations. Plasma in three-quarters of the sky can be described with a stationary state kappa-distribution, giving predictions for kappa, kappa-distribution temperature, and plasma density [1]. This thermodynamic description allows a more realistic evaluation of the dominant heliosheath electron and ion currents, and hence also grain gyroradii and exclusion from the heliosphere. At the highest temperatures ion collisional currents dominate grain charging; at lower temperatures collisional electron currents are more important together with the photoelectric ejection of electrons. An absence of data on the thermodynamical state of heliosheath electrons has led to the assumption of similar thermodynamic parameters for the electron and ion populations. The balance between electron, proton and photoionization currents on the grains then yield the equilibrium grain charges. Grain gyroradii calculated based on these charging currents differentiate between interstellar grains able to penetrate the heliosphere, versus those that are excluded, and allow predictions of properties of the dusty bow wave likely to be present around the heliosphere. The smallest grains are excluded and grains at the high latitude edges of the described regions tend to have systematically lower grain potentials. Grain charging calculations utilize the modeling of [2]. [1] Livadiotis et al., ApJ 734, 1 (2011). [2] Weingartner Draine, ApJSS 263 (2001)
Monitoring non-thermal plasma processes for nanoparticle synthesis
NASA Astrophysics Data System (ADS)
Mangolini, Lorenzo
2017-09-01
Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.
Dust Acoustic Wave Excitation in a Plasma with Warm Dust
NASA Astrophysics Data System (ADS)
Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.
2008-11-01
Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).
Plasma Disks and Rings with ``High'' Magnetic Energy Densities
NASA Astrophysics Data System (ADS)
Coppi, B.; Rousseau, F.
2006-04-01
The nonlinear theory of rotating axisymmetric thin structures in which the magnetic field energy density is comparable with the thermal plasma energy density is formulated. The only flow velocity included in the theory is the velocity of rotation around a central object whose gravity is dominant. The periodic sequence, in the radial direction, of pairs of opposite current channels that can form is shown to lead to relatively large plasma density and pressure modulations, while the relevant magnetic surfaces can acquire a ``crystal structure.'' A new class of equilibria consisting of a series of plasma rings is identified, in the regimes where the plasma pressure is comparable to the magnetic pressure associated with the fields produced by the internal currents. The possible relevance of this result to the formation of dusty plasma rings is pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yitian; Tian Bo; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100083
2006-11-15
The spherical modified Kadomtsev-Petviashvili (smKP) model is hereby derived with symbolic computation for the dust-ion-acoustic waves with zenith-angle perturbation in a cosmic dusty plasma. Formation and properties of both dark and bright smKP nebulons are obtained and discussed. The relevance of those smKP nebulons to the supernova shells and Saturn's F-ring is pointed out, and possibly observable nebulonic effects for the future cosmic plasma experiments are proposed. The difference of the smKP nebulons from other types of nebulons is also analyzed.
Charge-fluctuation-induced heating of dust particles in a plasma.
Vaulina, O S; Khrapak, S A; Nefedov, A P; Petrov, O F
1999-11-01
Random charge fluctuations are always present in dusty plasmas due to the discrete nature of currents charging the dust particle. These fluctuations can be a reason for the heating of the dust particle system. Such unexpected heating leading to the melting of the dust crystals was observed recently in several experiments. In this paper we show by analytical evaluations and numerical simulation that charge fluctuations provide an effective source of energy and can heat the dust particles up to several eV, in conditions close to experimental ones.
Numerical study on dusty shock reflection over a double wedge
NASA Astrophysics Data System (ADS)
Yin, Jingyue; Ding, Juchun; Luo, Xisheng
2018-01-01
The dusty shock reflection over a double wedge with different length scales is systematically studied using an adaptive multi-phase solver. The non-equilibrium effect caused by the particle relaxation is found to significantly influence the shock reflection process. Specifically, it behaves differently for double wedges with different length scales of the first wedge L1. For a double wedge with L1 relatively longer than the particle relaxation length λ, the equilibrium shock dominates the shock reflection and seven typical reflection processes are obtained, which is similar to the pure gas counterpart. For a double wedge with L1 shorter than λ, the non-equilibrium effect manifests more evidently, i.e., three parts of the dusty shock system including the frozen shock, the relaxation zone, and the equilibrium shock together dominate the reflection process. As a result, the shock reflection is far more complicated than the pure gas counterpart and eleven transition processes are found under various wedge angles. These findings give a complete description of all possible processes of dusty shock reflection over a double wedge and may be useful for better understanding the non-equilibrium shock reflection over complex structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrapak, Sergey A.; Joint Institute for High Temperatures, 125412 Moscow; Chaudhuri, Manis
We put forward an approximate method to locate the fluid-solid (freezing) phase transition in systems of classical particles interacting via a wide range of Lennard-Jones-type potentials. This method is based on the constancy of the properly normalized second derivative of the interaction potential (freezing indicator) along the freezing curve. As demonstrated recently it yields remarkably good agreement with previous numerical simulation studies of the conventional 12-6 Lennard-Jones (LJ) fluid [S.A.Khrapak, M.Chaudhuri, G.E.Morfill, Phys. Rev. B 134, 052101 (2010)]. In this paper, we test this approach using a wide range of the LJ-type potentials, including LJ n-6 and exp-6 models, andmore » find that it remains sufficiently accurate and reliable in reproducing the corresponding freezing curves, down to the triple-point temperatures. One of the possible application of the method--estimation of the freezing conditions in complex (dusty) plasmas with ''tunable'' interactions--is briefly discussed.« less
Dusty plasmas in the lunar exosphere: Effects of meteoroids
NASA Astrophysics Data System (ADS)
Popel, S. I.; Golub', A. P.; Zelenyi, L. M.; Horányi, M.
2018-01-01
A possibility of the formation in the lunar exosphere of dust cloud due to meteoroid impacts onto the lunar surface is studied. The main attention is paid to the high altitudes over the lunar surface including the range of the altitudes between 30 and 110 km where the measurements of dust were performed within the NASA LADEE mission. From the viewpoint of the formation of dust cloud at high altitudes over the Moon, the most important zone formed by the meteoroid impact is the zone of melting of substance. Only the droplets originated from this zone have the speeds between the first and second astronautical velocities (for the Moon). Correspondingly, only such droplets can perform finite movement around the Moon. The liquid droplets harden when rising over the lunar surface. Furthermore, they aquire electric charges due to the action, in particular, of the solar wind electrons and ions, as well as of the solar radiation. Thus dusty plasmas exist in the lunar exosphere with the characteristic number density ≲ 10-2 m-3 of dust particles with the sizes from 300 nm to 1 μm which is in accordance with the results of measurements performed by LADEE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan Ghosh, Uday; Kumar Mandal, Pankaj, E-mail: pankajwbmsd@gmail.com; Chatterjee, Prasanta
Dust ion-acoustic traveling waves are studied in a magnetized dusty plasma in presence of static dust and non-extensive distributed electrons in the framework of Zakharov-Kuznesstov-Burgers (ZKB) equation. System of coupled nonlinear ordinary differential equations is derived from ZKB equation, and equilibrium points are obtained. Nonlinear wave phenomena are studied numerically using fourth order Runge-Kutta method. The change from unstable to stable solution and consequently to asymptotic stable of dust ion acoustic traveling waves is studied through dynamical system approach. It is found that some dramatical features emerge when the non-extensive parameter and the dust concentration parameters are varied. Behavior ofmore » the solution of the system changes from unstable to stable and stable to asymptotic stable depending on the value of the non-extensive parameter. It is also observed that when the dust concentration is increased the solution pattern is changed from oscillatory shocks to periodic solution. Thus, non-extensive and dust concentration parameters play crucial roles in determining the nature of the stability behavior of the system. Thus, the non-extensive parameter and the dust concentration parameters can be treated as bifurcation parameters.« less
Structure of the metallic films deposited on small spheres trapped in the rf magnetron plasma
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.
2016-11-01
Metallic coatings were deposited onto glass spheres having diameters from several to one hundred micrometers by the magnetron sputtering. Two different experimental schemes were exploited. One of them had the traditional configuration where a magnetron sputter was placed at one hundred millimeters from particles. In this scheme, continuous mechanical agitation in a fluidized bed was used to achieve uniformity of coatings. In the second scheme the treated particles (substrates) levitated in a magnetron rf plasma over a sputtered rf electrode (target) at the distance d of few mm from it and at gas pressure p values of 30-100 mTorr. These parameters are essentially different from those in the traditional sputtering. Agitation due to the features of a particle confinement in dusty plasma was used here to obtain uniform coatings. Thickness and morphology of the obtained coatings were studied. As it is known, film growth rate and structure are determined by the substrate temperature, the densities of ion and neutral atom fluxes to the substrate surface, the radiation flux density, and the heat energy produced due to the surface condensation of atoms and recombination of electrons and ions. These parameters particularly depend on the product of p and d. In the case of magnetron rf dusty plasma, it is possible to achieve the pd value several times lower than the lowest value proper to the first traditional case. Completely different dependencies of the film growth rate and structure on the pd value in these sputtering processes were observed and qualitatively explained.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2007-09-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
The electrostatics of a dusty plasma
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Mendis, D. A.; Northrop, T. G.
1986-01-01
The potential distribution in a plasma containing dust grains were derived where the Debye length can be larger or smaller than the average intergrain spacing. Three models were treated for the grain-plasma system, with the assumption that the system of dust and plasma is charge-neutral: a permeable grain model, an impermeable grain model, and a capacitor model that does not require the nearest neighbor approximation of the other two models. A gauge-invariant form of Poisson's equation was used which is linearized about the average potential in the system. The charging currents to a grain are functions of the difference between the grain potential and this average potential. Expressions were obtained for the equilibrium potential of the grain and for the gauge-invariant capacitance between the grain and the plasma. The charge on a grain is determined by the product of this capacitance and the grain-plasma potential difference.
NASA Astrophysics Data System (ADS)
Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.
2018-01-01
The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.
Kinetic Theory of quasi-electrostatic waves in non-gyrotropic plasmas
NASA Astrophysics Data System (ADS)
Arshad, K.; Poedts, S.; Lazar, M.
2017-12-01
The orbital angular momentum (OAM) is a trait of helically phased light or helical (twisted) electric field. Lasers carrying orbital angular momentum (OAM) revolutionized many scientific and technological paradigms like microscopy, imaging and ionospheric radar facility to analyze three dimensional plasma dynamics in ionosphere, ultra-intense twisted laser pulses, twisted gravitational waves and astrophysics. This trend has also been investigated in plasma physics. Laguerre-Gaussian type solutions are predicted for magnetic tornadoes and Alfvénic tornadoes which exhibit spiral, split and ring-like morphologies. The ring shape morphology is ideal to fit the observed solar corona, solar atmosphere and Earth's ionosphere. The orbital angular momentum indicates the mediation of electrostatic and electromagnetic waves in new phenomena like Raman and Brillouin scattering. A few years ago, some new effects have been included in studies of orbital angular momentum in plasma regimes such as wave-particle interaction in the presence of helical electric field. Therefore, kinetic studies are carried out to investigate the Landau damping of the waves and growth of the instabilities in the presence helical electric field carrying orbital angular momentum for the Maxwellian distributed plasmas. Recently, a well suited approach involving a kappa distribution function has been adopted to model the twisted space plasmas. This leads to the development of new theoretical grounds for the study of Lorentzian or kappa distributed twisted Langmuir, ion acoustic, dust ion acoustic and dust acoustic modes. The quasi-electrostatic twisted waves have been studied now for the non-gyrotropic dusty plasmas in the presence of the orbital angular momentum of the helical electric field using Generalized Lorentzian or kappa distribution function. The Laguerre-Gaussian (LG) mode function is employed to decompose the perturbed distribution function and electric field into planar (longitudinal) and non-planar (azimuthal) components. The modified Vlasov and Poisson equations are solved to obtain the dielectric function for quasi-electrostatic twisted modes the non-gyrotropic dusty plasmas. Some numerical and graphical analysis is also illustrated for the better understanding of the twisted non-gyrotropic plasmas.
Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized Plasma
NASA Astrophysics Data System (ADS)
M. Nouri, Kadijani; Zareamoghaddam, H.
2013-11-01
In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are also investigated numerically.
Dual-mode resonant instabilities of the surface dust-acoustic wave in a Lorentzian plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2015-08-15
The dual-mode resonant instabilities of the dust-acoustic surface wave propagating at the plasma-vacuum interfaces of the generalized Lorentzian dusty plasma slab are kinetically investigated. The dispersion relation is derived for the two propagation modes: symmetric and anti-symmetric waves. We have found that the temporal growth rate of the resonant instability increases with an increase of the slab thickness for both modes. Especially, the nonthermality of plasmas enhances the growth rate of the anti-symmetric resonant wave, and the nonthermal effect is enhanced as the slab thickness is increased. It is also found that the growth rate increases with increasing angular frequencymore » of the rotating dust grain due to the enhanced resonant energy exchange.« less
Positively charged particles in dusty plasmas.
Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F
2001-11-01
The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.
Is dust acoustic wave a new plasma acoustic mode?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, C.B.
1997-09-01
In this Brief Communication, the claim of the novelty of the dust acoustic wave in a dusty plasma within the constant dust charge model is questioned. Conceptual lacunas behind the claim have been highlighted and appropriate physical arguments have been forwarded against the claim. It is demonstrated that the so-called dust acoustic wave could better be termed as a general acoustic fluctuation response with a dominant characteristic feature of the acoustic-like mode (ALM) fluctuation response reported by Dwivedi {ital et al.} [J. Plasma Phys. {bold 41}, 219 (1989)]. It is suggested that both correct and more usable nomenclature of themore » ALM should be the so-called acoustic mode. {copyright} {ital 1997 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Stenflo, L.
2005-01-01
The "International Workshop on Theoretical Plasma Physics: Modern Plasma Science was held at the Abdus Salam International Centre for Theoretical Physics (Abdus Salam ICTP), Trieste, Italy during the period 5 16 July 2004. The workshop was organized by P K Shukla, R Bingham, S M Mahajan, J T Mendonça, L Stenflo, and others. The workshop enters into a series of previous biennial activities that we have held at the Abdus Salam ICTP since 1989. The scientific program of the workshop was split into two parts. In the first week, most of the lectures dealt with problems concerning astrophysical plasmas, while in the second week, diversity was introduced in order to address the important role of plasma physics in modern areas of science and technology. Here, attention was focused on cross-disciplinary topics including Schrödinger-like models, which are common in plasma physics, nonlinear optics, quantum engineering (Bose-Einstein condensates), and nonlinear fluid mechanics, as well as emerging topics in fundamental theoretical and computational plasma physics, space and dusty plasma physics, laser-plasma interactions, etc. The workshop was attended by approximately hundred-twenty participants from the developing countries, Europe, USA, and Japan. A large number of participants were young researchers from both the developing and industrial countries, as the directors of the workshop tried to keep a good balance in inviting senior and younger generations of theoretical, computational and experimental plasma physicists to our Trieste activities. In the first week, there were extensive discussions on the physics of electromagnetic wave emissions from pulsar magnetospheres, relativistic magnetohydrodynamics of astrophysical objects, different scale sizes turbulence and structures in astrophysics. The scientific program of the second week included five review talks (60 minutes) and about thirty invited topical lectures (30 minutes). In addition, during the two weeks, there were more than seventy poster papers in three sessions. The latter provided opportunities for younger physicists to display the results of their recent work and to obtain comments from the other participants. During the period 11 16 July 2004 at the Abdus Salam ICTP, we focused on nonlinear effects that are common in plasmas, fluids, nonlinear optics, and condensed matter physics. In addition, we concentrated on collective processes in space and dusty plasmas, as well as in astrophysics and intense laser-plasma interactions. Also presented were modern topics of nonlinear neutrino-plasma interactions, nonlinear quantum electrodynamics, quark-gluon plasmas, and high-energy astrophysics. This reflects that plasma physics is a truly cross-disciplinary and very fascinating science with many potential applications. The workshop was attended by several distinguished invited speakers. Most of the contributions from the second week of our Trieste workshop appear in this Topical Issue of Physica Scripta, which will be distributed to all the participants. The organizers are grateful to Professor Katepalli Raju Sreenivasan, the director of the Abdus Salam ICTP, for his generous support and warm hospitality in Trieste. The Editors appreciate their colleagues and co-organizers for their constant and wholehearted support in our endeavours of publishing this Topical Issue of Physica Scripta. We highly value the excellent work of Mrs Ave Lusenti and Dr. Brian Stewart at the Abdus Salam ICTP. Thanks are also due to the European Commission for supporting our activity through the Research Training Networks entitled "Complex Plasmas" and "Turbulent Boundary Layers". Finally, we would like to express our gratitude to the Abdus Salam ICTP for providing financial support to our workshop in Trieste. Besides, the workshop directors thank the speakers and the attendees for their contributions which resulted in the success of our Trieste workshop 2004. Specifically, we appreciate the speakers for delivering excellent talks, supplying well prepared manuscripts for publication, and enhancing the plasma physics activity at the Abdus Salam ICTP.
NASA Astrophysics Data System (ADS)
Wagner, F.
2003-12-01
The Hannes Alfvén Prize of the European Physical Society for Outstanding Contributions to Plasma Physics (2003) has been awarded to Vladimir Evgenievitch Fortov `for his seminal contributions in the area of non-ideal plasmas and strongly coupled Coulomb systems, and for his pioneering work on the generation and investigation of plasmas under extreme conditions'. Vladimir Evgenievitch Fortov was born on 23 January 1946 in Noginsk, Russia. He studied physics at the Moscow Institute of Physics and Technology (PhD in 1976). In 1978 he was made a Professor and in 1991 he was awarded the Chair of the Moscow Institute of Physics and Technology. In the same year he became a Member of the Russian Academy of Sciences and was its vice-chairman from 1996 to 2001. From 1996 to 1998, Professor Fortov went into politics where he was just as successful, becoming Deputy Prime Minister of the Government of the Russian Federation and Minister of Science and Technology of the Russian Federation. Professor Fortov has made outstanding experimental and theoretical contributions to low temperature plasma physics. His pioneering work investigating non-ideal plasmas produced by intense shock waves initiated a new research field---the physical properties of highly compressed plasmas with strong inter-particle interactions. Under the leadership of Professor Fortov, experimental methods for generating and diagnosing these plasmas under extreme conditions were developed. To generate intense shock waves, a broad spectrum of drivers was used---chemical explosives, hypervelocity impact, lasers, relativistic electrons, heavy-ion and soft x-ray beams. Measurements of the equation of state, transport and optical properties of strongly coupled plasmas were carried out, including the interesting region lying between condensed matter and rarefied plasmas where specific plasma phase transitions and insulator--metal transitions were expected and explored. In another area of strongly coupled plasmas, Professor Fortov led theoretical and experimental studies on `dusty plasmas', carried out over a wide range of plasma parameters, using a broad spectrum of experimental techniques and devices. These studies embraced thermal combustion, glow and rf discharges and plasmas induced by cosmic ultraviolet and nuclear radiation. Under many of these conditions, ordered structures of dust in plasma liquids and plasma crystals were observed for the first time. Investigations of dusty plasmas induced by solar radiation and dust structures in DC glow discharges were first carried out on the Mir space station under micro-gravity conditions. The Russian--German experiment on dusty plasma crystals in space was successfully started on the International Space Station (ISS) in March 2001. This experiment was the first physics experiment on board the ISS. On the basis of his experimental results, Professor Fortov developed a general method of constructing semi-empirical equations of state of highly compressed materials. He put forward theoretical models of thermodynamical, transport and optical properties of strongly non-ideal plasmas. On the basis of these models Professor Fortov developed two-dimensional and three-dimensional computer codes for computer simulations of the processes in advanced energetic, space, nuclear and aviation systems based on high energy density plasmas. Professor Fortov has not only contributed to plasma theory but also to more applied topics. His laboratory participated in international space projects like the VEGA project (plasma dust impact phenomena), as well as the Halley Comet exploration, and studied plasma and shock wave phenomena stimulated by the impact of the Shoemaker-Levy 9 comet with Jupiter. Professor Fortov is an internationally well known scientist. He collaborates actively with many plasma laboratories and institutions. He has received many national and international awards, including several USSR and Russian State Awards, the A P Karpinskii-Toepfer Scientific Award for Physics and Chemistry (1997), the P Bridgman Award for High Pressure Plasma Investigations and Achievements in High Pressure Physics and Chemistry (1999), the A Einstein Medal of UNESCO (2000) and the Max Planck Award for Physics (2002). It is therefore with great pleasure and honour that the Plasma Physics Division of the European Physical Society has awarded the Hannes Alfvén prize this year to Professor Vladimir Evgenievitch Fortov. This article first appeared on the Europhyisics News website.
Ticoş, C M; Scurtu, A; Toader, D; Banu, N
2015-03-01
A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.
Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet
NASA Astrophysics Data System (ADS)
Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.
2015-03-01
A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.
The Dusty Dynamics Within a Regional Mars Dust Storm
NASA Astrophysics Data System (ADS)
Rafkin, Scot C. R.; Pla-Garcia, Jorge; Leung, Cecilia
2017-10-01
There have never been in situ observations at or near the active lifting center of a regional dust storm on Mars. In the absence of in situ data, it is common to employ numerical models to provide guidance on the physical processes and conditions operating in an unobserved location or weather system. Consequently, the Mars Regional Atmospheric Modeling System (MRAMS) is employed to study the structure and dynamics of a simulated large regional storm using a fully interactive dust cycle. The simulations provide the first ever glimpse of the conditions that might occur inside one of these storms.The simulated storm shows extremely complex structure with narrow lifting centers and a variety of deep dust transport circulations. The active lifting centers are broadly into a mesoscale system in much the same way that thunderstorms on Earth can organize into mesoscale convective structures. In many of the active dusty plumes, the mixing ratio of dust peaks near the surface and drops off with height. Once lifted, the largest dust tends to sediment out while the smaller dust continues to be advected upward by the plume. This size-sorting process combined with entrainment of less dusty air tends to drive the mixing ratio profile to a maximum near the surface. In dusty plumes near the surface, the air temperature is as much as 20K colder than nearby areas. This is due to solar absorption higher in the dust column limiting direct heating deeper into the atmosphere. Overall, within the plume, there is an inversion, and although the top of the plume is warmer than below, it is near neutral buoyancy compared to the less dusty air on either side. Apparently, adiabatic cooling nearly offsets the expected positive heating perturbation at the top of the dusty plume. A very strong low level just forms in the vicinity of the storm, accompanied by system-wide negative pressure deficits and circulation patterns strongly suggestive of the wind-enhanced interaction of radiation and dust (WEIRD) feedback mechanism.
NASA Astrophysics Data System (ADS)
Jalilpour, P.; Foroutan, G.
2018-03-01
Multi-fluid numerical simulations are utilized to explore the effects of secondary emission by nanosize dust particles on the structure of a dusty plasma sheath in the presence of a beam of fast, mono-energetic electrons. It was found that the sheath dynamics depends strongly on the magnitude of the secondary emission yield δm. For δm smaller than unity, the secondary emission is weak, and the sheath width always increases with increasing beam flux, such that it experiences a sharp transition from the regime of thin sheath to the regime of thick sheath, at a given beam flux. For δm larger than unity, the secondary emission dominates the dust dynamics, and the sheath width always decreases with increasing beam flux. The sheath thickness decreases very quickly with the secondary emission yield, but increases with Em, the characteristic energy corresponding to the maximum secondary emission. As δm is increased, the absolute dust charge and hence the accelerating ion drag force are reduced. Then, the dust is decelerated and as a result the dust number density is enhanced. Increasing the dust radius and/or the dust number density leads to an enhanced secondary emission effect and thus to a narrower sheath width.
Waterspout as a special type of atmospheric aerosol dusty plasma
NASA Astrophysics Data System (ADS)
Rantsev-Kartinov, Valentin A.
2004-11-01
An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.
NASA Astrophysics Data System (ADS)
Singh, Kuldeep; Kaur, Nimardeep; Saini, N. S.
2017-06-01
In this investigation, the study of head-on collision between two dust acoustic solitary waves (DASWs) and characteristics of rogue waves in a dusty plasma composed of dust fluid, kappa distributed ions, electrons, and positrons has been presented. Two Korteweg-de Vries equations are derived by employing the extended Poincaré-Lighthill-Kuo reductive perturbation method. The analytical phase shifts and trajectories after head-on collision of two DA solitary waves have been studied numerically. It is found that the presence of superthermal ions, electrons, as well as positrons; concentrations of electrons and positrons; and temperature of electrons and dust have an emphatic influence on the phase shifts after the head-on collision of two rarefactive DA solitary waves. The time evolution of two rarefactive DASWs has also been presented. Further, the generation of dust acoustic rogue waves (DARWs) has been studied in the framework of rational solution of nonlinear Schrödinger equation. The dependence of the rogue wave profile on the relevant physical parameters has been discussed in detail. It is emphasized that the real implementation of our present results may be of great importance in different regions of space and astrophysical environments, especially in the interstellar medium and Jupiter rings.
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
Charging and shielding of a non-spherical dust grain in a plasma
NASA Astrophysics Data System (ADS)
Zhao, L.; Delzanno, G.
2013-12-01
The interaction of objects with a plasma is a classic problem of plasma physics. Originally, it was investigated in the framework of probe theory but more recently its interest has grown in connection with space and complex or dusty plasmas. It is customary to assume that the dust grains are spherical, and theories such as the Orbital Motion Limited (OML) theory are usually applied to calculate the dust charge. However, in nature dust grains have a variety of sizes and shapes. It is therefore natural to ask about the influence of the dust shape on the charging and shielding process. In order to answer this question, we study the charging and shielding of a non-spherical dust grain immersed in a Maxwellian plasma at rest. We consider prolate ellipsoids, varying parametrically the aspect ratio while keeping the surface area constant. The study is conducted with CPIC [1], a newly developed Particle-In-Cell code in curvilinear geometry that conforms to objects of arbitrary shape. For a plasma with temperature ratio equal to unity and for a dust grain with characteristic size of the order of the Debye length, it is shown that the floating potential has a very weak dependence on the geometry, while the charge on the grain increases by a factor of three when the aspect ratio changes from one (a sphere) to hundred (a needle-like ellipsoid). These results are consistent with the higher capacitance of ellipsoidal dust grains, but also indicate that the screening length depends on the geometry. Scaling studies of the dependence of the charging time and screening length on the aspect ratio and plasma conditions are presented, including theoretical considerations to support the numerical results. [1] G.L. Delzanno, et al, ';CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies', under review.
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Bingham, R.; Stenflo, L.; Dawson, J. M.
1996-01-01
Starting in 1989 we have created a forum at the International Centre for Theoretical Physics, Trieste, where scientists from different parts of the world can meet and exchange information in the frontier areas of physics. In the three previous meetings, we focused on large amplitude waves and fields in plasmas, the physics of dusty plasmas, and wave-particle interactions and energization in plasmas. In 1995, we came up with a fresh idea of organizing somewhat enlarged but still well focused research topics that are cross-disciplinary. Thus, the usual 'fourth-week activity' of the Plasma Physics College at the ICTP was replaced by an International Topical Workshop on Plasma Physics: Coherent Processes in Nonlinear Media, which was held at the ICTP during the period 16-20 October, 1995. This provided us an opportunity to draw eminent speakers from many closely related fields such as plasma physics, fluid dynamics, nonlinear optics, and astrophysics. The Workshop was attended by 82 delegates from 34 countries, and the participation from the industrial and the developing countries was about half each. The programme included 4 review and 29 topical invited lectures. In addition, about 30 contributed papers were presented as posters in two sessions. The latter were created in order to give opportunities to younger physicists for displaying the results of their recent work and to obtain constructive comments from the other participants. During the five days at the ICTP, we focused on almost all the various aspects of nonlinear phenomena that are common in different branches of science. The review and topical lectures as well as the posters dealt with the most recent advances in coherent nonlinear processes in space and astrophysical plasmas, in fluids and optics, in low temperature dusty plasmas, as well as in laser produced and magnetically confined laboratory plasmas. The focus was on the physics of various types of waves and their generation mechanisms, the development of turbulence and the formation of coherent structures, particle and heat transport, plasma based charged particle acceleration by intense electrostatic waves that are created by powerful short laser beams, etc. Specifically, the review talks presented the general picture of the subject matter at hand and the underlying physics, whereas the remaining topical talks and the posters described the present state-of-the-art in the field. Instead of presenting the technical details, the speakers kept a good balance in injecting both the physics and the mathematical techniques to their audience. It was noted that despite the diversity of the physical problems, the mathematical equations governing particular phenomena and their solutions remain somewhat similar. Most contributions from the Trieste meeting appear in the form of a collection of articles in this Topical Issue of Physica Scripta, which will be distributed to all the delegates. We are grateful to the ICTP director Professor M A Virasoro and the deputy director Professor L Bertocchi for their generous support and warm hospitality at the ICTP. Thanks are also due to Professor G Denardo of the ICTP and Professor M H A Hassan of the Third World Academy of Sciences (TWAS, ICTP) for their constant and wholehearted support in our endeavours. We would like to express our gratitude to the ICTP and the Commission of the European Union (through the HCM networks on Dusty Plasmas and Nonlinear Phenomena in the Microphysics of Collisionless Plasmas) for providing partial financial support to our activities at Trieste. Finally, our cordial thanks are extended to the speakers and the attendees for their contributions which resulted in the success of this workshop. Specifically, we appreciate the speakers for delivering excellent talks, supplying well prepared manuscripts for publication, and enhancing the plasma physics activity at the ICTP. The excellent work of MS Ave Lusenti is gratefully acknowledged.
Numerical modelling of the Luna-Glob lander electric charging on the lunar surface with SPIS-DUST
NASA Astrophysics Data System (ADS)
Kuznetsov, I. A.; Hess, S. L. G.; Zakharov, A. V.; Cipriani, F.; Seran, E.; Popel, S. I.; Lisin, E. A.; Petrov, O. F.; Dolnikov, G. G.; Lyash, A. N.; Kopnin, S. I.
2018-07-01
One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. The upper insulating regolith layer is electrically charged by the solar ultraviolet radiation and the flow of solar wind particles. Resulted electric charge and thus surface potential depend on the lunar local time, latitude and the electrical properties of the regolith. Understanding of mechanisms of the dust electric charging, dust levitation and electric charging of a lander on the lunar surface is essential for interpretation of measurements of the instruments of the Luna-Glob lander payload, e.g. the Dust Impact sensor and the Langmuir Probe. One of the tools, which allows simulating the electric charging of the regolith and lander and also the transport and deposition of the dust particles on the lander surface, is the recently developed Spacecraft Plasma Interaction Software toolkit, called the SPIS-DUST. This paper describes the SPIS-DUST numerical simulation of the interaction between the solar wind plasma, ultraviolet radiation, regolith and a lander and presents as result qualitative and quantitative data of charging the surfaces, plasma sheath and its influence on spacecraft sensors, dust dynamics. The model takes into account the geometry of the Luna-Glob lander, the electric properties of materials used on the lander surface, as well as Luna-Glob landing place. Initial conditions are chosen using current theoretical models of formation of dusty plasma exosphere and levitating charged dust particles. Simulation for the three cases (local lunar noon, evening and sunset) showed us the surrounding plasma sheath around the spacecraft which gives a significant potential bias in the spacecraft vicinity. This bias influences on the spacecraft sensors but with SPIS software we can estimate the potential of uninfluenced plasma with the data from the plasma sensors (Langmuir probes). SPIS-DUST modification allows us to get the dust dynamics properties. For our three cases we've obtained the dust densities around the spacecraft and near the surface of the Moon. As another practical result of this work we can count a suggestion of improving of dusty plasma instrument for the next mission: it must be valuable to relocate the plasma sensors to a distant boom at some distance from the spacecraft.
Characteristics of the Dust-Plasma Interaction Near Enceladus' South Pole
NASA Technical Reports Server (NTRS)
Shafiq, Muhammad; Wahlund, J.-E.; Morooka, M. W; Kurth, W. S.; Farrell, W. M.
2010-01-01
We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing (he presence of dusty plasma near Enceladus' South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 10(exp 2) cm (exp -3) before the closest approach to 10(exp 5) cm (exp -3) just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature. we show that the power law size distribution must hold down to at least 0.03 micron such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus' plume is of the order of l0(exp 2) cm(exp -3) reducing to 1 cm(exp -3) in the E- ring. The dust density for micrometer and larger sized grains is estimated to be about 10(exp -4) cm(exp -3) in the plume while it is about 10(exp -6) - 10(exp -7) cm(exp -3) in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 micron sized grains. The effective dusty plasma Debye length is estimated and compared with intergrain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 11mmicron sized grains just 1 min before the closest approach. The charging time decreases substantially in the plume where it is only a fraction of a second for 1 micron sized grains, 1 s for 0.l micron sized grains and about 10 s for 0.03 micron sized grains.
The fine structure of the Saturnian ring system
NASA Technical Reports Server (NTRS)
Houpis, H. L. F.; Mendis, D. A.
1983-01-01
A dust disk within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disk is subject to the dusty plasma analog of the well known finite-resistivity 'tearing' mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability develops at a rate that is many orders of magnitude faster than any other known instability, when the disk thickness reaches a value that is comparable to its present observed value.
Coagulation of Dust Particles in Argon Plasma of RF Discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.
2008-09-07
The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processesmore » observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.« less
NASA Astrophysics Data System (ADS)
Timofeev, Evgeny; Kangas, Jorma; Vallinkoski, Matti
Quasi-periodic (consisting of a dozen electro-thermal structures, ETS) variations of ionospheric parameters during April, 10 and March, 23 1988 substorms were investigated using the data of EISCAT radars in Tromso. These variations were measured at the lower edge of dynamo-layer 106 km and include the ion and electron temperature, electron density and ionospheric electric field; all data were smoothed out using moving average with optimal lag window. It was shown that: 1) ETS clusters are observed when value of the electric field is < 10 mV/m and average electron density is about (5-10)*10 (4) /sm (3) , 2) For each ETS the envelop demonstrate the so called mirror symmetry, that is antiphased variations of the ion and electron temperature (when Ti increases and Te decreases), 3) The symmetry breaks when the electric field is larger than FB instability threshold (15-20 mVm), 4) The periods of these variations is in the range of 3-10 min, 5) The self-similarity of the scales is observed: smaller scales are included into the larger scales, 6) Temperature variations were accompanied by the electric field variations with amplitude of 4-7 mV/m, 7) Large scale structures (and sometimes dyads formed by two subsequent structures) were accompanied by the electric field rotation up to the whole circle. Specific ETS and plasma parameters variations can be interpreted as a result of Ekman-type instability in the dusty plasma of the dynamo layer. The mirror symmetry of plasma temperature variations is an evidence of a partial blocking of energy transfer between the ions and electrons at low values of the external electric field (below FB instability threshold) because the main energy in such a kind of plasma is attributed to dusty macro-particles (Fortov et al., 2010). Under these conditions the time scale of the dust particle energy variations are considerably larger than the corresponding scales of the temperature variations. According to our previous results (Timofeev et al, 2009-2013) the coherent increase of correlation coefficient (CC) of plasma temperature time variations and smoothed value of the electric field means that the CC can be used as an indicator of the ETS "rigidity" (hence the energy and charge of macro-particles). We used this coherence to estimate the time scale of the macro-particles energy growth (during preliminary phase of March 23, 1988 substorm) and get values of 12-19 min. In the present study we used the same event to estimate the time scale of the plasma temperatures mirror variations and obtained that they are at least 2-3 times shorter. Such a difference in the time scale determines the ETS formation. Finally, after FB instability excitation the electrons can quickly exchange their energy with plasmons, so that the mirror symmetry in temperature variations breaks down.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N.
The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulasmore » are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.« less
NASA Astrophysics Data System (ADS)
Maity, Srimanta; Das, Amita; Kumar, Sandeep; Tiwari, Sanat Kumar
2018-04-01
The collective response of the plasma medium is well known and has been explored extensively in the context of dusty plasma medium. On the other hand, the individual particle response associated with the collisional character giving rise to the dissipative phenomena has not been explored adequately. In this paper, two-dimensional molecular dynamics simulation of dust particles interacting via Yukawa potential has been considered. It has been shown that disturbances induced in a dust crystal elicit both collective and single particle responses. Generation of a few particles moving at speeds considerably higher than acoustic and/or shock speed (excited by the external disturbance) is observed. This is an indication of a single particle response. Furthermore, as these individual energetic particles propagate, the dust crystal is observed to crack along their path. Initially when the energy is high, these particles generate secondary energetic particles by the collisional scattering process. However, ultimately as these particles slow down they excite a collective response in the dust medium at secondary locations in a region which is undisturbed by the primary external disturbance. The condition when the cracking of the crystal stops and collective excitations get initiated has been identified quantitatively. The trailing collective primary disturbances would thus often encounter a disturbed medium with secondary and tertiary collective perturbations, thereby suffering significant modification in its propagation. It is thus clear that there is an interesting interplay (other than mere dissipation) between the single particle and collective response which governs the dynamics of any disturbance introduced in the medium.
Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushtaq, A.
2007-11-15
The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.
The Plasma Environment at Enceladus
NASA Astrophysics Data System (ADS)
Rymer, Abigail; Morooka, Michiko; Persoon, Ann
2016-10-01
The plasma environment near Enceladus is complex. The well documented Enceladus plumes create a dusty, asymmetric exosphere in which electrons can attach to small ice particles - forming anions, and negatively charged nanograins and dust - to the extent that cations can be the lightest charged particles present and, as a result, the dominant current carriers. Several instruments on the Cassini spacecraft are able to measure this environment in both expected and unexpected ways. Cassini Plasma Spectrometer (CAPS) is designed and calibrated to measure the thermal plasma ions and electrons and also measures the energy/charge of charged nanograins when present. Cassini Radio Plasma Wave Sensor (RPWS) measures electron density as derived from the 'upper hybrid frequency' which is a function of the total free electron density and magnetic field strength and provides a vital ground truth measurement for Cassini calibration when the density is sufficiently high for it to be well measured. Cassini Langmuir Probe (LP) measures the electron density and temperature via direct current measurement, and both CAPS and LP can provide estimates for the spacecraft potential which we compare. Cassini Magnetospheric Imaging Instrument (MIMI) directly measures energetic particles that are manifest in the CAPS measurements as penetrating background in this region and, while not particularly efficient ionisers, create sputtering and surface weathering of Enceladus surface, MIMI also measures energetic neutral atoms produced during the charge exchange interactions in and near the plumes.In this presentation we exploit two almost identical Cassini-Enceladus flybys 'E17' and 'E18' which took place in March/April 2012. We present a detailed comparison of data from these Cassini sensors in order to assess the plasma environment observed by the different instruments, discuss what is consistent and otherwise, and the implications for the plasma environment at Enceladus in the context of work to date as well as implications for future studies.
PREFACE: VII Conference on Low Temperature Plasma in the Processes of Functional Coating Preparation
NASA Astrophysics Data System (ADS)
Nail, Kashapov
2016-01-01
The VII All-Russian (with international participation) Scientific Technical Conference "Low-temperature plasma during the deposition of functional coatings" took place from 4-7 November 2015 at the Academy of Sciences of the Republic of Tatarstan and the Kazan Federal University. The conference was attended by over 150 people from Russia and abroad. The participants proposed a wide range of issues affecting the theoretical and experimental aspects of the problems of the physics of low-temperature plasma. We heard the reports of experts from leading universities and research organizations in the field of plasma physics: Moscow State University, St. Petersburg State University, MEPhI, Tomsk Polytechnic University, Institute of High Current Electronics SB RAS, etc. A series of works were devoted to the study of thin films obtained by low-temperature plasma. This year, work dedicated to the related field of heat mass transfer in multiphase media and low-temperature plasma was also presented. Of special interest were reports on the exploration of gas discharges with liquid electrolytic electrodes and the study of dusty plasmas. Kashapov Nail, D.Sc., professor (Kazan Federal University)
Study of Linear and Nonlinear Waves in Plasma Crystals Using the Box_Tree Code
NASA Astrophysics Data System (ADS)
Qiao, K.; Hyde, T.; Barge, L.
Dusty plasma systems play an important role in both astrophysical and planetary environments (protostellar clouds, planetary ring systems and magnetospheres, cometary environments) and laboratory settings (plasma processing or nanofabrication). Recent research has focussed on defining (both theoretically and experimentally) the different types of wave mode propagations, which are possible within plasma crystals. This is an important topic since several of the fundamental quantities for characterizing such crystals can be obtained directly from an analysis of the wave propagation/dispersion. This paper will discuss a num rical model fore 2D-monolayer plasma crystals, which was established using a modified box tree code. Different wave modes were examined by adding a time dependent potential to the code designed to simulate a laser radiation perturbation as has been applied in many experiments. Both linear waves (for example, longitudinal and transverse dust lattice waves) and nonlinear waves (solitary waves) are examined. The output data will also be compared with the results of corresponding experiments and discussed.
Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma
NASA Astrophysics Data System (ADS)
Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François
2016-09-01
Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.
Quasi-thermal noise spectroscopy: The art and the practice
NASA Astrophysics Data System (ADS)
Meyer-Vernet, N.; Issautier, K.; Moncuquet, M.
2017-08-01
Quasi-thermal noise spectroscopy is an efficient tool for measuring in situ macroscopic plasma properties in space, using a passive wave receiver at the ports of an electric antenna. This technique was pioneered on spinning spacecraft carrying very long dipole antennas in the interplanetary medium—like ISEE-3 and Ulysses—whose geometry approached a "theoretician's dream." The technique has been extended to other instruments in various types of plasmas on board different spacecraft and will be implemented on several missions in the near future. Such extensions require different theoretical modelizations, involving magnetized, drifting, or dusty plasmas with various particle velocity distributions and antennas being shorter, biased, or made of unequal wires. We give new analytical approximations of the plasma quasi-thermal noise (QTN) and study how the constraints of the real world in space can (or cannot) be compatible with plasma detection by QTN spectroscopy. We consider applications to the missions Wind, Cassini, BepiColombo, Solar Orbiter, and Parker Solar Probe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
2016-05-15
The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occursmore » only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.« less
NASA Astrophysics Data System (ADS)
Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.
2018-05-01
Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized reverberation mapping in the ultraviolet-blue band is probably the best technique to rely on in this field.
Diffraction of dust acoustic waves by a circular cylinder
NASA Astrophysics Data System (ADS)
Kim, S.-H.; Heinrich, J. R.; Merlino, R. L.
2008-09-01
The diffraction of dust acoustic (DA) waves around a long dielectric rod is observed using video imaging methods. The DA waves are spontaneously excited in a dusty plasma produced in a direct current glow discharge plasma. The rod acquires a negative charge that produces a coaxial dust void around it. The diameter of the void is the effective size of the "obstacle" encountered by the waves. The wavelength of the DA waves is approximately the size of the void. The observations are considered in relation to the classical problem of the diffraction of sound waves from a circular cylinder, a problem first analyzed by Lord Rayleigh [Theory of Sound, 2nd ed. (MacMillan, London, 1896)].
Arbitrary amplitude dust kinetic Alfvén solitary waves in the presence of polarization force
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Kaur, Nimardeep; Saini, N. S.
2018-02-01
In this investigation, the effect of polarization force on dust kinetic Alfvén solitary waves (DKASWs) in a magnetized dusty plasma consisting of dust fluid, electrons, and positively charged ions is studied. By incorporating density non-uniformity and polarization force in the fluid model equations, the energy balance equation is derived, and from the expression for Sagdeev pseudopotential, the existence conditions for solitary structures in terms of Mach number are determined. From the numerical analysis of Sagdeev pseudopotential, compressive and rarefactive DKASWs at sub- and super-Alfvénic speeds are observed. These waves are significantly affected by varying polarization force, angle of propagation, plasma beta, and Mach number.
Analysis of 3D vortex motion in a dusty plasma
NASA Astrophysics Data System (ADS)
Mulsow, M.; Himpel, M.; Melzer, A.
2017-12-01
Dust clusters of about 50-1000 particles have been confined near the sheath region of a gaseous radio-frequency plasma discharge. These compact clusters exhibit a vortex motion which has been reconstructed in full three dimensions from stereoscopy. Smaller clusters are found to show a competition between solid-like cluster structure and vortex motion, whereas larger clusters feature very pronounced vortices. From the three-dimensional analysis, the dust flow field has been found to be nearly incompressible. The vortices in all observed clusters are essentially poloidal. The dependence of the vorticity on the cluster size is discussed. Finally, the vortex motion has been quantitatively attributed to radial gradients of the ion drag force.
Effect of polarization force on head-on collision between multi-solitons in dusty plasma
NASA Astrophysics Data System (ADS)
Singh, Kuldeep; Sethi, Papihra; Saini, N. S.
2018-03-01
Head-on collision among dust acoustic (DA) multi-solitons in a dusty plasma with ions featuring non-Maxwellian hybrid distribution under the effect of the polarization force is investigated. The presence of the non-Maxwellian ions leads to eloquent modifications in the polarization force. Specifically, an increase in the superthermality index of ions (via κi) and nonthermal parameter (via α) diminishes the polarization parameter. By employing the extended Poincaré-Lighthill-Kuo method, two sided KdV equations are derived. The Hirota direct method is used to obtain multi-soliton solutions for each KdV equation, and all of them move along the same direction where the fastest moving soliton eventually overtakes the others. The expressions for collisional phase shifts after head-on collision of two, four, and six-(DA) solitons are derived under the influence of polarization force. It is found that the effect of polarization force and the presence of non-Maxwellian ions have an emphatic influence on the phase shifts after the head-on collision of DA rarefactive multi-solitons. In a small amplitude limit, the impact of polarization force on time evolution of multi-solitons is also illustrated. It is intensified that the present theoretical pronouncements actually effectuate in laboratory experiments and in space/astrophysical environments, in particular in Saturn's magnetosphere and comet tails.
Dustiness of Fine and Nanoscale Powders
Evans, Douglas E.; Baron, Paul A.
2013-01-01
Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. PMID:23065675
NASA Astrophysics Data System (ADS)
2014-11-01
The VI Republican Scientific Technical Conference "Low-temperature plasma during the deposition of functional coatings" took place from 4 to 7 November 2014 at the Academy of Sciences of the Republic of Tatarstan and the Kazan Federal University. The conference was chaired by a Member of the Academy of Sciences of the Republic of Tatarstan Nail Kashapov -Professor, Doctor of Technical Sciences- a member of the Scientific and Technical Council of the Ministry of Economy of the Republic of Tatarstan. At the conference, the participants discussed a wide range of issues affecting the theoretical and computational aspects of research problems in the physics and technology of low-temperature plasma. A series of works were devoted to the study of thin films obtained by low-temperature plasma. This year work dedicated to the related field of heat mass transfer in multiphase media and low-temperature plasma was also presented. Of special interest were reports on the exploration of gas discharges with liquid electrolytic electrotrodes and the study of dusty plasmas. Kashapov Nail, D.Sc., Professor (Kazan Federal University)
Recent Science Education Initiatives at the Princeton Plasma Physics Laboratory
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Dominguez, Arturo; Gershman, Sophia; Guilbert, Nick; Merali, Aliya; Ortiz, Deedee
2013-10-01
An integrated approach to program development and implementation has significantly enhanced a variety of Science Education initiatives for students and teachers. This approach involves combining the efforts of PPPL scientists, educators, research and education fellows, and collaborating non-profit organizations to provide meaningful educational experiences for students and teachers. Our undergraduate internship program continues to have outstanding success, with 72% of our participants going to graduate school and 45% concentrating in plasma physics. New partnerships have allowed us to increase the number of underrepresented students participating in mentored research opportunities. The number of participants in our Young Women's Conference increases significantly each year. Our Plasma Camp workshop, now in its 15th year, recruits outstanding teachers from around the country to create new plasma-centered curricula. Student research in the Science Education Laboratory concentrates on the development of a high-fidelity plasma speaker, a particle dropper for a dusty plasma experiment, microplasmas along liquid surfaces for a variety of applications, an Internet-controlled DC glow discharge source for students, and a Planeterrella for demonstrating the aurora and other space weather phenomenon for the general public.
Magnetosonic cnoidal waves and solitons in a magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Kaur, Nimardeep; Singh, Manpreet; Saini, N. S.
2018-04-01
An investigation of magnetosonic nonlinear periodic (cnoidal) waves is presented in a magnetized electron-ion-dust ( e -i -d ) plasma having cold dust fluid with inertialess warm ions and electrons. The reductive perturbation method is employed to derive the Korteweg-de Vries equation. The dispersion relation for magnetosonic cnoidal waves is determined in the linear limit. The magnetosonic cnoidal wave solution is derived using the Sagdeev pseudopotential approach under the specific boundary conditions. There is the formation of only positive potential magnetosonic cnoidal waves and solitary structures in the high plasma-β limit. The effects of various plasma parameters, viz., plasma beta (β), σ (temperature ratio of electrons to ions), and μd (ratio of the number density of dust to electrons) on the characteristics of magnetosonic cnoidal waves are also studied numerically. The findings of the present investigation may be helpful in describing the characteristics of various nonlinear excitations in Earth's magnetosphere, solar wind, Saturn's magnetosphere, and space/astrophysical environments, where many space observations by various satellites confirm the existence of dust grains, highly energetic electrons, and high plasma-β.
Dusty Plasma Effects in the Interplanetary Medium?
NASA Astrophysics Data System (ADS)
Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya
Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales <100 nm. They contain magnesium-rich silicates and silicon carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.
NASA Astrophysics Data System (ADS)
Hassouni, Khaled
2013-09-01
In this paper we present two examples that illustrate two different contexts of the interplay between plasma-surface interaction process and discharge physics and gas phase chemistry in hydrocarbon discharges. In the first example we address the case of diamond deposition processes and illustrate how a detailed investigation of the discharge physics, collisional processes and transport phenomena in the plasma phase make possible to accurately predict the key local-parameters, i.e., species density at the growing substrate, as function of the macroscopic process parameters, thus allowing for a precise control of diamond deposition process. In the second example, we illustrate how the interaction between a rare gas pristine discharge and carbon (graphite) electrode induce a dramatic change on the discharge nature, i.e., composition, ionization kinetics, charge equilibrium, etc., through molecular growth and clustering processes, solid particle formation and dusty plasma generation. Work done in collaboration with Alix Gicquel, Francois Silva, Armelle Michau, Guillaume Lombardi, Xavier Bonnin, Xavier Duten, CNRS, Universite Paris 13.
Diffuse spreading of inhomogeneities in the ionospheric dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalimov, S. L., E-mail: pmsk7@mail.ru; Kozlovsky, A.
2015-08-15
According to results of sounding of the lower ionosphere at altitudes of about 100 km, the duration of radio reflections from sufficiently dense ionized meteor trails, which characterizes their lifetime, can reach a few tens of seconds to several tens of minutes. This is much longer than the characteristic spreading time (on the order of fractions of a second to several seconds) typical in meteor radar measurements. The presence of dust in the lower ionosphere is shown to affect the ambipolar diffusion coefficient, which determines the spreading of plasma inhomogeneities. It is found that the diffusion coefficient depends substantially onmore » the charge and size of dust grains, which allows one to explain the results of ionospheric sounding.« less
Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma
NASA Astrophysics Data System (ADS)
Kaur, Barjinder; Saini, N. S.
2018-02-01
The nonlinear properties of dust ion-acoustic (DIA) shock waves in a magnetorotating plasma consisting of inertial ions, nonextensive electrons and positrons, and immobile negatively charged dust are examined. The effects of dust charge fluctuations are not included in the present investigation, but the ion kinematic viscosity (collisions) is a source of dissipation, leading to the formation of stable shock structures. The Zakharov-Kuznetsov-Burgers (ZKB) equation is derived using the reductive perturbation technique, and from its solution the effects of different physical parameters, i.e. nonextensivity of electrons and positrons, kinematic viscosity, rotational frequency, and positron and dust concentrations, on the characteristics of shock waves are examined. It is observed that physical parameters play a very crucial role in the formation of DIA shocks. This study could be useful in understanding the electrostatic excitations in dusty plasmas in space (e.g. interstellar medium).
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-09-01
Nonlinear two-dimensional Kadomtsev-Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech-tanh, sinh-cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.
DC response of dust to low frequency AC signals
NASA Astrophysics Data System (ADS)
McKinlay, Michael; Konopka, Uwe; Thomas, Edward
2017-10-01
Macroscopic changes in the shape and equilibrium position of clouds of charged microparticles suspended in a plasma have been observed in response to low frequency AC signals. In these experiments, dusty plasmas consisting of 2-micron diameter silica microspheres suspended between an anode and cathode in an argon, DC glow discharge plasma are produced in a grounded, 6-way cross vacuum chamber. An AC signal, produced by a function generator and amplified by a bipolar op-amp, is superimposed onto the potential from the cathode. The frequencies of the applied AC signals, ranging from tens to hundreds of kHz, are comparable to the ion-neutral collision frequency; well below the ion/electron plasma frequencies, but also considerably higher than the dust plasma frequency. This presentation will detail the experimental setup, present documentation and categorization of observations of the dust response, and present an initial model of the response. This work is supported by funding from the US Dept. of Energy, Grant Number DE-SC0016330, and by the National Science Foundation, Grant Number PHY-1613087.
Ionospheric modification by radio waves: An overview and novel applications
NASA Astrophysics Data System (ADS)
Kosch, M. J.
2008-12-01
High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.
Dorodnitsyn, A.; Kallman, T.
2016-01-01
We present calculations of AGN winds at ~parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 – 0.6Ledd, the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72° – 75° regardless of the luminosity. At L ≳ 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations θ ≳ 70° and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities ≤0.1Ledd episodes of outflow are followed by extended periods when the wind switches to slow accretion. PMID:27642184
Gravito-electrodynamics, Ehd and Their Applications To Natural Hazards and Laboratory Devices
NASA Astrophysics Data System (ADS)
Kikuchi, H.
For the past two decades, theory of dusty and dirty plasmas in space and in the labo - ratory has been developed on the basis of both unconventional gravito-electrody- nam ics and a new EHD (electrohydrodynamics) with novel concepts of electric re- connection and critical ionization velocity as well as modern concepts of self-organ- ization and chaos and has been applied to explanations of a variety of new dust-re- lated and meteorologyico-electric phenomena such as planetary (Saturn's and Jupi- ter's) dust layer or ring formation, terrestrial dust layer formation, terrestrial light - ning including winter thunderstorms, rocket and tower triggered lightning, planetary (Saturn's, Jupiter's, and Io's) lightning, nebular lightning, ball lightning, tornadic thunderstorms, whirlwinds, cloud-to-ionosphere discharges, pre-earthquake atmo- sphereic and ionospheric effects, and new laboratory devices such as electric undu - lators, a universal electric-cusp type plasma reactor for basic laboratory studies, sim- ulations of atmospheric phenomena and pollution control and gas cleaning, plasma processing and new material production for industrial applications, and new devices such as towards cancer treatment for biological and medical applications. Reference H. Kikuchi, Electrohydrodynamics in Dusty and Dirty plasmas, Kluwer Academic Publishers, Dordrecht/The Netherlands, 2001. For describing any plasmas, particle dynamics plays always fundamental and impor - tant roles in understanding all of plasma behaviors. A variety of descriptions in a magnetic field such as a guiding center approach have well been developed as a test-particle approach particularly for a base of MHD. This is still true for EHD or EMHD, but additional factors become significant due to the existence of space charges and electric fields for EHD or EMHD in dielectric or semiconducting fluids. In cosmic plasmas, the existence of double layers, electric and magnetic dipoles or quadru-poles often affects the particle motions drastically even if particles are uncharged, and can play a crucial role in planetary dust layer or ring formation. This is a new discov-ery and has been discussed in detail for the past several EGS meetings. In the presenc e of quadrupole-like charged cloud configurations which constitute electric cusps and mirrors, a neutral or uncharged particle can be accelerated in an electric cusp, reaching a maximum speed near a cusp boundary, if the environment is a tenuous gas whatever it may be neutral or ionized, and also can be reflected back at a mirror point. Otherwise, a dust in an electric cusp is capable for a source origin of plasma layer formation, gas discharges or lightnings due to additional effect of `criti-cal velocity' if the local electric fields around the dust produced by quadrupole-like charged clouds are sufficiently high beyond a gas-breakdown threshold. Then electric reconnection through the dust is followed by streamer or leader formation due to the critical ionization effect and consequent gas discharges or lightnings. One of major features of new electrodynamics, gravito-electrodynamics, and EHD is a new addition of two basic concepts of electric reconnection and critical ionization . First, one may recall that a distribution of scattered charged clouds is so ubiquitous in space and in the laboratory, even in our daily life, whatever they are of large-scale or small-scale, like thunderclouds in the atmosphere, charged clouds in interstellar space, charges on the belt of Van de Graff generator, and a system of miniature thunder-clouds produced by frictional electricity almost everywhere, typically on human hairs. All those cases are capable for electric reconnection. Whenever electric reconnection occurs through dusts in the atmosphere, it can be accompanied by a critical ioniza-tion flow . In this way, electric reconnection and critical ionization could be a signifi-cant cause of electrification and electric discharge and play important roles in a varie-ty of phenomena in meteorologico-electric, dusty and dirty plasma environments.
Particle size distribution: A key factor in estimating powder dustiness.
López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo
2017-12-01
A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.
NASA Astrophysics Data System (ADS)
Arnold, Nicholas; Loch, Stuart; Ballance, Connor; Thomas, Ed
2017-10-01
Low temperature plasmas (Te < 10 eV) are ubiquitous in the medical, industrial, basic, and dusty plasma communities, and offer an opportunity for researchers to gain a better understanding of atomic processes in plasmas. Here, we report on a new atomic dataset for neutral and low charge states of argon, from which rate coefficients and cross-sections for the electron-impact excitation of neutral argon are determined. We benchmark by comparing with electron impact excitation cross-sections available in the literature, with very good agreement. We have used the Atomic Data and Analysis Structure (ADAS) code suite to calculate a level-resolved, generalized collisional-radiative (GCR) model for line emission in low temperature argon plasmas. By combining our theoretical model with experimental electron temperature, density, and spectral measurements from the Auburn Linear eXperiment for Instability Studies (ALEXIS), we have developed diagnostic techniques to measure metastable fraction, electron temperature, and electron density. In the future we hope to refine our methods, and extend our model to plasmas other than ALEXIS. Supported by the U.S. Department of Energy. Grant Number: DE-FG02-00ER54476.
Nonplanar dust-ion acoustic shock waves with transverse perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue Jukui
2005-01-01
The nonlinear dust-ion acoustic shock waves in dusty plasmas with the combined effects of bounded cylindrical/spherical geometry, the transverse perturbation, the dust charge fluctuation, and the nonthermal electrons are studied. Using the perturbation method, a cylindrical/spherical Kadomtsev-Petviashvili Burgers equation that describes the dust-ion acoustic shock waves is deduced. A particular solution of the cylindrical/spherical Kadomtsev-Petviashvili Burgers equation is also obtained. It is shown that the dust-ion acoustic shock wave propagating in cylindrical/spherical geometry with transverse perturbation will be slightly deformed as time goes on.
Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.
Khrustalyov, Yu V; Vaulina, O S
2012-04-01
Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.
Correlation buildup during recrystallization in three-dimensional dusty plasma clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schella, André; Mulsow, Matthias; Melzer, André
2014-05-15
The recrystallization process of finite three-dimensional dust clouds after laser heating is studied experimentally. The time-dependent Coulomb coupling parameter is presented, showing that the recrystallization starts with an exponential cooling phase where cooling is slower than damping by the neutral gas friction. At later times, the coupling parameter oscillates into equilibrium. It is found that a large fraction of cluster states after recrystallization experiments is in metastable states. The temporal evolution of the correlation buildup shows that correlation occurs on even slower time scale than cooling.
Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals
NASA Astrophysics Data System (ADS)
Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael
2009-11-01
The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)
Worldwide Environmental Compliance Assessment and Management System Program (ECAMP)
1993-09-01
where spices are produced using animal and vegetable acids 7.22 Coffee roasting facilities with capacities of 75 kg/h 7.23 Plants for roasting coffee ...22. Industrial plants Verify that dusty gases released during the processing of dusty materials hawe required to have are collected and passed through...standards for the release of dusty gases during the production, crushing, classification and loading of dusty materials or other process involving such
NASA Astrophysics Data System (ADS)
Zheng, Sheng; Cao, Chunxiang; Singh, Ramesh
Multi satellite sensors are capable in monitoring dust storm, its path and changes in atmospheric parameters. The present paper discusses aerosol optical properties and meteorological parameters during major dust storm events (2005-2010) over Beijing, China. The back trajectory model shows that the dust is transported from the Inner Mongolia and Mongolia to Beijing. High aerosol optical depth (AOD) and low Ångström exponent (AE) values are observed during dusty days, the average AOD (675 nm) and AE (440-870 nm) during dusty days are 2.33 and 0.06, respectively. The aerosol size distribution (ASD) in coarse mode shows a large increase in the volume during dusty days. The single scattering albedo (SSA) increases with higher wavelength on dusty days, and higher compared to non-dusty days, indicating the presence of high scattering particles due to dust storm events. Characteristics of particles during dusty and non-dusty days are also supported by the real and imaginary parts of refractive index (RI). High air pollution index (API) during dusty days represent poor air quality is a serious health hazard at the time of dust events. The CO volume mixing ratio (COVMR) from Atmospheric Infrared Sounder (AIRS) shows decrease on the ground on dusty days, while the relative humidity (RH) and H _{2}0 mass mixing ratio (H _{2}OMMR) enhance. In addition, due to the dust storm in 2005, enhanced level of water vapor (WV) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is observed in and around Beijing over the dust storms track.
Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chin-Fei; Ho, Paul T. P.; Hirano, Naomi
HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanolmore » (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.« less
NASA Astrophysics Data System (ADS)
Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas
2009-01-01
Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant low-pressure compaction may reduce the risk of particle exposure if powders are handled in operations with few agitations such as pouring or tapping. Repeated agitation, e.g., mixing, of these compacted powders, would result in reduced (app. 20% for Bentonite) or highly increased (app. 225% for Nanofil®5) dustiness and thereby alter the exposure risk significantly.
Detailed Studies on Flame Extinction by Inert Particles in Normal- and Micro-gravity
NASA Technical Reports Server (NTRS)
Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.
2001-01-01
The combustion of dusty flows has been studied to lesser extent than pure gas phase flows and sprays. Particles can have a strong effect by modifying the dynamic response and detailed structure of flames through the dynamic, thermal, and chemical couplings between the two phases. A rigorous understanding of the dynamics and structure of two-phase flows can be attained in stagnation flow configurations, which have been used by others to study spray combustion as well as reacting dusty flows. In earlier studies on reacting dusty flows, the thermal coupling between the two phases as well as the effect of gravity on the flame response were not considered. However, in Ref. 6, the thermal coupling between chemically inert particles and the gas was addressed in premixed flames. The effects of gravity was also studied showing that it can substantially affect the profiles of the particle velocity, number density, mass flux, and temperature. The results showed a strong dynamic and thermal dependence of reacting dusty flows to particle number density. However, the work was only numerical and limited to twin-flames, stagnation, premixed flames. In Ref. 7 the effects of chemically inert particle clouds on the extinction of strained premixed and non-premixed flames were studied both experimentally and numerically at 1-g. It was shown and explained that large particles can cause more effective flame cooling compared to smaller particles. The effects of flame configuration and particle injection orientation were also addressed. The complexity of the coupling between the various parameters in such flows was demonstrated and it was shown that it was impossible to obtain a simple and still meaningful scaling that captured all the pertinent physics.
NASA Astrophysics Data System (ADS)
Verheest, Frank
2008-03-01
After introducing the basic multifluid model equations, this review discusses three different methods to describe nonlinear plasma waves, by giving a rather general overview of the relevant methodology, followed by a specific and recent application. First, reductive perturbation analysis is applicable to waves that are not too strongly nonlinear, if their linear counterparts have an acoustic-like dispersion at low frequencies. It is discussed for electrostatic modes, with a brief application to dusty plasma waves. The typical paradigm for such problems is the well known KdV equation and its siblings. Stationary waves with larger amplitudes can be treated, i.a., via the fluid-dynamic approach pioneered by McKenzie, which focuses on essential insights into the limitations that restrict the range of available solitary electrostatic solutions. As an illustration, novel electrostatic solutions have been found in plasmas with two-temperature electron species that are relevant in understanding certain magnetospheric plasma observations. The older cousin of the large-amplitude technique is the Sagdeev pseudopotential description, to which the newer fluid-dynamic approach is essentially equivalent. Because the Sagdeev analysis has mostly been applied to electrostatic waves, some recent results are given for electromagnetic modes in pair plasmas, to show its versatility.
Use of CFD modelling for analysing air parameters in auditorium halls
NASA Astrophysics Data System (ADS)
Cichowicz, Robert
2017-11-01
Modelling with the use of numerical methods is currently the most popular method of solving scientific as well as engineering problems. Thanks to the use of computer methods it is possible for example to comprehensively describe the conditions in a given room and to determine thermal comfort, which is a complex issue including subjective sensations of the persons in a given room. The article presents the results of measurements and numerical computing that enabled carrying out the assessment of environment parameters, taking into consideration microclimate, temperature comfort, speeds in the zone of human presence and dustiness in auditory halls. For this purpose measurements of temperature, relative humidity and dustiness were made with the use of a digital microclimate meter and a laser dust particles counter. Thanks to the above by using the application DesignBuilder numerical computing was performed and the obtained results enabled determining PMV comfort indicator in selected rooms.
Quantum dust magnetosonic waves with spin and exchange correlation effects
NASA Astrophysics Data System (ADS)
Maroof, R.; Mushtaq, A.; Qamar, A.
2016-01-01
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).
Using ion flows parallel and perpendicular to gravity to modify dust acoustic waves
NASA Astrophysics Data System (ADS)
Thomas, E.; Fisher, R.
2008-11-01
Recent studies of dust acoustic waves have shown that the dust kinetic temperature can play an important role in determining the resulting dispersion relation [M. Rosenberg, et al., Phys. Plasmas, 15, 073701 (2008)]. In these studies, it is believed that ion flows play a dominant role in determining both the kinetic temperature of the charged microparticles as well as providing the source of energy for triggering the waves. In this presentation, results will be presented on the effects of ion flow on spatial structure and velocity distribution of dust acoustic waves. Here, the waves will be formed in dusty plasmas consisting of 3 ± 1 micron diameter silica microspheres. Two separate electrodes will be used to modify the ion flow in the plasma -- one parallel to the direction of gravity and one perpendicular to the direction of gravity. Particle image velocimetry (PIV) techniques will be used to observe the particles and to measure their velocity distributions.
Dropper for micron and submicron size powders for a plasma mass filter
NASA Astrophysics Data System (ADS)
Evans, Eugene S.; Zweben, Stewart J.; Gueroult, Renaud; Fisch, Nathaniel J.; Levinton, Fred
2014-10-01
The goal of the Plasma Mass Filter (PMF) experiment at PPPL, in collaboration with Nova Photonics, Inc., is to achieve separation between high-Z and low-Z atoms, for possible application to processing of nuclear waste to remove the highly radioactive high-Z components. The PMF features a rotating plasma column in which centrifugal forces push high-mass ions out of the plasma radially, while low-mass ions exit the plasma axially. In order to control the injection location, high-Z materials are introduced in powder form into the PMF plasma. The current experiment is limted to ~1 kW RF, giving a calculated maximum flow rate of ~0.1 mg/s. An electron temperature of a few eV and assumptions about the residence time of the dust particles in the PMF plasma limits the calculated maximum particle size to ~1 μm. While previous dusty plasma experiments have dealt with particles on the order of 2-3 μm, submicron particles are comparatively more difficult to manipulate under vacuum due to increased Van Der Waals and electrostatic forces. A powder dropper capable of reliably dropping micron and submicron-size particles at this flow rate is being developed, consisting of a mesh-bottomed container that is coupled to vibration motors. This work supported by DOE contract DE-AC02-09CH11466.
Imaging Young Stellar Objects with VLTi/PIONIER
NASA Astrophysics Data System (ADS)
Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Baron, F.; Dominik, C.; Isella, A.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J.; Pinte, C.; Soulez, F.; Tallon, M.; Thi, W.-F.; Thiébaut, É.; Zins, G.
2014-04-01
Optical interferometry imaging is designed to help us to reveal complex astronomical sources without a prior model. Among these complex objects are the young stars and their environments, which have a typical morphology with a point-like source, surrounded by circumstellar material with unknown morphology. To image them, we have developed a numerical method that removes completely the stellar point source and reconstructs the rest of the image, using the differences in the spectral behavior between the star and its circumstellar material. We aim to reveal the first Astronomical Units of these objects where many physical phenomena could interplay: the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, we carried out the first Large Program survey of HAeBe stars with two main goals: statistics on the geometry of these objects at the first astronomical unit scale and imaging their very close environment. The images reveal the environment, which is not polluted by the star and allows us to derive the best fit for the flux ratio and the spectral slope. We present the first images from this survey and the application of the imaging method on other astronomical objects.
NASA Technical Reports Server (NTRS)
Chow, V. W.; Mendis, D. A.; Rosenberg, M.
1993-01-01
By virtue of being generally immersed in a plasma environment, cosmic dust is necessarily electrically charged. The fact that secondary emission plays an important role in determining the equilibrium grain potential has long been recognized, but the fact that the grain size plays a crucial role in this equilibrium potential, when secondary emission is important, has not been widely appreciated. Using both conducting and insulating spherical grains of various sizes and also both Maxwellian and generalized Lorentzian plasmas (which are believed to represent certain space plasmas), we have made a detailed study of this problem. In general, we find that the secondary emission yield delta increases with decreasing size and becomes very large for grains whose dimensions are comparable to the primary electron penetration depth, such as in the case of the very small grains observed at comet Halley and inferred in the interstellar medium. Moreover, we observed that delta is larger for insulators and equilibrium potentials are generally more positive when the plasma has a broad non-Maxwellian tail. Interestingly, we find that for thermal energies that are expected in several cosmic regions, grains of different sizes can have opposite charge, the smaller ones being positive while the larger ones are negative. This may have important consequences for grain accretion in polydisperse dusty space plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M., E-mail: kbchai@caltech.edu, E-mail: pbellan@caltech.edu
2015-04-01
Elongated, fractal-like water-ice grains are observed to form spontaneously when water vapor is injected into a weakly ionized laboratory plasma formed in a background gas cooled to an astrophysically relevant temperature. The water-ice grains form in 1–2 minutes, levitate with regular spacing, and are aligned parallel to the sheath electric field. Water-ice grains formed in plasma where the neutrals and ions have low mass, such as hydrogen and helium, are larger, more elongated, and more fractal-like than water-ice grains formed in plasmas where the neutrals and ions have high mass such as argon and krypton. Typical aspect ratios (length tomore » width ratio) are as great as 5 while typical fractal dimensions are ∼1.7. Water-ice grain lengths in plasmas with low neutral and ion masses can be several hundred microns long. Infrared absorption spectroscopy reveals that the water-ice grains are crystalline and so are similar in constitution to the water-ice grains in protoplanetary disks, Saturn’s rings, and mesospheric clouds. The properties and behavior of these laboratory water-ice grains may provide insights into morphology and alignment behavior of water-ice grains in astrophysical dusty plasmas.« less
Effect of confining wall potential on charged collimated dust beam in low-pressure plasma
NASA Astrophysics Data System (ADS)
Kausik, S. S.; Kakati, B.; Saikia, B. K.
2013-05-01
The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.
Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas
NASA Astrophysics Data System (ADS)
Mir, Zahid; Jamil, M.; Rasheed, A.; Asif, M.
2017-09-01
The dust shear Alfvén wave is studied in three species dusty quantum plasmas. The quantum effects are incorporated through the Fermi degenerate pressure, tunneling potential, and in particular the exchange-correlation potential. The significance of exchange-correlation potential is pointed out by a graphical description of the dispersion relation, which shows that the exchange potential magnifies the phase speed. The low-frequency shear Alfvén wave is studied while considering many variables. The shear Alfvén wave gains higher phase speed at the range of small angles for the upper end of the wave vector spectrum. The increasing dust charge and the external magnetic field reflect the increasing tendency of phase speed. This study may explain many natural mechanisms associated with long wavelength radiations given in the summary.
King, Chih-Hung; Chen, Tiffany L; Fan, Zhengqin; Glass, Jonathan D; Kemp, Charles C
2012-03-01
People with physical disabilities have ranked object retrieval as a high-priority task for assistive robots. We have developed Dusty, a teleoperated mobile manipulator that fetches objects from the floor and delivers them to users at a comfortable height. In this paper, we first demonstrate the robot's high success rate (98.4%) when autonomously grasping 25 objects considered being important by people with amyotrophic lateral sclerosis (ALS). We tested the robot with each object in five different configurations on five types of flooring. We then present the results of an experiment in which 20 people with ALS operated Dusty. Participants teleoperated Dusty to move around an obstacle, pick up an object and deliver the object to themselves. They successfully completed this task in 59 out of 60 trials (3 trials each) with a mean completion time of 61.4 SD = 20.5 seconds), and reported high overall satisfaction using Dusty (7-point Likert scale; 6.8 SD = 0.6). Participants rated Dusty to be significantly easier to use than their own hands, asking family members, and using mechanical reachers (p < 0.03, paired t-tests). Fourteen of the 20 participants reported that they would prefer using Dusty over their current methods. [Box: see text].
King, Chih-Hung; Chen, Tiffany L; Fan, Zhengqin; Glass, Jonathan D; Kemp, Charles C
2012-01-01
People with physical disabilities have ranked object retrieval as a high priority task for assistive robots. We have developed Dusty, a teleoperated mobile manipulator that fetches objects from the floor and delivers them to users at a comfortable height. In this paper, we first demonstrate the robot's high success rate (98.4%) when autonomously grasping 25 objects considered important by people with amyotrophic lateral sclerosis (ALS). We tested the robot with each object in five different configurations on five types of flooring. We then present the results of an experiment in which 20 people with ALS operated Dusty. Participants teleoperated Dusty to move around an obstacle, pick up an object, and deliver the object to themselves. They successfully completed this task in 59 out of 60 trials (3 trials each) with a mean completion time of 61.4 seconds (SD=20.5 seconds), and reported high overall satisfaction using Dusty (7-point Likert scale; 6.8 SD=0.6). Participants rated Dusty to be significantly easier to use than their own hands, asking family members, and using mechanical reachers (p < 0.03, paired t-tests). 14 of the 20 participants reported that they would prefer using Dusty over their current methods. PMID:22013888
Flow characteristics of bounded self-organized dust vortex in a complex plasma
NASA Astrophysics Data System (ADS)
Laishram, Modhuchandra; Sharma, D.; Chattopdhyay, P. K.; Kaw, P. K.
2018-01-01
Dust clouds are often formed in many dusty plasma experiments, when micron size dust particles introduced in the plasma are confined by spatial non-uniformities of the potential. These formations show self-organized patterns like vortex or circulation flows. Steady-state equilibrium dynamics of such dust clouds is analyzed by 2D hydrodynamics for varying Reynolds number, Re, when the cloud is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in a dynamic equilibrium with an unbounded sheared plasma flow. The nonconservative forcing due to ion flow shear generates finite vorticity in the confined dust clouds. In the linear limit (Re ≪ 1), the collective flow is characterized by a single symmetric and elongated vortex with scales correlating with the driving field and those generated by friction with the boundaries. However in the high Re limit, (Re ≥ 1), the nonlinear inertial transport (u . ∇u) is effective and the vortex structure is characterized by an asymmetric equilibrium and emergence of a circular core region with uniform vorticity, over which the viscous stress is negligible. The core domain is surrounded by a virtual boundary of highly convective flow followed by thin shear layers filled with low-velocity co- and counter-rotating vortices, enabling the smooth matching with external boundary conditions. In linear regime, the effective boundary layer thickness is recovered to scale with the dust kinematic viscosity as Δr ≈ μ1/3 and is modified as Δr ≈ (μL∥/u)1/2 in the nonlinear regime through a critical kinematic viscosity μ∗ that signifies a structural bifurcation of the flow field solutions. The flow characteristics recovered are relevant to many microscopic biological processes at lower Re, as well as gigantic vortex flows such as Jovian great red spot and white ovals at higher Re.
AGN Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized
NASA Technical Reports Server (NTRS)
Dorodnitsyn, A.; Kallman, T.
2012-01-01
We present calculations of AGN winds at approximate parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 - 0.6L(sub Edd) the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72? -75? regardless of the luminosity. At L 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) greater than or approximately 70? and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities less than or equal to 0.1L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion.
Mamun, A A; Shukla, P K
2009-09-01
Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennihy, E.; Clemens, J. C.; Dunlap, B. H.
We present a simple method for identifying candidate white dwarf systems with dusty exoplanetary debris based on a single temperature blackbody model fit to the infrared excess. We apply this technique to a sample of Southern Hemisphere white dwarfs from the recently completed Edinburgh–Cape Blue Object Survey and identify four new promising dusty debris disk candidates. We demonstrate the efficacy of our selection method by recovering three of the four Spitzer confirmed dusty debris disk systems in our sample. Further investigation using archival high-resolution imaging shows that Spitzer data of the unrecovered fourth object is likely contaminated by a line-of-sightmore » object that either led to a misclassification as a dusty disk in the literature or is confounding our method. Finally, in our diagnostic plot, we show that dusty white dwarfs, which also host gaseous debris, lie along a boundary of our dusty debris disk region, providing clues to the origin and evolution of these especially interesting systems.« less
The circumstellar environment of the B[e] star GG Car: an interferometric modeling
NASA Astrophysics Data System (ADS)
Domiciano de Souza, A.; Borges Fernandes, M.; Carciofi, A. C.; Chesneau, O.
2015-01-01
The research of stars with the B[e] phenomenon is still in its infancy, with several unanswered questions. Physically realistic models that treat the formation and evolution of their complex circumstellar environments are rare. The code HDUST (developed by A. C. Carciofi and J. Bjorkman) is one of the few existing codes that provides a self-consistent treatment of the radiative transfer in a gaseous and dusty circumstellar environment seen around B[e] supergiant stars. In this work we used the HDUST code to study the circumstellar medium of the binary system GG Car, where the primary component is probably an evolved B[e] supergiant. This system also presents a disk (probably circumbinary), which is responsible for the molecular and dusty signatures seen in GG Car spectra. We obtained VLTI/MIDI data on GG~Car at eight baselines, which allowed to spatially resolve the gaseous and dusty circumstellar environment. From the interferometric visibilities and SED modeling with HDUST, we confirm the presence of a compact ring, where the hot dust lies. We also show that large grains can reproduce the lack of structure in the SED and visibilities across the silicate band. We conclude the dust condensation site is much closer to the star than previously thought. This result provides stringent constraints on future theories of grain formation and growth around hot stars.
NASA Astrophysics Data System (ADS)
Authier-Martin, Monique
Dustiness of calcined alumina is a major concern, causing undesirable working conditions and serious alumina losses. These losses occur primarily during unloading and handling or pot loading and crust breaking. The handling side of the problem is first addressed. The Perra pulvimeter constitutes a simple and reproducible tool to quantify handling dustiness and yields results in agreement with plant experience. Attempts are made to correlate dustiness with bulk properties (particle size, attrition index, …) for a large number of diverse aluminas. The characterization of the dust generated with the Perra pulvimeter is most revealing. The effect of the addition of E.S.P. dust is also reported.
Augmented Visual Experience of Simulated Solar Phenomena
NASA Astrophysics Data System (ADS)
Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.
2017-12-01
The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.
Computational Fluid Dynamics Analysis of the Venturi Dustiness Tester
Dubey, Prahit; Ghia, Urmila; Turkevich, Leonid A.
2017-01-01
Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, and is important in the control of hazardous exposures and the prevention of dust explosions and product loss. Limited quantities of active pharmaceutical powders available for testing led to the development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is turbulently injected at high speed (Re ~ 2 × 104) into a glass chamber; the aerosol is then gently sampled (Re ~ 2 × 103) through two filters located at the top of the chamber; the dustiness index is the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction Port at the top of the chamber; loss of powder during injection compromises the sampled dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard operation) for uniform distribution of fluid tracers. Simulations are also performed under the conditions of delayed powder injection; results show that a uniform aerosol is still achieved provided 0.5 s elapses between powder injection and sampling. PMID:28638167
Three Millennia of Southwestern North American Dustiness and Future Implications
Routson, Cody C.; Overpeck, Jonathan T.; Woodhouse, Connie A.; Kenney, William F.
2016-01-01
Two sediment records of dust deposition from Fish Lake, in southern Colorado, offer a new perspective on southwest United States (Southwest) aridity and dustiness over the last ~3000 years. Micro scanning X-ray fluorescence and grain size analysis provide separate measures of wind-deposited dust in the lake sediment. Together these new records confirm anomalous dustiness in the 19th and 20th centuries, associated with recent land disturbance, drought, and livestock grazing. Before significant anthropogenic influences, changes in drought frequency and aridity also generated atmospheric dust loading. Medieval times were associated with high levels of dustiness, coincident with widespread aridity. These records indicate the Southwest is naturally prone to dustiness. As global and regional temperatures rise and the Southwest shifts toward a more arid landscape, the Southwest will likely become dustier, driving negative impacts on snowpack and water availability, as well as human health. PMID:26886350
Characterizing the effects of regolith surface roughness on photoemission from surfaces in space
NASA Astrophysics Data System (ADS)
Dove, A.; Horanyi, M.; Wang, X.
2017-12-01
Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dharodi, Vikram; Das, Amita, E-mail: amita@ipr.res.in; Patel, Bhavesh
2016-01-15
The strongly coupled dusty plasma has often been modelled by the Generalized Hydrodynamic (GHD) model used for representing visco-elastic fluid systems. The incompressible limit of the model which supports transverse shear wave mode is studied in detail. In particular, dipole structures are observed to emit transverse shear waves in both the limits of sub- and super-luminar propagation, where the structures move slower and faster than the phase velocity of the shear waves, respectively. In the sub-luminar limit the dipole gets engulfed within the shear waves emitted by itself, which then backreacts on it and ultimately the identity of the structuremore » is lost. However, in the super-luminar limit the emission appears like a wake from the tail region of the dipole. The dipole, however, keeps propagating forward with little damping but minimal distortion in its form. A Poynting-like conservation law with radiative, convective, and dissipative terms being responsible for the evolution of W, which is similar to “enstrophy” like quantity in normal hydrodynamic fluid systems, has also been constructed for the incompressible GHD equations. The conservation law is shown to be satisfied in all the cases of evolution and collision amidst the nonlinear structures to a great accuracy. It is shown that monopole structures which do not move at all but merely radiate shear waves, the radiative term, and dissipative losses solely contribute to the evolution of W. The dipolar structures, on the other hand, propagate in the medium and hence convection also plays an important role in the evolution of W.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetering, F. M. J. H. van de; Nijdam, S.; Beckers, J.
2016-07-25
In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon–acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed “hiccup” and was related to collective coagulation of a new generation of nanoparticles growing in the void using relativelymore » indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.« less
INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx
The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less
Mie and debye scattering in dusty plasmas
Guerra; Mendonca
2000-07-01
We calculate the total field scattered by a charged sphere immersed in a plasma using a unified treatment that includes the usual Mie scattering and the scattering by the Debye cloud around the particle. This is accomplished by use of the Dyadic Green function to determine the field radiated by the electrons of the Debye cloud, which is then obtained as a series of spherical vector wave functions similar to that of the Mie field. Thus we treat the Debye-Mie field as a whole and study its properties. The main results of this study are (1) the Mie (Debye) field dominates at small (large) wavelengths and in the Rayleigh limit the Debye field is constant; (2) the total cross section has an interference term between the Debye and Mie fields, important in some regimes; (3) this term is negative for negative charge of the grain, implying a total cross section smaller than previously thought; (4) a method is proposed to determine the charge of the grain (divided by a certain suppression factor) and the Debye length of the plasma; (5) a correction to the dispersion relation of an electromagnetic wave propagating in a plasma is derived.
NASA Astrophysics Data System (ADS)
Bezbaruah, Pratikshya; Das, Nilakshi
2018-05-01
Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.
Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas
NASA Astrophysics Data System (ADS)
Volosevich, A.-V.; Meister, C.-V.
2003-04-01
In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.
Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J
2014-01-01
Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions.
IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Adam; Song, Inseok; Melis, Carl
2012-10-01
It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age {approx}<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics-namely, H{alpha} emission, strong lithium absorption, and low surface gravity featuresmore » consistent with known TWA members. We also detect mid-IR excess-the first unambiguous evidence of a dusty circumstellar disk-around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.« less
Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalita, B. C., E-mail: bckalita123@gmail.com; Choudhury, M., E-mail: choudhurymamani@gmail.com
2016-10-15
Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causesmore » the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.« less
Heated probe diagnostic inside of the gas aggregation nanocluster source
NASA Astrophysics Data System (ADS)
Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team
2016-09-01
Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.
Experimental Replication of Relict "Dusty" Olivine in Type 1B Chondrules
NASA Technical Reports Server (NTRS)
Lofgren, Gary E.; Le, L.
2002-01-01
Introduction: Relict "dusty" olivine is considered to be a remnants of previous chondrule forming events based on petrographic and chemical evidence. Dynamic crystallization experiments confirm that dusty olivine can be produced by reduction of FeO-rich olivine in Unequilibrated Ordinary Chondrite (UOC) material. The results of these experiments compliment those of who also produced dusty olivine, but from synthetic starting materials. Techniques: Dynamic crystallization experiments were conducted in which UOC material was reduced in presence of graphite. Starting material was coarsely ground GR095554 or WSG95300 that contained olivine of Fo 65-98. Approximately 75 mg. of UOC material was placed in a graphite crucible and sealed in an evacuated silica tube. The tube was suspended in a gas-mixing furnace operated at 1 log unit below the IW buffer. The experiments were as brief as 1.5 hrs up to 121 hrs. Results: Dusty olivine was produced readily in experiments melted at 1400 C for I hr. and cooled between 5 and 100 C/hr or melted at 1300-1400 C for 24 hours. Fe-rich olivine (dusty olivine precursors) that have been partially reduced were common in the experiments melted at 1400 C and cooled at 1000 C/hr or melted at 1200 C for 24 hrs. Relict olivine is absent in experiments melted at 1400 for 24 hrs, melted above 1400 C, or cooled more slowly than 10 C/hr. Relict olivine in the experiments has minimum Fo value of 83 . Thus even in the shortest experiments the most Fe-rich olivine has been altered significantly. The precursor olivine disappears in a few to many hours depending on temperature. The experiments show Fe-rich olivine in all stages of transition to the new dusty form. The olivine is reduced to form dusty olivine in a matter of a few hours at temperatures less than 1400 C and in minutes at higher temperatures. The reduction appears to proceed from the rim of the crystal inward with time. The reduction appears initially rectilinear as if controlled by crystallography, but with time Fe-metal blebs are randomly distributed throughout the olivine. In a given experiment, dusty olivine can be found in varying stages of development, but in the longest experiments, the Fe-metal blebs are dominant and they appear to be migrating out of the olivine. The composition of the dusty olivine ranges from Fo 94-99. The Cr, Mn, and Ca content of the newly formed, dusty olivine is slightly less on average that the precursor olivine, but is till with the range of type 1 olivine. Chadacrysts in the low Ca pyroxene are most common in the higher temperature, more slowly cooled experiments and range in composition from Fo 90-99. Application to chondrule formation: These experiments place time-temperature limits on the preservation of Fe-rich olivine and the production of dusty olivine during chondrule forming events. The reduction process proceeds in a few hours at temperatures above 1400 C and in 10's of hours at temperature between 1200 and 1300 C. This result further confirms th at chondrules form in a few hours to days as suggested earlier. The experiments also confirm that dusty olivine can form from typical Fe-rich olivine in UOC material during the recycling of such olivine in the chondrule forming process.
Evolution of rogue waves in dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com; Moslem, W. M., E-mail: wmmoslem@hotmail.com
2015-04-15
The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves bymore » ∼25 times.« less
AGN radiative feedback in dusty quasar populations
NASA Astrophysics Data System (ADS)
Ishibashi, W.; Banerji, M.; Fabian, A. C.
2017-08-01
New populations of hyper-luminous, dust-obscured quasars have been recently discovered around the peak epoch of galaxy formation (z ˜ 2-3), in addition to similar sources found at lower redshifts. Such dusty quasars are often interpreted as sources 'in transition', from dust-enshrouded starbursts to unobscured luminous quasars, along the evolutionary sequence. Here we consider the role of the active galactic nucleus (AGN) radiative feedback, driven by radiation pressure on dust, in high-luminosity, dust-obscured sources. We analyse how the radiation pressure-driven dusty shell models, with different shell mass configurations, may be applied to the different populations of dusty quasars reported in recent observations. We find that expanding shells, sweeping up matter from the surrounding environment, may account for prolonged obscuration in dusty quasars, e.g. for a central luminosity of L ˜ 1047 erg s-1, a typical obscured phase (with extinction in the range AV ˜ 1-10 mag) may last a few ˜106 yr. On the other hand, fixed-mass shells, coupled with high dust-to-gas ratios, may explain the extreme outflows recently discovered in red quasars at high redshifts. We discuss how the interaction between AGN radiative feedback and the ambient medium at different temporal stages in the evolutionary sequence may contribute to shape the observational appearance of dusty quasar populations.
NASA Technical Reports Server (NTRS)
Dorodnitsyn, Anton V.; Kallman, Timothy R.
2012-01-01
We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures
JOURNAL SCOPE GUIDELINES: Paper classification scheme
NASA Astrophysics Data System (ADS)
2005-06-01
This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas
NASA Astrophysics Data System (ADS)
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2016-09-01
The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.
NASA Astrophysics Data System (ADS)
El-Wakil, S. A.; Abulwafa, Essam M.; Elhanbaly, Atalla A.
2017-07-01
Based on Sagdeev pseudo-potential and phase-portrait, the dynamics of four-component dust plasma with non-extensively distributed electrons and ions are investigated. Three distinct types of nonlinear waves, namely, soliton, double layer, and super-soliton, have been found. The basic features of such waves are high sensitivity to Mach number, non-extensive parameter, and dust temperature ratio. It is found that the multi-component plasma is a necessary condition for super-soliton's existence, having a wider amplitude and a larger width than the regular soliton. Super-solitons may also exist when the Sagdeev pseudo-potential curves admit at least four extrema and two roots. In our multi-component plasma system, the super-solitons can be found by increasing the Mach number and the non-extensive parameter beyond those of double-layers. On the contrary, the super-soliton can be produced by decreasing the dust temperature ratio. The conditions of the onset of such nonlinear waves and its merging to regular solitons have been studied. This work shows that the obtained nonlinear waves are found to exist only in the super-sonic Mach number regime. The obtained results may be of wide relevance in the field of space plasma and may also be helpful to better understand the nonlinear fluctuations in the Auroral-zone of the Earth's magnetosphere.
1986-08-01
AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I
Improved Shell models for screened Coulomb balls
NASA Astrophysics Data System (ADS)
Bonitz, M.; Kaehlert, H.; Henning, C.; Baumgartner, H.; Filinov, A.
2006-10-01
Spherical Coulomb crystals in dusty plasmas [1] are well described by an isotropic Yukawa-type pair interaction and an external parabolic confinement as was shown by extensive molecular dynamics simulations [2]. A much simpler description is possible with analytical shell models which have been derived for Yukawas plasmas in [3,4]. Here we analyze improved Yukawa shell models which include correlations along the lines proposed for Coulomb crystals in [5]. The shell configurations are efficiently evaluated using a Monte Carlo procedure. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005). [4] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E [5] W.D. Kraeft and M. Bonitz, J. Phys. Conf. Ser. 35, 94 (2006).
NASA Astrophysics Data System (ADS)
Gul-e-Ali, Masood, W.; Mirza, Arshad M.
2017-12-01
The shear flow in dust dynamics driven waves in combination with the dust-neutral drag is studied in a plasma comprising of ions, electrons, and dust. Non-thermal population of ions is considered, which has been observed by many satellite missions. It is found that the dissipative instability produced by dust sheared flow and dust-neutral drag gets modified by the presence of nonthermal ions. It is found that the dissipative instability enhances for the Cairns distribution, whereas the kappa distribution arrests the growth of this instability. In the nonlinear regime, the formation of vortices in the system is studied. It is found that the nonthermal population of ions significantly alters these structures in comparison with their Maxwellian counterpart. The results obtained in this paper may have relevance in the planetary magnetospheres where the dust particles are present and non-Maxwellian distribution of particles have been observed by Freja and Viking satellites.
The magnetized sheath of a dusty plasma with grains size distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Jing, E-mail: ouj@ipp.ac.cn; Gan, Chunyun; Lin, Binbin
2015-05-15
The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected valuemore » of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.« less
2010-03-29
A composite image from NASA Chandra and Spitzer space telescopes shows the dusty remains of a collapsed star, a supernova remnant called G54.1+0.3. The white source at the center is a dead star called a pulsar.
Coulomb Crystallization of Charged Microspheres Levitated in a Gas Discharge Plasma
NASA Technical Reports Server (NTRS)
Goree, John
1998-01-01
The technical topic of the project was the experimental observation of Coulomb crystallization of charged microspheres levitated in a gas discharge plasma. This suspension, sometimes termed a dusty plasma, is closely analogous to a colloidal suspension, except that it has a much faster time response, is more optically thin, and has no buoyancy forces to suspend the particles. The particles are levitated by electric fields. Through their collective Coulomb repulsions, the particles arrange themselves in a lattice with a crystalline symmetry, which undergoes an order-disorder phase transition analogous to melting when the effective temperature of the system is increased. Due to gravitational sedimentation, the particles form a thin layer in the laboratory, so that the experimental system is nearly 2D, whereas in future microgravity experiments they are expected to fill a larger volume and behave like a 3D solid or liquid. The particles are imaged using a video camera by illuminating them with a sheet of laser light. Because the suspension is optically thin, this imaging method will work as well in a 3D microgravity experiment as it does in a 2D laboratory system.
2015-02-01
reserved. WISEP J004701.06+680352.1: AN INTERMEDIATE SURFACE GRAVITY, DUSTY BROWN DWARF IN THE AB DOR MOVING GROUP John E. Gizis1,9, Katelyn N...pc. The three-dimensional space mo- tion identifies it as a member of the AB Dor Moving Group, an identification supported by our classification of...SUBTITLE WISEP J004701+680352.1: An Intermediate Surface Gravity, Dusty Brown Dwarf In The AB Dor Moving Group 5a. CONTRACT NUMBER 5b. GRANT NUMBER
NASA Technical Reports Server (NTRS)
Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.
2013-01-01
Chondritic porous IDPs may be among the most primitive objects found in our solar system [1]. They consist of many micron to submicron minerals, glasses and carbonaceous matter [2,3,4,5,6,7] with > 10(exp 4) grains in a 10 micron cluster [8]. Speculation on the environment where these fine grained, porous IDPs formed varies with possible sources being presolar dusty plasma clouds, protostellar condensation, solar asteroids or comets [4,6,9]. Also, fine grained dust forms in our solar system today [10,11]. Isotopic anomalies in some particles in IDPs suggest an interstellar source[4,7,12]. IDPs contain relic particles left from the dusty plasma that existed before the protostellar disk formed and other grains in the IDPs formed later after the cold dense nebula cloud collapsed to form our protostar and other grains formed more recently. Fe and CR XANES spectroscopy is used here to investigate the oxygen environment in a large (>50 10 micron or larger sub-units) IDP. Conclusions: Analyzing large (>50 10 micron or larger sub-units) CP IDPs gives one a view on the environments where these fine dust grains formed which is different from that found by only analyzing the small, 10 micron IDPs. As with cluster IDP L2008#5 [3], L2009R2 cluster #13 appears to be an aggregate of grains that sample a diversity of solar and perhaps presolar environments. Sub-micron, grain by grain measurement of trace element contents and elemental oxidation states determined by XANES spectroscopy offers the possibility of understanding the environments in which these grains formed when compared to standard spectra. By comparing thermodynamic modeling of condensates with analytical data an understanding of transport mechanisms operating in the early solar system may be attained.
EDITORIAL: Special issue in honour of J E Allen's 75th birthday
NASA Astrophysics Data System (ADS)
Franklin, R. N.
2003-11-01
This issue of Journal of Physics D: Applied Physics is dedicated to Professor John Allen who has spent most of his professional life in the Department of Engineering Science, Oxford University, working on problems in gas discharges and plasma physics. His first degrees and doctorate were taken at Liverpool University in the 1950s where at the time there was an internationally renowned group led by Meek, Craggs and Edels. He then spent some time at Frascati in Italy on secondment from Harwell, helping to build up expertise there. He returned to England in the mid-1960s, first to Cambridge, but he soon migrated to Oxford to University College and the Department of Engineering Science to strengthen a team that already included von Engel, Motz and Woods with more recent reinforcement by Howatson and myself. Thus there was built up both a post-graduate MSc course and what amounted to a graduate school producing many scientists who have since distinguished themselves in all parts of the world. The prospects for success in the quest for fusion and the proximity of Culham Laboratory produced a heady mix. But the timescales lengthened and fashions changed. However, John moved with the times and he and his research students made notable contributions to the understanding of dusty plasmas and to radio-frequency plasmas used in the processing of microchips. The structure at Oxford was such that the recognition of a professorship came late in his career, but his international reputation was well established much earlier. Being freed of tutorial duties he has travelled much in recent years and has been Chairman of the International Conference on Phenomena in Ionized Gases (ICPIG) 1999-2001 and directly involved in the international effort to carry out dusty plasma experiments in space under micro-gravity conditions. For my part, having known John as a colleague over the past forty years, he has been a valuable point of reference when one needed someone to comment on new ideas, a challenging competitor when we were working on similar lines, and his research students provided me with the stimulation that comes from such interaction, be it informal or more formally in the course of D Phil vivas. Thus I have felt that there was a debt to be repaid by encouraging his students and other co-workers to contribute to this issue. More importantly, we honour someone whose contributions we know will stand the test of time.
Life Starting Materials Found in Dusty Disk
2005-12-20
This graph, or spectrum, from NASA Spitzer Space Telescope tells astronomers that some of the most basic ingredients of DNA and protein are concentrated in a dusty planet-forming disk circling a young sun-like star called IRS 46.
Theory of Dust Voids in Plasmas
NASA Technical Reports Server (NTRS)
Goree, J.; Morfill, G. E.; Tsytovich, V. N.; Vladimirov, S. V.
1999-01-01
Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.
Dusty disc-planet interaction with dust-free simulations
NASA Astrophysics Data System (ADS)
Chen, Jhih-Wei; Lin, Min-Kai
2018-05-01
Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.
Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts
NASA Astrophysics Data System (ADS)
Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.
2014-12-01
Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.
HUBBLE SPACE TELESCOPE OBSERVATIONS OF DUSTY FILAMENTS IN HERCULES A: EVIDENCE FOR ENTRAINMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dea, C. P.; Kharb, P.; Baum, S. A.
2013-07-01
We present U-, V-, and I-band images of the host galaxy of Hercules A (3C 348) obtained with HST/WFC3/UVIS. We find a network of dusty filaments which are more complex and extended than seen in earlier Hubble Space Telescope (HST) observations. The filaments are associated with a faint blue continuum light (possibly from young stars) and faint H{alpha} emission. It seems likely that the cold gas and dust has been stripped from a companion galaxy now seen as a secondary nucleus. There are dusty filaments aligned with the base of the jets on both eastern and western sides of themore » galaxy. The morphology of the filaments is different on the two sides-the western filaments are fairly straight, while the eastern filaments are mainly in two loop-like structures. We suggest that despite the difference in morphologies, both sets of filaments have been entrained in a slow-moving boundary layer outside the relativistic flow. As suggested by Fabian et al., magnetic fields in the filaments may stabilize them against disruption. We consider a speculative scenario to explain the relation between the radio source and the shock and cavities in the hot intracluster medium seen in the Chandra data. We suggest that the radio source originally ({approx}60 Myr ago) propagated along a position angle of {approx}35 Degree-Sign where it created the shock and cavities. The radio source axis changed to its current orientation ({approx}100 Degree-Sign ) possibly due to a supermassive black hole merger and began its current epoch of activity about 20 Myr ago.« less
NASA Astrophysics Data System (ADS)
Bonneau, D.; Netolický, M.; Chesneau, O.; Harmanec, P.; Koubský, P.; Mourard, D.; Stee, P.
2008-11-01
The first mid-IR interferometric observations of a hydrogen-deficient binary star, υ Sgr, were carried out using the MIDI/VLTI instrument between April 2007 and May 2008. The dusty circumbinary envelope is resolved in the N band (8-13.5 μ m), and has a typical size of 20 x 14 mas. The calibrated fringe visibilities, the mid-IR spectrum and the SED were fitted using models computed with the radiative transfer code MC3D using several mixtures of carbon and silicate dust, in order to determine the geometry and chemical composition of the envelope. The best model we obtain is a geometrically thin and dense disk with an inner radius of R_{in} ≃ 6.0AU and a scale height h_{100} ≃ 3.5 AU. The inclination of the disk is i ≃ 50° and its position angle is PA ≃ 80°. The chemical composition of the dust is approximatelya ratio of 60% of carbon dust and 40% of silicate dust. We constrained for the first time the geometry and the chemistry of the circumbinary dusty envelope of υ Sgr. It is now clear that the components of υ Sgr are massive stars (> 10 M_⊙) and the results are compatible with evolutionary scenario proposed by Delgado & Thomas (1981) of a binary with massive components experiencing several phases of important mass transfer leading to the hydrogen-deficient primary star. However, complementary spectro-interferometric observations in the near infrared and the visible are mandatory to investigate the complex structure of the inner circumstellar environment and directly resolve the stellar components of the υ Sgr system.
NASA Astrophysics Data System (ADS)
Czerny, B.; Li, Yan-Rong; Hryniewicz, K.; Panda, S.; Wildy, C.; Sniegowska, M.; Wang, J.-M.; Sredzinska, J.; Karas, V.
2017-09-01
The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporation and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.
Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA)
NASA Astrophysics Data System (ADS)
Bates, E. M.; Birmingham, W. J.; Romero-Talamás, C. A.
2018-05-01
The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.
Nonlinear beat excitation of low frequency wave in degenerate plasmas
NASA Astrophysics Data System (ADS)
Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.
2018-03-01
The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.
Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA).
Bates, E M; Birmingham, W J; Romero-Talamás, C A
2018-05-01
The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.
Different states of the transient luminous phenomena in Hessdalen valley, Norway.
NASA Astrophysics Data System (ADS)
Hauge, B. G.; Montebugnoli, S.
2012-04-01
The transient luminous phenomena's in Hessdalen valley has at least been observed for 200 years, since 1811, when the priest Jacob T. Krogh did the first written documentation. The valley is located in the middle of Norway, isolated and with sub arctic climate. The former mining district has no more than 140 inhabitants, and the deep mines are closed and filled with water. The valley has been under scientific surveillance since 1998 when the first automated and remote controlled observatory was put into action. Today a Norwegian, Italian and French collaboration runs 3 different research stations inside the valley. Each year a scientific field campaign establishes 4 temporary bases in the mountains, and up to 100 students and researchers man these bases for up to 14 days in september when the moon is down. The Hessdalen phenomena is not easy to detect, and approximately only 20 observations is done each year. The work done the last 14 years suggests that the phenomenon has different states, at least 6 detected so far. The states are so different that to se a coupling between them is difficult. New work done into dusty plasma physics suggest that the different phenomena's may be of the same origin, since the ionized grains of dusty plasma can change states from weakly coupled (gaseous) to crystalline, altering shape/formation and leading to different phenomena. Optical spectrometry from 2007 suggested that the luminous phenomena consisted of burning air and dust from the valley. Work done by G.S Paiva and C.A Taft suggests that radon decay from closed mines may be the mechanism that ionizes dust and triggers this phenomena. The 6 different main states of the Hessdalen phenomena, Doublet, Fireball, Plasma ray, Dust cloud, Flash and Invisible state is described and discussed. Investigation of the atmosphere inside the Hessdalen valley with low frequency directional RADAR, reveals large areas of ionized matter, giving a reflecting area big enough to saturate the input of the radar receiver. Together with long living time, ground analysis and radio active measurements, do not support the radon decay theory, and other forms of ionizing mechanisms must be investigated. The phenomenon's energy source is still not revealed, and the question of internal or external power source is also unexplained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan
2015-10-20
The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similarmore » to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.« less
PREFACE: 31st European Physical Society Conference on Plasma Physics
NASA Astrophysics Data System (ADS)
Dendy, Richard
2004-12-01
This special issue of Plasma Physics and Controlled Fusion comprises refereed papers contributed by invited speakers at the 31st European Physical Society Conference on Plasma Physics. The conference was jointly hosted by the Rutherford Appleton Laboratory, by the EURATOM/UKAEA Fusion Association and by Imperial College London, where it took place from 28 June to 2 July 2004. The overall agenda for this conference was set by the Board of the Plasma Physics Division of the European Physical Society, chaired by Friedrich Wagner (MPIPP, Garching) and his successor Jo Lister (CRPP, Lausanne). It built on developments in recent years, by further increasing the scientific diversity of the conference programme, whilst maintaining its depth and quality. A correspondingly diverse Programme Committee was set up, whose members are listed below. The final task of the Programme Committee has been the preparation of this special issue. In carrying out this work, as in preparing the scientific programme of the conference, the Programme Committee formed specialist subcommittees representing the different fields of plasma science. The chairmen of these subcommittees, in particular, accepted a very heavy workload on behalf of their respective research communities. It is a great pleasure to take this opportunity to thank: Emilia R Solano (CIEMAT, Madrid), magnetic confinement fusion; Jürgen Meyer-ter-Vehn (MPQ, Garching), laser-plasma interaction and beam plasma physics; and Jean-Luc Dorier (CRPP, Lausanne), dusty plasmas. The relatively few papers in astrophysical and basic plasma physics were co-ordinated by a small subcommittee which I led. Together with Peter Norreys (RAL, Chilton), we five constitute the editorial team for this special issue. The extensive refereeing load, compressed into a short time interval, was borne by the Programme Committee members and by many other experts, to whom this special issue owes much. We are also grateful to the Local Organizing Committee chaired by Henry Hutchinson (RAL, Chilton), and to the Plasma Physics and Controlled Fusion journal team (Institute of Physics Publishing, Bristol), for their work on this conference. At the 2004 European Physical Society Conference on Plasma Physics, plenary invited speakers whose talks spanned the entire field were followed, each day, by multiple parallel sessions which also included invited talks. Invited speakers in both these categories were asked to contribute papers to this special issue (the contributed papers at this conference, and at all recent conferences in this series, are archived at http://epsppd.epfl.ch). The Programme Committee is very grateful to the many invited speakers who have responded positively to this request. Invited papers appear here in their order of presentation during the week beginning 28 June 2004; this ordering provides an echo of the character of the conference, as it was experienced by those who took part. Programme Committee 2004 Professor Richard Dendy UKAEA Culham Division, UK Chairman and guest editor Dr Jean-Luc Dorier Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland (Co-ordinator of dusty plasmas and guest editor) Professor Jürgen Meyer-ter-Vehn Max-Planck-Institut für Quantenoptik, Garching, Germany (Co-ordinator of laser-plasma interaction and beam plasma physics and guest editor) Dr Peter Norreys Rutherford Appleton Laboratory, Chilton, UK (Scientific Secretary and guest editor) Dr Emilia R Solano CIEMAT Laboratorio Nacional de Fusión, Madrid, Spain ( Co-ordinator of magnetic confinement fusion and guest editor) Dr Shalom Eliezer Soreq Nuclear Research Centre, Israel Dr Wim Goedheer FOM-Instituut voor Plasmafysica, Rijnhuizen, Netherlands Professor Henry Hutchinson Rutherford Appleton Laboratory, Chilton, UK Professor John Kirk Max-Planck-Institut für Kernphysik, Heidelberg, Germany Dr Raymond Koch Ecole Royale Militaire/Koninklijke Militaire School, Brussels, Belgium Professor Gerrit Kroesen Technische Universiteit Eindhoven, Netherlands Dr Martin Lampe Naval Research Laboratory, Washington DC, USA Dr Jo Lister Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland Dr Paola Mantica Istituto di Fisica del Plasma, Milan, Italy Professor Tito Mendonca Instituto Superior Tecnico, Lisbon, Portugal Dr Patrick Mora École Polytechnique, Palaiseau, France Professor Lennart Stenflo Umeå Universitet, Sweden Professor Paul Thomas CEA Cadarache, Saint-Paul-lez-Durance, France Professor Friedrich Wagner Max-Planck-Institut fr Plasmaphysik, Garching, Germany Professor Hannspeter Winter Technische Universität Wien, Austria
Oh, Yeon-Mok; Bhome, Arvind B; Boonsawat, Watchara; Gunasekera, Kirthi Dias; Madegedara, Dushantha; Idolor, Luisito; Roa, Camilo; Kim, Woo Jin; Kuo, Han-Pin; Wang, Chun-Hua; Lan, Le Thi Tuyet; Loh, Li-Cher; Ong, Choo-Khoon; Ng, Alan; Nishimura, Masaharu; Makita, Hironi; Silverman, Edwin K; Lee, Jae Seung; Yang, Ting; Lin, Yingxiang; Wang, Chen; Lee, Sang-Do
2013-01-01
Background and objectives Chronic obstructive pulmonary disease (COPD) is responsible for significant morbidity and mortality worldwide. We evaluated the characteristics of stable COPD patients in the pulmonology clinics of seven Asian cities and also evaluated whether the exposure to biomass fuels and dusty jobs were related to respiratory symptoms, airflow limitation, and quality of life in the COPD patients. Methods This cross-sectional observational study recruited 922 COPD patients from seven cities of Asia. The patients underwent spirometry and were administered questionnaires about their exposure to cigarette smoking, biomass fuels, and dusty jobs in addition to respiratory symptoms and health related quality of life. Results Of the patients, there appeared to be variations from city to city in the history of exposure to biomass fuels and dusty jobs and also in respiratory symptoms of cough, phlegm, wheeze, and dyspnea. These symptoms were more frequent in those COPD patients with a history of exposure to biomass fuels than without and those with a history of exposure to dusty jobs than without (P < 0.01 for all comparisons). Airflow limitation was more severe in those COPD patients with a history of exposure to biomass fuels than without (52.2% predicted versus 55.9% of post-bronchodilator forced expiratory volume in 1 second [FEV1], P = 0.009); quality of life was poorer in those with exposure to biomass fuels than without (40.4 versus 36.2 of the St George’s Respiratory Questionnaire [SGRQ] total score, P = 0.001). Airflow limitation was more severe in those COPD patients with a history of exposure to dusty jobs than without (51.2% predicted versus 57.3% of post-bronchodilator FEV1, P < 0.001); quality of life was poorer in those with dusty jobs than without (41.0 versus 34.6 of SGRQ score, P = 0.006). Conclusion In Asian cities, the characteristics of COPD patients vary and the history of exposure to biomass fuels or dusty jobs was related to frequency of symptoms, severe airflow limitation, and poor quality of life. PMID:23378753
Oh, Yeon-Mok; Bhome, Arvind B; Boonsawat, Watchara; Gunasekera, Kirthi Dias; Madegedara, Dushantha; Idolor, Luisito; Roa, Camilo; Kim, Woo Jin; Kuo, Han-Pin; Wang, Chun-Hua; Lan, Le Thi Tuyet; Loh, Li-Cher; Ong, Choo-Khoon; Ng, Alan; Nishimura, Masaharu; Makita, Hironi; Silverman, Edwin K; Lee, Jae Seung; Yang, Ting; Lin, Yingxiang; Wang, Chen; Lee, Sang-Do
2013-01-01
Chronic obstructive pulmonary disease (COPD) is responsible for significant morbidity and mortality worldwide. We evaluated the characteristics of stable COPD patients in the pulmonology clinics of seven Asian cities and also evaluated whether the exposure to biomass fuels and dusty jobs were related to respiratory symptoms, airflow limitation, and quality of life in the COPD patients. This cross-sectional observational study recruited 922 COPD patients from seven cities of Asia. The patients underwent spirometry and were administered questionnaires about their exposure to cigarette smoking, biomass fuels, and dusty jobs in addition to respiratory symptoms and health related quality of life. Of the patients, there appeared to be variations from city to city in the history of exposure to biomass fuels and dusty jobs and also in respiratory symptoms of cough, phlegm, wheeze, and dyspnea. These symptoms were more frequent in those COPD patients with a history of exposure to biomass fuels than without and those with a history of exposure to dusty jobs than without (P < 0.01 for all comparisons). Airflow limitation was more severe in those COPD patients with a history of exposure to biomass fuels than without (52.2% predicted versus 55.9% of post-bronchodilator forced expiratory volume in 1 second [FEV(1)], P = 0.009); quality of life was poorer in those with exposure to biomass fuels than without (40.4 versus 36.2 of the St George's Respiratory Questionnaire [SGRQ] total score, P = 0.001). Airflow limitation was more severe in those COPD patients with a history of exposure to dusty jobs than without (51.2% predicted versus 57.3% of post-bronchodilator FEV(1), P < 0.001); quality of life was poorer in those with dusty jobs than without (41.0 versus 34.6 of SGRQ score, P = 0.006). In Asian cities, the characteristics of COPD patients vary and the history of exposure to biomass fuels or dusty jobs was related to frequency of symptoms, severe airflow limitation, and poor quality of life.
Memory effects for a stochastic fractional oscillator in a magnetic field
NASA Astrophysics Data System (ADS)
Mankin, Romi; Laas, Katrin; Laas, Tõnu; Paekivi, Sander
2018-01-01
The problem of random motion of harmonically trapped charged particles in a constant external magnetic field is studied. A generalized three-dimensional Langevin equation with a power-law memory kernel is used to model the interaction of Brownian particles with the complex structure of viscoelastic media (e.g., dusty plasmas). The influence of a fluctuating environment is modeled by an additive fractional Gaussian noise. In the long-time limit the exact expressions of the first-order and second-order moments of the fluctuating position for the Brownian particle subjected to an external periodic force in the plane perpendicular to the magnetic field have been calculated. Also, the particle's angular momentum is found. It is shown that an interplay of external periodic forcing, memory, and colored noise can generate a variety of cooperation effects, such as memory-induced sign reversals of the angular momentum, multiresonance versus Larmor frequency, and memory-induced particle confinement in the absence of an external trapping field. Particularly in the case without external trapping, if the memory exponent is lower than a critical value, we find a resonancelike behavior of the anisotropy in the particle position distribution versus the driving frequency, implying that it can be efficiently excited by an oscillating electric field. Similarities and differences between the behaviors of the models with internal and external noises are also discussed.
Diffraction of a Shock Wave on a Wedge in a Dusty Gas
NASA Astrophysics Data System (ADS)
Surov, V. S.
2017-09-01
Within the framework of one- and multivelocity dusty-gas models, the author has investigated, on a curvilinear grid, flow in reflection of a shock wave from the wedge-shaped surface in an air-droplet mixture using the Godunov method with a linearized Riemannian solver.
Wave processes in dusty plasma near the Moon’s surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozova, T. I.; Kopnin, S. I.; Popel, S. I., E-mail: popel@iki.rssi.ru
2015-10-15
A plasma—dust system in the near-surface layer on the illuminated side of the Moon is described. The system involves photoelectrons, solar-wind electrons and ions, neutrals, and charged dust grains. Linear and nonlinear waves in the plasma near the Moon’s surface are discussed. It is noticed that the velocity distribution of photoelectrons can be represented as a superposition of two distribution functions characterized by different electron temperatures: lower energy electrons are knocked out of lunar regolith by photons with energies close to the work function of regolith, whereas higher energy electrons are knocked out by photons corresponding to the peak atmore » 10.2 eV in the solar radiation spectrum. The anisotropy of the electron velocity distribution function is distorted due to the solar wind motion with respect to photoelectrons and dust grains, which leads to the development of instability and excitation of high-frequency oscillations with frequencies in the range of Langmuir and electromagnetic waves. In addition, dust acoustic waves can be excited, e.g., near the lunar terminator. Solutions in the form of dust acoustic solitons corresponding to the parameters of the dust—plasma system in the near-surface layer of the illuminated Moon’s surface are found. Ranges of possible Mach numbers and soliton amplitudes are determined.« less
Conditions and Dynamics Within a Regional Mars Dust Storm
NASA Astrophysics Data System (ADS)
Rafkin, S. C.; Pla-García, J.; Leung, C. W. S.
2017-12-01
There have never been in situ observations at or near the active lifting center of a regional dust storm on Mars. In the absence of in situ data, it is common to employ numerical models to provide guidance on the physical processes and conditions operating in an unobserved location or weather system. Consequently, the Mars Regional Atmospheric Modeling System (MRAMS) is employed to study the structure and dynamics of a simulated large regional storm using a fully interactive dust cycle. The simulations provide the first ever glimpse of the conditions that might occur inside one of these storms. The simulated storm shows extremely complex structure, highly heterogeneous lifting centers, and a variety of deep dust transport circulations. The active lifting centers show broader organization into a mesoscale system in much the same way that thunderstorms on Earth can organize into mesoscale convective structures. In many of the active dust plumes, the mixing ratio of dust peaks near the surface and drops off with height. The surface mixing ratio maximum is partly due to the surface being the source of dust, with entrainment of less dusty air as the plume rises. However, it is also because the mixing ratio can be dominated by a few large dust aerosol, since the mass is proportional to the cubed of the radius. Once lifted, the largest dust tends to sediment out while the smaller dust continues to be advected upward by the plume. This size-sorting process tends to drive the mixing ratio profile to a maximum near the surface. In dusty plumes near the surface, the air temperature is as much as 20K colder than nearby areas. This is due to solar absorption higher in the dust column limiting direct heating deeper into the atmosphere. Overall, within the plume, there is an inversion, and although the top of the plume is warmer than below, it is near neutral buoyancy compared to the less dusty air on either side. Apparently, adiabatic cooling nearly offsets the expected positive heating perturbation at the top of the dusty plume. A very strong low level just forms in the vicinity of the storm, accompanied by system-wide negative pressure deficits and circulation patterns strongly suggestive of the wind-enhanced interaction of radiation and dust (WEIRD) feedback mechanism.
Grain-grain interaction in stationary dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampe, Martin; Joyce, Glenn
We present a particle-in-cell simulation study of the steady-state interaction between two stationary dust grains in uniform stationary plasma. Both the electrostatic force and the shadowing force on the grains are calculated explicitly. The electrostatic force is always repulsive. For two grains of the same size, the electrostatic force is very nearly equal to the shielded electric field due to a single isolated grain, acting on the charge of the other grain. For two grains of unequal size, the electrostatic force on the smaller grain is smaller than the isolated-grain field, and the force on the larger grain is largermore » than the isolated-grain field. In all cases, the attractive shadowing force exceeds the repulsive electrostatic force when the grain separation d is greater than an equilibrium separation d{sub 0}. d{sub 0} is found to be between 6λ{sub D} and 9λ{sub D} in all cases. The binding energy is estimated to be between 19 eV and 900 eV for various cases.« less
Compressional and Shear Wakes in a 2D Dusty Plasma Crystal
NASA Astrophysics Data System (ADS)
Nosenko, V.; Goree, J.; Ma, Z. W.; Dubin, D. H. E.
2001-10-01
A 2D crystalline lattice can vibrate with two kinds of sound waves, compressional and shear (transverse), where the latter has a much slower sound speed. When these waves are excited by a moving supersonic disturbance, the superposition of the waves creates a Mach cone, i.e., a V-shaped wake. In our experiments, the supersonic disturbance was a moving spot of argon laser light, and this laser light applied a force, due to radiation pressure, on the particles. The beam was swept across the lattice in a controlled and repeatable manner. The particles were levitated in an argon rf discharge. By moving the laser spot faster than the shear sound speed c_t, but slower than the compressional sound speed c_l, we excited a shear wave Mach cone. Alternatively, by moving the laser spot faster than c_l, we excited both cones. In addition to Mach cones, we also observed a wake structure that arises from the compressional wave’s dispersion. We compare our results to Dubin’s theory (Phys. Plasmas 2000) and to molecular dynamics (MD) simulations.
Maximizing JWST Science for Dusty White Dwarfs
NASA Astrophysics Data System (ADS)
Farihi, Jay; Dennihy, Erik; Gentile Fusillo, Nicola; Debes, John; Gaensicke, Boris
2018-05-01
We propose a small program to increase the number of dusty white dwarfs that can be studied in detail by the James Webb Space Telescope. Currently, there are 8 systems for which MIRI MRS spectroscopy can be carried out in less than a few hours per target, and here we propose to double this number. Using cross-correlation of AllWISE photometry with Southern Hemisphere surveys such as Edinburgh-Cape and ATLAS, we have selected the strongest 22 potential dusty white dwarf candidates. We propose to use warm IRAC imaging photometry as the ultimate discriminant between dust and common photometric contaminants. This program has immediate legacy value via detailed mineralogical studies of debris disks using JWST.
Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere
NASA Technical Reports Server (NTRS)
Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.;
2013-01-01
On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.
Youth Culture and Digital Media: New Literacies for New Times
ERIC Educational Resources Information Center
Hull, Glynda A.
2003-01-01
In this article, the author discusses the "Digital Underground Storytelling for Youth" (DUSTY), a collection of after-school, evening, and summer programs that is a university-community collaborative aimed at closing the "digital divide." At DUSTY the goal is to position participants to tell stories about self and community, and to use those…
Drift dust acoustic soliton in the presence of field-aligned sheared flow and nonextensivity effects
NASA Astrophysics Data System (ADS)
Shah, AttaUllah; Mushtaq, A.; Farooq, M.; Khan, Aurangzeb; Aman-ur-Rehman
2018-05-01
Low frequency electrostatic dust drift acoustic (DDA) waves are studied in an inhomogeneous dust magnetoplasma comprised of dust components of opposite polarity, Boltzmannian ions, and nonextensive distributed electrons. The magnetic-field-aligned dust sheared flow drives the electrostatic drift waves in the presence of ions and electrons. The sheared flow decreases or increases the frequency of the DDA wave, mostly depending on its polarity. The conditions of instability for this mode, with nonextensivity and dust streaming effects, are discussed. The nonlinear dynamics is then investigated for the DDA wave by deriving the Koeteweg-deVries (KdV) nonlinear equation. The KdV equation yields an electrostatic structure in the form of a DDA soliton. The relevancy of the work to laboratory four component dusty plasmas is illustrated.
Solitary waves with weak transverse perturbations in quantum dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ur-Rehman, H.; Masood, W.; Siddiq, M.
2008-12-15
Using the quantum hydrodynamic model, quantum dust ion-acoustic solitary waves are investigated in the presence of weak transverse perturbations. The linear dispersion relation is obtained using the Fourier analysis. The two-dimensional (2D) propagation of small amplitude nonlinear waves is studied by deriving the Kadomtsev-Petviashvili (KP) equation. The traveling wave solution of the KP equation is obtained by employing the tanh method. By dint of this solution, the effects of quantum Bohm pressure and the dust concentration on the 2D solitary structure are studied. The effect of quantum Bohm potential on the stability of the KP soliton is also investigated. Themore » results are supported by the numerical analysis and the relevance of the present investigation in dense astrophysical environments is also pointed out.« less
Large-amplitude acoustic solitary waves in a Yukawa chain
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Gallagher, James C.
2017-06-01
We experimentally study the excitation and propagation of acoustic solitary waves in a one-dimensional dusty plasma (i.e. a Yukawa chain) with particles interacting through a screened Coulomb potential. The lattice constant mm. Waves are launched by applying a 100 mW laser pulse to one end of the chain for laser pulse durations from 0.10 to 2.0 s. We observe damped solitary waves which propagate for distances with an acoustic speed s=11.5\\pm 0.2~\\text{mm}~\\text{s}-1$ . The maximum velocity perturbation increases with laser pulse duration for durations s and then saturates at . The wave speed is found to be independent of the maximum amplitude, indicating that the formation of nonlinear solitons is prevented by neutral-gas damping.
Nonlinear properties of small amplitude dust ion acoustic solitary waves
NASA Astrophysics Data System (ADS)
Ghosh, Samiran; Sarkar, S.; Khan, Manoranjan; Gupta, M. R.
2000-09-01
In this paper some nonlinear characteristics of small amplitude dust ion acoustic solitary wave in three component dusty plasma consisting of electrons, ions, and dust grains have been studied. Simultaneously, the charge fluctuation dynamics of the dust grains under the assumption that the dust charging time scale is much smaller than the dust hydrodynamic time scale has been considered here. The ion dust collision has also been incorporated. It has been seen that a damped Korteweg-de Vries (KdV) equation governs the nonlinear dust ion acoustic wave. The damping arises due to ion dust collision, under the assumption that the ion hydrodynamical time scale is much smaller than that of the ion dust collision. Numerical investigations reveal that the dust ion acoustic wave admits only a positive potential, i.e., compressive soliton.
PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren
The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably andmore » oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagao, Takashi; Maeda, Keiichi; Nozawa, Takaya, E-mail: nagao@kusastro.kyoto-u.ac.jp
Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on themore » properties of CS grains, especially the total-to-selective extinction ratio R{sub V}, which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R{sub V} as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.« less
KOI-2700b—A Planet Candidate with Dusty Effluents on a 22 hr Orbit
NASA Astrophysics Data System (ADS)
Rappaport, Saul; Barclay, Thomas; DeVore, John; Rowe, Jason; Sanchis-Ojeda, Roberto; Still, Martin
2014-03-01
Kepler planet candidate KOI-2700b (KIC 8639908b), with an orbital period of 21.84 hr, exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents, and reminiscent of KIC 1255b. The host star has T eff = 4435 K, M ~= 0.63 M ⊙, and R ~= 0.57 R ⊙, comparable to the parameters ascribed to KIC 12557548. The transit egress can be followed for ~25% of the orbital period and, if interpreted as extinction from a dusty comet-like tail, indicates a long lifetime for the dust grains of more than a day. We present a semiphysical model for the dust tail attenuation and fit for the physical parameters contained in that expression. The transit is not sufficiently deep to allow for a study of the transit-to-transit variations, as is the case for KIC 1255b however, it is clear that the transit depth is slowly monotonically decreasing by a factor of ~2 over the duration of the Kepler mission. We infer a mass-loss rate in dust from the planet of ~2 lunar masses per Gyr. The existence of a second star hosting a planet with a dusty comet-like tail would help to show that such objects may be more common and less exotic than originally thought. According to current models, only quite small planets with Mp <~ 0.03 M ⊕ are likely to release a detectable quantity of dust. Thus, any "normal-looking" transit that is inferred to arise from a rocky planet of radius greater than ~1/2 R ⊕ should not exhibit any hint of a dusty tail. Conversely, if one detects an asymmetric transit due to a dusty tail, then it will be very difficult to detect the hard body of the planet within the transit because, by necessity, the planet must be quite small (i.e., <~ 0.3 R ⊕).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czerny, B.; Panda, S.; Wildy, C.
2017-09-10
The physical origin of the broad line region in active galactic nuclei is still unclear despite many years of observational studies. The reason is that the region is unresolved, and the reverberation mapping results imply a complex velocity field. We adopt a theory-motivated approach to identify the principal mechanism responsible for this complex phenomenon. We consider the possibility that the role of dust is essential. We assume that the local radiation pressure acting on the dust in the accretion disk atmosphere launches the outflow of material, but higher above the disk the irradiation from the central parts causes dust evaporationmore » and a subsequent fallback. This failed radiatively accelerated dusty outflow is expected to represent the material forming low ionization lines. In this paper we formulate simple analytical equations to describe the cloud motion, including the evaporation phase. The model is fully described just by the basic parameters of black hole mass, accretion rate, black hole spin, and viewing angle. We study how the spectral line generic profiles correspond to this dynamic. We show that the virial factor calculated from our model strongly depends on the black hole mass in the case of enhanced dust opacity, and thus it then correlates with the line width. This could explain why the virial factor measured in galaxies with pseudobulges differs from that obtained from objects with classical bulges, although the trend predicted by the current version of the model is opposite to the observed trend.« less
METRO-APEX Volume 16.1: Industrialist's Manual No. 6, Dusty Rhodes Cement Company. Revised.
ERIC Educational Resources Information Center
University of Southern California, Los Angeles. COMEX Research Project.
The Industrialist's Manual No. 6 (Dusty Rhodes Cement Company) is one of a set of twenty-one manuals used in METRO-APEX 1974, a computerized college and professional level, computer-supported, role-play, simulation exercise of a community with "normal" problems. Stress is placed on environmental quality considerations. APEX 1974 is an…
NASA Astrophysics Data System (ADS)
Britavskiy, N.; Bonanos, A. Z.; Mehner, A.
2015-01-01
We present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.
Spitzer Imaging of Planck-Herschel Dusty Proto-Clusters at z=2-3
NASA Astrophysics Data System (ADS)
Cooray, Asantha; Ma, Jingzhe; Greenslade, Joshua; Kubo, Mariko; Nayyeri, Hooshang; Clements, David; Cheng, Tai-An
2018-05-01
We have recently introduced a new proto-cluster selection technique by combing Herschel/SPIRE imaging data and Planck/HFIk all-sky survey point source catalog. These sources are identified as Planck point sources with clumps of Herschel source over-densities with far-IR colors comparable to z=0 ULIRGS redshifted to z=2 to 3. The selection is sensitive to dusty starbursts and obscured QSOs and we have recovered couple of the known proto-clusters and close to 30 new proto-clusters. The candidate proto-clusters selected from this technique have far-IR flux densities several times higher than those that are optically selected, such as using LBG selection, implying that the member galaxies are in a special phase of heightened dusty starburst and dusty QSO activity. This far-IR luminous phase may be short but likely to be necessary piece to understand the whole stellar mass assembly history of clusters. Moreover, our photo-clusters are missed in optical selections, suggesting that optically selected proto-clusters alone do not provide adequate statistics and a comparison of the far-IR and optical selected clusters may reveal the importance of the dusty stellar mass assembly. Here, we propose IRAC observations of six of the highest priority new proto-clusters, to establish the validity of the technique and to determine the total stellar mass through SED models. For a modest observing time the science program will have a substantial impact on an upcoming science topic in cosmology with implications for observations with JWST and WFIRST to understand the mass assembly in the universe.
Dusty Relic to Shining Treasure: Embedded in a Multicultural Environment
ERIC Educational Resources Information Center
Avery, Beth Fuseler; Batman, Cindy
2014-01-01
Far from being dusty old relics who are guardians of the book, embedded librarians need to be proactively leading students through the digital maze of the virtual library. Working with students more than 7,000 miles away changed perceptions of how to teach and learn, and how people interact online. We will share how as embedded librarians we…
APEX (Air Pollution Exercise) Volume 10: Industrialist's Manual No. 6, Dusty Rhodes' Cement Company.
ERIC Educational Resources Information Center
Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.
The Industrialist's Manual No. 6, Dusty Rhodes' Cement Company is part of a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The first two…
Hedman, M.M.; Nicholson, P.D.; Showalter, M.R.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.; Sotin, Christophe
2011-01-01
Stellar occultations by Saturn's rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87??m. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100??m across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ~30??m across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring's particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously low velocity dispersion. ?? 2011 Elsevier Inc.
First Images from the PIONIER/VLTI optical interferometry imaging survey of Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Kluska, Jacques; Malbet, Fabien; Berger, Jean-Philippe; Benisty, Myriam; Lazareff, Bernard; Le Bouquin, Jean-Baptiste; Baron, Fabien; Dominik, Carsten; Isella, Andrea; Juhasz, Attila; Kraus, Stefan; Lachaume, Régis; Ménard, François; Millan-Gabet, Rafael; Monnier, John; Pinte, Christophe; Thi, Wing-Fai; Thiébaut, Eric; Zins, Gérard
2013-07-01
The morphology of the close environment of herbig stars is being revealed step by step and appears to be quite complex. Many physical phenomena could interplay : the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, getting images at the first Astronomical Unit scale is crucial. This has become possible with near infrared instruments on the VLTi. We are carrying out the first Large Program survey of HAeBe stars with statistics on the geometry of these objects at the first astronomical unit scale and the first images of the very close environment of some of them. We have developed a new numerical method specific to young stellar objects which removes the stellar component reconstructing an image of the environment only. To do so we are using the differences in the spectral behaviour between the star and its environment. The images reveal the environement which is not polluted by the star and allow us to derive the best fit for the flux ratio and the spectral slope between the two components (stellar and environmental). We present the results of the survey with some statistics and the frist images of Herbig stars made by PIONIER on the VLTi.
Continuous pressure letdown system
Sprouse, Kenneth M.; Matthews, David R.; Langowski, Terry
2010-06-08
A continuous pressure letdown system connected to a hopper decreases a pressure of a 2-phase (gas and solid) dusty gas stream flowing through the system. The system includes a discharge line for receiving the dusty gas from the hopper, a valve, a cascade nozzle assembly positioned downstream of the discharge line, a purge ring, an inert gas supply connected to the purge ring, an inert gas throttle, and a filter. The valve connects the hopper to the discharge line and controls introduction of the dusty gas stream into the discharge line. The purge ring is connected between the discharge line and the cascade nozzle assembly. The inert gas throttle controls a flow rate of an inert gas into the cascade nozzle assembly. The filter is connected downstream of the cascade nozzle assembly.
Simulation of the dusty plasma environment of 65803 Didymos for the Asteroid Impact Mission (AIM)
NASA Astrophysics Data System (ADS)
Cipriani, Fabrice; Rodgers, David; Hilgers, Alain; Hess, Sebastien; Carnelli, Ian
2016-10-01
The Asteroid Impact and Deflection Assessment mission (AIDA) is a joint European-US technology demonstrator mission including the DART asteroid impactor (NASA/JHU/APL) and the AIM asteroid rendezvous platform (ESA/DLR/OCA) set to reach Near Earth binary Object 65803 Didymos in October 2022. Besides technology demonstration in the deep space communications domain and the realization of a kinetic impact on the moonlet to study deflection parameters, this asteroid rendezvous mission is an opportunity to carry out in-situ observations of the close environment of a binary system, addressing some fundamental science questions. The MASCOT-2 lander will be released from the AIM platform and operate at the surface of the moonlet of 65803 Didymos, complemented by the ability of the Cubesat Opportunity Payloads (COPINS) to sample the close environment of the binary.In this context, we have developed an model describing the plasma and charged dust components of the near surface environment of the moonlet (170m in diameter), targeted by the MASCOT-2 lander and of the DART impactor. We performed numerical simulations in order to estimate the electrostatic surface potentials at various locations of the surface, resulting from its interaction with the solar wind plasma and solar photons. In addition, we describe charging levels, density profiles, and velocity distribution of regolith grains lifted out from the surface up to about 70m above the surface.
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2016-08-01
The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com; El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg
The nonplanar amplitude modulation of dust acoustic (DA) envelope solitary waves in a strongly coupled dusty plasma (SCDP) has been investigated. By using a reductive perturbation technique, a modified nonlinear Schrödinger equation (NLSE) including the effects of geometry, polarization, and ion superthermality is derived. The modulational instability (MI) of the nonlinear DA wave envelopes is investigated in both planar and nonplanar geometries. There are two stable regions for the DA wave propagation strongly affected by polarization and ion superthermality. Moreover, it is found that the nonlinear DA waves in spherical geometry are the more structurally stable. The larger growth ratemore » of the nonlinear DA MI is observed in the cylindrical geometry. The salient characteristics of the MI in the nonplanar geometries cannot be found in the planar one. The DA wave propagation and the NLSE solutions are investigated both analytically and numerically.« less
Dynamical heterogeneities of cold 2D Yukawa liquids
NASA Astrophysics Data System (ADS)
Wang, Kang; Huang, Dong; Feng, Yan
2018-06-01
Dynamical heterogeneities of 2D liquid dusty plasmas at different temperatures are investigated systematically using Langevin dynamical simulations. From the simulated trajectories, various heterogeneity measures have been calculated, such as the distance matrix, the averaged squared displacement, the non-Gaussian parameter, and the four-point susceptibility. It is found that, for 2D Yukawa liquids, both spatial and temporal heterogeneities in dynamics are more severe at a lower temperature near the melting point. For various temperatures, the calculated non-Gaussian parameter of 2D Yukawa liquids contains two peaks at different times, indicating the most heterogeneous dynamics, which are attributed to the transition of different motions and the α relaxation time, respectively. In the diffusive motion, the most heterogeneous dynamics for a colder Yukawa liquid happen more slowly, as indicated by both the non-Gaussian parameter and the four-point susceptibility.
Analytical Solution of the Radiative Transfer Equation in a Thin Dusty Circumstellar Shell
NASA Astrophysics Data System (ADS)
Cruzalèbes, P.; Sacuto, S.
The radiative transfer equation can be solved analytically for optically thin shells. The solution leads to a semi-analytical expression of the visibility function, which can be compared to the numerical solution given by the DUSTY code. Best-fit model parameters are given using real measurements of ISO fluxes, ISI and VLTI-MIDI visibilities for 3 late-type stars.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2008-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M.G.
2008-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10-8 Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust stimulant processing capabilities: heating and cooling while stirring in order to degas and remove absorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions, and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples
NASA Astrophysics Data System (ADS)
Asmus, Heiner; Staszak, Tristan; Strelnikov, Boris; Lübken, Franz-Josef; Friedrich, Martin; Rapp, Markus
2017-08-01
We present results of in situ measurements of mesosphere-lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ˜ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes > 1 nm were stratified in layers of ˜ 1 km thickness and lying some kilometers apart from each other.
Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar
NASA Technical Reports Server (NTRS)
Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.
2010-01-01
A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
Light scattering measurements with Titan's aerosols analogues produced by dusty plasma
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Renard, J.-B.; Szopa, C.; Cernogora, G.; Levasseur-Regourd, A. C.
The Titan s atmosphere contains solid aerosols produced by the photochemistry of nitrogen and methane These aerosols are at the origin of the characteristic brown yellow colour of Titan During the descent of the Huygens probe the 14 th January 2005 optical measurements of the Titan s haze and Titan s surface have been done In order to explain the obtained results laboratory simulations are necessary We produce analogues of the Titan s aerosols in a RF capacitively coupled low-pressure plasma in a N 2 --CH 4 mixture representative of the Titan s atmosphere Szopa et al 2006 Szopa et al this conference The morphology of the produced solid aerosols is observed by SEM analyses They are quasi spherical and their mean size is function of the plasma conditions Moreover their colour changes from yellow to brown as a function of CH 4 ratio in the plasma In order to have information on the optical properties of the produced aerosols measurements have been performed with the PROGRA2 experiment Renard et al 2002 The PROGRA2 experiment measures the phase dependence of the linear polarization of the light scattered by dust particles for two wavelengths 543 5 nm and 632 8 nm The particles are lifted either in microgravity in the CNES ESA dedicated airplane or by an air-draught in ground-based conditions The aim of this work is to build a database for further modelling of the optical properties of Titan s in connection with the Huygens data These particles have also an astrophysical interest as organic compounds Hadamcik et
Infrared emission in Seyfert 2 galaxies - Reprocessed radiation from a dusty torus?
NASA Technical Reports Server (NTRS)
Storchi-Bergmann, Thaisa; Mulchaey, John S.; Wilson, Andrew S.
1992-01-01
New and existing data for a sample of nine Seyfert 2 galaxies with known 'ionization cones' are combined in order to test whether collimation results from shadowing of radiation from a small isotropic nuclear source by a thick dusty torus. The number of ionizing photons emitted by the compact nucleus is calculated from the emission-line ratios measured for gas within the cones. On the assumption that this compact nuclear source radiates isotropically, the optical-UV power incident on the torus, which is expected to be reradiated in the IR, is determined. It is found that the observed IRAS luminosities are consistent with the torus model in eight of the nine objects with sufficient data to perform the calculation. It is concluded that the data are generally consistent with collimation and reradiation by a dusty torus.
NASA Astrophysics Data System (ADS)
Mamatha Upadhya, S.; Raju, C. S. K.; Saleem, S.; Alderremy, A. A.; Mahesha
2018-06-01
A Comprehensive study on laminar, magnetohydrodynamic (MHD) boundary layer flow of nanofluid (water + Silver, water + Graphene) embedded with conducting micrometer sized dust particles over a stretching cylinder with the incorporation of Cattaneo-Christov heat flux model is conducted. Appropriate similarity variables are employed to the flow governing equations and the resulting ordinary differential equations are solved by employing Runge-Kutta-Fehlberg method. The results for varied controlling parameters for both dusty nano fluid and dust phase are shown through graphs, table and discussed in detail. Authentication of the obtained results is provided by comparing with published results. Results indicate that Graphene + water dusty nanofluid shows better heat transfer performance compared with Silver + water dusty nanofluid. Improvement in thermal relaxation boosts temperature distribution in both fluid and dust phase.
42 CFR 37.7 - Transfer of affected miner to less dusty area.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (1/0, 1/1, 1/2), category 2 (2/1, 2/2, 2/3), or category 3 (3/2, 3/3, 3/4) simple pneumoconioses, or... 42 Public Health 1 2011-10-01 2011-10-01 false Transfer of affected miner to less dusty area. 37.7 Section 37.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND...
42 CFR 37.7 - Transfer of affected miner to less dusty area.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (1/0, 1/1, 1/2), category 2 (2/1, 2/2, 2/3), or category 3 (3/2, 3/3, 3/4) simple pneumoconioses, or... 42 Public Health 1 2010-10-01 2010-10-01 false Transfer of affected miner to less dusty area. 37.7 Section 37.7 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND...
Ohta, Tomoaki; Maeda, Hiroyuki; Kubota, Ryuji; Koga, Akiko; Terada, Katsuhide
2014-09-10
The ratio of high potent materials in the new chemical entities has recently increased in the pharmaceutical industry. Generally, most of them are highly hazardous, but there is little toxicity information about the active pharmaceutical ingredients in the early development period. Even if their handling amount is quite small, the dustiness of high potent powder generated in the manufacturing process has an important impact on worker health; thus, it is important to understand the powder dustiness. The purpose of this study was to establish a method to evaluate the powder dustiness by the consumption of small amount of samples. The optimized measurement conditions for a commercially available dustmeter were confirmed using lactose monohydrate and naproxen sodium. The optimized test conditions were determined: the dustmeter mode, the flow rate, the drum rotation speed, the total measurement time, and sample loaded weight were type I mode, 4 L/min, 10 rpm, 1 min and 1-10 g , respectively. The setup conditions of the dustmeter are considerably valuable to pharmaceutical industries, especially, at the early development stage and especially for expensive materials, because the amount of air-borne dust can be evaluated with accuracy by the consumption of small amount of samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Slope Streaks on a Dusty Planet
2015-05-06
Mars is a dusty place and in some locations thick blankets of its characteristically red dust can slowly settle out of the atmosphere and accumulate on slopes. This dust is also a lot brighter than the dust-free terrain on Mars; so, if you scrape off the dust, you'll see a darker surface underneath. This particular image shows one of these dusty areas. The dark streaks on the slopes are locations where the dust has slumped downhill revealing a less dusty surface underneath. In some cases, these slope streaks might be triggered by Marsquakes or nearby meteorite impacts. Scientists think they form quickly: more like an avalanche than dust slowly creeping downhill. Look more closely and you'll notice that some streaks are darker than others. Dust is settling out of the atmosphere all the time and these dark streaks get slowly buried by fresh dust so that they fade back into their brighter redder surroundings. It's not certain how long this fading takes to happen, but it's probably close to a few decades. Dust is an important player in the weather and climate on Mars. Images like this are used to monitor slow changes in these streaks over time to better understand how much dust is settling on the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19456
Disks and cones: resolving the dusty torus with mid-infrared interferometry.
NASA Astrophysics Data System (ADS)
Tristram, K.
2015-09-01
The thermal emission of dust is one of the main possibilities to study the (dusty) material of the so-called "torus" in AGN. Observations using interferometry in the mid-infrared have, in the last ten years, resolved and characterised this emission beyond simple fits of spectral energy distributions, leading to a great leap forward in our view of the dusty material surrounding AGN. I will present the most recent results of such observations, obtained with the instrument MIDI. More than 25 active nuclei could be observed with MIDI, showing that the dust distributions are parsec sized. The sizes roughly scale with the square root of the luminosity, albeit with a much large scatter than in the near-infrared. Detailed studies of a few well resolved sources, among them the illustrious nuclei of NGC1068 and the Circinus galaxy, show a two component structure: an inner disk-like emission region which is surrounded by a polar elongated emitter. The latter shows differential absorption in line with the one-sided ionisation cones observed in the optical. These results are in qualitative agreement with recent hydrodynamic simulations of AGN tori. In general, they confirm the concept of a dusty obscurer providing viewing-angle dependent obscuration of the central engine.
FOREWORD: 23rd National Symposium on Plasma Science & Technology (PLASMA-2008)
NASA Astrophysics Data System (ADS)
Das, A. K.
2010-01-01
The Twentieth Century has been a defining period for Plasma Science and Technology. The state of ionized matter, so named by Irving Langmuir in the early part of twentieth century, has now evolved in to a multidisciplinary area with scientists and engineers from various specializations working together to exploit the unique properties of the plasma medium. There have been great improvements in the basic understanding of plasmas as a many body system bound by complex collective Coulomb interactions of charges, atoms, molecules, free radicals and photons. Simultaneously, many advanced plasma based technologies are increasingly being implemented for industrial and societal use. The emergence of the multination collaborative project International Thermonuclear Experimental Reactor (ITER) project has provided the much needed boost to the researchers working on thermonuclear fusion plasmas. In addition, the other plasma applications like MHD converters, hydrogen generation, advanced materials (synthesis, processing and surface modification), environment (waste beneficiation, air and water pollution management), nanotechnology (synthesis, deposition and etching), light production, heating etc are actively being pursued in governmental and industrial sectors. For India, plasma science and technology has traditionally remained an important area of research. It was nearly a century earlier that the Saha ionization relation pioneered the way to interpret experimental data from a vast range of near equilibrium plasmas. Today, Indian research contributions and technology demonstration capabilities encompass thermonuclear fusion devices, nonlinear plasma phenomena, plasma accelerators, beam plasma interactions, dusty and nonneutral plasmas, industrial plasmas and plasma processing of materials, nano synthesis and structuring, astrophysical and space plasmas etc. India's participation in the ITER programme is now reflected in increased interest in the research and development efforts on Tokamak technology and physics of magnetized fusion plasmas. Our industries have already adopted a large number of plasma processes related to manufacturing, lighting and surface engineering. Indian universities and National Institutes have successfully taken up research projects and building of demonstration equipment that are being used in strategic as well as other industrial applications. In addition, and more importantly, plasma science has triggered research and development effort in many related areas like power supplies, specialized instrumentation and controls, magnets, diagnostics and monitoring, lasers, electron beams, vacuum systems, thermal engineering, material science, fluid dynamics, molecular and nano engineering, molecular chemistry etc. In short, plasma science and technology in India has reached a stage of maturity that can be harnessed for industrial and societal use. The expertise and core competence developed over the years need to be sustained through interactions among researchers as well as nurturing of new research efforts. The Annual Plasma Symposiums have eminently worked towards achievement of that purpose. Like all years, Plasma - 2008 is built around the entire national effort in this field with a special focus on 'Plasmas in Nuclear Fuel Cycle (PANFC)'. The program includes several plenary lectures, invited talks and contributed papers. The manuscripts have been peer reviewed and compiled in the form of Conference Proceedings. I am sure that the online proceedings will be useful and serve as a valuable reference material for active researchers in this field. I would like to take this opportunity to gratefully acknowledge the help and guidance of the National Advisory Committee Chaired by Professor P K Kaw, Director, Institute of Plasma Research, Gandhinagar during the organization of this symposium. My sincere thanks to Dr S Banerjee, Director, Bhabha Atomic Research Center, an acknowledged expert in the field of Materials Science and Technology, for delivering the key note address to set the tenor of the symposium. I would also like to thank the Plasma Science Society of India (PSSI) for agreeing to hold this important event at BARC. Thanks are due to Dr L M Gantayet, Director, BTDG, BARC and chairman, Scientific Program Committee and all my colleagues in the Symposium Organizing Committee who have made this symposium possible. Finally, our thanks to all the Funding agencies, Board of Research in Nuclear Science, Department of Science and Technology, The Board of Fusion Research, and all industrial exhibitor and sponsors for their unstinted support and encouragement. Dr A K Das Chairman, Organizing Committee Bhabha Atomic Research Center, Mumbai
PREFACE: Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.
2006-04-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within each area new results from theory, simulations and experiments were presented. In addition, a special symposium was held one evening to explore the questions on high-energy-density matter generated by intense heavy ion beams and to discuss the outlook for applications to industry. As this special issue illustrates, the field remains vibrant and challenging, being driven to a great extent by new experimental tools and access to new strongly coupled conditions. This is illustrated by the inclusion of developments in the areas of warm matter, dusty plasmas, condensed matter and ultra-cold plasmas. In total, 200 participants from 17 countries attended the conference, including 42 invited speakers. The individuals giving presentations at the conference, including invited plenary and topical talks and posters, were asked to contribute to this special issue and most have done so. We trust that this special issue will accurately record the contents of the conference, and provide a valuable resource for researchers in this rapidly evolving field. We would like to thank the members of the International Advisory Board and all members of the Programme Committee for their contributions to the conference. Of course, nothing would have been possible without the dedicated efforts of the Local Organizing Committee, in particular Igor Morozov and Valery Sultanov. We wish to thank the Russian Academy of Sciences, the Institute for High Energy Densities, the Institute of Problems of Chemical Physics, the Moscow Institute of Physics and Technology, the Ministry of Education and Science of the Russian Federation, the Russian Foundation for Basic Research, the Moscow Committee of Science and Technologies, the Russian Joint Stock Company `Unified Energy System of Russia', and The International Association for the Promotion of Co-operation with Scientists from the New Independent States (NIS) of the Former Soviet Union for sponsoring this conference.
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI
NASA Astrophysics Data System (ADS)
Meilland, Antony; Kanaan, Sameer; Fernandes, Marcelo Borges; Chesneau, Olivier; Millour, Florentin; Stee, Philippe; Lopez, Bruno
2011-07-01
HD 62623 is one of the very few A-type supergiants showing the B[e] phenomenon. We studied the geometry of its circumstellar envelope in the mid-infrared using the VLTI/MIDI instrument. Using the radiative transfer code MC3D, we managed to model it as a dusty disk with an inner radius of 3.85 AU, an inclination angle of 60°, and a mass of 2 × 10-7Msolar. It is the first time that the dusty disk inner rim of a supergiant star exhibiting the B[e] phenomenon is significantly constrained. The inner gaseous envelope likely contributes up to 20% to the total N band flux and acts like a reprocessing disk. Finally, the hypothesis of a stellar wind deceleration by the companion gravitational effect remains the most probable case since the bi-stability mechanism is not efficient for this star.
BOOK REVIEW: Fundamentals of Plasma Physics
NASA Astrophysics Data System (ADS)
Cargill, P. J.
2007-02-01
The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, `The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For the undergraduate level, I would find it easier to construct an introductory course from Boyd and Sanderson.
The flow of a dust particle by highly collisional drifting plasma
NASA Astrophysics Data System (ADS)
Grach, Veronika; Semenov, Vladimir; Trakhtengerts, Victor
We present the study of the flow of a dust particle by a weakly ionized highly collisional drifting plasma. The charging of a conductive sphere and wake formation downstream and upstream of it is analyzed in the case of a strong external field l0 = E0 /(4πen0 ) λD a (E0 is the magnitude of the external field, n0 is plasma density, λD is Debye length and a is a radius of the sphere). Under such conditions, the effects of the space charge field and ionization-recombination processes play crucial role. The sphere charge and the spatial distributions of plasma ions and electrons are calculated nu-merically; analytical expressions are obtained for some limiting cases. We obtain that the size of the wake is determined by the external field and the recombination rate. At low recombination rates (α/(4πµ+,- ) 1, where α is the recombination coefficient, µ+,- are mobilities of positive and negative plasma particles) the longitudinal scale of wake is about 20l0 , at high recombina-tion rates the longitudinal scale is about l0 . The transverse scale of the wake is determined by the ratio of the mobilities and can reach several dust particle radii. It was also shown that the absolute value of the dust particle charge decreases with increasing recombination rate. The total electric charge (the sphere charge plus the plasma space charge) is shown to be zero in accordance with predictions of the theory of static currents in a conducting medium. On the basis of the obtained spatial distributions of charged plasma particles, the electrostatic potential around the sphere is calculated numerically. The interaction potential between two systems "particle+wake" is analyzed for arbitrary locations of such systems. We obtain that the potential can be attractive at moderate and large distances, if the particles are not aligned in the direction perpendicular to the external electric field. The results can be important in understanding intergrain interactions in weakly ionized highly collisional anisotropic dusty plasmas.
Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons
NASA Astrophysics Data System (ADS)
El-Taibany, W. F.; Zedan, N. A.; Taha, R. M.
2018-06-01
Based on the kinetic theory, Landau damping of dust acoustic waves (DAWs) propagating in a dusty plasma composed of hybrid nonthermal nonextensive distributed electrons, Maxwellian distributed ions and negatively charged dust grains is investigated using Vlasov-Poisson's equations. The characteristics of the DAWs Landau damping are discussed. It is found that the wave frequency increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, q (α ). It is recognized that α plays a significant role in observing damping or growing DAW oscillations. For small values of α , damping modes have been observed until reaching a certain value of α at which ω i vanishes, then a growing mode appears in the case of superextensive electrons. However, only damping DAW modes are observed in case of subextensive electrons. The present study is useful in the space situations where such distribution exists.
Evidence of the charge-density wave state in polypyrrole nanotubes
Sarma, Abhisakh; Sanyal, Milan K.; Littlewood, Peter B.
2015-04-13
Here, we present a detailed investigation of the low-frequency dielectric and conductivity properties of conducting polymer nanowires. Our results, obtained by connecting ~10 7 nanowires in parallel, show that these polypyrrole nanowires behave like conventional charge-density wave (CDW) materials, in their nonlinear and dynamic response, together with scaling of relaxation time and conductivity. The observed Arrhenius law for both these quantities gives a CDW gap of 3.5 meV in the regime of temperature (~40 K) in which the CDW state survives. We find good agreement with a theory of weakly pinned CDW, screened by thermally excited carriers across the CDWmore » gap. The identification of polymer nanowires as CDW provides us a model system to investigate charge ordering owing to electrostatic interaction, relevant to a variety of systems from dusty plasma to molecular biology.« less
Heliophysics: Active Stars, their Astrospheres, and Impacts on Planetary Environments
NASA Astrophysics Data System (ADS)
Schrijver, C. J.; Bagenal, F.; Sojka, J. J.
2016-04-01
Preface; 1. Introduction Carolus J. Schrijver, Frances Bagenal and Jan J. Sojka; 2. Solar explosive activity throughout the evolution of the Solar System Rachel Osten; 3. Astrospheres, stellar winds, and the interstellar medium Brian Wood and Jeffrey L. Linsky; 4. Effects of stellar eruptions throughout astrospheres Ofer Cohen; 5. Characteristics of planetary systems Debra Fischer and Ji Wang; 6. Planetary dynamos: updates and new frontiers Sabine Stanley; 7. Climates of terrestrial planets David Brain; 8. Upper atmospheres of the giant planets Luke Moore, Tom Stallard and Marina Garland; 9. Aeronomy of terrestrial upper atmospheres David E. Siskind and Stephen W. Bougher; 10. Moons, asteroids, and comets interacting with their surroundings Margaret G. Kivelson; 11. Dusty plasmas Mihály Horányi; 12. Energetic-particle environments in the Solar System Norbert Krupp; 13. Heliophysics with radio scintillation and occultation Mario M. Bisi; Appendix 1. Authors and editors; List of illustrations; List of tables; References; Index.
Non-unique monopole oscillations of harmonically confined Yukawa systems
NASA Astrophysics Data System (ADS)
Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael
2008-11-01
Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)
Zehetmayer, M.
2015-01-01
Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations, and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor. PMID:25784605
NASA Technical Reports Server (NTRS)
Alexander, W. M.; Tanner, William G.; Mcdonald, R. A.; Schaub, G. E.; Stephenson, Stepheni L.; Mcdonnell, J. A. M.; Maag, Carl R.
1994-01-01
The return of a pristine sample from a comet would lead to greater understanding of cometary structures, as well as offering insights into exobiology. The paper presented at the Discovery Program Workshop outlined a set of measurements for what was identified as a SOCCER-like interplanetary mission. Several experiments comprised the total instrumentation. This paper presents a summary of CCSR with an overview of three of the four major instruments. Details of the major dust dynamics experiment including trajectory are given in this paper. The instrument proposed here offers the opportunity for the return of cometary dust particles gathered in situ. The capture process has been employed aboard the space shuttle with successful results in returning samples to Earth for laboratory analysis. In addition, the sensors will measure the charge, mass, velocity, and size of cometary dust grains during the encounter. This data will help our understanding of dusty plasmas.
Zehetmayer, M
2015-03-18
Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations, and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor.
Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.
2009-12-11
The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less
Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave
NASA Astrophysics Data System (ADS)
Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin
2009-12-01
The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.
Lunar Dust: Properties and Investigation Techniques
NASA Astrophysics Data System (ADS)
Kuznetsov, I. A.; Zakharov, A. V.; Dolnikov, G. G.; Lyash, A. N.; Afonin, V. V.; Popel, S. I.; Shashkova, I. A.; Borisov, N. D.
2017-12-01
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth's magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967-1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.
NASA Astrophysics Data System (ADS)
Lappa, Marcello; Drikakis, Dimitris; Kokkinakis, Ioannis
2017-03-01
This paper concerns the propagation of shock waves in an enclosure filled with dusty gas. The main motivation for this problem is to probe the effect on such dynamics of solid particles dispersed in the fluid medium. This subject, which has attracted so much attention over recent years given its important implications in the study of the structural stability of systems exposed to high-energy internal detonations, is approached here in the framework of a hybrid numerical two-way coupled Eulerian-Lagrangian methodology. In particular, insights are sought by considering a relatively simple archetypal setting corresponding to a shock wave originating from a small spherical region initialized on the basis of available analytic solutions. The response of the system is explored numerically with respect to several parameters, including the blast intensity (via the related value of the initial shock Mach number), the solid mass fraction (mass load), and the particle size (Stokes number). Results are presented in terms of pressure-load diagrams. Beyond practical applications, it is shown that a kaleidoscope of fascinating patterns is produced by the "triadic" relationships among multiple shock reflection events and particle-fluid and particle-wall interaction dynamics. These would be of great interest to researchers and scientists interested in fundamental problems relating to the general theory of pattern formation in complex nonlinear multiphase systems.
Chemistry in the Dusty Coma of Comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Boice, D. C.; Cochran, A. L.; Disanti, M. A.; Huebner, W. F.
1998-09-01
Recent progress on a multifluid, hydrodynamic model is presented for the dusty gas flow in the inner coma of comet Hale-Bopp at several heliocentric distances. The simulations are based on a 1-D neutral coma model with detailed photo and gas-phase chemistry and dust entrainment by the gas, a separate energy balance for the electrons, separate flow of the neutral gas, fast neutral atomic and molecular hydrogen, and dust entrainment with fragmentation. The model accounts for three sources of gas release: sublimation from surface ices, transport of gas from subsurface regions through the surface, and release of gas from dust in the coma. This permits a consistent study of the importance and strength of each possible source for a variety of gas-phase species. The simulations allow a study of the changes with heliocentric distance of features within a cometary coma, e.g., spatial distributions of gas-phase species and dust of various sizes and the velocity and temperature profiles. In particular, the model is used to probe spatial distributions of gas-phase species (e.g., CN, CH, C_3, C_2, HCN, HNC, CO) and dust, and the velocity and temperature structure to understand the complex gas-phase chemistry that occurs in the inner coma. Comparisons with observations are made where available to characterize the environment surrounding comet Hale-Bopp and to aid in assimilating a variety of diverse observations of this unique comet.
Dusty Winds in Active Galactic Nuclei: Reconciling Observations with Models
NASA Astrophysics Data System (ADS)
Hönig, Sebastian F.; Kishimoto, Makoto
2017-04-01
This Letter presents a revised radiative transfer model for the infrared (IR) emission of active galactic nuclei (AGNs). While current models assume that the IR is emitted from a dusty torus in the equatorial plane of the AGNs, spatially resolved observations indicate that the majority of the IR emission from ≲100 pc in many AGNs originates from the polar region, contradicting classical torus models. The new model CAT3D-WIND builds upon the suggestion that the dusty gas around the AGNs consists of an inflowing disk and an outflowing wind. Here, it is demonstrated that (1) such disk+wind models cover overall a similar parameter range of observed spectral features in the IR as classical clumpy torus models, e.g., the silicate feature strengths and mid-IR spectral slopes, (2) they reproduce the 3-5 μm bump observed in many type 1 AGNs unlike torus models, and (3) they are able to explain polar emission features seen in IR interferometry, even for type 1 AGNs at relatively low inclination, as demonstrated for NGC3783. These characteristics make it possible to reconcile radiative transfer models with observations and provide further evidence of a two-component parsec-scale dusty medium around AGNs: the disk gives rise to the 3-5 μm near-IR component, while the wind produces the mid-IR emission. The model SEDs will be made available for download.
NASA Astrophysics Data System (ADS)
Bajargaan, Ruchi; Patel, Arvind
2018-04-01
One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.
NASA Astrophysics Data System (ADS)
Usachev, A. D.; Zobnin, A. V.; Shonenkov, A. V.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Pustyl'nik, M. Y.; Fink, M. A.; Thoma, M. A.; Thomas, H. M.; Padalka, G. I.
2018-01-01
Influence of the elongated dust cloud on the intensities of different neon spectral lines in visible and near ir spectral ranges in the uniform positive column has been experimentally investigated using the Russian-European space apparatus “Plasma Kristall-4” (SA PK-4) on board of the International Space Station (ISS). The investigation was performed in the low pressure (0.5 mbar) direct current (dc, 1 mA) gas discharge in neon. Microgravity allowed us to perform experiments with a large dust cloud in the steady-state regime. To avoid the dust cloud drift in the dc electric field a switching dc polarity discharge mode has been applied. During the experiment a dust cloud of 9 mm in diameter in the discharge tube of 30 mm in diameter with the length of about 100 mm has been observed in the steady-state regime. In this regard, the intensities of neon spectral lines corresponding to 3p → 3s electronic transitions have increased by a factor of 1.4 times, while the intensities of neon spectral lines corresponding to 3d → 3p electronic transitions have increased by a factor of 1.6 times. The observed phenomenon is explained on the basis of the Schottky approach by a self-consistent rising dc electric field in the dusty plasma cloud resulting in an increase of the electron temperature.
NASA Astrophysics Data System (ADS)
Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.
2017-12-01
The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.
NASA Astrophysics Data System (ADS)
Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny
2016-07-01
One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On the day side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution of dust particles by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar emission. Dust analyzer instrument PmL for future Russian lander missions intends for investigation the dynamics of dusty plasma near lunar surface. PmL consists of three parts in the case of Luna-Glob: Impact Sensor and two Electric Field Sensors (EFC). There are 9 parts of PmL instrument for Luna-Resource mission: two Impact Sensors, 5 EFC (three on the Boom and two on the lander) and 2 Solar Wind and Dust Analyzers. These days the engineering model of PmL for LG-mission is finished. We obtained first practical results from the simulating chambers with dust particles injectors and plasma inside. All the important achievements are presented in this report as well as the roadmap for further development of PmL instruments in both of Russian lunar missions.
The study of the physics of cometary nuclei
NASA Technical Reports Server (NTRS)
Whipple, F. L.
1983-01-01
On the basis of the icy conglometate model of cometary nuclei various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes have been determined. Narrow dust jets near the nuclei of some bright comets require that small sources be embedded in larger active areas. Certain evidence suggests that very dusty areas and very dusty comets may be less active, respectively, than surrounding areas or other comets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isa, Sharena Mohamad; Ali, Anati
In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.
ISO science - observations of dusty discs.
NASA Astrophysics Data System (ADS)
Heske, A.
1992-12-01
ISO, the Infrared Space Observatory, will be an infrared observing facility in space. Via submission of observing proposals, use of this facility will be open to the astronomical community. The scientific payload consists of two spectrometers, a camera and a photo-polarimeter. Following an overview of the ISO mission, this paper describes the highlights of the Central Programme - proposals which are being prepared by the instrument groups, the mission scientists and the astronomers of the ISO Science Operations Team - with special emphasis on the proposals concerned with dusty discs.
Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas
2014-09-26
pipe at the flange attached to the inner Dewar bottle. The temperature of the gas in the glass tube is controlled by the cryogenic liquid , liquid ...dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is characterized by a sound speed of a few cm...through the illumination of laser light on dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is
Plasma Parameters From Reentry Signal Attenuation
Statom, T. K.
2018-02-27
This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less
Plasma Parameters From Reentry Signal Attenuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Statom, T. K.
This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, M. S. dos, E-mail: michel.santos@iffarroupilha.edu.br; Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, 98590-000, Santo Augusto, RS; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br
2016-01-15
We study the dispersion relation for low frequency waves in the whistler mode propagating along the ambient magnetic field, considering ions and electrons with product-bi-kappa (PBK) velocity distributions and taking into account the presence of a population of dust particles. The results obtained by numerical analysis of the dispersion relation show that the decrease in the κ indexes in the ion PBK distribution contributes to the increase in magnitude of the growth rates of the ion firehose instability and the size of the region in wave number space where the instability occurs. It is also shown that the decrease inmore » the κ indexes in the electron PBK distribution contribute to decrease in the growth rates of instability, despite the fact that the instability occurs due to the anisotropy in the ion distribution function. For most of the interval of κ values which has been investigated, the ability of the non-thermal ions to increase the instability overcomes the tendency of decrease due to the non-thermal electron distribution, but for very small values of the kappa indexes the deleterious effect of the non-thermal electrons tends to overcome the effect due to the non-thermal ion distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Mangilal, E-mail: mangilal@ipr.res.in; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085; Mukherjee, S.
The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a resultmore » of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.« less
Tiny, Dusty, Galactic HI Clouds: The GALFA-HI Compact Cloud Catalog
NASA Astrophysics Data System (ADS)
Saul, Destry R.; Putman, M. E.; Peek, J. G.
2013-01-01
The recently published GALFA-HI Compact Cloud Catalog contains 2000 nearby neutral hydrogen clouds under 20' in angular size detected with a machine-vision algorithm in the Galactic Arecibo L-Band Feed Array HI survey (GALFA-HI). At a distance of 1kpc, the compact clouds would typically be 1 solar mass and 1pc in size. We observe that nearly all of the compact clouds that are classified as high velocity (> 90 km/s) are near previously-identified high velocity complexes. We separate the compact clouds into populations based on velocity, linewidth, and position. We have begun to search for evidence of dust in these clouds using IRIS and have detections in several populations.
Shah, Jay; Williams, Wyn; Almeida, Trevor P; Nagy, Lesleis; Muxworthy, Adrian R; Kovács, András; Valdez-Grijalva, Miguel A; Fabian, Karl; Russell, Sara S; Genge, Matthew J; Dunin-Borkowski, Rafal E
2018-03-21
Recordings of magnetic fields, thought to be crucial to our solar system's rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kamacite grains are magnetically non-uniform, so their ability to retain four-billion-year-old magnetic recordings cannot be estimated by previous theories, which assume only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nanometric kamacite grains are stable over solar system timescales and likely the primary carrier of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric magnetic measurements using off-axis electron holography, we demonstrate the thermal stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined with numerical micromagnetic modeling, we determine the stability of the magnetization of these grains. Our study shows that dusty olivine kamacite grains are capable of retaining magnetic recordings from the accreting solar system.
Detailed Studies on the Structure and Dynamics of Reacting Dusty Flows at Normal and Microgravity
NASA Technical Reports Server (NTRS)
Egolfopoulos, Fokion N.; Campbell, Charles S.
1997-01-01
Two-phase reacting flows are substantially less understood compared to gas phase flows. While extensive work has been done on sprays, less attention has been given to the details of dusty reacting flows. Dusty flows are of particular interest for a wide range of applications. Particles can be present in a gas intentionally or unintentionally, and they can be inert or reacting. Inert particles can be also present in an otherwise reacting gas flow, and that can lead to flame cooling and modification of the extinction limits of a combustible mixture. Reacting solid particles can release substantial amounts of heat upon oxidation, and can be used either for propulsion (e.g. Al, B, Mg) or power generation (coal). Furthermore, accidents can occur when a reacting dust accumulates in air and which, in the presence of an ignition source, can cause explosion. Such explosions can occur during lumber milling, in grain elevators, and in mine galleries.
Thermal Marangoni convection in two-phase flow of dusty Casson fluid
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.
2018-03-01
This paper deals with the thermal Marangoni convection effects in magneto-Casson liquid flow through suspension of dust particles. The transpiration cooling aspect is accounted. The surface tension is assumed to be fluctuating linearly with temperature. The fluid and dust particle's temperature of the interface is chosen as a quadratic function of interface arc length. The governing problem is modelled by conservation laws of mass, momentum and energy for fluid and dust particle phase. Stretching transformation technique is utilized to form ordinary differential equations from the partial differential equations. Later, the numerical solutions based on Runge-Kutta-Fehlberg method are established. The momentum and heat transport distributions are focused on the outcome of distinct governing parameters. The results of Nusselt number is also presented and discussed. It is established that the heat transfer rate is higher in the case of dusty non-Newtonian fluid than dusty Newtonian fluid. The rate of heat transfer can be enhanced by suspending dust particles in a base liquid.