Teaching Problem-Solving Skills to Nuclear Engineering Students
ERIC Educational Resources Information Center
Waller, E.; Kaye, M. H.
2012-01-01
Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…
NASA Technical Reports Server (NTRS)
Phfarr, Barbara B.; So, Maria M.; Lamb, Caroline Twomey; Rhodes, Donna H.
2009-01-01
Experienced systems engineers are adept at more than implementing systems engineering processes: they utilize systems thinking to solve complex engineering problems. Within the space industry demographics and economic pressures are reducing the number of experienced systems engineers that will be available in the future. Collaborative systems thinking within systems engineering teams is proposed as a way to integrate systems engineers of various experience levels to handle complex systems engineering challenges. This paper uses the GOES-R Program Systems Engineering team to illustrate the enablers and barriers to team level systems thinking and to identify ways in which performance could be improved. Ways NASA could expand its engineering training to promote team-level systems thinking are proposed.
ERIC Educational Resources Information Center
Steif, Paul S.; Fu, Luoting; Kara, Levent Burak
2016-01-01
Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…
State analysis requirements database for engineering complex embedded systems
NASA Technical Reports Server (NTRS)
Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.
2004-01-01
It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.
Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord
NASA Astrophysics Data System (ADS)
Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun
2017-08-01
Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.
ERIC Educational Resources Information Center
Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.
2013-01-01
Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…
Complexity in Nature and Society: Complexity Management in the Age of Globalization
NASA Astrophysics Data System (ADS)
Mainzer, Klaus
The theory of nonlinear complex systems has become a proven problem-solving approach in the natural sciences from cosmic and quantum systems to cellular organisms and the brain. Even in modern engineering science self-organizing systems are developed to manage complex networks and processes. It is now recognized that many of our ecological, social, economic, and political problems are also of a global, complex, and nonlinear nature. What are the laws of sociodynamics? Is there a socio-engineering of nonlinear problem solving? What can we learn from nonlinear dynamics for complexity management in social, economic, financial and political systems? Is self-organization an acceptable strategy to handle the challenges of complexity in firms, institutions and other organizations? It is a main thesis of the talk that nature and society are basically governed by nonlinear and complex information dynamics. How computational is sociodynamics? What can we hope for social, economic and political problem solving in the age of globalization?.
Systems engineering for very large systems
NASA Technical Reports Server (NTRS)
Lewkowicz, Paul E.
1993-01-01
Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.
Systems engineering for very large systems
NASA Astrophysics Data System (ADS)
Lewkowicz, Paul E.
Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.
Engineering Complex Embedded Systems with State Analysis and the Mission Data System
NASA Technical Reports Server (NTRS)
Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.
2004-01-01
It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.
On a New Approach to Education about Ethics for Engineers at Meijou University
NASA Astrophysics Data System (ADS)
Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu
We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.
Complex systems in metabolic engineering.
Winkler, James D; Erickson, Keesha; Choudhury, Alaksh; Halweg-Edwards, Andrea L; Gill, Ryan T
2015-12-01
Metabolic engineers manipulate intricate biological networks to build efficient biological machines. The inherent complexity of this task, derived from the extensive and often unknown interconnectivity between and within these networks, often prevents researchers from achieving desired performance. Other fields have developed methods to tackle the issue of complexity for their unique subset of engineering problems, but to date, there has not been extensive and comprehensive examination of how metabolic engineers use existing tools to ameliorate this effect on their own research projects. In this review, we examine how complexity affects engineering at the protein, pathway, and genome levels within an organism, and the tools for handling these issues to achieve high-performing strain designs. Quantitative complexity metrics and their applications to metabolic engineering versus traditional engineering fields are also discussed. We conclude by predicting how metabolic engineering practices may advance in light of an explicit consideration of design complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Algebra of Complex Numbers.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
ERIC Educational Resources Information Center
Blackburn, J. Joey; Robinson, J. Shane; Lamm, Alexa J.
2014-01-01
The purpose of this experimental study was to determine the effects of cognitive style and problem complexity on Oklahoma State University preservice agriculture teachers' (N = 56) ability to solve problems in small gasoline engines. Time to solution was operationalized as problem solving ability. Kirton's Adaption-Innovation Inventory was…
The Applied Mathematics for Power Systems (AMPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael
2012-07-24
Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less
LDRD Final Report: Global Optimization for Engineering Science Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
HART,WILLIAM E.
1999-12-01
For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.
Engineering applications of metaheuristics: an introduction
NASA Astrophysics Data System (ADS)
Oliva, Diego; Hinojosa, Salvador; Demeshko, M. V.
2017-01-01
Metaheuristic algorithms are important tools that in recent years have been used extensively in several fields. In engineering, there is a big amount of problems that can be solved from an optimization point of view. This paper is an introduction of how metaheuristics can be used to solve complex problems of engineering. Their use produces accurate results in problems that are computationally expensive. Experimental results support the performance obtained by the selected algorithms in such specific problems as digital filter design, image processing and solar cells design.
Methodological Problems of Nanotechnoscience
NASA Astrophysics Data System (ADS)
Gorokhov, V. G.
Recently, we have reported on the definitions of nanotechnology as a new type of NanoTechnoScience and on the nanotheory as a cluster of the different natural and engineering theories. Nanotechnology is not only a new type of scientific-engineering discipline, but it evolves also in a “nonclassical” way. Nanoontology or nano scientific world view has a function of the methodological orientation for the choice the theoretical means and methods toward a solution to the scientific and engineering problems. This allows to change from one explanation and scientific world view to another without any problems. Thus, nanotechnology is both a field of scientific knowledge and a sphere of engineering activity, in other words, NanoTechnoScience is similar to Systems Engineering as the analysis and design of large-scale, complex, man/machine systems but micro- and nanosystems. Nano systems engineering as well as Macro systems engineering includes not only systems design but also complex research. Design orientation has influence on the change of the priorities in the complex research and of the relation to the knowledge, not only to “the knowledge about something”, but also to the knowledge as the means of activity: from the beginning control and restructuring of matter at the nano-scale is a necessary element of nanoscience.
NASA Astrophysics Data System (ADS)
Goma, Sergio R.
2015-03-01
In current times, mobile technologies are ubiquitous and the complexity of problems is continuously increasing. In the context of advancement of engineering, we explore in this paper possible reasons that could cause a saturation in technology evolution - namely the ability of problem solving based on previous results and the ability of expressing solutions in a more efficient way, concluding that `thinking outside of brain' - as in solving engineering problems that are expressed in a virtual media due to their complexity - would benefit from mobile technology augmentation. This could be the necessary evolutionary step that would provide the efficiency required to solve new complex problems (addressing the `running out of time' issue) and remove the communication of results barrier (addressing the human `perception/expression imbalance' issue). Some consequences are discussed, as in this context the artificial intelligence becomes an automation tool aid instead of a necessary next evolutionary step. The paper concludes that research in modeling as problem solving aid and data visualization as perception aid augmented with mobile technologies could be the path to an evolutionary step in advancing engineering.
Fault Identification Based on Nlpca in Complex Electrical Engineering
NASA Astrophysics Data System (ADS)
Zhang, Yagang; Wang, Zengping; Zhang, Jinfang
2012-07-01
The fault is inevitable in any complex systems engineering. Electric power system is essentially a typically nonlinear system. It is also one of the most complex artificial systems in this world. In our researches, based on the real-time measurements of phasor measurement unit, under the influence of white Gaussian noise (suppose the standard deviation is 0.01, and the mean error is 0), we used mainly nonlinear principal component analysis theory (NLPCA) to resolve fault identification problem in complex electrical engineering. The simulation results show that the fault in complex electrical engineering is usually corresponding to the variable with the maximum absolute value coefficient in the first principal component. These researches will have significant theoretical value and engineering practical significance.
How Engineers Perceive the Importance of Ethics in Finland
ERIC Educational Resources Information Center
Taajamaa, Ville; Majanoja, Anne-Maarit; Bairaktarova, Diana; Airola, Antti; Pahikkala, Tapio; Sutinen, Erkki
2018-01-01
Success in complex and holistic engineering practices requires more than problem-solving abilities and technical competencies. Engineering education must offer proficient technical competences and also train engineers to think and act ethically. A technical "engineering-like" focus and demand have made educators and students overlook the…
Object oriented development of engineering software using CLIPS
NASA Technical Reports Server (NTRS)
Yoon, C. John
1991-01-01
Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
Engineering education as a complex system
NASA Astrophysics Data System (ADS)
Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim
2011-12-01
This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.
NASA Astrophysics Data System (ADS)
Riis, Jens Ove; Achenbach, Marlies; Israelsen, Poul; Kyvsgaard Hansen, Poul; Johansen, John; Deuse, Jochen
2017-07-01
Challenged by increased globalisation and fast technological development, we carried out an experiment in the third semester of a global business engineering programme aimed at identifying conditions for training student in dealing with complex and ill-structured problems of forming a new business. As this includes a fuzzy front end, learning cannot be measured in traditional, quantitative terms; therefore, we have explored the use of reflection to convert tacit knowledge to explicit knowledge. The experiment adopted a Plan-Do-Check-Act approach and concluded with developing a plan for new learning initiatives in the subsequent year's semester. The findings conclude that (1) problem-based learning develops more competencies than ordinarily measured at the examination, especially, the social/communication and personal competencies are developed; (2) students are capable of dealing with a complex and ambiguous problem, if properly guided. Four conditions were identified; (3) most students are not conscious of their learning, but are able to reflect if properly encouraged; and (4) improving engineering education should be considered as an organisational learning process.
Building information modelling review with potential applications in tunnel engineering of China.
Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin
2017-08-01
Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.
Building information modelling review with potential applications in tunnel engineering of China
Zhou, Weihong; Qin, Haiyang; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin
2017-01-01
Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance. PMID:28878970
Building information modelling review with potential applications in tunnel engineering of China
NASA Astrophysics Data System (ADS)
Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin
2017-08-01
Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.
NASA Technical Reports Server (NTRS)
Stehura, Aaron; Rozek, Matthew
2013-01-01
The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.
ERIC Educational Resources Information Center
Wolff, Karin
2018-01-01
Poor graduate throughput and industry feedback on graduate inability to cope with the complex knowledge practices in twenty-first century engineering "problem solving" have placed pressure on educators to better conceptualise the theory-practice relationship, particularly in technology-dependent professions. The research draws on the…
A Phenomenographic Investigation of the Ways Engineering Students Experience Innovation
ERIC Educational Resources Information Center
Fila, Nicholas David
2017-01-01
Innovation has become an important phenomenon in engineering and engineering education. By developing novel, feasible, viable, and valued solutions to complex technical and human problems, engineers support the economic competitiveness of organizations, make a difference in the lives of users and other stakeholders, drive societal and scientific…
ERIC Educational Resources Information Center
Winkel, Brian
2008-01-01
A complex technology-based problem in visualization and computation for students in calculus is presented. Strategies are shown for its solution and the opportunities for students to put together sequences of concepts and skills to build for success are highlighted. The problem itself involves placing an object under water in order to actually see…
Technical Development and Application of Soft Computing in Agricultural and Biological Engineering
USDA-ARS?s Scientific Manuscript database
Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...
Development of Soft Computing and Applications in Agricultural and Biological Engineering
USDA-ARS?s Scientific Manuscript database
Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Engineering with uncertainty: monitoring air bag performance.
Wetmore, Jameson M
2008-06-01
Modern engineering is complicated by an enormous number of uncertainties. Engineers know a great deal about the material world and how it works. But due to the inherent limits of testing and the complexities of the world outside the lab, engineers will never be able to fully predict how their creations will behave. One way the uncertainties of engineering can be dealt with is by actively monitoring technologies once they have left the development and production stage. This article uses an episode in the history of automobile air bags as an example of engineers who had the foresight and initiative to carefully track the technology on the road to discover problems as early as possible. Not only can monitoring help engineers identify problems that surface in the field, it can also assist them in their efforts to mobilize resources to resolve problem.
ERIC Educational Resources Information Center
Didion, Catherine Jay; Guenther, Rita S.; Gunderson, Victoria
2012-01-01
Scientists, engineers, and medical professionals play a vital role in building the 21st- century science and technology enterprises that will create solutions and jobs critical to solving the large, complex, and interdisciplinary problems faced by society: problems in energy, sustainability, the environment, water, food, disease, and healthcare.…
The Strength of the Strongest Ties in Collaborative Problem Solving
NASA Astrophysics Data System (ADS)
de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune
2014-06-01
Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.
The strength of the strongest ties in collaborative problem solving.
de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune
2014-06-20
Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.
Biomedical Engineering Education in Perspective
ERIC Educational Resources Information Center
Gowen, Richard J.
1973-01-01
Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Monica
Monica Phillips discuss her role as an engineer at Savannah River National Laboratory. Her mission is to provide support to various customers on-site through engineered equipment and solutions, along with solving complex problems to help them meet their needs.
Engineering approximations in welding: Bridging the gap between the speculation and simulation
Robino, Charles V.
2016-01-15
During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less
Engineering approximations in welding: Bridging the gap between the speculation and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robino, Charles V.
During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph
Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline ofmore » CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.« less
Data Synchronization Discrepancies in a Formation Flight Control System
NASA Technical Reports Server (NTRS)
Ryan, Jack; Hanson, Curtis E.; Norlin, Ken A.; Allen, Michael J.; Schkolnik, Gerard (Technical Monitor)
2001-01-01
Aircraft hardware-in-the-loop simulation is an invaluable tool to flight test engineers; it reveals design and implementation flaws while operating in a controlled environment. Engineers, however, must always be skeptical of the results and analyze them within their proper context. Engineers must carefully ascertain whether an anomaly that occurs in the simulation will also occur in flight. This report presents a chronology illustrating how misleading simulation timing problems led to the implementation of an overly complex position data synchronization guidance algorithm in place of a simpler one. The report illustrates problems caused by the complex algorithm and how the simpler algorithm was chosen in the end. Brief descriptions of the project objectives, approach, and simulation are presented. The misleading simulation results and the conclusions then drawn are presented. The complex and simple guidance algorithms are presented with flight data illustrating their relative success.
Data based identification and prediction of nonlinear and complex dynamical systems
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2016-07-01
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.
ERIC Educational Resources Information Center
Singer, Kerri Patrick; Foutz, Tim; Navarro, Maria; Thompson, Sidney
2015-01-01
Engineers today need both engineering knowledge and social science knowledge to solve complex problems. However, most people have a traditional view of engineering as a field dominated by math and science foci, with little social consequence. This study examined and compared perceptions about engineering from Freshmen taking three different First…
Students' Explanations in Complex Learning of Disciplinary Programming
ERIC Educational Resources Information Center
Vieira, Camilo
2016-01-01
Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or…
Park Forest Middle School STEM Education Fair 2010
ERIC Educational Resources Information Center
Hughes, Bill
2010-01-01
Innovations from the United States have often led the world to new discoveries and solutions to complex problems. However, there are alarming indications that the United States is falling behind other countries in the ability to apply science, technology, engineering, and math to complex problems facing our world. In order for the country to…
CrossTalk, The Journal of Defense Software Engineering. Volume 27, Number 3. May/June 2014
2014-06-01
field of software engineering. by Delores M. Etter, Jennifer Webb, and John Howard The Problem of Prolific Process What is the optimal amount and...Programming Will Never Be Obsolete The creativity of software developers will always be needed to solve problems of the future and to then translate those...utilized to address some of the complex problems associated with biometric database construction. 1. A Next Generation Multispectral Iris Biometric
Operability engineering in the Deep Space Network
NASA Technical Reports Server (NTRS)
Wilkinson, Belinda
1993-01-01
Many operability problems exist at the three Deep Space Communications Complexes (DSCC's) of the Deep Space Network (DSN). Four years ago, the position of DSN Operability Engineer was created to provide the opportunity for someone to take a system-level approach to solving these problems. Since that time, a process has been developed for personnel and development engineers and for enforcing user interface standards in software designed for the DSCC's. Plans are for the participation of operations personnel in the product life-cycle to expand in the future.
NASA Astrophysics Data System (ADS)
Ryan, R.; Gross, L. A.
1995-05-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
NASA Technical Reports Server (NTRS)
Ryan, R.; Gross, L. A.
1995-01-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
Engineering education in the wake of hurricane Katrina
Lima, Marybeth
2007-01-01
Living through hurricane Katrina and its aftermath and reflecting on these experiences from technical and non-technical standpoints has led me to reconsider my thoughts and philosophy on engineering education. I present three ideas regarding engineering education pedagogy that I believe will prepare future engineers for problem-solving in an increasingly complex world. They are (1) we must practice radical (to the root) engineering, (2) we must illustrate connections between engineering and public policy, and (3) we will join the charge to find sustainable solutions to problems. Ideas for bringing each of these concepts into engineering curricula through methods such as case study, practicing broad information gathering and data interpretation, and other methods inside and outside the classroom, are discussed. I believe that the consequences of not considering the root issues of problems to be solved, and of not including policy and sustainability considerations when problems to be solved are framed will lead our profession toward well meaning but insufficient utility. Hurricane Katrina convinced me that we must do better as educators to prepare our students for engineering for a sustainable world. PMID:18271988
Rocket Engine Oscillation Diagnostics
NASA Technical Reports Server (NTRS)
Nesman, Tom; Turner, James E. (Technical Monitor)
2002-01-01
Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.
Formative feedback and scaffolding for developing complex problem solving and modelling outcomes
NASA Astrophysics Data System (ADS)
Frank, Brian; Simper, Natalie; Kaupp, James
2018-07-01
This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.
A knowledge-based tool for multilevel decomposition of a complex design problem
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
Although much work has been done in applying artificial intelligence (AI) tools and techniques to problems in different engineering disciplines, only recently has the application of these tools begun to spread to the decomposition of complex design problems. A new tool based on AI techniques has been developed to implement a decomposition scheme suitable for multilevel optimization and display of data in an N x N matrix format.
Obstacles to Gender Parity in Engineering Education
ERIC Educational Resources Information Center
Rohatynskyj, Marta; Davidson, Valerie; Stiver, Warren; Hayward, Maren
2008-01-01
Low rates of women's enrolment in engineering programs has been identified as a global problem within the general concern to enable women to attain parity in education in all areas. A Western women in engineering meta-narrative is identified which contains a complex of obstacles that typify the situation of Western women. The question is asked…
Infusing Ethics into the Development of Engineers: Exemplary Education Activities and Programs
ERIC Educational Resources Information Center
National Academies Press, 2016
2016-01-01
Ethical practice in engineering is critical for ensuring public trust in the field and in its practitioners, especially as engineers increasingly tackle international and socially complex problems that combine technical and ethical challenges. This report aims to raise awareness of the variety of exceptional programs and strategies for improving…
Managing bioengineering complexity with AI techniques.
Beal, Jacob; Adler, Aaron; Yaman, Fusun
2016-10-01
Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
From problem solving to problem definition: scrutinizing the complex nature of clinical practice.
Cristancho, Sayra; Lingard, Lorelei; Regehr, Glenn
2017-02-01
In medical education, we have tended to present problems as being singular, stable, and solvable. Problem solving has, therefore, drawn much of medical education researchers' attention. This focus has been important but it is limited in terms of preparing clinicians to deal with the complexity of the 21st century healthcare system in which they will provide team-based care for patients with complex medical illness. In this paper, we use the Soft Systems Engineering principles to introduce the idea that in complex, team-based situations, problems usually involve divergent views and evolve with multiple solution iterations. As such we need to shift the conversation from (1) problem solving to problem definition, and (2) from a problem definition derived exclusively at the level of the individual to a definition derived at the level of the situation in which the problem is manifested. Embracing such a focus on problem definition will enable us to advocate for novel educational practices that will equip trainees to effectively manage the problems they will encounter in complex, team-based healthcare.
NASA Astrophysics Data System (ADS)
Maduna, Karolina; Tomašić, Vesna
2017-11-01
Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.
2006-12-01
IACCARINO AND Q. WANG 3 Strain and stress analysis of uncertain engineering systems . D. GHOSH, C. FARHAT AND P. AVERY 17 Separated flow in a three...research in predictive science in complex systems , CTR has strived to maintain a critical mass in numerical analysis , computer science and physics based... analysis for a linear problem: heat conduction The design and analysis of complex engineering systems is challenging not only be- cause of the physical
Lessons Learned from Crowdsourcing Complex Engineering Tasks.
Staffelbach, Matthew; Sempolinski, Peter; Kijewski-Correa, Tracy; Thain, Douglas; Wei, Daniel; Kareem, Ahsan; Madey, Gregory
2015-01-01
Crowdsourcing is the practice of obtaining needed ideas, services, or content by requesting contributions from a large group of people. Amazon Mechanical Turk is a web marketplace for crowdsourcing microtasks, such as answering surveys and image tagging. We explored the limits of crowdsourcing by using Mechanical Turk for a more complicated task: analysis and creation of wind simulations. Our investigation examined the feasibility of using crowdsourcing for complex, highly technical tasks. This was done to determine if the benefits of crowdsourcing could be harnessed to accurately and effectively contribute to solving complex real world engineering problems. Of course, untrained crowds cannot be used as a mere substitute for trained expertise. Rather, we sought to understand how crowd workers can be used as a large pool of labor for a preliminary analysis of complex data. We compared the skill of the anonymous crowd workers from Amazon Mechanical Turk with that of civil engineering graduate students, making a first pass at analyzing wind simulation data. For the first phase, we posted analysis questions to Amazon crowd workers and to two groups of civil engineering graduate students. A second phase of our experiment instructed crowd workers and students to create simulations on our Virtual Wind Tunnel website to solve a more complex task. With a sufficiently comprehensive tutorial and compensation similar to typical crowd-sourcing wages, we were able to enlist crowd workers to effectively complete longer, more complex tasks with competence comparable to that of graduate students with more comprehensive, expert-level knowledge. Furthermore, more complex tasks require increased communication with the workers. As tasks become more complex, the employment relationship begins to become more akin to outsourcing than crowdsourcing. Through this investigation, we were able to stretch and explore the limits of crowdsourcing as a tool for solving complex problems.
Lessons Learned from Crowdsourcing Complex Engineering Tasks
Kijewski-Correa, Tracy; Thain, Douglas; Kareem, Ahsan; Madey, Gregory
2015-01-01
Crowdsourcing Crowdsourcing is the practice of obtaining needed ideas, services, or content by requesting contributions from a large group of people. Amazon Mechanical Turk is a web marketplace for crowdsourcing microtasks, such as answering surveys and image tagging. We explored the limits of crowdsourcing by using Mechanical Turk for a more complicated task: analysis and creation of wind simulations. Harnessing Crowdworkers for Engineering Our investigation examined the feasibility of using crowdsourcing for complex, highly technical tasks. This was done to determine if the benefits of crowdsourcing could be harnessed to accurately and effectively contribute to solving complex real world engineering problems. Of course, untrained crowds cannot be used as a mere substitute for trained expertise. Rather, we sought to understand how crowd workers can be used as a large pool of labor for a preliminary analysis of complex data. Virtual Wind Tunnel We compared the skill of the anonymous crowd workers from Amazon Mechanical Turk with that of civil engineering graduate students, making a first pass at analyzing wind simulation data. For the first phase, we posted analysis questions to Amazon crowd workers and to two groups of civil engineering graduate students. A second phase of our experiment instructed crowd workers and students to create simulations on our Virtual Wind Tunnel website to solve a more complex task. Conclusions With a sufficiently comprehensive tutorial and compensation similar to typical crowd-sourcing wages, we were able to enlist crowd workers to effectively complete longer, more complex tasks with competence comparable to that of graduate students with more comprehensive, expert-level knowledge. Furthermore, more complex tasks require increased communication with the workers. As tasks become more complex, the employment relationship begins to become more akin to outsourcing than crowdsourcing. Through this investigation, we were able to stretch and explore the limits of crowdsourcing as a tool for solving complex problems. PMID:26383029
Engineering Problem-Solving Knowledge: The Impact of Context
ERIC Educational Resources Information Center
Wolff, Karin
2017-01-01
Employer complaints of engineering graduate inability to "apply knowledge" suggests a need to interrogate the complex theory-practice relationship in twenty-first century real world contexts. Focussing specifically on the application of mathematics, physics and logic-based disciplinary knowledge, the research examines engineering…
Students' explanations in complex learning of disciplinary programming
NASA Astrophysics Data System (ADS)
Vieira, Camilo
Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with low ability to do programming engage in a more thorough explanation process than students with high ability. This dissertation concludes proposing an adaptation to the instructional principles of worked-examples for the context of CSE education.
A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design
NASA Astrophysics Data System (ADS)
Dos Santos, Walter A.; Leonor, Bruno B. F.; Stephany, Stephan
Satellite systems are becoming even more complex, making technical issues a significant cost driver. The increasing complexity of these systems makes requirements engineering activities both more important and difficult. Additionally, today's competitive pressures and other market forces drive manufacturing companies to improve the efficiency with which they design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering skills and particularly on requirements engineering which is an important phase in a system's life cycle. When this is poorly performed, various problems may occur, such as failures, cost overruns and delays. One solution is to underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal with the interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering approach (MDE), in which models are the main artifacts during system development. MDE is an emergent approach that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems Modeling Language) and a novel knowledge-based software tool, named SatBudgets, to deal with these and other challenges confronted during the conceptual phase of a university satellite system, called ITASAT, currently being developed by INPE and some Brazilian universities.
Development of Contemporary Problem-Based Learning Projects in Particle Technology
ERIC Educational Resources Information Center
Harris, Andrew T.
2009-01-01
The University of Sydney has offered an undergraduate course in particle technology using a contemporary problem based learning (PBL) methodology since 2005. Student learning is developed through the solution of complex, open-ended problems drawn from modern chemical engineering practice. Two examples are presented; i) zero emission electricity…
Engineering design: A cognitive process approach
NASA Astrophysics Data System (ADS)
Strimel, Greg Joseph
The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.
Persistence of Undergraduate Women in STEM Fields
ERIC Educational Resources Information Center
Pedone, Maggie Helene
2016-01-01
The underrepresentation of women in science, technology, engineering, and mathematics (STEM) is a complex problem that continues to persist at the postsecondary level, particularly in computer science and engineering fields. This dissertation explored the pre-college and college level factors that influenced undergraduate women's persistence in…
Engineering and Computing Portal to Solve Environmental Problems
NASA Astrophysics Data System (ADS)
Gudov, A. M.; Zavozkin, S. Y.; Sotnikov, I. Y.
2018-01-01
This paper describes architecture and services of the Engineering and Computing Portal, which is considered to be a complex solution that provides access to high-performance computing resources, enables to carry out computational experiments, teach parallel technologies and solve computing tasks, including technogenic safety ones.
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Brown, P. W.; Yenni, K. R.
1986-01-01
A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.
Changes in Transferable Knowledge Resulting from Study in a Graduate Software Engineering Curriculum
ERIC Educational Resources Information Center
Bareiss, Ray; Sedano, Todd; Katz, Edward
2012-01-01
This paper presents the initial results of a study of the evolution of students' knowledge of software engineering from the beginning to the end of a master's degree curriculum in software engineering. Students were presented with a problem involving the initiation of a complex new project at the beginning of the program and again at the end of…
ERIC Educational Resources Information Center
Baldwin, Blake; Koenig, Kathleen; Van der Bent, Andries
2016-01-01
Integrating engineering and science in the classroom can be challenging, and creating authentic experiences that address real-world problems is often even more difficult. "A Framework for K-12 Science Education" (NRC 2012), however, calls for high school graduates to be able to undertake more complex engineering design projects related…
A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process
NASA Technical Reports Server (NTRS)
Wang, Yi; Tamai, Tetsuo
2009-01-01
Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.
Optical systems engineering - A tutorial
NASA Technical Reports Server (NTRS)
Wyman, C. L.
1979-01-01
The paper examines the use of the systems engineering approach in the design of optical systems, noting that the use of such an approach which involves an integrated interdisciplinary approach to the development of systems is most appropriate for optics. It is shown that the high precision character of optics leads to complex and subtle effects on optical system performance, resulting from structural, thermal dynamical, control system, and manufacturing and assembly considerations. Attention is given to communication problems that often occur among users and optical engineers due to the unique factors of optical systems. It is concluded that it is essential that the optics community provide leadership to resolve communication problems and fully formalize the field of optical systems engineering.
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
1995-12-01
The present study was designed to investigate problem- and solution-related activity of elementary students in ill-defined and open-ended settings. One Grade 4/5 class of 28 students engaged in the activities of the “Engineering for Children: Structures” curriculum, designed as a vehicle for introducing science concepts, providing ill-defined problem solving contexts, and fostering positive attitudes towards science and technology. Data included video recordings, ethnographic field notes, student produced artefacts (projects and engineering logbooks), and interviews with teachers and observers. These data supported the notion of problems, solutions, and courses of actions as entities with flexible ontologies. In the course of their negotiations, students demonstrated an uncanny competence to frame and reframe problems and solutions and to decide courses of actions of different complexities in spite of the ambiguous nature of (arte)facts, plans, and language. A case study approach was chosen as the literary device to report these general findings. The discussion focuses on the inevitably ambiguous nature of (arte)facts, plans, and language and the associated notion of “interpretive flexibility.” Suggestions are provided for teachers on how to deal with interpretive flexibility without seeking recourse to the didactic approaches of direct teaching. But what happens when problems and solutions are negotiable, when there are no longer isolated problems which one tries to solve but problems which maintain complex linkages with ensembles of other problems and diverse constraints, or when problems and solutions are simultaneously invented? (Lestel, 1989, p. 692, my translation)
Volokh, K Y
2013-06-01
The application of mechanics to biology--biomechanics--bears great challenges due to the intricacy of living things. Their dynamism, along with the complexity of their mechanical response (which in itself involves complex chemical, electrical, and thermal phenomena) makes it very difficult to correlate empirical data with theoretical models. This difficulty elevates the importance of useful biomechanical theories compared to other fields of engineering. Despite inherent imperfections of all theories, a well formulated theory is crucial in any field of science because it is the basis for interpreting observations. This is all-the-more vital, for instance, when diagnosing symptoms, or planning treatment to a disease. The notion of interpreting empirical data without theory is unscientific and unsound. This paper attempts to fortify the importance of biomechanics and invigorate research efforts for those engineers and mechanicians who are not yet involved in the field. It is not aimed here, however, to give an overview of biomechanics. Instead, three unsolved problems are formulated to challenge the readers. At the micro-scale, the problem of the structural organization and integrity of the living cell is presented. At the meso-scale, the enigma of fingerprint formation is discussed. At the macro-scale, the problem of predicting aneurysm ruptures is reviewed. It is aimed here to attract the attention of engineers and mechanicians to problems in biomechanics which, in the author's opinion, will dominate the development of engineering and mechanics in forthcoming years.
JPL Counterfeit Parts Avoidance
NASA Technical Reports Server (NTRS)
Risse, Lori
2012-01-01
SPACE ARCHITECTURE / ENGINEERING: It brings an extreme test bed for both technologies/concepts as well as procedures/processes. Design and construction (engineering) always go together, especially with complex systems. Requirements (objectives) are crucial. More important than the answers are the questions/Requirements/Tools-Techniques/Processes. Different environments force architects and engineering to think out of the box. For instance there might not be gravity forces. Architectural complex problems have common roots: in Space and on Earth. Let us bring Space down on Earth so we can keep sending Mankind to the stars from a better world. Have fun being architects and engineers...!!! This time is amazing and historical. We are changing the way we inhabit the solar systems!
Convolving engineering and medical pedagogies for training of tomorrow's health care professionals.
Lee, Raphael C
2013-03-01
Several fundamental benefits justify why biomedical engineering and medicine should form a more convergent alliance, especially for the training of tomorrow's physicians and biomedical engineers. Herein, we review the rationale underlying the benefits. Biological discovery has advanced beyond the era of molecular biology well into today's era of molecular systems biology, which focuses on understanding the rules that govern the behavior of complex living systems. This has important medical implications. To realize cost-effective personalized medicine, it is necessary to translate the advances in molecular systems biology to higher levels of biological organization (organ, system, and organismal levels) and then to develop new medical therapeutics based on simulation and medical informatics analysis. Higher education in biological and medical sciences must adapt to a new set of training objectives. This will involve a shifting away from reductionist problem solving toward more integrative, continuum, and predictive modeling approaches which traditionally have been more associated with engineering science. Future biomedical engineers and MDs must be able to predict clinical response to therapeutic intervention. Medical education will involve engineering pedagogies, wherein basic governing rules of complex system behavior and skill sets in manipulating these systems to achieve a practical desired outcome are taught. Similarly, graduate biomedical engineering programs will include more practical exposure to clinical problem solving.
Using Role-Playing Games to Broaden Engineering Education
ERIC Educational Resources Information Center
McConville, Jennifer R.; Rauch, Sebastien; Helgegren, Ida; Kain, Jaan-Henrik
2017-01-01
Purpose: In today's complex society, there is an increasing demand to include a wider set of skills in engineering curricula, especially skills related to policy, society and sustainable development. Role-playing and gaming are active learning tools, which are useful for learning relationships between technology and society, problem solving in…
Improving Collaborative Learning in Online Software Engineering Education
ERIC Educational Resources Information Center
Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.
2017-01-01
Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all…
Investigating Team Cohesion in COCOMO II.2000
ERIC Educational Resources Information Center
Snowdeal-Carden, Betty A.
2013-01-01
Software engineering is team oriented and intensely complex, relying on human collaboration and creativity more than any other engineering discipline. Poor software estimation is a problem that within the United States costs over a billion dollars per year. Effective measurement of team cohesion is foundationally important to gain accurate…
ERIC Educational Resources Information Center
Latinopoulos, Pericles; Angelidis, Panagiotis
2014-01-01
The management of complex water problems is nowadays being practised through new ways and approaches. Therefore, water engineers, planners and managers should be appropriately educated through modern undergraduate curricula and by well-designed postgraduate specialisation programmes. Within this framework, a study of the specific characteristics…
Putting engineering back into protein engineering: bioinformatic approaches to catalyst design.
Gustafsson, Claes; Govindarajan, Sridhar; Minshull, Jeremy
2003-08-01
Complex multivariate engineering problems are commonplace and not unique to protein engineering. Mathematical and data-mining tools developed in other fields of engineering have now been applied to analyze sequence-activity relationships of peptides and proteins and to assist in the design of proteins and peptides with specified properties. Decreasing costs of DNA sequencing in conjunction with methods to quickly synthesize statistically representative sets of proteins allow modern heuristic statistics to be applied to protein engineering. This provides an alternative approach to expensive assays or unreliable high-throughput surrogate screens.
ERIC Educational Resources Information Center
Turpin, Marita; Matthee, Machdel; Kruger, Anine
2015-01-01
The development of problem solving skills is a shared goal in science, engineering, mathematics and technology education. In the applied sciences, problems are often open-ended and complex, requiring a multidisciplinary approach as well as new designs. In such cases, problem solving requires not only analytical capabilities, but also creativity…
Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene
2012-01-01
Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understandingmore » and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS« less
The Diffusion Simulator - Teaching Geomorphic and Geologic Problems Visually.
ERIC Educational Resources Information Center
Gilbert, R.
1979-01-01
Describes a simple hydraulic simulator based on more complex models long used by engineers to develop approximate solutions. It allows students to visualize non-steady transfer, to apply a model to solve a problem, and to compare experimentally simulated information with calculated values. (Author/MA)
Using concepts from biology to improve problem-solving methods
NASA Astrophysics Data System (ADS)
Goodman, Erik D.; Rothwell, Edward J.; Averill, Ronald C.
2011-06-01
Observing nature has been a cornerstone of engineering design. Today, engineers look not only at finished products, but imitate the evolutionary process by which highly optimized artifacts have appeared in nature. Evolutionary computation began by capturing only the simplest ideas of evolution, but today, researchers study natural evolution and incorporate an increasing number of concepts in order to evolve solutions to complex engineering problems. At the new BEACON Center for the Study of Evolution in Action, studies in the lab and field and in silico are laying the groundwork for new tools for evolutionary engineering design. This paper, which accompanies a keynote address, describes various steps in development and application of evolutionary computation, particularly as regards sensor design, and sets the stage for future advances.
NASA Technical Reports Server (NTRS)
Lucero, John
2016-01-01
The presentation will provide an overview of the fundamentals and principles of Systems Engineering (SE). This includes understanding the processes that are used to assist the engineer in a successful design, build and implementation of solutions. The context of this presentation will be to describe the involvement of SE throughout the life-cycle of a project from cradle to grave. Due to the ever growing number of complex technical problems facing our world, a Systems Engineering approach is desirable for many reasons. The interdisciplinary technical structure of current systems, technical processes representing System Design, Technical Management and Product Realization are instrumental in the development and integration of new technologies into mainstream applications. This tutorial will demonstrate the application of SE tools to these types of problems..
NASA Astrophysics Data System (ADS)
Chen, Hudong
2001-06-01
There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Fan, Jie; Gao, You
2015-12-01
Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.
Influences on Low-SES First-Generation Students' Decision to Pursue Engineering
ERIC Educational Resources Information Center
Strutz, Michele Louise
2012-01-01
"The ability of this nation to provide a growing economy, strong health and human services, and a secure and safe nation depends upon a vibrant, creative, and diverse engineering and science workforce" (Blue, et al., 2005, p.4). To contribute to technological advancements, engage in global collaboration, solve complex problems, encourage…
Designing a Better Experience: A Qualitative Investigation of Student Engineering Internships
ERIC Educational Resources Information Center
Paknejad, Mohammad R.
2016-01-01
Science, Technology, Engineering and Mathematics (STEM) education play a very important role in preparing students with skills necessary to obtain better jobs, solve real-world challenges, and compete in the global economy. STEM education develops critical thinking and the ability to solve complex problems. Research showed that 8 out of 10 most…
Integrated STEM: Focus on Informal Education and Community Collaboration through Engineering
ERIC Educational Resources Information Center
Burrows, Andrea; Lockwood, Meghan; Borowczak, Mike; Janak, Edward; Barber, Brian
2018-01-01
This article showcases STEM as an interdisciplinary field in which the disciplines strengthen and support each other (not as separate science, technology, engineering, and mathematics disciplines). The authors focus on an open-ended, complex problem--water quality--as the primary teaching and learning task. The participants, middle school female…
Implementing Problem Based Learning through Engineers without Borders Student Projects
ERIC Educational Resources Information Center
Wittig, Ann
2013-01-01
Engineers Without Borders USA (EWB) is a nonprofit organization that partners student chapters with communities in fundamental need of potable water, clean air, sanitation, irrigation, energy, basic structures for schools and clinics, roads and bridges, etc. While EWB projects may vary in complexity, they are all realistic, ill-structured and…
Changes in Science Teachers' Conceptions and Connections of STEM Concepts and Earthquake Engineering
ERIC Educational Resources Information Center
Cavlazoglu, Baki; Stuessy, Carol
2017-01-01
The authors find justification for integrating science, technology, engineering, and mathematics (STEM) in the complex problems that today's students will face as tomorrow's STEM professionals. Teachers with individual subject-area specialties in the STEM content areas have limited experience in integrating STEM. In this study, the authors…
A Phenomenographic Investigation of the Ways Engineering Students Experience Innovation
NASA Astrophysics Data System (ADS)
Fila, Nicholas David
Innovation has become an important phenomenon in engineering and engineering education. By developing novel, feasible, viable, and valued solutions to complex technical and human problems, engineers support the economic competitiveness of organizations, make a difference in the lives of users and other stakeholders, drive societal and scientific progress, and obtain key personal benefits. Innovation is also a complex phenomenon. It occurs across a variety of contexts and domains, encompasses numerous phases and activities, and requires unique competency profiles. Despite this complexity, many studies in engineering education focus on specific aspects (e.g., engineering students' abilities to generate original concepts during idea generation), and we still know little about the variety of ways engineering students approach and understand innovation. This study addresses that gap by asking: 1. What are the qualitatively different ways engineering students experience innovation during their engineering projects? 2. What are the structural relationships between the ways engineering students experience innovation? This study utilized phenomenography, a qualitative research method, to explore the above research questions. Thirty-three engineering students were recruited to ensure thorough coverage along four factors suggested by the literature to support differences related to innovation: engineering project experience, academic major, year in school, and gender. Each participant completed a 1-2 hour, semi-structured interview that focused on experiences with and conceptions of innovation. Whole transcripts were analyzed using an eight-stage, iterative, and comparative approach meant to identify a limited number of categories of description (composite ways of experiencing innovation comprised of the experiences of several participants), and the structural relationships between these categories. Phenomenographic analysis revealed eight categories of description that were structured in a semi-hierarchical, two-dimensional outcome space. The first four categories demonstrated a progression toward greater comprehensiveness in both process and focus dimensions. In the process dimension, subsequent categories added increasingly preliminary innovation phases: idea realization, idea generation, problem scoping, and problem finding. In the focus dimension, subsequent categories added key areas engineers considered during innovation: technical, human, and enterprise. The final four categories each incorporated all previous process phases and focus areas, but prioritized different focus areas in sophisticated ways and acknowledged a macro-iterative cycle, i.e., an understanding of how the processes within a single innovation project built upon and contributed to past and future innovation projects. These results demonstrate important differences between engineering students and suggest how they may come to experience innovation in increasingly comprehensive ways. A framework based on the results can be used by educators and researchers to support more robust educational offerings and nuanced research designs that reflect these differences.
MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA
2010-01-01
This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue regeneration, and discussed new biomaterials that can be used to develop new regenerative technologies. PMID:17518671
Problem decomposition by mutual information and force-based clustering
NASA Astrophysics Data System (ADS)
Otero, Richard Edward
The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an alternative global optimizer, called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the current practice demonstrates the use of MIMIC as a global method that explicitly models problem structure with mutual information, providing an alternate method for globally searching multi-modal domains. By leveraging discovered problem inter- dependencies, MIMIC may be appropriate for highly coupled problems or those with large function evaluation cost. This work introduces a useful addition to the MIMIC algorithm that enables its use on continuous input variables. By leveraging automatic decision tree generation methods from Machine Learning and a set of randomly generated test problems, decision trees for which method to apply are also created, quantifying decomposition performance over a large region of the design space.
Current and Future Critical Issues in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Navaz, Homayun K.; Dix, Jeff C.
1998-01-01
The objective of this research was to tackle several problems that are currently of great importance to NASA. In a liquid rocket engine several complex processes take place that are not thoroughly understood. Droplet evaporation, turbulence, finite rate chemistry, instability, and injection/atomization phenomena are some of the critical issues being encountered in a liquid rocket engine environment. Pulse Detonation Engines (PDE) performance, combustion chamber instability analysis, 60K motor flowfield pattern from hydrocarbon fuel combustion, and 3D flowfield analysis for the Combined Cycle engine were of special interest to NASA. During the summer of 1997, we made an attempt to generate computational results for all of the above problems and shed some light on understanding some of the complex physical phenomena. For this purpose, the Liquid Thrust Chamber Performance (LTCP) code, mainly designed for liquid rocket engine applications, was utilized. The following test cases were considered: (1) Characterization of a detonation wave in a Pulse Detonation Tube; (2) 60K Motor wall temperature studies; (3) Propagation of a pressure pulse in a combustion chamber (under single and two-phase flow conditions); (4) Transonic region flowfield analysis affected by viscous effects; (5) Exploring the viscous differences between a smooth and a corrugated wall; and (6) 3D thrust chamber flowfield analysis of the Combined Cycle engine. It was shown that the LTCP-2D and LTCP-3D codes are capable of solving complex and stiff conservation equations for gaseous and droplet phases in a very robust and efficient manner. These codes can be run on a workstation and personal computers (PC's).
Sensitivity based coupling strengths in complex engineering systems
NASA Technical Reports Server (NTRS)
Bloebaum, C. L.; Sobieszczanski-Sobieski, J.
1993-01-01
The iterative design scheme necessary for complex engineering systems is generally time consuming and difficult to implement. Although a decomposition approach results in a more tractable problem, the inherent couplings make establishing the interdependencies of the various subsystems difficult. Another difficulty lies in identifying the most efficient order of execution for the subsystem analyses. The paper describes an approach for determining the dependencies that could be suspended during the system analysis with minimal accuracy losses, thereby reducing the system complexity. A new multidisciplinary testbed is presented, involving the interaction of structures, aerodynamics, and performance disciplines. Results are presented to demonstrate the effectiveness of the system reduction scheme.
Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool
NASA Astrophysics Data System (ADS)
Sanchez Perez, J. F.; Conesa, M.; Alhama, I.
2016-11-01
Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.
Fessner, Wolf-Dieter
2015-12-25
Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products ("artificial metabolisms") by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Cam Design Projects in an Advanced CAD Course for Mechanical Engineers
ERIC Educational Resources Information Center
Ault, H. K.
2009-01-01
The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…
Assessing problem-solving skills in construction education with the virtual construction simulator
NASA Astrophysics Data System (ADS)
Castronovo, Fadi
The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on problem-solving skills, a new version of the VCS(4) was developed, with new building modules and assessment framework. The design and development of the VCS4 leveraged research in educational psychology, multimedia learning, human-computer interaction, and Building Information Modeling. In this dissertation the researcher aimed to evaluate the pedagogical value of the VCS4 in fostering problem-solving skills. To answer the research questions, a crossover repeated measures quasi-experiment was designed to assess the educational gains that the VCS can provide to construction education. A group of 34 students, attending a fourth-year construction course at a university in the United States was chosen to participate in the experiment. The three learning modules of the VCS were used, which challenged the students to plan and manage the construction process of a wooden pavilion, the steel erection of a dormitory, and the concrete placement of the same dormitory. Based on the results the researcher was able to provide evidence supporting the hypothesis that the chosen sample of construction students were able to gain and retain problem-solving skills necessary to solve complex construction simulation problems, no matter what the sequence with which these modules were played. In conclusion, the presented results provide evidence supporting the theory that educational simulation games can help the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems.
Multiplexed Predictive Control of a Large Commercial Turbofan Engine
NASA Technical Reports Server (NTRS)
Richter, hanz; Singaraju, Anil; Litt, Jonathan S.
2008-01-01
Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.
Chesler, Naomi C; Ruis, A R; Collier, Wesley; Swiecki, Zachari; Arastoopour, Golnaz; Williamson Shaffer, David
2015-02-01
Engineering virtual internships are a novel paradigm for providing authentic engineering experiences in the first-year curriculum. They are both individualized and accommodate large numbers of students. As we describe in this report, this approach can (a) enable students to solve complex engineering problems in a mentored, collaborative environment; (b) allow educators to assess engineering thinking; and (c) provide an introductory experience that students enjoy and find valuable. Furthermore, engineering virtual internships have been shown to increase students'-and especially women's-interest in and motivation to pursue engineering degrees. When implemented in first-year engineering curricula more broadly, the potential impact of engineering virtual internships on the size and diversity of the engineering workforce could be dramatic.
29 CFR 541.402 - Executive and administrative computer employees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... planning, scheduling, and coordinating activities required to develop systems to solve complex business, scientific or engineering problems of the employer or the employer's customers. Similarly, a senior or lead...
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.
2012-01-01
The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.
Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing
NASA Technical Reports Server (NTRS)
Navaz, Homayun K.
2002-01-01
Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.
NASA Technical Reports Server (NTRS)
Franck, Bruno M.
1990-01-01
The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.
Improving engineering system design by formal decomposition, sensitivity analysis, and optimization
NASA Technical Reports Server (NTRS)
Sobieski, J.; Barthelemy, J. F. M.
1985-01-01
A method for use in the design of a complex engineering system by decomposing the problem into a set of smaller subproblems is presented. Coupling of the subproblems is preserved by means of the sensitivity derivatives of the subproblem solution to the inputs received from the system. The method allows for the division of work among many people and computers.
NASA Astrophysics Data System (ADS)
McCrum, Daniel Patrick
2017-11-01
For a structural engineer, effective communication and interaction with architects cannot be underestimated as a key skill to success throughout their professional career. Structural engineers and architects have to share a common language and understanding of each other in order to achieve the most desirable architectural and structural designs. This interaction and engagement develops during their professional career but needs to be nurtured during their undergraduate studies. The objective of this paper is to present the strategies employed to engage higher order thinking in structural engineering students in order to help them solve complex problem-based learning (PBL) design scenarios presented by architecture students. The strategies employed were applied in the experimental setting of an undergraduate module in structural engineering at Queen's University Belfast in the UK. The strategies employed were active learning to engage with content knowledge, the use of physical conceptual structural models to reinforce key concepts and finally, reinforcing the need for hand sketching of ideas to promote higher order problem-solving. The strategies employed were evaluated through student survey, student feedback and module facilitator (this author) reflection. The strategies were qualitatively perceived by the tutor and quantitatively evaluated by students in a cross-sectional study to help interaction with the architecture students, aid interdisciplinary learning and help students creatively solve problems (through higher order thinking). The students clearly enjoyed this module and in particular interacting with structural engineering tutors and students from another discipline.
ERIC Educational Resources Information Center
Roth, Wolff-Michael
1995-01-01
Investigated problem- and solution-related activity of (n=28) fourth and fifth graders in ill-defined and open-ended settings. In the course of their negotiations, students demonstrated an uncanny competence to frame and reframe problems and solutions and to decide courses of actions of different complexities in spite of the ambiguous nature of…
A psychological model that integrates ethics in engineering education.
Magun-Jackson, Susan
2004-04-01
Ethics has become an increasingly important issue within engineering as the profession has become progressively more complex. The need to integrate ethics into an engineering curriculum is well documented, as education does not often sufficiently prepare engineers for the ethical conflicts they experience. Recent research indicates that there is great diversity in the way institutions approach the problem of teaching ethics to undergraduate engineering students; some schools require students to take general ethics courses from philosophical or religious perspectives, while others integrate ethics in existing engineering courses. The purpose of this paper is to propose a method to implement the integration of ethics in engineering education that is pedagogically based on Kohlberg's stage theory of moral development.
Towards systems metabolic engineering of microorganisms for amino acid production.
Park, Jin Hwan; Lee, Sang Yup
2008-10-01
Microorganisms capable of efficient production of amino acids have traditionally been developed by random mutation and selection method, which might cause unwanted physiological changes in cellular metabolism. Rational genome-wide metabolic engineering based on systems and synthetic biology tools, which is termed 'systems metabolic engineering', is rising as an alternative to overcome these problems. Recently, several amino acid producers have been successfully developed by systems metabolic engineering, where the metabolic engineering procedures were performed within a systems biology framework, and entire metabolic networks, including complex regulatory circuits, were engineered in an integrated manner. Here we review the current status of systems metabolic engineering successfully applied for developing amino acid producing strains and discuss future prospects.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen
2013-01-01
This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions
Engineering Antifragile Systems: A Change In Design Philosophy
NASA Technical Reports Server (NTRS)
Jones, Kennie H.
2014-01-01
While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.
Authentic Education by Providing a Situation for Student-Selected Problem-Based Learning
ERIC Educational Resources Information Center
Strimel, Greg
2014-01-01
Students are seldom given an authentic experience within school that allows them the opportunity to solve real-life complex engineering design problems that have meaning to their lives and/ or the greater society. They are often confined to learning environments that are limited by the restrictions set by course content for assessment purposes and…
From, by, and for the OSSD: Software Engineering Education Using an Open Source Software Approach
ERIC Educational Resources Information Center
Huang, Kun; Dong, Yifei; Ge, Xun
2006-01-01
Computing is a complex, multidisciplinary field that requires a range of professional proficiencies. Computing students are expected to develop in-depth knowledge and skills, integrate and apply their knowledge flexibly to solve complex problems, and work successfully in teams. However, many students who graduate with degrees in computing fail to…
NASA Technical Reports Server (NTRS)
Shafto, Michael G.; Remington, Roger W.; Trimble, Jay W.
1994-01-01
A case study is presented to illustrate some of the problems of applying cognitive science to complex human-machine systems. Disregard for facts about human cognition often undermines the safety, reliability, and cost-effectiveness of complex systems. Yet single-point methods (for example, better user-interface design), whether rooted in computer science or in experimental psychology, fall far short of addressing systems-level problems in a timely way using realistic resources. A model-based methodology is proposed for organizing and prioritizing the cognitive engineering effort, focusing appropriate expertise on major problems first, then moving to more sophisticated refinements if time and resources permit. This case study is based on a collaborative effort between the Human Factors Division at NASA-Ames and the Spaceborne Imaging Radar SIR-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) Project at the Jet Propulsion Laboratory (JPL), California institute of Technology. The first SIR-C/X-SAR Shuttle mission flew successfully in April, 1994. A series of such missions is planned to provide radar data to study Earth's ecosystems, climatic and geological processes, hydrologic cycle, and ocean circulation. In addition to JPL and NASA personnel, the SIR-C/X-SAR operations team included Scientists and engineers from the German and Italian space agencies.
ERIC Educational Resources Information Center
Chang, Pei-Fen; Wang, Dau-Chung
2011-01-01
In May 2008, the worst earthquake in more than three decades struck southwest China, killing more than 80,000 people. The complexity of this earthquake makes it an ideal case study to clarify the intertwined issues of ethics in engineering and to help cultivate critical thinking skills. This paper first explores the need to encourage engineering…
NASA Astrophysics Data System (ADS)
Abashev, V. M.; Korabelnikov, A. V.; Kuranov, A. L.; Tretyakov, P. K.
2017-10-01
At the analysis of the work process in a ramjet, a complex consideration of the ensemble of problems the solution of which determines the engine efficiency appears reasonable. The main problems are ensuring a high completeness of fuel combustion and minimal hydraulic losses, the reliability of cooling of high-heat areas with the use of the fuel cooling resource, and ensuring the strength of the engine duct elements under non-uniform heat loads due to fuel combustion in complex gas-dynamic flow structures. The fundamental techniques and approaches to the solution of above-noted problems are considered in the present report, their novelty and advantages in comparison with conventional techniques are substantiated. In particular, a technique of the arrangement of an intense (pre-detonation) combustion regime for ensuring a high completeness of fuel combustion and minimal hydraulic losses at a smooth deceleration of a supersonic flow down to the sound velocity using the pulsed-periodic gas-dynamic flow control has been proposed. A technique has been proposed for cooling the high-heat areas, which employs the cooling resource of the hydrocarbon fuel, including the process of the kerosene chemical transformation (conversion) using the nano-catalysts. An analysis has shown that the highly heated structure will operate in the elastic-plastic domain of the behavior of constructional materials, which is directly connected to the engine operation resource. There arise the problems of reducing the ramjet shells depending on deformations. The deformations also lead to a significant influence on the work process in the combustor and, naturally, on the heat transfer process and the performance of catalysts (the action of plastic and elastic deformations of restrained shells). The work presents some results illustrating the presence of identified problems. A conclusion is drawn about the necessity of formulating a complex investigation both with the realization in model experiments and execution of computational and theoretical investigations.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Publication of conference papers includes--(1) an overview of the ceiling system complex by a lighting manufacturer, (2) review of problems influencing the development of roofing systems, (3) description of cooperative research within the cement industry, and (4) description of joint research development of structural ceramic panels. Included…
Aeropropulsion 1987. Session 2: Aeropropulsion Structures Research
NASA Technical Reports Server (NTRS)
1987-01-01
Aeropropulsion systems present unique problems to the structural engineer. The extremes in operating temperatures, rotational effects, and behaviors of advanced material systems combine into complexities that require advances in many scientific disciplines involved in structural analysis and design procedures. This session provides an overview of the complexities of aeropropulsion structures and the theoretical, computational, and experimental research conducted to achieve the needed advances.
A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems
NASA Technical Reports Server (NTRS)
Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun
2012-01-01
One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.
NASA Astrophysics Data System (ADS)
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.
The theory of interface slicing
NASA Technical Reports Server (NTRS)
Beck, Jon
1993-01-01
Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.
5 CFR 551.210 - Computer employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Computer employees. 551.210 Section 551.210 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY... solve complex business, scientific or engineering problems of the organization or the organization's...
Numerical propulsion system simulation
NASA Technical Reports Server (NTRS)
Lytle, John K.; Remaklus, David A.; Nichols, Lester D.
1990-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.
NASA Astrophysics Data System (ADS)
Holden, Patricia A.
2017-03-01
Jusup et al. [1] appeal to mathematical physicists, and to biologists, by providing the theoretical basis for dynamic energy budget (DEB) modeling of individual organisms and populations, while emphasizing model simplicity, universality, and applicability to real world problems. Comments herein regard the disciplinary tensions proposed by the authors and suggest that-in addition to important applications in eco- and specifically nano-toxicology-there are opportunities for DEB frameworks to inform relative complexity in microbial ecological process modeling. This commentary also suggests another audience for bridging DEB theory and application-engineers solving environmental problems.
Engineering Infrastructures: Problems of Safety and Security in the Russian Federation
NASA Astrophysics Data System (ADS)
Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.
Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.
NASA Technical Reports Server (NTRS)
2004-01-01
In early 1995, NASA s Glenn Research Center (then Lewis Research Center) formed an industry-government team with several jet engine companies to develop the National Combustion Code (NCC), which would help aerospace engineers solve complex aerodynamics and combustion problems in gas turbine, rocket, and hypersonic engines. The original development team consisted of Allison Engine Company (now Rolls-Royce Allison), CFD Research Corporation, GE Aircraft Engines, Pratt and Whitney, and NASA. After the baseline beta version was established in July 1998, the team focused its efforts on consolidation, streamlining, and integration, as well as enhancement, evaluation, validation, and application. These activities, mainly conducted at NASA Glenn, led to the completion of NCC version 1.0 in October 2000. NCC version 1.0 features high-fidelity representation of complex geometry, advanced models for two-phase turbulent combustion, and massively parallel computing. Researchers and engineers at Glenn have been using NCC to provide analysis and design support for various aerospace propulsion technology development projects. NASA transfers NCC technology to external customers using non- exclusive Space Act Agreements. Glenn researchers also communicate research and development results derived from NCC's further development through publications and special sessions at technical conferences.
An Efficient Model-based Diagnosis Engine for Hybrid Systems Using Structural Model Decomposition
NASA Technical Reports Server (NTRS)
Bregon, Anibal; Narasimhan, Sriram; Roychoudhury, Indranil; Daigle, Matthew; Pulido, Belarmino
2013-01-01
Complex hybrid systems are present in a large range of engineering applications, like mechanical systems, electrical circuits, or embedded computation systems. The behavior of these systems is made up of continuous and discrete event dynamics that increase the difficulties for accurate and timely online fault diagnosis. The Hybrid Diagnosis Engine (HyDE) offers flexibility to the diagnosis application designer to choose the modeling paradigm and the reasoning algorithms. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. However, HyDE faces some problems regarding performance in terms of complexity and time. Our focus in this paper is on developing efficient model-based methodologies for online fault diagnosis in complex hybrid systems. To do this, we propose a diagnosis framework where structural model decomposition is integrated within the HyDE diagnosis framework to reduce the computational complexity associated with the fault diagnosis of hybrid systems. As a case study, we apply our approach to a diagnostic testbed, the Advanced Diagnostics and Prognostics Testbed (ADAPT), using real data.
Expert systems for superalloy studies
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Kaukler, William F.
1990-01-01
There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES).
How engineers perceive the importance of ethics in Finland
NASA Astrophysics Data System (ADS)
Taajamaa, Ville; Majanoja, Anne-Maarit; Bairaktarova, Diana; Airola, Antti; Pahikkala, Tapio; Sutinen, Erkki
2018-01-01
Success in complex and holistic engineering practices requires more than problem-solving abilities and technical competencies. Engineering education must offer proficient technical competences and also train engineers to think and act ethically. A technical 'engineering-like' focus and demand have made educators and students overlook the importance of ethical awareness and transversal competences. Using two Finnish surveys, conducted in 2014 and 2016, we examine how engineers perceive working life needs regarding ethics. The data consider different age groups. We research whether an engineer's age affects their perception of the importance of ethics in their work and if there are differences between young experts and young managers in their use of ethics within work. The results indicate that practising engineers do not consider ethical issues important in their work. This especially applies to younger engineers; the older an engineer, the more important they consider ethics. No statistically significant difference was found between young engineering experts and managers.
MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...
Sculpting in cyberspace: Parallel processing the development of new software
NASA Technical Reports Server (NTRS)
Fisher, Rob
1993-01-01
Stimulating creativity in problem solving, particularly where software development is involved, is applicable to many disciplines. Metaphorical thinking keeps the problem in focus but in a different light, jarring people out of their mental ruts and sparking fresh insights. It forces the mind to stretch to find patterns between dissimilar concepts, in the hope of discovering unusual ideas in odd associations (Technology Review January 1993, p. 37). With a background in Engineering and Visual Design from MIT, I have for the past 30 years pursued a career as a sculptor of interdisciplinary monumental artworks that bridge the fields of science, engineering and art. Since 1979, I have pioneered the application of computer simulation to solve the complex problems associated with these projects. A recent project for the roof of the Carnegie Science Center in Pittsburgh made particular use of the metaphoric creativity technique described above. The problem-solving process led to the creation of hybrid software combining scientific, architectural and engineering visualization techniques. David Steich, a Doctoral Candidate in Electrical Engineering at Penn State, was commissioned to develop special software that enabled me to create innovative free-form sculpture. This paper explores the process of inventing the software through a detailed analysis of the interaction between an artist and a computer programmer.
Collaborative learning in networks.
Mason, Winter; Watts, Duncan J
2012-01-17
Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.
Collaborative learning in networks
Mason, Winter; Watts, Duncan J.
2012-01-01
Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions. PMID:22184216
Multidisciplinary approaches to climate change questions
Middleton, Beth A.; LePage, Ben A.
2011-01-01
Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.
A constitutive law for finite element contact problems with unclassical friction
NASA Technical Reports Server (NTRS)
Plesha, M. E.; Steinetz, B. M.
1986-01-01
Techniques for modeling complex, unclassical contact-friction problems arising in solid and structural mechanics are discussed. A constitutive modeling concept is employed whereby analytic relations between increments of contact surface stress (i.e., traction) and contact surface deformation (i.e., relative displacement) are developed. Because of the incremental form of these relations, they are valid for arbitrary load-deformation histories. The motivation for the development of such a constitutive law is that more realistic friction idealizations can be implemented in finite element analysis software in a consistent, straightforward manner. Of particular interest is modeling of two-body (i.e., unlubricated) metal-metal, ceramic-ceramic, and metal-ceramic contact. Interfaces involving ceramics are of engineering importance and are being considered for advanced turbine engines in which higher temperature materials offer potential for higher engine fuel efficiency.
A development optical course based on optical fiber white light interference
NASA Astrophysics Data System (ADS)
Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo
2017-08-01
The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.
Virtual Engine a Tool for Truck Reliability Increase
NASA Astrophysics Data System (ADS)
Stodola, Jiri; Novotny, Pavel
2017-06-01
The internal combustion engine development process requires CAD models which deliver results for the concept phase at a very early stage and which can be further detailed on the same program platform as the development process progresses. The vibratory and acoustic behaviour of the powertrain is highly complex, consisting of many components that are subject to loads that vary greatly in magnitude and which operate at a wide range of speeds. The interaction of the crank and crankcase is a major problem for powertrain designers when optimising the vibration and noise characteristics of the powertrain. The Finite Element Method (FEM) and Multi-Body Systems (MBS) are suitable for the creation of 3-D calculation models. Non-contact measurements make it possible to verify complex calculation models. All numerical simulations and measurements are performed on a Diesel six-cylinder in-line engine.
Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN
NASA Astrophysics Data System (ADS)
Talbot, Paul W.
As experiment complexity in fields such as nuclear engineering continually increases, so does the demand for robust computational methods to simulate them. In many simulations, input design parameters and intrinsic experiment properties are sources of uncertainty. Often small perturbations in uncertain parameters have significant impact on the experiment outcome. For instance, in nuclear fuel performance, small changes in fuel thermal conductivity can greatly affect maximum stress on the surrounding cladding. The difficulty quantifying input uncertainty impact in such systems has grown with the complexity of numerical models. Traditionally, uncertainty quantification has been approached using random sampling methods like Monte Carlo. For some models, the input parametric space and corresponding response output space is sufficiently explored with few low-cost calculations. For other models, it is computationally costly to obtain good understanding of the output space. To combat the expense of random sampling, this research explores the possibilities of using advanced methods in Stochastic Collocation for generalized Polynomial Chaos (SCgPC) as an alternative to traditional uncertainty quantification techniques such as Monte Carlo (MC) and Latin Hypercube Sampling (LHS) methods for applications in nuclear engineering. We consider traditional SCgPC construction strategies as well as truncated polynomial spaces using Total Degree and Hyperbolic Cross constructions. We also consider applying anisotropy (unequal treatment of different dimensions) to the polynomial space, and offer methods whereby optimal levels of anisotropy can be approximated. We contribute development to existing adaptive polynomial construction strategies. Finally, we consider High-Dimensional Model Reduction (HDMR) expansions, using SCgPC representations for the subspace terms, and contribute new adaptive methods to construct them. We apply these methods on a series of models of increasing complexity. We use analytic models of various levels of complexity, then demonstrate performance on two engineering-scale problems: a single-physics nuclear reactor neutronics problem, and a multiphysics fuel cell problem coupling fuels performance and neutronics. Lastly, we demonstrate sensitivity analysis for a time-dependent fuels performance problem. We demonstrate the application of all the algorithms in RAVEN, a production-level uncertainty quantification framework.
Suggested criteria for evaluating systems engineering methodologies
NASA Technical Reports Server (NTRS)
Gates, Audrey; Paul, Arthur S.; Gill, Tepper L.
1989-01-01
Systems engineering is the application of mathematical and scientific principles to practical ends in the life-cycle of a system. A methodology for systems engineering is a carefully developed, relatively complex procedure or process for applying these mathematical and scientific principles. There are many systems engineering methodologies (or possibly many versions of a few methodologies) currently in use in government and industry. These methodologies are usually designed to meet the needs of a particular organization. It has been observed, however, that many technical and non-technical problems arise when inadequate systems engineering methodologies are applied by organizations to their systems development projects. Various criteria for evaluating systems engineering methodologies are discussed. Such criteria are developed to assist methodology-users in identifying and selecting methodologies that best fit the needs of the organization.
Application of CFD codes to the design and development of propulsion systems
NASA Technical Reports Server (NTRS)
Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.
1987-01-01
The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.
NASA Astrophysics Data System (ADS)
Dong, Keqiang; Zhang, Hong; Gao, You
2017-01-01
Identifying the mutual interaction in aero-engine gas path system is a crucial problem that facilitates the understanding of emerging structures in complex system. By employing the multiscale multifractal detrended cross-correlation analysis method to aero-engine gas path system, the cross-correlation characteristics between gas path system parameters are established. Further, we apply multiscale multifractal detrended cross-correlation distance matrix and minimum spanning tree to investigate the mutual interactions of gas path variables. The results can infer that the low-spool rotor speed (N1) and engine pressure ratio (EPR) are main gas path parameters. The application of proposed method contributes to promote our understanding of the internal mechanisms and structures of aero-engine dynamics.
Doyle, Francis J; Stelling, Jörg
2006-01-01
The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Hence, the interface between systems and biology is of mutual benefit to both disciplines. PMID:16971329
The knowledge instinct, cognitive algorithms, modeling of language and cultural evolution
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.
2008-04-01
The talk discusses mechanisms of the mind and their engineering applications. The past attempts at designing "intelligent systems" encountered mathematical difficulties related to algorithmic complexity. The culprit turned out to be logic, which in one way or another was used not only in logic rule systems, but also in statistical, neural, and fuzzy systems. Algorithmic complexity is related to Godel's theory, a most fundamental mathematical result. These difficulties were overcome by replacing logic with a dynamic process "from vague to crisp," dynamic logic. It leads to algorithms overcoming combinatorial complexity, and resulting in orders of magnitude improvement in classical problems of detection, tracking, fusion, and prediction in noise. I present engineering applications to pattern recognition, detection, tracking, fusion, financial predictions, and Internet search engines. Mathematical and engineering efficiency of dynamic logic can also be understood as cognitive algorithm, which describes fundamental property of the mind, the knowledge instinct responsible for all our higher cognitive functions: concepts, perception, cognition, instincts, imaginations, intuitions, emotions, including emotions of the beautiful. I present our latest results in modeling evolution of languages and cultures, their interactions in these processes, and role of music in cultural evolution. Experimental data is presented that support the theory. Future directions are outlined.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.
NASA Astrophysics Data System (ADS)
Phaneuf, Tiffany
The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.
NASA Astrophysics Data System (ADS)
Steefel, C. I.
2015-12-01
Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.
An Algorithm for Integrated Subsystem Embodiment and System Synthesis
NASA Technical Reports Server (NTRS)
Lewis, Kemper
1997-01-01
Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.
Optical engineering: understanding optical system by experiments
NASA Astrophysics Data System (ADS)
Scharf, Toralf
2017-08-01
Students have to be educated in theoretical and practical matters. Only one of them does not allow attacking complex problems in research, development, and management. After their study, students should be able to design, construct and analyze technical problems at highest levels of complexity. Who never experienced the difficulty of setting up measurements will not be able to understand, plan and manage such complex tasks in her/his future career. At EPFL a course was developed for bachelor education and is based on three pillars: concrete actions (enactive) to be done by the students, a synthesis of their work by writing a report (considered as the iconic part) and inputs from the teacher to generalize the findings and link it to a possible complete abstract description (symbolic). Intensive tutoring allowed an intermodal transfer between these categories. This EIS method originally introduced by Jerome Bruner for small children is particular well adapted for engineer education for which theoretical understanding often is not enough. The symbiosis of ex-cathedra lecture and practical work in a classroom-like situation presents an innovative step towards integrated learning that complements perfectly more abstract course principles like online courses.
Factors influencing efficient structure of fuel and energy complex
NASA Astrophysics Data System (ADS)
Sidorova, N. G.; Novikova, S. A.
2017-10-01
The development of the Russian fuel-energy complex is a priority for the national economic policy, and the Far East is a link between Russia and the Asia-Pacific region. Large-scale engineering of numerous resources of the Far East will force industrial development, increase living standard and strengthen Russia’s position in the global energy market. So, revealing the factors which influence rational structure of the fuel-energy complex is very urgent nowadays. With the use of depth analysis of development tendencies of the complex and its problems the authors show ways of its efficiency improvement.
Solving bi-level optimization problems in engineering design using kriging models
NASA Astrophysics Data System (ADS)
Xia, Yi; Liu, Xiaojie; Du, Gang
2018-05-01
Stackelberg game-theoretic approaches are applied extensively in engineering design to handle distributed collaboration decisions. Bi-level genetic algorithms (BLGAs) and response surfaces have been used to solve the corresponding bi-level programming models. However, the computational costs for BLGAs often increase rapidly with the complexity of lower-level programs, and optimal solution functions sometimes cannot be approximated by response surfaces. This article proposes a new method, namely the optimal solution function approximation by kriging model (OSFAKM), in which kriging models are used to approximate the optimal solution functions. A detailed example demonstrates that OSFAKM can obtain better solutions than BLGAs and response surface-based methods, and at the same time reduce the workload of computation remarkably. Five benchmark problems and a case study of the optimal design of a thin-walled pressure vessel are also presented to illustrate the feasibility and potential of the proposed method for bi-level optimization in engineering design.
NASA Astrophysics Data System (ADS)
Yotsuyanagi, Takao; Ikeda, Senri; Suzuki, Katsuhiko; Kobayashi, Hiroshi; Sakuraba, Hiroshi; Shoji, Akira; Itoh, Masahiko
Creativity is the most fundamental keyword for engineers to solve the various problems in manufacturing products. This engineering “learning” cannot be achieved without the real experiences, especially by the teens who have the curiosity to know everything. New educational program has been innovated in Miyagi National College of Technology. This new curriculum started as “03C” in 2003. It involves two laboratories for mixed-departments type grouping, which intend to cultivate the creative ability for the 2nd year students in College Course and the 1st year students in Advanced Course as Engineering Design. This paper presents the trial of the new educational program on the cultivating creative ability designed for teen-agers, and discusses the processes in detail, results and further problems. This program will progress still more with continuous improvement of manufacturing subjects in cooperative with educational-industrial complex.
Advanced Techniques for Ultrasonic Imaging in the Presence of Material and Geometrical Complexity
NASA Astrophysics Data System (ADS)
Brath, Alexander Joseph
The complexity of modern engineering systems is increasing in several ways: advances in materials science are leading to the design of materials which are optimized for material strength, conductivity, temperature resistance etc., leading to complex material microstructure; the combination of additive manufacturing and shape optimization algorithms are leading to components with incredibly intricate geometrical complexity; and engineering systems are being designed to operate at larger scales in ever harsher environments. As a result, at the same time that there is an increasing need for reliable and accurate defect detection and monitoring capabilities, many of the currently available non-destructive evaluation techniques are rendered ineffective by this increasing material and geometrical complexity. This thesis addresses the challenges posed by inspection and monitoring problems in complex engineering systems with a three-part approach. In order to address material complexities, a model of wavefront propagation in anisotropic materials is developed, along with efficient numerical techniques to solve for the wavefront propagation in inhomogeneous, anisotropic material. Since material and geometrical complexities significantly affect the ability of ultrasonic energy to penetrate into the specimen, measurement configurations are tailored to specific applications which utilize arrays of either piezoelectric (PZT) or electromagnetic acoustic transducers (EMAT). These measurement configurations include novel array architectures as well as the exploration of ice as an acoustic coupling medium. Imaging algorithms which were previously developed for isotropic materials with simple geometry are adapted to utilize the more powerful wavefront propagation model and novel measurement configurations.
1977-06-21
7. AUTHOR(#) 6. CONTRACT OR GRANT NUMBER(#) PILA /UDERIAN 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK...mechanically complex (i.e. contains an internal combustion engine) and/or comes in direct support of the aircraft is managed and maintained by the AIMD. The...an internal combustion engine. Accordingly, only the Aero 33D/E Trailer, Aero 51B Trailer, 21A/C Bomb Skid, and Aero 47A Weapons Loader are maintained
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
NASA Astrophysics Data System (ADS)
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.
Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas
2012-01-01
Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.
Ordinal optimization and its application to complex deterministic problems
NASA Astrophysics Data System (ADS)
Yang, Mike Shang-Yu
1998-10-01
We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.
Towards Engineering Biological Systems in a Broader Context.
Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P
2016-02-27
Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
75 FR 22753 - Federal Advisory Committee; Defense Science Board; Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... Deputy Secretary of Defense; the Under Secretary of Defense for Acquisition, Technology and Logistics... complex technology problems facing the Department of Defense in such areas as research, engineering, and... those areas to strengthen national security. No matter shall be assigned to the Board for its...
Problems in the Context Evaluation of Individualized Courses
ERIC Educational Resources Information Center
Plomp, Tjeerd; Van der Meer, Adri
1977-01-01
The development of the Individualized Study System (ISS) in The Netherlands from 1970 to 1975 is reviewed and a case study for first-year engineering is described. A classification of ISS courses illustrates the complexity of the system, with advice offered on the management of individualized study systems. (Author/LBH)
ERIC Educational Resources Information Center
Meyer, Jan H. F.; Knight, David B.; Callaghan, David P.; Baldock, Tom E.
2015-01-01
Threshold concepts are transformative, integrative, and provocative; understanding these difficult concepts allows students to be capable of solving advanced problems. This investigation and evaluation of a metacognitive curricular approach explore variation in students' and teachers' discernment of structural complexity of concepts and its…
Advanced Interactive Web Technologies in Industry Training.
ERIC Educational Resources Information Center
Vassileva, Tania; Astinov, Ilario; Bojkov, Dimitar; Tchoumatchenko, Vassiliy; Scholten, Ulrich; Furnadziev, Ivan
Today, faced with the problems of global competition, increasing costs, and complex production engineering, a company can only be successfully managed if the employees are motivated and highly qualified. To cope with this demand the new educational scheme for cost-effective retraining, lifelong learning and distance education at the workplace…
ERIC Educational Resources Information Center
McCright, Aaron M.
2012-01-01
Promoting sustainability and dealing with complex environmental problems like climate change demand a citizenry with considerable scientific and quantitative literacy. In particular, students in the STEM disciplines of (biophysical) science, technology, engineering, and mathematics need to develop interdisciplinary skills that help them understand…
Interdisciplinary Curriculum Development in Hospital Methods Improvement. Final Report.
ERIC Educational Resources Information Center
Watt, John R.
The major purpose of this project was to develop a "package" curriculum of Hospital Methods Improvement techniques for college students in health related majors. The elementary Industrial Engineering methods for simplifying work and saving labor were applied to the hospital environment and its complex of problems. The report's…
Examination of the Computational Thinking Skills of Students
ERIC Educational Resources Information Center
Korucu, Agah Tugrul; Gencturk, Abdullah Tarik; Gundogdu, Mustafa Mucahit
2017-01-01
Computational thinking is generally considered as a kind of analytical way of thinking. According to Wings (2008) it shares with mathematical thinking, engineering thinking and scientific thinking in the general ways in which we may use for solving a problem, designing and evaluating complex systems or understanding computability and intelligence…
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin
Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.
NASA Technical Reports Server (NTRS)
2001-01-01
Analytical Mechanics Associates, Inc. (AMA), of Hampton, Virginia, created the EZopt software application through Small Business Innovation Research (SBIR) funding from NASA's Langley Research Center. The new software is a user-friendly tool kit that provides quick and logical solutions to complex optimal control problems. In its most basic form, EZopt converts process data into math equations and then proceeds to utilize those equations to solve problems within control systems. EZopt successfully proved its advantage when applied to short-term mission planning and onboard flight computer implementation. The technology has also solved multiple real-life engineering problems faced in numerous commercial operations. For instance, mechanical engineers use EZopt to solve control problems with robots, while chemical plants implement the application to overcome situations with batch reactors and temperature control. In the emerging field of commercial aerospace, EZopt is able to optimize trajectories for launch vehicles and perform potential space station- keeping tasks. Furthermore, the software also helps control electromagnetic devices in the automotive industry.
Berry, Roberta M; Borenstein, Jason; Butera, Robert J
2013-06-01
This manuscript describes a pilot study in ethics education employing a problem-based learning approach to the study of novel, complex, ethically fraught, unavoidably public, and unavoidably divisive policy problems, called "fractious problems," in bioscience and biotechnology. Diverse graduate and professional students from four US institutions and disciplines spanning science, engineering, humanities, social science, law, and medicine analyzed fractious problems employing "navigational skills" tailored to the distinctive features of these problems. The students presented their results to policymakers, stakeholders, experts, and members of the public. This approach may provide a model for educating future bioscientists and bioengineers so that they can meaningfully contribute to the social understanding and resolution of challenging policy problems generated by their work.
USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment. Number 25.
1976-10-29
is necessary to consider the problem of diffraction at a_cylindrical cavity. Some methods of solving this problem become very un- wieldy, when...applied to such a cavity of large wave dimensions, even with the aid of a digital computer. In the simpler Watson method , the series represent- ing the...potential of cylindrical waves is transformed to an integral in the complex plane and evaluated as the sum of residues. A difficulty in this method
Dynamic optimization of chemical processes using ant colony framework.
Rajesh, J; Gupta, K; Kusumakar, H S; Jayaraman, V K; Kulkarni, B D
2001-11-01
Ant colony framework is illustrated by considering dynamic optimization of six important bench marking examples. This new computational tool is simple to implement and can tackle problems with state as well as terminal constraints in a straightforward fashion. It requires fewer grid points to reach the global optimum at relatively very low computational effort. The examples with varying degree of complexities, analyzed here, illustrate its potential for solving a large class of process optimization problems in chemical engineering.
On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems
NASA Astrophysics Data System (ADS)
Mahmoud, Gamal M.
Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.
Software engineering methodologies and tools
NASA Technical Reports Server (NTRS)
Wilcox, Lawrence M.
1993-01-01
Over the years many engineering disciplines have developed, including chemical, electronic, etc. Common to all engineering disciplines is the use of rigor, models, metrics, and predefined methodologies. Recently, a new engineering discipline has appeared on the scene, called software engineering. For over thirty years computer software has been developed and the track record has not been good. Software development projects often miss schedules, are over budget, do not give the user what is wanted, and produce defects. One estimate is there are one to three defects per 1000 lines of deployed code. More and more systems are requiring larger and more complex software for support. As this requirement grows, the software development problems grow exponentially. It is believed that software quality can be improved by applying engineering principles. Another compelling reason to bring the engineering disciplines to software development is productivity. It has been estimated that productivity of producing software has only increased one to two percent a year in the last thirty years. Ironically, the computer and its software have contributed significantly to the industry-wide productivity, but computer professionals have done a poor job of using the computer to do their job. Engineering disciplines and methodologies are now emerging supported by software tools that address the problems of software development. This paper addresses some of the current software engineering methodologies as a backdrop for the general evaluation of computer assisted software engineering (CASE) tools from actual installation of and experimentation with some specific tools.
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2010-09-01
This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.
Engineering: Defining and differentiating its unique culture
NASA Astrophysics Data System (ADS)
Pilotte, Mary K.
The world of work for engineering professionals is changing. At a rapid pace, experienced engineers are exiting the workforce due to retirement of the Baby Boomer generation, while at the same time the problems facing engineers are increasingly complex and frequently global in nature. For firms to protect their knowledge assets, they must ensure that acquired understandings are shared among their engineering work groups. Engineering teaching and learning in the workplace (i.e., knowledge sharing), is a social activity that resides in a social context governed by the professional engineering culture. This quantitative study uses Hofstede's Organizational Cultural Values Model (Hofstede, Neuijen, Ohayv, & Sanders, 1990) to examine dimensions of engineering culture in the workplace, producing a central tendency profile of engineering's cultural practices. Further, it explores through hypotheses if demographic differentiators, including birth generation, gender, race, industry sector of employment, and engineering discipline, play roles in forming engineering cultural practices. Results both corroborate aspects of Hofstede's model and assert new understandings relative to factors influencing dimensions of engineering practice. Outcomes are discussed in terms of their potential impact on industrial knowledge sharing and formation of beneficial engineering cultures.
Model verification of mixed dynamic systems. [POGO problem in liquid propellant rockets
NASA Technical Reports Server (NTRS)
Chrostowski, J. D.; Evensen, D. A.; Hasselman, T. K.
1978-01-01
A parameter-estimation method is described for verifying the mathematical model of mixed (combined interactive components from various engineering fields) dynamic systems against pertinent experimental data. The model verification problem is divided into two separate parts: defining a proper model and evaluating the parameters of that model. The main idea is to use differences between measured and predicted behavior (response) to adjust automatically the key parameters of a model so as to minimize response differences. To achieve the goal of modeling flexibility, the method combines the convenience of automated matrix generation with the generality of direct matrix input. The equations of motion are treated in first-order form, allowing for nonsymmetric matrices, modeling of general networks, and complex-mode analysis. The effectiveness of the method is demonstrated for an example problem involving a complex hydraulic-mechanical system.
Hoffmann, Michael; Borenstein, Jason
2014-03-01
As a committee of the National Academy of Engineering recognized, ethics education should foster the ability of students to analyze complex decision situations and ill-structured problems. Building on the NAE's insights, we report about an innovative teaching approach that has two main features: first, it places the emphasis on deliberation and on self-directed, problem-based learning in small groups of students; and second, it focuses on understanding ill-structured problems. The first innovation is motivated by an abundance of scholarly research that supports the value of deliberative learning practices. The second results from a critique of the traditional case-study approach in engineering ethics. A key problem with standard cases is that they are usually described in such a fashion that renders the ethical problem as being too obvious and simplistic. The practitioner, by contrast, may face problems that are ill-structured. In the collaborative learning environment described here, groups of students use interactive and web-based argument visualization software called "AGORA-net: Participate - Deliberate!". The function of the software is to structure communication and problem solving in small groups. Students are confronted with the task of identifying possible stakeholder positions and reconstructing their legitimacy by constructing justifications for these positions in the form of graphically represented argument maps. The argument maps are then presented in class so that these stakeholder positions and their respective justifications become visible and can be brought into a reasoned dialogue. Argument mapping provides an opportunity for students to collaborate in teams and to develop critical thinking and argumentation skills.
NASA Astrophysics Data System (ADS)
Rajora, M.; Zou, P.; Xu, W.; Jin, L.; Chen, W.; Liang, S. Y.
2017-12-01
With the rapidly changing demands of the manufacturing market, intelligent techniques are being used to solve engineering problems due to their ability to handle nonlinear complex problems. For example, in the conventional production of stator cores, it is relied upon experienced engineers to make an initial plan on the number of compensation sheets to be added to achieve uniform pressure distribution throughout the laminations. Additionally, these engineers must use their experience to revise the initial plans based upon the measurements made during the production of stator core. However, this method yields inconsistent results as humans are incapable of storing and analysing large amounts of data. In this article, first, a Neural Network (NN), trained using a hybrid Levenberg-Marquardt (LM) - Genetic Algorithm (GA), is developed to assist the engineers with the decision-making process. Next, the trained NN is used as a fitness function in an optimization algorithm to find the optimal values of the initial compensation sheet plan with the aim of minimizing the required revisions during the production of the stator core.
Traffic engineering and regenerator placement in GMPLS networks with restoration
NASA Astrophysics Data System (ADS)
Yetginer, Emre; Karasan, Ezhan
2002-07-01
In this paper we study regenerator placement and traffic engineering of restorable paths in Generalized Multipro-tocol Label Switching (GMPLS) networks. Regenerators are necessary in optical networks due to transmission impairments. We study a network architecture where there are regenerators at selected nodes and we propose two heuristic algorithms for the regenerator placement problem. Performances of these algorithms in terms of required number of regenerators and computational complexity are evaluated. In this network architecture with sparse regeneration, offline computation of working and restoration paths is studied with bandwidth reservation and path rerouting as the restoration scheme. We study two approaches for selecting working and restoration paths from a set of candidate paths and formulate each method as an Integer Linear Programming (ILP) prob-lem. Traffic uncertainty model is developed in order to compare these methods based on their robustness with respect to changing traffic patterns. Traffic engineering methods are compared based on number of additional demands due to traffic uncertainty that can be carried. Regenerator placement algorithms are also evaluated from a traffic engineering point of view.
NASA Astrophysics Data System (ADS)
Lamont, L. A.; Chaar, L.; Toms, C.
2010-03-01
Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.
The Detection of Radiated Modes from Ducted Fan Engines
NASA Technical Reports Server (NTRS)
Farassat, F.; Nark, Douglas M.; Thomas, Russell H.
2001-01-01
The bypass duct of an aircraft engine is a low-pass filter allowing some spinning modes to radiate outside the duct. The knowledge of the radiated modes can help in noise reduction, as well as the diagnosis of noise generation mechanisms inside the duct. We propose a nonintrusive technique using a circular microphone array outside the engine measuring the complex noise spectrum on an arc of a circle. The array is placed at various axial distances from the inlet or the exhaust of the engine. Using a model of noise radiation from the duct, an overdetermined system of linear equations is constructed for the complex amplitudes of the radial modes for a fixed circumferential mode. This system of linear equations is generally singular, indicating that the problem is illposed. Tikhonov regularization is employed to solve this system of equations for the unknown amplitudes of the radiated modes. An application of our mode detection technique using measured acoustic data from a circular microphone array is presented. We show that this technique can reliably detect radiated modes with the possible exception of modes very close to cut-off.
Challenges in translating vascular tissue engineering to the pediatric clinic.
Duncan, Daniel R; Breuer, Christopher K
2011-10-14
The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.
Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.
1988-01-01
The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.
NASA Technical Reports Server (NTRS)
Seldner, K.
1976-01-01
The development of control systems for jet engines requires a real-time computer simulation. The simulation provides an effective tool for evaluating control concepts and problem areas prior to actual engine testing. The development and use of a real-time simulation of the Pratt and Whitney F100-PW100 turbofan engine is described. The simulation was used in a multi-variable optimal controls research program using linear quadratic regulator theory. The simulation is used to generate linear engine models at selected operating points and evaluate the control algorithm. To reduce the complexity of the design, it is desirable to reduce the order of the linear model. A technique to reduce the order of the model; is discussed. Selected results between high and low order models are compared. The LQR control algorithms can be programmed on digital computer. This computer will control the engine simulation over the desired flight envelope.
Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1986-01-01
The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.
NASA Astrophysics Data System (ADS)
Chang, Pei-Fen; Wang, Dau-Chung
2011-08-01
In May 2008, the worst earthquake in more than three decades struck southwest China, killing more than 80,000 people. The complexity of this earthquake makes it an ideal case study to clarify the intertwined issues of ethics in engineering and to help cultivate critical thinking skills. This paper first explores the need to encourage engineering ethics within a cross-cultural context. Next, it presents a systematic model for designing an engineering ethics curriculum based on moral development theory and ethic dilemma analysis. Quantitative and qualitative data from students' oral and written work were collected and analysed to determine directions for improvement. The paper also presents results of an assessment of this interdisciplinary engineering ethics course. This investigation of a disaster is limited strictly to engineering ethics education; it is not intended to assign blame, but rather to spark debate about ethical issues.
The development and application of CFD technology in mechanical engineering
NASA Astrophysics Data System (ADS)
Wei, Yufeng
2017-12-01
Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.
ERIC Educational Resources Information Center
Darabi, Abbas; Nelson, David W.
2004-01-01
Thirty six senior students in chemical engineering were randomly assigned to three treatment groups in an experimental study that examined the impact of different instructional strategies for troubleshooting malfunctions in a computer-based simulation of a chemical processing plant. In two groups, different types of worked examples,…
Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University
ERIC Educational Resources Information Center
Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej
2016-01-01
Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…
Cybernation and Man--A Course Development Project. Final Report.
ERIC Educational Resources Information Center
Parkman, Ralph
An inter-disciplinary course entitled "Cybernation and Man," developed by the School of Engineering at San Jose State College, tries to evaluate the many problems posed to man by the expansion of his technology. It is contended in the course that the most effective approach to control of complex social phenomena within a technological…
Using Immersive Virtual Environments for Certification
NASA Technical Reports Server (NTRS)
Lutz, R.; Cruz-Neira, C.
1998-01-01
Immersive virtual environments (VEs) technology has matured to the point where it can be utilized as a scientific and engineering problem solving tool. In particular, VEs are starting to be used to design and evaluate safety-critical systems that involve human operators, such as flight and driving simulators, complex machinery training, and emergency rescue strategies.
ERIC Educational Resources Information Center
Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju; Lefler, Mason
2017-01-01
Computer-based scaffolding assists students as they generate solutions to complex problems, goals, or tasks, helping increase and integrate their higher order skills in the process. However, despite decades of research on scaffolding in STEM (science, technology, engineering, and mathematics) education, no existing comprehensive meta-analysis has…
The Search Is on: Engendering Faculty Diversity through More Effective Search and Recruitment
ERIC Educational Resources Information Center
Bilimoria, Diana; Buch, Kimberly K.
2010-01-01
The underrepresentation of women and minority faculty in the science, technology, engineering, and mathematics (STEM) disciplines continues to be a major concern to university leaders, policy makers, and scientists. While a number of complex factors across the entire academic pipeline play significant roles in this problem, important contributing…
Application Analysis of BIM Technology in Metro Rail Transit
NASA Astrophysics Data System (ADS)
Liu, Bei; Sun, Xianbin
2018-03-01
With the rapid development of urban roads, especially the construction of subway rail transit, it is an effective way to alleviate urban traffic congestion. There are limited site space, complex resource allocation, tight schedule, underground pipeline complex engineering problems. BIM technology, three-dimensional visualization, parameterization, virtual simulation and many other advantages can effectively solve these technical problems. Based on the project of Shenzhen Metro Line 9, BIM technology is innovatively researched throughout the lifecycle of BIM technology in the context of the metro rail transit project rarely used at this stage. The model information file is imported into Navisworks for four-dimensional animation simulation to determine the optimum construction scheme of the shield machine. Subway construction management application platform based on BIM and private cloud technology, the use of cameras and sensors to achieve electronic integration, dynamic monitoring of the operation and maintenance of underground facilities. Make full use of the many advantages of BIM technology to improve the engineering quality and construction efficiency of the subway rail transit project and to complete the operation and maintenance.
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
A software engineering approach to expert system design and verification
NASA Technical Reports Server (NTRS)
Bochsler, Daniel C.; Goodwin, Mary Ann
1988-01-01
Software engineering design and verification methods for developing expert systems are not yet well defined. Integration of expert system technology into software production environments will require effective software engineering methodologies to support the entire life cycle of expert systems. The software engineering methods used to design and verify an expert system, RENEX, is discussed. RENEX demonstrates autonomous rendezvous and proximity operations, including replanning trajectory events and subsystem fault detection, onboard a space vehicle during flight. The RENEX designers utilized a number of software engineering methodologies to deal with the complex problems inherent in this system. An overview is presented of the methods utilized. Details of the verification process receive special emphasis. The benefits and weaknesses of the methods for supporting the development life cycle of expert systems are evaluated, and recommendations are made based on the overall experiences with the methods.
Interdisciplinary optimum design. [of aerospace structures
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.
1986-01-01
Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.
On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
NASA Astrophysics Data System (ADS)
Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich
2018-01-01
The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.
Stock-car racing makes intuitive physicists
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-03-01
Formula One races involve cars festooned with gadgets and complex electronic devices, in which millions of dollars are spent refining a vehicle's aerodynamics and reducing its weight. But in events run by America's National Association of Stock Car Auto Racing (NASCAR), cars hurtle round an oval track at speeds of about 300 km h-1 without the help of the complex sensors that are employed in Formula One cars. To avoid crashing, drivers must make their own adjustments to track conditions, engine problems and the traffic around them.
Ti-48Al-2Cr-2Nb Evaluated Under Fretting Conditions
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.
2002-01-01
Material parameters govern many of the design decisions in any engineering task. When two materials are in contact and microscopically small, relative motions (either vibratory or creeping) occur, and fretting fatigue can result. Fretting fatigue is a material response influenced by the materials in contact as well as by such variables as loading and vibratory conditions. Fretting produces fresh, clean interacting surfaces and induces adhesion, galling, and wear in the contact zone. Time, money, and materials are unnecessarily wasted when galling and wear result in excessive fretting fatigue that leads to poorly performing, unreliable mechanical systems. Fretting fatigue is a complex problem of significant interest to aircraft engine manufacturers. It can occur in a variety of engine components. Numerous approaches, depending on the component and the operating conditions, have been taken to address the fretting problems. The components of interest in this investigation were the low-pressure turbine blades and disks. The blades in this case were titanium aluminide, Ti-48Al-2Cr- 2Nb, and the disk was a nickel-base superalloy, Inconel 718 (IN 718). A concern for these airfoils is the fretting in fitted interfaces at the dovetail where the blade and disk are connected. Careful design can reduce fretting in most cases, but not completely eliminate it, because the airfoils frequently have a skewed (angled) blade-disk dovetail attachment, which leads to a complex stress state. Furthermore, the local stress state becomes more complex when the influence of the metal-metal contact and the edge of contact are considered.
NASA Technical Reports Server (NTRS)
Chu, R. W.; Mitchell, C. M.; Govindaraj, T.
1989-01-01
This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, C. I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel fl ow problem.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel ow problem.
NASA Technical Reports Server (NTRS)
Miller, David N.
1989-01-01
The NASA Johnson Space Center's new Multiprogram Control Center (MPCC) addresses the control requirements of complex STS payloads as well as unmanned vehicles. An account is given of the relationship of the MPCC to the STS Mission Control Center, with a view to significant difficulties that may be encountered and solutions thus far devised for generic problems. Examples of MPCC workstation applications encompass telemetry decommutation, engineering unit conversion, data-base management, trajectory processing, and flight design.
NASA Technical Reports Server (NTRS)
Mckay, Charles W.; Feagin, Terry; Bishop, Peter C.; Hallum, Cecil R.; Freedman, Glenn B.
1987-01-01
The principle focus of one of the RICIS (Research Institute for Computing and Information Systems) components is computer systems and software engineering in-the-large of the lifecycle of large, complex, distributed systems which: (1) evolve incrementally over a long time; (2) contain non-stop components; and (3) must simultaneously satisfy a prioritized balance of mission and safety critical requirements at run time. This focus is extremely important because of the contribution of the scaling direction problem to the current software crisis. The Computer Systems and Software Engineering (CSSE) component addresses the lifestyle issues of three environments: host, integration, and target.
Educational-research laboratory "electric circuits" on the base of digital technologies
NASA Astrophysics Data System (ADS)
Koroteyev, V. I.; Florentsev, V. V.; Florentseva, N. I.
2017-01-01
The problem of research activity of trainees' activation in the educational-research laboratory "Electric Circuits" using innovative methodological solutions and digital technologies is considered. The main task is in creation of the unified experimental research information-educational environment "Electrical Engineering". The problems arising during the developing and application of the modern software and hardware, experimental and research stands and digital control and measuring systems are presented. This paper presents the main stages of development and creation of educational-research laboratory "Electrical Circuits" at the Department of Electrical Engineering of NRNU MEPhI. The authors also consider the analogues of the described research complex offered by various educational institutions and companies. The analysis of their strengths and weaknesses, on which the advantages of the proposed solution are based, is held.
Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling
NASA Technical Reports Server (NTRS)
Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw
2005-01-01
The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.
Clarens, Andres F.; Peters, Catherine A.
2016-01-01
Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695
Clarens, Andres F; Peters, Catherine A
2016-10-01
Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.
NASA Astrophysics Data System (ADS)
Bernstein, Michael J.; Foley, Rider W.; Bennett, Ira
2014-07-01
Scientists, engineers, and policy analysts commonly suggest governance regimes for technology to maximize societal benefits and minimize negative societal and environmental impacts of innovation processes. Yet innovation is a complex socio-technical process that does not respond predictably to modification. Our human propensity to exclude complexity when attempting to manage systems often results in insufficient, one-dimensional solutions. The tendency to exclude complexity (1) reinforces itself by diminishing experience and capacity in the design of simple solutions to complex problems, and (2) leads to solutions that do not address the identified problem. To address the question of how to avoid a complexity- exclusion trap, this article operationalizes a post-normal science framework to assist in the enhancement or design of science policy proposals. A literature review of technological fixes, policy panaceas, and knowledge-to-action gaps is conducted to survey examples of post-normal science frameworks. Next, an operational framework is used to assess the case of a proposed international nanotechnology advisory board. The framework reveals that the board addresses a slice of the broader, more complex problem of nanotechnology governance. We argue that while the formation of an international advisory board is not problematic in-and-of-itself, it is symptomatic of and plays into a complexity- exclusion trap. We offer researchers, policy analysts, and decision-makers three recommendations that incorporate a more appropriate level of complexity into governance proposals.
Neural network application to comprehensive engine diagnostics
NASA Technical Reports Server (NTRS)
Marko, Kenneth A.
1994-01-01
We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.
Distributed Health Monitoring System for Reusable Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.
2009-01-01
The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.
General algebraic method applied to control analysis of complex engine types
NASA Technical Reports Server (NTRS)
Boksenbom, Aaron S; Hood, Richard
1950-01-01
A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.
Engineering scalable biological systems
2010-01-01
Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204
Improve Problem Solving Skills through Adapting Programming Tools
NASA Technical Reports Server (NTRS)
Shaykhian, Linda H.; Shaykhian, Gholam Ali
2007-01-01
There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.
ERIC Educational Resources Information Center
Vajravelu, Kuppalapalle; Muhs, Tammy
2016-01-01
Successful science and engineering programs require proficiency and dynamics in mathematics classes to enhance the learning of complex subject matter with a sufficient amount of practical problem solving. Improving student performance and retention in mathematics classes requires inventive approaches. At the University of Central Florida (UCF) the…
Quantum speedup in solving the maximal-clique problem
NASA Astrophysics Data System (ADS)
Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang
2018-03-01
The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.
Carnot cycle at finite power: attainability of maximal efficiency.
Allahverdyan, Armen E; Hovhannisyan, Karen V; Melkikh, Alexey V; Gevorkian, Sasun G
2013-08-02
We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power.
Daxini, S D; Prajapati, J M
2014-01-01
Meshfree methods are viewed as next generation computational techniques. With evident limitations of conventional grid based methods, like FEM, in dealing with problems of fracture mechanics, large deformation, and simulation of manufacturing processes, meshfree methods have gained much attention by researchers. A number of meshfree methods have been proposed till now for analyzing complex problems in various fields of engineering. Present work attempts to review recent developments and some earlier applications of well-known meshfree methods like EFG and MLPG to various types of structure mechanics and fracture mechanics applications like bending, buckling, free vibration analysis, sensitivity analysis and topology optimization, single and mixed mode crack problems, fatigue crack growth, and dynamic crack analysis and some typical applications like vibration of cracked structures, thermoelastic crack problems, and failure transition in impact problems. Due to complex nature of meshfree shape functions and evaluation of integrals in domain, meshless methods are computationally expensive as compared to conventional mesh based methods. Some improved versions of original meshfree methods and other techniques suggested by researchers to improve computational efficiency of meshfree methods are also reviewed here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Davinia B.; Blackburn, Mark R.
As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with informationmore » on driving factors. This allows a systems engineer to make informed decisions and examine “what-if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Finally, validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.« less
Rizzo, Davinia B.; Blackburn, Mark R.
2018-03-30
As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with informationmore » on driving factors. This allows a systems engineer to make informed decisions and examine “what-if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Finally, validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.« less
NASA Astrophysics Data System (ADS)
Allphin, Devin
Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative benefits of this technique. For the offline approximation, latin hypercube sampling (LHS) was used for design space filling across four (4) independent design variable degrees of freedom (DOF). Flow solutions at the mapped test sites were converged using STAR-CCM+ with aerodynamic forces from the CFD models then functionally approximated using Kriging interpolation. For the closed-form approximation, the problem was interpreted as an ideal 2-D converging-diverging (C-D) nozzle, where aerodynamic forces were directly mapped by application of the Euler equation solutions for isentropic compression/expansion. A cost-weighting procedure was finally established for creating model-selective discretionary logic, with a synthesized parallel simulation resource summary provided.
Network representations of angular regions for electromagnetic scattering
2017-01-01
Network modeling in electromagnetics is an effective technique in treating scattering problems by canonical and complex structures. Geometries constituted of angular regions (wedges) together with planar layers can now be approached with the Generalized Wiener-Hopf Technique supported by network representation in spectral domain. Even if the network representations in spectral planes are of great importance by themselves, the aim of this paper is to present a theoretical base and a general procedure for the formulation of complex scattering problems using network representation for the Generalized Wiener Hopf Technique starting basically from the wave equation. In particular while the spectral network representations are relatively well known for planar layers, the network modelling for an angular region requires a new theory that will be developed in this paper. With this theory we complete the formulation of a network methodology whose effectiveness is demonstrated by the application to a complex scattering problem with practical solutions given in terms of GTD/UTD diffraction coefficients and total far fields for engineering applications. The methodology can be applied to other physics fields. PMID:28817573
NASA Astrophysics Data System (ADS)
Lebedev, A. A.; Ivanova, E. G.; Komleva, V. A.; Klokov, N. M.; Komlev, A. A.
2017-01-01
The considered method of learning the basics of microelectronic circuits and systems amplifier enables one to understand electrical processes deeper, to understand the relationship between static and dynamic characteristics and, finally, bring the learning process to the cognitive process. The scheme of problem-based learning can be represented by the following sequence of procedures: the contradiction is perceived and revealed; the cognitive motivation is provided by creating a problematic situation (the mental state of the student), moving the desire to solve the problem, to raise the question "why?", the hypothesis is made; searches for solutions are implemented; the answer is looked for. Due to the complexity of architectural schemes in the work the modern methods of computer analysis and synthesis are considered in the work. Examples of engineering by students in the framework of students' scientific and research work of analog circuits with improved performance based on standard software and software developed at the Department of Microelectronics MEPhI.
Methods for compressible multiphase flows and their applications
NASA Astrophysics Data System (ADS)
Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.
2018-06-01
This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.
Architecture independent environment for developing engineering software on MIMD computers
NASA Technical Reports Server (NTRS)
Valimohamed, Karim A.; Lopez, L. A.
1990-01-01
Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.
Re-examination of cumulative fatigue damage analysis - An engineering perspective
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1986-01-01
A method which has evolved in the laboratories for the past 20 yr is re-examined with the intent of improving its accuracy and simplicity of application to engineering problems. Several modifications are introduced both to the analytical formulation of the Damage Curve Approach, and to the procedure for modifying this approach to achieve a Double Linear Damage Rule formulation which immensely simplifies the calculation. Improvements are also introduced in the treatment of mean stress for determining fatigue life of the individual events that enter into a complex loading history. While the procedure is completely consistent with the results of numerous two level tests that have been conducted on many materials, it is still necessary to verify applicability to complex loading histories. Caution is expressed that certain phenomenon can also influence the applicability - for example, unusual deformation and fracture modes inherent in complex loading especially if stresses are multiaxial. Residual stresses at crack tips, and metallurgical factors are also important in creating departures from the cumulative damage theories; examples of departures are provided.
Re-examination of cumulative fatigue damage analysis: An engineering perspective
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1986-01-01
A method which has evolved in our laboratories for the past 20 yr is re-examined with the intent of improving its accuracy and simplicity of application to engineering problems. Several modifications are introduced both to the analytical formulation of the Damage Curve Approach, and to the procedure for modifying this approach to achieve a Double Linear Damage Rule formulation which immensely simplifies the calculation. Improvements are also introduced in the treatment of mean stress for determining fatigue life of the individual events that enter into a complex loading history. While the procedure is completely consistent with the results of numerous two level tests that have been conducted on many materials, it is still necessary to verify applicability to complex loading histories. Caution is expressed that certain phenomena can also influence the applicability - for example, unusual deformation and fracture modes inherent in complex loading - especially if stresses are multiaxial. Residual stresses at crack tips, and metallurgical factors are also important in creating departures from the cumulative damage theories; examples of departures are provided.
Flux-vector splitting algorithm for chain-rule conservation-law form
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.
1991-01-01
A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.
Engaging the creative to better build science into water resource solutions
NASA Astrophysics Data System (ADS)
Klos, P. Z.
2014-12-01
Psychological thought suggests that social engagement with an environmental problem requires 1) cognitive understanding of the problem, 2) emotional engagement with the problem, and 3) perceived efficacy that there is something we can do to solve the problem. Within the water sciences, we form problem-focused, cross-disciplinary teams to help address complex water resource problems, but often we only seek teammates from other disciplines within the realms of engineering and the natural/social sciences. Here I argue that this science-centric focus fails to fully solve these water resource problems, and often the science goes unheard because it is heavily cognitive and lacks the ability to effectively engage the audience through crucial social-psychological aspects of emotion and efficacy. To solve this, future cross-disciplinary collaborations that seek to include creative actors from the worlds of art, humanities, and design can begin to provide a much stronger overlap of the cognition, emotion, and efficacy needed to communicate the science, engage the audience, and create the solutions needed to solve or world's most complex water resource problems. Disciplines across the arts, sciences, and engineering all bring unique strengths that, through collaboration, allow for uniquely creative modes of art-science overlap that can engage people through additions of emotion and efficacy that compliment the science and go beyond the traditional cognitive approach. I highlight examples of this art-science overlap in action and argue that water resource collaborations like these will be more likely to have their hydrologic science accepted and applied by those who decide on water resource solutions. For this Pop-up Talk session, I aim to share the details of this proposed framework in the context of my own research and the work of others. I hope to incite discussion regarding the utility and relevance of this framework as a future option for other water resource collaboratives working to solve hydrologic issues across the globe.
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1978-01-01
The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.
Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.
2012-01-01
An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering.
NASA Astrophysics Data System (ADS)
Nuh, M. Z.; Nasir, N. F.
2017-08-01
Biodiesel as a fuel comprised of mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oil and animal fat. Biodiesel production is complex process which need systematic design and optimization. However, no case study using the process system engineering (PSE) elements which are superstructure optimization of batch process, it involves complex problems and uses mixed-integer nonlinear programming (MINLP). The PSE offers a solution to complex engineering system by enabling the use of viable tools and techniques to better manage and comprehend the complexity of the system. This study is aimed to apply the PSE tools for the simulation of biodiesel process and optimization and to develop mathematical models for component of the plant for case A, B, C by using published kinetic data. Secondly, to determine economic analysis for biodiesel production, focusing on heterogeneous catalyst. Finally, the objective of this study is to develop the superstructure for biodiesel production by using heterogeneous catalyst. The mathematical models are developed by the superstructure and solving the resulting mixed integer non-linear model and estimation economic analysis by using MATLAB software. The results of the optimization process with the objective function of minimizing the annual production cost by batch process from case C is 23.2587 million USD. Overall, the implementation a study of process system engineering (PSE) has optimized the process of modelling, design and cost estimation. By optimizing the process, it results in solving the complex production and processing of biodiesel by batch.
Kumar, Kuppusamy Senthil; Studniarek, Michał; Heinrich, Benoît; Arabski, Jacek; Schmerber, Guy; Bowen, Martin; Boukari, Samy; Beaurepaire, Eric; Dreiser, Jan; Ruben, Mario
2018-03-01
The realization of spin-crossover (SCO)-based applications requires study of the spin-state switching characteristics of SCO complex molecules within nanostructured environments, especially on surfaces. Except for a very few cases, the SCO of a surface-bound thin molecular film is either quenched or heavily altered due to: (i) molecule-surface interactions and (ii) differing intermolecular interactions in films relative to the bulk. By fabricating SCO complexes on a weakly interacting surface, the interfacial quenching problem is tackled. However, engineering intermolecular interactions in thin SCO active films is rather difficult. Here, a molecular self-assembly strategy is proposed to fabricate thin spin-switchable surface-bound films with programmable intermolecular interactions. Molecular engineering of the parent complex system [Fe(H 2 B(pz) 2 ) 2 (bpy)] (pz = pyrazole, bpy = 2,2'-bipyridine) with a dodecyl (C 12 ) alkyl chain yields a classical amphiphile-like functional and vacuum-sublimable charge-neutral Fe II complex, [Fe(H 2 B(pz) 2 ) 2 (C 12 -bpy)] (C 12 -bpy = dodecyl[2,2'-bipyridine]-5-carboxylate). Both the bulk powder and 10 nm thin films sublimed onto either quartz glass or SiO x surfaces of the complex show comparable spin-state switching characteristics mediated by similar lamellar bilayer like self-assembly/molecular interactions. This unprecedented observation augurs well for the development of SCO-based applications, especially in molecular spintronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fuel-Air Mixing and Combustion in Scramjets. Chapter 6
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.
2006-01-01
At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.
Virtual Construction of Space Habitats: Connecting Building Information Models (BIM) and SysML
NASA Technical Reports Server (NTRS)
Polit-Casillas, Raul; Howe, A. Scott
2013-01-01
Current trends in design, construction and management of complex projects make use of Building Information Models (BIM) connecting different types of data to geometrical models. This information model allow different types of analysis beyond pure graphical representations. Space habitats, regardless their size, are also complex systems that require the synchronization of many types of information and disciplines beyond mass, volume, power or other basic volumetric parameters. For this, the state-of-the-art model based systems engineering languages and processes - for instance SysML - represent a solid way to tackle this problem from a programmatic point of view. Nevertheless integrating this with a powerful geometrical architectural design tool with BIM capabilities could represent a change in the workflow and paradigm of space habitats design applicable to other aerospace complex systems. This paper shows some general findings and overall conclusions based on the ongoing research to create a design protocol and method that practically connects a systems engineering approach with a BIM architectural and engineering design as a complete Model Based Engineering approach. Therefore, one hypothetical example is created and followed during the design process. In order to make it possible this research also tackles the application of IFC categories and parameters in the aerospace field starting with the application upon the space habitats design as way to understand the information flow between disciplines and tools. By building virtual space habitats we can potentially improve in the near future the way more complex designs are developed from very little detail from concept to manufacturing.
Tucker, Lindsay
2014-01-01
Each year, the developed world is flooded with complex new medical technologies, from robotic prosthetics to remote-controlled aspirin implants. Meanwhile, only about 10% of health research funds are spent addressing the pressing problems of developing nations, although these countries make up 93% of the worldwide burden of disease. In short, while a small fraction of the world pops brand-name pharmaceuticals, the majority suffers from poor sanitation, contaminated drinking water, preventable disease, and child mortality.
Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization
NASA Astrophysics Data System (ADS)
Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane
2003-01-01
The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
NASA Technical Reports Server (NTRS)
Tian, Jianhui; Porter, Adam; Zelkowitz, Marvin V.
1992-01-01
Identification of high cost modules has been viewed as one mechanism to improve overall system reliability, since such modules tend to produce more than their share of problems. A decision tree model was used to identify such modules. In this current paper, a previously developed axiomatic model of program complexity is merged with the previously developed decision tree process for an improvement in the ability to identify such modules. This improvement was tested using data from the NASA Software Engineering Laboratory.
Human performance models for computer-aided engineering
NASA Technical Reports Server (NTRS)
Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)
1989-01-01
This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.
NASA Astrophysics Data System (ADS)
Chen, Xiaojie
2015-09-01
The puzzle of cooperation exists widely in the realistic world, including biological, social, and engineering systems. How to solve the cooperation puzzle has received considerable attention in recent years [1]. Evolutionary game theory provides a common mathematical framework to study the problem of cooperation. In principle, these practical biological, social, or engineering systems can be described by complex game models composed of multiple autonomous individuals with mutual interactions. And generally there exists a dilemma for the evolution of cooperation in the game systems.
NASA Astrophysics Data System (ADS)
Andreev, Vladimir
2018-03-01
The paper deals with the problem of determining the stress state of the pressure vessel (PV) with considering the concrete temperature inhomogeneity. Such structures are widely used in heat power engineering, for example, in nuclear power engineering. The structures of such buildings are quite complex and a comprehensive analysis of the stress state in them can be carried out either by numerical or experimental methods. However, a number of fundamental questions can be solved on the basis of simplified models, in particular, studies of the effect on the stressed state of the inhomogeneity caused by the temperature field.
Bridging Water Resources Policy and Environmental Engineering in the Classroom at Cornell University
NASA Astrophysics Data System (ADS)
Walter, M. T.; Shaw, S. B.; Seifert, S.; Schwarz, T.
2006-12-01
Current university undergraduate students in environmental sciences and engineering are the next generation of environmental protection practitioners. Recognizing this, Cornell's Biological and Environmental Engineering department has developed a popular class, Watershed Engineering (BEE 473), specifically designed to bridge the too-common gap between water resources policy and state-of-art science and technology. Weekly homework assignments are to design real-life solutions to actual water resources problems, often with the objective of applying storm water policies to local situations. Where appropriate, usually in conjunction with recent amendments to the Federal Clean Water Act, this course introduces water resource protection tools and concepts developed in the Cornell Soil and Water Lab. Here we present several examples of how we build bridges between university classrooms and the complex world of water resources policy.
Optimization in the systems engineering process
NASA Technical Reports Server (NTRS)
Lemmerman, Loren A.
1993-01-01
The essential elements of the design process consist of the mission definition phase that provides the system requirements, the conceptual design, the preliminary design and finally the detailed design. Mission definition is performed largely by operations analysts in conjunction with the customer. The result of their study is handed off to the systems engineers for documentation as the systems requirements. The document that provides these requirements is the basis for the further design work of the design engineers at the Lockheed-Georgia Company. The design phase actually begins with conceptual design, which is generally conducted by a small group of engineers using multidisciplinary design programs. Because of the complexity of the design problem, the analyses are relatively simple and generally dependent on parametric analyses of the configuration. The result of this phase is a baseline configuration from which preliminary design may be initiated.
NASA Astrophysics Data System (ADS)
Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming
2017-05-01
The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.
Data-driven non-linear elasticity: constitutive manifold construction and problem discretization
NASA Astrophysics Data System (ADS)
Ibañez, Ruben; Borzacchiello, Domenico; Aguado, Jose Vicente; Abisset-Chavanne, Emmanuelle; Cueto, Elias; Ladeveze, Pierre; Chinesta, Francisco
2017-11-01
The use of constitutive equations calibrated from data has been implemented into standard numerical solvers for successfully addressing a variety problems encountered in simulation-based engineering sciences (SBES). However, the complexity remains constantly increasing due to the need of increasingly detailed models as well as the use of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in computational mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,\\ldots ), whereas the second one consists of models that scientists have extracted from collected, either natural or synthetic, data. Data-driven (or data-intensive) simulation consists of directly linking experimental data to computers in order to perform numerical simulations. These simulations will employ laws, universally recognized as epistemic, while minimizing the need of explicit, often phenomenological, models. The main drawback of such an approach is the large amount of required data, some of them inaccessible from the nowadays testing facilities. Such difficulty can be circumvented in many cases, and in any case alleviated, by considering complex tests, collecting as many data as possible and then using a data-driven inverse approach in order to generate the whole constitutive manifold from few complex experimental tests, as discussed in the present work.
SHARIT, JOSEPH; HERNÁNDEZ, MARIO A.; CZAJA, SARA J.; PIROLLI, PETER
2009-01-01
This study investigated the influences of knowledge, particularly Internet, Web browser, and search engine knowledge, as well as cognitive abilities on older adult information seeking on the Internet. The emphasis on aspects of cognition was informed by a modeling framework of search engine information-seeking behavior. Participants from two older age groups were recruited: twenty people in a younger-old group (ages 60–70) and twenty people in an older-old group (ages 71–85). Ten younger adults (ages 18–39) served as a comparison group. All participants had at least some Internet search experience. The experimental task consisted of six realistic search problems, all involving information related to health and well-being and which varied in degree of complexity. The results indicated that though necessary, Internet-related knowledge was not sufficient in explaining information-seeking performance, and suggested that a combination of both knowledge and key cognitive abilities is important for successful information seeking. In addition, the cognitive abilities that were found to be critical for task performance depended on the search problem’s complexity. Also, significant differences in task performance between the younger and the two older age groups were found on complex, but not on simple problems. Overall, the results from this study have implications for instructing older adults on Internet information seeking and for the design of Web sites. PMID:20011130
An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.
Boon, Mieke
2017-10-01
In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Özyurt, Özcan
2015-01-01
Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…
Designing collective behavior in a termite-inspired robot construction team.
Werfel, Justin; Petersen, Kirstin; Nagpal, Radhika
2014-02-14
Complex systems are characterized by many independent components whose low-level actions produce collective high-level results. Predicting high-level results given low-level rules is a key open challenge; the inverse problem, finding low-level rules that give specific outcomes, is in general still less understood. We present a multi-agent construction system inspired by mound-building termites, solving such an inverse problem. A user specifies a desired structure, and the system automatically generates low-level rules for independent climbing robots that guarantee production of that structure. Robots use only local sensing and coordinate their activity via the shared environment. We demonstrate the approach via a physical realization with three autonomous climbing robots limited to onboard sensing. This work advances the aim of engineering complex systems that achieve specific human-designed goals.
Risk Management using Dependency Stucture Matrix
NASA Astrophysics Data System (ADS)
Petković, Ivan
2011-09-01
An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.
MH-53J/M Pave Low III/IV Systems Engineering. Case Study
2010-01-01
53H Black Knight ............................................................................................. 15 Figure 10. General Dynamics YF-16...boundary was defined; • they used disciplined methodologies for complex systems ; • human systems integration was accomplished; • problem solving ...wartime) • Power plant: 2× General Electric T64-GE-100 turboshaft, 4,330 shaft horsepower ( shp ) each Performance • Maximum speed: 170 knots (196
NASA Astrophysics Data System (ADS)
Vickers, Ken
2005-03-01
The education and training of the workforce needed to assure global competitiveness of American industry in high technology areas, along with the proper role of various disciplines in that educational process, is currently being re-examined. Several academic areas in science and engineering have reported results from such studies that revealed several broad themes of educational need that span and cross the boundaries of science and engineering. They included greater attention to and the development of team-building skills, personal or interactive skills, creative ability, and a business or entrepreneurial where-with-all. We will report in this paper the results of a fall 2000 Department of Education FIPSE grant to implement changes in its graduate physics program to address these issues. The proposal goal was to produce next-generation physics graduate students that are trained to evaluate and overcome complex technical problems by their participation in courses emphasizing the commercialization of technology research. To produce next-generation physics graduates who have learned to work with their student colleagues for their mutual success in an industrial-like group setting. And finally, to produce graduates who can lead interdisciplinary groups in solving complex problems in their career field.
Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion
Lawton, Thomas J.; Rosenzweig, Amy C.
2017-01-01
Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16–13 s−1, these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock. PMID:27366961
Billoud, B; Kontic, M; Viari, A
1996-01-01
At the DNA/RNA level, biological signals are defined by a combination of spatial structures and sequence motifs. Until now, few attempts had been made in writing general purpose search programs that take into account both sequence and structure criteria. Indeed, the most successful structure scanning programs are usually dedicated to particular structures and are written using general purpose programming languages through a complex and time consuming process where the biological problem of defining the structure and the computer engineering problem of looking for it are intimately intertwined. In this paper, we describe a general representation of structures, suitable for database scanning, together with a programming language, Palingol, designed to manipulate it. Palingol has specific data types, corresponding to structural elements-basically helices-that can be arranged in any way to form a complex structure. As a consequence of the declarative approach used in Palingol, the user should only focus on 'what to search for' while the language engine takes care of 'how to look for it'. Therefore, it becomes simpler to write a scanning program and the structural constraints that define the required structure are more clearly identified. PMID:8628670
Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.
Lawton, Thomas J; Rosenzweig, Amy C
2016-08-03
Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.
Problem reporting and tracking system: a systems engineering challenge
NASA Astrophysics Data System (ADS)
Cortez, Vasco; Lopez, Bernhard; Whyborn, Nicholas; Price, Roberto; Hernandez, Octavio; Gairing, Stefan; Barrios, Emilio; Alarcon, Hector
2016-08-01
The problem reporting and tracking system (PRTS) is the ALMA system to register operational problems, track unplanned corrective operational maintenance activities and follow the investigations of all problems or possible issues arisen in operation activities. After the PRTS implementation appeared several issues that finally produced a lack in the management of the investigations, problems to produce KPIs, loss of information, among others. In order to improve PRTS, we carried out a process to review the status of system, define a set of modifications and implement a solution; all according to the stakeholder requirements. In this work, we shall present the methodology applied to define a set of concrete actions at the basis of understanding the complexity of the problem, which finally got to improve the interactions between different subsystems and enhance the communication at different levels.
Fundamental differences between optimization code test problems in engineering applications
NASA Technical Reports Server (NTRS)
Eason, E. D.
1984-01-01
The purpose here is to suggest that there is at least one fundamental difference between the problems used for testing optimization codes and the problems that engineers often need to solve; in particular, the level of precision that can be practically achieved in the numerical evaluation of the objective function, derivatives, and constraints. This difference affects the performance of optimization codes, as illustrated by two examples. Two classes of optimization problem were defined. Class One functions and constraints can be evaluated to a high precision that depends primarily on the word length of the computer. Class Two functions and/or constraints can only be evaluated to a moderate or a low level of precision for economic or modeling reasons, regardless of the computer word length. Optimization codes have not been adequately tested on Class Two problems. There are very few Class Two test problems in the literature, while there are literally hundreds of Class One test problems. The relative performance of two codes may be markedly different for Class One and Class Two problems. Less sophisticated direct search type codes may be less likely to be confused or to waste many function evaluations on Class Two problems. The analysis accuracy and minimization performance are related in a complex way that probably varies from code to code. On a problem where the analysis precision was varied over a range, the simple Hooke and Jeeves code was more efficient at low precision while the Powell code was more efficient at high precision.
Complex Mobile Independent Power Station for Urban Areas
NASA Astrophysics Data System (ADS)
Tunik, A. A.; Tolstoy, M. Y.
2017-11-01
A new type of a complex mobile independent power station developed in the Department of Engineering Communications and Life-Support Systems of Irkutsk National Research Technical University, is presented in this article. This station contains only solar panel, wind turbine, accumulator, diesel generator and microbial fuel cell for to produce electric energy, heat pump and solar collector to generate heat energy and also wastewater treatment plant and new complex control system. The complex mobile independent power station is intended for full power supply of a different kind of consumers located even in remote areas thus reducing their dependence from centralized energy supply systems, decrease the fossil fuel consumption, improve the environment of urban areas and solve the problems of the purification of industrial and municipal wastewater.
Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.
2017-01-01
Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling. PMID:28813442
Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R
2017-01-01
We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.
Software Performs Complex Design Analysis
NASA Technical Reports Server (NTRS)
2008-01-01
Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.
Expert vs. novice: Problem decomposition/recomposition in engineering design
NASA Astrophysics Data System (ADS)
Song, Ting
The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.
Automated reverse engineering of nonlinear dynamical systems.
Bongard, Josh; Lipson, Hod
2007-06-12
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated "reverse engineering" approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future.
Design and multi-physics optimization of rotary MRF brakes
NASA Astrophysics Data System (ADS)
Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan
2018-03-01
Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.
NASA Astrophysics Data System (ADS)
Pozharskiy, Dmitry
In recent years a nonlinear, acoustic metamaterial, named granular crystals, has gained prominence due to its high accessibility, both experimentally and computationally. The observation of a wide range of dynamical phenomena in the system, due to its inherent nonlinearities, has suggested its importance in many engineering applications related to wave propagation. In the first part of this dissertation, we explore the nonlinear dynamics of damped-driven granular crystals. In one case, we consider a highly nonlinear setting, also known as a sonic vacuum, and derive a nonlinear analogue of a linear spectrum, corresponding to resonant periodic propagation and antiresonances. Experimental studies confirm the computational findings and the assimilation of experimental data into a numerical model is demonstrated. In the second case, global bifurcations in a precompressed granular crystal are examined, and their involvement in the appearance of chaotic dynamics is demonstrated. Both results highlight the importance of exploring the nonlinear dynamics, to gain insight into how a granular crystal responds to different external excitations. In the second part, we borrow established ideas from coarse-graining of dynamical systems, and extend them to optimization problems. We combine manifold learning algorithms, such as Diffusion Maps, with stochastic optimization methods, such as Simulated Annealing, and show that we can retrieve an ensemble, of few, important parameters that should be explored in detail. This framework can lead to acceleration of convergence when dealing with complex, high-dimensional optimization, and could potentially be applied to design engineered granular crystals.
Bioengineering approaches to study multidrug resistance in tumor cells
Fallica, Brian; Makin, Guy
2015-01-01
The ability of cancer cells to become resistant to chemotherapeutic agents is a major challenge for the treatment of malignant tumors. Several strategies have emerged to attempt to inhibit chemoresistance, but the fact remains that resistance is a problem for every effective anticancer drug. The first part of this review will focus on the mechanisms of chemoresistance. It is important to understand the environmental cues, transport limitations and the cellular signaling pathways associated with chemoresistance before we can hope to effectively combat it. The second part of this review focuses on the work that needs to be done moving forward. Specifically, this section focuses on the necessity of translational research and interdisciplinary directives. It is critical that the expertise of oncologists, biologists, and engineers be brought together to attempt to tackle the problem. This discussion is from an engineering perspective, as the dialogue between engineers and other cancer researchers is the most challenging due to non-overlapping background knowledge. Chemoresistance is a complex and devastating process, meaning that we urgently need sophisticated methods to study the process of how cells become resistant. PMID:21387035
Centrifugal Compressor Aeroelastic Analysis Code
NASA Astrophysics Data System (ADS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
ERIC Educational Resources Information Center
Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward
2016-01-01
The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…
A shape-based inter-layer contours correspondence method for ICT-based reverse engineering
Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui
2017-01-01
The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research. PMID:28489867
A shape-based inter-layer contours correspondence method for ICT-based reverse engineering.
Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui
2017-01-01
The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research.
A flipped mode teaching approach for large and advanced electrical engineering courses
NASA Astrophysics Data System (ADS)
Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby
2018-05-01
A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper presents a novel selective flipped mode teaching approach designed for large and advanced courses that has two aspects: (i) it provides selective flipping of a few topics, while delivering others in traditional face-to-face teaching, to provide an effective trade-off between the two approaches according to the demands of individual topics and (ii) it introduces technology-enabled live in-class quizzes to obtain instant feedback and facilitate collaborative problem-solving exercises. The proposed approach was implemented for a large fourth year course in electrical power engineering over three successive years and the criteria for selecting between the flipped mode teaching and traditional teaching modes are outlined. Results confirmed that the proposed approach improved both students' academic achievements and their engagement in the course, without overloading them during the teaching period.
Understanding immunology via engineering design: the role of mathematical prototyping.
Klinke, David J; Wang, Qing
2012-01-01
A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and "fitness for use," can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.
NASA Astrophysics Data System (ADS)
Cała, Marek; Borowski, Marek
2018-03-01
The AGH University of Science and Technology collaborates closely with other universities, economic units, governmental and local administrative bodies. International cooperation plays a very important role in the academic research. The AGH University of Science and Technology has signed many collaboration agreements. They aim at multidimensional cooperation in the fields of education and academic research. AGH UST has always focused on collaboration with business and industry. In recent years, the global economy is undergoing massive transformations, what creates new challenges to companies and educational institutions that cater to the needs of industry. The expansion of business enterprises is largely dependent on their employees' expertise, skills and levels of competence. Certified engineers are provided by universities. Therefore, the qualifications of the graduates are determined by the curriculum and teaching methods, as well as the available educational and research facilities. Of equal importance is the qualified academic staff. Human activities in the field of engineering require finding solutions to problems of various nature and magnitude. An engineer's work consists in the design, construction, modification and maintenance of useful devices, processes and systems, using scientific and technical knowledge. In order to design complex engineering solutions, an engineer uses his imagination, experience, analytical skills, logical reasoning and makes conscious use of his knowledge. At the Faculty of Mining and Geoengineering of the AGH University of Science and Technology in Cracow, 15 engineers from Vietnam are studying Mining and Geology at the second-cycle studies (specialization: mine ventilation). The solutions proposed in the field of the engineers' education guarantee that foreign students gain both engineering knowledge and problem-solving skills. Therefore, the study programme was complemented by a series of practical aspects.
Bio-inspired group modeling and analysis for intruder detection in mobile sensor/robotic networks.
Fu, Bo; Xiao, Yang; Liang, Xiannuan; Philip Chen, C L
2015-01-01
Although previous bio-inspired models have concentrated on invertebrates (such as ants), mammals such as primates with higher cognitive function are valuable for modeling the increasingly complex problems in engineering. Understanding primates' social and communication systems, and applying what is learned from them to engineering domains is likely to inspire solutions to a number of problems. This paper presents a novel bio-inspired approach to determine group size by researching and simulating primate society. Group size does matter for both primate society and digital entities. It is difficult to determine how to group mobile sensors/robots that patrol in a large area when many factors are considered such as patrol efficiency, wireless interference, coverage, inter/intragroup communications, etc. This paper presents a simulation-based theoretical study on patrolling strategies for robot groups with the comparison of large and small groups through simulations and theoretical results.
Engineering healthcare as a service system.
Tien, James M; Goldschmidt-Clermont, Pascal J
2010-01-01
Engineering has and will continue to have a critical impact on healthcare; the application of technology-based techniques to biological problems can be defined to be technobiology applications. This paper is primarily focused on applying the technobiology approach of systems engineering to the development of a healthcare service system that is both integrated and adaptive. In general, healthcare services are carried out with knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Indeed, the engineering design of a healthcare system must recognize the fact that it is actually a complex integration of human-centered activities that is increasingly dependent on information technology and knowledge. Like any service system, healthcare can be considered to be a combination or recombination of three essential components - people (characterized by behaviors, values, knowledge, etc.), processes (characterized by collaboration, customization, etc.) and products (characterized by software, hardware, infrastructures, etc.). Thus, a healthcare system is an integrated and adaptive set of people, processes and products. It is, in essence, a system of systems which objectives are to enhance its efficiency (leading to greater interdependency) and effectiveness (leading to improved health). Integration occurs over the physical, temporal, organizational and functional dimensions, while adaptation occurs over the monitoring, feedback, cybernetic and learning dimensions. In sum, such service systems as healthcare are indeed complex, especially due to the uncertainties associated with the human-centered aspects of these systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation.
NASA Technical Reports Server (NTRS)
Korsmeyer, David; Schreiner, John
2002-01-01
This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.
Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.
Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee
2014-10-01
Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.
A centre-free approach for resource allocation with lower bounds
NASA Astrophysics Data System (ADS)
Obando, Germán; Quijano, Nicanor; Rakoto-Ravalontsalama, Naly
2017-09-01
Since complexity and scale of systems are continuously increasing, there is a growing interest in developing distributed algorithms that are capable to address information constraints, specially for solving optimisation and decision-making problems. In this paper, we propose a novel method to solve distributed resource allocation problems that include lower bound constraints. The optimisation process is carried out by a set of agents that use a communication network to coordinate their decisions. Convergence and optimality of the method are guaranteed under some mild assumptions related to the convexity of the problem and the connectivity of the underlying graph. Finally, we compare our approach with other techniques reported in the literature, and we present some engineering applications.
Integrating interface slicing into software engineering processes
NASA Technical Reports Server (NTRS)
Beck, Jon
1993-01-01
Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.
Putting the puzzle together: the role of ‘problem definition’ in complex clinical judgement
Cristancho, Sayra; Lingard, Lorelei; Forbes, Thomas; Ott, Michael; Novick, Richard
2017-01-01
CONTEXT We teach judgement in pieces; that is, we talk about each aspect separately (patient, plan, resources, technique, etc.). We also let trainees figure out how to put the pieces together. In complex situations, this might be problematic. Using data from a drawing-based study on surgeons’ experiences with complex situations, we explore the notion of ‘problem definition’ in real-world clinical judgement using the theoretical lens of systems engineering. METHODS ‘Emergence’, the sensitising concept for analysis, is rooted in two key systems premises: that person and context are inseparable and that what emerges is an act of choice. Via a ‘gallery walk’ we used these premises to perform analysis on individual drawings as well as cross-comparisons of multiple drawings. Our focus was to understand similarities and differences among the vantage points used by multiple surgeons. RESULTS In this paper we challenge two assumptions from current models of clinical judgement: that experts hold a fixed and static definition of the problem and that consequently the focus of the expert’s work is on solving the problem. Each situation described by our participants revealed different but complementary perspectives of what a surgical problem might come to be: from concerns about ensuring standard of care, to balancing personal emotions versus care choices, to coordinating resources, and to maintaining control while in the midst of personality clashes. CONCLUSION We suggest that it is only at the situation and system level, not at the individual level, that we are able to appreciate the nuances of defining the problem when experts make judgements during real-world complex situations. PMID:27943366
Putting the puzzle together: the role of 'problem definition' in complex clinical judgement.
Cristancho, Sayra; Lingard, Lorelei; Forbes, Thomas; Ott, Michael; Novick, Richard
2017-02-01
We teach judgement in pieces; that is, we talk about each aspect separately (patient, plan, resources, technique, etc.). We also let trainees figure out how to put the pieces together. In complex situations, this might be problematic. Using data from a drawing-based study on surgeons' experiences with complex situations, we explore the notion of 'problem definition' in real-world clinical judgement using the theoretical lens of systems engineering. 'Emergence', the sensitising concept for analysis, is rooted in two key systems premises: that person and context are inseparable and that what emerges is an act of choice. Via a 'gallery walk' we used these premises to perform analysis on individual drawings as well as cross-comparisons of multiple drawings. Our focus was to understand similarities and differences among the vantage points used by multiple surgeons. In this paper we challenge two assumptions from current models of clinical judgement: that experts hold a fixed and static definition of the problem and that consequently the focus of the expert's work is on solving the problem. Each situation described by our participants revealed different but complementary perspectives of what a surgical problem might come to be: from concerns about ensuring standard of care, to balancing personal emotions versus care choices, to coordinating resources, and to maintaining control while in the midst of personality clashes. We suggest that it is only at the situation and system level, not at the individual level, that we are able to appreciate the nuances of defining the problem when experts make judgements during real-world complex situations. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer
2006-03-01
able to analyze and design aircraft and missile guidance and control systems, including feedback stabilization schemes and stochastic processes, using ...Uncertainty modeling for robust control; Robust closed-loop stability and performance; Robust H- infinity control; Robustness check using mu-analysis...Controlled feedback (reduces noise) 3. Statistical group response (reduce pressure toward conformity) When used as a tool to study a complex problem
ERIC Educational Resources Information Center
Munoz-Organero, Mario; Ramirez, Gustavo A.; Merino, Pedro Munoz; Kloos, Carlos Delgado
2010-01-01
The use of swarm intelligence techniques in e-learning scenarios provides a way to combine simple interactions of individual students to solve a more complex problem. After getting some data from the interactions of the first students with a central system, the use of these techniques converges to a solution that the rest of the students can…
Efficient Reverse-Engineering of a Developmental Gene Regulatory Network
Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes
2012-01-01
Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms. PMID:22807664
Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model
NASA Technical Reports Server (NTRS)
Yakhot, A.; Staroselsky, I.; Orszag, S. A.
1994-01-01
Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.
Khan, Wasim S; Rayan, Faizal; Dhinsa, Baljinder S; Marsh, David
2012-01-01
The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.
Khan, Wasim S.; Rayan, Faizal; Dhinsa, Baljinder S.; Marsh, David
2012-01-01
The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery. PMID:25098363
Integration of PGD-virtual charts into an engineering design process
NASA Astrophysics Data System (ADS)
Courard, Amaury; Néron, David; Ladevèze, Pierre; Ballere, Ludovic
2016-04-01
This article deals with the efficient construction of approximations of fields and quantities of interest used in geometric optimisation of complex shapes that can be encountered in engineering structures. The strategy, which is developed herein, is based on the construction of virtual charts that allow, once computed offline, to optimise the structure for a negligible online CPU cost. These virtual charts can be used as a powerful numerical decision support tool during the design of industrial structures. They are built using the proper generalized decomposition (PGD) that offers a very convenient framework to solve parametrised problems. In this paper, particular attention has been paid to the integration of the procedure into a genuine engineering design process. In particular, a dedicated methodology is proposed to interface the PGD approach with commercial software.
Harnessing biomechanics to develop cartilage regeneration strategies.
Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C
2015-02-01
As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of chondrogenic cells. The challenging problem of enhanced integration of engineered cartilage with native cartilage is approached with both familiar and novel methods, such as lysyl oxidase (LOX). These diverse tissue engineering strategies all aim to build upon thorough biomechanical characterizations to produce functional neotissue that ultimately will help combat the pressing problem of cartilage degeneration. As our prior research is reviewed, we look to establish new pathways to comprehensively and effectively address the complex problems of musculoskeletal cartilage regeneration.
NASA Astrophysics Data System (ADS)
Powers, S. E.; DeWaters, J.; Dhaniyala, S.
2015-12-01
Engineers must take a leading role in addressing the challenges of mitigating climate change and adapting to the inevitable changes that our world is facing. Yet climate change classes targeting engineering students are scarce. Technical education must focus on the problem formulation and solutions that consider multiple, complex interactions between engineered systems and the Earth's climate system and recognize that transformation raises societal challenges, including trade-offs among benefits, costs, and risks. Moreover, improving engineering students' climate science literacy will require strategies that also inspire students' motivation to work toward their solution. A climate science course for engineers has been taught 5 semesters as part of a NASA Innovations in Climate Education program grant (NNXlOAB57A). The basic premise of this project was that effective instruction must incorporate scientifically-based knowledge and observations and foster critical thinking, problem solving, and decision-making skills. Lecture, in-class cooperative and computer-based learning and a semester project provide the basis for engaging students in evaluating effective mitigation and adaptation solutions. Policy and social issues are integrated throughout many of the units. The objective of this presentation is to highlight the content and pedagogical approach used in this class that helped to contribute to significant gains in engineering students' climate literacy and critical thinking competencies. A total of 89 students fully participated in a pre/post climate literacy questionnaire. As a whole, students demonstrated significant gains in climate-related content knowledge (p<0.001), affect (p<0.001), and behavior (p=0.002). Mean post scores were above a 'passing' cutoff (70%) for all three subscales. Assessment of semester project reports with a critical thinking rubric showed that the students did an excellent job of formulating problem statements and solutions in a manner that incorporated a multidimensional systems perspective. These skills are sometimes foreign to technically focused, number crunching engineering students, but are critical for using their engineering skills and profession to address climate change mitigation and adaptation strategies.
Nash equilibrium and multi criterion aerodynamic optimization
NASA Astrophysics Data System (ADS)
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Philip LaRoche
At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers aremore » of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.« less
System Engineering of Autonomous Space Vehicles
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis
2014-01-01
Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.
Gaihre, Bipin; Uswatta, Suren; Jayasuriya, Ambalangodage C.
2017-01-01
Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies. PMID:29156629
NASA Astrophysics Data System (ADS)
Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.
2015-06-01
Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.
Shuttle avionics software trials, tribulations and success
NASA Technical Reports Server (NTRS)
Henderson, O. L.
1985-01-01
The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.
NASA Astrophysics Data System (ADS)
Uchrin, Christoph; Krogmann, Uta; Gimenez, Daniel
2010-05-01
It is becoming increasingly apparent that environmental problems have become extremely complex, involving inter- and multidisciplinary expertise. Furthermore, the nature of environmental episodes requires practitioners who are flexible in designing appropriate solution approaches. As a result, there is a high demand for environmental engineering graduates in the professional sector as well as graduate schools. At Rutgers University, we have designed and are now delivering an undergraduate curriculum that melds a strong background in basic and applied sciences with a rigorous sequence of design oriented engineering courses, all focused on producing graduates who view the environment in a holistic sense, rather than a narrow, medium oriented manner. Since the implementation of the program in 2004 student numbers have doubled and half of the students graduate with honors. The undergraduate program is complemented by the new Environmental Engineering option of the Graduate Program in Environmental Sciences. The undergraduate program and the graduate option are served by a highly committed faculty of seven full-time members and one part-time member.
Astronomy Village Reaches for New Heights
NASA Astrophysics Data System (ADS)
Croft, S. K.; Pompea, S. M.
2007-12-01
We are developing a set of complex, multimedia-based instructional modules emphasizing technical and scientific issues related to Giant Segmented Mirror Telescope project. The modules" pedagogy will be open-ended and problem-based to promote development of problem-solving skills. Problem- based-learning modules that emphasize work on open-ended complex real world problems are particularly valuable in illustrating and promoting a perspective on the process of science and engineering. Research in this area shows that these kinds of learning experiences are superior to more conventional student training in terms of gains in student learning. The format for the modules will be based on the award-winning multi-media educational Astronomy Village products that present students with a simulated environment: a mountaintop community surrounded by a cluster of telescopes, satellite receivers, and telecommunication towers. A number of "buildings" are found in the Village, such as a library, a laboratory, and an auditorium. Each building contains an array of information sources and computer simulations. Students navigate through their research with a mentor via imbedded video. The first module will be "Observatory Site Selection." Students will use astronomical data, basic weather information, and sky brightness data to select the best site for an observatory. Students will investigate the six GSMT sites considered by the professional site selection teams. Students will explore weather and basic site issues (e.g., roads and topography) using remote sensing images, computational fluid dynamics results, turbulence profiles, and scintillation of the different sites. Comparison of student problem solving with expert problem solving will also be done as part of the module. As part of a site selection team they will have to construct a case and present it on why they chose a particular site. The second module will address aspects of system engineering and optimization for a GSMT-like telescope. Basic system issues will be addressed and studied. These might include various controls issues and optimization issues such as mirror figure, mirror support stability, and wind loading trade-offs. Using system modeling and system optimization results from existing and early GSMT trade studies, we will create a simulation where students are part of an engineering design and optimization team. They will explore the cost/performance/schedule issues associate with the GSMT design.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)
2000-01-01
The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.
Simulation software: engineer processes before reengineering.
Lepley, C J
2001-01-01
People make decisions all the time using intuition. But what happens when you are asked: "Are you sure your predictions are accurate? How much will a mistake cost? What are the risks associated with this change?" Once a new process is engineered, it is difficult to analyze what would have been different if other options had been chosen. Simulating a process can help senior clinical officers solve complex patient flow problems and avoid wasted efforts. Simulation software can give you the data you need to make decisions. The author introduces concepts, methodologies, and applications of computer aided simulation to illustrate their use in making decisions to improve workflow design.
Design Optimization Toolkit: Users' Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro
The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less
Space Shuttle Plume and Plume Impingement Study
NASA Technical Reports Server (NTRS)
Tevepaugh, J. A.; Penny, M. M.
1977-01-01
The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.
A steam inerting system for hydrogen disposal for the Vandenberg Shuttle
NASA Technical Reports Server (NTRS)
Belknap, Stuart B.
1988-01-01
A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.
NASA Astrophysics Data System (ADS)
Osman, Sharifah; Mohammad, Shahrin; Abu, Mohd Salleh
2015-05-01
Mathematics and engineering are inexorably and significantly linked and essentially required in analyzing and accessing thought to make good judgment when dealing in complex and varied engineering problems. A study in the current engineering education curriculum to explore how the critical thinking and mathematical thinking relates to one another, is therefore timely crucial. Unfortunately, there is not much information available explicating about the link. This paper aims to report findings of a critical review as well as to provide brief description of an on-going research aimed to investigate the dispositions of critical thinking and the relationship and integration between critical thinking and mathematical thinking during the execution of civil engineering tasks. The first part of the paper reports an in-depth review on these matters based on rather limited resources. The review showed a considerable form of congruency between these two perspectives of thinking, with some prevalent trends of engineering workplace tasks, problems and challenges. The second part describes an on-going research to be conducted by the researcher to investigate rigorously the relationship and integration between these two types of thinking within the perspective of civil engineering tasks. A reasonably close non-participant observations and semi-structured interviews will be executed for the pilot and main stages of the study. The data will be analyzed using constant comparative analysis in which the grounded theory methodology will be adopted. The findings will serve as a useful grounding for constructing a substantive theory revealing the integral relationship between critical thinking and mathematical thinking in the real civil engineering practice context. The substantive theory, from an angle of view, is expected to contribute some additional useful information to the engineering program outcomes and engineering education instructions, aligns with the expectations of engineering program outcomes set by the Engineering Accreditation Council.
Challenges in the Verification of Reinforcement Learning Algorithms
NASA Technical Reports Server (NTRS)
Van Wesel, Perry; Goodloe, Alwyn E.
2017-01-01
Machine learning (ML) is increasingly being applied to a wide array of domains from search engines to autonomous vehicles. These algorithms, however, are notoriously complex and hard to verify. This work looks at the assumptions underlying machine learning algorithms as well as some of the challenges in trying to verify ML algorithms. Furthermore, we focus on the specific challenges of verifying reinforcement learning algorithms. These are highlighted using a specific example. Ultimately, we do not offer a solution to the complex problem of ML verification, but point out possible approaches for verification and interesting research opportunities.
Toolsets Maintain Health of Complex Systems
NASA Technical Reports Server (NTRS)
2010-01-01
First featured in Spinoff 2001, Qualtech Systems Inc. (QSI), of Wethersfield, Connecticut, adapted its Testability, Engineering, and Maintenance System (TEAMS) toolset under Small Business Innovation Research (SBIR) contracts from Ames Research Center to strengthen NASA's systems health management approach for its large, complex, and interconnected systems. Today, six NASA field centers utilize the TEAMS toolset, including TEAMS-Designer, TEAMS-RT, TEAMATE, and TEAMS-RDS. TEAMS is also being used on industrial systems that generate power, carry data, refine chemicals, perform medical functions, and produce semiconductor wafers. QSI finds TEAMS can lower costs by decreasing problems requiring service by 30 to 50 percent.
Modelling DC responses of 3D complex fracture networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskardes, Gungor Didem; Weiss, Chester Joseph
Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.
Modelling DC responses of 3D complex fracture networks
Beskardes, Gungor Didem; Weiss, Chester Joseph
2018-03-01
Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.
High Level Rule Modeling Language for Airline Crew Pairing
NASA Astrophysics Data System (ADS)
Mutlu, Erdal; Birbil, Ş. Ilker; Bülbül, Kerem; Yenigün, Hüsnü
2011-09-01
The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing. Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrada, J.J.; Osborne-Lee, I.W.; Grizzaffi, P.A.
Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applicationsmore » of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.« less
Leadership emergence in engineering design teams.
Guastello, Stephen J
2011-01-01
Leaders emerge from leaderless groups as part of a more complex emerging social structure. Several studies have shown that the emerging structure is aptly described by a swallowtail catastrophe model where the control parameters differ depending on whether creative problem solving, production, coordination-intensive, or emergency management groups are involved. The present study explored creative problem solving further where the participants were engaged in real-world tasks extending over several months rather than short laboratory tasks. Participants were engineering students who were organized into groups of to people who designed, built, and tested a prototype product that would solve a real-world problem. At the th week of work they completed a questionnaire indicating who was most like the leader of their group, second most like the leader, along with other questions about individuals' contributions to the group process. Results showed that the swallowtail model (R = .) exhibited a strong advantage over the linear alternative model (R = .) for predicting leadership emergence. The three control variables were control of the task, creative contributions to the group's work, and facilitating the creative contributions of others.
Model Based Autonomy for Robust Mars Operations
NASA Technical Reports Server (NTRS)
Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)
1998-01-01
Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.
Mammalian designer cells: Engineering principles and biomedical applications.
Xie, Mingqi; Fussenegger, Martin
2015-07-01
Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synchronization in complex networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arenas, A.; Diaz-Guilera, A.; Moreno, Y.
Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analyticalmore » approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.« less
Examining Young Students' Problem Scoping in Engineering Design
ERIC Educational Resources Information Center
Watkins, Jessica; Spencer, Kathleen; Hammer, David
2014-01-01
Problem scoping--determining the nature and boundaries of a problem--is an essential aspect of the engineering design process. Some studies from engineering education suggest that beginning students tend to skip problem scoping or oversimplify a problem. However, the ways these studies often characterize students' problem scoping often do not…
V-TECS Guide for Automobile Engine Performance Technician.
ERIC Educational Resources Information Center
Meyer, Calvin F.; Benson, Robert T.
This guide is intended to assist teachers responsible for instructing future auto engine performance technicians. The following topics are covered: diagnosing engine performance problems, ignition system problems, fuel system problems, mechanically related performance problems, emission control system problems, and electronic control systems;…
A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem
ERIC Educational Resources Information Center
Sidhu, S. Manjit; Selvanathan, N.
2005-01-01
Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…
ERIC Educational Resources Information Center
Cor, Ken; Alves, Cecilia; Gierl, Mark J.
2008-01-01
This review describes and evaluates a software add-in created by Frontline Systems, Inc., that can be used with Microsoft Excel 2007 to solve large, complex test assembly problems. The combination of Microsoft Excel 2007 with the Frontline Systems Premium Solver Platform is significant because Microsoft Excel is the most commonly used spreadsheet…
A Dynamic Security Framework for Ambient Intelligent Systems: A Smart-Home Based eHealth Application
NASA Astrophysics Data System (ADS)
Compagna, Luca; El Khoury, Paul; Massacci, Fabio; Saidane, Ayda
Providing context-dependent security services is an important challenge for ambient intelligent systems. The complexity and the unbounded nature of such systems make it difficult even for the most experienced and knowledgeable security engineers, to foresee all possible situations and interactions when developing the system. In order to solve this problem context based self- diagnosis and reconfiguration at runtime should be provided.
NASA Astrophysics Data System (ADS)
Mashkov, O. A.; Samborskiy, I. I.
2009-10-01
A bundle of papers dealing with functionally stable systems requires the necessity of analyzing of obtained results and their understanding in a general context of cybernetic's development and applications. Description of this field of science, main results and perspectives of the new theory of functionally stability of dynamical systems concerning the problem of remote-piloted aircrafts engineering using pseudosatellite technologies are proposed in the paper.
Tissue Culture in Microgravity
NASA Technical Reports Server (NTRS)
Pellis, Neal R.; Duray, Paul H.; Hatfill, Steven J.
1997-01-01
Attempts to simulate normal tissue micro-environments in vitro have been thwarted by the complexity and plasticity of the extracellular matrix, which is important in regulating cytoskeletal and nuclear matrix proteins. Gravity is one of the problems, tending to separate components that should be kept together. For space shuttle experiments, NASA engineers devised a double-walled rotating bioreactor, which is proving to be a useful tissue culture device on earth as well as in space.
Translation Analysis on Civil Engineering Text Produced by Machine Translator
NASA Astrophysics Data System (ADS)
Sutopo, Anam
2018-02-01
Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex) thought the result is informative. The translated material must be edited by the professional translator.
Rational Solutions for Challenges of the New Mellennium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gover, J.; Guray, P.G.
We have reviewed ten major public problems challenging our Nation as it enters the new millennium. These are defense, healthcare costs, education, aging population, energy and environment, crime, low productivity growth services, income distribution, regulations, and infrastructure. These problems share several features. First, each is so large, if it were soIved; it would have major impact on the U.S. economy. Second, each is resident in a socioeconomic system containing non-linear feedback loops and an adaptive human element. Third, each can only be solved by our political system, yet these problems are not responsive to piecemeal problem solving, the approach traditionallymore » used by policy makers. However, unless each problem is addressed in the context of the system in which it resides, the solution maybe worse than the problem. Our political system is immersed in reams of disconnected, unintelligible information skewed by various special interests to suggest policies favoring their particular needs. Help is needed, if rational solutions that serve public interests are to be forged for these ten probIems, The simulation and modeIing tools of physical scientists, engineers, economists, social scientists, public policy experts, and others, bolstered by the recent explosive growth in massively parallel computing power, must be blended together to synthesize models of the complex systems in which these problems are resident. These models must simulate the seemingly chaotic human element inherent in these systems and support policymakers in making informed decKlons about the future. We propose altering the policy development process by incorporating more modeling, simulation and analysis to bring about a revolution in policy making that takes advantage of the revolution in engineering emerging from simulation and modeling. While we recommend major research efforts to address each of these problems, we also observe these to be very complex, highly interdependent, multi-disciplinary problems; it will challenge the U.S. community of individual investigator researchers to make the cultural transformation necessary to address these problems in a team environment. Furthermore, models that simulate future behavior of these complex systems will not be exacq therefore, researchers must be prepared to use the modeling and simulation tools they develop to propose experiments to Congress. We recommend that ten laboratories owned by the American public be selected in an interagency competition to each manage and host a $1 billion/yertr National effort, each focused on one of these ten problems. Much of the supporting research and subsystem modeling work will be conducted at U.S. universities and at private firms with relevant expertise. Success of the Manhattan Project at the middle of the 20th century provides evidence this leadership model works.« less
About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture
NASA Astrophysics Data System (ADS)
Grauer, Manfred; Barth, Thomas
2004-06-01
Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.
Prietula, M J; Feltovich, P J; Marchak, F
2000-01-01
We propose that considering four categories of task factors can facilitate knowledge elicitation efforts in the analysis of complex cognitive tasks: materials, strategies, knowledge characteristics, and goals. A study was conducted to examine the effects of altering aspects of two of these task categories on problem-solving behavior across skill levels: materials and goals. Two versions of an applied engineering problem were presented to expert, intermediate, and novice participants. Participants were to minimize the cost of running a steam generation facility by adjusting steam generation levels and flows. One version was cast in the form of a dynamic, computer-based simulation that provided immediate feedback on flows, costs, and constraint violations, thus incorporating key variable dynamics of the problem context. The other version was cast as a static computer-based model, with no dynamic components, cost feedback, or constraint checking. Experts performed better than the other groups across material conditions, and, when required, the presentation of the goal assisted the experts more than the other groups. The static group generated richer protocols than the dynamic group, but the dynamic group solved the problem in significantly less time. Little effect of feedback was found for intermediates, and none for novices. We conclude that demonstrating differences in performance in this task requires different materials than explicating underlying knowledge that leads to performance. We also conclude that substantial knowledge is required to exploit the information yielded by the dynamic form of the task or the explicit solution goal. This simple model can help to identify the contextual factors that influence elicitation and specification of knowledge, which is essential in the engineering of joint cognitive systems.
A Systematic Approach for Obtaining Performance on Matrix-Like Operations
NASA Astrophysics Data System (ADS)
Veras, Richard Michael
Scientific Computation provides a critical role in the scientific process because it allows us ask complex queries and test predictions that would otherwise be unfeasible to perform experimentally. Because of its power, Scientific Computing has helped drive advances in many fields ranging from Engineering and Physics to Biology and Sociology to Economics and Drug Development and even to Machine Learning and Artificial Intelligence. Common among these domains is the desire for timely computational results, thus a considerable amount of human expert effort is spent towards obtaining performance for these scientific codes. However, this is no easy task because each of these domains present their own unique set of challenges to software developers, such as domain specific operations, structurally complex data and ever-growing datasets. Compounding these problems are the myriads of constantly changing, complex and unique hardware platforms that an expert must target. Unfortunately, an expert is typically forced to reproduce their effort across multiple problem domains and hardware platforms. In this thesis, we demonstrate the automatic generation of expert level high-performance scientific codes for Dense Linear Algebra (DLA), Structured Mesh (Stencil), Sparse Linear Algebra and Graph Analytic. In particular, this thesis seeks to address the issue of obtaining performance on many complex platforms for a certain class of matrix-like operations that span across many scientific, engineering and social fields. We do this by automating a method used for obtaining high performance in DLA and extending it to structured, sparse and scale-free domains. We argue that it is through the use of the underlying structure found in the data from these domains that enables this process. Thus, obtaining performance for most operations does not occur in isolation of the data being operated on, but instead depends significantly on the structure of the data.
Top-d Rank Aggregation in Web Meta-search Engine
NASA Astrophysics Data System (ADS)
Fang, Qizhi; Xiao, Han; Zhu, Shanfeng
In this paper, we consider the rank aggregation problem for information retrieval over Web making use of a kind of metric, the coherence, which considers both the normalized Kendall-τ distance and the size of overlap between two partial rankings. In general, the top-d coherence aggregation problem is defined as: given collection of partial rankings Π = {τ 1,τ 2, ⋯ , τ K }, how to find a final ranking π with specific length d, which maximizes the total coherence Φ(π,Pi)=sum_{i=1}^K Φ(π,tau_i). The corresponding complexity and algorithmic issues are discussed in this paper. Our main technical contribution is a polynomial time approximation scheme (PTAS) for a restricted top-d coherence aggregation problem.
Robust Strategy for Rocket Engine Health Monitoring
NASA Technical Reports Server (NTRS)
Santi, L. Michael
2001-01-01
Monitoring the health of rocket engine systems is essentially a two-phase process. The acquisition phase involves sensing physical conditions at selected locations, converting physical inputs to electrical signals, conditioning the signals as appropriate to establish scale or filter interference, and recording results in a form that is easy to interpret. The inference phase involves analysis of results from the acquisition phase, comparison of analysis results to established health measures, and assessment of health indications. A variety of analytical tools may be employed in the inference phase of health monitoring. These tools can be separated into three broad categories: statistical, rule based, and model based. Statistical methods can provide excellent comparative measures of engine operating health. They require well-characterized data from an ensemble of "typical" engines, or "golden" data from a specific test assumed to define the operating norm in order to establish reliable comparative measures. Statistical methods are generally suitable for real-time health monitoring because they do not deal with the physical complexities of engine operation. The utility of statistical methods in rocket engine health monitoring is hindered by practical limits on the quantity and quality of available data. This is due to the difficulty and high cost of data acquisition, the limited number of available test engines, and the problem of simulating flight conditions in ground test facilities. In addition, statistical methods incur a penalty for disregarding flow complexity and are therefore limited in their ability to define performance shift causality. Rule based methods infer the health state of the engine system based on comparison of individual measurements or combinations of measurements with defined health norms or rules. This does not mean that rule based methods are necessarily simple. Although binary yes-no health assessment can sometimes be established by relatively simple rules, the causality assignment needed for refined health monitoring often requires an exceptionally complex rule base involving complicated logical maps. Structuring the rule system to be clear and unambiguous can be difficult, and the expert input required to maintain a large logic network and associated rule base can be prohibitive.
Multi-objective optimisation and decision-making of space station logistics strategies
NASA Astrophysics Data System (ADS)
Zhu, Yue-he; Luo, Ya-zhong
2016-10-01
Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.
Study on Calculation Model of Culvert Soil Pressure
NASA Astrophysics Data System (ADS)
Liu, Jing; Tian, Xiao-yan; Gao, Xiao-mei
2017-09-01
Culvert diseases are prevalent in highway engineering. There are many factors involved in the occurrence of the disease, and the problem is complex. However, the design cannot accurately determine the role of the soil pressure on the culvert is the main reason to the disease. Based on the theoretical analysis and field test, this paper studies the characteristics of the stress and deformation of the culvert-soil structure. According to the theory of soil mechanics, the calculation model of vertical soil pressure at the top of culvert is determined, and the formula of vertical soil pressure at the top of culvert is deduced. Through the field test of the vertical soil pressure at the top of culvert of several engineering examples, the calculation formula of this paper is verified, which can provide reference for future practical engineering.
The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum
NASA Astrophysics Data System (ADS)
Iveland, Ashley
In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories their ideas fit within, the more complex their understanding was thought to be). I found that the most commonly referenced aspects of engineering design were in line with the three main dimensions described in the Next Generation Science Standards (NGSS Lead States, 2013). I also found that the practicing teacher participants overall conveyed the most complex and integrated understandings of engineering design, with the undergraduate, prospective teachers not far behind. One of the most important factors related to a more integrated understanding of engineering design was having formal engineering experience, especially in the form of conducting engineering research or having been a professional engineer. Further, I found that female participants were more likely than their male counterparts to view engineering as having a human element--recognizing the need to collaborate with others throughout the process and the need to think about the potential user of the product the engineer is solving the problem for. These findings suggest that prior experience with engineering, and not experience in the classroom or with engineering education, tends to lead to a deeper, more authentic view of engineering. Finally, I close with a discussion of the overall findings, limitations of the study, potential implications, and future work.
Controlling uncertainty: a review of human behavior in complex dynamic environments.
Osman, Magda
2010-01-01
Complex dynamic control (CDC) tasks are a type of problem-solving environment used for examining many cognitive activities (e.g., attention, control, decision making, hypothesis testing, implicit learning, memory, monitoring, planning, and problem solving). Because of their popularity, there have been many findings from diverse domains of research (economics, engineering, ergonomics, human-computer interaction, management, psychology), but they remain largely disconnected from each other. The objective of this article is to review theoretical developments and empirical work on CDC tasks, and to introduce a novel framework (monitoring and control framework) as a tool for integrating theory and findings. The main thesis of the monitoring and control framework is that CDC tasks are characteristically uncertain environments, and subjective judgments of uncertainty guide the way in which monitoring and control behaviors attempt to reduce it. The article concludes by discussing new insights into continuing debates and future directions for research on CDC tasks.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-03-01
The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.
SSME component assembly and life management expert system
NASA Technical Reports Server (NTRS)
Ali, M.; Dietz, W. E.; Ferber, H. J.
1989-01-01
The space shuttle utilizes several rocket engine systems, all of which must function with a high degree of reliability for successful mission completion. The space shuttle main engine (SSME) is by far the most complex of the rocket engine systems and is designed to be reusable. The reusability of spacecraft systems introduces many problems related to testing, reliability, and logistics. Components must be assembled from parts inventories in a manner which will most effectively utilize the available parts. Assembly must be scheduled to efficiently utilize available assembly benches while still maintaining flight schedules. Assembled components must be assigned to as many contiguous flights as possible, to minimize component changes. Each component must undergo a rigorous testing program prior to flight. In addition, testing and assembly of flight engines and components must be done in conjunction with the assembly and testing of developmental engines and components. The development, testing, manufacture, and flight assignments of the engine fleet involves the satisfaction of many logistical and operational requirements, subject to many constraints. The purpose of the SSME Component Assembly and Life Management Expert System (CALMES) is to assist the engine assembly and scheduling process, and to insure that these activities utilize available resources as efficiently as possible.
System Engineering for J-2X Development: The Simpler, the Better
NASA Technical Reports Server (NTRS)
Kelly, William M.; Greasley, Paul; Greene, William D.; Ackerman, Peter
2008-01-01
The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt and Whitney Rocketdyne Company (PWR) as the upper stage engine (USE). The J-2X is an improved higher power version of the original J-2 engine used for Apollo. System Engineering (SE) facilitates direct and open discussions of issues and problems. This simple idea is often overlooked in large, complex engineering development programs. Definition and distribution of requirements from the engine level to the component level is controlled by Allocation Reports which breaks down numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements help eliminate redundancy and potential mistakes inherent in separated systems. Another tool, the Architecture Design Description (ADD), is used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof of an effective process is in successful program accomplishment. SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. This paper describes the simple, better SE tools and techniques used to achieve this success.
Fault Tree in the Trenches, A Success Story
NASA Technical Reports Server (NTRS)
Long, R. Allen; Goodson, Amanda (Technical Monitor)
2000-01-01
Getting caught up in the explanation of Fault Tree Analysis (FTA) minutiae is easy. In fact, most FTA literature tends to address FTA concepts and methodology. Yet there seems to be few articles addressing actual design changes resulting from the successful application of fault tree analysis. This paper demonstrates how fault tree analysis was used to identify and solve a potentially catastrophic mechanical problem at a rocket motor manufacturer. While developing the fault tree given in this example, the analyst was told by several organizations that the piece of equipment in question had been evaluated by several committees and organizations, and that the analyst was wasting his time. The fault tree/cutset analysis resulted in a joint-redesign of the control system by the tool engineering group and the fault tree analyst, as well as bragging rights for the analyst. (That the fault tree found problems where other engineering reviews had failed was not lost on the other engineering groups.) Even more interesting was that this was the analyst's first fault tree which further demonstrates how effective fault tree analysis can be in guiding (i.e., forcing) the analyst to take a methodical approach in evaluating complex systems.
Sand effects on thermal barrier coatings for gas turbine engines
NASA Astrophysics Data System (ADS)
Walock, Michael; Barnett, Blake; Ghoshal, Anindya; Murugan, Muthuvel; Swab, Jeffrey; Pepi, Marc; Hopkins, David; Gazonas, George; Kerner, Kevin
Accumulation and infiltration of molten/ semi-molten sand and subsequent formation of calcia-magnesia-alumina-silicate (CMAS) deposits in gas turbine engines continues to be a significant problem for aviation assets. This complex problem is compounded by the large variations in the composition, size, and topology of natural sands, gas generator turbine temperatures, thermal barrier coating properties, and the incoming particulate's momentum. In order to simplify the materials testing process, significant time and resources have been spent in the development of synthetic sand mixtures. However, there is debate whether these mixtures accurately mimic the damage observed in field-returned engines. With this study, we provide a direct comparison of CMAS deposits from both natural and synthetic sands. Using spray deposition techniques, 7% yttria-stabilized zirconia coatings are deposited onto bond-coated, Ni-superalloy discs. Each sample is coated with a sand slurry, either natural or synthetic, and exposed to a high temperature flame for 1 hour. Test samples are characterized before and after flame exposure. In addition, the test samples will be compared to field-returned equipment. This research was sponsored by the US Army Research Laboratory, and was accomplished under Cooperative Agreement # W911NF-12-2-0019.
Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping
Klinke, David J.; Wang, Qing
2012-01-01
A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412
NASA Technical Reports Server (NTRS)
Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.
1984-01-01
The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.
Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life.
Matas, Antonio J; Gapper, Nigel E; Chung, Mi-Young; Giovannoni, James J; Rose, Jocelyn K C
2009-04-01
Commercial regulation of ripening is currently achieved through early harvest, by controlling the postharvest storage atmosphere and genetic selection for slow or late ripening varieties. Although these approaches are often effective, they are not universally applicable and often result in acceptable, but poor quality, products. With increased understanding of the molecular biology underlying ripening and the advent of genetic engineering technologies, researchers have pursued new strategies to address problems in fruit shelf-life and quality. These have been guided by recent insights into mechanisms by which ethylene and a complex network of transcription factors regulate ripening, and by an increased appreciation of factors that contribute to shelf-life, such as the fruit cuticle.
NASA Astrophysics Data System (ADS)
Vedeneev, V. V.; Kolotnikov, M. E.; Mossakovskii, P. A.; Kostyreva, L. A.; Abdukhakimov, F. A.; Makarov, P. V.; Pyhalov, A. A.; Dudaev, M. A.
2018-01-01
In this paper we present a complex numerical workflow for analysis of blade flutter and high-amplitude resonant oscillations, impenetrability of casing if the blade is broken off, and the rotor reaction to the blade detachment and following misbalance, with the assessment of a safe flight possibility at the auto-rotation regime. All the methods used are carefully verified by numerical convergence study and correlations with experiments. The use of the workflow developed significantly improves the efficiency of the design process of modern jet engine compressors. It ensures a significant reduction of time and cost of the compressor design with the required level of strength and durability.
Software Risk Identification for Interplanetary Probes
NASA Technical Reports Server (NTRS)
Dougherty, Robert J.; Papadopoulos, Periklis E.
2005-01-01
The need for a systematic and effective software risk identification methodology is critical for interplanetary probes that are using increasingly complex and critical software. Several probe failures are examined that suggest more attention and resources need to be dedicated to identifying software risks. The direct causes of these failures can often be traced to systemic problems in all phases of the software engineering process. These failures have lead to the development of a practical methodology to identify risks for interplanetary probes. The proposed methodology is based upon the tailoring of the Software Engineering Institute's (SEI) method of taxonomy-based risk identification. The use of this methodology will ensure a more consistent and complete identification of software risks in these probes.
NASA Astrophysics Data System (ADS)
Mendoza Garcia, John A.
Sometimes engineers fail when addressing the inherent complexity of socio-technical systems because they lack the ability to address the complexity of socio-technical systems. Teaching undergraduate engineering students how to address complex socio-technical systems, has been an educational endeavor at different levels ranging from kindergarten to post-graduate education. The literature presents different pedagogical strategies and content to reach this goal. However, there are no existing empirically-based assessments guided by a learning theory. This may be because at the same time explanations of how the skill is developed are scarce. My study bridges this gap, and I propose a developmental path for the ability to address the complex socio-technical systems via Variation Theory, and according to the conceptual framework provided by Variation Theory, my research question was "What are the various ways in which engineers address complex socio-technical systems?" I chose the research approach of phenomenography to answer my research question. I also chose to use a blended approach, Marton's approach for finding the dimensions of variation, and the developmental approach (Australian) for finding a hierarchical relationship between the dimensions. Accordingly, I recruited 25 participants with different levels of experience with addressing complex socio-technical systems and asked them all to address the same two tasks: A design of a system for a county, and a case study in a manufacturing firm. My outcome space is a nona-dimensional (nine) developmental path for the ability to address the complexity in socio-technical systems, and I propose 9 different ways of experiencing the complexity of a socio-technical system. The findings of this study suggest that the critical aspects that are needed to address the complexity of socio-technical systems are: being aware of the use of models, the ecosystem around, start recognizing different boundaries, being aware of time as a factor, recognizing the part-whole relationships, make effort in tailoring a solution that responds to stakeholders' needs, find the right problem, giving voice to others, and finally be aware of the need to iterate.
Low Energy Transfer to the Moon
NASA Astrophysics Data System (ADS)
Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D.
2001-11-01
New space missions are increasingly more complex; demand for exotic orbits to solve engineering problems has grown beyond the existing astrodynamic infrastructure based on two-body interactions. The delicate heteroclinic dynamics used by the Genesis Mission dramatically illustrate the need for a new paradigm: dynamical system study of three-body problem. Furthermore, this dynamics has much to say about the morphology and transport of materials within the Solar System. The cross-fertilization of ideas between the natural dynamics of the Solar System and applications to engineering has produced new techniques for constructing spacecraft trajectories with interesting characteristics. Specifically, these techniques are used here to produce a lunar capture mission which uses less fuel than a Hohmann transfer. We approximate the Sun-Earth-Moon-Spacecraft four-body problem as two three-body problems. Using the invariant manifold structures of the Lagrange points of the three-body systems, we are able to construct low energy transfer trajectories from the Earth which exhibit ballistic capture at the Moon. The techniques used in the design and construction of this trajectory may be applied in many situations. This is joint work with Martin W. Lo, Jerrold E. Marsden and Shane D. Ross and was partially supported by the National Science Foundation Grant No. KFI/ATM-9873133 under a contract with the Jet Propulsion Laboratory, NASA.
Reducing the complexity of NASA's space communications infrastructure
NASA Technical Reports Server (NTRS)
Miller, Raymond E.; Liu, Hong; Song, Junehwa
1995-01-01
This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.
Mukunthan, B; Nagaveni, N
2014-01-01
In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.
Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis
NASA Technical Reports Server (NTRS)
1973-01-01
System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.
2011-02-25
fast method of predicting the number of iterations needed for converged results. A new hybrid technique is proposed to predict the convergence history...interchanging between the modes, whereas a smaller veering (or crossing) region shows fast mode switching. Then, the nonlinear vibration re- sponse of the...problems of interest involve dynamic ( fast ) crack propagation, then the nodes selected by the proposed approach at some time instant might not
Experimental and Computational Studies of Heat Transfer in Complex Internal Flows.
1981-01-01
project, extending from September 15, 1979 to December 15, 1980 . The details of five distinct pieces of research are set forth. These research problems... Hislop , C. I., and Morris, R., "Effect on the Local Heat Transfer Coefficient in a Pipe of an Abrupt Disturbance of the Fluid Flow: Abrupt...Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, 1980 . 10. Petukhov, B. S., "Heat Transfer and Friction in Turbulent
2011-07-19
multidomain methods, Discontinuous Galerkin methods, interfacial treatment ∗ Jorge A. Escobar-Vargas, School of Civil and Environmental Engineering, Cornell...Click here to view linked References 1. Introduction Geophysical flows exhibit a complex structure and dynamics over a broad range of scales that...hyperbolic problems, where the interfacial patching was implemented with an upwind scheme based on a modified method of characteristics. This approach
A Multifaceted Mathematical Approach for Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, F.; Anitescu, M.; Bell, J.
2012-03-07
Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significantmore » impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.« less
Intelligent classifier for dynamic fault patterns based on hidden Markov model
NASA Astrophysics Data System (ADS)
Xu, Bo; Feng, Yuguang; Yu, Jinsong
2006-11-01
It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.
Pohl, Thomas; Uhlmann, Mareike; Kaufenstein, Miriam; Friedrich, Thorsten
2007-09-18
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.
Allen, Craig R.; Garmestiani, Ahjond S.; Sundstrom, Shana; Angeler, David G.
2016-01-01
Resilience is the capacity of complex systems of people and nature to withstand disturbance without shifting into an alternate regime, or a different type of system organized around different processes and structures (Holling, 1973). Resilience theory was developed to explain the non-linear dynamics of complex adaptive systems, like social-ecological systems (SES) (Walker & Salt, 2006). It is often apparent when the resilience of a SES has been exceeded as the system discernibly changes, such as when a thriving city shifts into a poverty trap, but it is difficult to predict when that shift might occur because of the non-linear dynamics of complex systems. Ecological resilience should not be confused with engineering resilience (Angeler & Allen, 2016), which emphasizes the ability of a SES to perform a specific task consistently and predictably, and to re-establish performance quickly should a disturbance occur. Engineering resilience assumes that complex systems are characterized by a single equilibrium state, and this assumption is not appropriate for complex adaptive systems such as SES. In the risk governance context this means that compounded perturbations derived from hazards or global change can have unexpected and highly uncertain effects on natural resources, humans and societies. These effects can manifest in regime shifts, potentially spurring environmental degradation that might lock SES in an undesirable system state that can be difficult to reverse, and as a consequence economic crises, conflict, human health problems.
Engineering the Big Chill: The story of JLab’s Central Helium Liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westfall, Catherine
This article tells the story of the Central Helium Liquefier (CHL) at the Thomas Jefferson National Accelerator Facility (JLab), one of the US National Laboratories. JLab’s successful superconducting radio frequency accelerator was only possible because a group of JLab engineers successfully tackled a complex of difficulties to build a cryogenic system that included the CHL, a task that required advancing the frontier of cryogenic technology. Ultimately, these cryogenic advances were applied far beyond JLab to the benefit of cutting-edge programs at other US national laboratories (Oak Ridge, Brookhaven, and the Facility for Rare Isotope Beams at MSU) as well asmore » NASA. In addition, this innovation story dramatizes the sort of engineer-driven technological problem solving that allows the successful launch and operation of experimental projects. Along the way, the CHL story also provides an important addition to our understanding of the role played by engineers and industry in creating knowledge at physics laboratories.« less
A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases.
Cahn, Jackson K B; Werlang, Caroline A; Baumschlager, Armin; Brinkmann-Chen, Sabine; Mayo, Stephen L; Arnold, Frances H
2017-02-17
The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).
Engineering the Big Chill: The story of JLab’s Central Helium Liquefier
Westfall, Catherine
2014-03-29
This article tells the story of the Central Helium Liquefier (CHL) at the Thomas Jefferson National Accelerator Facility (JLab), one of the US National Laboratories. JLab’s successful superconducting radio frequency accelerator was only possible because a group of JLab engineers successfully tackled a complex of difficulties to build a cryogenic system that included the CHL, a task that required advancing the frontier of cryogenic technology. Ultimately, these cryogenic advances were applied far beyond JLab to the benefit of cutting-edge programs at other US national laboratories (Oak Ridge, Brookhaven, and the Facility for Rare Isotope Beams at MSU) as well asmore » NASA. In addition, this innovation story dramatizes the sort of engineer-driven technological problem solving that allows the successful launch and operation of experimental projects. Along the way, the CHL story also provides an important addition to our understanding of the role played by engineers and industry in creating knowledge at physics laboratories.« less
NASA Astrophysics Data System (ADS)
Guo, Weian; Li, Wuzhao; Zhang, Qun; Wang, Lei; Wu, Qidi; Ren, Hongliang
2014-11-01
In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, James Ignatius; Zounar Harbour, Elda D
2001-08-01
The Idaho National Engineering and Environmental Laboratory (INEEL) is dedicated to finding solutions to problems related to the environment, energy, economic competitiveness, and national security. In an effort to attract and retain the expertise needed to accomplish these challenges, the INEEL is developing a program of broad educational opportunities that makes continuing education readily available to all laboratory employees, beginning in the K–12 environment and progressing through post-graduate education and beyond. One of the most innovative educational approaches being implemented at the laboratory is the application of STELLA© dynamic learning environments, which facilitate captivating K–12 introductions to the complex energymore » and environmental challenges faced by global societies. These simulations are integrated into lesson plans developed by teachers in collaboration with INEEL scientists and engineers. This approach results in an enjoyable and involved learning experience, and an especially positive introduction to the application of science to emerging problems of great social and environmental consequence.« less
NASA Technical Reports Server (NTRS)
Riccio, Gary E.; McDonald, P. Vernon
1998-01-01
The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.
Immersed boundary methods for simulating fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Yang, Xiaolei
2014-02-01
Fluid-structure interaction (FSI) problems commonly encountered in engineering and biological applications involve geometrically complex flexible or rigid bodies undergoing large deformations. Immersed boundary (IB) methods have emerged as a powerful simulation tool for tackling such flows due to their inherent ability to handle arbitrarily complex bodies without the need for expensive and cumbersome dynamic re-meshing strategies. Depending on the approach such methods adopt to satisfy boundary conditions on solid surfaces they can be broadly classified as diffused and sharp interface methods. In this review, we present an overview of the fundamentals of both classes of methods with emphasis on solution algorithms for simulating FSI problems. We summarize and juxtapose different IB approaches for imposing boundary conditions, efficient iterative algorithms for solving the incompressible Navier-Stokes equations in the presence of dynamic immersed boundaries, and strong and loose coupling FSI strategies. We also present recent results from the application of such methods to study a wide range of problems, including vortex-induced vibrations, aquatic swimming, insect flying, human walking and renewable energy. Limitations of such methods and the need for future research to mitigate them are also discussed.
Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL
NASA Astrophysics Data System (ADS)
Elenius, Daniel; Martin, David; Ford, Reginald; Denker, Grit
Military training and testing events are highly complex affairs, potentially involving dozens of legacy systems that need to interoperate in a meaningful way. There are superficial interoperability concerns (such as two systems not sharing the same messaging formats), but also substantive problems such as different systems not sharing the same understanding of the terrain, positions of entities, and so forth. We describe our approach to facilitating such events: describe the systems and requirements in great detail using ontologies, and use automated reasoning to automatically find and help resolve problems. The complexity of our problem took us to the limits of what one can do with OWL, and we needed to introduce some innovative techniques of using and extending it. We describe our novel ways of using SWRL and discuss its limitations as well as extensions to it that we found necessary or desirable. Another innovation is our representation of hierarchical tasks in OWL, and an engine that reasons about them. Our task ontology has proved to be a very flexible and expressive framework to describe requirements on resources and their capabilities in order to achieve some purpose.
Ramzan, Asia; Wang, Hai; Buckingham, Christopher
2014-01-01
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
1994-01-01
The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.
Averting Denver Airports on a Chip
NASA Technical Reports Server (NTRS)
Sullivan, Kevin J.
1995-01-01
As a result of recent advances in software engineering capabilities, we are now in a more stable environment. De-facto hardware and software standards are emerging. Work on software architecture and design patterns signals a consensus on the importance of early system-level design decisions, and agreements on the uses of certain paradigmatic software structures. We now routinely build systems that would have been risky or infeasible a few years ago. Unfortunately, technological developments threaten to destabilize software design again. Systems designed around novel computing and peripheral devices will spark ambitious new projects that will stress current software design and engineering capabilities. Micro-electro-mechanical systems (MEMS) and related technologies provide the physical basis for new systems with the potential to produce this kind of destabilizing effect. One important response to anticipated software engineering and design difficulties is carefully directed engineering-scientific research. Two specific problems meriting substantial research attention are: A lack of sufficient means to build software systems by generating, extending, specializing, and integrating large-scale reusable components; and a lack of adequate computational and analytic tools to extend and aid engineers in maintaining intellectual control over complex software designs.
An Overview and History of Glyco-Engineering in Insect Expression Systems.
Geisler, Christoph; Mabashi-Asazuma, Hideaki; Jarvis, Donald L
2015-01-01
Insect systems, including the baculovirus-insect cell and Drosophila S2 cell systems are widely used as recombinant protein production platforms. Historically, however, no insect-based system has been able to produce glycoproteins with human-type glycans, which often influence the clinical efficacy of therapeutic glycoproteins and the overall structures and functions of other recombinant glycoprotein products. In addition, some insect cell systems produce N-glycans with immunogenic epitopes. Over the past 20 years, these problems have been addressed by efforts to glyco-engineer insect-based expression systems. These efforts have focused on introducing the capacity to produce complex-type, terminally sialylated N-glycans and eliminating the capacity to produce immunogenic N-glycans. Various glyco-engineering approaches have included genetically engineering insect cells, baculoviral vectors, and/or insects with heterologous genes encoding the enzymes required to produce various glycosyltransferases, sugars, nucleotide sugars, and nucleotide sugar transporters, as well as an enzyme that can deplete GDP-fucose. In this chapter, we present an overview and history of glyco-engineering in insect expression systems as a prelude to subsequent chapters, which will highlight various methods used for this purpose.
Measuring System Value in the Ares 1 Rocket Using an Uncertainty-Based Coupling Analysis Approach
NASA Astrophysics Data System (ADS)
Wenger, Christopher
Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process to ensure no unanticipated behaviors or unintended consequences arise in the system during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can affect the health and safety of any crew onboard. Within the Ares 1 rocket, larger than anticipated vibrations were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. Upon investigation engineers found the root cause to be the structure of the rockets feedback onto fluid flow within the engine. The goal of this paper is to showcase a coupling strength analysis from the field of Multidisciplinary Design Optimization to identify the major impacts that caused the Thrust Oscillation event in the Ares 1. Once identified an uncertainty analysis of the coupled system using an uncertainty based optimization technique is used to identify the likelihood of occurrence for these strong or weak interactions to take place.
At a glance: cellular biology for engineers.
Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R
2008-10-01
Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.
Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems
NASA Technical Reports Server (NTRS)
Koch, Patrick N.
1997-01-01
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.
A Return to Innovative Engineering Design, Critical Thinking and Systems Engineering
NASA Technical Reports Server (NTRS)
Camarda, Charles J.
2007-01-01
I believe we are facing a critical time where innovative engineering design is of paramount importance to the success of our aerospace industry. However, the very qualities and attributes necessary for enhancing, educating, and mentoring a creative spirit are in decline in important areas. The importance of creativity and innovation in this country was emphasized by a special edition of the Harvard Business Review OnPoint entitled: "The Creative Company" which compiled a series of past and present articles on the subject of creativity and innovation and stressed its importance to our national economy. There is also a recognition of a lack of engineering, critical thinking and problem-solving skills in our education systems and a trend toward trying to enhance those skills by developing K-12 educational programs such as Project Lead the Way, "Science for All Americans", Benchmarks 2061 , etc. In addition, with respect to spacecraft development, we have a growing need for young to mid-level engineers with appropriate experience and skills in spacecraft design, development, analysis, testing, and systems engineering. As the Director of Engineering at NASA's Johnson Space Center, I realized that sustaining engineering support of an operational human spacecraft such as the Space Shuttle is decidedly different than engineering design and development skills necessary for designing a new spacecraft such as the Crew Exploration Vehicle of the Constellation Program. We learned a very important lesson post Columbia in that the Space Shuttle is truly an experimental and not an operational vehicle and the strict adherence to developed rules and processes and chains of command of an inherently bureaucratic organizational structure will not protect us from a host of known unknowns let alone unknown unknowns. There are no strict rules, processes, or procedures for understanding anomalous results of an experiment, anomalies with an experimental spacecraft like Shuttle, or in the conceptual design of a spacecraft. Engineering design is as much an art as it is a science. The critical thinking skills necessary to uncover lurking problems in an experimental design and creatively develop solutions are some of the same skills necessary to design a new spacecraft. Thus, I believe engineers unfamiliar with or removed from design and development need time to transition and develop the required skill set to be effective spacecraft designers. I believe the creative process necessary in design can be enhanced and even taught as early as grades K-12 and should continue to be nurtured and developed at the university level and beyond. I am going to present a strategy for developing learning teams to address complex multidisciplinary problems and to creatively develop solutions to those problems rapidly at minimal cost. I will frame a real problem, the development of on-orbit thermal protection system repair of the Space Shuttle, and step through the series of skills necessary to enhance the creative process. The case study I will illustrate is based on a real project, the R&D Reinforced Carbon-Carbon (RCC) Repair Team's development of on-orbit repair concepts for damaged Space Shuttle RCC nose cap and/or leading edges.
The Problem of Ensuring Reliability of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Nozhnitsky, Yu A.
2018-01-01
Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.
Parametric optimal control of uncertain systems under an optimistic value criterion
NASA Astrophysics Data System (ADS)
Li, Bo; Zhu, Yuanguo
2018-01-01
It is well known that the optimal control of a linear quadratic model is characterized by the solution of a Riccati differential equation. In many cases, the corresponding Riccati differential equation cannot be solved exactly such that the optimal feedback control may be a complex time-oriented function. In this article, a parametric optimal control problem of an uncertain linear quadratic model under an optimistic value criterion is considered for simplifying the expression of optimal control. Based on the equation of optimality for the uncertain optimal control problem, an approximation method is presented to solve it. As an application, a two-spool turbofan engine optimal control problem is given to show the utility of the proposed model and the efficiency of the presented approximation method.
How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.
ERIC Educational Resources Information Center
Scarl, Donald
To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…
Intelligent systems engineering methodology
NASA Technical Reports Server (NTRS)
Fouse, Scott
1990-01-01
An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.
Towards a Framework for Evolvable Network Design
NASA Astrophysics Data System (ADS)
Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed
The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.
Analysis of complex decisionmaking processes. [with application to jet engine development
NASA Technical Reports Server (NTRS)
Hill, J. D.; Ollila, R. G.
1978-01-01
The analysis of corporate decisionmaking processes related to major system developments is unusually difficult because of the number of decisionmakers involved in the process and the long development cycle. A method for analyzing such decision processes is developed and illustrated through its application to the analysis of the commercial jet engine development process. The method uses interaction matrices as the key tool for structuring the problem, recording data, and analyzing the data to establish the rank order of the major factors affecting development decisions. In the example, the use of interaction matrices permitted analysts to collect and analyze approximately 50 factors that influenced decisions during the four phases of the development cycle, and to determine the key influencers of decisions at each development phase. The results of this study indicate that the cost of new technology installed on an aircraft is the prime concern of the engine manufacturer.
Independent technical review, handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction,more » and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.« less
Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.
Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian
2017-09-01
Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.
NASA Astrophysics Data System (ADS)
Pantale, O.; Caperaa, S.; Rakotomalala, R.
2004-07-01
During the last 50 years, the development of better numerical methods and more powerful computers has been a major enterprise for the scientific community. In the same time, the finite element method has become a widely used tool for researchers and engineers. Recent advances in computational software have made possible to solve more physical and complex problems such as coupled problems, nonlinearities, high strain and high-strain rate problems. In this field, an accurate analysis of large deformation inelastic problems occurring in metal-forming or impact simulations is extremely important as a consequence of high amount of plastic flow. In this presentation, the object-oriented implementation, using the C++ language, of an explicit finite element code called DynELA is presented. The object-oriented programming (OOP) leads to better-structured codes for the finite element method and facilitates the development, the maintainability and the expandability of such codes. The most significant advantage of OOP is in the modeling of complex physical systems such as deformation processing where the overall complex problem is partitioned in individual sub-problems based on physical, mathematical or geometric reasoning. We first focus on the advantages of OOP for the development of scientific programs. Specific aspects of OOP, such as the inheritance mechanism, the operators overload procedure or the use of template classes are detailed. Then we present the approach used for the development of our finite element code through the presentation of the kinematics, conservative and constitutive laws and their respective implementation in C++. Finally, the efficiency and accuracy of our finite element program are investigated using a number of benchmark tests relative to metal forming and impact simulations.
Effect of oxidation products on service properties of motor oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhitova, T.Yu.; Polipanov, I.S.
1995-01-01
One of the most urgent problems in chemmotology is how to create in an engine - lube oil system a controllable tribochemical process for the purpose of stabilizing the service properties of the oil and forming protective surface structures on the engine parts in order to minimize wear. The complexity of this problem reflects the diversity of the processes taking place in the tribological system. It is impossible to elucidate the mechanism of tribochemical reactions without studying the influence of changes in the oil composition and structure on its service properties during the course of operation. If the relationships involvedmore » in this influence are defined, it will become possible to change the structure of the oil in the desired direction and to achieve the desired service properties. For our studies we selected the motor oil M-10-G{sub 2}, conforming to GOST 8581-78. Samples of this oil were drawn during test-stand evaluations of D-144 and D-144-60 tractor diesels without any oil changes these tests were conducted jointly by the Institute of Problems in Mechanical Engineering of the Russian Academy of Sciences, the Scientific-Research and Design-Technology Institute of Tractor and Combine Engines (NIKTID), and the Vladimir Tractor Plant Production Association. Tests were run for 1000 h with the standard conditions and test sequence, and for 1500 and 2300 h under conditions of a {open_quotes}constantly acting tribochemical regime{close_quotes}. Oil samples were drawn at 50-100 h intervals and tested by standard methods to determine the following physico-chemical characteristics: kinematic viscosity, acid and base numbers, ash, carbon residue, content of insoluble sludge, and content of particulate contaminant.« less
NASA Astrophysics Data System (ADS)
Zhang, Daili
Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications are made for critical agents and are organized into logical rings. This architecture maintains clear guidelines for complexity decomposition and also increases the robustness of the whole system. Multiple Sectioned Dynamic Bayesian Networks (MSDBNs) as a distributed dynamic probabilistic inference engine, can be embedded into the control architecture to handle uncertainties of general large-scale complex systems. MSDBNs decomposes a large knowledge-based system into many agents. Each agent holds its partial perspective of a large problem domain by representing its knowledge as a Dynamic Bayesian Network (DBN). Each agent accesses local evidence from its corresponding local sensors and communicates with other agents through finite message passing. If the distributed agents can be organized into a tree structure, satisfying the running intersection property and d-sep set requirements, globally consistent inferences are achievable in a distributed way. By using different frequencies for local DBN agent belief updating and global system belief updating, it balances the communication cost with the global consistency of inferences. In this dissertation, a fully factorized Boyen-Koller (BK) approximation algorithm is used for local DBN agent belief updating, and the static Junction Forest Linkage Tree (JFLT) algorithm is used for global system belief updating. MSDBNs assume a static structure and a stable communication network for the whole system. However, for a real system, sub-Bayesian networks as nodes could be lost, and the communication network could be shut down due to partial damage in the system. Therefore, on-line and automatic MSDBNs structure formation is necessary for making robust state estimations and increasing survivability of the whole system. A Distributed Spanning Tree Optimization (DSTO) algorithm, a Distributed D-Sep Set Satisfaction (DDSSS) algorithm, and a Distributed Running Intersection Satisfaction (DRIS) algorithm are proposed in this dissertation. Combining these three distributed algorithms and a Distributed Belief Propagation (DBP) algorithm in MSDBNs makes state estimations robust to partial damage in the whole system. Combining the distributed control architecture design and the distributed inference engine design leads to a process of control system design for a general large-scale complex system. As applications of the proposed methodology, the control system design of a simplified ship chilled water system and a notional ship chilled water system have been demonstrated step by step. Simulation results not only show that the proposed methodology gives a clear guideline for control system design for general large-scale complex systems with dynamic and uncertain environment, but also indicate that the combination of MSDBNs and HyMABC can provide excellent performance for controlling general large-scale complex systems.
Definition of the Engineering Method.
ERIC Educational Resources Information Center
Koen, Billy Vaughn
In an effort to more clearly define the engineering method, this document attempts to draw distinctions between engineering and science. Part I, "Some Thoughts on Engineering," discusses strategies that engineers employ to solve problems, and the characteristics of the types of engineering problems. Part II, "The Principal Rule of the Engineering…
Systems Engineering Technical Leadership Development Program
2012-02-01
leading others in creative problem solving, complexity, and why projects fail . These topics were additionally supported by case studies designed to...Your Core Values Dominick Wed 12:30-1:30 Lunch Wed 1:30-2:45 Case Study: Why Projects Fail Pennotti Wed 2:45-3:00 Break Wed 3:00-4:30 Project...Case Study: When Good Wasn’t Good Enough 11. Technical Value-5: Group Project: AR2D2 RFP 12. Customer Expectation-1: Lecture: Why Systems Fail
General linear methods and friends: Toward efficient solutions of multiphysics problems
NASA Astrophysics Data System (ADS)
Sandu, Adrian
2017-07-01
Time dependent multiphysics partial differential equations are of great practical importance as they model diverse phenomena that appear in mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, environmental sciences, etc. There is no single best time discretization for the complex multiphysics systems of practical interest. We discuss "multimethod" approaches that combine different time steps and discretizations using the rigourous frameworks provided by Partitioned General Linear Methods and Generalize-structure Additive Runge Kutta Methods..
Current Methods for Evaluation of Physical Security System Effectiveness.
1981-05-01
It also helps the user modify a data set before further processing. (c) Safeguards Engineering and Analysis Data Base (SEAD)--To complete SAFE’s...graphic display software in addition to a Fortran compiler, and up to about (3 35,000 words of storage. For a fairly complex problem, a single run through...operational software . 94 BIBLIOGRAPHY Lenz, J.E., "The PROSE (Protection System Evaluator) Model," Proc. 1979 Winter Simulation Conference, IEEE, 1979
Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures
NASA Technical Reports Server (NTRS)
Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland
1998-01-01
Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.
MATTS- A Step Towards Model Based Testing
NASA Astrophysics Data System (ADS)
Herpel, H.-J.; Willich, G.; Li, J.; Xie, J.; Johansen, B.; Kvinnesland, K.; Krueger, S.; Barrios, P.
2016-08-01
In this paper we describe a Model Based approach to testing of on-board software and compare it with traditional validation strategy currently applied to satellite software. The major problems that software engineering will face over at least the next two decades are increasing application complexity driven by the need for autonomy and serious application robustness. In other words, how do we actually get to declare success when trying to build applications one or two orders of magnitude more complex than today's applications. To solve the problems addressed above the software engineering process has to be improved at least for two aspects: 1) Software design and 2) Software testing. The software design process has to evolve towards model-based approaches with extensive use of code generators. Today, testing is an essential, but time and resource consuming activity in the software development process. Generating a short, but effective test suite usually requires a lot of manual work and expert knowledge. In a model-based process, among other subtasks, test construction and test execution can also be partially automated. The basic idea behind the presented study was to start from a formal model (e.g. State Machines), generate abstract test cases which are then converted to concrete executable test cases (input and expected output pairs). The generated concrete test cases were applied to an on-board software. Results were collected and evaluated wrt. applicability, cost-efficiency, effectiveness at fault finding, and scalability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, Paul T.; Althsuler, Alan; Larzelere, Alex R.
2005-08-01
The Design-through-Analysis Realization Team (DART) is chartered with reducing the time Sandia analysts require to complete the engineering analysis process. The DART system analysis team studied the engineering analysis processes employed by analysts in Centers 9100 and 8700 at Sandia to identify opportunities for reducing overall design-through-analysis process time. The team created and implemented a rigorous analysis methodology based on a generic process flow model parameterized by information obtained from analysts. They also collected data from analysis department managers to quantify the problem type and complexity distribution throughout Sandia's analyst community. They then used this information to develop a communitymore » model, which enables a simple characterization of processes that span the analyst community. The results indicate that equal opportunity for reducing analysis process time is available both by reducing the ''once-through'' time required to complete a process step and by reducing the probability of backward iteration. In addition, reducing the rework fraction (i.e., improving the engineering efficiency of subsequent iterations) offers approximately 40% to 80% of the benefit of reducing the ''once-through'' time or iteration probability, depending upon the process step being considered. Further, the results indicate that geometry manipulation and meshing is the largest portion of an analyst's effort, especially for structural problems, and offers significant opportunity for overall time reduction. Iteration loops initiated late in the process are more costly than others because they increase ''inner loop'' iterations. Identifying and correcting problems as early as possible in the process offers significant opportunity for time savings.« less
Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I
2011-09-26
A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.
Donnelly, Lane F; Cherian, Shirley S; Chua, Kimberly B; Thankachan, Sam; Millecker, Laura A; Koroll, Alex G; Bisset, George S
2017-01-01
Because of the increasing complexities of providing imaging for pediatric health care services, a more reliable process to manage the daily delivery of care is necessary. Objective We describe our Daily Readiness Huddle and the effects of the process on problem identification and improvement. Our Daily Readiness Huddle has four elements: metrics review, clinical volume review, daily readiness assessment, and problem accountability. It is attended by radiologists, directors, managers, front-line staff with concerns, representatives from support services (information technology [IT] and biomedical engineering [biomed]), and representatives who join the meeting in a virtual format from off-site locations. Data are visually displayed on erasable whiteboards. The daily readiness assessment uses queues to determine whether anyone has concerns or outlier data in regard to S-MESA (Safety, Methods, Equipment, Supplies or Associates). Through this assessment, problems are identified and categorized as quick hits (will be resolved in 24-48 h, not requiring project management) and complex issues. Complex issues are assigned an owner, quality coach and report-back date. Additionally, projects are defined as improvements that are often strategic, are anticipated to take more than 60 days, and do not necessarily arise out of identified issues during the Daily Readiness Huddle. We tracked and calculated the mean, median and range of days to resolution and completion for complex issues and for projects during the first full year of implementing this process. During the first 12 months, 91 complex issues were identified and resolved, 11 projects were in progress and 33 completed, with 23 other projects active or in planning. Time to resolution of complex issues (in days) was mean 37.5, median 34.0, and range 1-105. For projects, time to completion (in days) was mean 86.0, median 84.0, and range 5-280. The Daily Readiness Huddle process has given us a framework to rapidly identify issues, bring accountability to problem-solving, and foster improvement. It has also had a positive effect on team-building and coordination.
Dependency visualization for complex system understanding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, J. Allison Cory
1994-09-01
With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impairedmore » as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.« less
Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration
Green, David W.; Lee, Jung-Seok; Jung, Han-Sung
2016-01-01
The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872
[Research progress of cell-scaffold complex in tendon tissue engineering].
Zhu, Ying; Li, Min
2013-04-01
To review the research progress of cell-scaffold complex in the tendon tissue engineering. Recent literature concerning cell-scaffold complex in the tendon tissue engineering was reviewed, the research situation of the cell-scaffold complex was elaborated in the aspects of seed cells, scaffolds, cell culture, and application. In tendon tissue engineering, a cell-scaffold complex is built by appropriate seed cells and engineered scaffolds. Experiments showed that modified seed cells had better therapeutic effects. Further, scaffold functionality could be improved through surface modification, growth factor cure, mechanical stimulation, and contact guidance. Among these methods, mechanical stimulation revealed the most significant results in promoting cell proliferation and function. Through a variety of defect models, it is demonstrated that the use of cell-scaffold complex could achieve satisfactory results for tendon regeneration. The cell-scaffold complex for tendon tissue engineering is a popular research topic. Although it has not yet met the requirement of clinical use, it has broad application prospects.
NASA Technical Reports Server (NTRS)
Stanley, C. W.; Hood, W. E.
1981-01-01
The U.S. Marine Corp (USMC) has been operating the only V/STOL attack aircraft in the western world since 1971. Some of the maintenance problems experienced are related to the unique V/STOL design criteria of the Pegasus engine. However, the major part of the required maintenance effort is found to involve the more conventional engine problems. A description of the aircraft engine is provided and the problems resulting from V/STOL design demands are examined. Attention is given to the fuel system control, the engine air bleed, foreign object damage to the hp compressor, and the engine exhaust system.
Directed evolution and synthetic biology applications to microbial systems.
Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T
2016-06-01
Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.
Acun, A; Vural, D C; Zorlutuna, P
2017-07-11
Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.
Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray
NASA Astrophysics Data System (ADS)
Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit
2016-11-01
Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".
Discrete Event Supervisory Control Applied to Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Shah, Neerav
2005-01-01
The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.
From the desktop to the grid: scalable bioinformatics via workflow conversion.
de la Garza, Luis; Veit, Johannes; Szolek, Andras; Röttig, Marc; Aiche, Stephan; Gesing, Sandra; Reinert, Knut; Kohlbacher, Oliver
2016-03-12
Reproducibility is one of the tenets of the scientific method. Scientific experiments often comprise complex data flows, selection of adequate parameters, and analysis and visualization of intermediate and end results. Breaking down the complexity of such experiments into the joint collaboration of small, repeatable, well defined tasks, each with well defined inputs, parameters, and outputs, offers the immediate benefit of identifying bottlenecks, pinpoint sections which could benefit from parallelization, among others. Workflows rest upon the notion of splitting complex work into the joint effort of several manageable tasks. There are several engines that give users the ability to design and execute workflows. Each engine was created to address certain problems of a specific community, therefore each one has its advantages and shortcomings. Furthermore, not all features of all workflow engines are royalty-free -an aspect that could potentially drive away members of the scientific community. We have developed a set of tools that enables the scientific community to benefit from workflow interoperability. We developed a platform-free structured representation of parameters, inputs, outputs of command-line tools in so-called Common Tool Descriptor documents. We have also overcome the shortcomings and combined the features of two royalty-free workflow engines with a substantial user community: the Konstanz Information Miner, an engine which we see as a formidable workflow editor, and the Grid and User Support Environment, a web-based framework able to interact with several high-performance computing resources. We have thus created a free and highly accessible way to design workflows on a desktop computer and execute them on high-performance computing resources. Our work will not only reduce time spent on designing scientific workflows, but also make executing workflows on remote high-performance computing resources more accessible to technically inexperienced users. We strongly believe that our efforts not only decrease the turnaround time to obtain scientific results but also have a positive impact on reproducibility, thus elevating the quality of obtained scientific results.
NASA Astrophysics Data System (ADS)
Demenev, A. G.
2018-02-01
The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
Simulator for multilevel optimization research
NASA Technical Reports Server (NTRS)
Padula, S. L.; Young, K. C.
1986-01-01
A computer program designed to simulate and improve multilevel optimization techniques is described. By using simple analytic functions to represent complex engineering analyses, the simulator can generate and test a large variety of multilevel decomposition strategies in a relatively short time. This type of research is an essential step toward routine optimization of large aerospace systems. The paper discusses the types of optimization problems handled by the simulator and gives input and output listings and plots for a sample problem. It also describes multilevel implementation techniques which have value beyond the present computer program. Thus, this document serves as a user's manual for the simulator and as a guide for building future multilevel optimization applications.
Group Design Problems in Engineering Design Graphics.
ERIC Educational Resources Information Center
Kelley, David
2001-01-01
Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)
Investigation of finite element: ABC methods for electromagnetic field simulation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Volakis, John L.; Nguyen, J.
1994-01-01
The mechanics of wave propagation in the presence of obstacles is of great interest in many branches of engineering and applied mathematics like electromagnetics, fluid dynamics, geophysics, seismology, etc. Such problems can be broadly classified into two categories: the bounded domain or the closed problem and the unbounded domain or the open problem. Analytical techniques have been derived for the simpler problems; however, the need to model complicated geometrical features, complex material coatings and fillings, and to adapt the model to changing design parameters have inevitably tilted the balance in favor of numerical techniques. The modeling of closed problems presents difficulties primarily in proper meshing of the interior region. However, problems in unbounded domains pose a unique challenge to computation, since the exterior region is inappropriate for direct implementation of numerical techniques. A large number of solutions have been proposed but only a few have stood the test of time and experiment. The goal of this thesis is to develop an efficient and reliable partial differential equation technique to model large three dimensional scattering problems in electromagnetics.
ERIC Educational Resources Information Center
Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander
2007-01-01
A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...
Reliability Standards of Complex Engineering Systems
NASA Astrophysics Data System (ADS)
Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.
2017-11-01
Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.
Antheraea pernyi silk fibroin for targeted gene delivery of VEGF165-Ang-1 with PEI.
Ma, Caili; Lv, Linlin; Liu, Yu; Yu, Yanni; You, Renchuan; Yang, Jicheng; Li, Mingzhong
2014-06-01
Vascularization is a crucial challenge in tissue engineering. One solution for this problem is to implant scaffolds that contain functional genes that promote vascularization by providing angiogenic growth factors via a gene delivery carrier. Poly(ethylenimine) (PEI) is a gene delivery carrier with high transfection efficiency but with cytotoxicity. To solve this problem, we utilized Antheraea pernyi silk fibroin (ASF), which has favorable cytocompatibility and biodegradability, RGD sequences and a negative charge, in conjunction with PEI, as the delivery vector for vascular endothelial growth factor (VEGF) 165-angiopoietin-1 (Ang-1) dual gene simultaneous expression plasmid, creating an ASF/PEI/pDNA complex. The results suggested that the zeta potential of the ASF/PEI/pDNA complex was significantly lower than that of the PEI/pDNA complex. Decreased nitrogen and increased oxygen on the surface of the complex demonstrated that the ASF had successfully combined with the surface of the PEI/pDNA. Furthermore, the complexes resisted digestion by nucleic acid enzymes and degradation by serum. L929 cells were cultured and transfected in vitro and improved cytotoxicity was found when the cells were transfected with ASF/PEI/pDNA compared with PEI/pDNA. In addition, the transfection efficiency and VEGF secretion increased. In general, this study provides a novel method for decreasing the cytotoxicity of PEI gene delivery vectors and increasing transfection efficiency of angiogenesis-related genes.
Chemistry and the Internal Combustion Engine II: Pollution Problems.
ERIC Educational Resources Information Center
Hunt, C. B.
1979-01-01
Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)
GA-optimization for rapid prototype system demonstration
NASA Technical Reports Server (NTRS)
Kim, Jinwoo; Zeigler, Bernard P.
1994-01-01
An application of the Genetic Algorithm (GA) is discussed. A novel scheme of Hierarchical GA was developed to solve complicated engineering problems which require optimization of a large number of parameters with high precision. High level GAs search for few parameters which are much more sensitive to the system performance. Low level GAs search in more detail and employ a greater number of parameters for further optimization. Therefore, the complexity of the search is decreased and the computing resources are used more efficiently.
Towards a Framework for Modeling Space Systems Architectures
NASA Technical Reports Server (NTRS)
Shames, Peter; Skipper, Joseph
2006-01-01
Topics covered include: 1) Statement of the problem: a) Space system architecture is complex; b) Existing terrestrial approaches must be adapted for space; c) Need a common architecture methodology and information model; d) Need appropriate set of viewpoints. 2) Requirements on a space systems model. 3) Model Based Engineering and Design (MBED) project: a) Evaluated different methods; b) Adapted and utilized RASDS & RM-ODP; c) Identified useful set of viewpoints; d) Did actual model exchanges among selected subset of tools. 4) Lessons learned & future vision.
1993-10-17
34, "in criteria, and scoring each applicable high resolution mode’, "within 10 minutes of element as I (satisfactory) or 0 power -on...everone ese, humanity. We humans are kowledg limited and we The specificatio concept development design, and ye the problem caused by that limitation...human task that is component, we would have 53=125 integration spaces. within the power of a normal, single, specialized As you can imagine this could
Complex Study of the Physical Properties of Reticulated Vitreous Carbon
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.
2015-01-01
We give an example of using a two-level identifi cation system incorporating an augmented mathematical model covering the structure, the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. The model, when combined with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little studied characteristics of the above materials. We present some of the results of investigations of reticulated vitreous carbon confirming the possibility of using it in a number of engineering applications.
Batterman, Stuart; Eisenberg, Joseph; Hardin, Rebecca; Kruk, Margaret E.; Lemos, Maria Carmen; Michalak, Anna M.; Mukherjee, Bhramar; Renne, Elisha; Stein, Howard; Watkins, Cristy; Wilson, Mark L.
2009-01-01
Objective Even when initially successful, many interventions aimed at reducing the toll of water-related infectious disease have not been sustainable over longer periods of time. Here we review historical practices in water-related infectious disease research and propose an interdisciplinary public health oriented systems approach to research and intervention design. Data sources On the basis of the literature and the authors’ experiences, we summarize contributions from key disciplines and identify common problems and trends. Practices in developing countries, where the disease burden is the most severe, are emphasized. Data extraction We define waterborne and water-associated vectorborne diseases and identify disciplinary themes and conceptual needs by drawing from ecologic, anthropologic, engineering, political/economic, and public health fields. A case study examines one of the classes of water-related infectious disease. Data synthesis The limited success in designing sustainable interventions is attributable to factors that include the complexity and interactions among the social, ecologic, engineering, political/economic, and public health domains; incomplete data; a lack of relevant indicators; and most important, an inadequate understanding of the proximal and distal factors that cause water-related infectious disease. Fundamental change is needed for research on water-related infectious diseases, and we advocate a systems approach framework using an ongoing evidence-based health outcomes focus with an extended time horizon. The examples and case study in the review show many opportunities for interdisciplinary collaborations, data fusion techniques, and other advances. Conclusions The proposed framework will facilitate research by addressing the complexity and divergent scales of problems and by engaging scientists in the disciplines needed to tackle these difficult problems. Such research can enhance the prevention and control of water-related infectious diseases in a manner that is sustainable and focused on public health outcomes. PMID:19654908
Final Report of the Project "From the finite element method to the virtual element method"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco; Gyrya, Vitaliy
The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for themore » numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.« less
Design consideration in constructing high performance embedded Knowledge-Based Systems (KBS)
NASA Technical Reports Server (NTRS)
Dalton, Shelly D.; Daley, Philip C.
1988-01-01
As the hardware trends for artificial intelligence (AI) involve more and more complexity, the process of optimizing the computer system design for a particular problem will also increase in complexity. Space applications of knowledge based systems (KBS) will often require an ability to perform both numerically intensive vector computations and real time symbolic computations. Although parallel machines can theoretically achieve the speeds necessary for most of these problems, if the application itself is not highly parallel, the machine's power cannot be utilized. A scheme is presented which will provide the computer systems engineer with a tool for analyzing machines with various configurations of array, symbolic, scaler, and multiprocessors. High speed networks and interconnections make customized, distributed, intelligent systems feasible for the application of AI in space. The method presented can be used to optimize such AI system configurations and to make comparisons between existing computer systems. It is an open question whether or not, for a given mission requirement, a suitable computer system design can be constructed for any amount of money.
The JPL functional requirements tool
NASA Technical Reports Server (NTRS)
Giffin, Geoff; Skinner, Judith; Stoller, Richard
1987-01-01
Planetary spacecraft are complex vehicles which are built according to many thousands of requirements. Problems encountered in documenting and maintaining these requirements led to the current attempt to reduce or eliminate these problems by a computer automated data base Functional Requirements Tool. The tool developed at JPL and in use on several JPL Projects is described. The organization and functionality of the Tool, together with an explanation of the data base inputs, their relationships, and use are presented. Methods of interfacing with external documents, representation of tables and figures, and methods of approval and change processing are discussed. The options available for disseminating information from the Tool are identified. The implementation of the Requirements Tool is outlined, and the operation is summarized. The conclusions drawn from this work is that the Requirements Tool represents a useful addition to the System Engineer's Tool kit, it is not currently available elsewhere, and a clear development path exists to expand the capabilities of the Tool to serve larger and more complex projects.
Applications of artificial intelligence to mission planning
NASA Technical Reports Server (NTRS)
Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.
1990-01-01
The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.
Fostering Creative Engineers: A Key to Face the Complexity of Engineering Practice
ERIC Educational Resources Information Center
Zhou, Chunfang
2012-01-01
Recent studies have argued a shift of thinking about engineering practice from a linear conception to a system understanding. The complexity of engineering practice has been thought of as the root of challenges for engineers. Moreover, creativity has been emphasised as one key capability that engineering students should master. This paper aims to…
Perceptual Fidelity vs. Engineering Compromises In Virtual Acoustic Displays
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Ahumada, Albert (Technical Monitor)
1997-01-01
Immersive, three-dimensional displays are increasingly becoming a goal of advanced human-machine interfaces. While the technology for achieving truly useful multisensory environments is still being developed, techniques for generating three-dimensional sound are now both sophisticated and practical enough to be applied to acoustic displays. The ultimate goal of virtual acoustics is to simulate the complex acoustic field experienced by a listener freely moving around within an environment. Of course, such complexity, freedom of movement and interactively is not always possible in a "true" virtual environment, much less in lower-fidelity multimedia systems. However, many of the perceptual and engineering constraints (and frustrations) that researchers, engineers and listeners have experienced in virtual audio are relevant to multimedia. In fact, some of the problems that have been studied will be even more of an issue for lower fidelity systems that are attempting to address the requirements of a huge, diverse and ultimately unknown audience. Examples include individual differences in head-related transfer functions, a lack of real interactively (head-tracking) in many multimedia displays, and perceptual degradation due to low sampling rates and/or low-bit compression. This paper discusses some of the engineering Constraints faced during implementation of virtual acoustic environments and the perceptual consequences of these constraints. Specific examples are given for NASA applications such as telerobotic control, aeronautical displays, and shuttle launch communications. An attempt will also be made to relate these issues to low-fidelity implementations such as the internet.
Perceptual Fidelity Versus Engineering Compromises in Virtual Acoustic Displays
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Ellis, Stephen R. (Technical Monitor); Frey, Mary Anne (Technical Monitor); Schneider, Victor S. (Technical Monitor)
1997-01-01
Immersive, three-dimensional displays are increasingly becoming a goal of advanced human-machine interfaces. While the technology for achieving truly useful multisensory environments is still being developed, techniques for generating three-dimensional sound are now both sophisticated and practical enough to be applied to acoustic displays. The ultimate goal of virtual acoustics is to simulate the complex acoustic field experienced by a listener freely moving around within an environment. Of course, such complexity, freedom of movement and interactivity is not always possible in a 'true' virtual environment, much less in lower-fidelity multimedia systems. However, many of the perceptual and engineering constraints (and frustrations) that researchers, engineers and listeners have experienced in virtual audio are relevant to multimedia. In fact, some of the problems that have been studied will be even more of an issue for lower fidelity systems that are attempting to address the requirements of a huge, diverse and ultimately unknown audience. Examples include individual differences in head-related transfer functions, A lack of real interactively (head-tracking) in many multimedia displays, and perceptual degradation due to low sampling rates and/or low-bit compression. This paper discusses some of the engineering constraints faced during implementation of virtual acoustic environments and the perceptual consequences of these constraints. Specific examples are given for NASA applications such as telerobotic control, aeronautical displays, and shuttle launch communications. An attempt will also be made to relate these issues to low-fidelity implementations such as the internet.
Introductory Level Problems Illustrating Concepts in Pharmaceutical Engineering
ERIC Educational Resources Information Center
McIver, Keith; Whitaker, Kathryn; De Delva, Vladimir; Farrell, Stephanie; Savelski, Mariano J.; Slater, C. Stewart
2012-01-01
Textbook style problems including detailed solutions introducing pharmaceutical topics at the level of an introductory chemical engineering course have been created. The problems illustrate and teach subjects which students would learn if they were to pursue a career in pharmaceutical engineering, including the unique terminology of the field,…
Enhanced and Conventional Project-Based Learning in an Engineering Design Module
ERIC Educational Resources Information Center
Chua, K. J.; Yang, W. M.; Leo, H. L.
2014-01-01
Engineering education focuses chiefly on students' ability to solve problems. While most engineering students are proficient in solving paper questions, they may not be proficient at providing optimal solutions to pragmatic project-based problems that require systematic learning strategy, innovation, problem-solving, and execution. The…
Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G
2012-11-14
Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.
A Chemical Engineer's Perspective on Health and Disease
Androulakis, Ioannis P.
2014-01-01
Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems. PMID:25506103
Protein–Hydrogel Interactions in Tissue Engineering: Mechanisms and Applications
Zustiak, Silviya P.; Wei, Yunqian
2013-01-01
Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein–hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel–protein interactions that will advance our ability to control the cell–biomaterial interface. PMID:23150926
NASA Astrophysics Data System (ADS)
Lindquist, E.
2015-12-01
The characterization of near-Earth-objects (NEOs) in regard to physical attributes and potential risk and impact factors presents a complex and complicates scientific and engineering challenge. The societal and policy risks and impacts are no less complex, yet are rarely considered in the same context as material properties or related factors. The objective of this contribution is to position the characterization of NEOs within the public policy process domain as a means to reflect on the science-policy nexus in regard to risks associated with NEOs. This will be accomplished through, first, a brief overview of the science-policy nexus, followed by a discussion of several policy process frameworks, such as agenda setting and the multiple streams model, focusing events, and punctuated equilibrium, and their application and appropriateness to the problem of NEOs. How, too, for example, does NEO hazard and risk compare with other low probability, high risk, hazards in regard to public policy? Finally, we will reflect on the implications of alternative NEO "solutions" and the characterization of the NEO "problem," and the political and public acceptance of policy alternatives as a way to link NEO science and policy in the context of the overall NH004 panel.
Implicit Geometry Meshing for the simulation of Rotary Friction Welding
NASA Astrophysics Data System (ADS)
Schmicker, D.; Persson, P.-O.; Strackeljan, J.
2014-08-01
The simulation of Rotary Friction Welding (RFW) is a challenging task, since it states a coupled problem of phenomena like large plastic deformations, heat flux, contact and friction. In particular the mesh generation and its restoration when using a Lagrangian description of motion is of significant severity. In this regard Implicit Geometry Meshing (IGM) algorithms are promising alternatives to the more conventional explicit methods. Because of the implicit description of the geometry during remeshing, the IGM procedure turns out to be highly robust and generates spatial discretizations of high quality regardless of the complexity of the flash shape and its inclusions. A model for efficient RFW simulation is presented, which is based on a Carreau fluid law, an Augmented Lagrange approach in mapping the incompressible deformations, a penalty contact approach, a fully regularized Coulomb-/fluid friction law and a hybrid time integration strategy. The implementation of the IGM algorithm using 6-node triangular finite elements is described in detail. The techniques are demonstrated on a fairly complex friction welding problem, demonstrating the performance and the potentials of the proposed method. The techniques are general and straight-forward to implement, and offer the potential of successful adoption to a wide range of other engineering problems.
Massively parallel support for a case-based planning system
NASA Technical Reports Server (NTRS)
Kettler, Brian P.; Hendler, James A.; Anderson, William A.
1993-01-01
Case-based planning (CBP), a kind of case-based reasoning, is a technique in which previously generated plans (cases) are stored in memory and can be reused to solve similar planning problems in the future. CBP can save considerable time over generative planning, in which a new plan is produced from scratch. CBP thus offers a potential (heuristic) mechanism for handling intractable problems. One drawback of CBP systems has been the need for a highly structured memory to reduce retrieval times. This approach requires significant domain engineering and complex memory indexing schemes to make these planners efficient. In contrast, our CBP system, CaPER, uses a massively parallel frame-based AI language (PARKA) and can do extremely fast retrieval of complex cases from a large, unindexed memory. The ability to do fast, frequent retrievals has many advantages: indexing is unnecessary; very large case bases can be used; memory can be probed in numerous alternate ways; and queries can be made at several levels, allowing more specific retrieval of stored plans that better fit the target problem with less adaptation. In this paper we describe CaPER's case retrieval techniques and some experimental results showing its good performance, even on large case bases.
Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan
2017-03-01
In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.
Application of 3D Laser Scanning Technology in Complex Rock Foundation Design
NASA Astrophysics Data System (ADS)
Junjie, Ma; Dan, Lu; Zhilong, Liu
2017-12-01
Taking the complex landform of Tanxi Mountain Landscape Bridge as an example, the application of 3D laser scanning technology in the mapping of complex rock foundations is studied in this paper. A set of 3D laser scanning technologies are formed and several key engineering problems are solved. The first is 3D laser scanning technology of complex landforms. 3D laser scanning technology is used to obtain a complete 3D point cloud data model of the complex landform. The detailed and accurate results of the surveying and mapping decrease the measuring time and supplementary measuring times. The second is 3D collaborative modeling of the complex landform. A 3D model of the complex landform is established based on the 3D point cloud data model. The super-structural foundation model is introduced for 3D collaborative design. The optimal design plan is selected and the construction progress is accelerated. And the last is finite-element analysis technology of the complex landform foundation. A 3D model of the complex landform is introduced into ANSYS for building a finite element model to calculate anti-slide stability of the rock, and provides a basis for the landform foundation design and construction.
NASA Astrophysics Data System (ADS)
Aktan, A. Emin
2003-08-01
Although the interconnected systems nature of the infrastructures, and the complexity of interactions between their engineered, socio-technical and natural constituents have been recognized for some time, the principles of effectively operating, protecting and preserving such systems by taking full advantage of "modeling, simulations, optimization, control and decision making" tools developed by the systems engineering and operations research community have not been adequately studied or discussed by many engineers including the writer. Differential and linear equation systems, numerical and finite element modeling techniques, statistical and probabilistic representations are universal, however, different disciplines have developed their distinct approaches to conceptualizing, idealizing and modeling the systems they commonly deal with. The challenge is in adapting and integrating deterministic and stochastic, geometric and numerical, physics-based and "soft (data-or-knowledge based)", macroscopic or microscopic models developed by various disciplines for simulating infrastructure systems. There is a lot to be learned by studying how different disciplines have studied, improved and optimized the systems relating to various processes and products in their domains. Operations research has become a fifty-year old discipline addressing complex systems problems. Its mathematical tools range from linear programming to decision processes and game theory. These tools are used extensively in management and finance, as well as by industrial engineers for optimizing and quality control. Progressive civil engineering academic programs have adopted "systems engineering" as a focal area. However, most of the civil engineering systems programs remain focused on constructing and analyzing highly idealized, often generic models relating to the planning or operation of transportation, water or waste systems, maintenance management, waste management or general infrastructure hazards risk management. We further note that in the last decade there have been efforts for "agent-based" modeling of synthetic infrastructure systems by taking advantage of supercomputers at various DOE Laboratories. However, whether there is any similitude between such synthetic and actual systems needs investigating further.
Theoretical Acoustic Absorber Design Approach for LOX/LCH4 Pintle Injector Rocket Engines
NASA Astrophysics Data System (ADS)
Candelaria, Jonathan
Liquid rocket engines, or LREs, have served a key role in space exploration efforts. One current effort involves the utilization of liquid oxygen (LOX) and liquid methane (LCH4) LREs to explore Mars with in-situ resource utilization for propellant production. This on-site production of propellant will allow for greater payload allocation instead of fuel to travel to the Mars surface, and refueling of propellants to travel back to Earth. More useable mass yields a greater benefit to cost ratio. The University of Texas at El Paso's (UTEP) Center for Space Exploration and Technology Research Center (cSETR) aims to further advance these methane propulsion systems with the development of two liquid methane - liquid oxygen propellant combination rocket engines. The design of rocket engines, specifically liquid rocket engines, is complex in that many variables are present that must be taken into consideration in the design. A problem that occurs in almost every rocket engine development program is combustion instability, or oscillatory combustion. It can result in the destruction of the rocket, subsequent destruction of the vehicle and compromise the mission. These combustion oscillations can vary in frequency from 100 to 20,000 Hz or more, with varying effects, and occur from different coupling phenomena. It is important to understand the effects of combustion instability, its physical manifestations, how to identify the instabilities, and how to mitigate or dampen them. Linear theory methods have been developed to provide a mathematical understanding of the low- to mid-range instabilities. Nonlinear theory is more complex and difficult to analyze mathematically, therefore no general analytical method that yields a solution exists. With limited resources, time, and the advice of our NASA mentors, a data driven experimental approach utilizing quarter wave acoustic dampener cavities was designed. This thesis outlines the methodology behind the design of an acoustic dampening system for a 500 lbf and a 2000 lbf throttleable liquid oxygen liquid methane pintle injector rocket engine.
Nanotechnology in the Regeneration of Complex Tissues
Cassidy, John W.
2015-01-01
Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds. PMID:26097381
NASA Astrophysics Data System (ADS)
Fadakar Alghalandis, Younes
2017-05-01
Rapidly growing topic, the discrete fracture network engineering (DFNE), has already attracted many talents from diverse disciplines in academia and industry around the world to challenge difficult problems related to mining, geothermal, civil, oil and gas, water and many other projects. Although, there are few commercial software capable of providing some useful functionalities fundamental for DFNE, their costs, closed code (black box) distributions and hence limited programmability and tractability encouraged us to respond to this rising demand with a new solution. This paper introduces an open source comprehensive software package for stochastic modeling of fracture networks in two- and three-dimension in discrete formulation. Functionalities included are geometric modeling (e.g., complex polygonal fracture faces, and utilizing directional statistics), simulations, characterizations (e.g., intersection, clustering and connectivity analyses) and applications (e.g., fluid flow). The package is completely written in Matlab scripting language. Significant efforts have been made to bring maximum flexibility to the functions in order to solve problems in both two- and three-dimensions in an easy and united way that is suitable for beginners, advanced and experienced users.
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
Inducible CRISPR genome-editing tool: classifications and future trends.
Dai, Xiaofeng; Chen, Xiao; Fang, Qiuwu; Li, Jia; Bai, Zhonghu
2018-06-01
The discovery of CRISPR-Cas9/dCas9 system has reinforced our ability and revolutionized our history in genome engineering. While Cas9 and dCas9 are programed to modulate gene expression by introducing DNA breaks, blocking transcription factor recruitment or dragging functional groups towards the targeted sites, sgRNAs determine the genomic loci where the modulation occurs. The off-target problem, due to limited sgRNA specificity and genome complexity of many species, has posed concerns for the wide application of this revolutionary technique. To solve this problem and, more importantly, gain power over gene functionality and cell fate control, inducible strategies have been continuously evolved to offer tailored solutions to address specific biological questions. By reviewing recent advances in inducible CRISPR system design and critical elements potentially adding values to such systems, we classify current approaches in this domain into four mechanically distinct categories, namely, "split system", "allosteric system", "combinatorial system", and "transient delivery system", discuss the pros and cons of each system, and point out the under-explored areas and future directions, with the aim of enriching our toolbox of delicate life engineering.
Methods Used to Support a Life Cycle of Complex Engineering Products
NASA Astrophysics Data System (ADS)
Zakharova, Alexandra A.; Kolegova, Olga A.; Nekrasova, Maria E.; Eremenko, Andrey O.
2016-08-01
Management of companies involved in the design, development and operation of complex engineering products recognize the relevance of creating systems for product lifecycle management. A system of methods is proposed to support life cycles of complex engineering products, based on fuzzy set theory and hierarchical analysis. The system of methods serves to demonstrate the grounds for making strategic decisions in an environment of uncertainty, allows the use of expert knowledge, and provides interconnection of decisions at all phases of strategic management and all stages of a complex engineering product lifecycle.
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Effect of a "Look-Ahead" Problem on Undergraduate Engineering Students' Concept Comprehension
ERIC Educational Resources Information Center
Goodman, Kevin; Davis, Julian; McDonald, Thomas
2016-01-01
In an effort to motivate undergraduate engineering students to prepare for class by reviewing material before lectures, a "Look-Ahead" problem was utilized. Students from two undergraduate engineering courses; Statics and Electronic Circuits, were assigned problems from course material that had not yet been covered in class. These…
Multiphysics analysis of liquid metal annular linear induction pumps: A project overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maidana, Carlos Omar; Nieminen, Juha E.
Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less
Multiphysics analysis of liquid metal annular linear induction pumps: A project overview
Maidana, Carlos Omar; Nieminen, Juha E.
2016-03-14
Liquid metal-cooled fission reactors are both moderated and cooled by a liquid metal solution. These reactors are typically very compact and they can be used in regular electric power production, for naval and space propulsion systems or in fission surface power systems for planetary exploration. The coupling between the electromagnetics and thermo-fluid mechanical phenomena observed in liquid metal thermo-magnetic systems for nuclear and space applications gives rise to complex engineering magnetohydrodynamics and numerical problems. It is known that electromagnetic pumps have a number of advantages over rotating mechanisms: absence of moving parts, low noise and vibration level, simplicity of flowmore » rate regulation, easy maintenance and so on. However, while developing annular linear induction pumps, we are faced with a significant problem of magnetohydrodynamic instability arising in the device. The complex flow behavior in this type of devices includes a time-varying Lorentz force and pressure pulsation due to the time-varying electromagnetic fields and the induced convective currents that originates from the liquid metal flow, leading to instability problems along the device geometry. The determinations of the geometry and electrical configuration of liquid metal thermo-magnetic devices give rise to a complex inverse magnetohydrodynamic field problem were techniques for global optimization should be used, magnetohydrodynamics instabilities understood –or quantified- and multiphysics models developed and analyzed. Lastly, we present a project overview as well as a few computational models developed to study liquid metal annular linear induction pumps using first principles and the a few results of our multi-physics analysis.« less
Photography equipment and techniques. A survey of NASA developments
NASA Technical Reports Server (NTRS)
Derr, A. J.
1972-01-01
The Apollo program has been the most complex exploration ever attempted by man, requiring extensive research, development, and engineering in most of the sciences before the leap through space could begin. Photography has been used at each step of the way to document the efforts and activities, isolate mistakes, reveal new phenomena, and to record much that cannot be seen by the human eye. At the same time, the capabilities of photography were extended because of the need of meeting space requirements. The results of this work have been applied to community planning and ecology, for example, as well as to space and engineering. Special uses of standard equipment, modifications and new designs, as well as film combinations that indicate actual or potential ecological problems are described.
Automated reverse engineering of nonlinear dynamical systems
Bongard, Josh; Lipson, Hod
2007-01-01
Complex nonlinear dynamics arise in many fields of science and engineering, but uncovering the underlying differential equations directly from observations poses a challenging task. The ability to symbolically model complex networked systems is key to understanding them, an open problem in many disciplines. Here we introduce for the first time a method that can automatically generate symbolic equations for a nonlinear coupled dynamical system directly from time series data. This method is applicable to any system that can be described using sets of ordinary nonlinear differential equations, and assumes that the (possibly noisy) time series of all variables are observable. Previous automated symbolic modeling approaches of coupled physical systems produced linear models or required a nonlinear model to be provided manually. The advance presented here is made possible by allowing the method to model each (possibly coupled) variable separately, intelligently perturbing and destabilizing the system to extract its less observable characteristics, and automatically simplifying the equations during modeling. We demonstrate this method on four simulated and two real systems spanning mechanics, ecology, and systems biology. Unlike numerical models, symbolic models have explanatory value, suggesting that automated “reverse engineering” approaches for model-free symbolic nonlinear system identification may play an increasing role in our ability to understand progressively more complex systems in the future. PMID:17553966
NASA Technical Reports Server (NTRS)
Schneider, E. T.; Enevoldson, E. K.
1984-01-01
The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.
Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview
NASA Astrophysics Data System (ADS)
Moo-Young, H.
2004-05-01
A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental cyber-infrastructure; 3) A Mechanism for multidisciplinary research and education activities designed to exploit the output of the instrumented sites and networked information technology, to formulate engineering and policy options directed toward the protection, remediation, and restoration of stressed environments and sustainability of environmental resources; and 4) A Collaboration among engineers, natural and social scientists, educators, policy makers, industry, non-governmental organizations, the public, and other stakeholders.
Evaluation in context: ATC automation in the field
NASA Technical Reports Server (NTRS)
Harwood, Kelly; Sanford, Beverly
1994-01-01
The process for incorporating advanced technologies into complex aviation systems is as important as the final product itself. This paper described a process that is currently being applied to the development and assessment of an advanced ATC automation system, CTAS. The key element of the process is field exposure early in the system development cycle. The process deviates from current established practices of system development -- where field testing is an implementation endpoint -- and has been deemed necessary by the FAA for streamlining development and bringing system functions to a level of stability and usefulness. Methods and approaches for field assessment are borrowed from human factors engineering, cognitive engineering, and usability engineering and are tailored for the constraints of an operational ATC environment. To date, the focus has been on the qualitative assessment of the match between TMA capabilities and the context for their use. Capturing the users' experience with the automation tool and understanding tool use in the context of the operational environment is important, not only for developing a tool that is an effective problem-solving instrument but also for defining meaningful operational requirements. Such requirements form the basis for certifying the safety and efficiency of the system. CTAS is the first U.S. advanced ATC automation system of its scope and complexity to undergo this field development and assessment process. With the rapid advances in aviation technologies and our limited understanding of their impact on system performance, it is time we opened our eyes to new possibilities for developing, validating, and ultimately certifying complex aviation systems.
Distributed computation: the new wave of synthetic biology devices.
Macía, Javier; Posas, Francesc; Solé, Ricard V
2012-06-01
Synthetic biology (SB) offers a unique opportunity for designing complex molecular circuits able to perform predefined functions. But the goal of achieving a flexible toolbox of reusable molecular components has been shown to be limited due to circuit unpredictability, incompatible parts or random fluctuations. Many of these problems arise from the challenges posed by engineering the molecular circuitry: multiple wires are usually difficult to implement reliably within one cell and the resulting systems cannot be reused in other modules. These problems are solved by means of a nonstandard approach to single cell devices, using cell consortia and allowing the output signal to be distributed among different cell types, which can be combined in multiple, reusable and scalable ways. Copyright © 2012 Elsevier Ltd. All rights reserved.
Finite element meshing approached as a global minimization process
DOE Office of Scientific and Technical Information (OSTI.GOV)
WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.
2000-03-01
The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within amore » charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.« less
Engineering management of large scale systems
NASA Technical Reports Server (NTRS)
Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.
1989-01-01
The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.
The Problem of Engineering Creativity in Russia: A Critical Review
ERIC Educational Resources Information Center
Kukushkin, Sergey; Churlyaeva, Natalya
2012-01-01
The problem of technological creativity in Russia is briefly discussed. Special attention is paid to the development of indigenous engineering corpus in unfavourable conditions and some reasons for engineers' low creativity are revealed. The Soviet system of engineering higher education (HE) is criticised as not focused on fostering creative…
Teaching Agile Software Engineering Using Problem-Based Learning
ERIC Educational Resources Information Center
El-Khalili, Nuha H.
2013-01-01
Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…
Pre-Engineering Program. Introduction to Engineering. Advanced Engineering.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.
This guide contains information and hands-on activities to guide students through the problem-solving process needed in engineering (problem solving, presentation, and impact analysis) and information to help the instructor manage the program or courses in Virginia. Following an introduction, the guide contains a program description that supplies…
Promoting Collaborative Problem-Solving Skills in a Course on Engineering Grand Challenges
ERIC Educational Resources Information Center
Zou, Tracy X. P.; Mickleborough, Neil C.
2015-01-01
The ability to solve problems with people of diverse backgrounds is essential for engineering graduates. A course on engineering grand challenges was designed to promote collaborative problem-solving (CPS) skills. One unique component is that students need to work both within their own team and collaborate with the other team to tackle engineering…
Improving collaborative learning in online software engineering education
NASA Astrophysics Data System (ADS)
Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.
2017-11-01
Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all student teams experience challenges, those in fully online programmes must also deal with remote working, asynchronous coordination, and computer-mediated communications all of which contribute to greater social distance between team members. We have developed a facilitation framework to aid team collaboration and have demonstrated its efficacy, in prior research, with respect to team performance and outcomes. Those studies indicated, however, that despite experiencing improved project outcomes, students working in effective software engineering teams did not experience significantly improved individual achievement. To address this deficiency we implemented theoretically grounded refinements to the collaboration model based upon peer-tutoring research. Our results indicate a modest, but statistically significant (p = .08), improvement in individual achievement using this refined model.
Statistical Inference of a RANS closure for a Jet-in-Crossflow simulation
NASA Astrophysics Data System (ADS)
Heyse, Jan; Edeling, Wouter; Iaccarino, Gianluca
2016-11-01
The jet-in-crossflow is found in several engineering applications, such as discrete film cooling for turbine blades, where a coolant injected through hols in the blade's surface protects the component from the hot gases leaving the combustion chamber. Experimental measurements using MRI techniques have been completed for a single hole injection into a turbulent crossflow, providing full 3D averaged velocity field. For such flows of engineering interest, Reynolds-Averaged Navier-Stokes (RANS) turbulence closure models are often the only viable computational option. However, RANS models are known to provide poor predictions in the region close to the injection point. Since these models are calibrated on simple canonical flow problems, the obtained closure coefficient estimates are unlikely to extrapolate well to more complex flows. We will therefore calibrate the parameters of a RANS model using statistical inference techniques informed by the experimental jet-in-crossflow data. The obtained probabilistic parameter estimates can in turn be used to compute flow fields with quantified uncertainty. Stanford Graduate Fellowship in Science and Engineering.
NASA Astrophysics Data System (ADS)
Costello, Gabriel J.
2017-11-01
The purpose of this work is to contribute to the debate on the best pedagogical approach to developing undergraduate mechanical engineering skills to meet the requirements of contemporary complex working environments. The paper provides an example of using student-entrepreneur collaboration in the teaching of modules to Mechanical Engineering final-year students. Problem-based learning (PBL) is one of the most significant recent innovations in the area of education for the professions. This work proposes to make an original contribution by simulating a real-life entrepreneur interaction for the students. The current literature largely confines simulation-based learning to computer applications such as games. However, this paper argues that role playing by students interfacing with technology start-ups can also be regarded as 'simulation' in a wider sense. Consequently, the paper proposes the concept of simulation-action learning as an enhancement of PBL and to distinguish it from computer simulation.
Real-time control for manufacturing space shuttle main engines: Work in progress
NASA Technical Reports Server (NTRS)
Ruokangas, Corinne C.
1988-01-01
During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.
Modeling complexity in engineered infrastructure system: Water distribution network as an example
NASA Astrophysics Data System (ADS)
Zeng, Fang; Li, Xiang; Li, Ke
2017-02-01
The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.
Numerical Analysis on Seepage in the deep overburden CFRD
NASA Astrophysics Data System (ADS)
Zeyu, GUO; Junrui, CHAI; Yuan, QIN
2017-12-01
There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.
New Approaches to HSCT Multidisciplinary Design and Optimization
NASA Technical Reports Server (NTRS)
Schrage, Daniel P.; Craig, James I.; Fulton, Robert E.; Mistree, Farrokh
1999-01-01
New approaches to MDO have been developed and demonstrated during this project on a particularly challenging aeronautics problem- HSCT Aeroelastic Wing Design. To tackle this problem required the integration of resources and collaboration from three Georgia Tech laboratories: ASDL, SDL, and PPRL, along with close coordination and participation from industry. Its success can also be contributed to the close interaction and involvement of fellows from the NASA Multidisciplinary Analysis and Optimization (MAO) program, which was going on in parallel, and provided additional resources to work the very complex, multidisciplinary problem, along with the methods being developed. The development of the Integrated Design Engineering Simulator (IDES) and its initial demonstration is a necessary first step in transitioning the methods and tools developed to larger industrial sized problems of interest. It also provides a framework for the implementation and demonstration of the methodology. Attachment: Appendix A - List of publications. Appendix B - Year 1 report. Appendix C - Year 2 report. Appendix D - Year 3 report. Appendix E - accompanying CDROM.
Some Problems of Exploitation of Jet Turbine Aircraft Engines of Lot Polish Air Lines,
1977-04-26
CI ‘AD~AOII6 221 FOREIGN TECHNOLOGY DIV WR IGHT—PATTERSON AFB OHIO F/I 21/5SOME PROBLEMS OF EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES O—CTC(U...EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES OF LOT POLISH AIR LINE S By: Andrzej Slodownik English pages: 1~ Source: Technika Lotnicza I Astronautyczna...SOME PROBLEMS OF EXPLOITATION OF JET TURBINE AIRCRAFT ENGINES OF LOT POLISH AIR LINES Andrzej Slodownik , M. Eng . FTD— ID ( RS) I— 0 1475 — 77 I
Complex technology of vacuum-arc processing of structural material surface
NASA Astrophysics Data System (ADS)
Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.
2015-08-01
The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.
Kushniruk, Andre W; Borycki, Elizabeth M
2015-01-01
Innovations in healthcare information systems promise to revolutionize and streamline healthcare processes worldwide. However, the complexity of these systems and the need to better understand issues related to human-computer interaction have slowed progress in this area. In this chapter the authors describe their work in using methods adapted from usability engineering, video ethnography and analysis of digital log files for improving our understanding of complex real-world healthcare interactions between humans and technology. The approaches taken are cost-effective and practical and can provide detailed ethnographic data on issues health professionals and consumers encounter while using systems as well as potential safety problems. The work is important in that it can be used in techno-anthropology to characterize complex user interactions with technologies and also to provide feedback into redesign and optimization of improved healthcare information systems.
Water and Social Justice in Bangladesh: A Transdisciplinary and Intercultural Approach
NASA Astrophysics Data System (ADS)
Gilligan, J. M.; Ackerly, B.; Ahmed, K.; Benneyworth, L.; Goodbred, S. L.; Hall, M.; Jacobi, J. H.; Mondal, D. R.; Pickering, J.; Rogers, K. G.; Roy, K.; Wallace Auerbach, L.
2013-12-01
Effectively addressing environmental problems---at local, national, and global scales---requires actively crossing disciplinary boundaries between natural sciences, engineering, social sciences, and policymaking. The best technical solution is useless if it cannot win political support from the people it is intended to help. Enacted policies are too often hindered either by misunderstanding or ignorance of scientific and technical aspects of the problem or by misunderstanding the behavior of the population they address. Environmental problems at the international scale also require understanding of cultural and social differences across national boundaries. To prepare graduate students to be professionally effective at addressing major environmental problems, Vanderbilt University has created a transdisciplinary, intercultural course that brings students from the US and Bangladesh together, both through online connections such as blogs and Skype sessions, and in person in a week-long joint field trip in which students and faculty from universities in both countries, and representing many disciplines work side-by-side to study water as both a natural resource and a natural hazard. Activities included studying sources of drinking water, observing areas affected by flooding from cyclone storm surges, cataloging physical infrastructure, and conducting interviews with residents of vulnerable areas. Few if any students can simultaneously master the social sciences, natural sciences, and engineering skills necessary to comprehensively address major environmental problems, but students can learn to work and communicate effectively with peers in other disciplines, working together to understand the complex interactions between different aspects of their problem. We will report on the structure of the course; our experiences as faculty and student participants; and connections between this class, graduate curricula in environmental sciences, and international transdisciplinary research projects.
Wu, Mingxuan; Zhang, Yanning; Liu, Huijuan; Dong, Fusheng
2018-01-01
Background The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a “sandwich” tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. Material/Methods Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. Results Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. Conclusions The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly. PMID:29470454
Recognition vs Reverse Engineering in Boolean Concepts Learning
ERIC Educational Resources Information Center
Shafat, Gabriel; Levin, Ilya
2012-01-01
This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…
Improving safety of aircraft engines: a consortium approach
NASA Astrophysics Data System (ADS)
Brasche, Lisa J. H.
1996-11-01
With over seven million departures per year, air transportation has become not a luxury, but a standard mode of transportation for the United States. A critical aspect of modern air transport is the jet engine, a complex engineered component that has enabled the rapid travel to which we have all become accustomed. One of the enabling technologies for safe air travel is nondestructive evaluation, or NDE, which includes various inspection techniques used to assess the health or integrity of a structure, component, or material. The Engine Titanium Consortium (ETC) was established in 1993 to respond to recommendations made by the Federal Aviation Administration (FAA) Titanium Rotating Components Review Team (TRCRT) for improvements in inspection of engine titanium. Several recent accomplishments of the ETC are detailed in this paper. The objective of the Engine Titanium Consortium is to provide the FAAand the manufacturers with reliable and costeffective new methods and/or improvements in mature methods for detecting cracks, inclusions, and imperfections in titanium. The consortium consists of a team of researchers from academia and industry-namely, Iowa State University, Allied Signal Propulsion Engines, General Electric Aircraft Engines, and Pratt & Whitney Engines-who work together to develop program priorities, organize a program plan, conduct the research, and implement the solutions. The true advantage of the consortium approach is that it brings together the research talents of academia and the engineering talents of industry to tackle a technology-base problem. In bringing industrial competitors together, the consortium ensures that the research results, which have safety implications and result from FAA funds, are shared and become part of the public domain.
Minimal complexity control law synthesis
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Haddad, Wassim M.; Nett, Carl N.
1989-01-01
A paradigm for control law design for modern engineering systems is proposed: Minimize control law complexity subject to the achievement of a specified accuracy in the face of a specified level of uncertainty. Correspondingly, the overall goal is to make progress towards the development of a control law design methodology which supports this paradigm. Researchers achieve this goal by developing a general theory of optimal constrained-structure dynamic output feedback compensation, where here constrained-structure means that the dynamic-structure (e.g., dynamic order, pole locations, zero locations, etc.) of the output feedback compensation is constrained in some way. By applying this theory in an innovative fashion, where here the indicated iteration occurs over the choice of the compensator dynamic-structure, the paradigm stated above can, in principle, be realized. The optimal constrained-structure dynamic output feedback problem is formulated in general terms. An elegant method for reducing optimal constrained-structure dynamic output feedback problems to optimal static output feedback problems is then developed. This reduction procedure makes use of star products, linear fractional transformations, and linear fractional decompositions, and yields as a byproduct a complete characterization of the class of optimal constrained-structure dynamic output feedback problems which can be reduced to optimal static output feedback problems. Issues such as operational/physical constraints, operating-point variations, and processor throughput/memory limitations are considered, and it is shown how anti-windup/bumpless transfer, gain-scheduling, and digital processor implementation can be facilitated by constraining the controller dynamic-structure in an appropriate fashion.
ERIC Educational Resources Information Center
McLoone, Seamus C.; Lawlor, Bob J.; Meehan, Andrew R.
2016-01-01
This paper describes how a circuits-based project-oriented problem-based learning educational model was integrated into the first year of a Bachelor of Engineering in Electronic Engineering programme at Maynooth University, Ireland. While many variations of problem based learning exist, the presented model is closely aligned with the model used in…
The Technology of Forming of Innovative Content for Engineering Education
ERIC Educational Resources Information Center
Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.
2016-01-01
The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…
A Study of Competence in Mathematics and Mechanics in an Engineering Curriculum
ERIC Educational Resources Information Center
Munns, Andrew
2017-01-01
Professional bodies expect engineers to show competence in both mathematics and engineering topics such as mechanics, using their abilities in both of these to solve problems. Yet within engineering programmes there is a phenomenon known as "The Mathematics Problem", with students not demonstrating understanding of the subject. This…
Teaching ethics to engineers: ethical decision making parallels the engineering design process.
Bero, Bridget; Kuhlman, Alana
2011-09-01
In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.
Linking engineering and medicine: fostering collaboration skills in interdisciplinary teams.
Khoo, Michael C K
2012-07-01
Biomedical engineering embodies the spirit of combining disciplines. The engineer's pragmatic approach to--and appetite for--solving problems is matched by a bounty of technical challenges generated in medical domains. From nanoscale diagnostics to the redesign of systems of health-care delivery, engineers have been connecting advances in basic and applied science with applications that have helped to improve medical care and outcomes. Increasingly, however, integrating these areas of knowledge and application is less individualistic and more of a team sport. Success increasingly relies on a direct focus on practicing and developing collaboration skills in interdisciplinary teams. Such an approach does not fit easily into individual-focused, discipline-based programs. Biomedical engineering has done its fair share of silo busting, but new approaches are needed to inspire interdisciplinary teams to form around challenges in particular areas. Health care offers a wide variety of complex challenges across an array of delivery settings that can call for new interdisciplinary approaches. This was recognized by the deans of the University of Southern California's (USC's) Medical and Engineering Schools when they began the planning process, leading to the creation of the Health, Technology, and Engineering (HTE@USC or HTE for short) program. “Health care and technology are changing rapidly, and future physicians and engineers need intellectual tools to stay ahead of this change,” says Carmen A. Puliafito, dean of the Keck School of Medicine. His goal is to train national leaders in the quest for devices and processes to improve health care.
Artificial intelligence approaches to software engineering
NASA Technical Reports Server (NTRS)
Johannes, James D.; Macdonald, James R.
1988-01-01
Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.
NASA Astrophysics Data System (ADS)
Leu, Jun-Der; Lee, Larry Jung-Hsing
2017-09-01
Enterprise resource planning (ERP) is a software solution that integrates the operational processes of the business functions of an enterprise. However, implementing ERP systems is a complex process. In addition to the technical issues, companies must address problems associated with business process re-engineering, time and budget control, and organisational change. Numerous industrial studies have shown that the failure rate of ERP implementation is high, even for well-designed systems. Thus, ERP projects typically require a clear methodology to support the project execution and effectiveness. In this study, we propose a theoretical model for ERP implementation. The value engineering (VE) method forms the basis of the proposed framework, which integrates Six Sigma tools. The proposed framework encompasses five phases: knowledge generation, analysis, creation, development and execution. In the VE method, potential ERP problems related to software, hardware, consultation and organisation are analysed in a group-decision manner and in relation to value, and Six Sigma tools are applied to avoid any project defects. We validate the feasibility of the proposed model by applying it to an international manufacturing enterprise in Taiwan. The results show improvements in customer response time and operational efficiency in terms of work-in-process and turnover of materials. Based on the evidence from the case study, the theoretical framework is discussed together with the study's limitations and suggestions for future research.
A multiscale model of distributed fracture and permeability in solids in all-round compression
NASA Astrophysics Data System (ADS)
De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna
2017-07-01
We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.
The potential application of the blackboard model of problem solving to multidisciplinary design
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.
The application of CFD to rotary wing flow problems
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1990-01-01
Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the need for independent computational and experimental studies is great. Three-dimensional unsteady, nonlinear potential methods are becoming fast enough to enable their use in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete trimmed rotor soltution can be performed in about an hour on a CRAY Y-MP (or ten minutes, with multiple processors). These computational speeds indicate that in the near future many of the large CFD problems will no longer require a supercomputer. The ability to convect circulation is routine for integral methods, but only recently was it discovered how to do the same with differential methods. It is clear that the differential CFD rotor analyses are poised to enter the engineering workplace. Integral methods already constitute a mainstay. Ultimately, it is the users who will integrate CFD into the entire engineering process and provide a new measure of confidence in design and analysis. It should be recognized that the above classes of analyses do not include several major limiting phenomena which will continue to require empirical treatment because of computational time constraints and limited physical understanding. Such empirical treatment should be included, however, into the developing CFD, engineering level analyses. It is likely that properly constructed flow models containing corrections from physical testing will be able to fill in unavoidable gaps in the experimental data base, both for basic studies and for specific configuration testing. For these kinds of applications, computational cost is not an issue. Finally, it should be recognized that although rotorcraft are probably the most complex of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and must be used wisely. Therefore the fixed-wing work must be gleaned for many of the basic methods.
Risk Management Technique for design and operation of facilities and equipment
NASA Technical Reports Server (NTRS)
Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.
1975-01-01
The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.
Lu, Tong; Tai, Chiew-Lan; Yang, Huafei; Cai, Shijie
2009-08-01
We present a novel knowledge-based system to automatically convert real-life engineering drawings to content-oriented high-level descriptions. The proposed method essentially turns the complex interpretation process into two parts: knowledge representation and knowledge-based interpretation. We propose a new hierarchical descriptor-based knowledge representation method to organize the various types of engineering objects and their complex high-level relations. The descriptors are defined using an Extended Backus Naur Form (EBNF), facilitating modification and maintenance. When interpreting a set of related engineering drawings, the knowledge-based interpretation system first constructs an EBNF-tree from the knowledge representation file, then searches for potential engineering objects guided by a depth-first order of the nodes in the EBNF-tree. Experimental results and comparisons with other interpretation systems demonstrate that our knowledge-based system is accurate and robust for high-level interpretation of complex real-life engineering projects.
ERIC Educational Resources Information Center
Valentine, Andrew; Belski, Iouri; Hamilton, Margaret
2017-01-01
Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…
NASA Astrophysics Data System (ADS)
Haghnevis, Moeed
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
A Case Study: Problem-Based Learning for Civil Engineering Students in Transportation Courses
ERIC Educational Resources Information Center
Ahern, A. A.
2010-01-01
This paper describes two case studies where problem-based learning (PBL) has been introduced to undergraduate civil engineering students in University College Dublin. PBL has recently been put in place in the penultimate and final year transport engineering classes in the civil engineering degree in University College Dublin. In this case study,…
Using Ontological Engineering to Overcome AI-ED Problems: Contribution, Impact and Perspectives
ERIC Educational Resources Information Center
Mizoguchi, Riichiro; Bourdeau, Jacqueline
2016-01-01
This article reflects on the ontology engineering methodology discussed by the paper entitled "Using Ontological Engineering to Overcome AI-ED Problems" published in this journal in 2000. We discuss the achievements obtained in the last 10 years, the impact of our work as well as recent trends and perspectives in ontology engineering for…
NASA Astrophysics Data System (ADS)
Balasis, G.; Daglis, I. A.; Papadimitriou, C.; Kalimeri, M.; Anastasiadis, A.; Eftaxias, K.
2008-12-01
Dynamical complexity detection for output time series of complex systems is one of the foremost problems in physics, biology, engineering, and economic sciences. Especially in magnetospheric physics, accurate detection of the dissimilarity between normal and abnormal states (e.g. pre-storm activity and magnetic storms) can vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. Herein, we examine the fractal spectral properties of the Dst data using a wavelet analysis technique. We show that distinct changes in associated scaling parameters occur (i.e., transition from anti- persistent to persistent behavior) as an intense magnetic storm approaches. We then analyze Dst time series by introducing the non-extensive Tsallis entropy, Sq, as an appropriate complexity measure. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). The Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization.