Processing and Structural Advantages of the Sylramic-iBN SiC Fiber for SiC/SiC Components
NASA Technical Reports Server (NTRS)
Yun, H. M.; Dicarlo, J. A.; Bhatt, R. T.; Hurst, J. B.
2008-01-01
The successful high-temperature application of complex-shaped SiC/SiC components will depend on achieving as high a fraction of the as-produced fiber strength as possible during component fabrication and service. Key issues center on a variety of component architecture, processing, and service-related factors that can reduce fiber strength, such as fiber-fiber abrasion during architecture shaping, surface chemical attack during interphase deposition and service, and intrinsic flaw growth during high-temperature matrix formation and composite creep. The objective of this paper is to show that the NASA-developed Sylramic-iBN SiC fiber minimizes many of these issues for state-of-the-art melt-infiltrated (MI) SiC/BN/SiC composites. To accomplish this, data from various mechanical tests are presented that compare how different high performance SiC fiber types retain strength during formation of complex architectures, during processing of BN interphases and MI matrices, and during simulated composite service at high temperatures.
Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)
2008-01-01
A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.
Scalable boson sampling with time-bin encoding using a loop-based architecture.
Motes, Keith R; Gilchrist, Alexei; Dowling, Jonathan P; Rohde, Peter P
2014-09-19
We present an architecture for arbitrarily scalable boson sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.
Fabrication And Evaluation Of Sic/Sic Tubes With Various Fiber Architectures
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Fox, D. S.
2003-01-01
SiC/SiC composites are excellent material candidates for high temperature applications where the performance requirements are high strength, high creep-rupture resistance, high environmental durability, and high thermal conductivity. In the past, the NASA UEET program has demonstrated fabrication of high-performance SiC/SiC flat panels reinforced by Sylramic-iBN SiC fibers. Currently NASA UEET is scaling up this SiC/SiC system by fabrication of more complex shaped components using the same fiber type. This paper reports the effects of various fiber architectures on the processing, mechanical, and durability behavior of small-diameter 0.5" ID SiC/SiC tubes, which are potential sub-elements for leading edges and cooling channels in turbine vanes and blades. Nine different fiber architectures were utilized for construction of seamless tube preforms, from simple 2D jelly-rolling to complex braiding, pin-weaving, filament-winding and 3D orthogonal weaving with approximately 5% fibers in the thru-thickness direction. Using the BN interphase and Sic matrix processing steps established for the flat panels, SiC/SiC tubes were fabricated with wall thicknesses of approximately 60 mils and total fiber fractions of approximately 35%. The "D" split ring tests for hoop tensile properties, micro-structural examinations for relationship between fiber architecture formation and matrix infiltration, and the low-pressure burner rig tests for the high temperature durability under thru-thickness thermal gradient were conducted. The better matrix infiltration and higher hoop strength were achieved using the tri-axial braided and the three-float pin woven SiC/SiC tubes. In general, it needs not only higher hoop direction fibers but also axial direction fibers for the higher hoop strength and the better infiltration, respectively. These results are analyzed to offer general guidelines for selecting fiber pre-form architectures and SiC/SiC processes that maximize tube hoop strength, thru-thickness thermal conductivity, and burner-rig durability under a high thermal gradient.
The Effect of Fiber Architecture on Matrix Cracking in Sic/sic Cmc's
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2005-01-01
Applications incorporating silicon carbide fiber reinforced silicon carbide matrix composites (CMC's) will require a wide range of fiber architectures in order to fabricate complex shape. The stress-strain response of a given SiC/SiC system for different architectures and orientations will be required in order to design and effectively life-model future components. The mechanism for non-linear stress-strain behavior in CMC's is the formation and propagation of bridged-matrix cracks throughout the composite. A considerable amount of understanding has been achieved for the stress-dependent matrix cracking behavior of SiC fiber reinforced SiC matrix systems containing melt-infiltrated Si. This presentation will outline the effect of 2D and 3D architectures and orientation on stress-dependent matrix-cracking and how this information can be used to model material behavior and serve as the starting point foe mechanistic-based life-models.
How does passive lengthening change the architecture of the human medial gastrocnemius muscle?
Bolsterlee, Bart; D'Souza, Arkiev; Gandevia, Simon C; Herbert, Robert D
2017-04-01
There are few comprehensive investigations of the changes in muscle architecture that accompany muscle contraction or change in muscle length in vivo. For this study, we measured changes in the three-dimensional architecture of the human medial gastrocnemius at the whole muscle level, the fascicle level and the fiber level using anatomical MRI and diffusion tensor imaging (DTI). Data were obtained from eight subjects under relaxed conditions at three muscle lengths. At the whole muscle level, a 5.1% increase in muscle belly length resulted in a reduction in both muscle width (mean change -2.5%) and depth (-4.8%). At the fascicle level, muscle architecture measurements obtained at 3,000 locations per muscle showed that for every millimeter increase in muscle-tendon length above the slack length, average fascicle length increased by 0.46 mm, pennation angle decreased by 0.27° (0.17° in the superficial part and 0.37° in the deep part), and fascicle curvature decreased by 0.18 m -1 There was no evidence of systematic variation in architecture along the muscle's long axis at any muscle length. At the fiber level, analysis of the diffusion signal showed that passive lengthening of the muscle increased diffusion along fibers and decreased diffusion across fibers. Using these measurements across scales, we show that the complex shape changes that muscle fibers, whole muscles, and aponeuroses of the medial gastrocnemius undergo in vivo cannot be captured by simple geometrical models. This justifies the need for more complex models that link microstructural changes in muscle fibers to macroscopic changes in architecture. NEW & NOTEWORTHY Novel MRI and DTI techniques revealed changes in three-dimensional architecture of the human medial gastrocnemius during passive lengthening. Whole muscle belly width and depth decreased when the muscle lengthened. Fascicle length, pennation, and curvature changed uniformly or near uniformly along the muscle during passive lengthening. Diffusion of water molecules in muscle changes in the same direction as fascicle strains. Copyright © 2017 the American Physiological Society.
Novel polyelectrolyte complex based carbon nanotube composite architectures
NASA Astrophysics Data System (ADS)
Razdan, Sandeep
This study focuses on creating novel architectures of carbon nanotubes using polyelectrolytes. Polyelectrolytes are unique polymers possessing resident charges on the macromolecular chains. This property, along with their biocompatibility (true for most polymers used in this study) makes them ideal candidates for a variety of applications such as membranes, drug delivery systems, scaffold materials etc. Carbon nanotubes are also unique one-dimensional nanoscale materials that possess excellent electrical, mechanical and thermal properties owing to their small size, high aspect ratio, graphitic structure and strength arising from purely covalent bonds in the molecular structure. The present study tries to investigate the synthesis processes and material properties of carbon nanotube composites comprising of polyelectrolyte complexes. Carbon nanotubes are dispersed in a polyelectrolyte and are induced into taking part in a complexation process with two oppositely charged polyelectrolytes. The resulting stoichiometric precipitate is then drawn into fiber form and dried as such. The material properties of the carbon nanotube fibers were characterized and related to synthesis parameters and material interactions. Also, an effort was made to understand and predict fiber morphology resulting from the complexation and drawing process. The study helps to delineate the synthesis and properties of the said polyelectrolyte complex-carbon nanotube architectures and highlights useful properties, such as electrical conductivity and mechanical strength, which could make these structures promising candidates for a variety of applications.
Optically controlled phased-array antenna technology for space communication systems
NASA Technical Reports Server (NTRS)
Kunath, Richard R.; Bhasin, Kul B.
1988-01-01
Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.
Dietary consistency and plasticity of masseter fiber architecture in postweaning rabbits.
Taylor, Andrea B; Jones, Kelly E; Kunwar, Ravinder; Ravosa, Matthew J
2006-10-01
Dietary consistency has been shown to influence cross-sectional area and fiber type composition of the masticatory muscles. However, little is known about the effects of dietary consistency on masticatory muscle fiber architecture. In this study, we explore the effects of dietary consistency on the internal architecture of rabbit masseter muscle. Because activity patterns of the rabbit chewing muscles show inter- and intramuscular heterogeneity, we evaluate if alterations in fiber architecture are homogeneous across various portions of the superficial masseter muscle. We compared masseter muscle fiber architecture between two groups of weanling rabbits raised on different diets for 105 days. One group was raised on a diet of ground rabbit pellets to model underuse of the masticatory complex, while the other group was fed a diet of intact pellets and hay blocks to model an overuse diet. In all portions of the superficial masseter, physiological cross-sectional areas (PCSAs) are greater in the overuse compared to underuse diet rabbits. Thus, the mechanical demands for larger muscle and bite forces associated with early and prolonged exposure to a tough diet are met by an increase in PCSA of the superficial masseter. The larger PCSA is due entirely to increased muscle mass, as the two rabbit groups show no differences in either fiber length or angle of pinnation. Thus, increasing pinnation angle is not a necessary biomechanical solution to improving muscle and bite force during growth. The change in PCSA but not fiber length suggests that variation in dietary consistency has an impact on maximum force production but not necessarily on excursion or contraction velocity.
Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers.
Lata, James P; Guo, Feng; Guo, Jinshan; Huang, Po-Hsun; Yang, Jian; Huang, Tony Jun
2016-10-01
By exploiting surface acoustic waves and a coupling layer technique, cells are patterned within a photosensitive hydrogel fiber to mimic physiological cell arrangement in tissues. The aligned cell-polymer matrix is polymerized with short exposure to UV light and the fiber is extracted. These patterned cell fibers are manipulated into simple and complex architectures, demonstrating feasibility for tissue-engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tsekova, Petya B; Spasova, Mariya G; Manolova, Nevena E; Markova, Nadya D; Rashkov, Iliya B
2017-04-01
Novel fibrous materials from cellulose acetate (CA) and polyvinylpyrrolidone (PVP) containing curcumin (Curc) with original design were prepared by one-pot electrospinning or dual spinneret electrospinning. The electrospun materials were characterized by scanning electron microscopy (SEM), fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), water contact angle measurements, and microbiological tests. It was found that the incorporation of Curc into the CA and PVP solutions resulted in an increase of the solution viscosity and obtaining fibers with larger diameters (ca. 1.5μm) compared to the neat CA (ca. 800nm) and PVP fibers (ca. 500nm). The incorporation of PVP resulted in increased hydrophilicity of the fibers and in faster Curc release. Curc was found in the amorphous state in the Curc-containing fibers and these mats exhibited antibacterial activity against Staphylococcus aureus (S. aureus). The results suggest that, due to their complex architecture, the obtained new antibacterial materials are suitable for wound dressing applications, which necessitate diverse release behaviors of the bioactive compound. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi-material optoelectronic fiber devices
NASA Astrophysics Data System (ADS)
Sorin, F.; Yan, Wei; Volpi, Marco; Page, Alexis G.; Nguyen Dang, Tung; Qu, Y.
2017-05-01
The recent ability to integrate materials with different optical and optoelectronic properties in prescribed architectures within flexible fibers is enabling novel opportunities for advanced optical probes, functional surfaces and smart textiles. In particular, the thermal drawing process has known a series of breakthroughs in recent years that have expanded the range of materials and architectures that can be engineered within uniform fibers. Of particular interest in this presentation will be optoelectronic fibers that integrate semiconductors electrically addressed by conducting materials. These long, thin and flexible fibers can intercept optical radiation, localize and inform on a beam direction, detect its wavelength and even harness its energy. They hence constitute ideal candidates for applications such as remote and distributed sensing, large-area optical-detection arrays, energy harvesting and storage, innovative health care solutions, and functional fabrics. To improve performance and device complexity, tremendous progresses have been made in terms of the integrated semiconductor architectures, evolving from large fiber solid-core, to sub-hundred nanometer thin-films, nano-filaments and even nanospheres. To bridge the gap between the optoelectronic fiber concept and practical applications however, we still need to improve device performance and integration. In this presentation we will describe the materials and processing approaches to realize optoelectronic fibers, as well as give a few examples of demonstrated systems for imaging as well as light and chemical sensing. We will then discuss paths towards practical applications focusing on two main points: fiber connectivity, and improving the semiconductor microstructure by developing scalable approaches to make fiber-integrated single-crystal nanowire based devices.
Characterization of Damage in Triaxial Braid Composites Under Tensile Loading
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.
2009-01-01
Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.
Visualization of Fiber Structurein the Left and Right Ventricleof a Human Heart
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.
2006-07-12
The human heart is composed of a helical network of musclefibers. Anisotropic least squares filtering followed by fiber trackingtechniques were applied to Diffusion Tensor Magnetic Resonance Imaging(DTMRI) data of the excised human heart. The fiber configuration wasvisualized by using thin tubes to increase 3-dimensional visualperception of the complex structure. All visualizations were performedusing the high-quality ray-tracing software POV-Ray. The fibers are shownwithin the left and right ventricles. Both ventricles exhibit similarfiber architecture and some bundles of fibers are shown linking right andleft ventricles on the posterior region of the heart.
2012-01-01
Background In the fruit fly, Drosophila melanogaster, serotonin functions both as a neurotransmitter to regulate larval feeding, and in the development of the stomatogastric feeding circuit. There is an inverse relationship between neuronal serotonin levels during late embryogenesis and the complexity of the serotonergic fibers projecting from the larval brain to the foregut, which correlate with perturbations in feeding, the functional output of the circuit. Dopamine does not modulate larval feeding, and dopaminergic fibers do not innervate the larval foregut. Since dopamine can function in central nervous system development, separate from its role as a neurotransmitter, the role of neuronal dopamine was assessed on the development, and mature function, of the 5-HT larval feeding circuit. Results Both decreased and increased neuronal dopamine levels in late embryogenesis during development of this circuit result in depressed levels of larval feeding. Perturbations in neuronal dopamine during this developmental period also result in greater branch complexity of the serotonergic fibers innervating the gut, as well as increased size and number of the serotonin-containing vesicles along the neurite length. This neurotrophic action for dopamine is modulated by the D2 dopamine receptor expressed during late embryogenesis in central 5-HT neurons. Animals carrying transgenic RNAi constructs to knock down both dopamine and serotonin synthesis in the central nervous system display normal feeding and fiber architecture. However, disparate levels of neuronal dopamine and serotonin during development of the circuit result in abnormal gut fiber architecture and feeding behavior. Conclusions These results suggest that dopamine can exert a direct trophic influence on the development of a specific neural circuit, and that dopamine and serotonin may interact with each other to generate the neural architecture necessary for normal function of the circuit. PMID:22413901
Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J
2009-12-01
Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.
Kou, W; Pandolfino, J E; Kahrilas, P J; Patankar, N A
2017-06-01
Based on a fully coupled computational model of esophageal transport, we analyzed how varied esophageal muscle fiber architecture and/or dual contraction waves (CWs) affect bolus transport. Specifically, we studied the luminal pressure profile in those cases to better understand possible origins of the peristaltic transition zone. Two groups of studies were conducted using a computational model. The first studied esophageal transport with circumferential-longitudinal fiber architecture, helical fiber architecture and various combinations of the two. In the second group, cases with dual CWs and varied muscle fiber architecture were simulated. Overall transport characteristics were examined and the space-time profiles of luminal pressure were plotted and compared. Helical muscle fiber architecture featured reduced circumferential wall stress, greater esophageal distensibility, and greater axial shortening. Non-uniform fiber architecture featured a peristaltic pressure trough between two high-pressure segments. The distal pressure segment showed greater amplitude than the proximal segment, consistent with experimental data. Dual CWs also featured a pressure trough between two high-pressure segments. However, the minimum pressure in the region of overlap was much lower, and the amplitudes of the two high-pressure segments were similar. The efficacy of esophageal transport is greatly affected by muscle fiber architecture. The peristaltic transition zone may be attributable to non-uniform architecture of muscle fibers along the length of the esophagus and/or dual CWs. The difference in amplitude between the proximal and distal pressure segments may be attributable to non-uniform muscle fiber architecture. © 2017 John Wiley & Sons Ltd.
Poveda, Ferran; Gil, Debora; Martí, Enric; Andaluz, Albert; Ballester, Manel; Carreras, Francesc
2013-10-01
Deeper understanding of the myocardial structure linking the morphology and function of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Several conceptual models of myocardial fiber organization have been proposed but the lack of an automatic and objective methodology prevented an agreement. We sought to deepen this knowledge through advanced computer graphical representations of the myocardial fiber architecture by diffusion tensor magnetic resonance imaging. We performed automatic tractography reconstruction of unsegmented diffusion tensor magnetic resonance imaging datasets of canine heart from the public database of the Johns Hopkins University. Full-scale tractographies have been built with 200 seeds and are composed by streamlines computed on the vector field of primary eigenvectors at the diffusion tensor volumes. We also introduced a novel multiscale visualization technique in order to obtain a simplified tractography. This methodology retains the main geometric features of the fiber tracts, making it easier to decipher the main properties of the architectural organization of the heart. Output analysis of our tractographic representations showed exact correlation with low-level details of myocardial architecture, but also with the more abstract conceptualization of a continuous helical ventricular myocardial fiber array. Objective analysis of myocardial architecture by an automated method, including the entire myocardium and using several 3-dimensional levels of complexity, reveals a continuous helical myocardial fiber arrangement of both right and left ventricles, supporting the anatomical model of the helical ventricular myocardial band described by F. Torrent-Guasp. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Yang, Bin; Jan, Ning-Jiun; Brazile, Bryn; Voorhees, Andrew; Lathrop, Kira L; Sigal, Ian A
2018-04-06
Collagen fibers play a central role in normal eye mechanics and pathology. In ocular tissues, collagen fibers exhibit a complex 3-dimensional (3D) fiber orientation, with both in-plane (IP) and out-of-plane (OP) orientations. Imaging techniques traditionally applied to the study of ocular tissues only quantify IP fiber orientation, providing little information on OP fiber orientation. Accurate description of the complex 3D fiber microstructures of the eye requires quantifying full 3D fiber orientation. Herein, we present 3dPLM, a technique based on polarized light microscopy developed to quantify both IP and OP collagen fiber orientations of ocular tissues. The performance of 3dPLM was examined by simulation and experimental verification and validation. The experiments demonstrated an excellent agreement between extracted and true 3D fiber orientation. Both IP and OP fiber orientations can be extracted from the sclera and the cornea, providing previously unavailable quantitative 3D measures and insight into the tissue microarchitecture. Together, the results demonstrate that 3dPLM is a powerful imaging technique for the analysis of ocular tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fiber to the serving area: telephone-like star architecture for CATV
NASA Astrophysics Data System (ADS)
Fellows, David M.
1992-02-01
CATV systems traditionally use a tree and branch architecture to bring up to 550 MHz of analog bandwidth to every home in a franchise area. This changed slightly with the advent of AM fiber optic equipment, as fiber optics were used in an overlay fashion to reduce coaxial amplifier cascades and improve subscriber quality and reliability. Within the last year, fiber has economically replaced coaxial trunking. The resulting fiber to the serving area architecture combines fiber and coaxial stars for a network that looks much like the carrier serving area architectures used by telephone companies.
Automated quantitative muscle biopsy analysis system
NASA Technical Reports Server (NTRS)
Castleman, Kenneth R. (Inventor)
1980-01-01
An automated system to aid the diagnosis of neuromuscular diseases by producing fiber size histograms utilizing histochemically stained muscle biopsy tissue. Televised images of the microscopic fibers are processed electronically by a multi-microprocessor computer, which isolates, measures, and classifies the fibers and displays the fiber size distribution. The architecture of the multi-microprocessor computer, which is iterated to any required degree of complexity, features a series of individual microprocessors P.sub.n each receiving data from a shared memory M.sub.n-1 and outputing processed data to a separate shared memory M.sub.n+1 under control of a program stored in dedicated memory M.sub.n.
Cross stratum resources protection in fog-computing-based radio over fiber networks for 5G services
NASA Astrophysics Data System (ADS)
Guo, Shaoyong; Shao, Sujie; Wang, Yao; Yang, Hui
2017-09-01
In order to meet the requirement of internet of things (IoT) and 5G, the cloud radio access network is a paradigm which converges all base stations computational resources into a cloud baseband unit (BBU) pool, while the distributed radio frequency signals are collected by remote radio head (RRH). A precondition for centralized processing in the BBU pool is an interconnection fronthaul network with high capacity and low delay. However, it has become more complex and frequent in the interaction between RRH and BBU and resource scheduling among BBUs in cloud. Cloud radio over fiber network has been proposed in our previous work already. In order to overcome the complexity and latency, in this paper, we first present a novel cross stratum resources protection (CSRP) architecture in fog-computing-based radio over fiber networks (F-RoFN) for 5G services. Additionally, a cross stratum protection (CSP) scheme considering the network survivability is introduced in the proposed architecture. The CSRP with CSP scheme can effectively pull the remote processing resource locally to implement the cooperative radio resource management, enhance the responsiveness and resilience to the dynamic end-to-end 5G service demands, and globally optimize optical network, wireless and fog resources. The feasibility and efficiency of the proposed architecture with CSP scheme are verified on our software defined networking testbed in terms of service latency, transmission success rate, resource occupation rate and blocking probability.
NASA Astrophysics Data System (ADS)
Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene
2018-03-01
In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.
CMC Property Variability and Life Prediction Methods for Turbine Engine Component Application
NASA Technical Reports Server (NTRS)
Cheplak, Matthew L.
2004-01-01
The ever increasing need for lower density and higher temperature-capable materials for aircraft engines has led to the development of Ceramic Matrix Composites (CMCs). Today's aircraft engines operate with >3000"F gas temperatures at the entrance to the turbine section, but unless heavily cooled, metallic components cannot operate above approx.2000 F. CMCs attempt to push component capability to nearly 2700 F with much less cooling, which can help improve engine efficiency and performance in terms of better fuel efficiency, higher thrust, and reduced emissions. The NASA Glenn Research Center has been researching the benefits of the SiC/SiC CMC for engine applications. A CMC is made up of a matrix material, fibers, and an interphase, which is a protective coating over the fibers. There are several methods or architectures in which the orientation of the fibers can be manipulated to achieve a particular material property objective as well as a particular component geometric shape and size. The required shape manipulation can be a limiting factor in the design and performance of the component if there is a lack of bending capability of the fiber as making the fiber more flexible typically sacrifices strength and other fiber properties. Various analysis codes are available (pcGINA, CEMCAN) that can predict the effective Young's Moduli, thermal conductivities, coefficients of thermal expansion (CTE), and various other properties of a CMC. There are also various analysis codes (NASAlife) that can be used to predict the life of CMCs under expected engine service conditions. The objective of this summer study is to utilize and optimize these codes for examining the tradeoffs between CMC properties and the complex fiber architectures that will be needed for several different component designs. For example, for the pcGINA code, there are six variations of architecture available. Depending on which architecture is analyzed, the user is able to specify the fiber tow size, tow spacing, weave parameter, and angle of orientation of fibers. By holding the volume fraction of the fibers constant, variations in tow spacing can be explored for different architectures. The CMC material properties are usually calculated assuming the component is manufactured perfectly. However, this is typically not the case so that a quantification of the material property variability is needed to account for processing and/or manufacturing imperfections. The overall inputs and outputs are presented using a regression software to rapidly investigate the tradeoffs associated with fiber architecture, material properties, and ultimately cost. This information is then propagated through lifing models and Larson-Miller data to assess timehemperature-dependent CMC strength. In addition, a first order cost estimation will be quantified from a current qualitative perspective. This cost estimation includes the manufacturing challenges, such as tooling, as well as the component cost for a particular application. Ultimately, a cost to performance ratio should be established that compares the effectiveness of CMCs to their current rival, nickel superalloys.
Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection
NASA Technical Reports Server (NTRS)
Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.
2017-01-01
During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.
Cross layer optimization for cloud-based radio over optical fiber networks
NASA Astrophysics Data System (ADS)
Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming
2016-07-01
To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.
Gangolli, Mihika; Holleran, Laurena; Kim, Joong Hee; Stein, Thor D.; Alvarez, Victor; McKee, Ann C.; Brody, David L.
2017-01-01
Advanced diffusion MRI methods have recently been proposed for detection of pathologies such as traumatic axonal injury and chronic traumatic encephalopathy which commonly affect complex cortical brain regions. However, radiological-pathological correlations in human brain tissue that detail the relationship between the multi-component diffusion signal and underlying pathology are lacking. We present a nonlinear voxel based two dimensional coregistration method that is useful for matching diffusion signals to quantitative metrics of high resolution histological images. When validated in ex vivo human cortical tissue at a 250 × 250 × 500 micron spatial resolution, the method proved robust in correlations between generalized q-sampling imaging and histologically based white matter fiber orientations, with r = 0.94 for the primary fiber direction and r = 0.88 for secondary fiber direction in each voxel. Importantly, however, the correlation was substantially worse with reduced spatial resolution or with fiber orientations derived using a diffusion tensor model. Furthermore, we have detailed a quantitative histological metric of white matter fiber integrity termed power coherence capable of distinguishing between architecturally complex but intact white matter from disrupted white matter regions. These methods may allow for more sensitive and specific radiological-pathological correlations of neurodegenerative diseases affecting complex gray and white matter. PMID:28365421
Chromosome structure inside the nucleus.
Swedlow, J R; Agard, D A; Sedat, J W
1993-06-01
Recent in situ three-dimensional structural studies have provided a new model for the 30 nm chromatin fiber. In addition, research during the past year has revealed some of the molecular complexity of non-histone chromosomal proteins. Still to come is the unification of molecular insights with chromosomal architecture.
Muscular pattern in three species of Macrostomum (platyhelminthes, macrostomorpha).
Adami, Mariana L; Brusa, Francisco; Ronderos, Jorge R; Damborenea, Cristina
2017-02-01
Previous studies demonstrated complex architecture of the muscular system of Macrostomum species, especially in the rostrum area and the pharynx. However, little is known about the differences in muscular pattern between species of the genus. This study examines and compares the muscular systems of specimens belonging to three freshwater Macrostomum species (M. quiritium, M. tuba and M. velastylum), labeled with phalloidin-rhodamine and studied by confocal microscopy. Our results agree with the previous descriptions, confirming that the muscular patterns for the body wall, rostrum area, pharynx and caudal region differ among species. The muscles of the body wall follow the typical architecture, but the number of fibers in the species analyzed varies between dorsal and ventral surfaces, ranging from 80 to 100 fibers, this record being higher than previous observations. The arrangement of the fibers in the rostrum is complex, especially in the brain area. Macrostomum tuba and M. quiritium have a set of two muscles crossing at brain level and forming an "X," which is not evident in M. velastylum. We identified five different sets of fibers associated to the pharynx and mouth at ventral, medium and deep levels. These different sets are present in all three species studied. The caudal plate in M. tuba has an additional layer of diagonal fibers in the body wall, which is not evident in the other two species. The muscles of the reproductive system are independent of the body wall musculature in the species analyzed, but connected to the intestinal wall by specific fibers that may serve as an anchor. J. Morphol. 278:264-282, 2017. © 2016 Wiley Periodicals,Inc. © 2016 Wiley Periodicals, Inc.
Approaches to polymer-derived CMC matrices
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
1992-01-01
The use of polymeric precursors to ceramics permits the fabrication of large, complex-shaped ceramic matrix composites (CMC's) at temperatures which do not degrade the fiber. Processing equipment and techniques readily available in the resin matrix composite industry can be adapted for CMC fabrication using this approach. Criteria which influence the choice of candidate precursor polymers, the use of fillers, and the role of fiber architecture and ply layup are discussed. Three polymer systems, polycarbosilanes, polysilazanes, and polysilsesquioxanes, are compared as candidate ceramic matrix precursors.
Klantsataya, Elizaveta; Jia, Peipei; Ebendorff-Heidepriem, Heike; Monro, Tanya M.; François, Alexandre
2016-01-01
Surface Plasmon Resonance (SPR) fiber sensor research has grown since the first demonstration over 20 year ago into a rich and diverse field with a wide range of optical fiber architectures, plasmonic coatings, and excitation and interrogation methods. Yet, the large diversity of SPR fiber sensor designs has made it difficult to understand the advantages of each approach. Here, we review SPR fiber sensor architectures, covering the latest developments from optical fiber geometries to plasmonic coatings. By developing a systematic approach to fiber-based SPR designs, we identify and discuss future research opportunities based on a performance comparison of the different approaches for sensing applications. PMID:28025532
Optical network scaling: roles of spectral and spatial aggregation.
Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M
2014-12-01
As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.
Scaling of muscle architecture and fiber types in the rat hindlimb.
Eng, Carolyn M; Smallwood, Laura H; Rainiero, Maria Pia; Lahey, Michele; Ward, Samuel R; Lieber, Richard L
2008-07-01
The functional capacity of a muscle is determined by its architecture and metabolic properties. Although extensive analyses of muscle architecture and fiber type have been completed in a large number of muscles in numerous species, there have been few studies that have looked at the interrelationship of these functional parameters among muscles of a single species. Nor have the architectural properties of individual muscles been compared across species to understand scaling. This study examined muscle architecture and fiber type in the rat (Rattus norvegicus) hindlimb to examine each muscle's functional specialization. Discriminant analysis demonstrated that architectural properties are a greater predictor of muscle function (as defined by primary joint action and anti-gravity or non anti-gravity role) than fiber type. Architectural properties were not strictly aligned with fiber type, but when muscles were grouped according to anti-gravity versus non-anti-gravity function there was evidence of functional specialization. Specifically, anti-gravity muscles had a larger percentage of slow fiber type and increased muscle physiological cross-sectional area. Incongruities between a muscle's architecture and fiber type may reflect the variability of functional requirements on single muscles, especially those that cross multiple joints. Additionally, discriminant analysis and scaling of architectural variables in the hindlimb across several mammalian species was used to explore whether any functional patterns could be elucidated within single muscles or across muscle groups. Several muscles deviated from previously described muscle architecture scaling rules and there was large variability within functional groups in how muscles should be scaled with body size. This implies that functional demands placed on muscles across species should be examined on the single muscle level.
Architectures of fiber optic network in telecommunications
NASA Astrophysics Data System (ADS)
Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.
2005-08-01
The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).
DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks
Zhu, Dajiang; Guo, Lei; Jiang, Xi; Zhang, Tuo; Zhang, Degang; Chen, Hanbo; Deng, Fan; Faraco, Carlos; Jin, Changfeng; Wee, Chong-Yaw; Yuan, Yixuan; Lv, Peili; Yin, Yan; Hu, Xiaolei; Duan, Lian; Hu, Xintao; Han, Junwei; Wang, Lihong; Shen, Dinggang; Miller, L Stephen
2013-01-01
Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity–based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work. PMID:22490548
NASA Astrophysics Data System (ADS)
Reckfort, Julia; Wiese, Hendrik; Dohmen, Melanie; Grässel, David; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus
2013-09-01
The neuroimaging technique 3D-polarized light imaging (3D-PLI) has opened up new avenues to study the complex nerve fiber architecture of the human brain at sub-millimeter spatial resolution. This polarimetry technique is applicable to histological sections of postmortem brains utilizing the birefringence of nerve fibers caused by the regular arrangement of lipids and proteins in the myelin sheaths surrounding axons. 3D-PLI provides a three-dimensional description of the anatomical wiring scheme defined by the in-section direction angle and the out-of-section inclination angle. To date, 3D-PLI is the only available method that allows bridging the microscopic and the macroscopic description of the fiber architecture of the human brain. Here we introduce a new approach to retrieve the inclination angle of the fibers independently of the properties of the used polarimeters. This is relevant because the image resolution and the signal transmission inuence the measured birefringent signal (retardation) significantly. The image resolution was determined using the USAF- 1951 testchart applying the Rayleigh criterion. The signal transmission was measured by elliptical polarizers applying the Michelson contrast and histological slices of the optic tract of a postmortem brain. Based on these results, a modified retardation-inclination transfer function was proposed to extract the fiber inclination. The comparison of the actual and the inclination angles calculated with the theoretically proposed and the modified transfer function revealed a significant improvement in the extraction of the fiber inclinations.
High power industrial picosecond laser from IR to UV
NASA Astrophysics Data System (ADS)
Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François
2013-02-01
Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.
Tax, Chantal M W; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander
2015-01-01
Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model "crossing fibers", the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally) along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches.
Self-Assembly of Hierarchical DNA Nanotube Architectures with Well-Defined Geometries.
Jorgenson, Tyler D; Mohammed, Abdul M; Agrawal, Deepak K; Schulman, Rebecca
2017-02-28
An essential motif for the assembly of biological materials such as actin at the scale of hundreds of nanometers and beyond is a network of one-dimensional fibers with well-defined geometry. Here, we demonstrate the programmed organization of DNA filaments into micron-scale architectures where component filaments are oriented at preprogrammed angles. We assemble L-, T-, and Y-shaped DNA origami junctions that nucleate two or three micron length DNA nanotubes at high yields. The angles between the nanotubes mirror the angles between the templates on the junctions, demonstrating that nanoscale structures can control precisely how micron-scale architectures form. The ability to precisely program filament orientation could allow the assembly of complex filament architectures in two and three dimensions, including circuit structures, bundles, and extended materials.
Tax, Chantal M. W.; Chamberland, Maxime; van Stralen, Marijn; Viergever, Max A.; Whittingstall, Kevin; Fortin, David; Descoteaux, Maxime; Leemans, Alexander
2015-01-01
Fiber tractography plays an important role in exploring the architectural organization of fiber trajectories, both in fundamental neuroscience and in clinical applications. With the advent of diffusion MRI (dMRI) approaches that can also model “crossing fibers”, the complexity of the fiber network as reconstructed with tractography has increased tremendously. Many pathways interdigitate and overlap, which hampers an unequivocal 3D visualization of the network and impedes an efficient study of its organization. We propose a novel fiber tractography visualization approach that interactively and selectively adapts the transparency rendering of fiber trajectories as a function of their orientation to enhance the visibility of the spatial context. More specifically, pathways that are oriented (locally or globally) along a user-specified opacity axis can be made more transparent or opaque. This substantially improves the 3D visualization of the fiber network and the exploration of tissue configurations that would otherwise be largely covered by other pathways. We present examples of fiber bundle extraction and neurosurgical planning cases where the added benefit of our new visualization scheme is demonstrated over conventional fiber visualization approaches. PMID:26444010
Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi
2016-03-28
Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2008-01-01
Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.
Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Ngo, Duc H.
2003-01-01
This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.
Taylor, Andrea B; Vinyard, Christopher J
2013-05-01
The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.
Repeatability of DTI-based skeletal muscle fiber tracking
Heemskerk, Anneriet M.; Sinha, Tuhin K.; Wilson, Kevin J.; Ding, Zhaohua; Damon, Bruce M.
2015-01-01
Diffusion tensor imaging (DTI)-based muscle fiber tracking enables the measurement of muscle architectural parameters, such as pennation angle (θ) and fiber tract length (Lft), throughout the entire muscle. Little is known, however, about the repeatability of either the muscle architectural measures or the underlying diffusion measures. Therefore, the goal of this study was to investigate the repeatability of DTI fiber tracking-based measurements and θ and Lft. Four DTI acquisitions were performed on two days that allowed for between acquisition, within day, and between day analyses. The eigenvalues and fractional anisotropy were calculated at the maximum cross-sectional area of, and fiber tracking was performed in, the tibialis anterior muscle of nine healthy subjects. The between acquisitions condition had the highest repeatability for the DTI indices and the architectural parameters. The overall inter class correlation coefficients (ICC’s) were greater than 0.6 for both θ and Lft and the repeatability coefficients were θ <10.2° and Lft < 50 mm. In conclusion, under the experimental and data analysis conditions used, the repeatability of the diffusion measures is very good and repeatability of the architectural measurements is acceptable. Therefore, this study demonstrates the feasibility for longitudinal studies of alterations in muscle architecture using DTI-based fiber tracking, under similar noise conditions and with similar diffusion characteristics. PMID:20099372
Smart architecture for stable multipoint fiber Bragg grating sensor system
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung
2017-12-01
In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Astrophysics Data System (ADS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
1986-01-01
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Electrospun Nanofibers: Solving Global Issues
NASA Astrophysics Data System (ADS)
Si, Yang; Tang, Xiaomin; Yu, Jianyong; Ding, Bin
Energy and environment will head the list of top global issues facing society for the next 50 years. Nanotechnology is responding to these challenges by designing and fabricating functional nanofibers optimized for energy and environmental applications. The route toward these nano-objects is based primarily on electrospinning: a highly versatile method that allows the fabrication of continuous fibers with diameters down to a few nanometers. The mechanism responsible for the fiber formation mainly includes the Taylor Cone theory and flight-instability theory, which can be predicted theoretically and controlled experimentally. Moreover, the electrospinning has been applied to natural polymers, synthetic polymers, ceramics, and carbon. Fibers with complex architectures, such as ribbon fiber, porous fiber, core-shell fiber, or hollow fiber, can be produced by special electrospinning methods. It is also possible to produce nanofibrous membranes with designed aggregate structure including alignment, patterning, and two-dimensional nanonets. Finally, the brief analysis of nanofibers used for advanced energy and environmental applications in the past decade indicates that their impact has been realized well and is encouraging, and will continually represent a key technology to ensure sustainable energy and preserve our environment for the future.
Architecture for fiber-optic sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1990-01-01
This paper describes a design for fiber-optic sensing and control in advanced aircraft Electronic Engine Control (EEC). The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pairs of optical fibers to common electro-optical interfaces. The architecture contains interfaces to seven sensor groups. Nine distinct fiber-optic sensor types were found to provide the sensing functions. Analysis revealed no strong discriminator (except reliability of laser diodes and remote electronics) on which to base a selection of preferred common interface type. A hardware test program is recommended to assess the relative maturity of the technologies and to determine real performance in the engine environment.
An Update on Design Tools for Optimization of CMC 3D Fiber Architectures
NASA Technical Reports Server (NTRS)
Lang, J.; DiCarlo, J.
2012-01-01
Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.
Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures
NASA Technical Reports Server (NTRS)
Knott, Tamara W.; Loos, Alfred C.
2000-01-01
Resin film infusion (RFI) is a cost-effective method for fabricating stiffened aircraft wing structures. The RFI process lends itself to the use of near net shape textile preforms manufactured through a variety of automated textile processes such as knitting and braiding. Often, these advanced fiber architecture preforms have through-the-thickness stitching for improved damage tolerance and delamination resistance. The challenge presently facing RFI is to refine the process to ensure complete infiltration and cure of a geometrically complex shape preform with the high fiber volume fraction needed for structural applications. An accurate measurement of preform permeability is critical for successful modeling of the RFI resin infiltration process. Small changes in the permeability can result in very different infiltration behavior and times. Therefore, it is important to accurately measure the permeabilities of the textile preforms used in the RFI process. The objective of this investigation was to develop test methods that can be used to measure the compaction behavior and permeabilities of high fiber volume fraction, advanced fiber architecture textile preforms. These preforms are often highly compacted due to through-the-thickness stitching used to improve damage tolerance. Test fixtures were designed and fabricated and used to measure both transverse and in-plane permeabilities. The fixtures were used to measure the permeabilities of multiaxial warp knit and triaxial braided preforms at fiber volume fractions from 55% to 65%. In addition, the effects of stitching characteristics, thickness, and batch variability on permeability and compaction behavior were investigated.
Damage Accumulation in SiC/SiC Composites with 3D Architectures
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee-Mann; DiCarlo, James A.
2003-01-01
The formation and propagation of multiple matrix cracks in relatively dense ceramic matrix composites when subjected to increasing tensile stress is necessary for high strength and tough composites. However, the occurrence of matrix cracks at low stresses may limit the usefulness of some non-oxide composite systems when subjected to oxidizing environments for long times at stresses sufficient to cause matrix cracking. For SiC fiber-reinforced composites with two-dimensional woven architectures and chemically vapor infiltrated (CVI) SiC matrix and melt-infiltrated (MI) Si/SiC matrix composites, the matrix cracking behavior has been fairly well characterized for different fiber-types and woven architectures. It was found that the occurrence, degree, and growth of matrix cracks depends on the material properties of the composite constituents as well as other physical properties of the composite or architecture, e.g., matrix porosity and size of the fiber bundle. In this study, matrix cracking in SiC fiber reinforced, melt-infiltrated SiC composites with a 3D orthogonal architecture was determined for specimens tested in tension at room temperature. Acoustic emission (AE) was used to monitor the matrix cracking activity, which was later confirmed by microscopic examination of specimens that had failed. The determination of the exact location of AE demonstrated that initial cracking occurred in the matrix rich regions when a large z-direction fiber bundle was used. For specimens with large z-direction fiber tows, the earliest matrix cracking could occur at half the stress for standard 2D woven composites with similar constituents. Damage accumulation in 3D architecture composites will be compared to damage accumulation in 2D architecture composites and discussed with respect to modeling composite stress-strain behavior and use of these composites at elevated temperatures.
3D second harmonic generation imaging tomography by multi-view excitation
Campbell, Kirby R.; Wen, Bruce; Shelton, Emily M.; Swader, Robert; Cox, Benjamin L.; Eliceiri, Kevin; Campagnola, Paul J.
2018-01-01
Biological tissues have complex 3D collagen fiber architecture that cannot be fully visualized by conventional second harmonic generation (SHG) microscopy due to electric dipole considerations. We have developed a multi-view SHG imaging platform that successfully visualizes all orientations of collagen fibers. This is achieved by rotating tissues relative to the excitation laser plane of incidence, where the complete fibrillar structure is then visualized following registration and reconstruction. We evaluated high frequency and Gaussian weighted fusion reconstruction algorithms, and found the former approach performs better in terms of the resulting resolution. The new approach is a first step toward SHG tomography. PMID:29541654
Innovative fiber-laser architecture-based compact wind lidar
NASA Astrophysics Data System (ADS)
Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ
2016-03-01
This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.
Talin determines the nanoscale architecture of focal adhesions.
Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R; Davidson, Michael W; Kanchanawong, Pakorn
2015-09-01
Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin-talin-actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites.
Interferometric phase measurement techniques for coherent beam combining
NASA Astrophysics Data System (ADS)
Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Primot, Jérôme; Brignon, Arnaud
2015-03-01
Coherent beam combining of fiber amplifiers provides an attractive mean of reaching high power laser. In an interferometric phase measurement the beams issued for each fiber combined are imaged onto a sensor and interfere with a reference plane wave. This registration of interference patterns on a camera allows the measurement of the exact phase error of each fiber beam in a single shot. Therefore, this method is a promising candidate toward very large number of combined fibers. Based on this technique, several architectures can be proposed to coherently combine a high number of fibers. The first one based on digital holography transfers directly the image of the camera to spatial light modulator (SLM). The generated hologram is used to compensate the phase errors induced by the amplifiers. This architecture has therefore a collective phase measurement and correction. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. In that case, only 20 pixels per fiber on the SLM are needed to obtain a residual phase shift error below λ/10rms. The second proposed architecture calculates the correction applied to each fiber channel by tracking the relative position of the interference finges. In this case, a phase modulator is placed on each channel. In that configuration, only 8 pixels per fiber on the camera is required for a stable close loop operation with a residual phase error of λ/20rms, which demonstrates the scalability of this concept.
Karbhari, Vistasp M; Strassler, Howard
2007-08-01
The aim of this study was to compare and elucidate the differences in damage mechanisms and response of fiber-reinforced dental resin composites based on three different brands under flexural loading. The types of reinforcement consisted of a unidirectional E-glass prepreg (Splint-It from Jeneric/Petron Inc.), an ultrahigh molecular weight polyethylene fiber based biaxial braid (Connect, Kerr) and an ultrahigh molecular weight polyethylene fiber based leno-weave (Ribbond). Three different commercially available fiber reinforcing systems were used to fabricate rectangular bars, with the fiber reinforcement close to the tensile face, which were tested in flexure with an emphasis on studying damage mechanisms and response. Eight specimens (n=8) of each type were tested. Overall energy capacity as well as flexural strength and modulus were determined and results compared in light of the different abilities of the architectures used. Under flexural loading unreinforced and unidirectional prepreg reinforced dental composites failed in a brittle fashion, whereas the braid and leno-weave reinforced materials underwent significant deformation without rupture. The braid reinforced specimens showed the highest peak load. The addition of the unidirectional to the matrix resulted in an average strain of 0.06mm/mm which is 50% greater than the capacity of the unreinforced matrix, whereas the addition of the braid and leno-weave resulted in increases of 119 and 126%, respectively, emphasizing the higher capacity of both the UHM polyethylene fibers and the architectures to hold together without rupture under flexural loading. The addition of the fiber reinforcement substantially increases the level of strain energy in the specimens with the maximum being attained in the braid reinforced specimens with a 433% increase in energy absorption capability above the unreinforced case. The minimum scatter and highest consistency in response is seen in the leno-weave reinforced specimens due to the details of the architecture which restrict fabric shearing and movement during placement. It is crucial that the appropriate selection of fiber architectures be made not just from a perspective of highest strength, but overall damage tolerance and energy absorption. Differences in weaves and architectures can result in substantially different performance and appropriate selection can mitigate premature and catastrophic failure. The study provides details of materials level response characteristics which are useful in selection of the fiber reinforcement based on specifics of application.
Ravichandiran, Kajeandra; Ravichandiran, Mayoorendra; Oliver, Michele L; Singh, Karan S; McKee, Nancy H; Agur, Anne M R
2009-09-01
Architectural parameters and physiological cross-sectional area (PCSA) are important determinants of muscle function. Extensor carpi radialis longus (ECRL) and brevis (ECRB) are used in muscle transfers; however, their regional architectural differences have not been investigated. The aim of this study is to develop computational algorithms to quantify and compare architectural parameters (fiber bundle length, pennation angle, and volume) and PCSA of ECRL and ECRB. Fiber bundles distributed throughout the volume of ECRL (75+/-20) and ECRB (110+/-30) were digitized in eight formalin embalmed cadaveric specimens. The digitized data was reconstructed in Autodesk Maya with computational algorithms implemented in Python. The mean PCSA and fiber bundle length were significantly different between ECRL and ECRB (p < or = 0.05). Superficial ECRL had significantly longer fiber bundle length than the deep region, whereas the PCSA of superficial ECRB was significantly larger than the deep region. The regional quantification of architectural parameters and PCSA provides a framework for the exploration of partial tendon transfers of ECRL and ECRB.
Fly-By-Light/Power-By-Wire Fault-Tolerant Fiber-Optic Backplane
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2002-01-01
The design and development of a fault-tolerant fiber-optic backplane to demonstrate feasibility of such architecture is presented. The simulation results of test cases on the backplane in the advent of induced faults are presented, and the fault recovery capability of the architecture is demonstrated. The architecture was designed, developed, and implemented using the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL). The architecture was synthesized and implemented in hardware using Field Programmable Gate Arrays (FPGA) on multiple prototype boards.
Sinha, Shantanu; Sinha, Usha
2011-01-01
Purpose To investigate the reproducibility of diffusion tensor imaging (DTI) derived indices and fiber architecture of calf muscles at 1.5 Tesla, to establish an imaging based method to confirm ankle position, and to compare fiber architecture at different ankle positions. Materials and Methods Six subjects were imaged at 1.5T with the foot in neutral and plantarflexed positions. DTI indices were calculated in four muscle compartments (medial and lateral gastrocnemius (MG, LG), superficial and deep anterior tibialis (AT-S, AT-D). Two subjects were scanned on three days to calculate the coefficient of variability (CV) and the repeatability coefficient (RC). Results DTI indices were close to the values obtained in earlier 3T and 1.5 T studies. FA decreased significantly in the MG and increased significantly in the AT-S and AT-D compartments while fiber orientation with respect to the magnet Z-axis increased significantly in the MG and decreased significantly in the AT-S compartment with plantarflexion. The CV and RC for the DTI indices and fiber orientations were comparable to 3T studies. Fiber lengths and orientation angles in the MG matched corresponding measures from ultrasound studies. Conclusion DTI at 1.5 Tesla provides reproducible measures of diffusion indices and fiber architecture of calf muscle at different muscle lengths. PMID:21608064
Huq, Emranul; Wall, Christine E; Taylor, Andrea B
2015-01-01
Galago senegalensis is a habitual arboreal leaper that engages in rapid spinal extension during push-off. Large muscle excursions and high contraction velocities are important components of leaping, and experimental studies indicate that during leaping by G. senegalensis, peak power is facilitated by elastic storage of energy. To date, however, little is known about the functional relationship between epaxial muscle fiber architecture and locomotion in leaping primates. Here, fiber architecture of select epaxial muscles is compared between G. senegalensis (n = 4) and the slow arboreal quadruped, Nycticebus coucang (n = 4). The hypothesis is tested that G. senegalensis exhibits architectural features of the epaxial muscles that facilitate rapid and powerful spinal extension during the take-off phase of leaping. As predicted, G. senegalensis epaxial muscles have relatively longer, less pinnate fibers and higher ratios of tendon length-to-fiber length, indicating the capacity for generating relatively larger muscle excursions, higher whole-muscle contraction velocities, and a greater capacity for elastic energy storage. Thus, the relatively longer fibers and higher tendon length-to-fiber length ratios can be functionally linked to leaping performance in G. senegalensis. It is further predicted that G. senegalensis epaxial muscles have relatively smaller physiological cross-sectional areas (PCSAs) as a consequence of an architectural trade-off between fiber length (excursion) and PCSA (force). Contrary to this prediction, there are no species differences in relative PCSAs, but the smaller-bodied G. senegalensis trends towards relatively larger epaxial muscle mass. These findings suggest that relative increase in muscle mass in G. senegalensis is largely attributable to longer fibers. The relative increase in erector spinae muscle mass may facilitate sagittal flexibility during leaping. The similarity between species in relative PCSAs provides empirical support for previous work linking osteological features of the vertebral column in lorisids with axial stability and reduced muscular effort associated with slow, deliberate movements during anti-pronograde locomotion. PMID:26184388
Heemskerk, Anneriet M; Strijkers, Gustav J; Vilanova, Anna; Drost, Maarten R; Nicolay, Klaas
2005-06-01
Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.
Thermostructural Properties Of Sic/Sic Panels With 2.5d And 3d Fiber Architectures
NASA Technical Reports Server (NTRS)
Yun, H. M.; DeCarlo, J. A.; Bhatt, R. H.; Jaskowiak, M. H.
2005-01-01
CMC hot-section components in advanced engines for power and propulsion will typically require high cracking strength, high ultimate strength and strain, high creep- rupture resistance, and high thermal conductivity in all directions. In the past, NASA has demonstrated fabrication of a variety of SiC/SiC flat panels and round tubes with various 2D fiber architectures using the high-modulus high-performance Sylramic-iBN Sic fiber and Sic-based matrices derived by CVI, MI, and/or PIP processes. The thermo- mechanical properties of these CMC have shown state-of-the-art performance, but primarily in the in-plane directions. Currently NASA is extending the thermostructural capability of these SiC/SiC systems in the thru-thickness direction by using various 2.5D and 3D fiber architectures. NASA is also using specially designed fabrication steps to optimize the properties of the BN-based interphase and Sic-based matrices. In this study, Sylramic-iBN/SiC panels with 2D plain weave, 2.5D satin weave, 2.5D ply-to-ply interlock weave, and 3D angle interlock fiber architectures, all woven at AITI, were fabricated using matrix densification routes previously established between NASA and GEPSC for CVI-MI processes and between NASA and Starfire-Systems for PIP processes. Introduction of the 2.5 D fiber architecture along with an improved matrix process was found to increase inter-laminar tensile strength from 1.5 -2 to 3 - 4 ksi and thru-thickness thermal conductivity from 15-20 to 30-35 BTU/ft.hr.F with minimal reduction in in-plane strength and creep-rupture properties. Such improvements should reduce thermal stresses and increase the thermostructural operating envelope for SiC/SiC engine components. These results are analyzed to offer general guidelines for selecting fiber architectures and constituent processes for high-performance SiC/SiC engine components.
Computational Modeling of Single-Cell Migration: The Leading Role of Extracellular Matrix Fibers
Schlüter, Daniela K.; Ramis-Conde, Ignacio; Chaplain, Mark A.J.
2012-01-01
Cell migration is vitally important in a wide variety of biological contexts ranging from embryonic development and wound healing to malignant diseases such as cancer. It is a very complex process that is controlled by intracellular signaling pathways as well as the cell’s microenvironment. Due to its importance and complexity, it has been studied for many years in the biomedical sciences, and in the last 30 years it also received an increasing amount of interest from theoretical scientists and mathematical modelers. Here we propose a force-based, individual-based modeling framework that links single-cell migration with matrix fibers and cell-matrix interactions through contact guidance and matrix remodelling. With this approach, we can highlight the effect of the cell’s environment on its migration. We investigate the influence of matrix stiffness, matrix architecture, and cell speed on migration using quantitative measures that allow us to compare the results to experiments. PMID:22995486
Active materials by four-dimension printing
NASA Astrophysics Data System (ADS)
Ge, Qi; Qi, H. Jerry; Dunn, Martin L.
2013-09-01
We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.
Development of a High Angular Resolution Diffusion Imaging Human Brain Template
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-01-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528
NASA Astrophysics Data System (ADS)
Doradla, Pallavi; Villiger, Martin; Tshikudi, Diane M.; Bouma, Brett E.; Nadkarni, Seemantini K.
2016-02-01
Acute myocardial infarction, caused by the rupture of vulnerable coronary plaques, is the leading cause of death worldwide. Collagen is the primary extracellular matrix macromolecule that imparts the mechanical stability to a plaque and its reduction causes plaque instability. Intracoronary polarization sensitive optical coherence tomography (PS-OCT) measures the polarization states of the backscattered light from the tissue to evaluate plaque birefringence, a material property that is elevated in proteins such as collagen with an ordered structure. Here we investigate the dependence of the PS-OCT parameters on the quantity of the plaque collagen and fiber architecture. In this study, coronary arterial segments from human cadaveric hearts were evaluated with intracoronary PS-OCT and compared with Histopathological assessment of collagen content and architecture from picrosirius-red (PSR) stained sections. PSR sections were visualized with circularly-polarized light microscopy to quantify collagen birefringence, and the additional assessment of color hue indicated fibril thickness. Due to the ordered architecture of thick collagen fibers, a positive correlation between PS-OCT retardation and quantity of thick collagen fibers (r=0.54, p=0.04), and similarly with the total collagen content (r=0.51, p=0.03) was observed. In contrast, there was no perceivable relationship between PS-OCT retardation and the presence of thin collagen fibers (r=0.08, p=0.07), suggesting that thin and disorganized collagen fiber architecture did not significantly contribute to the PS-OCT retardation. Further analysis will be performed to assess the relationship between PS-OCT retardation and collagen architecture based on immunohistochemical analysis of collagen type. These results suggest that intracoronary PS-OCT may open the opportunity to assess collagen architecture in addition total collagen content, potentially enabling an improved understanding of coronary plaque rupture.
Comparison of rotator cuff muscle architecture between humans and other selected vertebrate species
Mathewson, Margie A.; Kwan, Alan; Eng, Carolyn M.; Lieber, Richard L.; Ward, Samuel R.
2014-01-01
In this study, we compare rotator cuff muscle architecture of typically used animal models with that of humans and quantify the scaling relationships of these muscles across mammals. The four muscles that correspond to the human rotator cuff – supraspinatus, infraspinatus, subscapularis and teres minor – of 10 commonly studied animals were excised and subjected to a series of comparative measurements. When body mass among animals was regressed against physiological cross-sectional area, muscle mass and normalized fiber length, the confidence intervals suggested geometric scaling but did not exclude other scaling relationships. Based on the architectural difference index (ADI), a combined measure of fiber length-to-moment arm ratio, fiber length-to-muscle length ratio and the fraction of the total rotator cuff physiological cross-sectional area contributed by each muscle, chimpanzees were found to be the most similar to humans (ADI=2.15), followed closely by capuchins (ADI=2.16). Interestingly, of the eight non-primates studied, smaller mammals such as mice, rats and dogs were more similar to humans in architectural parameters compared with larger mammals such as sheep, pigs or cows. The force production versus velocity trade-off (indicated by fiber length-to-moment arm ratio) and the excursion ability (indicated by fiber length-to-muscle length ratio) of humans were also most similar to those of primates, followed by the small mammals. Overall, primates provide the best architectural representation of human muscle architecture. However, based on the muscle architectural parameters of non-primates, smaller rather than larger mammals may be better models for studying muscles related to the human rotator cuff. PMID:24072803
Kim, Soo Y.; Sachdeva, Rohit; Li, Zi; Rosser, Benjamin W. C.
2015-01-01
Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D) model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL) and pennation angle (PA) were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies. PMID:26413533
Kiener, Hans P; Watts, Gerald F M; Cui, Yajun; Wright, John; Thornhill, Thomas S; Sköld, Markus; Behar, Samuel M; Niederreiter, Birgit; Lu, Jun; Cernadas, Manuela; Coyle, Anthony J; Sims, Gary P; Smolen, Josef; Warman, Matthew L; Brenner, Michael B; Lee, David M
2010-03-01
To define the intrinsic capacity of fibroblast-like synoviocytes (FLS) to establish a 3-dimensional (3-D) complex synovial lining architecture characterized by the multicellular organization of the compacted synovial lining and the elaboration of synovial fluid constituents. FLS were cultured in spherical extracellular matrix (ECM) micromasses for 3 weeks. The FLS micromass architecture was assessed histologically and compared with that of dermal fibroblast controls. Lubricin synthesis was measured via immunodetection. Basement membrane matrix and reticular fiber stains were performed to examine ECM organization. Primary human and mouse monocytes were prepared and cocultured with FLS in micromass to investigate cocompaction in the lining architecture. Cytokine stimuli were applied to determine the capacity for inflammatory architecture rearrangement. FLS, but not dermal fibroblasts, spontaneously formed a compacted lining architecture over 3 weeks in the 3-D ECM micromass organ cultures. These lining cells produced lubricin. FLS rearranged their surrounding ECM into a complex architecture resembling the synovial lining and supported the survival and cocompaction of monocyte/macrophages in the neo-lining structure. Furthermore, when stimulated by cytokines, FLS lining structures displayed features of the hyperplastic rheumatoid arthritis synovial lining. This 3-D micromass organ culture method demonstrates that many of the phenotypic characteristics of the normal and the hyperplastic synovial lining in vivo are intrinsic functions of FLS. Moreover, FLS promote survival and cocompaction of primary monocytes in a manner remarkably similar to that of synovial lining macrophages. These findings provide new insight into inherent functions of the FLS lineage and establish a powerful in vitro method for further investigation of this lineage.
Tensor network states in time-bin quantum optics
NASA Astrophysics Data System (ADS)
Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl
2018-06-01
The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.
Integrated Optofluidic Multimaterial Fibers
NASA Astrophysics Data System (ADS)
Stolyarov, Alexander Mark
The creation of integrated microphotonic devices requires a challenging assembly of optically and electrically disparate materials into complex geometries with nanometer-scale precision. These challenges are typically addressed by mature wafer-based fabrication methods, which while versatile, are limited to low-aspect-ratio structures and by the inherent complexity of sequential processing steps. Multimaterial preform-to-fiber drawing methods on the other hand present unique opportunities for realizing optical and optoelectronic devices of extended length. Importantly, these methods allow for monolithic integration of all the constituent device components into complex architectures. My research has focused on addressing the challenges and opportunities associated with microfluidic multimaterial fiber structures and devices. Specifically: (1) A photonic bandgap (PBG) fiber is demonstrated for single mode transmission at 1.55 microm with 4 dB/m losses. This fiber transmits laser pulses with peak powers of 13.5 MW. (Chapter 2) (2) A microfluidic fiber laser, characterized by purely radia l emission is demonstrated. The laser cavity is formed by an axially invariant, 17-period annular PBG structure with a unit cell thickness of 160nm. This laser is distinct from traditional lasers with cylindrically symmetric emission, which rely almost exclusively on whispering gallery modes, characterized by tangential wavevectors. (Chapter 4) (3) An array of independently-controlled liquid-crystal microchannels flanked by viscous conductors is integrated in the fiber cladding and encircles the PBG laser cavity in (2). The interplay between the radially-emitting laser and these liquid-crystal modulators enables controlled directional emission around a full azimuthal angular range. (Chapter 4) (4) The electric potential profile along the length of the electrodes in (3) is characterized and found to depend on frequency. This frequency dependence presents a new means to tune the transversely-directed transmission at a given location along the fiber axis. (Chapter 5) (5) A chemical sensing system is created within a fiber. By integrating a chemiluminescent peroxide-sensing material into the hollow core of a PBG fiber, a limit-of-detection of 300 ppb for peroxide vapors is achieved. (Chapter 3)
A Laboratory Manual for Stepwise Cerebral White Matter Fiber Dissection.
Koutsarnakis, Christos; Liakos, Faidon; Kalyvas, Aristotelis V; Sakas, Damianos E; Stranjalis, George
2015-08-01
White matter fiber dissection is an important method in acquiring a thorough neuroanatomic knowledge for surgical practice. Previous studies have definitely improved our understanding of intrinsic brain anatomy and emphasized on the significance of this technique in modern neurosurgery. However, current literature lacks a complete and concentrated laboratory guide about the entire dissection procedure. Hence, our primary objective is to introduce a detailed laboratory manual for cerebral white matter dissection by highlighting consecutive dissection steps, and to stress important technical comments facilitating this complex procedure. Twenty adult, formalin-fixed cerebral hemispheres were included in the study. Ten specimens were dissected in the lateromedial and 10 in the mediolateral direction, respectively, using the fiber dissection technique and the microscope. Eleven and 8 consecutive and distinctive dissection steps are recommended for the lateromedial and mediolateral dissection procedures, respectively. Photographs highlighting various anatomic landmarks accompany every step. Technical recommendations, facilitating the dissection process, are also indicated. The fiber dissection technique, although complex and time consuming, offers a three-dimensional knowledge of intrinsic brain anatomy and architecture, thus improving both the quality of microneurosurgery and the patient's standard of care. The present anatomic study provides a thorough dissection manual to those who study brain anatomy using this technique. Copyright © 2015 Elsevier Inc. All rights reserved.
Bhardwaj, Anshul; Casjens, Sherwood R; Cingolani, Gino
2014-02-01
Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20-35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.
Invariant Theory for Dispersed Transverse Isotropy: An Efficient Means for Modeling Fiber Splay
NASA Technical Reports Server (NTRS)
Freed, alan D.; Einstein, Daniel R.; Vesely, Ivan
2004-01-01
Most soft tissues possess an oriented architecture of collagen fiber bundles, conferring both anisotropy and nonlinearity to their elastic behavior. Transverse isotropy has often been assumed for a subset of these tissues that have a single macroscopically-identifiable preferred fiber direction. Micro-structural studies, however, suggest that, in some tissues, collagen fibers are approximately normally distributed about a mean preferred fiber direction. Structural constitutive equations that account for this dispersion of fibers have been shown to capture the mechanical complexity of these tissues quite well. Such descriptions, however, are computationally cumbersome for two-dimensional (2D) fiber distributions, let alone for fully three-dimensional (3D) fiber populations. In this paper, we develop a new constitutive law for such tissues, based on a novel invariant theory for dispersed transverse isotropy. The invariant theory is based on a novel closed-form splay invariant that can easily handle 3D fiber populations, and that only requires a single parameter in the 2D case. The model is polyconvex and fits biaxial data for aortic valve tissue as accurately as the standard structural model. Modification of the fiber stress-strain law requires no re-formulation of the constitutive tangent matrix, making the model flexible for different types of soft tissues. Most importantly, the model is computationally expedient in a finite-element analysis.
NASA Astrophysics Data System (ADS)
Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong
2018-03-01
We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.
Modulation of gene expression using electrospun scaffolds with templated architecture.
Karchin, A; Wang, Y-N; Sanders, J E
2012-06-01
The fabrication of biomimetic scaffolds is a critical component to fulfill the promise of functional tissue-engineered materials. We describe herein a simple technique, based on printed circuit board manufacturing, to produce novel templates for electrospinning scaffolds for tissue-engineering applications. This technique facilitates fabrication of electrospun scaffolds with templated architecture, which we defined as a scaffold's bulk mechanical properties being driven by its fiber architecture. Electrospun scaffolds with templated architectures were characterized with regard to fiber alignment and mechanical properties. Fast Fourier transform analysis revealed a high degree of fiber alignment along the conducting traces of the templates. Mechanical testing showed that scaffolds demonstrated tunable mechanical properties as a function of templated architecture. Fibroblast-seeded scaffolds were subjected to a peak strain of 3 or 10% at 0.5 Hz for 1 h. Exposing seeded scaffolds to the low strain magnitude (3%) significantly increased collagen I gene expression compared to the high strain magnitude (10%) in a scaffold architecture-dependent manner. These experiments indicate that scaffolds with templated architectures can be produced, and modulation of gene expression is possible with templated architectures. This technology holds promise for the long-term goal of creating tissue-engineered replacements with the biomechanical and biochemical make-up of native tissues. Copyright © 2012 Wiley Periodicals, Inc.
A Fiber-Tip Label-Free Biological Sensing Platform: A Practical Approach toward In-Vivo Sensing
François, Alexandre; Reynolds, Tess; Monro, Tanya M.
2015-01-01
The platform presented here was devised to address the unmet need for real time label-free in vivo sensing by bringing together a refractive index transduction mechanism based on Whispering Gallery Modes (WGM) in dye doped microspheres and Microstructured Optical Fibers. In addition to providing remote excitation and collection of the WGM signal, the fiber provides significant practical advantages such as an easy manipulation of the microresonator and the use of this sensor in a dip sensing architecture, alleviating the need for a complex microfluidic interface. Here, we present the first demonstration of the use of this approach for biological sensing and evaluate its limitation in a sensing configuration deprived of liquid flow which is most likely to occur in an in vivo setting. We also demonstrate the ability of this sensing platform to be operated above its lasing threshold, enabling enhanced device performance. PMID:25585104
Demand Activated Manufacturing Architecture (DAMA) model for supply chain collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHAPMAN,LEON D.; PETERSEN,MARJORIE B.
The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise architecture and collaborative model for supply chains. This model will enable improved collaborative business across any supply chain. The DAMA Model for Supply Chain Collaboration is a high-level model for collaboration to achieve Demand Activated Manufacturing. The five major elements of the architecture to support collaboration are (1) activity or process, (2) information, (3) application, (4) data, and (5) infrastructure. These five elements are tied to the application of themore » DAMA architecture to three phases of collaboration - prepare, pilot, and scale. There are six collaborative activities that may be employed in this model: (1) Develop Business Planning Agreements, (2) Define Products, (3) Forecast and Plan Capacity Commitments, (4) Schedule Product and Product Delivery, (5) Expedite Production and Delivery Exceptions, and (6) Populate Supply Chain Utility. The Supply Chain Utility is a set of applications implemented to support collaborative product definition, forecast visibility, planning, scheduling, and execution. The DAMA architecture and model will be presented along with the process for implementing this DAMA model.« less
Improving Turbine Performance with Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.
2007-01-01
Under the new NASA Fundamental Aeronautics Program, efforts are on-going within the Supersonics Project aimed at the implementation of advanced SiC/SiC ceramic composites into hot section components of future gas turbine engines. Due to recent NASA advancements in SiC-based fibers and matrices, these composites are lighter and capable of much higher service temperatures than current metallic superalloys, which in turn will allow the engines to operate at higher efficiencies and reduced emissions. This presentation briefly reviews studies within Task 6.3.3 that are primarily aimed at developing physics-based concepts, tools, and process/property models for micro- and macro-structural design, fabrication, and lifing of SiC/SiC turbine components in general and airfoils in particular. Particular emphasis is currently being placed on understanding and modeling (1) creep effects on residual stress development within the component, (2) fiber architecture effects on key composite properties such as design strength, and (3) preform formation processes so that the optimum architectures can be implemented into complex-shaped components, such as turbine vanes and blades.
Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems.
Schmahmann, Jeremy D; Pandya, Deepak N
2008-09-01
Disconnection syndromes were originally conceptualized as a disruption of communication between different cerebral cortical areas. Two developments mandate a re-evaluation of this notion. First, we present a synopsis of our anatomical studies in monkey elucidating principles of organization of cerebral cortex. Efferent fibers emanate from every cortical area, and are directed with topographic precision via association fibers to ipsilateral cortical areas, commissural fibers to contralateral cerebral regions, striatal fibers to basal ganglia, and projection subcortical bundles to thalamus, brainstem and/or pontocerebellar system. We note that cortical areas can be defined by their patterns of subcortical and cortical connections. Second, we consider motor, cognitive and neuropsychiatric disorders in patients with lesions restricted to basal ganglia, thalamus, or cerebellum, and recognize that these lesions mimic deficits resulting from cortical lesions, with qualitative differences between the manifestations of lesions in functionally related areas of cortical and subcortical nodes. We consider these findings on the basis of anatomical observations from tract tracing studies in monkey, viewing them as disconnection syndromes reflecting loss of the contribution of subcortical nodes to the distributed neural circuits. We introduce a new theoretical framework for the distributed neural circuits, based on general, and specific, principles of anatomical organization, and on the architecture of the nodes that comprise these systems. We propose that neural architecture determines function, i.e., each architectonically distinct cortical and subcortical area contributes a unique transform, or computation, to information processing; anatomically precise and segregated connections between nodes define behavior; and association fiber tracts that link cerebral cortical areas with each other enable the cross-modal integration required for evolved complex behaviors. This model enables the formulation and testing of future hypotheses in investigations using evolving magnetic resonance imaging techniques in humans, and in clinical studies in patients with cortical and subcortical lesions.
Hirata, Eiji; Fujiwara, Hisaya; Hayashi, Shogo; Ohtsuka, Aiji; Abe, Shin-Ichi; Murakami, Gen; Kudo, Yoshiki
2011-05-01
The fascia pelvis parietalis (FPP) or endopelvic fascia is a well-known structure, but few studies described the detailed histological architecture, including the composite fiber directions. We hypothesized a gender-specific fiber architecture corresponding to the functional demand. For the first step to examine this hypothesis, we investigated specimens from 27 adult cadavers (10 males and 17 females) and 11 midterm fetuses (five males and six females) using immunohistochemistry and aldehyde-fuchsin staining. The adult female FPP was a solid, thick monolayered structure that was reinforced by abundant elastic fibers running across the striated muscle fibers, but it contained little or no smooth muscles (SM). In contrast, the male FPP was multilayered with abundant SM. In midterm fetuses, SM originated from the inferior part of the bladder and extended inferiorly along the gender-specific courses. Thus, we found a clear intergender difference in FPP architecture. However, the functional significance remained unknown because the basic architecture was common between nulliparous and multiparous women. Rather than for meeting the likely mechanical demands of pregnancy and vaginal delivery, the intergender difference of the FPP seemed to result from differences in the amount and migration course of bladder-derived SM as well as in hormonal background. Copyright © 2010 Wiley-Liss, Inc.
Evolution of birds: ichthyosaur integumental fibers conform to dromaeosaur protofeathers.
Lingham-Soliar, Theagarten
2003-09-01
Filamentous integumentary structures have been reported as protofeathers in dromaeosaurs (non-avian dinosaurs). This hypothesis is considered against data on the complex architecture of dermal and subdermal collagenous fibers widely prevalent in living and extinct animals. Ichthyosaur integumental fibers, as dromaeosaur "protofeathers", are the most external structures preserved. Marked similarities are shown in branching patterns of these fibers compared with those of the dromaeosaur Sinornithosaurus; hence distinguishing between aberrant and primary features is difficult. Analysis of a pterosaur specimen shows that bent and straight fibers on the wings have functional implications. The fibers conform to the twofold shape of collagen and contradict the notion that bent integumental structures in the dinosaur Sinosauropteryx indicate softness and pliability. A suggestion also concerning Sinosauropteryx is that integumental structures with darker edges, compared with the middle, imply that they were hollow. Investigation of a similar condition in an ichthyosaur shows that it is more likely a consequence of mineralization. Dermal collagen fibers in, for example, sharks, dolphins, snakes, and turtles are shown to be grouped in bundles of varying sizes. Degradation of the dermis results in the breakdown of the fiber bundles and formation of myriad patterns of the disrupted fibers, as noted in decomposed dolphin skin. The overall findings of the study are that the thesis of dinosaur "protofeathers" requires more substantial support than exists at present.
Levillain, A; Orhant, M; Turquier, F; Hoc, T
2016-08-01
The linea alba is a complex structure commonly involved in hernia formation. Knowledge of its mechanical behavior is essential to design suitable meshes and reduce the risk of recurrence. The aim of this study was to investigate the relationships between the mechanical properties of the linea alba and the organization of collagen and elastin fibers. For that purpose, longitudinal and transversal samples were removed from four porcine and three human linea alba, to perform tensile tests under a biphotonic confocal microscope, in each direction. Microscopic observation revealed a tissue composed of two layers, made of transversal collagen fibers in the dorsal side and oblique collagen fibers in the ventral side. This particular architecture led to an anisotropic mechanical behavior, with higher stress in the transversal direction. During loading, oblique fibers of the ventral layer reoriented toward the tensile axis in both directions, while fibers of the dorsal layer remained in the transversal direction. This rotation of oblique fibers progressively increased the stiffness of the tissue and induced a non-linear stress-stretch relation. Elastin fibers formed a layer covering the collagen fibers and followed their movement, suggesting that they ensure their elastic recoil. All of these results demonstrated the strong relationships between the microstructure and the mechanical behavior of the linea alba. Copyright © 2016 Elsevier Ltd. All rights reserved.
CHARACTERIZATION OF THE COMPLETE FIBER NETWORK TOPOLOGY OF PLANAR FIBROUS TISSUES AND SCAFFOLDS
D'Amore, Antonio; Stella, John A.; Wagner, William R.; Sacks, Michael S.
2010-01-01
Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior have recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffolds. SEM images of rabbit mesenchymal stem cell (MSC) seeded collagen gel scaffolds and decellularized rat carotid arteries were also analyzed to further evaluate the ability of the algorithm to capture fiber network morphology regardless of scaffold type and the evaluated size scale. The image analysis procedure was validated qualitatively and quantitatively, comparing fiber network topology manually detected by human operators (n=5) with that automatically detected by the algorithm. Correlation values between manual detected and algorithm detected results for the fiber angle distribution and for the fiber connectivity distribution were 0.86 and 0.93 respectively. Algorithm detected fiber intersections and fiber diameter values were comparable (within the mean ± standard deviation) with those detected by human operators. This automated approach identifies and quantifies fiber network morphology as demonstrated for three relevant scaffold types and provides a means to: (1) guarantee objectivity, (2) significantly reduce analysis time, and (3) potentiate broader analysis of scaffold architecture effects on cell behavior and tissue development both in vitro and in vivo. PMID:20398930
Marcucci, Lorenzo; Reggiani, Carlo; Natali, Arturo N; Pavan, Piero G
2017-12-01
Muscles exhibit highly complex, multi-scale architecture with thousands of muscle fibers, each with different properties, interacting with each other and surrounding connective structures. Consequently, the results of single-fiber experiments are scarcely linked to the macroscopic or whole muscle behavior. This is especially true for human muscles where it would be important to understand of how skeletal muscles disorders affect patients' life. In this work, we developed a mathematical model to study how fast and slow muscle fibers, well characterized in single-fiber experiments, work and generate together force and displacement in muscle bundles. We characterized the parameters of a Hill-type model, using experimental data on fast and slow single human muscle fibers, and comparing experimental data with numerical simulations obtained from finite element (FE) models of single fibers. Then, we developed a FE model of a bundle of 19 fibers, based on an immunohistochemically stained cross section of human diaphragm and including the corresponding properties of each slow or fast fiber. Simulations of isotonic contractions of the bundle model allowed the generation of its apparent force-velocity relationship. Although close to the average of the force-velocity curves of fast and slow fibers, the bundle curve deviates substantially toward the fast fibers at low loads. We believe that the present model and the characterization of the force-velocity curve of a fiber bundle represents the starting point to link the single-fiber properties to those of whole muscle with FE application in phenomenological models of human muscles.
Methods for producing silicon carbide architectural preforms
NASA Technical Reports Server (NTRS)
DiCarlo, James A. (Inventor); Yun, Hee (Inventor)
2010-01-01
Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties for each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.
Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia
2016-10-01
Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.
1989-01-01
A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Chen, Yuan L.; Morscher, Gregory N.
2002-01-01
Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS), and 8-harness satin (8HS). Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing "0 deg" fibers giving rise to hysteretic behavior. For the Hi-Nicalon preform specimens, the onset of "0 deg" bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the "0 deg" fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. TEM analysis indicates that the CVI BN interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating.
Microstructure and Tensile Properties of BN/SiC Coated Hi-Nicalon, and Sylramic SiC Fiber Preforms
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Chen, Yuan L.; Morscher, Gregory N.
2001-01-01
Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS) and 8-harness satin (8HS) Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing "0" fibers giving rise to hysteretic behavior, For the Hi-Nicalon preform specimens, the onset of "0" bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the "0" fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. Transmission Electron Microscope (TEM) analysis indicates that the Chemical Vapor Infiltration (CVI) Boron Nitride (BN) interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating.
On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution
NASA Technical Reports Server (NTRS)
Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard
2000-01-01
Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.
NASA Technical Reports Server (NTRS)
Yun, Hee-Mann (Inventor); DiCarlo, James A. (Inventor)
2014-01-01
Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties tier each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.
Hybrid semiconductor fiber lasers for telecommunications
NASA Astrophysics Data System (ADS)
Khalili, Alireza
2006-12-01
Highly stable edge emitting semiconductor lasers are of utmost importance in most telecommunications applications where high-speed data transmission sets strict limits on the purity of the laser signal. Unfortunately, most edge emitting semiconductor lasers, unlike gaseous or solid-state laser sources, operate with many closely spaced axial modes, which accounts for the observed instability and large spikes in the output spectrum of such lasers. Consequently, in most telecom applications distributed feedback (DFB) or distributed Bragg reflector (DBR) techniques are used to ensure stability and single-frequency operation, further adding to the cost and complexity of such lasers. Additionally, coupling of the highly elliptical output beam of these lasers to singlemode fibers complicates the packaging procedure and sub-micron alignment of various optical components is often necessary. Utilizing the evanescent coupling between a semiconductor antiresonant reflecting optical waveguide (ARROW) and a side polished fiber, this thesis presents an alternative side-coupled laser module that eliminates the need for the cumbersome multi-component alignment processes of conventional laser packages, and creates an inherent mode selection mechanism that guarantees singlemode radiation into the fiber without any gratings. We have been able to demonstrate the first side-coupled fiber semiconductor laser in this technology, coupling more than 3mW of power at 850nm directly into a 5/125mum singlemode fiber. This mixed-cavity architecture yields a high thermal stability (˜0.06nm/°C), and negligible spectral spikes are observed. Theoretical background and simulation results, as well as several supplementary materials are also presented to further rationalize the experimental data. A side-coupled light-emitter and pre-amplifier are also proposed and discussed. We also study different architectures for attaining higher efficiency, higher output power, and wavelength tunability in such lasers. Finally, we discuss possible venues for integration of these side-coupled devices in a telecommunication system. Approved for publication.
Development of a high angular resolution diffusion imaging human brain template.
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-05-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Bednarcyk, Brett A.; Arnold, Steven M.
2014-01-01
Integrated computational materials engineering (ICME) is a useful approach for tailoring the performance of a material. For fiber-reinforced composites, not only do the properties of the constituents of the composite affect the performance, but so does the architecture (or microstructure) of the constituents. The generalized method of cells is demonstrated to be a viable micromechanics tool for determining the effects of the microstructure on the performance of laminates. The micromechanics is used to predict the inputs for a macroscale model for a variety of different fiber volume fractions, and fiber architectures. Using this technique, the material performance can be tailored for specific applications by judicious selection of constituents, volume fraction, and architectural arrangement given a particular manufacturing scenario
Effect of kenaf fiber age on PLLA composite properties
USDA-ARS?s Scientific Manuscript database
The age of the kenaf (Hibiscus cannabinus L.) fiber dictates its pore architecture. The impact of increasing age of plant fiber on the corresponding composite can impact material selection for enhanced composite performance. Bast fibers stems of kenaf, a warm season tropical herbaceous annual plant ...
Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.
Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A
2010-10-01
Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.
Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R.
1995-01-01
A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.
Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E
2011-01-01
The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m(3). Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m(3). Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ceramic Fiber Structures for Cryogenic Load-Bearing Applications
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eckel, Andrew J.
2009-01-01
This invention is intended for use as a load-bearing device under cryogenic temperatures and/or abrasive conditions (i.e., during missions to the Moon). The innovation consists of small-diameter, ceramic fibers that are woven or braided into devices like ropes, belts, tracks, or cables. The fibers can be formed from a variety of ceramic materials like silicon carbide, carbon, aluminosilicate, or aluminum oxide. The fiber architecture of the weave or braid is determined by both the fiber properties and the mechanical requirements of the application. A variety of weave or braid architectures is possible for this application. Thickness of load-bearing devices can be achieved by using either a 3D woven structure, or a layered, 2D structure. For the prototype device, a belt approximately 0.10 in. (0.25 cm) thick, and 3.0 in. (7.6 cm) wide was formed by layering and stitching a 2D aluminosilicate fiber weave.
Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu
2014-01-01
Purpose To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). Materials and Methods The lower leg of five young and five senior subjects was scanned at 3T and DTI indices extracted using three methods: ROI, histogram and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. Results The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (p<0.05), while the small increase in fractional anisotropy (FA) with age was not significant (MG/LG: p=0.39/0.85; 95% CI:[ −0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (p<0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Conclusion Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. PMID:24771672
Sinha, Usha; Csapo, Robert; Malis, Vadim; Xue, Yanjie; Sinha, Shantanu
2015-04-01
To investigate age related changes in diffusion tensor indices and fiber architecture of the medial and lateral gastrocnemius (MG and LG) muscles using diffusion tensor imaging (DTI). The lower leg of five young and five senior subjects was scanned at 3 Tesla and DTI indices extracted using three methods: region of interest, histogram, and tract based. Tracked fibers were automatically edited to ensure physiologically relevant tracks. Pennation angles were measured with respect to the deep and superficial aponeuroses of both muscles. The three methods provided internally consistent measures of the DTI indices (correlation coefficient in the range of 0.90-0.99). The primary, secondary, and tertiary eigenvalues in the MG and LG increased significantly in the senior cohort (P < 0.05), while the small increase in fractional anisotropy with age was not significant (MG/LG: P = 0.39/0.85; 95% confidence interval: [-0.059/-0.056, 0.116/0.064]). Fiber lengths of MG fibers originating distally were significantly decreased in seniors (P < 0.05) while pennation angles decreased with age in the MG and LG but this was not significant. Fiber atrophy and increased fibrosis have opposing effects on the diffusion indices resulting in a complicated dependence with aging. Fiber architectural changes could play a role in determining aging muscle function. © 2014 Wiley Periodicals, Inc.
Architecture and fiber type of the pyramidalis muscle.
Lovering, Richard M; Anderson, Larry D
2008-12-01
The paired pyramidalis muscles are small triangular-shaped muscles that lie between the anterior surface of the rectus abdominus and the posterior surface of the rectus sheath. The precise function of pyramidalis muscles is unclear, but together the muscles are thought to tense the linea alba. The muscles are not always present, or are often unilateral, and vary greatly in size. Their wider inferior margins attach to the pubic symphyses and pubic crests, whereas their narrow superior margins attach to the linea alba. The gross anatomy and innervation of the pyramidalis muscles has been described by others, but their architecture and fiber type have not been determined in previous publications. The purpose of the present paper was therefore to investigate these parameters and place the findings into context for the literature available on this muscle. An example of bilateral pyramidalis muscles was recently encountered in a male cadaver that provided ample tissue for an analysis of its architecture and fiber type. The muscle mass, muscle length, fiber length, and pennation angle of muscle fibers were measured to ascertain physiological cross-sectional area and thereby estimate force production. Fiber type composition was also examined using immunofluorescent labeling. The results show that this is a muscle of mixed fiber type composition, similar to the rectus abdominus, and that the estimated forces generated by this muscle are relatively small.
New fiber laser for lidar developments in disaster management
NASA Astrophysics Data System (ADS)
Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.
2014-10-01
Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Anshul; Casjens, Sherwood R.; Cingolani, Gino, E-mail: gino.cingolani@jefferson.edu
2014-02-01
This study presents the crystal structure of a ∼320 Å long protein fiber generated by in-frame extension of its repeated helical coiled-coil core. Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identifiedmore » in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20–35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.« less
NASA Astrophysics Data System (ADS)
Abari, C. F.; Chu, X.; Mann, J.
2014-12-01
Doppler light detection and ranging (lidar) has been used for a few decades for the characterization of wind fields and turbulence structures in the atmosphere. More recently, due to the advances in fiber optic communications, all-fiber coherent Doppler lidars (CDL) have been developed and widely used as a primary instrument for probing the atmospheric boundary layer wind fields. Due to a variety of reasons, all-fiber CDLs have gradually replaced their counterparts benefiting from technologies other than fiber optics. Most CDLs suffer from a number of drawbacks inherent to their principle of operation. For instance, one of the main challenges in CDLs is extracting the signal information from noisy observations, which is common to most opto-electronic systems. Moreover, it is sometimes challenging to extract the sign of the measured radial velocity. Conventionally, CDLs have benefitted from an intermediate frequency (IF) heterodyne receiver architecture for the determination of the radial velocity. In such systems, either the transmitted or the local oscillator (LO) signal is shifted in frequency. Such architectures may suffer from increased noise and spurious effects due to the employment of additional active components, e.g., acousto-optic modulator (AOM), limited measurement bandwidth (BW), and a more sophisticated electronic front-end for signal detection. On the other hand, one of the main challenges in long-range (pulsed) CDLs is the limitations imposed on the pulse repetition rate (PRR) as well as the available transmit power. These restrictions are more significant in all-fiber pulsed CDLs in which Erbium doped fiber amplifiers (EDFA) are employed for the amplification of the optical pulses. In this study, we propose an alternative reconfigurable opto-electronic front-end transceiver architecture in all-fiber CDLs where there is no compromise in the detection BW. Additionally, by benefiting from a polarization diversity architecture we show that both the PRR and transmit optical power can be doubled. Other benefits of the proposed system include, but not limited to, capturing additional information about the nature of aerosol particles, improvement of the signal-to-estimation-noise-ratio (SENR), faster scanning of the wind field, and improved measurement range.
NASA Astrophysics Data System (ADS)
Nezlobinsky, T. V.; Pravdin, S. F.; Katsnelson, L. B.; Solovyova, O. E.
2016-07-01
It is known that preferential paths for the propagation of an electrical excitation wave in the human ventricular myocardium are associated with muscle fibers in tissue. The speed of the excitation wave along a fiber is several times higher than that across the direction of the fiber. To estimate the effect of the architecture and anisotropy of the myocardium of the left ventricle on the process of its electrical activation, we have studied the relation between the speed of the electrical excitation wave in a one-dimensional isolated myocardial fiber consisting of sequentially coupled cardiomyocytes and in an identical fiber located in the wall of a threedimensional anatomical model of the left ventricle. It has been shown that the speed of a wavefront along the fiber in the three-dimensional myocardial tissue is much higher than that in the one-dimensional fiber. The acceleration of the signal is due to the rotation of directions of fibers in the wall and to the position of the excitation wavefront with respect to the direction of this fiber. The observed phenomenon is caused by the approach of the excitable tissue with rotational anisotropy in its properties to a pseudoisotropic tissue.
Spatiotemporally Controlled Microchannels of Periodontal Mimic Scaffolds
Park, C.H.; Kim, K.H.; Rios, H.F.; Lee, Y.M.; Giannobile, W.V.; Seol, Y.J.
2014-01-01
Physiologic bioengineering of the oral, dental, and craniofacial complex requires optimized geometric organizations of fibrous connective tissues. A computer-designed, fiber-guiding scaffold has been developed to promote tooth-supporting periodontal tissue regeneration and functional restoration despite limited printing resolution for the manufacture of submicron-scaled features. Here, we demonstrate the use of directional freeze-casting techniques to control pore directional angulations and create mimicked topographies to alveolar crest, horizontal, oblique, and apical fibers of natural periodontal ligaments. For the differing anatomic positions, the gelatin displayed varying patterns of ice growth, determined via internal pore architectures. Regardless of the freezing coordinates, the longitudinal pore arrangements resulted in submicron-scaled diameters (~50 µm), along with corresponding high biomaterial porosity (~90%). Furthermore, the horizontal + coronal ((x→−y→) freezing orientation facilitated the creation of similar structures to major fibers in the periodontal ligament interface. This periodontal tissue-mimicking microenvironment is a potential tissue platform for the generation of naturally oriented ligamentous tissues consistent with periodontal ligament neogenesis. PMID:25216511
Chen, Honglin; Malheiro, Afonso de Botelho Ferreira Braga; van Blitterswijk, Clemens; Mota, Carlos; Wieringa, Paul Andrew; Moroni, Lorenzo
2017-11-08
Nanofibrous structures have long been used as scaffolds for tissue engineering (TE) applications, due to their favorable characteristics, such as high porosity, flexibility, high cell attachment and enhanced proliferation, and overall resemblance to native extracellular matrix (ECM). Such scaffolds can be easily produced at a low cost via electrospinning (ESP), but generally cannot be fabricated with a regular and/or complex geometry, characterized by macropores and uniform thickness. We present here a novel technique for direct writing (DW) with solution ESP to produce complex three-dimensional (3D) multiscale and ultrathin (∼1 μm) fibrous scaffolds with desirable patterns and geometries. This technique was simply achieved via manipulating technological conditions, such as spinning solution, ambient conditions, and processing parameters. Three different regimes in fiber morphologies were observed, including bundle with dispersed fibers, bundle with a core of aligned fibers, and single fibers. The transition between these regimes depended on tip to collector distance (Wd) and applied voltage (V), which could be simplified as the ratio V/Wd. Using this technique, a scaffold mimicking the zonal organization of articular cartilage was further fabricated as a proof of concept, demonstrating the ability to better mimic native tissue organization. The DW scaffolds directed tissue organization and fibril matrix orientation in a zone-dependent way. Comparative expression of chondrogenic markers revealed a substantial upregulation of Sox9 and aggrecan (ACAN) on these structures compared to conventional electrospun meshes. Our novel method provides a simple way to produce customized 3D ultrathin fibrous scaffolds, with great potential for TE applications, in particular those for which anisotropy is of importance.
Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip
2004-01-01
The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.
Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation. Premature failure in regions of the unit cell near the edge of the straight-sided specimens was observed for transverse tensile tests in which the braid axial fibers were perpendicular to the specimen axis and the bias fibers terminated on the cut edges in the specimen gage section. This edge effect is one factor that could contribute to a measured strength that is lower than the actual material strength in a structure without edge effects.
Small Artery Elastin Distribution and Architecture-Focus on Three Dimensional Organization.
Hill, Michael A; Nourian, Zahra; Ho, I-Lin; Clifford, Philip S; Martinez-Lemus, Luis; Meininger, Gerald A
2016-11-01
The distribution of ECM proteins within the walls of resistance vessels is complex both in variety of proteins and structural arrangement. In particular, elastin exists as discrete fibers varying in orientation across the adventitia and media as well as often resembling a sheet-like structure in the case of the IEL. Adding to the complexity is the tissue heterogeneity that exists in these structural arrangements. For example, small intracranial cerebral arteries lack adventitial elastin while similar sized arteries from skeletal muscle and intestinal mesentery exhibit a complex adventitial network of elastin fibers. With regard to the IEL, several vascular beds exhibit an elastin sheet with punctate holes/fenestrae while in others the IEL is discontinuous and fibrous in appearance. Importantly, these structural patterns likely sub-serve specific functional properties, including mechanosensing, control of external forces, mechanical properties of the vascular wall, cellular positioning, and communication between cells. Of further significance, these processes are altered in vascular disorders such as hypertension and diabetes mellitus where there is modification of ECM. This brief report focuses on the three-dimensional wall structure of small arteries and considers possible implications with regard to mechanosensing under physiological and pathophysiological conditions. © 2016 John Wiley & Sons Ltd.
Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures
NASA Technical Reports Server (NTRS)
Jones, Justin S.; Polis, Daniel L.; Segal, Kenneth N.
2011-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to traditionally manufactured barrel segments. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the z-fiber weave to a fully interlocked weave with comparable fiber bias, the z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.
Joy, Anita
2014-01-01
Purpose Previous studies detailing the development of posterior subcapsular cataracts (PSC) in Royal College of Surgeons (RCS) rats have shown that aberrant fiber-end migration underlies the structural compromise. This investigation was conducted to examine the distribution of select basal membrane complex (BMC) components and to assess the intravitreal levels of specific cytokines during PSC formation. Methods Lenses from 52 RCS dystrophic rats (RCS/Lav) and 28 genetically matched control animals (RCS-rdy+/Lav) from 2 to 8 weeks old were used. After enucleation, vitreous was collected for eventual cytokine level analyses; lenses were then removed and processed for immunocytochemical localization of actin, cadherin, β integrin, vinculin, and cell nuclei. Results At 2–3 weeks postnatal, dystrophic lenses showed normal BMC distribution of actin, cadherin, and vinculin; however β integrin distribution was altered as compared to controls. By 4–6 weeks of age, F-actin was visible as bright foci arranged in a “rosette” pattern around fiber-end profiles. Concurrently, vinculin was rearranged into a diffuse pattern within the BMC. Cadherin delineated the fiber ends in dystrophic lenses until 5 weeks postnatal, after which it displayed diffuse cytoplasmic staining with more definitive labeling at the BMC periphery. β integrin was initially distributed as punctuate spots at 2–3 weeks postnatal; however, by 4–6 weeks it was co-localized with F-actin around the periphery of fiber ends. The distribution of F-actin, cadherin, and β integrin components did not undergo further changes after 6 weeks of age; however, vinculin was present predominantly at the periphery of the BMC in 7–8-week-old dystrophic lenses. Intravitreal cytokine levels were assessed for interleukin (IL)-1α, IL-4, IL-6, IL-8, tumor necrosis factor (TNF), and interferon (IFN)-γ. Levels of IL-1α, IL-4, TNF, and IFN-γ demonstrated a similar pattern, with concentrations increasing from 2 to 6 weeks postnatal and then decreasing slightly up to 8 weeks of age. IL-4 and TNF had the highest average concentrations, with peaks of 148.00 pg/ml and 34.20 pg/ml, respectively. Conclusions The data indicate that defined rearrangements of normal BMC architecture precede and characterize the structural changes that culminate in the PSC. These are consistent with modifications of adhesion mechanics involving cell–cell attachment, cell–matrix adhesion, and timely fiber-end detachment. Further, the results suggest that pro-inflammatory cytokines are potential initiating factors in aberrant fiber-end migration and subsequent PSC formation. PMID:25593506
Software Computes Tape-Casting Parameters
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2003-01-01
Tcast2 is a FORTRAN computer program that accelerates the setup of a process in which a slurry containing metal particles and a polymeric binder is cast, to a thickness regulated by a doctor blade, onto fibers wound on a rotating drum to make a green precursor of a metal-matrix/fiber composite tape. Before Tcast2, setup parameters were determined by trial and error in time-consuming multiple iterations of the process. In Tcast2, the fiber architecture in the final composite is expressed in terms of the lateral distance between fibers and the thickness-wise distance between fibers in adjacent plies. The lateral distance is controlled via the manner of winding. The interply spacing is controlled via the characteristics of the slurry and the doctor-blade height. When a new combination of fibers and slurry is first cast and dried to a green tape, the shrinkage from the wet to the green condition and a few other key parameters of the green tape are measured. These parameters are provided as input to Tcast2, which uses them to compute the doctor-blade height and fiber spacings needed to obtain the desired fiber architecture and fiber volume fraction in the final composite.
Capturing Structural Heterogeneity in Chromatin Fibers.
Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas
2017-10-13
Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xingfeng; Gan, Chaoqin; Liu, Zongkang; Yan, Yuqi; Qiao, HuBao
2018-01-01
In this paper, a novel architecture of hybrid PON for smart grid is proposed by introducing a wavelength-routing module (WRM). By using conventional optical passive components, a WRM with M ports is designed. The symmetry and passivity of the WRM makes it be easily integrated and very cheap in practice. Via the WRM, two types of network based on different ONU-interconnected manner can realize online access. Depending on optical switches and interconnecting fibers, full-fiber-fault protection and dynamic bandwidth allocation are realized in these networks. With the help of amplitude modulation, DPSK modulation and RSOA technology, wavelength triple-reuse is achieved. By means of injecting signals into left and right branches in access ring simultaneously, the transmission delay is decreased. Finally, the performance analysis and simulation of the network verifies the feasibility of the proposed architecture.
Multi-material micro-electromechanical fibers with bendable functional domains
NASA Astrophysics Data System (ADS)
Nguyen-Dang, Tung; Page, Alexis G.; Qu, Yunpeng; Volpi, Marco; Yan, Wei; Sorin, Fabien
2017-04-01
The integration of increasingly complex functionalities within thermally drawn multi-material fibers is heralding a novel path towards advanced soft electronics and smart fabrics. Fibers capable of electronic, optoelectronic, piezoelectric or energy harvesting functions are created by assembling new materials in intimate contact within increasingly complex architectures. Thus far, however, the opportunities associated with the integration of cantilever-like structures with freely moving functional domains within multi-material fibers have not been explored. Used extensively in the micro-electromechanical system (MEMS) technology, electro-mechanical transductance from moving and bendable domains is used in a myriad of applications. In this article we demonstrate the thermal drawing of micro-electromechanical fibers (MEMF) that can detect and localize pressure with high accuracy along their entire length. This ability results from an original cantilever-like design where a freestanding electrically conductive polymer composite film bends under an applied pressure. As it comes into contact with another conducting domain, placed at a prescribed position in the fiber cross-section, an electrical signal is generated. We show that by a judicious choice of materials and electrical connectivity, this signal can be uniquely related to a position along the fiber axis. We establish a model that predicts the position of a local touch from the measurement of currents generated in the 1D MEMF device, and demonstrate an excellent agreement with the experimental data. This ability to detect and localize touch over large areas, curved surfaces and textiles holds significant opportunities in robotics and prosthetics, flexible electronic interfaces, and medical textiles. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Fabien Sorin was selected by the Editorial Board of J. Phys. D as an emerging Leader.
Shan, Xinyuan; Zhang, Shen; Zhang, Na; Chen, Yujin; Gao, Hong; Zhang, Xitian
2018-01-15
Three-dimensional (3D) MoS 2 @carbon fibers (CFs) hierarchical architectures are successfully synthesized via a simple hydrothermal method and subsequent annealing. MoS 2 nanoflakes are grown on the twine carbon fibers of the carbonized waste cotton cloth. The twine CFs can provide a short diffusion path for ions in electrolyte, enhance the specific surface area, and improve the conductivity of the 3D MoS 2 @CFs hierarchical architectures with high mass loading of 4.4mgcm -2 . The 3D MoS 2 @CFs hierarchical architectures as the electrode material can achieve a high reversible areal capacity (5.2mAhcm -2 at 2.5mAcm -2 ) and exhibit an excellent rate performance. In addition, CFs are prepared by simply carbonizing the waste cotton and then used as carbon source, which is low-cost and eco-friendly. We also found that the Mo nanoparticles produced during the charge/discharge process exist in the hierarchical architectures during cycling and can improve the conductivity of the entire system as well as the cycling stability. Therefore, MoS 2 @CFs nanocomposites as electrode materials manifest a significant application potential for high-performance Li-ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.
Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1989-01-01
Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.
Montero, Ramon B.; Vial, Ximena; Nguyen, Dat Tat; Farhand, Sepehr; Reardon, Mark; Pham, Si M.; Tsechpenakis, Gavriil; Andreopoulos, Fotios M.
2011-01-01
Current therapeutic angiogenesis strategies are focused on the development of biologically responsive scaffolds that can deliver multiple angiogenic cytokines and/or cells in ischemic regions. Herein, we report on a novel electrospinning approach to fabricate cytokine-containing nanofibrous scaffolds with tunable architecture to promote angiogenesis. Fiber diameter and uniformity were controlled by varying the concentration of the polymeric (i.e. gelatin) solution, the feed rate, needle to collector distance, and electric field potential between the collector plate and injection needle. Scaffold fiber orientation (random vs. aligned) was achieved by alternating the polarity of two parallel electrodes placed on the collector plate thus dictating fiber deposition patterns. Basic fibroblast growth factor (bFGF) was physically immobilized within the gelatin scaffolds at variable concentrations and human umbilical vein endothelial cells (HUVEC) were seeded on the top of the scaffolds. Cell proliferation and migration was assessed as a function of growth factor loading and scaffold architecture. HUVECs successfully adhered onto gelatin B scaffolds and cell proliferation was directly proportional to the loading concentrations of the growth factor (0–100 bFGF ng/mL). Fiber orientation had a pronounced effect on cell morphology and orientation. Cells were spread along the fibers of the electrospun scaffolds with the aligned orientation and developed a spindle-like morphology parallel to the scaffold's fibers. In contrast, cells seeded onto the scaffolds with random fiber orientation, did not demonstrate any directionality and appeared to have a rounder shape. Capillary formation (i.e. sprouts length and number of sprouts per bead), assessed in a 3-D in vitro angiogenesis assay, was a function of bFGF loading concentration (0 ng, 50 ng and 100 ng per scaffold) for both types of electrospun scaffolds (i.e. with aligned or random fiber orientation). PMID:22200610
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...
Architecture of the Suprahyoid Muscles: A Volumetric Musculoaponeurotic Analysis
ERIC Educational Resources Information Center
Shaw, Stephanie M.; Martino, Rosemary; Mahdi, Ali; Sawyer, Forrest Kip; Mathur, Sunita; Hope, Andrew; Agur, Anne M.
2017-01-01
Purpose: Suprahyoid muscles play a critical role in swallowing. The arrangement of the fiber bundles and aponeuroses has not been investigated volumetrically, even though muscle architecture is an important determinant of function. Thus, the purpose was to digitize, model in three dimensions, and quantify the architectural parameters of the…
Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures
NASA Technical Reports Server (NTRS)
Jones, Justin S.; Polis, Daniel L.; Rowles, Russell R.; Segal, Kenneth N.
2011-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to segmented barrel structures needed for autoclave cured barrel segments due to autoclave size constraints. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (Z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the Z-fiber weave to a fully interlocked weave with comparable fiber bias, the Z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.
Nishizawa, Tomie; Tamaki, Hiroyuki; Kasuga, Norikatsu; Takekura, Hiroaki
2003-01-01
We evaluated the degeneration and regeneration of neuromuscular junctions (NMJs) on the extensor digitorum longus muscle of Fischer 344 rats between 4 h and 3 weeks after bupivacaine hydrochloride (BPVC) injection, which induces muscle fiber necrosis, using histochemical staining by acetylcholine esterase (AchE)-silver and electron microscopy. Degeneration of muscle fibers and NMJs was observed 4 h after BPVC injection. One week after BPVC injection, some terminal axons were almost completely retracted, and the level of basal lamina-associated AchE in some NMJ regions had gradually disappeared. At that time, the depression contained a few, mostly pit-like or elongated oval invaginations: the incipient junctional folds and some NMJs did not have any secondary junctional fold. By 2 weeks after the BPVC injection, secondary junctional folds began to develop: however, the number of secondary junctional folds was clearly less than that in normal NMJs. At 3 weeks when regeneration of muscle fibers was well advanced, the staining for AchE at the end-plates became stronger and better-defined. The volume density of mitochondria in the terminal area of the terminal significantly decreased upon BPVC-induced destruction of the NMJ, and the density reached the lowest value 24 h after BPVC injection. Significant changes in the ultrastructural features of the architecture of NMJs occurred in skeletal muscle fibers damaged by BPVC during both the degeneration and regeneration processes. The changes in the ultrastructural and morphological features of the NMJ architecture during the regeneration of degenerated muscle fibers resembled those that occur during the differentiation of normal muscle fibers.
Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing
NASA Technical Reports Server (NTRS)
Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.
2011-01-01
Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.
Yang, Yan; Geng, Chao; Li, Feng; Huang, Guan; Li, Xinyang
2017-10-30
Multi-aperture receiver with optical combining architecture is an effective approach to overcome the turbulent atmosphere effect on the performance of the free-space optical (FSO) communications, in which how to combine the multiple laser beams received by the sub-apertures efficiently is one of the key technologies. In this paper, we focus on the combining module based on fiber couplers, and propose the all-fiber coherent beam combining (CBC) with two architectures by using active phase locking. To validate the feasibility of the proposed combining module, corresponding experiments and simulations on the CBC of four laser beams are carried out. The experimental results show that the phase differences among the input beams can be compensated and the combining efficiency can be stably promoted by active phase locking in CBC with both of the two architectures. The simulation results show that the combining efficiency fluctuates when turbulent atmosphere is considered, and the effectiveness of the combining module decreases as the turbulence increases. We believe that the combining module proposed in this paper has great potential, and the results can provide significant advices for researchers when building such a multi-aperture receiver with optical combining architecture for FSO commutation systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... modified by the Boeing Company, will have novel or unusual design features associated with the architecture..., and fiber-optic avionics networks. The proposed architecture is novel or unusual for commercial... material did not anticipate this type of system architecture or electronic access to aircraft systems...
Architecture of the Suprahyoid Muscles: A Volumetric Musculoaponeurotic Analysis.
Shaw, Stephanie M; Martino, Rosemary; Mahdi, Ali; Sawyer, Forrest Kip; Mathur, Sunita; Hope, Andrew; Agur, Anne M
2017-10-17
Suprahyoid muscles play a critical role in swallowing. The arrangement of the fiber bundles and aponeuroses has not been investigated volumetrically, even though muscle architecture is an important determinant of function. Thus, the purpose was to digitize, model in three dimensions, and quantify the architectural parameters of the suprahyoid muscles to determine and compare their relative functional capabilities. Fiber bundles and aponeuroses from 11 formalin-embalmed specimens were serially dissected and digitized in situ. Data were reconstructed in three dimensions using Autodesk Maya. Architectural parameters were quantified, and data were compared using independent samples t-tests and analyses of variance. Based on architecture and attachment sites, suprahyoid muscles were divided into 3 groups: anteromedial, superolateral, and superoposterior. Architectural parameters differed significantly (p < .05) across muscles and across the 3 groups, suggesting differential roles in hyoid movement during swallowing. When activated simultaneously, anteromedial and superoposterior muscle groups could work together to elevate the hyoid. The results suggest that the suprahyoid muscles can have individualized roles in hyoid excursion during swallowing. Muscle balance may be important for identifying and treating hyolaryngeal dysfunction in patients with dysphagia.
Tsamis, Alkiviadis; Phillippi, Julie A.; Koch, Ryan G.; Pasta, Salvatore; D'Amore, Antonio; Watkins, Simon C.; Wagner, William R.; Gleason, Thomas G.; Vorp, David A.
2013-01-01
It was recently demonstrated by our group that the delamination strength of ascending thoracic aortic aneurysms (ATAA) was lower than that of control (CTRL, non-aneurysmal) ascending thoracic aorta (ATA), and the reduced strength was more pronounced among bicuspid (BAV) vs. tricuspid aortic valve (TAV) patients, suggesting a different risk of aortic dissection for BAV patients. We hypothesized that aortic valve morphologic phenotype predicts fiber micro-architectural anomalies in ATA. To test the hypothesis, we characterized the micro-architecture in the longitudinal-radial (Z-RAD) and circumferential-radial (Θ-RAD) planes of human ATA tissue that was artificially dissected medially. The outer and inner-media of CTRL-ATA, BAV-ATAA and TAV-ATAA were imaged using multi-photon microscopy in the Z-RAD and Θ-RAD planes to observe collagen and elastin. Micrographs were processed using an image-based tool to quantify several micro-architectural characteristics. In the outer-media of BAV-ATAA, elastin was more undulated and less aligned about the Θ-axis when compared with CTRL-ATA, which is consistent with increased tensile stretch at inflection point of Θ-strips of adventitial-medial half of BAV-ATAA (1.28) when compared with CTRL-ATA (1.13). With increasing age, collagen became more undulated about the Z-axis within the outer-media of TAV-ATAA, and elastin became more oriented in the Z-axis and collagen less radially-oriented within the inner-media of TAV-ATAA. This discrepancy in the micro-architecture with fibers in the inner layers being more stretched and with disrupted radially-oriented components than fibers in the outer layers may be associated with the development, progression and vascular remodeling in aneurysms arising in TAV patients. PMID:24075403
Tsamis, Alkiviadis; Phillippi, Julie A; Koch, Ryan G; Pasta, Salvatore; D'Amore, Antonio; Watkins, Simon C; Wagner, William R; Gleason, Thomas G; Vorp, David A
2013-11-15
It was recently demonstrated by our group that the delamination strength of ascending thoracic aortic aneurysms (ATAA) was lower than that of control (CTRL, non-aneurysmal) ascending thoracic aorta (ATA), and the reduced strength was more pronounced among bicuspid (BAV) vs. tricuspid aortic valve (TAV) patients, suggesting a different risk of aortic dissection for BAV patients. We hypothesized that aortic valve morphologic phenotype predicts fiber micro-architectural anomalies in ATA. To test the hypothesis, we characterized the micro-architecture in the longitudinal-radial (Z-RAD) and circumferential-radial (Θ-RAD) planes of human ATA tissue that was artificially dissected medially. The outer and inner-media of CTRL-ATA, BAV-ATAA and TAV-ATAA were imaged using multi-photon microscopy in the Z-RAD and Θ-RAD planes to observe collagen and elastin. Micrographs were processed using an image-based tool to quantify several micro-architectural characteristics. In the outer-media of BAV-ATAA, elastin was more undulated and less aligned about the Θ-axis when compared with CTRL-ATA, which is consistent with increased tensile stretch at inflection point of Θ-strips of adventitial-medial half of BAV-ATAA (1.28) when compared with CTRL-ATA (1.13). With increasing age, collagen became more undulated about the Z-axis within the outer-media of TAV-ATAA, and elastin became more oriented in the Z-axis and collagen less radially-oriented within the inner-media of TAV-ATAA. This discrepancy in the micro-architecture with fibers in the inner layers being more stretched and with disrupted radially-oriented components than fibers in the outer layers may be associated with the development, progression and vascular remodeling in aneurysms arising in TAV patients. © 2013 Elsevier Ltd. All rights reserved.
Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming
2015-01-01
One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246
Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming
2015-09-01
One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm(2) and length-specific capacitance up to 23.9 mF/cm, - one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources.
Local connectome phenotypes predict social, health, and cognitive factors
Powell, Michael A.; Garcia, Javier O.; Yeh, Fang-Cheng; Vettel, Jean M.
2018-01-01
The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This fingerprinting approach was applied to a large sample (N = 841) of subjects from the Human Connectome Project, revealing a reliable degree of between-subject correlation in the local connectome fingerprints, with a relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional regression analysis approach, we derived local connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes measured, including demographic, health, and cognitive measures. These LCP maps were highly specific to the attribute being predicted but also sensitive to correlations between attributes. Collectively, these results indicate that the local architecture of white matter fascicles reflects a meaningful portion of the variability shared between subjects along several dimensions. PMID:29911679
Local connectome phenotypes predict social, health, and cognitive factors.
Powell, Michael A; Garcia, Javier O; Yeh, Fang-Cheng; Vettel, Jean M; Verstynen, Timothy
2018-01-01
The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This fingerprinting approach was applied to a large sample ( N = 841) of subjects from the Human Connectome Project, revealing a reliable degree of between-subject correlation in the local connectome fingerprints, with a relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional regression analysis approach, we derived local connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes measured, including demographic, health, and cognitive measures. These LCP maps were highly specific to the attribute being predicted but also sensitive to correlations between attributes. Collectively, these results indicate that the local architecture of white matter fascicles reflects a meaningful portion of the variability shared between subjects along several dimensions.
Kim, Gyeong-Man; Asran, Ashraf Sh; Michler, Georg H; Simon, Paul; Kim, Jeong-Sook
2008-12-01
Based on the biomimetic approaches the present work describes a straightforward technique to mimic not only the architecture (the morphology) but also the chemistry (the composition) of the lowest level of the hierarchical organization of bone. This technique uses an electrospinning (ES) process with polyvinyl alcohol (PVA) and hydroxyapatite (HAp) nanoparticles. To determine morphology, crystalline structures and thermal properties of the resulting electrospun fibers with the pure PVA and PVA/HAp nanocomposite (NC) before electrospinning various techniques were employed, including transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, FT-IR spectroscopy was carried out to analyze the complex structural changes upon undergoing electrospinning as well as interactions between HAp and PVA. The morphological and crystallographic investigations revealed that the rod-like HAp nanoparticles exhibit a nanoporous morphology and are embedded within the electrospun fibers. A large number of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA fibers, which closely resemble the naturally mineralized hard tissues of bones. Due to abundant OH groups present in PVA and HAp nanorods, they strongly interact via hydrogen bonding within the electrospun PVA/HAp NC fibers, which results in improved thermal properties. The unique physiochemical features of the electrospun PVA/HAp NC nanofibers prepared by the ES process will open up a wide variety of future applications related to hard tissue replacement and regeneration (bone and dentin), not limited to coating implants.
Lesne, Annick; Bécavin, Christophe; Victor, Jean-Marc
2012-02-01
Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.
NASA Astrophysics Data System (ADS)
Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc
2012-02-01
Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.
Influence of fiber architecture on the elastic an d inelastic response of metal matrix composites
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Pindera, Marek-Jerzy; Wilt, Thomas E.
1995-01-01
This three part paper focuses on the effect of fiber architecture (i.e., shape and distribution) on the elastic and inelastic response of metal matrix composites. The first part provides an annotative survey of the literature, presented as a historical perspective, dealing with the effects of fiber shape and distribution on the response of advanced polymeric matrix and metal matrix composites. Previous investigations dealing with both continuously and discontinuously reinforced composites are included. A summary of the state-of-the-art will assist in defining new directions in this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well suited for studying the influence of these effects on the response of metal matrix composites. This micromechanics model, referred to as the generalized method of cells (GMC), is capable of predicting the overall, inelastic behavior of unidirectional, multi-phased composites given the properties of the constituents. In particular, the model is sufficiently general to predict the response of unidirectional composites reinforced by either continuous or discontinuous fibers with different inclusion shapes and spatial arrangements in the presence of either perfect or imperfect interfaces and/or interfacial layers. Recent developments regarding this promising model, as well as directions for future enhancements of the model's predictive capability, are included. Finally, the third pan provides qualitative results generated using GMC for a representative titanium matix composite system, SCS-6/TlMETAL 21S. Results are presented that correctly demonstrate the relative effects of fiber arrangement and shape on the longitudinal and transverse stress-strain and creep response, with both strong and weak fiber/matrix interfacial bonds. The fiber arrangements include square, square diagonal, hexagonal and rectangular periodic arrays, as well as a random array. The fiber shapes include circular, square and cross-shaped cross sections. The effect of fiber volume fraction on the observed stress-strain response is also discussed, as the thus-far poorly documented strain rate sensitivity effect. In addition to the well documented features of architecture dependent response of continuously reinforced two-phase MMC's, new results involving continuous multi-phase internal architectures are presented. Specifically, stress strain and creep response of composites with different size fibers having different internal arrangements and bond strengths are investigated with the aim of determining the feasibility of using this approach to enhance the transverse toughness and creep resistance of TMC's.
NASA Astrophysics Data System (ADS)
Bakir, A.; Rocher, C.; Maréchal, B.; Bigler, E.; Boudot, R.; Kersalé, Y.; Millo, J.
2018-05-01
We report on the development of a simple-architecture fiber-based frequency distribution system used to transfer high frequency stability 100 MHz signals. This work is focused on the emitter and the receiver performances that allow the transmission of the radio-frequency signal over an optical fiber. The system exhibits a residual fractional frequency stability of 1 × 10-14 at 1 s integration time and in the low 10-16 range after 100 s. These performances are suitable to transfer the signal of frequency references such as those of a state-of-the-art hydrogen maser without any phase noise compensation scheme. As an application, we demonstrate the dissemination of such a signal through a 100 m long optical fiber without any degradation. The proposed setup could be easily extended for operating frequencies in the 10 MHz-1 GHz range.
Deep learning and model predictive control for self-tuning mode-locked lasers
NASA Astrophysics Data System (ADS)
Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.
2018-03-01
Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.
Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin
2012-01-11
We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling. © 2011 American Chemical Society
A new composite electrode architecture for energy storage devices
NASA Technical Reports Server (NTRS)
Ferro, Richard E.; Swain, Greg M.; Tatarchuk, B. J.
1992-01-01
The research objective is to determine how the electrode microstructure (architecture) affect the performance of the nickel hydroxide electrochemical system. It was found that microstructure and additional surface area makes a difference. The best architectures are the FIBREX/nickel and nickel fiber composite electrodes. The conditioning time for full utilization was greatly reduced. The accelerated increase in capacity vs. cycling appears to be a good indicator of the condition of the electrode/active material microstructure and morphology. Conformal deposition of the active material may be indicated and important. Also higher utilizations were obtained; greater than 80 pct. after less than 5 cycles and greater than 300 pct. after more than 5 cycles using nickel fiber composite electrode assuming a 1 electron transfer per equivalent.
Anatomy of the Limbic White Matter Tracts as Revealed by Fiber Dissection and Tractography.
Pascalau, Raluca; Popa Stănilă, Roxana; Sfrângeu, Silviu; Szabo, Bianca
2018-05-01
The limbic tracts are involved in crucial cerebral functions such as memory, emotion, and behavior. The complex architecture of the limbic circuit makes it harder to approach compared with other white matter networks. Our study aims to describe the 3-dimensional anatomy of the limbic white matter by the use of 2 complementary study methods, namely ex vivo fiber dissection and in vivo magnetic resonance imaging-based tractography. Three fiber dissection protocols were performed using blunt wooden instruments and a surgical microscope on formalin-fixed brains prepared according to the Klingler method. Diffusion tensor imaging acquisitions were done with a 3-Tesla magnetic resonance scanner on patients with head and neck pathology that did not involve the brain. Fiber tracking was performed with manually selected regions of interest. Cingulum, fornix, the anterior thalamic peduncle, the accumbofrontal bundle, medial forebrain bundle, the uncinate fasciculus, the mammillothalamic tract, ansa peduncularis, and stria terminalis were dissected and fiber tracked. For each tract, location, configuration, segmentation, dimensions, dissection and tractography particularities, anatomical relations, and terminations are described. The limbic white matter tracts were systematized as 2 concentric rings around the thalamus. The inner ring is formed by fornix, mammillothalamic tract, ansa peduncularis, stria terminalis, accumbofrontal fasciculus, and medial forebrain bundle and anterior thalamic peduncle, and the outer ring is formed by the cingulum and uncinate fasciculus. This paper proposes a fiber-tracking protocol for the limbic tracts inspired and validated by fiber dissection findings that can be used routinely in the clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.
Flight-Ready TDLAS Combustion Sensor for the HIFiRE 2 Hypersonic Research Program
2009-09-01
Noise Sources 20 5.7 Total System Performance 21 6.0 ZOLO ARCHITECTURE 22 7.0 DESIGN DETAILS 23 7.1 Laser and Drive Electronics 23 7.2 Fiber Couplers...targets 8 2 Tunable Diode Laser Absorption Spectroscopy experiment 9 3 Light absorption by water vapor near 1393 nm 10 4a light transmission vs time 10...20 13 multimode fiber modal noise 21 14 TDLAS sensor architecture 22 15 sensor exploded view 23 16 sensor outline and mounting 23 17 laser power and
NASA Astrophysics Data System (ADS)
Ciminelli, Caterina; Dell'Olio, Francesco; Armenise, Mario N.; Iacomacci, Francesco; Pasquali, Franca; Formaro, Roberto
2017-11-01
A fiber optic digital link for on-board data handling is modeled, designed and optimized in this paper. Design requirements and constraints relevant to the link, which is in the frame of novel on-board processing architectures, are discussed. Two possible link configurations are investigated, showing their advantages and disadvantages. An accurate mathematical model of each link component and the entire system is reported and results of link simulation based on those models are presented. Finally, some details on the optimized design are provided.
A continuum mechanics-based musculo-mechanical model for esophageal transport
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2017-11-01
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two fiber-reinforced models for the esophageal tissue: a bi-linear model and an exponential model. We present three cases on esophageal transport that differ in the material model and the muscle fiber architecture. The overall transport features are consistent with those observed from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case where a spatially varying fiber architecture is included based on experimental study. We find that this unique muscle fiber architecture could generate a so-called pressure transition zone, which is a luminal pressure pattern that is of clinical interest. This suggests an important role of muscle fiber architecture in esophageal transport.
Snow, Nicholas J; Peters, Sue; Borich, Michael R; Shirzad, Navid; Auriat, Angela M; Hayward, Kathryn S; Boyd, Lara A
2016-01-15
Diffusion-weighted magnetic resonance imaging (DW-MRI) is commonly used to assess white matter properties after stroke. Novel work is utilizing constrained spherical deconvolution (CSD) to estimate complex intra-voxel fiber architecture unaccounted for with tensor-based fiber tractography. However, the reliability of CSD-based tractography has not been established in people with chronic stroke. Establishing the reliability of CSD-based DW-MRI in chronic stroke. High-resolution DW-MRI was performed in ten adults with chronic stroke during two separate sessions. Deterministic region of interest-based fiber tractography using CSD was performed by two raters. Mean fractional anisotropy (FA), apparent diffusion coefficient (ADC), tract number, and tract volume were extracted from reconstructed fiber pathways in the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). Callosal fiber pathways connecting the primary motor cortices were also evaluated. Inter-rater and test-retest reliability were determined by intra-class correlation coefficients (ICCs). ICCs revealed excellent reliability for FA and ADC in ipsilesional (0.86-1.00; p<0.05) and contralesional hemispheres (0.94-1.00; p<0.0001), for CST and SLF fibers; and excellent reliability for all metrics in callosal fibers (0.85-1.00; p<0.05). ICC ranged from poor to excellent for tract number and tract volume in ipsilesional (-0.11 to 0.92; p≤0.57) and contralesional hemispheres (-0.27 to 0.93; p≤0.64), for CST and SLF fibers. Like other select DW-MRI approaches, CSD-based tractography is a reliable approach to evaluate FA and ADC in major white matter pathways, in chronic stroke. Future work should address the reproducibility and utility of CSD-based metrics of tract number and tract volume. Copyright © 2015 Elsevier B.V. All rights reserved.
Scaffold Architecture Controls Insulinoma Clustering, Viability, and Insulin Production
Blackstone, Britani N.; Palmer, Andre F.; Rilo, Horacio R.
2014-01-01
Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development. PMID:24410263
Schenk, P; Siebert, T; Hiepe, P; Güllmar, D; Reichenbach, J R; Wick, C; Blickhan, R; Böl, M
2013-01-01
In the last decade, diffusion tensor imaging (DTI) has been used increasingly to investigate three-dimensional (3D) muscle architectures. So far there is no study that has proved the validity of this method to determine fascicle lengths and pennation angles within a whole muscle. To verify the DTI method, fascicle lengths of m. soleus as well as their pennation angles have been measured using two different methods. First, the 3D muscle architecture was analyzed in vivo applying the DTI method with subsequent deterministic fiber tractography. In a second step, the muscle architecture of the same muscle was analyzed using a standard manual digitization system (MicroScribe MLX). Comparing both methods, we found differences for the median pennation angles (P < 0.001) but not for the median fascicle lengths (P = 0.216). Despite the statistical results, we conclude that the DTI method is appropriate to determine the global fiber orientation. The difference in median pennation angles determined with both methods is only about 1.2° (median pennation angle of MicroScribe: 9.7°; DTI: 8.5°) and probably has no practical relevance for muscle simulation studies. Determining fascicle lengths requires additional restriction and further development of the DTI method. PMID:23678961
Schenk, P; Siebert, T; Hiepe, P; Güllmar, D; Reichenbach, J R; Wick, C; Blickhan, R; Böl, M
2013-07-01
In the last decade, diffusion tensor imaging (DTI) has been used increasingly to investigate three-dimensional (3D) muscle architectures. So far there is no study that has proved the validity of this method to determine fascicle lengths and pennation angles within a whole muscle. To verify the DTI method, fascicle lengths of m. soleus as well as their pennation angles have been measured using two different methods. First, the 3D muscle architecture was analyzed in vivo applying the DTI method with subsequent deterministic fiber tractography. In a second step, the muscle architecture of the same muscle was analyzed using a standard manual digitization system (MicroScribe MLX). Comparing both methods, we found differences for the median pennation angles (P < 0.001) but not for the median fascicle lengths (P = 0.216). Despite the statistical results, we conclude that the DTI method is appropriate to determine the global fiber orientation. The difference in median pennation angles determined with both methods is only about 1.2° (median pennation angle of MicroScribe: 9.7°; DTI: 8.5°) and probably has no practical relevance for muscle simulation studies. Determining fascicle lengths requires additional restriction and further development of the DTI method. © 2013 Anatomical Society.
NASA Astrophysics Data System (ADS)
Cao, Xiaojun; Anand, Vishal; Qiao, Chunming
2006-12-01
Optical networks using wavelength-division multiplexing (WDM) are the foremost solution to the ever-increasing traffic in the Internet backbone. Rapid advances in WDM technology will enable each fiber to carry hundreds or even a thousand wavelengths (using dense-WDM, or DWDM, and ultra-DWDM) of traffic. This, coupled with worldwide fiber deployment, will bring about a tremendous increase in the size of the optical cross-connects, i.e., the number of ports of the wavelength switching elements. Waveband switching (WBS), wherein wavelengths are grouped into bands and switched as a single entity, can reduce the cost and control complexity of switching nodes by minimizing the port count. This paper presents a detailed study on recent advances and open research issues in WBS networks. In this study, we investigate in detail the architecture for various WBS cross-connects and compare them in terms of the number of ports and complexity and also in terms of how flexible they are in adjusting to dynamic traffic. We outline various techniques for grouping wavelengths into bands for the purpose of WBS and show how traditional wavelength routing is different from waveband routing and why techniques developed for wavelength-routed networks (WRNs) cannot be simply applied to WBS networks. We also outline how traffic grooming of subwavelength traffic can be done in WBS networks. In part II of this study [Cao , submitted to J. Opt. Netw.], we study the effect of wavelength conversion on the performance of WBS networks with reconfigurable MG-OXCs. We present an algorithm for waveband grouping in wavelength-convertible networks and evaluate its performance. We also investigate issues related to survivability in WBS networks and show how waveband and wavelength conversion can be used to recover from failures in WBS networks.
Networks: A Review of Their Technology, Architecture, and Implementation.
ERIC Educational Resources Information Center
Learn, Larry L.
1988-01-01
This overview of network-related technologies covers network elements, analog and digital signals, transmission media and their characteristics, equipment certification, multiplexing, network types, access technologies, network architectures local-area network technologies and attributes, protocols, internetworking, fiber optics versus satellites,…
Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy
NASA Astrophysics Data System (ADS)
Gil, D.; Garcia-Barnes, J.; Hernández-Sabate, A.; Marti, E.
2010-03-01
Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.
Park, Choul Yong; Marando, Catherine M; Liao, Jason A; Lee, Jimmy K; Kwon, Jiwon; Chuck, Roy S
2016-10-01
To investigate the architecture and distribution of collagen and elastin in human limbal conjunctiva, Tenon's capsule, and sclera. The limbal conjunctiva, Tenon's capsule, and sclera of human donor corneal buttons were imaged with an inverted two-photon excited fluorescence microscope. No fixation process was necessary. The laser (Ti:sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of second harmonic generation (SHG) and autofluorescence (AF) were collected through a 425/30-nm and a 525/45-nm emission filter, respectively. Multiple, consecutive, and overlapping (z-stack) images were acquired. Collagen signals were collected with SHG, whereas elastin signals were collected with AF. The size and density of collagen bundles varied widely depending on depth: increasing from conjunctiva to sclera. In superficial image planes, collagen bundles were <10 μm in width, in a loose, disorganized arrangement. In deeper image planes (episclera and superficial sclera), collagen bundles were thicker (near 100 μm in width) and densely packed. Comparatively, elastin fibers were thinner and sparse. The orientation of elastin fibers was independent of collagen fibers in superficial layers; but in deep sclera, elastin fibers wove through collagen interbundle gaps. At the limbus, both collagen and elastin fibers were relatively compact and were distributed perpendicular to the limbal annulus. Two-photon excited fluorescence microscopy has enabled us to understand in greater detail the collagen and elastin architecture of the human limbal conjunctiva, Tenon's capsule, and sclera.
Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.
Fiber-based architectures for organic photovoltaics
NASA Astrophysics Data System (ADS)
Liu, Jiwen; Namboothiry, Manoj A. G.; Carroll, David L.
2007-02-01
Using poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 bulk-heterojunction blends as the absorbing material, organic photovoltaic devices have been fabricated onto multimode optical fibers. The behavior of the short circuit current density, filling factor, and open circuit voltage as the angle of the incident light onto the cleaved fiber face is varied suggests that the evanescent field at the interface between the fiber and the transparent contact may play a role in coupling light from the fiber into the device. Further, optical loss into the device increases as the fiber diameter decreases.
Guaccio, Angela; Guarino, Vincenzo; Perez, Marco A Alvarez-; Cirillo, Valentina; Netti, Paolo A; Ambrosio, Luigi
2011-08-01
The traditional paradigm of tissue engineering of regenerating in vitro tissue or organs, through the combination of an artificial matrix and a cellular population has progressively changed direction. The most recent concept is the realization of a fully functional biohybrid, where both, the artificial and the biotic phase, concur in the formation of the novel organic matter. In this direction, interest is growing in approaches taking advantage of the control at micro- and nano-scale of cell material interaction based on the realization of elementary tassels of cells and materials which constitute the beginning point for the expansion of 3D more complex structures. Since a spontaneous assembly of all these components is expected, however, it becomes more fundamental than ever to define the features influencing cellular behavior, either they were material functional properties, or material architecture. In this work, it has been investigated the direct effect of electrospun fiber sizes on oxygen metabolism of h-MSC cells, when any other culture parameter was kept constant. To this aim, thin PCL electrospun membranes, with micro- and nano-scale texturing, were layered between two collagen slices up to create a sandwich structure (µC-PCL-C and nC-PCL-C). Cells were seeded on membranes, and the oxygen consumption was determined by a phosphorescence quenching technique. Results indicate a strong effect of the architecture of scaffolds on cell metabolism, also revealed by the increasing of HIF1-α gene expression in nC-PCL-C. These findings offer new insights into the role of materials in specific cell activities, also implying the existence of very interesting criteria for the control of tissue growth through the tuning of scaffold architecture. Copyright © 2011 Wiley Periodicals, Inc.
An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen
2015-01-01
This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.
Ishida, Kentaro; Saito, Tetsuichiro; Mitsui, Toshiyuki
2018-06-01
A Merkel cell-neurite complex is a touch receptor composed of specialized epithelial cells named Merkel cells and peripheral sensory nerves in the skin. Merkel cells are found in touch-sensitive skin components including whisker follicles. The nerve fibers that innervate Merkel cells of a whisker follicle extend from the maxillary branch of the trigeminal ganglion. Whiskers as a sensory organ attribute to the complicated architecture of the Merkel cell-neurite complex, and therefore it is intriguing how the structure is formed. However, observing the dynamic process of the formation of a Merkel cell-neurite complex in whiskers during embryonic development is still difficult. In this study, we tried to develop an organotypic co-culture method of a whisker pad and a trigeminal ganglion explant to form the Merkel cell-neurite complex in vitro. We initially developed two distinct culture methods of a single whisker row and a trigeminal ganglion explant, and then combined them. By dissecting and cultivating a single row from a whisker pad, the morphogenesis of whisker follicles could be observed under a microscope. After the co-cultivation of the whisker row with a trigeminal ganglion explant, a Merkel cell-neurite complex composed of Merkel cells, which were positive for both cytokeratin 8 and SOX2, Neurofilament-H-positive trigeminal nerve fibers and Schwann cells expressing Nestin, SOX2 and SOX10 was observed via immunohistochemical analyses. These results suggest that the process for the formation of a Merkel cell-neurite complex can be observed under a microscope using our organotypic co-culture method. © 2018 Japanese Society of Developmental Biologists.
Developments in photonic and mm-wave component technology for fiber radio
NASA Astrophysics Data System (ADS)
Iezekiel, Stavros
2013-01-01
A review of photonic component technology for fiber radio applications at 60 GHz will be given. We will focus on two architectures: (i) baseband-over-fiber and (ii) RF-over-fiber. In the first approach, up-conversion to 60 GHz is performed at the picocell base stations, with data being transported over fiber, while in the second both the data and rum wave carrier are transported over fiber. For the baseband-over-fiber scheme, we examine techniques to improve the modulation efficiency of directly modulated fiber links. These are based on traveling-wave structures applied to series cascades of lasers. This approach combines the improvement in differential quantum efficiency with the ability to tailor impedance matching as required. In addition, we report on various base station transceiver architectures based on optically-controlled :tvfMIC self oscillating mixers, and their application to 60 GHz fiber radio. This approach allows low cost optoelectronic transceivers to be used for the baseband fiber link, whilst minimizing the impact of dispersion. For the RF-over-fiber scheme, we report on schemes for optical generation of 100 GHz. These use modulation of a Mach-Zehnder modulator at Vπ bias in cascade with a Mach-Zehnder driven by 1.25 Gb/s data. One of the issues in RF-over-fiber is dispersion, while reduced modulation efficiency due to the presence of the optical carrier is also problematic. We examine the use of silicon nitride micro-ring resonators for the production of optical single sideband modulation in order to combat dispersion, and for the reduction of optical carrier power in order to improve link modulation efficiency.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles
Liu, An-Tang; Liu, Ben-Li; Lu, Li-Xuan; Chen, Gang; Yu, Da-Zhi; Zhu, Lie; Guo, Rong; Dang, Rui-Shan; Jiang, Hua
2014-01-01
The purposes f this study were to (i) explore the possibility of splitting the selected forearm muscles into separate compartments in human subjects; (ii) quantify the architectural properties of each neuromuscular compartment; and (iii) discuss the implication of these properties in split tendon transfer procedures. Twenty upper limbs from 10 fresh human cadavers were used in this study. Ten limbs of five cadavers were used for intramuscular nerve study by modified Sihler's staining technique, which confirmed the neuromuscular compartments. The other 10 limbs were included for architectural analysis of neuromuscular compartments. The architectural features of the compartments including muscle weight, muscle length, fiber length, pennation angle, and sarcomere length were determined. Physiological cross-sectional area and fiber length/muscle length ratio were calculated. Five of the selected forearm muscles were ideal candidates for splitting, including flexor carpi ulnaris, flexor carpi radials, extensor carpi radialis brevis, extensor carpi ulnaris and pronator teres. The humeral head of pronator teres contained the longest fiber length (6.23 ± 0.31 cm), and the radial compartment of extensor carpi ulnaris contained the shortest (2.90 ± 0.28 cm). The ulnar compartment of flexor carpi ulnaris had the largest physiological cross-sectional area (5.17 ± 0.59 cm2), and the ulnar head of pronator teres had the smallest (0.67 ± 0.06 cm2). Fiber length/muscle length ratios of the neuromuscular compartments were relatively low (average 0.27 ± 0.09, range 0.18–0.39) except for the ulnar head of pronator teres, which had the highest one (0.72 ± 0.05). Using modified Sihler's technique, this research demonstrated that each compartment of these selected forearm muscles has its own neurovascular supply after being split along its central tendon. Data of the architectural properties of each neuromuscular compartment provide insight into the ‘design’ of their functional capability. In addition to improving our understanding of muscle anatomy and function, elucidation of forearm neuromuscular compartments architecture may ultimately provide information useful for selection of muscle subdivisions used in tendon transfer. PMID:24836406
Architectures for High-Performance Ceramic Composites Being Improved
NASA Technical Reports Server (NTRS)
Yun, Hee Mann; DiCarlo, James A.
2002-01-01
A major thrust of the Ultra-Efficient Engine Technology (UEET) Program at the NASA Glenn Research Center is to develop advanced hot-section engine components using SiC/SiC ceramic matrix composites (CMC's) with thermostructural capability to 2400 F (1315 C). In previous studies, UEET determined that the higher the ultimate tensile strength (UTS) of the as-fabricated CMC, the greater its structural performance at 2400 F. Thus efforts have been ongoing within UEET to understand and develop fiber architecture approaches that can improve the UTS of SiC/SiC CMC's. Under UEET, SiC/SiC test panels and demonstration engine components are currently produced by the multi-ply layup of two-dimensional fabric pieces. The fabric is typically formed of multifilament tows containing high-performance Sylramic (Dow Corning) SiC fiber that is woven into two-dimensional five-harness satin fabric with 20 ends per inch in the 0 degree and 90 degree directions. In some cases, fabric pieces containing woven Sylramic fiber tows are thermally treated at NASA to form Sylramic-iBN fibers that contain a very thin in-situ-grown boron nitride layer on their surfaces. The final SiC/SiC panels and components are fabricated at the CMC vendor by compressing the fabric pieces in tools and then depositing a thin BN interphase coating on the fibers by chemical vapor deposition. The last step at the vendor is to infiltrate the BN-coated fiber architecture with SiC and silicon matrix constituents to form a dense product. Because the as-produced Sylramic fiber tows are sized with a thin polymer coating to facilitate handling and weaving, the individual fibers within the tows and fabric are in close contact with each other. This contact is further increased during fabric compression. One important recent finding is that increasing Sylramic fiber tow width in a fabric increases the UTS of the final SiC/SiC CMC. This effect is presumably related to minimizing fiber/fiber contact, which can be detrimental to CMC strength because of the boron-rich chemistry and roughness of the Sylramic fiber surface. Tows can be spread by mechanically agitating the Sylramic fabric prior to CMC fabrication or by simply thermally treating the Sylramic fabric as in the formation of the Sylramic-iBN fibers. However, CMC's with the treated Sylramic-iBN fabric are even stronger than CMC's with mechanically spread Sylramic tows. The extra strength capability is presumably related to the in situ BN on the fiber surface, which adds compliance to the fiber surfaces and is more resistant to oxygen impurities introduced during the chemical vapor deposition BN process. As shown, another important finding is that the use of fabric with tows having less than the standard of 20 ends per inch provides advantages in terms of reduced ply height and increased ply and CMC strength. The reduced ply height provides more control of part thickness by allowing more plies for a given thickness and by reducing interlaminar residual stresses between plies. The increased ply strength is presumably related to a reduced number of interlaced 90 tows, which, in turn, reduces the crimp angle on the high-modulus fibers in the 0 degree tows. Also, as shown, although fabric with fewer ends per inch reduced the maximum fiber fraction in an eight-ply CMC panel; CMC UTS actually increased because of increased ply strength. Thus, using fabric with fewer ends per inch has several advantages, including providing a significantly higher strength per fiber fraction in the CMC. Consequently, ongoing UEET efforts will attempt to use architectural approaches for components that minimize fiber-fiber contacts and fiber bending within the final composite microstructure.
NASA Astrophysics Data System (ADS)
Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut
2018-04-01
Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.
NASA Astrophysics Data System (ADS)
Lyu, WeiChao; Wang, Andong; Xie, Dequan; Zhu, Long; Guan, Xun; Wang, Jian; Xu, Jing
2018-05-01
We propose a novel architecture for wavelength-division-multiplexed passive optical network (WDM-PON) that can simultaneously circumvent both remodulation crosstalk and Rayleigh noise, based on self-homodyne detection and optical orthogonal frequency-division multiplexing (OFDM) remodulation. The proposed self-homodyne detection at optical network unit (ONU) requires neither frequency offset compensation nor phase noise compensation, and thus can significantly reduce system complexity and power consumption. Bidirectional transmission of 12.5 Gb/s down- and up-stream signals, via single 25 km single-mode fiber without dispersion compensation, is demonstrated in a proof-of-concept experiment.
Stylianopoulos, Triantafyllos; Bashur, Chris A.; Goldstein, Aaron S.; Guelcher, Scott A.; Barocas, Victor H.
2008-01-01
The mechanical properties of biomaterial scaffolds are crucial for their efficacy in tissue engineering and regenerative medicine. At the microscopic scale, the scaffold must be sufficiently rigid to support cell adhesion, spreading, and normal extracellular matrix deposition. Concurrently, at the macroscopic scale the scaffold must have mechanical properties that closely match those of the target tissue. The achievement of both goals may be possible by careful control of the scaffold architecture. Recently, electrospinning has emerged as an attractive means to form fused fiber scaffolds for tissue engineering. The diameter and relative orientation of fibers affect cell behavior, but their impact on the tensile properties of the scaffolds has not been rigorously characterized. To examine the structure-property relationship, electrospun meshes were made from a polyurethane elastomer with different fiber diameters and orientations and mechanically tested to determine the dependence of the elastic modulus on the mesh architecture. Concurrently, a multiscale modeling strategy developed for type I collagen networks was employed to predict the mechanical behavior of the polyurethane meshes. Experimentally, the measured elastic modulus of the meshes varied from 0.56 to 3.0 MPa depending on fiber diameter and the degree of fiber alignment. Model predictions for tensile loading parallel to fiber orientation agreed well with experimental measurements for a wide range of conditions when a fitted fiber modulus of 18 MPa was used. Although the model predictions were less accurate in transverse loading of anisotropic samples, these results indicate that computational modeling can assist in design of electrospun artificial tissue scaffolds. PMID:19627797
Mechanical properties of triaxially braided composites: Experimental and analytical results
NASA Technical Reports Server (NTRS)
Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.
1992-01-01
This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.
Engel, Annerose; Hijmans, Brenda S; Cerliani, Leonardo; Bangert, Marc; Nanetti, Luca; Keller, Peter E; Keysers, Christian
2014-05-01
Humans vary substantially in their ability to learn new motor skills. Here, we examined inter-individual differences in learning to play the piano, with the goal of identifying relations to structural properties of white matter fiber tracts relevant to audio-motor learning. Non-musicians (n = 18) learned to perform three short melodies on a piano keyboard in a pure audio-motor training condition (vision of their own fingers was occluded). Initial learning times ranged from 17 to 120 min (mean ± SD: 62 ± 29 min). Diffusion-weighted magnetic resonance imaging was used to derive the fractional anisotropy (FA), an index of white matter microstructural arrangement. A correlation analysis revealed that higher FA values were associated with faster learning of piano melodies. These effects were observed in the bilateral corticospinal tracts, bundles of axons relevant for the execution of voluntary movements, and the right superior longitudinal fasciculus, a tract important for audio-motor transformations. These results suggest that the speed with which novel complex audio-motor skills can be acquired may be determined by variability in structural properties of white matter fiber tracts connecting brain areas functionally relevant for audio-motor learning. Copyright © 2013 Wiley Periodicals, Inc.
Mechanical properties of triaxially braided composites: Experimental and analytical results
NASA Technical Reports Server (NTRS)
Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.
1992-01-01
The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.
Advances in SiC/SiC Composites for Aerospace Applications
NASA Technical Reports Server (NTRS)
DiCarlo, James A.
2006-01-01
In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.
DPSC colonization of functionalized 3D textiles.
Ortiz, Marine; Rosales-Ibáñez, Raúl; Pozos-Guillén, Amaury; De Bien, Charlotte; Toye, Dominique; Flores, Héctor; Grandfils, Christian
2017-05-01
Fiber scaffolds are attractive materials for mimicking, within a 3D in vitro system, any living environment in which animal cells can adhere and proliferate. In three dimensions, cells have the ability to communicate and organize into complex architectures similar to those found in their natural environments. The aim of this study was to evaluate, in terms of cell reactivity, a new in vitro cell model: dental pulp stem cells (DPSCs) in a 3D polymeric textile. Scaffolds were knitted from polyglycolic acid (PGA) or polydioxanone (PDO) fibers differing in surface roughness. To promote cell adhesion, these hydrophobic fabrics were also functionalized with either chitosan or the peptide arginine-glycine-aspartic acid (RGD). Cell behavior was examined 1, 10, and 21 days post-seeding with a LIVE/DEAD ® Kit. Confocal laser scanning microscopy (CLSM) highlighted the biocompatibility of these materials (cell survival rate: 94% to 100%). Fiber roughness was found to influence cell adhesion and viability significantly and favorably. A clear benefit of polymeric textile functionalization with chitosan or RGD was demonstrated in terms of cell adhesion and viability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 785-794, 2017. © 2016 Wiley Periodicals, Inc.
High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles.
Aboutalebi, Seyed Hamed; Jalili, Rouhollah; Esrafilzadeh, Dorna; Salari, Maryam; Gholamvand, Zahra; Aminorroaya Yamini, Sima; Konstantinov, Konstantin; Shepherd, Roderick L; Chen, Jun; Moulton, Simon E; Innis, Peter Charles; Minett, Andrew I; Razal, Joselito M; Wallace, Gordon G
2014-03-25
The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.
A Review on the Perforated Impact Energy Absorption of Kenaf Fibres Reinforced Composites
NASA Astrophysics Data System (ADS)
Ismail, Al Emran; Khalid, S. N. A.; Nor, Nik Hisyamudin Muhd
2017-10-01
This paper reviews the potential of mechanical energy absorption of natural fiber reinforced composites subjected to perforated impact. According to literature survey, several research works discussing on the impact performances on natural fiber reinforced composites are available. However, most of these composite fibers are randomly arranged. Due to high demand for sustainable materials, many researches give high attention to enhance the mechanical capability of natural fiber composites especially focused on the fiber architecture. Therefore, it is important to review the progress of impact energy absorption on woven fiber composite in order to identify the research opportunities in the future.
Self repairing composites for drone air vehicles
NASA Astrophysics Data System (ADS)
Dry, Carolyn
2015-04-01
The objective of this effort was to demonstrate the feasibility of impact-initiated delivery of repair chemicals through hollow fiber architectures embedded within graphite fiber reinforced polymer matrix composites, representative of advanced drone aircraft component material systems. Self-repairing structures through coupon and elements were demonstrated, and evaluated.
Carbon-Carbon Piston Architectures
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)
2000-01-01
An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.
Carbon-Carbon Piston Architectures
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)
1999-01-01
An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4.909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially. the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel. to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar. or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U" channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum-alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.
Fiber to the home: next generation network
NASA Astrophysics Data System (ADS)
Yang, Chengxin; Guo, Baoping
2006-07-01
Next generation networks capable of carrying converged telephone, television (TV), very high-speed internet, and very high-speed bi-directional data services (like video-on-demand (VOD), Game etc.) strategy for Fiber To The Home (FTTH) is presented. The potential market is analyzed. The barriers and some proper strategy are also discussed. Several technical problems like various powering methods, optical fiber cables, and different network architecture are discussed too.
Taylor, Andrea B; Vinyard, Christopher J
2009-12-01
Tufted capuchins (sensu lato) are renowned for their dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between C. apella (n=12) and two "untufted" capuchins (C. capucinus, n=3; C. albifrons, n=5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that tufted capuchins exhibit architectural properties of their jaw muscles that facilitate relatively large forces including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P(0)). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P(0). As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in tufted capuchins primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear to have increased jaw-muscle and bite forces without markedly compromising muscle excursion and contraction velocity. One performance advantage of this morphology is that it promotes relatively large bite forces at wide jaw gapes, which may be useful for processing large food items along the posterior dentition. We further hypothesize that this morphological pattern may have the ecological benefit of facilitating the dietary diversity seen in tufted capuchins. Lastly, the observed feeding on large objects, coupled with a jaw-muscle architecture that facilitates this behavior, raises concerns about utilizing C. apella as an extant behavioral model for hominins that might have specialized on small objects in their diets.
Reckfort, Julia; Wiese, Hendrik; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus
2015-01-01
Structural connectivity of the brain can be conceptionalized as a multiscale organization. The present study is built on 3D-Polarized Light Imaging (3D-PLI), a neuroimaging technique targeting the reconstruction of nerve fiber orientations and therefore contributing to the analysis of brain connectivity. Spatial orientations of the fibers are derived from birefringence measurements of unstained histological sections that are interpreted by means of a voxel-based analysis. This implies that a single fiber orientation vector is obtained for each voxel, which reflects the net effect of all comprised fibers. We have utilized two polarimetric setups providing an object space resolution of 1.3 μm/px (microscopic setup) and 64 μm/px (macroscopic setup) to carry out 3D-PLI and retrieve fiber orientations of the same tissue samples, but at complementary voxel sizes (i.e., scales). The present study identifies the main sources which cause a discrepancy of the measured fiber orientations observed when measuring the same sample with the two polarimetric systems. As such sources the differing optical resolutions and diverging retardances of the implemented waveplates were identified. A methodology was implemented that enables the compensation of measured different systems' responses to the same birefringent sample. This opens up new ways to conduct multiscale analysis in brains by means of 3D-PLI and to provide a reliable basis for the transition between different scales of the nerve fiber architecture. PMID:26388744
Performance Enhancement of Bidirectional TWDM-PON by Rayleigh Backscattering Mitigation
NASA Astrophysics Data System (ADS)
Elewah, Ibrahim A.; Wadie, Martina N.; Aly, Moustafa H.
2018-01-01
A bidirectional time wavelength division multiplexing-passive optical network (TWDM-PON) with a centralized light source (CLS) is designed and evaluated. TWDM-PON is the promising solution for PON future expansion and migration. The most important issue that limits optical fiber transmission length is the interferometric noise caused by Rayleigh backscattering (RB). In this study, we demonstrate a TWDM-PON architecture with subcarrier at the remote node (RN) to mitigate the RB effect. A successful transmission with 8 optical channels is achieved using wavelength division multiplexing (WDM). Each optical channel is splitted into 8 time slots to achieve TWDM. The proposed scheme is operated over 20 km bidirectional single mode fiber (SMF). The proposed system has the advantage of expanding the downstream (DS) capacity to be 160 Gb/s (8 channels×20 Gb/s) and 20 Gb/s (8 channels×2.5 Gb/s) for the upstream (US) transmission capacity. This is accomplished by a remarkable bit error rate (BER) and low complexity.
60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode
Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru
2016-01-01
A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267
Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
Acoustic emission monitoring of damage in ceramic matrix composites: Effects of weaves and feature
NASA Astrophysics Data System (ADS)
Ojard, Greg; Mordasky, Matt; Kumar, Rajesh
2018-04-01
Ceramic matrix composites (CMCs) are a class of high temperature materials with better damage tolerance properties compared to monolithic ceramics. The improved toughness is attributed to weak interface coating between the fiber and the matrix that allows for crack deflection and fiber pull-out. Thus, CMCs have gained consideration over monolithic materials for high temperature applications such as in gas turbines. The current standard fiber architecture for CMCs is a harness satin (HS) balanced weave (5HS and 8HS); however, other architectures such as uni-weave materials (tape layup) are now being considered due to fiber placement control and higher fiber volume fraction in the tensile loading direction. Engineering components require additional features in the CMC laminates, such as holes for attachments. Past work has shown that acoustic emission could differentiate the effect of changing interface conditions due to heat treatment effects. The focus of the present work is to investigate the effects of different weaves and the presence of a feature on damage behavior of CMCs as observed via acoustic emission technique. The results of the tensile testing with acoustic emission monitoring will be presented and discussed.
Architecture of the software for LAMOST fiber positioning subsystem
NASA Astrophysics Data System (ADS)
Peng, Xiaobo; Xing, Xiaozheng; Hu, Hongzhuan; Zhai, Chao; Li, Weimin
2004-09-01
The architecture of the software which controls the LAMOST fiber positioning sub-system is described. The software is composed of two parts as follows: a main control program in a computer and a unit controller program in a MCS51 single chip microcomputer ROM. And the function of the software includes: Client/Server model establishment, observation planning, collision handling, data transmission, pulse generation, CCD control, image capture and processing, and data analysis etc. Particular attention is paid to the ways in which different parts of the software can communicate. Also software techniques for multi threads, SOCKET programming, Microsoft Windows message response, and serial communications are discussed.
High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers
NASA Astrophysics Data System (ADS)
Balaswamy, V.; Arun, S.; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V. R.
2018-04-01
Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here, a simple architecture for high power, fixed and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the Ytterbium band to the eye-safe 1.5micron region. We demonstrate pump-limited output powers of over 30W in fixed and continuously wavelength tunable configurations.
NASA Astrophysics Data System (ADS)
Roh, Won B.
Photonic technologies-based computational systems are projected to be able to offer order-of-magnitude improvements in processing speed, due to their intrinsic architectural parallelism and ultrahigh switching speeds; these architectures also minimize connectors, thereby enhancing reliability, and preclude EMP vulnerability. The use of optoelectronic ICs would also extend weapons capabilities in such areas as automated target recognition, systems-state monitoring, and detection avoidance. Fiber-optics technologies have an information-carrying capacity fully five orders of magnitude greater than copper-wire-based systems; energy loss in transmission is two orders of magnitude lower, and error rates one order of magnitude lower. Attention is being given to ZrF glasses for optical fibers with unprecedentedly low scattering levels.
Receiver Architecture for 12.5 Gb/s 16-ary Pulse Position Modulation (PPM) Signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez, A J; Gagliardi, R M; Hernandez, V J
2008-07-11
PPM is a signaling scheme that enables the transmission of multiple bits per symbol [1]. It has found favor in the regime of free space optical communications ('FSO' or 'Lasercom'); however, PPM has yet to be widely applied to fiber optic-based communications. Its limitation in fiber results from the exceedingly high bandwidth requirements needed to electronically process a directly detected pulse, especially as the symbol rate increases and the pulse width correspondingly decreases. As a solution, we introduced the concept of a virtual quadrant receiver for receiving 1.25 Gb/s 4-ary PPM, where photonic processing reduced the number of required electronicmore » components [2]. In this paper, we extend these photonic process techniques to a 16-ary, 12.5 Gb/s (10 Gb/s plus 8B/10B line coding) PPM communications system for fiber optic avionics, wherein much of the receiver processing is enabled by techniques based on planar lightwave circuits (PLCs). The architecture is applicable to higher input data rates and M-ary PPM. In the following, we present the PPM encoding and decoding architectures and numerically simulated results.« less
Issues on Fabrication and Evaluation of SiC/SiC Tubes With Various Fiber Architectures
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Fox, D. S.
2004-01-01
SiC/SiC engine components, high-modulus Sylramic-iBN SiC fiber tows were used to form nine different tubular architectural preforms with 13 mm (0.5 in.) inner diameter and lengths of approx. 75 and 230 mm (approx. 3 and approx, 9 in.). The thin-walled preforms were then coated with a BN interphase and densified with a hybrid SiC matrix using nearly the same process steps previously established for slurry-cast melt-infiltrated Sylramic-iBN/BN/SiC flat panels. The as-fabricated CMC tubes were microstructurally evaluated and tested for tensile hoop and flexural behavior, and some of the tubes were also tested in a low-pressure burner rig test with a high thru-thickness thermal gradient. To date, four general tube scale-up issues have been identified: greater CVI deposits on outer wall than inner wall; increased ply thickness and reduced fiber fraction; poor test standards for accurately determining the hoop strength of a small-diameter tube; and poor hoop strength for architectures with seams or ply ends. The underlying mechanisms and possible methods for their minimization are discussed.
Fiber optic control system integration
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.; Russell, J. C.
1987-01-01
A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.
High-energy 100-ns single-frequency all-fiber laser at 1064 nm
NASA Astrophysics Data System (ADS)
Fu, Shijie; Shi, Wei; Tang, Zhao; Shi, Chaodu; Bai, Xiaolei; Sheng, Quan; Chavez-Pirson, Arturo; Peyghambarian, N.; Yao, Jianquan
2018-02-01
A high-energy, single-frequency fiber laser with long pulse duration of 100 ns has been experimentally investigated in an all-fiber architecture. Only 34-cm long heavily Yb-doped phosphate fiber was employed in power scaling stage to efficiently suppress the Stimulated Brillouin effect (SBS). In the experiment, 0.47 mJ single pulse energy was achieved in power scaling stage at the pump power of 16 W. The pre-shaped pulse was gradually broadened from 103 to 140 ns during the amplification without shape distortion.
A large-scale photonic node architecture that utilizes interconnected OXC subsystems.
Iwai, Yuto; Hasegawa, Hiroshi; Sato, Ken-ichi
2013-01-14
We propose a novel photonic node architecture that is composed of interconnected small-scale optical cross-connect subsystems. We also developed an efficient dynamic network control algorithm that complies with a restriction on the number of intra-node fibers used for subsystem interconnection. Numerical evaluations verify that the proposed architecture offers almost the same performance as the equivalent single large-scale cross-connect switch, while enabling substantial hardware scale reductions.
Cheng, Huhu; Dong, Zelin; Hu, Chuangang; Zhao, Yang; Hu, Yue; Qu, Liangti; Chen, Nan; Dai, Liming
2013-04-21
Functional graphene-based fibers are promising as new types of flexible building blocks for the construction of wearable architectures and devices. Unique one-dimensional (1D) carbon nanotubes (CNTs) and 2D graphene (CNT/G) hybrid fibers with a large surface area and high electrical conductivity have been achieved by pre-intercalating graphene fibers with Fe3O4 nanoparticles for subsequent CVD growth of CNTs. The CNT/G hybrid fibers can be further woven into textile electrodes for the construction of flexible supercapacitors with a high tolerance to the repeated bending cycles. Various other applications, such as catalysis, separation, and adsorption, can be envisioned for the CNT/G hybrid fibers.
Hybrid Structure Multichannel All-Fiber Current Sensor.
Jiang, Junzhen; Zhang, Hao; He, Youwu; Qiu, Yishen
2017-08-02
We have experimentally developed a hybrid-structure multi-channel all-fiber current sensor with ordinary silica fiber using fiber loop architecture. According to the rationale of time division multiplexing, the sensor combines parallel and serial structures. The purpose of the hybrid-structure multi-channel all-fiber current sensor is to get more information from the different measured points simultaneously. In addition, the hybrid-structure fiber current sensor exhibited a good linear response for each channel. A three-channel experiment was performed in the study and showed that the system could detect different current positions. Each channel could individually detect the current and needed a separate calibration system. Furthermore, the three channels will not affect each other.
Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity
NASA Astrophysics Data System (ADS)
Cheng, Jin; Lu, Dan-feng; Gao, Ran; Qi, Zhi-mei
2017-10-01
In this paper, we report a fiber optic microphone with a large dynamic range. The probe of microphone consists of bi-fiber Fabry-Perot cavity architecture. The wavelength of the working laser is about 1552.05nm. At this wavelength, the interference spectroscopies of these two fiber Fabry-Perot cavities have a quadrature shift. So the outputs of these two fiber Fabry-Perot sensors are orthogonal signal. By using orthogonal signal demodulation method, this microphone can output a signal of acoustic wave. Due to no relationship between output signal and the linear region on interference spectroscopy, the microphones have a large maximum acoustic pressure above 125dB.
Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung
2016-05-01
We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.
Katoh, K; Hammar, K; Smith, P J; Oldenbourg, R
1999-01-01
We have investigated the dynamic behavior of cytoskeletal fine structure in the lamellipodium of nerve growth cones using a new type of polarized light microscope (the Pol-Scope). Pol-Scope images display with exquisite resolution and definition birefringent fine structures, such as filaments and membranes, without having to treat the cell with exogenous dyes or fluorescent labels. Furthermore, the measured birefringence of protein fibers in the thin lamellipodial region can be interpreted in terms of the number of filaments in the bundles. We confirmed that birefringent fibers are actin-based using conventional fluorescence-labeling methods. By recording movies of time-lapsed Pol-Scope images, we analyzed the creation and dynamic composition of radial fibers, filopodia, and intrapodia in advancing growth cones. The strictly quantitative information available in time-lapsed Pol-Scope images confirms previously deduced behavior and provides new insight into the architectural dynamics of filamentous actin.
Biomimetic Structural Materials: Inspiration from Design and Assembly.
Yaraghi, Nicholas A; Kisailus, David
2018-04-20
Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.
Biomimetic Structural Materials: Inspiration from Design and Assembly
NASA Astrophysics Data System (ADS)
Yaraghi, Nicholas A.; Kisailus, David
2018-04-01
Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.
Khatau, Shyam B.; Bloom, Ryan J.; Bajpai, Saumendra; Razafsky, David; Zang, Shu; Giri, Anjil; Wu, Pei-Hsun; Marchand, Jorge; Celedon, Alfredo; Hale, Christopher M.; Sun, Sean X.; Hodzic, Didier; Wirtz, Denis
2012-01-01
Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles – the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions. PMID:22761994
NASA Astrophysics Data System (ADS)
Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel
2017-05-01
The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC) fibers. The comparison between the different fibers will be presented in the conference. Fiber spatial beam shaping Spatial beam shaping (top-hat profile) is mandatory to optimize the energy extraction in free-space amplifier. It would be very interesting to obtain a flat-top beam in an all-fiber way. Accordingly, we have design and realize a large mode area single-mode top-hat fiber able to deliver a coherent top-hat beam. This fiber, with larger MFD adapted to mJ pulse, will be implemented to perform the spatial beam shaping from coherent Gaussian profile to coherent top-hat intensity profile in the mJ range. In conclusion, we will present an all-fiber MOPA built to fulfil stringent requirements for large scale laser facility seeding. We have already achieved 750 µJ with 10 ns square pulses. Transport of high peak power pulses over 17 m in a hollow-core fiber has been achieved and points out FM to AM conversion management issues. Moreover, spatial beam shaping is obtained by using specifically designed single-mode fibers. Various optimizations are currently under progress and will be presented.
Liu, Kai; Zhang, Han; Xing, Ruirui; Zou, Qianli; Yan, Xuehai
2017-12-26
Biomimetic organization provides a promising strategy to develop functional materials and understand biological processes. However, how to mimic complex biological systems using simple biomolecular units remains a great challenge. Herein, we design and fabricate a biomimetic cyanobacteria model based on self-integration of small bioinspired molecules, including amphiphilic amino acid, 3,4-dihydroxyphenylalanine (DOPA), and metalloporphyrin and cobalt oxide nanoparticles (Co 3 O 4 NPs), with the assistance of chemical conjugation and molecular self-assembly. The assembled amino acid fiber can be modified by DOPA to form covalently bound DOPA melanin containing hydroxyl and quinone species via Schiff base reaction. The adhering template can further tune the self-assembly of metalloporphyrin and Co 3 O 4 NPs into J-aggregation and dispersive distribution, respectively, mainly via coordination binding. Metalloporphyrin molecules in the resulting hybrid fibers capture light; quinone species accept the excited electrons, and Co 3 O 4 NPs catalyze water oxidation. Thus, the essential components of the photosystem-II protein complex in cyanobacteria are simplified and engineered into a simple framework, still retaining a similar photosynthetic mechanism. In addition, this architecture leads to efficient coupling of antenna, quinone-type reaction center, and photocatalyst, which increases the flux of light energy from antenna to reaction center for charge separation, resulting in enhanced oxygen evolution rate with excellent sustainability.
NDE standards for high temperature materials
NASA Technical Reports Server (NTRS)
Vary, Alex
1991-01-01
High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.
Gokhin, David S.
2011-01-01
The sarcoplasmic reticulum (SR) serves as the Ca2+ reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γcyto-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γcyto-actin and Tmod3 defined an SR microdomain that was distinct from another Z line–flanking SR microdomain containing Tmod1 and Tmod4. The γcyto-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γcyto-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3–γcyto-actin–sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca2+ release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γcyto-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils. PMID:21727195
Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias
2014-06-01
The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.
Common path endoscopic probes for optical coherence tomography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.
2017-02-01
Background: Dispersion imbalance and polarization mismatch between the reference and sample arm signals can lead to image quality degradation in optical coherence tomography (OCT). One approach to reduce these image artifacts is to employ a common-path geometry in fiber-based probes. In this work, we report an 800 um diameter all-fiber common-path monolithic probe for coronary artery imaging where the reference signal is generated using an inline fiber partial reflector. Methods: Our common-path probe was designed for swept-source based Fourier domain OCT at 1310 nm wavelength. A face of a coreless fiber was coated with gold and spliced to a standard SMF-28 single mode fiber creating an inline partial reflector, which acted as a reference surface. The other face of the coreless fiber was shaped into a ball lens for focusing. The optical elements were assembled within a 560 µm diameter drive shaft, which was attached to a rotary junction. The drive shaft was placed inside a transparent sheath having an outer diameter of 800 µm. Results: With a source input power of 30mW, the inline common-path probe achieved a sensitivity of 104 dB. Images of human finger skin showed the characteristic layers of skin as well as features such as sweat ducts. Images of coronary arteries ex vivo obtained with this probe enabled visualization of the characteristic architectural morphology of the normal artery wall and known features of atherosclerotic plaque. Conclusion: In this work, we have demonstrated a common path OCT probe for cardiovascular imaging. The probe is easy to fabricate, will reduce system complexity and overall cost. We believe that this design will be helpful in endoscopic applications that require high resolution and a compact form factor.
Unique expression of cytoskeletal proteins in human soft palate muscles.
Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per
2016-03-01
The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.
Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias
2014-01-01
The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as Magnetic Resonance (MR) Diffusion Tensor Imaging or Ultrasound Elastic Tensor Imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in clinical setting. In this study, we propose a new technique, the Backscatter Tensor Imaging (BTI) which enables determining the fibers directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally due to the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotative phased-array probes or 2-D matrix probes for non-invasive evaluation of myocardial fibers. PMID:24859662
From supramolecular polymers to multi-component biomaterials.
Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W
2017-10-30
The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.
Pal, Siladitya; Tsamis, Alkiviadis; Pasta, Salvatore; D'Amore, Antonio; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan
2014-01-01
Aortic dissection (AoD) is a common condition that often leads to life-threatening cardiovaular emergency. From a biomechanics viewpoint, AoD involves failure of load-bearing microstructural components of the aortic wall, mainly elastin and collagen fibers. Delamination strength of the aortic wall depends on the load-bearing capacity and local micro-architecture of these fibers, which may vary with age, disease and aortic location. Therefore, quantifying the role of fiber micro-architecture on the delamination strength of the aortic wall may lead to improved understanding of AoD. We present an experimentally-driven modeling paradigm towards this goal. Specifically, we utilize collagen fiber microarchitecture, obtained in a parallel study from multi-photon microopy, in a predictive mechanistic framework to characterize the delamination strength. We then validate our model against peel test experiments on human aortic strips and utilize the model to predict the delamination strength of separate aortic strips and compare with experimental findings. We observe that the number density and failure energy of the radially-running collagen fibers control the peel strength. Furthermore, our model suggests that the lower delamination strength previously found for the circumferential direction in human aorta is related to a lower number density of radially-running collagen fibers in that direction. Our model sets the stage for an expanded future study that could predict AoD propagation in patient-specific aortic geometries and better understand factors that may influence propensity for occurrence. PMID:24484644
Xue, Cao; Kwek, Kenneth Y C; Chan, Jerry K Y; Chen, Qingfeng; Lim, Mayasari
2014-07-01
The bone marrow microenvironment plays an integral role in the regulation of hematopoiesis. Residing stromal cells and the extracellular matrix in the bone marrow microenvironment provide biological signals that control hematopoietic stem cell (HSC) function. In this study, we developed a bio-mimetic co-culture platform using the hollow fiber bioreactor (HFBR) for ex vivo expansion of HSCs. We evaluated the efficacy of such a platform in comparison to standard cultures performed on tissue culture polystyrene (TCP), using a human stromal cell line (HS-5) as stromal support, co-cultured with lineage-depleted human cord blood cells in serum-free medium supplemented with a cytokine cocktail. Our results showed that the performance of the HFBR in supporting total cell and CD34(+) progenitor cell expansion was comparable to that of cultures on TCP. Cells harvested from the HFBR had a higher clonogenic ability. The performance of ex vivo-expanded cells from the HFBR in hematopoietic reconstitution in humanized mice was comparable to that of the TCP control. Scanning electron microscopy revealed that stroma cell growth inside the HFBR created a three-dimensional cell matrix architecture. These findings demonstrate the feasibility of utilizing the HFBR for creating a complex cell matrix architecture, which may provide good in vitro mimicry of the bone marrow, supporting large-scale expansion of HSCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thunes, James R.; Pal, Siladitya; Fortunato, Ronald N.; Phillippi, Julie A.; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan
2016-01-01
Incorporation of collagen structural information into the study of biomechanical behavior of ascending thoracic aortic (ATA) wall tissue should provide better insight into the pathophysiology of ATA. Structurally motivated constitutive models that include fiber dispersion and recruitment can successfully capture overall mechanical response of the arterial wall tissue. However, these models cannot examine local microarchitectural features of the collagen network, such as the effect of fiber disruptions and interaction between fibrous and non-fibrous components, which may influence emergent biomechanical properties of the tissue. Motivated by this need, we developed a finite element based three-dimensional structural model of the lamellar units of the ATA media that directly incorporates the collagen fiber microarchitecture. The fiber architecture was computer generated utilizing network features, namely fiber orientation distribution, intersection density and areal concentration, obtained from image analysis of multiphoton microscopy images taken from human aneurysmal ascending thoracic aortic media specimens with bicuspid aortic valve (BAV) phenotype. Our model reproduces the typical J-shaped constitutive response of the aortic wall tissue. We found that the stress state in the non-fibrous matrix was homogeneous until the collagen fibers were recruited, but became highly heterogeneous after that event. The degree of heterogeneity was dependent upon local network architecture with high stresses observed near disrupted fibers. The magnitude of non-fibrous matrix stress at higher stretch levels was negatively correlated with local fiber density. The localized stress concentrations, elucidated by this model, may be a factor in the degenerative changes in aneurysmal ATA tissue. PMID:27113538
Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.
Monn, Michael A; Kesari, Haneesh
2017-12-01
The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Patterning of polymer nanofiber meshes by electrospinning for biomedical applications
Neves, Nuno M; Campos, Rui; Pedro, Adriano; Cunha, José; Macedo, Francisco; Reis, Rui L
2007-01-01
The end-product of the electrospinning process is typically a randomly aligned fiber mesh or membrane. This is a result of the electric field generated between the drop of polymer solution at the needle and the collector. The developed electric field causes the stretching of the fibers and their random deposition. By judicious selection of the collector architecture, it is thus possible to develop other morphologies on the nanofiber meshes. The aim of this work is to prepare fiber meshes using various patterned collectors with specific dimensions and designs and to evaluate how those patterns can affect the properties of the meshes relevant to biomedical applications. This study aims at verifying whether it is possible to control the architecture of the fiber meshes by tailoring the geometry of the collector. Three different metallic collector topographies are used to test this hypothesis. Electrospun nonwoven patterned meshes of polyethylene oxide (PEO) and poly(ε-capro-lactone) (PCL) were successfully prepared. Those fiber meshes were analyzed by scanning electron microscopy (SEM). Both mechanical properties of the meshes and cell contacting experiments were performed to test the effect of the produced patterns over the properties of the meshes relevant for biomedical applications. The present study will evaluate cell adhesion sensitivity to the patterns generated and the effect of those patterns on the tensile properties of the fiber meshes. PMID:18019842
Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen
2017-01-01
Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes.
Hendrikson, Wim J.; Deegan, Anthony J.; Yang, Ying; van Blitterswijk, Clemens A.; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen
2017-01-01
Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress–strain distributions throughout the scaffold depend on the scaffold’s internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes. PMID:28239606
High-power, fixed, and tunable wavelength, grating-free cascaded Raman fiber lasers.
Balaswamy, V; Arun, S; Aparanji, Santosh; Choudhury, Vishal; Supradeepa, V R
2018-04-01
Cascaded Raman lasers enable high powers at various wavelength bands inaccessible with conventional rare-earth-doped lasers. The input and output wavelengths of conventional implementations are fixed by the constituent fiber gratings necessary for cascaded Raman conversion. We demonstrate here a simple architecture for high-power, fixed, and wavelength tunable, grating-free, cascaded Raman conversion between different wavelength bands. The architecture is based on the recently proposed distributed feedback Raman lasers. Here, we implement a module which converts the ytterbium band to the eye-safe 1.5 μm region. We demonstrate pump-limited output powers of over 30 W in fixed and continuously wavelength tunable configurations.
A novel survivable architecture for hybrid WDM/TDM passive optical networks
NASA Astrophysics Data System (ADS)
Qiu, Yang; Chan, Chun-Kit
2014-02-01
A novel tree-ring survivable architecture, which consists of an organization of a wavelength-division-multiplexing (WDM) tree from optical line terminal (OLT) to remote nodes (RNs) and a time division multiplexing (TDM) ring in each RN, is proposed for hybrid WDM/TDM passive optical networks. By utilizing the cyclic property of arrayed waveguide gratings (AWGs) and the single-ring topology among a group of optical network units (ONUs) in the remote node, not only the feeder and distribution fibers, but also any fiber failures in the RN rings are protected simultaneously. Five-Gbit/s transmissions under both normal working and protection modes were experimentally demonstrated and a traffic restoration time was successfully measured.
Architectural Considerations of Fiber-Radio Millimeter-Wave Wireless Access Systems
NASA Astrophysics Data System (ADS)
Kitayama, Ken-Ichi
The architecture of fiber-radio mm-wave wireless access systems critically depends upon the optical mm-wave generation and transport techniques. Four optical mm-wave generation and transport techniques: 1) optical self-heterodyning, 2) external modulation, 3) up- and downconversion, and 4) optical transceiver, will be assessed. From the technical viewpoints, their advantages and disadvantages are discussed. The economical assessment, focusing on the cost of a base station BS ( ), will suggest that the optical transceiver looks the most promising in the long run, but in the near future, however, the external modulation will be cost-effective. The experimental results of 60 GHz testbeds using the external modulation will support the conclusion.
Optical fiber cabling technologies for flexible access network
NASA Astrophysics Data System (ADS)
Tanji, Hisashi
2008-07-01
Fiber-to-the-home (FTTH) outside plant infrastructure should be so designed and constructed as to flexibly deal with increasing subscribers and system evolution to be expected in the future, taking minimization of total cost (CAPEX and OPEX) into consideration. With this in mind, fiber access architectures are reviewed and key technologies on optical fiber and cable for supporting flexible access network are presented. Low loss over wide wavelength (low water peak) and bend-insensitive single mode fiber is a future proof solution. Enhanced separable ribbon facilitates mid-span access to individual fibers in a cable installed, improving fiber utilizing efficiency and flexibility of distribution design. It also contributes to an excellent low PMD characteristic which could be required for video RF overlay system or high capacity long reach metro-access convergence network in the future. Bend-insensitive fiber based cabling technique including field installable connector greatly improves fiber/cable handling in installation and maintenance work.
Fracture toughness testing of polymer matrix composites
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
1992-01-01
A review of the interlaminar fracture indicates that a standard specimen geometry is needed to obtain consistent fracture toughness measurements in polymer matrix composites. In general, the variability of measured toughness values increases as the toughness of the material increases. This variability could be caused by incorrect sizing of test specimens and/or inconsistent data reduction procedures. A standard data reduction procedure is therefore needed as well, particularly for the tougher materials. Little work has been reported on the effects of fiber orientation, fiber architecture, fiber surface treatment or interlaminar fracture toughness, and the mechanisms by which the fibers increase fracture toughness are not well understood. The little data that is available indicates that woven fiber reinforcement and fiber sizings can significantly increase interlaminar fracture toughness.
Honeywell optical investigations on FLASH program
NASA Astrophysics Data System (ADS)
O'Rourke, Ken; Peterson, Eric; Yount, Larry
1995-05-01
The increasing performance and reduction of life cycle cost requirements placed on commercial and military transport aircraft are resulting in more complex, highly integrated aircraft control and management systems. The use of fiber optic data transmission media can make significant contributions in achieving these performance and cost goals. The Honeywell portion of Task 2A on the Fly-by-Light Advanced System Hardware (FLASH) program is evaluating a Primary Flight Control System (PFCS) using pilot and copilot inputs from Active Hand Controllers (AHC) which are optically linked to the primary flight Control Computers (PFCC). Customer involvement is an important element of the Task 2A activity. Establishing customer requirements and perspectives on productization of systems developed under FLASH are key to future product success. The Honeywell elements of the PFCS demonstrator provide a command path that is optically interfaced from crew inputs to commands of distributed, smart actuation subsystems commands. Optical communication architectures are implemented using several protocols including the new AS-1773A 20 Mbps data bus standard. The interconnecting fiber optic cable plant is provided by our Task 1A teammate McDonnell Douglas Aerospace (West). Fiber optic cable plant fabrication uses processed, tools and materials reflecting necessary advances in manufacturing required to make fly-by-light avionics systems marketable.
Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori
2015-08-04
Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.
NASA Astrophysics Data System (ADS)
Jansen, Florian; Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk
2018-02-01
In this work we present an ultrafast laser system distinguished by its industry-ready reliability and its outstanding flexibility that allows for real-time process-inherent parameter. The robust system design and linear amplifier architecture make the all-fiber series TruMicro 2000 ideally suited for passive coupling to hollow-core delivery fibers. In addition to details on the laser system itself, various application examples are shown, including welding of different glasses and ablation of silicon carbide and silicon.
Watt-level single-frequency tunable neodymium MOPA fiber laser operating at 915-937 nm
NASA Astrophysics Data System (ADS)
Rota-Rodrigo, S.; Gouhier, B.; Laroche, M.; Zhao, J.; Canuel, B.; Bertoldi, A.; Bouyer, P.; Traynor, N.; Cadier, B.; Robin, T.; Santarelli, G.
2018-02-01
We have developed a Watt-level single-frequency tunable fiber laser in the 915-937 nm spectral window. The laser is based on a neodymium-doped fiber master oscillator power amplifier architecture, with two amplification stages using a 20 mW extended cavity diode laser as seed. The system output power is higher than 2 W from 921 to 933 nm, with a stability better than 1.4% and a low relative intensity noise.
NASA Astrophysics Data System (ADS)
King, Bruce H.
Fibrous-monolithic ceramics are a class of material with many similarities to layered ceramic composites. Like layered composites, fibrous monoliths depend on a weak interphase to promote crack deflection and energy absorption, avoiding catastrophic failure. However, in a fibrous monolith, the interphase surrounds fiber-like "cells" of the strong phase, forming a continuous, 2-dimensional honeycomb network. In the most simple architecture, all cells are aligned unidirectionally. More complex architectures are easily produced by varying the orientation of successive layers relative to each other. The Young's modulus of the unidirectional architecture is predicted accurately along principal axes using a "brick" model, while the modulus at angles between 0sp° and 90sp° is predicted using laminate theory. Laminate theory may also be used to accurately predict the Young's modulus of multidirectional architectures such as a cross-ply 0sp°/90sp° and a quasi-isotropic 0sp°/{±}45sp°/90sp°. Unidirectional fibrous monolithic ceramics are linear elastic in flexure until the first major failure event. The flexural strength of the unidirectional architecture tested at orientations between 0sp° and 90sp° is observed to fall into three distinct regions. Between 0sp° and 10sp° the strength is a constant 450 MPa, but between 10sp° and 45sp°, it gradually drops to 80 MPa. Above 45sp° the strength remains essentially constant. Between 0sp° and 30sp°, the strength is accurately predicted using the Maximum Stress theory. Above 30sp°, the strength is predicted using the Tsai-Hill model. The multidirectional architectures exhibit nonlinearity in flexural loading prior to the peak stress. Cyclic loading experiments indicate that this nonlinearity is a result-of microcracking in the boron nitride cell boundaries of the off-axis layers. The cross-ply architecture exhibits a strength of 334 ± 35 MPa, while the quasi-isotropic has a strength of 255 ± 22 MPa. The models developed to describe the unidirectional architecture may be extended to predict upper and lower bounds on the strength of multidirectional architectures.
Vittori, Miloš; Srot, Vesna; Žagar, Kristina; Bussmann, Birgit; van Aken, Peter A; Čeh, Miran; Štrus, Jasna
2016-08-01
Skeletal elements that are exposed to heavy mechanical loads may provide important insights into the evolutionary solutions to mechanical challenges. We analyzed the microscopic architecture of dactylus claws in the woodlice Porcellio scaber and correlated these observations with analyses of the claws' mineral composition with energy dispersive X-ray spectrometry (EDX), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED). Extraordinarily, amorphous calcium phosphate is the predominant mineral in the claw endocuticle. Unlike the strongly calcified exocuticle of the dactylus base, the claw exocuticle is devoid of mineral and is highly brominated. The architecture of the dactylus claw cuticle is drastically different from that of other parts of the exoskeleton. In contrast to the quasi-isotropic structure with chitin-protein fibers oriented in multiple directions, characteristic of the arthropod exoskeleton, the chitin-protein fibers and mineral components in the endocuticle of P. scaber claws are exclusively axially oriented. Taken together, these characteristics suggest that the claw cuticle is highly structurally anisotropic and fracture resistant and can be explained as adaptations to predominant axial loading of the thin, elongated claws. The nanoscale architecture of the isopod claw may inspire technological solutions in the design of durable machine elements subjected to heavy loading and wear. Copyright © 2016 Elsevier Inc. All rights reserved.
Fiber Access Networks: Reliability Analysis and Swedish Broadband Market
NASA Astrophysics Data System (ADS)
Wosinska, Lena; Chen, Jiajia; Larsen, Claus Popp
Fiber access network architectures such as active optical networks (AONs) and passive optical networks (PONs) have been developed to support the growing bandwidth demand. Whereas particularly Swedish operators prefer AON, this may not be the case for operators in other countries. The choice depends on a combination of technical requirements, practical constraints, business models, and cost. Due to the increasing importance of reliable access to the network services, connection availability is becoming one of the most crucial issues for access networks, which should be reflected in the network owner's architecture decision. In many cases protection against failures is realized by adding backup resources. However, there is a trade off between the cost of protection and the level of service reliability since improving reliability performance by duplication of network resources (and capital expenditures CAPEX) may be too expensive. In this paper we present the evolution of fiber access networks and compare reliability performance in relation to investment and management cost for some representative cases. We consider both standard and novel architectures for deployment in both sparsely and densely populated areas. While some recent works focused on PON protection schemes with reduced CAPEX the current and future effort should be put on minimizing the operational expenditures (OPEX) during the access network lifetime.
Method for the preparation of carbon fiber from polyolefin fiber precursor
Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori
2017-11-28
Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.
Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M
2009-06-01
Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.
Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.
2009-01-01
Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040
Three-dimensional study of pectoralis major muscle and tendon architecture.
Fung, Lillia; Wong, Brian; Ravichandiran, Kajeandra; Agur, Anne; Rindlisbacher, Tim; Elmaraghy, Amr
2009-05-01
A thorough understanding of the normal structural anatomy of the pectoralis major (PM) is of paramount importance in the planning of PM tendon transfers or repairs following traumatic PM tears. However, there is little consensus regarding the complex musculotendinous architecture of the PM in the anatomic or surgical literature. The purpose of this study is to model and quantify the three-dimensional architecture of the pectoralis muscle and tendon. Eleven formalin embalmed cadaveric specimens were examined: five (2M/3F) were serially dissected, digitized, and modeled in 3D using Autodesk Maya; six (4M/2F) were dissected and photographed. The PM tendon consisted of longer anterior and shorter posterior layers that were continuous inferiorly. The muscle belly consisted of an architecturally uniform clavicular head (CH) and a segmented sternal head (SH) with 6-7 segments. The most inferior SH segment in all specimens was found to fold anteriorly forming a trough that cradled the inferior aspect of the adjacent superior segment. No twisting of either the PM muscle or tendon was noted. Within the CH, the fiber bundle lengths (FBL) were found to increase from superior to inferior, whereas the mean FBLs of SH were greatest in segments 3-5 found centrally. The mean lateral pennation angle was greater in the CH (29.4 +/- 6.9 degrees ) than in the SH (20.6 +/- 2.7 degrees ). The application of these findings could form the basis of future studies to optimize surgical planning and functional recovery of repair/reconstruction procedures.
Dussaud, Anne; Fieschi-Corso, Lara
2009-01-01
It is well established that silicones alter hair surface properties and that silicones have a significant impact on the macroscopic behavior of hair assembly, such as visual appearance, combing performance and manageability of the hair. In order to fine-tune the chemistry of functionlized silicones for specific consumer benefits and hair types, we investigated the influence of silicones on hair fiber-fiber interactions and their correlation to hair volume. The incline plane fiber loop method, implemented with a high-precision motorized rotary stage, was used to quantify the fiber-fiber interactions. Low load static friction was studied as a function of polymer molecular weight, dose and chemical architecture. This information was related to the macroscopic behavior of hair assembly, using virgin curly hair in high humidity.
The architecture of a modern military health information system.
Mukherji, Raj J; Egyhazy, Csaba J
2004-06-01
This article describes a melding of a government-sponsored architecture for complex systems with open systems engineering architecture developed by the Institute for Electrical and Electronics Engineers (IEEE). Our experience in using these two architectures in building a complex healthcare system is described in this paper. The work described shows that it is possible to combine these two architectural frameworks in describing the systems, operational, and technical views of a complex automation system. The advantage in combining the two architectural frameworks lies in the simplicity of implementation and ease of understanding of automation system architectural elements by medical professionals.
D'Arceuil, Helen; Liu, Christina; Levitt, Pat; Thompson, Barbara; Kosofsky, Barry; de Crespigny, Alex
2008-01-01
Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies. Copyright 2007 S. Karger AG, Basel.
Hybridized Thermoplastic Aramids: Enabling Material Technology For Future Force Headgear
2006-11-01
keeping the complete helmet weight the same. Design Material Rolled steel Hadfield Steel Kevlar 29/PVB Phenolic Kevlar 129/PVB...Material Rolled steel Hadfield Steel Kevlar 29/PVB Phenolic Kevlar 129/PVB phenolic Thermoplastic aramid Twaron/PVB phenolic ...Deflection RESULTS Improved Fiber, Fiber Architecture, and Matrix Materials Enable Performance Enhancement PASGT: 19 Ply S735 Kevlar with PVB Phenolic
Li, Longbiao
2016-01-01
In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS) criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture. PMID:28773332
Maximizing commonality between military and general aviation fly-by-light helicopter system designs
NASA Astrophysics Data System (ADS)
Enns, Russell; Mossman, David C.
1995-05-01
In the face of shrinking defense budgets, survival of the United States rotorcraft industry is becoming increasingly dependent on increased sales in a highly competitive civil helicopter market. As a result, only the most competitive rotorcraft manufacturers are likely to survive. A key ingredient in improving our competitive position is the ability to produce more versatile, high performance, high quality, and low cost of ownership helicopters. Fiber optic technology offers a path of achieving these objectives. Also, adopting common components and architectures for different helicopter models (while maintaining each models' uniqueness) will further decrease design and production costs. Funds saved (or generated) by exploiting this commonality can be applied to R&D used to further improve the product. In this paper, we define a fiber optics based avionics architecture which provides the pilot a fly-by-light / digital flight control system which can be implemented in both civilian and military helicopters. We then discuss the advantages of such an architecture.
Database of Mechanical Properties of Textile Composites
NASA Technical Reports Server (NTRS)
Delbrey, Jerry
1996-01-01
This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.
NASA Astrophysics Data System (ADS)
Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan
2018-02-01
An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.
Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent
2017-09-01
Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20 dB). A measured coupling efficiency of -2.7 dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.
High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Prakash, Roopa; Supradeepa, V. R.
2018-04-01
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power Ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm(>1 octave) from 880-1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system
Backus, Sterling; Durfee, Charles; Lemons, Randy; ...
2017-02-10
Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less
Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, Sterling; Durfee, Charles; Lemons, Randy
Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less
Fabrication and photoluminescence properties of graphite fiber/ZnO nanorod core-shell structures.
Liu, Xianbin; Du, Hejun; Liu, Bo; Wang, Jianxiong; Sun, Xiao Wei; Sun, Handong
2011-08-01
Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.
NASA Astrophysics Data System (ADS)
Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho
2018-01-01
Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.
Gemballa, Sven; Hagen, Katja
2004-01-01
Recent studies have revealed the 3D morphology and collagen fiber architecture of myosepta in teleostome fishes. Here we present the first data set on the myoseptal structure of a representative of the chondrichthyan clade. We investigate the series of myosepta in the ratfish Chimaera monstrosa (Holocephali) from the anterior to the posterior body using microdissections of cleared and stained specimens, polarized light microscopy of excised myosepta, and histology. The features of the myoseptal system of Chimaera are compared to data from closely related vertebrate groups and are mapped onto a phylogenetic tree to further clarify the characteristics of the myoseptal series in the gnathostome ancestor. The 3D morphology and collagen fiber architecture of the myoseptal series in C. monstrosa resembles that of Teleostomi (Actinopterygii+Sarcopterygii) with regard to several features. Our comparative analysis reveals that some of them have evolved in the gnathostome stem lineage. (1) A series of epineural and epaxial lateral tendons (LTs) along the whole body, and a series of epipleural and hypaxial LTs in the postanal region evolved in the gnathostome stem lineage. (2) The LTs increase in length towards the posterior body (three-fold in Chimaera). Data on Chimaera and some comparative data on actinopterygian fishes indicate that LTs also increase in thickness towards the posterior body, but further data are necessary to test whether this holds true generally. (3) Another conspicuous apomorphic gnathostome feature is represented by multi-layer structures of myosepta. These are formed along the vertebral column by converging medial regions of successive sloping parts of myosepta. (4) The dorsalmost and ventralmost flanking parts of myosepta bear a set of mediolaterally oriented collagen fibers that are present in all gnathostomes but are lacking in outgroups. Preanal hypaxial myosepta are clearly different from epaxial myosepta and postanal hypaxial myosepta in terms of their collagen fiber architecture. In Chimaera, preanal hypaxial myosepta consist of an array of mediolaterally oriented collagen fibers closely resembling the condition in other gnathostome groups and in petromyzontids. Only one series of tendons, the myorhabdoid tendons of the flanking parts of myosepta, have evolved in the stem lineage of Myopterygii (Gnathostomata+Petromyzontida). Similar to LTs, the tendons of this series also increase in length towards the posterior body. In combination with other studies, the present study provides a framework for the design of morphologically based experiments and modeling to further address the function of myosepta and myoseptal tendons in gnathostomes.
Flattening of Caribbean coral reefs: region-wide declines in architectural complexity
Alvarez-Filip, Lorenzo; Dulvy, Nicholas K.; Gill, Jennifer A.; Côté, Isabelle M.; Watkinson, Andrew R.
2009-01-01
Coral reefs are rich in biodiversity, in large part because their highly complex architecture provides shelter and resources for a wide range of organisms. Recent rapid declines in hard coral cover have occurred across the Caribbean region, but the concomitant consequences for reef architecture have not been quantified on a large scale to date. We provide, to our knowledge, the first region-wide analysis of changes in reef architectural complexity, using nearly 500 surveys across 200 reefs, between 1969 and 2008. The architectural complexity of Caribbean reefs has declined nonlinearly with the near disappearance of the most complex reefs over the last 40 years. The flattening of Caribbean reefs was apparent by the early 1980s, followed by a period of stasis between 1985 and 1998 and then a resumption of the decline in complexity to the present. Rates of loss are similar on shallow (<6 m), mid-water (6–20 m) and deep (>20 m) reefs and are consistent across all five subregions. The temporal pattern of declining architecture coincides with key events in recent Caribbean ecological history: the loss of structurally complex Acropora corals, the mass mortality of the grazing urchin Diadema antillarum and the 1998 El Nino Southern Oscillation-induced worldwide coral bleaching event. The consistently low estimates of current architectural complexity suggest regional-scale degradation and homogenization of reef structure. The widespread loss of architectural complexity is likely to have serious consequences for reef biodiversity, ecosystem functioning and associated environmental services. PMID:19515663
Optical sensors and multiplexing for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Time division multiplexing of spectral modulation fiber optic sensors for aircraft engine control is presented. The paper addresses the architectural properties, the accuracy, the benefits and problems of different type of sources, the spectral stability and update times using these sources, the size, weight, and power issues, and finally the technology needs regarding FADEC mountability. The fiber optic sensors include temperature, pressure, and position spectral modulation sensors.
Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology
NASA Astrophysics Data System (ADS)
So, Christopher R.; Fears, Kenan P.; Leary, Dagmar H.; Scancella, Jenifer M.; Wang, Zheng; Liu, Jinny L.; Orihuela, Beatriz; Rittschof, Dan; Spillmann, Christopher M.; Wahl, Kathryn J.
2016-11-01
Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.
Nanostructured sapphire optical fiber for sensing in harsh environments
NASA Astrophysics Data System (ADS)
Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry
2017-05-01
We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.
The collagenic architecture of human dura mater.
Protasoni, Marina; Sangiorgi, Simone; Cividini, Andrea; Culuvaris, Gloria Tiffany; Tomei, Giustino; Dell'Orbo, Carlo; Raspanti, Mario; Balbi, Sergio; Reguzzoni, Marcella
2011-06-01
Human dura mater is the most external meningeal sheet surrounding the CNS. It provides an efficient protection to intracranial structures and represents the most important site for CSF turnover. Its intrinsic architecture is made up of fibrous tissue including collagenic and elastic fibers that guarantee the maintenance of its biophysical features. The recent technical advances in the repair of dural defects have allowed for the creation of many synthetic and biological grafts. However, no detailed studies on the 3D microscopic disposition of collagenic fibers in dura mater are available. The authors report on the collagenic 3D architecture of normal dura mater highlighting the orientation, disposition in 3 dimensions, and shape of the collagen fibers with respect to the observed layer. Thirty-two dura mater specimens were collected during cranial decompressive surgical procedures, fixed in 2.5% Karnovsky solution, and digested in 1 N NaOH solution. After a routine procedure, the specimens were observed using a scanning electron microscope. The authors distinguished the following 5 layers in the fibrous dura mater of varying thicknesses, orientation, and structures: bone surface, external median, vascular, internal median, and arachnoid layers. The description of the ultrastructural 3D organization of the different layers of dura mater will give us more information for the creation of synthetic grafts that are as similar as possible to normal dura mater. This description will be also related to the study of the neoplastic invasion.
Computer Sciences and Data Systems, volume 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics addressed include: data storage; information network architecture; VHSIC technology; fiber optics; laser applications; distributed processing; spaceborne optical disk controller; massively parallel processors; and advanced digital SAR processors.
NASA Astrophysics Data System (ADS)
Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos
2014-12-01
The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).
Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex
Wolle, Daniel; Cleard, Fabienne; Aoki, Tsutomu; Deshpande, Girish; Karch, Francois
2015-01-01
Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C. PMID:26303531
Effects of aging on the architecture of the ileocecal junction in rats
de Brito, Maria Cícera; Chopard, Renato Paulo; Cury, Diego Pulzatto; Watanabe, Ii Sei; Mendes, Cristina Eusébio; Castelucci, Patricia
2016-01-01
AIM: To evaluate the structural organization of the elastic and collagen fibers in the region of the ileocecal transition in 30 young and old male Wistar rats. METHODS: Histology, immunohistochemistry (IHC), transmission electron microscopy and scanning electron microscopy were employed in this study. The results demonstrated that there was a demarcation of the ileocecal region between the ileum and the cecum in both groups. RESULTS: The connective tissue fibers had different distribution patterns in the two groups. IHC revealed the presence of nitric oxide synthase, enteric neurons and smooth muscle fibers in the ileocecal junctions (ICJs) of both groups. Compared to the young group, the elderly group exhibited an increase in collagen type I fibers, a decrease in collagen type III fibers, a decreased linear density of oxytalan elastic fibers, and a greater linear density of elaunin and mature elastic fibers. CONCLUSION: The results revealed changes in the patterns of distribution of collagen and elastic fibers that may lead to a possible decrease in ICJ functionality. PMID:27602243
Coral identity underpins architectural complexity on Caribbean reefs.
Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A
2011-09-01
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.
Fiber optic controls for aircraft engines - Issues and implications
NASA Technical Reports Server (NTRS)
Dasgupta, Samhita; Poppel, Gary L.; Anderson, William P.
1991-01-01
Some of the issues involved with the application of fiber-optic controls for aircraft engines in the harsh operating environment are addressed, with emphasis on fiber-optic temperature, pressure, position, and speed sensors. Criteria are established to evaluate the optical modulation technique, the sensor/control unit interconnection, and the electrooptic architecture. Single mode and polarization dependent sensor types, sensors which depend on the reflection and/or transmission of light through the engine environment, and intensity-based analog sensors are eliminated as a possible candidate for engine implementation. Fiber-optic harnesses tested for their optical integrity, temperature stability, and mechanical strength, exhibit a capacity to meet mechanical strength requirements and still gain a significant reduction in cable weight.
Arun, S; Choudhury, Vishal; Balaswamy, V; Prakash, Roopa; Supradeepa, V R
2018-04-02
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm (>1 octave) from 880 to 1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Weiss, Christian; Zoubir, Abdelhak M
2017-05-01
We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a preprocessing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.
Ultrashort pulsed laser technology development program
NASA Astrophysics Data System (ADS)
Manke, Gerald C.
2014-10-01
The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.
Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.
Cheney, Jorn A; Allen, Justine J; Swartz, Sharon M
2017-04-01
Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross-polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the constituents of the skin of the wing likely plays a key role in shaping wings during flight. © 2017 Anatomical Society.
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-28
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young
2016-04-18
Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-01-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296
Effect of angle-ply orientation on compression strength of composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeTeresa, S J; Hoppel, C P
1999-03-01
An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both themore » highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.« less
Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires.
Cao, Zherui; Wang, Ranran; He, Tengyu; Xu, Fangfang; Sun, Jing
2018-04-25
As an important subfield of flexible electronics, conductive fibers have been an active area of research. The interfacial interaction between nanostructured conductive materials with elastic substrates plays a vital role in the electromechanical performance of conductive fibers. However, the underlying mechanism has seldom been investigated. Here, we propose a fabricating strategy for a silver nanowire (Ag NW)/polyurethane composite fiber with a sheath-core architecture. The interfacial bonding layer is regulated, and its influence on the performance of conductive fibers is investigated, based on which an interfacial interaction model is proposed. The model underlines the significance of the embedding depth of the Ag NW network. Both supersensitive (gauge factor up to 9557) and ultrastable (negligible conductance degradation below the strain of 150%) conductive fibers are obtained via interface regulating, exhibiting great potential in the applications of wearable sensors and stretchable conducting connections.
Nagel, Thomas; Kelly, Daniel J
2010-11-01
Constitutive models facilitate investigation into load bearing mechanisms of biological tissues and may aid attempts to engineer tissue replacements. In soft tissue models, a commonly made assumption is that collagen fibers can only bear tensile loads. Previous computational studies have demonstrated that radially aligned fibers stiffen a material in unconfined compression most by limiting lateral expansion while vertically aligned fibers buckle under the compressive loads. In this short communication, we show that in conjunction with swelling, these intuitive statements can be violated at small strains. Under such conditions, a tissue with fibers aligned parallel to the direction of load initially provides the greatest resistance to compression. The results are further put into the context of a Benninghoff architecture for articular cartilage. The predictions of this computational study demonstrate the effects of varying fiber orientations and an initial tare strain on the apparent material parameters obtained from unconfined compression tests of charged tissues.
Fernandez-Tendero, Eva; Day, Arnaud; Legros, Sandrine; Habrant, Anouck; Hawkins, Simon
2017-01-01
Interest in hemp (Cannabis sativa L.) is increasing due to the development of a new range of industrial applications based on bast fibers. However the variability of bast fiber yield and quality represents an important barrier to further exploitation. Primary and secondary fiber content was examined in two commercial hemp varieties (Fedora 17, Santhica 27) grown under contrasted sowing density and irrigation conditions. Both growing conditions and hemp varieties impact stem tissue architecture with a large effect on the proportion of secondary fibers but not primary fibers. Attenuated total reflectance infrared spectroscopy allowed the discrimination of manually-isolated native primary fibers and secondary fibers but did not reveal any clustering according to growing conditions and variety. Infrared data were confirmed by wet chemistry analyses that revealed slight but significant differences between primary and secondary fiber cell wall composition. Infrared spectroscopy of technical fibers obtained after mechanical defibering revealed differences with native primary, but not secondary fibers and also discriminated samples obtained from plants grown under different conditions. Altogether the results suggested that the observed variability of hemp technical fibers could be partially explained by i) differences in secondary fiber production and ii) differential behavior during mechanical defibering resulting in unequal separation of primary and secondary fibers. PMID:28640922
Fernandez-Tendero, Eva; Day, Arnaud; Legros, Sandrine; Habrant, Anouck; Hawkins, Simon; Chabbert, Brigitte
2017-01-01
Interest in hemp (Cannabis sativa L.) is increasing due to the development of a new range of industrial applications based on bast fibers. However the variability of bast fiber yield and quality represents an important barrier to further exploitation. Primary and secondary fiber content was examined in two commercial hemp varieties (Fedora 17, Santhica 27) grown under contrasted sowing density and irrigation conditions. Both growing conditions and hemp varieties impact stem tissue architecture with a large effect on the proportion of secondary fibers but not primary fibers. Attenuated total reflectance infrared spectroscopy allowed the discrimination of manually-isolated native primary fibers and secondary fibers but did not reveal any clustering according to growing conditions and variety. Infrared data were confirmed by wet chemistry analyses that revealed slight but significant differences between primary and secondary fiber cell wall composition. Infrared spectroscopy of technical fibers obtained after mechanical defibering revealed differences with native primary, but not secondary fibers and also discriminated samples obtained from plants grown under different conditions. Altogether the results suggested that the observed variability of hemp technical fibers could be partially explained by i) differences in secondary fiber production and ii) differential behavior during mechanical defibering resulting in unequal separation of primary and secondary fibers.
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.
2002-01-01
The successful application of ceramic matrix composites as hot-section components in advanced gas turbine engines will require the development of constituent materials and processes that can provide the material systems with the key thermostructural properties required for long-term component service. Much initial progress in identifying these materials and processes was made under the former NASA Enabling Propulsion Materials Program using stoichiometric Sylramic (trademark) silicon-carbide (SiC) fibers, 2D (two dimensional)-woven fiber architectures, chemically vapor-infiltrated (CVI) BN fiber coatings (interphases), and SiC-based matrices containing CVI SiC interphase over-coatings, slurry-infiltrated SiC particulate, and melt-infiltrated (MI) silicon. The objective of this paper is to discuss the property benefits of this SiC/SiC composite system for high-temperature engine components and to elaborate on further progress in SiC/SiC development made under the new NASA Ultra Efficient Engine Technology Program. This progress stems from the recent development of advanced constituent materials and manufacturing processes, including specific treatments at NASA that improve the creep, rupture, and environmental resistance of the Sylramic fiber as well as the thermal conductivity and creep resistance of the CVI SiC over-coatings. Also discussed are recent observations concerning the detrimental effects of inadvertent carbon in the fiber-BN interfacial region and the beneficial effects of certain 2D-architectures for thin-walled SiC/SiC panels.
Optimized radiation-hardened erbium doped fiber amplifiers for long space missions
NASA Astrophysics Data System (ADS)
Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.
2017-04-01
In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (<10% as the maximum error for the highest doses). Compared to our previous results obtained on Er/Yb-amplifiers, these results reveal the importance of the photo-bleaching mechanism competing with the RIA that cannot be neglected for the modeling of the radiation-induced gain degradation of EDFAs. This implies to measure in representative conditions the RIA at the pump and signal wavelengths that are used as input parameters for the simulation. The validated numerical codes have then been used to evaluate the potential of some EDFA architecture evolutions in the amplifier performance during the space mission. Optimization of both the fiber length and the EDFA pumping scheme allows us to strongly reduce its radiation vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.
Application of the boundary element method to the micromechanical analysis of composite materials
NASA Technical Reports Server (NTRS)
Goldberg, R. K.; Hopkins, D. A.
1995-01-01
A new boundary element formulation for the micromechanical analysis of composite materials is presented in this study. A unique feature of the formulation is the use of circular shape functions to convert the two-dimensional integrations of the composite fibers to one-dimensional integrations. To demonstrate the applicability of the formulations, several example problems including elastic and thermal analysis of laminated composites and elastic analyses of woven composites are presented and the boundary element results compared to experimental observations and/or results obtained through alternate analytical procedures. While several issues remain to be addressed in order to make the methodology more robust, the formulations presented here show the potential in providing an alternative to traditional finite element methods, particularly for complex composite architectures.
Mesoscopic Strains Maps in Woven Composite Laminas During Off-axis Tension
NASA Astrophysics Data System (ADS)
Anzelotti, G.; Nicoletto, G.; Riva, E.
2010-06-01
The mechanics of woven carbon-fiber reinforced plastic (CFRP) composites is influenced by the complex architecture of the reinforcement phase. Computational (i.e. finite element based) approaches have been used increasingly to model not only the global laminate stiffness, but also damage evolution and laminate strength. The modeling combines the identification of the architectural unit cell (UC), the selection of suitable constitutive models of the different phases, the creation of a fine discretization of the UC in finite elements, the application of an incremental solution procedure that solves iteratively for the stresses and strains in the UC, [1]. The experimental validation of computational models is carried out mainly at the macroscopical level, i.e. simulation of the macroscopic stress-strain curve. Damage, however, is a localized, straindependent phenomenon and therefore only accurate strain distribution within the UC (at the mesolevel) can identify critical conditions in terms of damage location, extension and evolution. The validation of computational damage procedures is a key task and full-field optical strain analysis methods appear the ideal instrument. However, only limited examples of direct finte element method (FEM) vs experimental strain correlation are found because of the limited sensitivity and spatial resolution of some techniques and the complexity and applicative difficulty of others. The aim of the present paper is to present the application of the digital image correlation (DIC) technique, [2], to the full-field strain analysis at the mesoscopic level (i.e. within the UC) of a woven CFRP lamina when the direction of loading forms an angle to the material direction. The material under consideration is a woven carbon fiber reinforced epoxy composite. Orthogonal yarns, each made of of several thousand fibers, are woven according the twill-weave architecture is shown in Fig. 1a. Single-ply laminas were manufactured and tested to eliminate the random 3D influence of multiple-ply laminates and to favor computational model validation. Specimens with different loading directions with respect to the material principal directions were prepared and tested in a servo-hydraulic testing machine. Specimen surface preparation consisted in a speckle pattern generation to allow the application of the DIC tecnique. During the tensile experiment, the speckle pattern is recorded (frame rate of 0.1 picture/second) using a CCD camera equipped with a microscopic lens and adjustable light sources. In-house DIC software was used for in-plane displacement and strain determination and mapping. For brevity only the case of loading in the tow yarn direction is considered here. Fig. 1b shows a tipical strain map obtained with the DIC technique at an applied macroscopic strain of 0.9%. The strains are small but the DIC dechnique is sensitive enough and suitable filtering reduce the noise level of the strain maps. Strong local strain gradients are determined and referred to the yarn architecture in Fig. 1c. The DIC measurements were validated by averaging the strain over the field of view and comparing it with the macroscopic strain given by a high-sensitivity MTS extensometer. The mesoscopic srain data obtained with DIC are used to assess and validate parallel material model development by direct FEM vs experimental strain correlation. Fig. 2a shows the FEM model of the unit cell for the twill-weave architecture with a detail of the yarn geometry and finite element discretization. Suitable boundary conditions are applied to the UC model contours before the analysis, [1]. Fig. 2b shows and example of the comparison of the local longitudinal FEM/DIC strain distribution along a transverse line of Fig. 1c. The comparison shows the excellent correlation achieved both in terms of gradients and absolute strain values, [3].
Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array
NASA Astrophysics Data System (ADS)
Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen
2015-07-01
In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times. Electronic supplementary information (ESI) available: SEM images of the twist-first hybrid fiber, TEM images of SWCNT/PEDOT hybrid bundles, Raman spectra and FTIR spectra of the hybrid electrodes, CVs of the pristine, bended and wound supercapacitor, transmittance spectra of the pristine and stretched supercapacitor, demo video of the supercapacitor. See DOI: 10.1039/c5nr03027g
Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments
NASA Technical Reports Server (NTRS)
Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus
2013-01-01
Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.
2018-02-01
We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.
WDM-PON Architecture for FTTx Networks
NASA Astrophysics Data System (ADS)
Iannone, E.; Franco, P.; Santoni, S.
Broadband services for residential users in European countries have until now largely relied on xDSL technologies, while FTTx technologies have been mainly exploited in Asia and North America. The increasing bandwidth demand and the growing penetration of new services are pushing the deployment of optical access networks, and major European operators are now announcing FTTx projects. While FTTH is recognized as the target solution to bring broadband services to residential users, the identification of an FTTx evolutionary path able to seamlessly migrate to FTTH is key to enabling a massive deployment, easing the huge investments needed. WDM-PON architecture is an interesting solution that is able to accommodate the strategic need of building a new fiber-based access infrastructure with the possibility of adapting investments to actual demands and evolving to FTTH without requiring further interventions on fiber infrastructures.
The high speed interconnect system architecture and operation
NASA Astrophysics Data System (ADS)
Anderson, Steven C.
The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.
A 3D scanning laser endoscope architecture utilizing a circular piezoelectric membrane
NASA Astrophysics Data System (ADS)
Khayatzadeh, Ramin; Çivitci, Fehmi; Ferhanoğlu, Onur
2017-12-01
A piezo-scanning fiber endoscopic device architecture is proposed for 3D imaging or ablation. The endoscopic device consists of a piezoelectric membrane that is placed perpendicular to the optical axis, a fiber optic cable that extends out from and actuated by the piezoelectric membrane, and one or multiple lenses for beam delivery and collection. Unlike its counterparts that utilize piezoelectric cylinders for fiber actuation, the proposed architecture offers quasi-static actuation in the axial direction along with resonant actuation in the lateral directions forming a 3D scanning pattern, allowing adjustment of the focus plane. The actuation of the four-quadrant piezoelectric membrane involves driving of two orthogonal electrodes with AC signals for lateral scanning, while simultaneously driving all electrodes for axial scanning and focus adjustment. We have characterized piezoelectric membranes (5 -15mm diameter) with varying sizes to monitor axial displacement behavior with respect to applied DC voltage. We also demonstrate simultaneous lateral and axial actuation on a resolution target, and observe the change of lateral resolution on a selected plane through performing 1D cross-sectional images, as an indicator of focal shift through axial actuation. Based on experimental results, we identify the optical and geometrical parameters for optimal 3D imaging of tissue samples. Our findings reveal that a simple piezoelectric membrane, having comparable dimensions and drive voltage requirement with off-the-shelf MEMS scanner chips, offers tissue epithelial imaging with sub-cellular resolution.
Nam, Sunghyun; Condon, Brian D.; Delhom, Christopher D.; Fontenot, Krystal R.
2016-01-01
The interactions of nanoparticles with polymer hosts have important implications for directing the macroscopic properties of composite fibers, yet little is known about such interactions with hierarchically ordered natural polymers due to the difficulty of achieving uniform dispersion of nanoparticles within semi-crystalline natural fiber. In this study we have homogeneously dispersed silver nanoparticles throughout an entire volume of cotton fiber. The resulting electrostatic interaction and distinct supramolecular structure of the cotton fiber provided a favorable environment for the controlled formation of nanoparticles (12 ± 3 nm in diameter). With a high surface-to-volume ratio, the extensive interfacial contacts of the nanoparticles efficiently “glued” the structural elements of microfibrils together, producing a unique inorganic-organic hybrid substructure that reinforced the multilayered architecture of the cotton fiber. PMID:27849038
Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function
NASA Astrophysics Data System (ADS)
Malis, Vadim
Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on aging, strain rate during isometric contraction was significantly reduced in the seniors; presumably from decrease in muscle slack and increase in stiffness with age. Other parameters of interest from this study that allow inferences on the ECM and lateral transmission are the asymmetry of deformation in the fiber cross section as well as the angle between the SR and muscle fiber. The last part of thesis, which is a 'work-in-progress', is the extension to 3D SR tensor mapping using a 3D spatial, 3D velocity encoded imaging sequence. This is combined with Diffusion Tensor Imaging to obtain the lead eigenvector (muscle fiber direction) at each voxel. The 3D SR is then rotated to the basis of the DTI to obtain a 'Fiber Aligned Strain rate: FASR'. The off diagonal elements of FASR are shear strain terms. Detailed analysis of the shear strain will provide a unique non-invasive method to probe lateral transmission.
Techno-Economic Analysis of FiWi Access Networks Based on 802.11ac WLAN and NG-PON2 Networks
NASA Astrophysics Data System (ADS)
Breskovic, Damir; Begusic, Dinko
2017-05-01
In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.
NASA Astrophysics Data System (ADS)
Hanson, A. G.
1987-03-01
The learning experience of a group of Federal-agency planners who face upgrading or augmenting existing on-premises communication systems and building wiring is documented. In July 1984, an interagency Fiber Optics Task Group was formed under the aegis of the Federal Telecommunication Standards Committee to study on-premises distribution systems, with emphasis on optical fiber implementation, sharing mutual problems and potential solutions for them. Chronological summary records of technical content of 11 Task Group meetings through September 1986 are summarized. Also condensed are the engineering presentations to the Task Group by industry on applicable state-of-the-art technology, including local area networks, private automatic branch exchanges, building wiring architecture, and optic fiber systems and components.
NASA Astrophysics Data System (ADS)
Kachhatiya, Vivek; Prince, Shanthi
2016-12-01
In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as ;pay as you grow; network for both service providers and the users perspectives. Users are classified into two categories viz home-user and business-user, with an option for easy up-gradation. Proposed architecture operates on next generation passive optical network stage 2 (NG-PON2) wavelength plan, with symmetrical data rate. Downstream performance is investigated by comparing, high power laser source with a conventional laser source and the L-band Erbium-doped fiber amplifier (EDFA) of gain 10 dB and 20 dB. Downstream eight wavelengths perform error-free up to 40 Km fiber reach and 1024 splitting points. Power budget of the proposed architecture incorporates the N1, N2, E1 and E2 optical path loss class.
Silveira, F A O; Oliveira, E G
2013-05-01
Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna) area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences) of Miconia albicans (SW.) Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS), shrublands (cerrado sensu strico, CE) and woodlands (cerradão, CD). As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.
Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk
Sutherland, Tara D.; Church, Jeffrey S.; Hu, Xiao; Huson, Mickey G.; Kaplan, David L.; Weisman, Sarah
2011-01-01
Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk. PMID:21311767
Shape-morphing composites with designed micro-architectures
NASA Astrophysics Data System (ADS)
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.
2016-06-01
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.
Ballistic Impact of Braided Composites with a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike
2002-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.
Liu, Xiaozheng; Yuan, Zhenming; Guo, Zhongwei; Xu, Dongrong
2015-05-01
Diffusion tensor imaging is widely used for studying neural fiber trajectories in white matter and for quantifying changes in tissue using diffusion properties at each voxel in the brain. To better model the nature of crossing fibers within complex architectures, rather than using a simplified tensor model that assumes only a single fiber direction at each image voxel, a model mixing multiple diffusion tensors is used to profile diffusion signals from high angular resolution diffusion imaging (HARDI) data. Based on the HARDI signal and a multiple tensors model, spherical deconvolution methods have been developed to overcome the limitations of the diffusion tensor model when resolving crossing fibers. The Richardson-Lucy algorithm is a popular spherical deconvolution method used in previous work. However, it is based on a Gaussian distribution, while HARDI data are always very noisy, and the distribution of HARDI data follows a Rician distribution. This current work aims to present a novel solution to address these issues. By simultaneously considering both the Rician bias and neighbor correlation in HARDI data, the authors propose a localized Richardson-Lucy (LRL) algorithm to estimate fiber orientations for HARDI data. The proposed method can simultaneously reduce noise and correct the Rician bias. Mean angular error (MAE) between the estimated Fiber orientation distribution (FOD) field and the reference FOD field was computed to examine whether the proposed LRL algorithm offered any advantage over the conventional RL algorithm at various levels of noise. Normalized mean squared error (NMSE) was also computed to measure the similarity between the true FOD field and the estimated FOD filed. For MAE comparisons, the proposed LRL approach obtained the best results in most of the cases at different levels of SNR and b-values. For NMSE comparisons, the proposed LRL approach obtained the best results in most of the cases at b-value = 3000 s/mm(2), which is the recommended schema for HARDI data acquisition. In addition, the FOD fields estimated by the proposed LRL approach in regions of fiber crossing regions using real data sets also showed similar fiber structures which agreed with common acknowledge in these regions. The novel spherical deconvolution method for improved accuracy in investigating crossing fibers can simultaneously reduce noise and correct Rician bias. With the noise smoothed and bias corrected, this algorithm is especially suitable for estimation of fiber orientations in HARDI data. Experimental results using both synthetic and real imaging data demonstrated the success and effectiveness of the proposed LRL algorithm.
Different micromanipulation applications based on common modular control architecture
NASA Astrophysics Data System (ADS)
Sipola, Risto; Vallius, Tero; Pudas, Marko; Röning, Juha
2010-01-01
This paper validates a previously introduced scalable modular control architecture and shows how it can be used to implement research equipment. The validation is conducted by presenting different kinds of micromanipulation applications that use the architecture. Conditions of the micro-world are very different from those of the macro-world. Adhesive forces are significant compared to gravitational forces when micro-scale objects are manipulated. Manipulation is mainly conducted by automatic control relying on haptic feedback provided by force sensors. The validated architecture is a hierarchical layered hybrid architecture, including a reactive layer and a planner layer. The implementation of the architecture is modular, and the architecture has a lot in common with open architectures. Further, the architecture is extensible, scalable, portable and it enables reuse of modules. These are the qualities that we validate in this paper. To demonstrate the claimed features, we present different applications that require special control in micrometer, millimeter and centimeter scales. These applications include a device that measures cell adhesion, a device that examines properties of thin films, a device that measures adhesion of micro fibers and a device that examines properties of submerged gel produced by bacteria. Finally, we analyze how the architecture is used in these applications.
NASA Astrophysics Data System (ADS)
Patel, Dhananjay; Dalal, U. D.
2017-05-01
A novel m-QAM Orthogonal Frequency Division Multiplexing (OFDM) Single Sideband (SSB) architecture is proposed for centralized light source (CLS) bidirectional Radio over Fiber (RoF) - Wavelength Division Multiplexing (WDM) - Passive Optical Network (PON). In bidirectional transmission with carrier reuse over the single fiber, the Rayleigh Backscattering (RB) noise and reflection (RE) interferences from optical components can seriously deteriorate the transmission performance of the fiber optic systems. These interferometric noises can be mitigated by utilizing the optical modulation schemes at the Optical Line Terminal (OLT) and Optical Network Unit (ONU) such that the spectral overlap between the optical data spectrum and the RB and RE noise is minimum. A mathematical model is developed for the proposed architecture to accurately measure the performance of the transmission system and also to analyze the effect of interferometric noise caused by the RB and RE. The model takes into the account the different modulation schemes employed at the OLT and the ONU using a Mach Zehnder Modulator (MZM), the optical launch power and the bit-rates of the downstream and upstream signals, the gain of the amplifiers at the OLT and the ONU, the RB-RE noise, chromatic dispersion of the single mode fiber and optical filter responses. In addition, the model analyzes all the components of the RB-RE noise such as carrier RB, signal RB, carrier RE and signal RE, thus providing the complete representation of all the physical phenomena involved. An optical m-QAM OFDM SSB signal acts as a test signal to validate the model which provides excellent agreement with simulation results. The SSB modulation technique using the MZM at the OLT and the ONU differs in the data transmission technique that takes place through the first-order higher and the lower optical sideband respectively. This spectral gap between the downstream and upstream signals reduces the effect of Rayleigh backscattering and discrete reflections.
Architecture and design of optical path networks utilizing waveband virtual links
NASA Astrophysics Data System (ADS)
Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi
2016-02-01
We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yufei, E-mail: mayufei@hit.edu.cn; Post-doctoral Mobile Station of Power Engineering and Engineering Thermophysics, Harbin Institute of Technology, Harbin 150001; He, Ying
An ultra compact all-fiber quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was demonstrated. Such a sensor architecture has the advantages of easier optical alignment, lower insertion loss, lower cost, and more compact compared with a conventional QEPAS sensor using discrete optical components for laser delivery and coupling to the QTF. A fiber beam splitter and three QTFs were employed to perform multi-point detection and demonstrated the potential of spatially resolved measurements.
Widely tunable opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.
2012-03-01
We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.
NASA Astrophysics Data System (ADS)
Andrawis, Alfred S.
1994-10-01
The problem addressed by this report is the large size and heavy weight of the cable bundle, used for controlling a Multidegree-Of-Freedom Serpentine Truss Manipulator arm, which imposes limitations on the manipulator arm maneuverability. This report covers a design of an optical fiber network to replace the existing copper wire network of the Serpentine Truss Manipulator. This report proposes a fiber network design which significantly reduces the bundle size into two phases. The first phase does not require any modifications for the manipulator architecture, while the other requires major modifications. Design philosophy, hardware details and schematic diagrams are presented.
NASA Technical Reports Server (NTRS)
Andrawis, Alfred S.
1994-01-01
The problem addressed by this report is the large size and heavy weight of the cable bundle, used for controlling a Multidegree-Of-Freedom Serpentine Truss Manipulator arm, which imposes limitations on the manipulator arm maneuverability. This report covers a design of an optical fiber network to replace the existing copper wire network of the Serpentine Truss Manipulator. This report proposes a fiber network design which significantly reduces the bundle size into two phases. The first phase does not require any modifications for the manipulator architecture, while the other requires major modifications. Design philosophy, hardware details and schematic diagrams are presented.
Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue.
York, Timothy; Kahan, Lindsey; Lake, Spencer P; Gruev, Viktor
2014-06-01
A technique for creating maps of the direction and strength of fiber alignment in collagenous soft tissues is presented. The method uses a division of focal plane polarimeter to measure circularly polarized light transmitted through the tissue. The architecture of the sensor allows measurement of the retardance and fiber alignment at the full frame rate of the sensor without any moving optics. The technique compares favorably to the standard method of using a rotating polarizer. How the new technique enables real-time capture of the full angular spread of fiber alignment and retardance under various cyclic loading conditions is illustrated.
Model for the Effect of Fiber Bridging on the Fracture Resistance of Reinforced-Carbon-Carbon
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lee, Yi-Der; Hudak, Stephen J., Jr.
2009-01-01
A micromechanical methodology has been developed for analyzing fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (RCC) panels with a three-dimensional (3D) composite architecture and a silicon carbide (SiC) surface coating. The methodology involves treating fiber bridging traction on the crack surfaces in terms of a weight function approach and a bridging law that relates the bridging stress to the crack opening displacement. A procedure has been developed to deduce material constants in the bridging law from the linear portion of the K-resistance curve. This report contains information on the application of procedures and outcomes.
3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture.
Kolewe, Martin E; Park, Hyoungshin; Gray, Caprice; Ye, Xiaofeng; Langer, Robert; Freed, Lisa E
2013-08-27
Microfabricated elastomeric scaffolds with 3D structural patterns are created by semiautomated layer-by-layer assembly of planar polymer sheets with through-pores. The mesoscale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel elastic protection against DDF failures in an enhanced software-defined SIEPON
NASA Astrophysics Data System (ADS)
Pakpahan, Andrew Fernando; Hwang, I.-Shyan; Yu, Yu-Ming; Hsu, Wu-Hsiao; Liem, Andrew Tanny; Nikoukar, AliAkbar
2017-07-01
Ever-increasing bandwidth demands on passive optical networks (PONs) are pushing the utilization of every fiber strand to its limit. This is mandating comprehensive protection until the end of the distribution drop fiber (DDF). Hence, it is important to provide refined protection with an advanced fault-protection architecture and recovery mechanism that is able to cope with various DDF failures. We propose a novel elastic protection against DDF failures that incorporates a software-defined networking (SDN) capability and a bus protection line to enhance the resiliency of the existing Service Interoperability in Ethernet Passive Optical Networks (SIEPON) system. We propose the addition of an integrated SDN controller and flow tables to the optical line terminal and optical network units (ONUs) in order to deliver various DDF protection scenarios. The proposed architecture enables flexible assignment of backup ONU(s) in pre/post-fault conditions depending on the PON traffic load. A transient backup ONU and multiple backup ONUs can be deployed in the pre-fault and post-fault scenarios, respectively. Our extensively discussed simulation results show that our proposed architecture provides better overall throughput and drop probability compared to the architecture with a fixed DDF protection mechanism. It does so while still maintaining overall QoS performance in terms of packet delay, mean jitter, packet loss, and throughput under various fault conditions.
Mellor, Liliana F.; Huebner, Pedro; Cai, Shaobo; Taylor, Michael A.; Spang, Jeffrey
2017-01-01
Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their ability to support viability and proliferation of human adipose derived stem cells (hASC). Cells had increased proliferation and high viability over 21 days on all scaffolds. We further tested implantation of stacked-electrospun scaffold versus combined electrospun/3D scaffold on a cadaveric pig knee model and found that stacked-electrospun scaffold easily delaminated during implantation while the combined scaffold was easier to implant. Our approach combining these two commonly used scaffold fabrication technologies allows for the creation of a scaffold with more close resemblance to heterogeneous tissue architecture, holding great potential for tissue engineering and regenerative medicine applications of osteochondral tissue and other heterogeneous tissues. PMID:28536700
NASA Technical Reports Server (NTRS)
Vickers, John H.; Pelham, Larry I.
1993-01-01
Automated fiber placement is a manufacturing process used for producing complex composite structures. It is a notable leap to the state-of-the-art in technology for automated composite manufacturing. The fiber placement capability was established at the Marshall Space Flight Center's (MSFC) Productivity Enhancement Complex in 1992 in collaboration with Thiokol Corporation to provide materials and processes research and development, and to fabricate components for many of the Center's Programs. The Fiber Placement System (FPX) was developed as a distinct solution to problems inherent to other automated composite manufacturing systems. This equipment provides unique capabilities to build composite parts in complex 3-D shapes with concave and other asymmetrical configurations. Components with complex geometries and localized reinforcements usually require labor intensive efforts resulting in expensive, less reproducible components; the fiber placement system has the features necessary to overcome these conditions. The mechanical systems of the equipment have the motion characteristics of a filament winder and the fiber lay-up attributes of a tape laying machine, with the additional capabilities of differential tow payout speeds, compaction and cut-restart to selectively place the correct number of fibers where the design dictates. This capability will produce a repeatable process resulting in lower cost and improved quality and reliability.
NASA Technical Reports Server (NTRS)
Corman, Gregory S. (Inventor); Steibel, James D. (Inventor); Schikner, Robert C. (Inventor); Szweda, Andrew (Inventor)
2001-01-01
Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers.
NASA Technical Reports Server (NTRS)
Szweda, Andrew (Inventor); Corman, Gregory S. (Inventor); Steibel, James D. (Inventor); Schikner, Robert C. (Inventor)
2000-01-01
Small diameter silicon carbide-containing fibers are provided in a bundle such as a fiber tow that can be formed into a structure where the radii of curvature is not limited to 10-20 inches. An aspect of this invention is directed to impregnating the bundles of fibers with the slurry composition to substantially coat the outside surface of an individual fiber within the bundle and to form a complex shaped preform with a mass of continuous fibers.
NASA Astrophysics Data System (ADS)
Wang, Shiwei; Xie, Guangbo; Zhang, Jingjing; Zhang, Sen; Li, Tingju
2018-04-01
Novel high luminescence fibers often exhibit potential applications in the fields of color displays and sensor systems. In this study, Eu(BA)3phen and Tb(BA)3phen powders was successfully synthesized by solvothermal reactions, firstly. Then, three kinds of novel flexible Eu(BA)3phen/PAN, Tb(BA)3phen/PAN and Eu/Tb(BA)3phen/PAN (BA = benzoic acid, phen = phenanthroline, PAN = Polyacrylonitrile) fibers had been successfully prepared by electrospinning technology. The characterizations of the final products have been investigated in detail. It was found that the diameter of the as-prepared fibers were almost uniform with the fabricated complexes doping into PAN successfully. Thermogravimetric analysis indicates that the thermal stability of the pure PAN fiber could be improved by the incorporation of the complex, although only 1 wt % was added. Furthermore, in Eu/Tb(BA)3phen complex, the fluorescence intensity of Eu3+ ions was remarkably increased by adding Tb3+ ions. This is primarily due to an energy transfer from the 5D4 level of Tb (III) to the 5D0 level of Eu (III) ions, where Tb3+ acted as sensitizer. The corresponding luminescent fibers displayed the same regularity as the complexes. Moreover, with the increasing of the incorporation of complexes into PAN, the fluorescence intensities were significantly enhanced and reached its maximum value at 2.5 wt % for Eu(BA)3phen/PAN fibers and 2.0 wt% for Tb(BA)3phen/PAN fibers. The further intensity decreased with the increasing content of the complexes because of typical emission concentration quenching.
Stadelmann, Marc A; Maquer, Ghislain; Voumard, Benjamin; Grant, Aaron; Hackney, David B; Vermathen, Peter; Alkalay, Ron N; Zysset, Philippe K
2018-05-17
Intervertebral disc degeneration is a common disease that is often related to impaired mechanical function, herniations and chronic back pain. The degenerative process induces alterations of the disc's shape, composition and structure that can be visualized in vivo using magnetic resonance imaging (MRI). Numerical tools such as finite element analysis (FEA) have the potential to relate MRI-based information to the altered mechanical behavior of the disc. However, in terms of geometry, composition and fiber architecture, current FE models rely on observations made on healthy discs and might therefore not be well suited to study the degeneration process. To address the issue, we propose a new, more realistic FE methodology based on diffusion tensor imaging (DTI). For this study, a human disc joint was imaged in a high-field MR scanner with proton-density weighted (PD) and DTI sequences. The PD image was segmented and an anatomy-specific mesh was generated. Assuming accordance between local principal diffusion direction and local mean collagen fiber alignment, corresponding fiber angles were assigned to each element. Those element-wise fiber directions and PD intensities allowed the homogenized model to smoothly account for composition and fibrous structure of the disc. The disc's in vitro mechanical behavior was quantified under tension, compression, flexion, extension, lateral bending and rotation. The six resulting load-displacement curves could be replicated by the FE model, which supports our approach as a first proof of concept towards patient-specific disc modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bite force estimation and the fiber architecture of felid masticatory muscles.
Hartstone-Rose, Adam; Perry, Jonathan M G; Morrow, Caroline J
2012-08-01
Increasingly, analyses of craniodental dietary adaptations take into account mechanical properties of foods. However, masticatory muscle fiber architecture has been described for relatively few lineages, even though an understanding of the scaling of this anatomy can yield important information about adaptations for stretch and strength in the masticatory system. Data on the mandibular adductors of 28 specimens from nine species of felids representing nearly the entire body size range of the family allow us to evaluate the influence of body size and diet on the masticatory apparatus within this lineage. Masticatory muscle masses scale isometrically, tending toward positive allometry, with body mass and jaw length. This allometry becomes significant when the independent variable is a geometric mean of cranial variables. For all three body size proxies, the physiological cross-sectional area and predicted bite forces scale with significant positive allometry. Average fiber lengths (FL) tend toward negative allometry though with wide confidence intervals resulting from substantial scatter. We believe that these FL residuals are affected by dietary signals within the sample; though the mechanical properties of felid diets are relatively similar across species, the most durophagous species in our sample (the jaguar) appears to have relatively higher force production capabilities. The more notable dietary trend in our sample is the relationship between FL and relative prey size: felid species that predominantly consume relatively small prey have short masticatory muscle fibers, and species that regularly consume relatively large prey have relatively long fibers. This suggests an adaptive signal related to gape. Copyright © 2012 Wiley Periodicals, Inc.
Experimental Investigation of Textile Composite Materials Using Moire Interferometry
NASA Technical Reports Server (NTRS)
Ifju, Peter G.
1995-01-01
The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less speculation and more documentation.
Lau, K Y; Abu Bakar, M H; Muhammad, F D; Latif, A A; Omar, M F; Yusoff, Z; Mahdi, M A
2018-05-14
Mode-locked fiber laser incorporating a saturable absorber is an attractive configuration due to its stability and simple structure. In this work, we demonstrate a dual-wavelength passively mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber. A laser resonator is developed based on dual cavity architecture with unidirectional signal oscillation, which is connected by a fiber branch sharing a common gain medium and saturable absorber. Dual wavelength mode-locked fiber lasers are observed at approximately 1530 and 1560 nm with 22.6 mW pump power threshold. Soliton pulse circulates in the laser cavity with pulse duration of 900 and 940 fs at shorter and longer wavelengths, respectively. This work presents a viable option in developing a low threshold mode-locked laser source with closely spaced dual wavelength femtosecond pulses in the C-band wavelength region.
Functional Requirements for Fab-7 Boundary Activity in the Bithorax Complex.
Wolle, Daniel; Cleard, Fabienne; Aoki, Tsutomu; Deshpande, Girish; Schedl, Paul; Karch, Francois
2015-11-01
Chromatin boundaries are architectural elements that determine the three-dimensional folding of the chromatin fiber and organize the chromosome into independent units of genetic activity. The Fab-7 boundary from the Drosophila bithorax complex (BX-C) is required for the parasegment-specific expression of the Abd-B gene. We have used a replacement strategy to identify sequences that are necessary and sufficient for Fab-7 boundary function in the BX-C. Fab-7 boundary activity is known to depend on factors that are stage specific, and we describe a novel ∼700-kDa complex, the late boundary complex (LBC), that binds to Fab-7 sequences that have insulator functions in late embryos and adults. We show that the LBC is enriched in nuclear extracts from late, but not early, embryos and that it contains three insulator proteins, GAF, Mod(mdg4), and E(y)2. Its DNA binding properties are unusual in that it requires a minimal sequence of >65 bp; however, other than a GAGA motif, the three Fab-7 LBC recognition elements display few sequence similarities. Finally, we show that mutations which abrogate LBC binding in vitro inactivate the Fab-7 boundary in the BX-C. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Widely tunable opto-electronic oscillator based on a dual frequency laser
NASA Astrophysics Data System (ADS)
Maxin, J.; Saleh, K.; Pillet, G.; Morvan, L.; Llopis, O.; Dolfi, D.
2013-03-01
We present the stabilization of the beatnote of an Er,Yb:glass Dual Frequency Laser at 1.53 μm with optical fiber delay lines. Instead of standard optoelectronics oscillators, this architecture does not need RF filter and offers a wide tunability from 2.5 to 5.5 GHz. Thank to a fine analysis of the laser RIN to phase noise conversion in the photodiodes, the expected RF-amplifiers noise limit is reached with a phase noise power spectral density of -25 dBc/Hz at 10 Hz (respectively -110 dBc/Hz at 10 kHz) from the carrier over the whole tuning range. Implementation of a double fiber coil architecture improves the oscillator spectral purity: the phase noise reaches a level of -35 dBc/Hz at 10 Hz (respectively -112 dBc/Hz respectively 10 kHz) from the carrier.
Sharp Refractory Composite Leading Edges on Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Sullivan, Brian J.
2003-01-01
On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.
NASA Astrophysics Data System (ADS)
Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.
1996-10-01
Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.
NASA Technical Reports Server (NTRS)
Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond
2001-01-01
The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a COTS-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.
Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems
NASA Technical Reports Server (NTRS)
Seal, D. W.
1989-01-01
This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.
NASA Technical Reports Server (NTRS)
Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond; Schkolnik, Gerald (Technical Monitor)
1998-01-01
The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a commercial off-the-shelf (COTS)-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.
2018-06-01
In this work, we demonstrate a linear cavity mode-locked erbium-doped fiber laser in C-band wavelength region. The passive mode-locking is achieved using a microfiber-based carbon nanotube saturable absorber. The carbon nanotube saturable absorber has low saturation fluence of 0.98 μJ/cm2. Together with the linear cavity architecture, the fiber laser starts to produce soliton pulses at low pump power of 22.6 mW. The proposed fiber laser generates fundamental soliton pulses with a center wavelength, pulse width, and repetition rate of 1557.1 nm, 820 fs, and 5.41 MHz, respectively. This mode-locked laser scheme presents a viable option in the development of low threshold ultrashort pulse system for deployment as a seed laser.
100-W 105-μm 0.15NA fiber coupled laser diode module
NASA Astrophysics Data System (ADS)
Karlsen, Scott R.; Price, R. Kirk; Reynolds, Mitch; Brown, Aaron; Mehl, Ron; Patterson, Steve; Martinsen, Robert J.
2009-02-01
We report on the development of a high brightness laser diode module capable of coupling over 100W of optical power into a 105 μm 0.15 NA fiber at 976 nm. This module, based on nLIGHT's Pearl product architecture, utilizes hard soldered single emitters packaged into a compact and passively-cooled package. In this system each diode is individually collimated in the fast and slow axes and free-space coupled into a single fiber. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has an electrical to optical efficiency greater than 40%. Additionally, this module is compatible with high power 7:1 fused fiber combiners, and initial experiments demonstrated 500W coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for higher brightness diode lasers for pumping fiber lasers and direct material processing.
Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy.
Muzikant, A L; Henriquez, C S
1998-04-01
A bidomain model of cardiac tissue was used to examine the effect of transmural fiber rotation during bipolar stimulation in three-dimensional (3-D) myocardium. A 3-D tissue block with unequal anisotropy and two types of fiber rotation (none and moderate) was stimulated along and across fibers via bipolar electrodes on the epicardial surface, and the resulting steady-state interstitial (phi e) and transmembrane (Vm) potentials were computed. Results demonstrate that the presence of rotated fibers does not change the amount of tissue polarized by the point surface stimuli, but does cause changes in the orientation of phi e and Vm in the depth of the tissue, away from the epicardium. Further analysis revealed a relationship between the Laplacian of phi e, regions of virtual electrodes, and fiber orientation that was dependent upon adequacy of spatial sampling and the interstitial anisotropy. These findings help to understand the role of fiber architecture during extracellular stimulation of cardiac muscle.
Fiber-based laser MOPA transmitter packaging for space environment
NASA Astrophysics Data System (ADS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian
2018-02-01
NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.
Cohesin organizes chromatin loops at DNA replication factories
Guillou, Emmanuelle; Ibarra, Arkaitz; Coulon, Vincent; Casado-Vela, Juan; Rico, Daniel; Casal, Ignacio; Schwob, Etienne; Losada, Ana; Méndez, Juan
2010-01-01
Genomic DNA is packed in chromatin fibers organized in higher-order structures within the interphase nucleus. One level of organization involves the formation of chromatin loops that may provide a favorable environment to processes such as DNA replication, transcription, and repair. However, little is known about the mechanistic basis of this structuration. Here we demonstrate that cohesin participates in the spatial organization of DNA replication factories in human cells. Cohesin is enriched at replication origins and interacts with prereplication complex proteins. Down-regulation of cohesin slows down S-phase progression by limiting the number of active origins and increasing the length of chromatin loops that correspond with replicon units. These results give a new dimension to the role of cohesin in the architectural organization of interphase chromatin, by showing its participation in DNA replication. PMID:21159821
Chiti, Maria Costanza; Dolmans, Marie-Madeleine; Mortiaux, Lucie; Zhuge, Flanco; Ouni, Emna; Shahri, Parinaz Asiabi Kohneh; Van Ruymbeke, Evelyne; Champagne, Sophie-Demoustier; Donnez, Jacques; Amorim, Christiani Andrade
2018-01-01
The aim of this study is to optimize fibrin matrix composition in order to mimic human ovarian tissue architecture for human ovarian follicle encapsulation and grafting. Ultrastructure of fresh human ovarian cortex in age-related women (n = 3) and different fibrin formulations (F12.5/T1, F30/T50, F50/T50, F75/T75), rheology of fibrin matrices and histology of isolated and encapsulated human ovarian follicles in these matrices. Fresh human ovarian cortex showed a highly fibrous and structurally inhomogeneous architecture in three age-related patients, but the mean ± SD of fiber thickness (61.3 to 72.4 nm) was comparable between patients. When the fiber thickness of four different fibrin formulations was compared with human ovarian cortex, F50/T50 and F75/T75 showed similar fiber diameters to native tissue, while F12.5/T1 was significantly different (p value < 0.01). In addition, increased concentrations of fibrin exhibited enhanced storage modulus with F50/T50, resembling physiological ovarian rigidity. Excluding F12.5/T1 from further analysis, only three remaining fibrin matrices (F30/T50, F50/T50, F75/T75) were histologically investigated. For this, frozen-thawed fragments of human ovarian tissue collected from 22 patients were used to isolate ovarian follicles and encapsulate them in the three fibrin formulations. All three yielded similar follicle recovery and loss rates soon after encapsulation. Therefore, based on fiber thickness, porosity, and rigidity, we selected F50/T50 as the fibrin formulation that best mimics native tissue. Of all the different fibrin matrix concentrations tested, F50/T50 emerged as the combination of choice in terms of ultrastructure and rigidity, most closely resembling human ovarian cortex.
Pénzes, Judit J.; Menéndez-Conejero, Rosa; Condezo, Gabriela N.; Ball, Inna; Papp, Tibor; Doszpoly, Andor; Paradela, Alberto; Pérez-Berná, Ana J.; López-Sanz, María; Nguyen, Thanh H.; van Raaij, Mark J.; Marschang, Rachel E.; Harrach, Balázs; Benkő, Mária
2014-01-01
ABSTRACT Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins—one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton base. This observation raises new intriguing questions on virus structure. How can the triple fiber attach to a pentameric vertex? What determines the number and location of each vertex type in the icosahedral particle? Since fibers are responsible for primary attachment to the host, this novel architecture also suggests a novel mode of cell entry for LAdV-2. Adenoviruses have a recognized potential in nanobiomedicine, but only a few of the more than 200 types found so far in nature have been characterized in detail. Exploring the taxonomic wealth of adenoviruses should improve our chances to successfully use them as therapeutic tools. PMID:25056898
Communication architecture system for fiber positioning of DESI spectrograph
NASA Astrophysics Data System (ADS)
Kaci, Karim; Glez-de-Rivera, Guillermo; Lopez-Colino, Fernando; Martinez-Garcia, M. Sofia; Masa, Jose L.; Garrido, Javier; Sanchez, Justo; Prada, Francisco
2016-07-01
This paper presents a design proposal for controlling the five thousand fiber positioners within the focal plate of the DESI instrument. Each of these positioners is a robot which allows positioning its optic fiber with a resolution within the range of few microns. The high number and density of these robots poses a challenge for handling the communication from a central control device to each of these five thousand. Furthermore, an additional restriction applies as the required time to communicate to every robot of its position must be smaller than a second. Additionally. a low energy consumption profile is also desired. Both wireless and wired communication protocols have been evaluated, proposing single-technology-based architectures and hybrid ones (a combination of them). Among the wireless solutions, ZigBee and CyFi have been considered. Using simulation tools these wireless protocols have been discarded as they do not allow an efficient communication. The studied wired protocols comprise I2C, CAN and Ethernet. The best solution found is a hybrid multilayer architecture combining both Ethernet and I2C. A 100 Mbps Ethernet based network is used to communicate the central control unit with ten management boards. Each of these boards is a low-cost, low-power embedded device that manages a thirty six degrees sector of the sensing plate. Each of these boards receives the positioning data for five hundred robots and communicate with each one through a fast mode plus I2C bus. This proposal allows to communicate the positioning information for all five thousand robots in 350 ms total.
Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain
2012-12-17
We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.
Stolyarov, Alexander M; Gumennik, Alexander; McDaniel, William; Shapira, Ofer; Schell, Brent; Sorin, Fabien; Kuriki, Ken; Benoit, Gilles; Rose, Aimee; Joannopoulos, John D; Fink, Yoel
2012-05-21
We demonstrate an in-fiber gas phase chemical detection architecture in which a chemiluminescent (CL) reaction is spatially and spectrally matched to the core modes of hollow photonic bandgap (PBG) fibers in order to enhance detection efficiency. A peroxide-sensitive CL material is annularly shaped and centered within the fiber's hollow core, thereby increasing the overlap between the emission intensity and the intensity distribution of the low-loss fiber modes. This configuration improves the sensitivity by 0.9 dB/cm compared to coating the material directly on the inner fiber surface, where coupling to both higher loss core modes and cladding modes is enhanced. By integrating the former configuration with a custom-built optofluidic system designed for concomitant controlled vapor delivery and emission measurement, we achieve a limit-of-detection of 100 parts per billion (ppb) for hydrogen peroxide vapor. The PBG fibers are produced by a new fabrication method whereby external gas pressure is used as a control knob to actively tune the transmission bandgaps through the entire visible range during the thermal drawing process.
Schwalm, Nathan D; Townsend, Guy E; Groisman, Eduardo A
2016-10-11
The utilization of simple sugars is widespread across all domains of life. In contrast, the breakdown of complex carbohydrates is restricted to a subset of organisms. A regulatory paradigm for integration of complex polysaccharide breakdown with simple sugar utilization was established in the mammalian gut symbiont Bacteroides thetaiotaomicron, whereby sensing of monomeric fructose regulates catabolism of both fructose and polymeric fructans. We now report that a different regulatory paradigm governs utilization of monomeric arabinose and the arabinose polymer arabinan. We establish that (i) arabinan utilization genes are controlled by a transcriptional activator that responds to arabinan and by a transcriptional repressor that responds to arabinose, (ii) arabinose utilization genes are regulated directly by the arabinose-responding repressor but indirectly by the arabinan-responding activator, and (iii) activation of both arabinan and arabinose utilization genes requires a pleiotropic transcriptional regulator necessary for survival in the mammalian gut. Genomic analysis predicts that this paradigm is broadly applicable to the breakdown of other polysaccharides in both B. thetaiotaomicron and other gut Bacteroides spp. The uncovered mechanism enables regulation of polysaccharide utilization genes in response to both the polysaccharide and its breakdown products. Breakdown of complex polysaccharides derived from "dietary fiber" is achieved by the mammalian gut microbiota. This breakdown creates a critical nutrient source for both the microbiota and its mammalian host. Because the availability of individual polysaccharides fluctuates with variations in the host diet, members of the microbiota strictly control expression of polysaccharide utilization genes. Our findings define a regulatory architecture that controls the breakdown of a polysaccharide by a gut bacterium in response to three distinct signals. This architecture integrates perception of a complex polysaccharide and its monomeric constituent as well as feedback of central metabolism. Moreover, it is broadly applicable to several prominent members of the mammalian gut microbiota. The identified regulatory strategy may contribute to the abundance of gut Bacteroides, despite fluctuations in the host diet. Copyright © 2016 Schwalm et al.
NASA Technical Reports Server (NTRS)
Fitz, Rhonda; Whitman, Gerek
2016-01-01
Research into complexities of software systems Fault Management (FM) and how architectural design decisions affect safety, preservation of assets, and maintenance of desired system functionality has coalesced into a technical reference (TR) suite that advances the provision of safety and mission assurance. The NASA Independent Verification and Validation (IVV) Program, with Software Assurance Research Program support, extracted FM architectures across the IVV portfolio to evaluate robustness, assess visibility for validation and test, and define software assurance methods applied to the architectures and designs. This investigation spanned IVV projects with seven different primary developers, a wide range of sizes and complexities, and encompassed Deep Space Robotic, Human Spaceflight, and Earth Orbiter mission FM architectures. The initiative continues with an expansion of the TR suite to include Launch Vehicles, adding the benefit of investigating differences intrinsic to model-based FM architectures and insight into complexities of FM within an Agile software development environment, in order to improve awareness of how nontraditional processes affect FM architectural design and system health management.
NASA Astrophysics Data System (ADS)
Domercant, Jean Charles
The combination of today's national security environment and mandated acquisition policies makes it necessary for military systems to interoperate with each other to greater degrees. This growing interdependency results in complex Systems-of-Systems (SoS) that only continue to grow in complexity to meet evolving capability needs. Thus, timely and affordable acquisition becomes more difficult, especially in the face of mounting budgetary pressures. To counter this, architecting principles must be applied to SoS design. The research objective is to develop an Architecture Real Options Complexity-Based Valuation Methodology (ARC-VM) suitable for acquisition-level decision making, where there is a stated desire for more informed tradeoffs between cost, schedule, and performance during the early phases of design. First, a framework is introduced to measure architecture complexity as it directly relates to military SoS. Development of the framework draws upon a diverse set of disciplines, including Complexity Science, software architecting, measurement theory, and utility theory. Next, a Real Options based valuation strategy is developed using techniques established for financial stock options that have recently been adapted for use in business and engineering decisions. The derived complexity measure provides architects with an objective measure of complexity that focuses on relevant complex system attributes. These attributes are related to the organization and distribution of SoS functionality and the sharing and processing of resources. The use of Real Options provides the necessary conceptual and visual framework to quantifiably and traceably combine measured architecture complexity, time-valued performance levels, as well as programmatic risks and uncertainties. An example suppression of enemy air defenses (SEAD) capability demonstrates the development and usefulness of the resulting architecture complexity & Real Options based valuation methodology. Different portfolios of candidate system types are used to generate an array of architecture alternatives that are then evaluated using an engagement model. This performance data is combined with both measured architecture complexity and programmatic data to assign an acquisition value to each alternative. This proves useful when selecting alternatives most likely to meet current and future capability needs.
The role of fiber and matrix in crash energy absorption of composite materials
NASA Technical Reports Server (NTRS)
Farley, G. L.; Bird, R. K.; Modlin, J. T.
1986-01-01
Static crushing tests were conducted on tube specimens fabricated from graphite/epoxy, Kevlar/epoxy and hybrid combinations of graphite-Kevlar/epoxy to examine the influence the fiber and matrix constitutive properties and laminate architecture have on energy absorption. Fiber and matrix ultimate failure strain were determined to significantly effect energy absorption. The energy absorption capability of high ultimate failure strain materials (AS-6/F185 and AS-6/HST-7) was less than materials having lower ultimate failure strain. Lamina stacking sequence had up to a 300 percent change in energy absorption for the materials tested. Hybridizing with graphite and Kevlar reinforcements resulted in materials with high energy absorption capabilities that have postcrushing integrity.
NASA Astrophysics Data System (ADS)
Mahmoud, Mohamed; Fayed, Heba A.; Aly, Moustafa H.; Aboul Seoud, A. K.
2011-08-01
A new device, optical cross add drop multiplexer (OXADM), is proposed and analyzed. It uses the combination concept of optical add drop multiplexer (OADM) and optical cross connect (OXC). It enables a wavelength switch while implementing add and drop functions simultaneously. So, it expands the applications in fiber to the home (FTTH) and optical core networks. A very high isolation crosstalk level (~ 60 dB) is achieved. Also, a bidirectional OXADM and N×N OXADM are proposed. Finally, a multistage OXADM is presented making some sort of wavelength buffering. To make these devices operate more efficient, tunable fiber Bragg gratings (TFBGs) switches are used to control the operation mechanism.
The resilient hybrid fiber sensor network with self-healing function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shibo, E-mail: Shibo-Xu@tju.edu.cn; Liu, Tiegen; Ge, Chunfeng
This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working inmore » FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.« less
[Fiber-reinforced composite in fixed prosthodontics].
Pilo, R; Abu Rass, Z; Shmidt, A
2010-07-01
Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable.
Bashur, Chris A; Dahlgren, Linda A; Goldstein, Aaron S
2006-11-01
Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes-formed by the electrospinning process-can regulate cell morphology. To test this, fused fiber meshes of poly(d,l-lactic-co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14-3.6 microm, and angular standard deviations of 31-60 degrees . Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 microm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.
Beetz, Christian; Johnson, Adam; Schuh, Amber L; Thakur, Seema; Varga, Rita-Eva; Fothergill, Thomas; Hertel, Nicole; Bomba-Warczak, Ewa; Thiele, Holger; Nürnberg, Gudrun; Altmüller, Janine; Saxena, Renu; Chapman, Edwin R; Dent, Erik W; Nürnberg, Peter; Audhya, Anjon
2013-03-26
Hereditary spastic paraplegias are a clinically and genetically heterogeneous group of gait disorders. Their pathological hallmark is a length-dependent distal axonopathy of nerve fibers in the corticospinal tract. Involvement of other neurons can cause additional neurological symptoms, which define a diverse set of complex hereditary spastic paraplegias. We present two siblings who have the unusual combination of early-onset spastic paraplegia, optic atrophy, and neuropathy. Genome-wide SNP-typing, linkage analysis, and exome sequencing revealed a homozygous c.316C>T (p.R106C) variant in the Trk-fused gene (TFG) as the only plausible mutation. Biochemical characterization of the mutant protein demonstrated a defect in its ability to self-assemble into an oligomeric complex, which is critical for normal TFG function. In cell lines, TFG inhibition slows protein secretion from the endoplasmic reticulum (ER) and alters ER morphology, disrupting organization of peripheral ER tubules and causing collapse of the ER network onto the underlying microtubule cytoskeleton. The present study provides a unique link between altered ER architecture and neurodegeneration.
A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2018-02-01
Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.
Cryptography for a High-Assurance Web-Based Enterprise
2013-10-01
2. Other Cryptographic services - Java provides many cryptographic services through the Java Cryptography Architecture (JCA) framework. The...id=2125 [7]. Miller, Sandra Kay, Fiber Optic Networks Vulnerable to Attack, Information Security Magazine, November 15, 2006, [8]. José R.C
Born to run: creating the muscle fiber.
Schejter, Eyal D; Baylies, Mary K
2010-10-01
From the muscles that control the blink of your eye to those that allow you to walk, the basic architecture of muscle is the same: muscles consist of bundles of the unit muscle cell, the muscle fiber. The unique morphology of the individual muscle fiber is dictated by the functional demands necessary to generate and withstand the forces of contraction, which in turn leads to movement. Contractile muscle fibers are elongated, syncytial cells, which interact with both the nervous and skeletal systems to govern body motion. In this review, we focus on three key cell-cell and cell-matrix contact processes, that are necessary to create this exquisitely specialized cell: cell fusion, cell elongation, and establishment of a myotendinous junction. We address these processes by highlighting recent findings from the Drosophila model system. Copyright © 2010 Elsevier Ltd. All rights reserved.
General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.
Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng
2017-05-02
As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.
Asif, Rameez
2016-01-01
Space division multiplexing (SDM), incorporating multi-core fibers (MCFs), has been demonstrated for effectively maximizing the data capacity in an impending capacity crunch. To achieve high spectral-density through multi-carrier encoding while simultaneously maintaining transmission reach, benefits from inter-core crosstalk (XT) and non-linear compensation must be utilized. In this report, we propose a proof-of-concept unified receiver architecture that jointly compensates optical Kerr effects, intra- and inter-core XT in MCFs. The architecture is analysed in multi-channel 512 Gbit/s dual-carrier DP-16QAM system over 800 km 19-core MCF to validate the digital compensation of inter-core XT. Through this architecture: (a) we efficiently compensates the inter-core XT improving Q-factor by 4.82 dB and (b) achieve a momentous gain in transmission reach, increasing the maximum achievable distance from 480 km to 1208 km, via analytical analysis. Simulation results confirm that inter-core XT distortions are more relentless for cores fabricated around the central axis of cladding. Predominantly, XT induced Q-penalty can be suppressed to be less than 1 dB up-to −11.56 dB of inter-core XT over 800 km MCF, offering flexibility to fabricate dense core structures with same cladding diameter. Moreover, this report outlines the relationship between core pitch and forward-error correction (FEC). PMID:27270381
Fiber optical sensing on-board communication satellites
NASA Astrophysics Data System (ADS)
Hurni, A.; Lemke, N. M. K.; Roner, M.; Obermaier, J.; Putzer, P.; Kuhenuri Chami, N.
2017-11-01
Striving constantly to reduce mass, AIT effort and overall cost of the classical point-to-point wired temperature sensor harness on-board telecommunication satellites, OHB System (formerly Kayser-Threde) has introduced the Hybrid Sensor Bus (HSB) system. As a future spacecraft platform element, HSB relies on electrical remote sensor units as well as fiber-optical sensors, both of which can serially be connected in a bus architecture. HSB is a modular measurement system with many applications, also thanks to the opportunities posed by the digital I²C bus. The emphasis, however, is on the introduction of fiber optics and especially fiber-Bragg grating (FBG) temperature sensors as disruptive innovation for the company's satellite platforms. The light weight FBG sensors are directly inscribed in mechanically robust and radiation tolerant fibers, reducing the need for optical fiber connectors and splices to a minimum. Wherever an FBG sensor shall be used, the fiber is glued together with a corresponding temperature transducer to the satellites structure or to a subsystem. The transducer is necessary to provide decoupling of mechanical stress, but simultaneously ensure a high thermal conductivity. HSB has been developed in the frame of an ESA-ARTES program with European and German co-funding and will be verified as flight demonstrator on-board the German Heinrich Hertz satellite (H2Sat). In this paper the Engineering Model development of HSB is presented and a Fiber-optical Sensor Multiplexer for a more flexible sensor bus architecture is introduced. The HSB system aims at telecommunication satellite platforms with an operational life time beyond 15 years in geostationary orbit. It claims a high compatibility in terms of performance and interfaces with existing platforms while it was designed with future applications with increased radiation exposure already in mind. In its basic configuration HSB consists of four modules which are the Power Supply Unit, the HSB Controller Module, the Interrogator Controller Module and the Analog Front-End for the fiber-optical interrogation. The Interrogator Controller Module handles both, the electrical and fiber-optical sensor network. For the latter it is to be completed by the Analog Front-End. On this front-end, a tunable laser diode is implemented for the scanning of the FBG sensors. The reflected spectra are measured on multiple fiber channels and are then evaluated by use of a peak detection algorithm in order to obtain a precise temperature measurement. The precise operation of the photonic system on long terms can be guaranteed thanks to an inorbit calibration concept.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.
Brauchle, Eva; Bauer, Hannah; Fernes, Patrick; Zuk, Alexandra; Schenke-Layland, Katja; Sengle, Gerhard
2017-04-01
Fibrillin microfibrils and elastic fibers are critical determinants of elastic tissues where they define as tissue-specific architectures vital mechanical properties such as pliability and elastic recoil. Fibrillin microfibrils also facilitate elastic fiber formation and support the association of epithelial cells with the interstitial matrix. Mutations in fibrillin-1 (FBN1) are causative for the Marfan syndrome, a congenital multisystem disorder characterized by progressive deterioration of the fibrillin microfibril/ elastic fiber architecture in the cardiovascular, musculoskeletal, ocular, and dermal system. In this study, we utilized Raman microspectroscopy in combination with principal component analysis (PCA) to analyze the molecular consequences of fibrillin-1 deficiency in skin of a mouse model (GT8) of Marfan syndrome. In addition, full-thickness skin models incorporating murine wild-type and Fbn1 GT8/GT8 fibroblasts as well as human HaCaT keratinocytes were generated and analyzed. Skin models containing GT8 fibroblasts showed an altered epidermal morphology when compared to wild-type models indicating a new role for fibrillin-1 in dermal-epidermal crosstalk. Obtained Raman spectra together with PCA allowed to discriminate between healthy and deficient microfibrillar networks in murine dermis and skin models. Interestingly, results obtained from GT8 dermis and skin models showed similar alterations in molecular signatures triggered by fibrillin-1 deficiency such as amide III vibrations and decreased levels of glycan vibrations. Overall, this study indicates that Raman microspectroscopy has the potential to analyze subtle changes in fibrillin-1 microfibrils and elastic fiber networks. Therefore Raman microspectroscopy may be utilized as a non-invasive and sensitive diagnostic tool to identify connective tissue disorders and monitor their disease progression. Mutations in building blocks of the fibrillin microfibril/ elastic fiber network manifest in disease conditions such as aneurysms, emphysema or lax skin. Understanding how structural changes induced by fibrillin-1 mutation impact the architecture of fibrillin microfibrils, which then translates into an altered activation state of targeted growth factors, represents a huge challenge in elucidating the genotype-phenotype correlations in connective tissue disorders such as Marfan syndrome. This study shows that Raman microspectroscopy is able to reveal structural changes in fibrillin-1 microfibrils and elastic fiber networks and to discriminate between normal and diseased networks in vivo and in vitro. Therefore Raman microspectroscopy may be utilized as a non-invasive and sensitive diagnostic tool to identify connective tissue disorders and monitor their disease progression. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.
Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-08-14
Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.
NASA Astrophysics Data System (ADS)
Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming
2013-12-01
Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.
NASA Astrophysics Data System (ADS)
Rasel, Sheikh Md
We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites containing 0, 5, 10, and 20 wt % of fillers. Morphological analyses carried out by digital optical microscope, scanning electron microscopy, x-ray computed tomography, and Fourier transform infrared spectroscopy, confirmed the presence and well dispersion of fillers in the composites. In addition, improvement of mechanical properties with increased filler content further emphasized the adhesion between matrix and reinforcement. PVA with 20 wt % wollastonite composite exhibited the highest tensile strength (11.99 MPa) and tensile module (198 MPa) as compared to pure PVA (3.92 MPa and 83 MPa, respectively). Moreover, the thermal tests demonstrated that there is no major deviation in the thermal stability due to the addition of wollastonite in PVA scaffolds. Almost similar trend was observed in PVA/wood flour nanocomposites where tensile strength improved by 228 % for 20 wt % of reinforcement. The PVA/wollastonite and PVA/wood flour fibrous nanocomposite which poses higher mechanical properties might be potentially suitable for many advanced applications such as filtration, tissue engineering, and food processing. We believe this study will contribute to further scientific understanding of the patterning mechanism of electrospun nanofibers and to allow for variety of design of specific patterned nanofibrous architectures with desired functional properties. Therefore, this improved scheme of electrospinning can have significant impact in a broad range of applications including tissue engineering scaffolds, filtrations, and nanoelectronics.
Bansal, Sonia; Mandalapu, Sai; Aeppli, Céline; Qu, Feini; Szczesny, Spencer E; Mauck, Robert L; Zgonis, Miltiadis H
2017-07-01
The meniscus is comprised of circumferentially aligned fibers that resist the tensile forces within the meniscus (i.e., hoop stress) that develop during loading of the knee. Although these circumferential fibers are severed by radial meniscal tears, tibial contact stresses do not increase until the tear reaches ∼90% of the meniscus width, suggesting that the severed circumferential fibers still bear load and maintain the mechanical functionality of the meniscus. Recent data demonstrates that the interfibrillar matrix can transfer strain energy to disconnected fibrils in tendon fascicles. In the meniscus, interdigitating radial tie fibers, which function to stabilize and bind the circumferential fibers together, are hypothesized to function in a similar manner by transmitting load to severed circumferential fibers near a radial tear. To test this hypothesis, we developed an engineered fibrous analog of the knee meniscus using poly(ε-caprolactone) to create aligned scaffolds with variable amounts of non-aligned elements embedded within the scaffold. We show that the tensile properties of these scaffolds are a function of the ratio of aligned to non-aligned elements, and change in a predictable fashion following a simple mixture model. When measuring the loss of mechanical function in scaffolds with a radial tear, compared to intact scaffolds, the decrease in apparent linear modulus was reduced in scaffolds containing non-aligned layers compared to purely aligned scaffolds. Increased strains in areas adjacent to the defect were also noted in composite scaffolds. These findings indicate that non-aligned (disorganized) elements interspersed within an aligned network can improve overall mechanical function by promoting strain transfer to nearby disconnected fibers. This finding supports the notion that radial tie fibers may similarly promote tear tolerance in the knee meniscus, and will direct changes in clinical practice and provide guidance for tissue engineering strategies. The meniscus is a complex fibrous tissue, whose architecture includes radial tie fibers that run perpendicular to and interdigitate with the predominant circumferential fibers. We hypothesized that these radial elements function to preserve mechanical function in the context of interruption of circumferential bundles, as would be the case in a meniscal tear. To test this hypothesis, we developed a biomaterial analog containing disorganized layers enmeshed regularly throughout an otherwise aligned network. Using this material formulation, we showed that strain transmission is improved in the vicinity of defects when disorganized fiber layers were present. This supports the idea that radial elements within the meniscus improve function near a tear, and will guide future clinical interventions and the development of engineered replacements. Copyright © 2017 Acta Materialia Inc. All rights reserved.
Taphonomic evidence for high-speed adapted fins in thunniform ichthyosaurs.
Lingham-Soliar, Theagarten; Plodowski, Gerhard
2007-01-01
Ichthyosaurs have been compared with the fast-swimming thunniform groups of marine vertebrates, tuna, lamnid sharks, and dolphins, based on similarity of shape of the body and locomotory organs. In addition to shape, high-tensile stiffness of the control surfaces has been shown to be essential in maximizing hydrodynamic efficiency in extant thunniform swimmers. To date, there has been no evidence of a stiffening support system for the dorsal fin and dorsal lobe of the caudal fin in ichthyosaurs, the sole stiffening structure of the ventral lobe being an extension of the vertebral column along its leading edge. Stenopterygius SMF 457 is arguably the best soft-tissue preserved ichthyosaur specimen known. Here, we examine soft-tissue preservation in this specimen in the control surfaces and provide the first evidence of a complex architecture of stiff fibers in the dorsal and caudal fins. We find by comparisons and by analogy that these fibers provided a remarkable mechanism for high tensile stiffness and efficiency of the locomotory organs virtually identical to that of the great white shark, Carcharodon carcharias. It is the first mechanostructural study of the control surfaces of a Jurassic ichthyosaur that adds essential evidence in support of the view that these forms were high-speed thunniform swimmers.
Taphonomic evidence for high-speed adapted fins in thunniform ichthyosaurs
NASA Astrophysics Data System (ADS)
Lingham-Soliar, Theagarten; Plodowski, Gerhard
2007-01-01
Ichthyosaurs have been compared with the fast-swimming thunniform groups of marine vertebrates, tuna, lamnid sharks, and dolphins, based on similarity of shape of the body and locomotory organs. In addition to shape, high-tensile stiffness of the control surfaces has been shown to be essential in maximizing hydrodynamic efficiency in extant thunniform swimmers. To date, there has been no evidence of a stiffening support system for the dorsal fin and dorsal lobe of the caudal fin in ichthyosaurs, the sole stiffening structure of the ventral lobe being an extension of the vertebral column along its leading edge. Stenopterygius SMF 457 is arguably the best soft-tissue preserved ichthyosaur specimen known. Here, we examine soft-tissue preservation in this specimen in the control surfaces and provide the first evidence of a complex architecture of stiff fibers in the dorsal and caudal fins. We find by comparisons and by analogy that these fibers provided a remarkable mechanism for high tensile stiffness and efficiency of the locomotory organs virtually identical to that of the great white shark, Carcharodon carcharias. It is the first mechanostructural study of the control surfaces of a Jurassic ichthyosaur that adds essential evidence in support of the view that these forms were high-speed thunniform swimmers.
Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunenfelder, Lessa Kay; Milliron, Garrett; Herrera, Steven
Ecological pressures and varied feeding behaviors in a multitude of organ-isms have necessitated the drive for adaptation. One such change is seen in the feeding appendages of stomatopods, a group of highly predatory marine crustaceans. Stomatopods include “spearers,” who ambush and snare soft bodied prey, and “smashers,” who bludgeon hard-shelled prey with a heavily mineralized club. The regional substructural complexity of the stomatopod dactyl club from the smashing predator Odontodactylus scyllarus represents a model system in the study of impact tolerant biominerals. The club consists of a highly mineralized impact region, a characteristic Bouligand architec-ture (common to arthropods), and amore » unique section of the club, the striated region, composed of highly aligned sheets of mineralized fibers. Detailed ultrastructural investigations of the striated region within O. scyllarus and a related species of spearing stomatopod, Lysiosquillina maculate show consistent organization of mineral and organic, but distinct differences in macro-scale architecture. Evidence is provided for the function and substructural exaptation of the striated region, which facilitated redeployment of a rapto-rial feeding appendage as a biological hammer. Furthermore, given the need to accelerate underwater and “grab” or “smash” their prey, the spearer and smasher appendages are specifically designed with a significantly reduced drag force.« less
Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles
Grunenfelder, Lessa Kay; Milliron, Garrett; Herrera, Steven; ...
2018-01-16
Ecological pressures and varied feeding behaviors in a multitude of organ-isms have necessitated the drive for adaptation. One such change is seen in the feeding appendages of stomatopods, a group of highly predatory marine crustaceans. Stomatopods include “spearers,” who ambush and snare soft bodied prey, and “smashers,” who bludgeon hard-shelled prey with a heavily mineralized club. The regional substructural complexity of the stomatopod dactyl club from the smashing predator Odontodactylus scyllarus represents a model system in the study of impact tolerant biominerals. The club consists of a highly mineralized impact region, a characteristic Bouligand architec-ture (common to arthropods), and amore » unique section of the club, the striated region, composed of highly aligned sheets of mineralized fibers. Detailed ultrastructural investigations of the striated region within O. scyllarus and a related species of spearing stomatopod, Lysiosquillina maculate show consistent organization of mineral and organic, but distinct differences in macro-scale architecture. Evidence is provided for the function and substructural exaptation of the striated region, which facilitated redeployment of a rapto-rial feeding appendage as a biological hammer. Furthermore, given the need to accelerate underwater and “grab” or “smash” their prey, the spearer and smasher appendages are specifically designed with a significantly reduced drag force.« less
Shape-morphing composites with designed micro-architectures
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; ...
2016-06-15
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designedmore » for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. As a result, the ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.« less
Substance use recovery and diet
... nausea). A high-fiber diet with plenty of complex carbohydrates (such as whole grains, vegetables, peas, and beans) ... that are low in fat Get more protein, complex carbohydrates , and dietary fiber Vitamin and mineral supplements may ...
High brightness diode laser module development at nLIGHT Photonics
NASA Astrophysics Data System (ADS)
Price, Kirk; Karlsen, Scott; Brown, Aaron; Reynolds, Mitch; Mehl, Ron; Leisher, Paul; Patterson, Steve; Bell, Jake; Martinsen, Rob
2009-05-01
We report on the development of ultra-high brightness laser diode modules at nLIGHT Photonics. This paper demonstrates a laser diode module capable of coupling over 100W at 976 nm into a 105 μm, 0.15 NA fiber with fiber coupling efficiency greater than 85%. The high brightness module has an optical excitation under 0.13 NA, is virtually free of cladding modes, and has been wavelength stabilized with the use of volume holographic gratings for narrow-band operation. Utilizing nLIGHT's Pearl product architecture, these modules are based on hard soldered single emitters packaged into a compact and passively-cooled package. These modules are designed to be compatible with high power 7:1 fused fiber combiners, enabling over 500W power coupled into a 220 μm, 0.22 NA fiber. These modules address the need in the market for high brightness and wavelength stabilized diode lasers for pumping fiber lasers and solid-state laser systems.
Li, Yu; Liu, Yuanyuan; Li, Shuai; Liang, Gang; Jiang, Chen; Hu, Qingxi
2016-01-01
Alginate tubular fiber has been successfully prepared via coaxial fluid crosslink mode, which is potentially used for the construction of vascularized tissue engineering scaffolds (VTES). However, its elastic and smooth surface is negative for the adhesion of fibers. In this study, the gel fractions were controlled in a novel way of two-step crosslink process in order to meet the needs of each processing link. Based on such consideration, an appropriate formulation was selected to direct write single fiber, which ensured the tubular structure with enough gel portion as well as adhesion between fibers with the reserved sol. Finally, the integrity of the scaffolds had a further development within the 2nd crosslink bath process, which would help to solve the question of poor shear resistance for hydrogel scaffolds. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Finite Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite
NASA Technical Reports Server (NTRS)
Li, Xuetao; Binienda, Wieslaw K.; Goldberg, Robert K.
2010-01-01
A new three-dimensional finite element model of two-dimensional triaxially braided composites is presented in this paper. This meso-scale modeling technique is used to examine and predict the deformation and damage observed in tests of straight sided specimens. A unit cell based approach is used to take into account the braiding architecture as well as the mechanical properties of the fiber tows, the matrix and the fiber tow-matrix interface. A 0 deg / plus or minus 60 deg. braiding configuration has been investigated by conducting static finite element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by use of the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results to those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.
Chen, He; Zhou, Xuanfeng; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2015-12-28
We demonstrate Watt-level flat visible supercontinuum (SC) generation in photonic crystal fibers, which is directly pumped by broadband noise-like pulses from an Yb-doped all-fiber oscillator. The novel SC generator is featured with elegant all-fiber-integrated architecture, high spectral flatness and high efficiency. Wide optical spectrum spanning from 500 nm to 2300 nm with 1.02 W optical power is obtained under the pump of 1.4 W noise-like pulse. The flatness of the spectrum in the range of 700 nm~1600 nm is less than 5 dB (including the pump residue). The exceptional simplicity, economical efficiency and the comparable performances make the noise-like pulse oscillator a competitive candidate to the widely used cascade amplified coherent pulse as the pump source of broadband SC. To the best of our knowledge, this is the first demonstration of SC generation which is directly pumped by an all-fiber noise-like pulse oscillator.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.
1992-01-01
Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.
Jacobsen, Matthew M; Tokareva, Olena S; Ebrahimi, Davoud; Huang, Wenwen; Ling, Shengjie; Dinjaski, Nina; Li, David; Simon, Marc; Staii, Cristian; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-09-01
Accurate prediction and validation of the assembly of bioinspired peptide sequences into fibers with defined mechanical characteristics would aid significantly in designing and creating materials with desired properties. This process may also be utilized to provide insight into how the molecular architecture of many natural protein fibers is assembled. In this work, computational modeling and experimentation are used in tandem to determine how peptide terminal modification affects a fiber-forming core domain. Modeling shows that increased terminal molecular weight and hydrophilicity improve peptide chain alignment under shearing conditions and promote consolidation of semicrystalline domains. Mechanical analysis shows acute improvements to strength and elasticity, but significantly reduced extensibility and overall toughness. These results highlight an important entropic function that terminal domains of fiber-forming peptides exhibit as chain alignment promoters, which ultimately has notable consequences on the mechanical behavior of the final fiber products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morphology and Neurochemistry of Rabbit Iris Innervation
He, Jiucheng; Bazan, Haydee E.P.
2016-01-01
The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the first study to provide a two-dimensional whole mount and a cross-sectional view of the entire iris nerve architecture. Considering the anatomical location, the high expression of CGRP and SP suggests that these neuropeptides may play a role in the pathogenesis of anterior uveitis, glaucoma, cataracts and chronic ocular pain. PMID:25752697
Morphology and neurochemistry of rabbit iris innervation.
He, Jiucheng; Bazan, Haydee E P
2015-06-01
The aim of this study was to map the entire nerve architecture and sensory neuropeptide content of the rabbit iris. Irises from New Zealand rabbits were stained with antibodies against neuronal-class βIII-tubulin, calcitonin gene-related peptide (CGRP) and substance P (SP), and whole-mount images were acquired to build a two-dimensional view of the iridal nerve architecture. After taking images in time-lapse mode, we observed thick nerves running in the iris stroma close to the anterior epithelia, forming four to five stromal nerve rings from the iris periphery to the pupillary margin and sub-branches that connected with each other, constituting the stromal nerve plexus. In the anterior side, fine divisions derivated from the stromal nerves, forming a nerve network-like structure to innervate the superficial anterior border layer, with the pupillary margin having the densest innervation. In the posterior side, the nerve bundles ran along with the pupil dilator muscle in a radial pattern. The morphology of the iris nerves on both sides changed with pupil size. To obtain the relative content of the neuropeptides in the iris, the specimens were double stained with βIII-tubulin and CGRP or SP antibodies. Relative nerve fiber densities for each fiber population were assessed quantitatively by computer-assisted analysis. On the anterior side, CGRP-positive nerve fibers constituted about 61%, while SP-positive nerves constitute about 30.5%, of the total nerve content, which was expressed as βIII tubulin-positive fibers. In addition, in the anterior stroma of the collarette region, there were non-neuronal cells that were positive for SP. On the posterior side, CGRP-positive nerve fibers were about 69% of total nerve content, while SP constituted only up to 20%. Similarly, in the trigeminal ganglia (TG), the number of CGRP-positive neurons significantly outnumbered those that were positive for SP. Also, all the SP-positive neurons were labeled with CGRP. This is the first study to provide a two-dimensional whole mount and a cross-sectional view of the entire iris nerve architecture. Considering the anatomical location, the high expression of CGRP and SP suggests that these neuropeptides may play a role in the pathogenesis of anterior uveitis, glaucoma, cataracts and chronic ocular pain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Imaging White Matter in Human Brainstem
Ford, Anastasia A.; Colon-Perez, Luis; Triplett, William T.; Gullett, Joseph M.; Mareci, Thomas H.; FitzGerald, David B.
2013-01-01
The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo. PMID:23898254
Imaging white matter in human brainstem.
Ford, Anastasia A; Colon-Perez, Luis; Triplett, William T; Gullett, Joseph M; Mareci, Thomas H; Fitzgerald, David B
2013-01-01
The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.
Providing the full DDF link protection for bus-connected SIEPON based system architecture
NASA Astrophysics Data System (ADS)
Hwang, I.-Shyan; Pakpahan, Andrew Fernando; Liem, Andrew Tanny; Nikoukar, AliAkbar
2016-09-01
Currently a massive amount of traffic per second is delivered through EPON systems, one of the prominent access network technologies for delivering the next generation network. Therefore, it is vital to keep the EPON optical distribution network (ODN) working by providing the necessity protection mechanism in the deployed devices; otherwise, when failures occur it will cause a great loss for both network operators and business customers. In this paper, we propose a bus-connected architecture to protect and recover distribution drop fiber (DDF) link faults or transceiver failures at ONU(s) in SIEPON system. The proposed architecture provides a cost-effective architecture, which delivers the high fault-tolerance in handling multiple DDF faults, while also providing flexibility in choosing the backup ONU assignments. Simulation results show that the proposed architecture provides the reliability and maintains quality of service (QoS) performance in terms of mean packet delay, system throughput, packet loss and EF jitter when DDF link failures occur.
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph
1990-01-01
The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.
Processing-Related Issues for the Design and Lifing of SiC/SiC Hot-Section Components
NASA Technical Reports Server (NTRS)
DiCarlo, J.; Bhatt, R.; Morscher, G.; Yun, H. M.
2006-01-01
For successful SiC/SiC engine components, numerous process steps related to the fiber, fiber architecture, interphase coating, and matrix need to be optimized. Under recent NASA-sponsored programs, it was determined that many of these steps in their initial approach were inadequate, resulting in less than optimum thermostructural and life properties for the as-fabricated components. This presentation will briefly review many of these process issues, the key composite properties they degrade, their underlying mechanisms, and current process remedies developed by NASA and others.
QoS-aware integrated fiber-wireless standard compliant architecture based on XGPON and EDCA
NASA Astrophysics Data System (ADS)
Kaur, Ravneet; Srivastava, Anand
2018-01-01
Converged Fiber-Wireless (FiWi) broadband access network proves to be a promising candidate that is reliable, robust, cost efficient, ubiquitous and capable of providing huge amount of bandwidth. To meet the ever-increasing bandwidth requirements, it has become very crucial to investigate the performance issues that arise with the deployment of next-generation Passive Optical Network (PON) and its integration with various wireless technologies. Apart from providing high speed internet access for mass use, this combined architecture aims to enable delivery of high quality and effective e-services in different categories including health, education, finance, banking, agriculture and e-government. In this work, we present an integrated architecture of 10-Gigabit-capable PON (XG-PON) and Enhanced Distributed Channel Access (EDCA) that combines the benefits of both technologies to meet the QoS demands of subscribers. Performance evaluation of the standards-compliant hybrid network is done using discrete-event Network Simulator-3 (NS-3) and results are reported in terms of throughput, average delay, average packet loss rate and fairness index. Per-class throughput signifies effectiveness of QoS distribution whereas aggregate throughput indicates effective utilization of wireless channel. This work has not been reported so far to the best of our knowledge.
Rotational 3D printing of damage-tolerant composites with programmable mechanics.
Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A
2018-02-06
Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.
Krüger, Oliver; Shiozawa, Thomas; Kreifelts, Benjamin; Scheffler, Klaus; Ethofer, Thomas
2015-05-01
The bed nucleus of the stria terminalis (BNST) is an important relay for multiple cortical and subcortical regions involved in processing anxiety as well as neuroendocrine and autonomic responses to stress, and it is thought to play a role in the dysregulation of these functions as well as in addictive behavior. While its architecture and connection profile have been thoroughly examined in animals, studies in humans have been limited to post-mortem histological descriptions of the BNST itself, not accounting for the distribution of its various connections. In the current study, we used diffusion-weighted magnetic resonance imaging (DW-MRI) to investigate the courses of fiber tracks connected to the BNST in humans. We restricted our seed region for probabilistic fiber tracking to the dorsal part of the BNST, as the ventral BNST is not distinguishable from the surrounding grey matter structures using magnetic resonance imaging. Our results show two distinct pathways of the BNST to the amygdala via the stria terminalis and the ansa peduncularis, as well as connections to the hypothalamus. Finally, we distinguished a route to the orbitofrontal cortex (OFC) running through the head of the caudate nucleus (CN) and the nucleus accumbens (NAcc). Pathways to brainstem regions were found to show a considerable inter-individual variability and thus no common pathway could be identified across participants. In summary, our findings reveal a complex network of brain structures involved in behavioral and neuroendocrine regulation, with the BNST in a central position. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert
2012-04-02
There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuchipudi, Suresh Chandra
Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.
Computational imaging through a fiber-optic bundle
NASA Astrophysics Data System (ADS)
Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.
2017-05-01
Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.
Pravdin, Sergey F; Dierckx, Hans; Katsnelson, Leonid B; Solovyova, Olga; Markhasin, Vladimir S; Panfilov, Alexander V
2014-01-01
We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.
Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph
2016-05-20
The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.
Unbundling in Current Broadband and Next-Generation Ultra-Broadband Access Networks
NASA Astrophysics Data System (ADS)
Gaudino, Roberto; Giuliano, Romeo; Mazzenga, Franco; Valcarenghi, Luca; Vatalaro, Francesco
2014-05-01
This article overviews the methods that are currently under investigation for implementing multi-operator open-access/shared-access techniques in next-generation access ultra-broadband architectures, starting from the traditional "unbundling-of-the-local-loop" techniques implemented in legacy twisted-pair digital subscriber line access networks. A straightforward replication of these copper-based unbundling-of-the-local-loop techniques is usually not feasible on next-generation access networks, including fiber-to-the-home point-to-multipoint passive optical networks. To investigate this issue, the article first gives a concise description of traditional copper-based unbundling-of-the-local-loop solutions, then focalizes on both next-generation access hybrid fiber-copper digital subscriber line fiber-to-the-cabinet scenarios and on fiber to the home by accounting for the mix of regulatory and technological reasons driving the next-generation access migration path, focusing mostly on the European situation.
Progress in Cherenkov femtosecond fiber lasers
Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry
2016-01-01
We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037
Shao, Jing; Sun, Junqiang
2012-08-15
We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.
Progress in Cherenkov femtosecond fiber lasers.
Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry
2016-01-20
We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.
NASA Astrophysics Data System (ADS)
Zhao, J. F.; Liao, T. Q.; Zhang, C.; Zhang, R. X.; Miao, C. Y.; Tong, Z. R.
2012-09-01
A 50 nm tuning range multiwavelength Brillouin-erbium fiber laser (MWBEFL) with double Brillouin frequency spacing is presented. Two separated gain blocks with symmetrical architecture, consisted by erbium-doped fiber amplifiers (EDFAs) and Brillouin gain media, are used to generate double Brillouin frequency spacing. The wider tuning range is realized by eliminating the self-lasing cavity modes existing in conventional MWBEFLs because of the absence of the physical mirrors at the ends of the linear cavity. The Brillouin pump (BP) is preamplified by the EDFA before entering the single-mode fiber (SMF), which leads to the reduction of threshold power and the generation enhancement of Brillouin Stokes (BS) signals. Four channels with 0.176 nm spacing are achieved at 2 mW BP power and 280 mW 980 nm pump power which can be tuned from 1525 to 1575 nm.
Design Curve Generation for 3D SiC Fiber Architecture
NASA Technical Reports Server (NTRS)
Lang, Jerry; Dicarlo, James A.
2014-01-01
The design tool provides design curves that allow a simple and quick way to examine multiple factors that can influence the processing and key properties of the preforms and their final SiC-reinforced ceramic composites without over obligating financial capital for the fabricating of materials. Tool predictions for process and fiber fraction properties have been validated for a HNS 3D preform.The virtualization aspect of the tool will be used to provide a quick generation of solid models with actual fiber paths for finite element evaluation to predict mechanical and thermal properties of proposed composites as well as mechanical displacement behavior due to creep and stress relaxation to study load sharing characteristic between constitutes for better performance.Tool predictions for the fiber controlled properties of the SiCSiC CMC fabricated from the HNS preforms will be valuated and up-graded from the measurements on these CMC
Muscle Fiber Types and Training.
ERIC Educational Resources Information Center
Karp, Jason R.
2001-01-01
The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…
Research in Optical Symbolic Tasks
1989-11-29
November 1989. Specifically, we have concentrated on the following topics: complexity studies for optical neural and digital systems, architecture and...1989. Specifically, we hav, concentrated on the following topics: complexity studies for optical neural and digital systems, architecture and models for...Digital Systems 1.1 Digital Optical Parallel System Complexity Our study of digital optical system complexity has included a comparison of optical and
Optical chirp z-transform processor with a simplified architecture.
Ngo, Nam Quoc
2014-12-29
Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.
Rotational 3D printing of damage-tolerant composites with programmable mechanics
Raney, Jordan R.; Compton, Brett G.; Ober, Thomas J.; Shea, Kristina; Lewis, Jennifer A.
2018-01-01
Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber–epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. PMID:29348206
Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications.
Hart, Amelia H C; Koizumi, Ryota; Hamel, John; Owuor, Peter Samora; Ito, Yusuke; Ozden, Sehmus; Bhowmick, Sanjit; Syed Amanulla, Syed Asif; Tsafack, Thierry; Keyshar, Kunttal; Mital, Rahul; Hurst, Janet; Vajtai, Robert; Tiwary, Chandra Sekhar; Ajayan, Pulickel M
2017-04-19
The most recent and innovative silicon carbide (SiC) fiber ceramic matrix composites, used for lightweight high-heat engine parts in aerospace applications, are woven, layered, and then surrounded by a SiC ceramic matrix composite (CMC). To further improve both the mechanical properties and thermal and oxidative resistance abilities of this material, SiC nanotubes and nanowires (SiCNT/NWs) are grown on the surface of the SiC fiber via carbon nanotube conversion. This conversion utilizes the shape memory synthesis (SMS) method, starting with carbon nanotube (CNT) growth on the SiC fiber surface, to capitalize on the ease of dense surface morphology optimization and the ability to effectively engineer the CNT-SiC fiber interface to create a secure nanotube-fiber attachment. Then, by converting the CNTs to SiCNT/NWs, the relative morphology, advantageous mechanical properties, and secure connection of the initial CNT-SiC fiber architecture are retained, with the addition of high temperature and oxidation resistance. The resultant SiCNT/NW-SiC fiber can be used inside the SiC ceramic matrix composite for a high-heat turbo engine part with longer fatigue life and higher temperature resistance. The differing sides of the woven SiCNT/NWs act as the "hook and loop" mechanism of Velcro but in much smaller scale.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Arnold, Steven M.
2000-01-01
The generalized method of cells micromechanics model is utilized to analyze the tensile stress-strain response of a representative titanium matrix composite with weak interfacial bonding. The fiber/matrix interface is modeled through application of a displacement discontinuity between the fiber and matrix once a critical debonding stress has been exceeded. Unidirectional composites with loading parallel and perpendicular to the fibers are examined, as well as a cross-ply laminate. For each of the laminates studied, analytically obtained results are compared to experimental data. The application of residual stresses through a cool-down process was found to have a significant effect on the tensile response. For the unidirectional laminate with loading applied perpendicular to the fibers, fiber packing and fiber shape were shown to have a significant effect on the predicted tensile response. Furthermore, the interface was characterized through the use of semi-emperical parameters including an interfacial compliance and a "debond stress;" defined as the stress level across the interface which activates fiber/matrix debonding. The results in this paper demonstrate that if architectural factors are correctly accounted for and the interface is appropriately characterized, the macro-level composite behavior can be correctly predicted without modifying any of the fiber or matrix constituent properties.
Kiriaev, Leonit; Kueh, Sindy; Morley, John W; North, Kathryn N; Houweling, Peter J; Head, Stewart I
2018-02-07
A striking pathological feature of dystrophinopathies is the presence of morphologically abnormal branched skeletal muscle fibers. The deterioration of muscle contractile function in Duchenne muscular dystrophy is accompanied by both an increase in number and complexity of these branched fibers. We propose that when number and complexity of branched fibers reaches a critical threshold, "tipping point" the branches in and of themselves are the site of contraction-induced rupture. In the present study, we use the dystrophic mdx mouse and littermate controls to study the pre-diseased dystrophic fast-twitch EDL muscle at 2-3-weeks, the peak myonecrotic phase at 6-9 weeks and finally "old" at 58-112 weeks. Using a combination of isolated muscle function contractile measurements coupled with single fiber imaging and confocal microscope imaging of cleared whole muscles we identified a distinct pathophysiology; acute fiber rupture at branch nodes, which occurs in "old" fast-twitch EDL muscle approaching the end stage of the dystrophinopathy muscle disease, where the EDL muscles are entirely composed of complexed branched fibers. This evidence supports our concept of "tipping point" where the number and extent of fiber branching reaches a level where the branching itself terminally compromises muscle function, irrespective of the absence of dystrophin.
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
Almond, Kelly M; Trombetta, Louis D
2017-09-01
The metal pyrithiones, principally zinc (ZnPT) and copper (CuPT), are replacing tributyltin (TBT) as antifouling agents. Zebrafish embryos were exposed within the first hour after fertilization to 12 and 64 µg/L of CuPT for 24 h. Morphological abnormalities in notochord and muscle architecture were observed at 96 h post fertilization (hpf). TEM revealed abnormal electron dense deposits in the notochord sheath and muscle fiber degeneration in animals treated with 12 µg/L of CuPT. Embryos that were exposed to 64 µg/L of CuPT displayed severe muscle fiber degeneration including abnormal A and I band patterning and altered z disk arrangement. Abnormalities in the notochord sheath, swelling of the mitochondria and numerous lipid whorls were also noted. Total antioxidant capacity was significantly decreased in embryos exposed to 12 and 64 µg/L of CuPT. Acridine orange staining revealed an increase in apoptosis particularly in the brain, eye, heart and tail regions of both treatment groups. Apoptosis was confirmed with an increase in caspase 3/7 activity in both treatment groups. Severe alternations in primary motor neuron axon extensions, slow tonic muscle fibers and fast twitch fibers were observed in CuPT treated embryos. There was a significant upregulation in sonic hedgehog and myod1 expression at 24 hpf in the 12 µg/L treatment group. Exposed zebrafish embryos showed ultra-structural hallmarks of peroxidative injury and cell death via apoptosis. These changes question the use of copper pyrithione as an antifouling agent.
The 1994 Fiber Optic Sensors for Aerospace Technology (FOSAT) Workshop
NASA Technical Reports Server (NTRS)
Baumbick, Robert (Compiler); Adamovsky, Grigory (Compiler); Tuma, Meg (Compiler); Beheim, Glenn (Compiler); Sotomayor, Jorge (Compiler)
1995-01-01
The NASA Lewis Research Center conducted a workshop on fiber optic technology on October 18-20, 1994. The workshop objective was to discuss the future direction of fiber optics and optical sensor research, especially in the aerospace arena. The workshop was separated into four sections: (1) a Systems Section which dealt specifically with top level overall architectures for the aircraft and engine; (2) a Subsystems Section considered the parts and pieces that made up the subsystems of the overall systems; (3) a Sensor/Actuators section considered the status of research on passive optical sensors and optical powered actuators; and (4) Components Section which addressed the interconnects for the optical systems (e.g., optical connectors, optical fibers, etc.). This report contains the minutes of the discussion on the workshop, both in each section and in the plenary sessions. The slides used by a limited number of presenters are also included as presented. No attempt was made to homogenize this report. The view of most of the attendees was: (1) the government must do a better job of disseminating technical information in a more timely fashion; (2) enough work has been done on the components, and system level architecture definition must dictate what work should be done on components; (3) a Photonics Steering Committee should be formed to coordinate the efforts of government and industry in the photonics area, to make sure that programs complimented each other and that technology transferred from one program was used in other programs to the best advantage of the government and industry.
Cellulose as an Architectural Element in Spatially Structured Escherichia coli Biofilms
Serra, Diego O.; Richter, Anja M.
2013-01-01
Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of “nature and nurture” in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used “domesticated” E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by “repairing” a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this “de-domesticated” strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that—together with the cell-encasing curli fiber network and geometrical constraints in a growing colony—explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and “tissue-like” bacterial biofilms. PMID:24097954
Cellulose as an architectural element in spatially structured Escherichia coli biofilms.
Serra, Diego O; Richter, Anja M; Hengge, Regine
2013-12-01
Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of "nature and nurture" in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used "domesticated" E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by "repairing" a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this "de-domesticated" strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that-together with the cell-encasing curli fiber network and geometrical constraints in a growing colony-explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and "tissue-like" bacterial biofilms.
EFFECTS OF MOLECULAR ARCHITECTURE ON TWO-STEP MELT-SPUN POLY(LACTIC ACID) FIBERS. (R826733)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Phased laser array with tailored spectral and coherence properties
Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA
2011-03-29
Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.
Phased laser array with tailored spectral and coherence properties
Messerly, Michael J; Dawson, Jay W; Beach, Raymond J
2014-05-20
Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.
NASA Astrophysics Data System (ADS)
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.
2017-03-01
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; ...
2017-03-06
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignmentmore » within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Moreover, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.« less
Lewicki, James P; Rodriguez, Jennifer N; Zhu, Cheng; Worsley, Marcus A; Wu, Amanda S; Kanarska, Yuliya; Horn, John D; Duoss, Eric B; Ortega, Jason M; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A; King, Michael J
2017-03-06
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.
Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.
2017-01-01
Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response. PMID:28262669
MoSi2-Base Hybrid Composite Passed Engine Test
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Hebsur, Mohan
1998-01-01
The intermetallics compound molybdenum disilicide (MoSi2) is an attractive high-temperature structural material for advanced engine applications. It has excellent oxidation resistance, a high melting point, relatively low density, and high thermal conductivity, and it is easily machined. Past research'at the NASA Lewis Research Center has resulted in the development of a hybrid composite consisting of a MoSi2 matrix reinforced with silicon nitride (Si3N4) Particulate and silicon carbide (SiC) fibers. This composite has demonstrated attractive strength, toughness, thermal fatigue, and oxidation resistance, including resistance to "pest" oxidation. These properties attracted the interest of the Office of Naval Research and Pratt & Whitney, and a joint NASA/Navy/Pratt & Whitney effort was developed to continue to mature the MoSi2 Composite technology. A turbine blade outer air seal, which was part of the Integrated High Performance Turbine Engine Technology (IHPTET) program, was chosen as a first component on which to focus. The first tasks of the materials development effort were to develop improved processing methods to reduce costs and to use fine-diameter fibers that enable the manufacturing of complex shapes. Tape-casting methods were developed to fully infiltrate the fine SiC fibers with matrix powders. The resulting composites were hot pressed to 100-percent density. Composites with cross-plied fiber architectures with 30 vol. % hi-nicalon SiC fibers and 30 vol. % nitride particles are now made routinely and demonstrate a good balance of properties. The next task entailed the measurement of a wide variety of mechanical properties to confirm the suitability of this composite in engines. In particular, participants in this effort demonstrated that composites made with Hi-Nicalon fibers had strength and toughness properties equal to or better than those of the composites made with the large-diameter fibers that had been used previously. Another critically important property measured was impact resistance. Aircraft engine components require sufficient toughness to resist manufacturing defects, assembly damage, stress concentrations at notches, and foreign object damage. Engine company designers indicated that impact resistance would have to be measured before they would seriously consider these types of composites. The Charpy V-notch test was chosen to assess impact resistance, and both monolithic and composite versions Of MOSi2 were tested from -300 to 1400 C. The results (see the following graphs) show that nitride-particulate-reinforced MoSi2 exhibited impact resistance higher than that of many monolithic ceramics and intermetallics, and that the fiber-reinforced composites had even higher values, approaching that of cast superalloys.
Evaluation of computational endomicroscopy architectures for minimally-invasive optical biopsy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2017-02-01
We are investigating compressive sensing architectures for applications in endomicroscopy, where the narrow diameter probes required for tissue access can limit the achievable spatial resolution. We hypothesize that the compressive sensing framework can be used to overcome the fundamental pixel number limitation in fiber-bundle based endomicroscopy by reconstructing images with more resolvable points than fibers in the bundle. An experimental test platform was assembled to evaluate and compare two candidate architectures, based on introducing a coded amplitude mask at either a conjugate image or Fourier plane within the optical system. The benchtop platform consists of a common illumination and object path followed by separate imaging arms for each compressive architecture. The imaging arms contain a digital micromirror device (DMD) as a reprogrammable mask, with a CCD camera for image acquisition. One arm has the DMD positioned at a conjugate image plane ("IP arm"), while the other arm has the DMD positioned at a Fourier plane ("FP arm"). Lenses were selected and positioned within each arm to achieve an element-to-pixel ratio of 16 (230,400 mask elements mapped onto 14,400 camera pixels). We discuss our mathematical model for each system arm and outline the importance of accounting for system non-idealities. Reconstruction of a 1951 USAF resolution target using optimization-based compressive sensing algorithms produced images with higher spatial resolution than bicubic interpolation for both system arms when system non-idealities are included in the model. Furthermore, images generated with image plane coding appear to exhibit higher spatial resolution, but more noise, than images acquired through Fourier plane coding.
Optical apparatus for laser scattering by objects having complex shapes
Ellingson, William A.; Visher, Robert J.
2006-11-14
Apparatus for observing and measuring in realtime surface and subsurface characteristics of objects having complex shapes includes an optical fiber bundle having first and second opposed ends. The first end includes a linear array of fibers, where the ends of adjacent fibers are in contact and are aligned perpendicular to the surface of the object being studied. The second ends of some of the fibers are in the form of a polished ferrule forming a multi-fiber optical waveguide for receiving laser light. The second ends of the remaining fibers are formed into a linear array suitable for direct connection to a detector, such as a linear CMOS-based optical detector. The output data is analyzed using digital signal processing for the detection of anomalies such as cracks, voids, inclusions and other defects.
Avram, Alexandru V; Sarlls, Joelle E; Barnett, Alan S; Özarslan, Evren; Thomas, Cibu; Irfanoglu, M Okan; Hutchinson, Elizabeth; Pierpaoli, Carlo; Basser, Peter J
2016-02-15
Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our ability to perform whole-brain fiber tractography. Reconstructions from subsampled data sets suggest that MAP MRI parameters can be computed from a relatively small number of DWIs acquired with high b-value and good signal-to-noise ratio in clinically achievable scan durations of less than 10min. The neuroanatomical consistency across healthy subjects and reproducibility in test-retest experiments of MAP MRI microstructural parameters further substantiate the robustness and clinical feasibility of this technique. The MAP MRI metrics could potentially provide more sensitive clinical biomarkers with increased pathophysiological specificity compared to microstructural measures derived using conventional diffusion MRI techniques. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Papior, Sidsel R.; Weirich, Johannes; Johansen, Mette M.; Jakobsen, Christian; Michieletto, Mattia; Triches, Marco; Kristensen, Torben; Olesen, Anders S.; Petersen, Christian; Andersen, Thomas V.; Maack, Martin D.; Alkeskjold, Thomas T.
2018-02-01
Photonic crystal fiber (PCF) technology for ultrafast fiber amplifiers traditionally uses air holes as key elements for large mode area (LMA) fiber designs. These air holes are crucial for the performance of high-end LMA PCFs, but makes splicing and interfacing more complex. To reduce this complexity in mid-range amplifiers, we present single-mode polarization-maintaining Yb-doped LMA PCFs without air holes for easier splicing into monolithic all-fiber amplifier designs. A 30 μm core all-solid spliceable PCF is presented, and amplification of 1064 nm light above 50 W with an optical to optical efficiency of 80 % is demonstrated. Furthermore, to demonstrate the excellent reliability of PCF based monolithic amplifiers, we demonstrate ultra-longterm performance data of > 35 khrs on a 14 μm core step-index type PCF amplifier with low long-term power degradation slope of < 1.5 % / 10,000 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Fifield, Leonard S.; Lambert, Gregory
During the first quarter of FY 2016, the following technical progress has been made toward project milestones: 1) Virginia Tech completed fiber orientation (FO) measurements for the samples taken at Locations A, B, C and D (Figure 1) from the 30wt% LCF/PP and 30wt% LCF/PA66 ribbed and non-ribbed complex parts using Virginia Tech’s established procedure. Virginia Tech delivered to PNNL all the measured fiber orientation data for validating ASMI fiber orientation predictions. 2)Virginia Tech performed fiber length distribution (FLD) measurements for the samples taken at Locations A, B, C and D from these complex parts using Virginia Tech’s established procedure.more » Virginia also re-assessed previous data and measured fiber length distributions in the corresponding nozzle purging materials and delivered to PNNL all the measured length data for validating ASMI fiber length predictions. 3)Based on measured fiber orientation data, Autodesk identified the parameters of the anisotropic rotary diffusion reduced strain closure (ARD-RSC) model [1] and provided PNNL with the values of these parameters that were used in ASMI analyses of the complex parts. 4) Magna provided Virginia Tech with additional samples cut out from the 30wt% LCF/PP and 30wt% LCF/PA66 ribbed parts (Figure 1) for fiber length and orientation measurements. 5) In discussion with Autodesk, PNNL performed 3D ASMI analyses of the 30wt% LCF/PP and 30wt% LCF/PA66 ribbed and non-ribbed complex parts to predict fiber orientations and length distributions in these parts. The issues observed through the analyses regarding fiber orientation distributions profiles and abnormal length distributions were reported to Autodesk. Autodesk is working to resolve these issues. 6) PNNL completed 3D ASMI analyses of the complex parts and compared predicted fiber orientation results at Locations A, B, and C on the non-ribbed parts, and at Locations A, B, C and D on the ribbed parts with the corresponding measured data. PNNL also evaluated the within-15%-agreement criterion using the principal tensile and flexural moduli computed based on predicted vs. measured fiber orientation results. 7) PNNL developed and discussed with Toyota, Magna and PlastiComp a method to perform weight and cost reduction for making the 30wt% LCF/PA66 ribbed part through comparative three-point bending simulations of this part and of similar parts in steel.« less
Acoustic simulation in architecture with parallel algorithm
NASA Astrophysics Data System (ADS)
Li, Xiaohong; Zhang, Xinrong; Li, Dan
2004-03-01
In allusion to complexity of architecture environment and Real-time simulation of architecture acoustics, a parallel radiosity algorithm was developed. The distribution of sound energy in scene is solved with this method. And then the impulse response between sources and receivers at frequency segment, which are calculated with multi-process, are combined into whole frequency response. The numerical experiment shows that parallel arithmetic can improve the acoustic simulating efficiency of complex scene.
Petri net model for analysis of concurrently processed complex algorithms
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.
1986-01-01
This paper presents a Petri-net model suitable for analyzing the concurrent processing of computationally complex algorithms. The decomposed operations are to be processed in a multiple processor, data driven architecture. Of particular interest is the application of the model to both the description of the data/control flow of a particular algorithm, and to the general specification of the data driven architecture. A candidate architecture is also presented.
Fourier transform spectrometer controller for partitioned architectures
NASA Astrophysics Data System (ADS)
Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.
The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.
Noise-Coupled Image Rejection Architecture of Complex Bandpass ΔΣAD Modulator
NASA Astrophysics Data System (ADS)
San, Hao; Kobayashi, Haruo
This paper proposes a new realization technique of image rejection function by noise-coupling architecture, which is used for a complex bandpass ΔΣAD modulator. The complex bandpass ΔΣAD modulator processes just input I and Q signals, not image signals, and the AD conversion can be realized with low power dissipation. It realizes an asymmetric noise-shaped spectra, which is desirable for such low-IF receiver applications. However, the performance of the complex bandpass ΔΣAD modulator suffers from the mismatch between internal analog I and Q paths. I/Q path mismatch causes an image signal, and the quantization noise of the mirror image band aliases into the desired signal band, which degrades the SQNDR (Signal to Quantization Noise and Distortion Ratio) of the modulator. In our proposed modulator architecture, an extra notch for image rejection is realized by noise-coupled topology. We just add some passive capacitors and switches to the modulator; the additional integrator circuit composed of an operational amplifier in the conventional image rejection realization is not necessary. Therefore, the performance of the complex modulator can be effectively raised without additional power dissipation. We have performed simulation with MATLAB to confirm the validity of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of image-rejection effectively, and improve the SQNDR of the complex bandpass ΔΣAD modulator.
NASA Astrophysics Data System (ADS)
Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.
2016-03-01
Single-mode (SM) kW-class fiber lasers are the tools of choice for material processing applications such as sheet metal cutting and welding. However, application requirements include a flat-top intensity profile and specific beam parameter product (BPP). Here, Nufern introduces a novel specialty fiber technology capable of converting a SM laser beam into a flat-top beam suited for these applications. The performances are demonstrated using a specialty fiber with 100 μm pure silica core, 0.22 NA surrounded by a 120 μm fluorine-doped layer and a 360 μm pure silica cladding, which was designed to match the conventional beam delivery fibers. A SM fiber laser operating at a wavelength of 1.07 μm and terminated with a large-mode area (LMA) fiber with 20 μm core and 0.06 NA was directly coupled in the core of the flat-top specialty fiber using conventional splicing technique. The output beam profile and BPP were characterized first with a low-power source and confirmed using a 2 kW laser and we report a beam transformation from a SM beam into a flat-top intensity profile beam with a 3.8 mm*mrad BPP. This is, to the best of our knowledge, the first successful beam transformation from SM to MM flat-top with controlled BPP in a single fiber integrated in a multi-kW all-fiber system architecture.
High Carbohydrate-Fiber Nutrition for Running and Health.
ERIC Educational Resources Information Center
Battinelli, Thomas
1983-01-01
The roles of carbohydrates, fats, proteins, and fiber in producing energy for health and exercise are discussed. Long-distance runners should have a high intake of complex carbohydrates and fiber. (PP)
NASA Astrophysics Data System (ADS)
Nguyen, HoangViet
2015-03-01
We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.
Overview of hybrid fiber-coaxial network deployment in the deregulated UK environment
NASA Astrophysics Data System (ADS)
Cox, Alan L.
1995-11-01
Cable operators in the U.K. enjoy unprecedented license to construct networks and operate cable TV and telecommunications services within their franchise areas. In general, operators have built hybrid-fiber-coax (HFC) networks for cable TV in parallel with fiber-copper-pair networks for telephony. The commonly used network architectures are reviewed, together with their present and future capacities. Despite this dual-technology approach, there is considerable interest in the integration of telephony services onto the HFC network and the development of new interactive services for which HFC may be more suitable than copper pairs. Certain technological and commercial developments may have considerable significance for HFC networks and their operators. These include the digitalization of TV distribution and the rising demand for high-rate digital access lines. Possible scenarios are discussed.
NASA Technical Reports Server (NTRS)
Uenal, O.; Bansal, N. P.
2000-01-01
In-plane and interlaminar shear strength of a unidirectional SiC fiber-reinforced (BaSr)Al2Si2O8 celsian composite were measured by the double-notch shear test method between room temperature and 1200 C. The interlaminar shear strength was lower than the in-plane shear strength at all temperatures. Stress analysis, using finite element modeling, indicated that shear stress concentration was not responsible for the observed difference in strength. Instead, the difference in layer architecture and thus, the favorable alignment of fiber-rich layers with the shear plane in the interlaminar specimens appears to be the reason for the low strength of this composite. A rapid decrease in strength was observed with temperature due to softening of the glassy phase in the material.
Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber.
Gattass, Rafael R; Brandon Shaw, L; Sanghera, Jasbinder S
2014-06-15
We report on a proof of concept for a compact supercontinuum source for the mid-infrared wavelength range based on a microchip laser and nonlinear conversion inside a selenide-based optical fiber. The spectrum extends from 3.74 to 4.64 μm at -10 dB from the peak and 3.65 to 4.9 μm at -20 dB from the peak; emitting beyond the wavelength range that periodically poled lithium niobate (PPLN) starts to display a power penalty. Wavelength conversion occurs inside the core of a single-mode fiber, resulting in a high-brightness emission source. A maximum average power of 5 mW was demonstrated, but the architecture is scalable to higher average powers.
"Reliability Of Fiber Optic Lans"
NASA Astrophysics Data System (ADS)
Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan
1987-02-01
Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.
Multiscale Poly-(ϵ-caprolactone) Scaffold Mimicking Nonlinearity in Tendon Tissue Mechanics
Banik, Brittany L.; Lewis, Gregory S.; Brown, Justin L.
2016-01-01
Regenerative medicine plays a critical role in the future of medicine. However, challenges remain to balance stem cells, biomaterial scaffolds, and biochemical factors to create successful and effective scaffold designs. This project analyzes scaffold architecture with respect to mechanical capability and preliminary mesenchymal stem cell response for tendon regeneration. An electrospun fiber scaffold with tailorable properties based on a “Chinese-fingertrap” design is presented. The unique criss-crossed fiber structures demonstrate non-linear mechanical response similar to that observed in native tendon. Mechanical testing revealed that optimizing the fiber orientation resulted in the characteristic “S”-shaped curve, demonstrating a toe region and linear elastic region. This project has promising research potential across various disciplines: vascular engineering, nerve regeneration, and ligament and tendon tissue engineering. PMID:27141530
A Principled Approach to the Specification of System Architectures for Space Missions
NASA Technical Reports Server (NTRS)
McKelvin, Mark L. Jr.; Castillo, Robert; Bonanne, Kevin; Bonnici, Michael; Cox, Brian; Gibson, Corrina; Leon, Juan P.; Gomez-Mustafa, Jose; Jimenez, Alejandro; Madni, Azad
2015-01-01
Modern space systems are increasing in complexity and scale at an unprecedented pace. Consequently, innovative methods, processes, and tools are needed to cope with the increasing complexity of architecting these systems. A key systems challenge in practice is the ability to scale processes, methods, and tools used to architect complex space systems. Traditionally, the process for specifying space system architectures has largely relied on capturing the system architecture in informal descriptions that are often embedded within loosely coupled design documents and domain expertise. Such informal descriptions often lead to misunderstandings between design teams, ambiguous specifications, difficulty in maintaining consistency as the architecture evolves throughout the system development life cycle, and costly design iterations. Therefore, traditional methods are becoming increasingly inefficient to cope with ever-increasing system complexity. We apply the principles of component-based design and platform-based design to the development of the system architecture for a practical space system to demonstrate feasibility of our approach using SysML. Our results show that we are able to apply a systematic design method to manage system complexity, thus enabling effective data management, semantic coherence and traceability across different levels of abstraction in the design chain. Just as important, our approach enables interoperability among heterogeneous tools in a concurrent engineering model based design environment.
NASA Technical Reports Server (NTRS)
Ligler, Frances S.
1991-01-01
The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
Forward error correction (FEC) is as one of the key technologies enabling the next-generation high-speed fiber optical communications. In this paper, we propose a rate-adaptive scheme using a class of generalized low-density parity-check (GLDPC) codes with a Hamming code as local code. We show that with the proposed unified GLDPC decoder architecture, a variable net coding gains (NCGs) can be achieved with no error floor at BER down to 10-15, making it a viable solution in the next-generation high-speed fiber optical communications.
Micro guidance and control synthesis: New components, architectures, and capabilities
NASA Technical Reports Server (NTRS)
Mettler, Edward; Hadaegh, Fred Y.
1993-01-01
New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about.
Crawford, Robert S.; Albadawi, Hassan; Atkins, Marvin D.; Jones, John J.; Conrad, Mark F.; Austen, William G.; Fink, Mitchell P.; Watkins, Michael T.
2011-01-01
Introduction Experiments were designed to investigate the effects of ethyl pyruvate (EP) in a murine model of hind-limb ischemia-reperfusion (IR) injury. Methods C57BL6 mice underwent 90 minutes of unilateral ischemia followed by 24 hours of reperfusion using two treatment protocols. For the preischemic treatment (pre-I) protocol, mice (n = 6) were given 300 mg/kg EP before ischemia, followed by 150 mg/kg of EP just before reperfusion and at 6 hours and 12 hours after reperfusion. In a postischemic treatment (post-I) protocol, mice (n = 7) were treated with 300 mg/kg EP at the end of the ischemic period, then 15 minutes later, and 2 hours after reperfusion and 150 mg/kg of EP at 4 hours, 6 hours, 10 hours, 16 hours, and 22 hours after reperfusion. Controls mice for both protocols were treated with lactated Ringers alone at time intervals identical to EP. Skeletal muscle levels of adenosine triphosphate (ATP), interleukin-1β, keratinocyte chemoattractant protein, and thrombin antithrombin-3 complex were measured. Skeletal muscle architectural integrity was assessed microscopically. Results ATP levels were higher in mice treated with EP compared with controls under the both treatment protocols (p = 0.02). Interleukin-1β, keratinocyte chemoattractant protein, thrombin antithrombin-3 complex (p < 0.05), and the percentage of injured fibers (p < 0.0001) were significantly decreased in treated versus control mice under the both protocols. Conclusion Muscle fiber injury and markers of tissue thrombosis and inflammation were reduced, and ATP was preserved with EP in pre-I and post-I protocols. Further investigation of the efficacy of EP to modulate IR injury in a larger animal model of IR injury is warranted. PMID:21217488
Friedrich, Benjamin M.; Buxboim, Amnon; Discher, Dennis E.; Safran, Samuel A.
2011-01-01
The remarkable striation of muscle has fascinated many for centuries. In developing muscle cells, as well as in many adherent, nonmuscle cell types, striated, stress fiberlike structures with sarcomere-periodicity tend to register: Based on several studies, neighboring, parallel fibers at the basal membrane of cultured cells establish registry of their respective periodic sarcomeric architecture, but, to our knowledge, the mechanism has not yet been identified. Here, we propose for cells plated on an elastic substrate or adhered to a neighboring cell, that acto-myosin contractility in striated fibers close to the basal membrane induces substrate strain that gives rise to an elastic interaction between neighboring striated fibers, which in turn favors interfiber registry. Our physical theory predicts a dependence of interfiber registry on externally controllable elastic properties of the substrate. In developing muscle cells, registry of striated fibers (premyofibrils and nascent myofibrils) has been suggested as one major pathway of myofibrillogenesis, where it precedes the fusion of neighboring fibers. This suggests a mechanical basis for the optimal myofibrillogenesis on muscle-mimetic elastic substrates that was recently observed by several groups in cultures of mouse-, human-, and chick-derived muscle cells. PMID:21641316
Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M
2015-09-29
Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.
Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan
2015-01-01
The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohmer, Damien; Sitek, Arkadiusz; Gullberg, Grant T.
2006-12-18
Background - The human heart is composed of a helicalnetwork of muscle fibers. These fibers are organized to form sheets thatare separated by cleavage surfaces. This complex structure of fibers andsheets is responsible for the orthotropic mechanical properties ofcardiac muscle. The understanding of the configuration of the 3D fiberand sheet structure is important for modeling the mechanical andelectrical properties of the heart and changes in this configuration maybe of significant importance to understand the remodeling aftermyocardial infarction.Methods - Anisotropic least square filteringfollowed by fiber and sheet tracking techniques were applied to DiffusionTensor Magnetic Resonance Imaging (DTMRI) data of the excisedmore » humanheart. The fiber configuration was visualized by using thin tubes toincrease 3-dimensional visual perception of the complex structure. Thesheet structures were reconstructed from the DTMRI data, obtainingsurfaces that span the wall from the endo- to the epicardium. Allvisualizations were performed using the high-quality ray-tracing softwarePOV-Ray. Results - The fibers are shown to lie in sheets that haveconcave or convex transmural structure which correspond to histologicalstudies published in the literature. The fiber angles varied depending onthe position between the epi- and endocardium. The sheets had a complexstructure that depended on the location within the myocardium. In theapex region the sheets had more curvature. Conclusions - A high-qualityvisualization algorithm applied to demonstrated high quality DTMRI datais able to elicit the comprehension of the complex 3 dimensionalstructure of the fibers and sheets in the heart.« less
Forecast analysis of optical waveguide bus performance
NASA Technical Reports Server (NTRS)
Ledesma, R.; Rourke, M. D.
1979-01-01
Elements to be considered in the design of a data bus include: architecture; data rate; modulation, encoding, detection; power distribution requirements; protocol, work structure; bus reliability, maintainability; interterminal transmission medium; cost; and others specific to application. Fiber- optic data bus considerations for a 32 port transmissive star architecture, are discussed in a tutorial format. General optical-waveguide bus concepts, are reviewed. The electrical and optical performance of a 32 port transmissive star bus, and the effects of temperature on the performance of optical-waveguide buses are examined. A bibliography of pertinent references and the bus receiver test results are included.
Architectural impact of FDDI network on scheduling hard real-time traffic
NASA Technical Reports Server (NTRS)
Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh
1991-01-01
The architectural impact on guaranteeing synchronous message deadlines in FDDI (Fiber Distributed Data Interface) token ring networks is examined. The FDDI network does not have facility to support (global) priority arbitration which is a useful facility for scheduling hard real time activities. As a result, it was found that the worst case utilization of synchronous traffic in an FDDI network can be far less than that in a centralized single processor system. Nevertheless, it is proposed and analyzed that a scheduling method can guarantee deadlines of synchronous messages having traffic utilization up to 33 pct., the highest to date.
A high throughput architecture for a low complexity soft-output demapping algorithm
NASA Astrophysics Data System (ADS)
Ali, I.; Wasenmüller, U.; Wehn, N.
2015-11-01
Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.
Encoding of a spectrally-complex communication sound in the bullfrog's auditory nerve.
Schwartz, J J; Simmons, A M
1990-02-01
1. A population study of eighth nerve responses in the bullfrog, Rana catesbeiana, was undertaken to analyze how the eighth nerve codes the complex spectral and temporal structure of the species-specific advertisement call over a biologically-realistic range of intensities. Synthetic advertisement calls were generated by Fourier synthesis and presented to individual eighth nerve fibers of anesthetized bullfrogs. Fiber responses were analyzed by calculating rate responses based on post-stimulus-time (PST) histograms and temporal responses based on Fourier transforms of period histograms. 2. At stimulus intensities of 70 and 80 dB SPL, normalized rate responses provide a fairly good representation of the complex spectral structure of the stimulus, particularly in the low- and mid-frequency range. At higher intensities, rate responses saturate, and very little of the spectral structure of the complex stimulus can be seen in the profile of rate responses of the population. 3. Both AP and BP fibers phase-lock strongly to the fundamental (100 Hz) of the complex stimulus. These effects are relatively resistant to changes in stimulus intensity. Only a small number of fibers synchronize to the low-frequency spectral energy in the stimulus. The underlying spectral complexity of the stimulus is not accurately reflected in the timing of fiber firing, presumably because firing is 'captured' by the fundamental frequency. 4. Plots of average localized synchronized rate (ALSR), which combine both spectral and temporal information, show a similar, low-pass shape at all stimulus intensities. ALSR plots do not generally provide an accurate representation of the structure of the advertisement call. 5. The data suggest that anuran peripheral auditory fibers may be particularly sensitive to the amplitude envelope of sounds.
Caprio, John; Shimohara, Mami; Marui, Takayuki; Kohbara, Jun; Harada, Shuitsu; Kiyohara, Sadao
2015-12-01
The Japanese sea catfish, Plotosus japonicus, possesses taste and solitary chemoreceptor cells (SCCs) located on the external body surface that detect specific water-soluble substances. Here, we identify two major fiber types of the facial/trigeminal complex that transmit amino acid information to the medulla. Both single and few fiber preparations respond to amino acid stimulation in the 0.1 μM to mM range. One fiber type responds best to glycine and l-alanine (i.e. Gly/Ala fibers) whereas the other fiber type is best stimulated by l-proline and glycine betaine (hereafter referred to only as betaine) (i.e. Pro/Bet fibers). We demonstrate that betaine, which does not alter the pH of the seawater and therefore does not activate the animals' highly sensitive pH sensors (Caprio et al., Science 344:1154-1156, 2014), is sufficient to elicit appetitive food search behavior. We further show that the amino acid specificity of fibers of the facial/trigeminal complex in P. japonicus is different from that in Ariopsis felis (Michel and Caprio, J. Neurophysiol. 66:247-260, 1991; Michel et al., J. Comp. Physiol. A. 172:129-138, 1993), a representative member of the only other family (Ariidae) of extant marine catfishes. Copyright © 2015 Elsevier Inc. All rights reserved.
Pravdin, Sergey F.; Dierckx, Hans; Katsnelson, Leonid B.; Solovyova, Olga; Markhasin, Vladimir S.; Panfilov, Alexander V.
2014-01-01
We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher–Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation. PMID:24817308
NASA Astrophysics Data System (ADS)
Gupta, Banshi D.; Kant, Ravi
2018-05-01
Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.
Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.
Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José
2010-12-06
This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.
Kai, Dan; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Xu, Fujian; Loh, Xian Jun
2016-02-02
A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of >90% and shape fixity ratios of >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.
Composite Nozzle/Thrust Chambers Analyzed for Low-Cost Boosters
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
1999-01-01
The Low Cost Booster Technology Program is an initiative to minimize the cost of future liquid engines by using advanced materials and innovative designs, and by reducing engine complexity. NASA Marshall Space Flight Center s 60K FASTRAC Engine is one example where these design philosophies have been put into practice. This engine burns a liquid kerosene/oxygen mixture. It uses a one-piece, polymer composite thrust chamber/nozzle that is constructed of a tape-wrapped silica phenolic liner, a metallic injector interface ring, and a filament-wound epoxy overwrap. A cooperative effort between NASA Lewis Research Center s Structures Division and Marshall is underway to perform a finite element analysis of the FASTRAC chamber/nozzle under all the loading and environmental conditions that it will experience during its lifetime. The chamber/nozzle is a complex composite structure. Of its three different materials, the two composite components have distinctly different fiber architectures and, consequently, require separate material model descriptions. Since the liner is tape wrapped, it is orthotropic in the nozzle global coordinates; and since the overwrap is filament wound, it is treated as a monoclinic material. Furthermore, the wind angle on the overwrap varies continuously along the length of the chamber/nozzle.
Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy
2018-01-01
Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958
Bruning, Marc; Kreplak, Laurent; Leopoldseder, Sonja; Müller, Shirley A; Ringler, Philippe; Duchesne, Laurence; Fernig, David G; Engel, Andreas; Ucurum-Fotiadis, Zöhre; Mayans, Olga
2010-11-10
The development of biomatrices for technological and biomedical applications employs self-assembled scaffolds built from short peptidic motifs. However, biopolymers composed of protein domains would offer more varied molecular frames to introduce finer and more complex functionalities in bioreactive scaffolds using bottom-up approaches. Yet, the rules governing the three-dimensional organization of protein architectures in nature are complex and poorly understood. As a result, the synthetic fabrication of ordered protein association into polymers poses major challenges to bioengineering. We have now fabricated a self-assembling protein nanofiber with predictable morphologies and amenable to bottom-up customization, where features supporting function and assembly are spatially segregated. The design was inspired by the cross-linking of titin filaments by telethonin in the muscle sarcomere. The resulting fiber is a two-protein system that has nanopatterned peptide display capabilities as shown by the recruitment of functionalized gold nanoparticles at regular intervals of ∼ 5 nm, yielding a semiregular linear array over micrometers. This polymer promises the uncomplicated display of biologically active motifs to selectively bind and organize matter in the fine nanoscale. Further, its conceptual design has high potential for controlled plurifunctionalization.
Colloidal-based additive manufacturing of bio-inspired composites
NASA Astrophysics Data System (ADS)
Studart, Andre R.
Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.
Argento, G; de Jonge, N; Söntjens, S H M; Oomens, C W J; Bouten, C V C; Baaijens, F P T
2015-06-01
The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Fifield, Leonard S.; Wollan, Eric J.
2015-11-13
During the last quarter of FY 2015, the following technical progress has been made toward project milestones: 1) PlastiComp used the PlastiComp direct in-line (D-LFT) Pushtrusion system to injection mold 40 30wt% LCF/PP parts with ribs, 40 30wt% LCF/PP parts without ribs, 10 30wt% LCF/PA66 parts with ribs, and 35 30wt% LCF/PA66 parts without ribs. In addition, purge materials from the injection molding nozzle were obtained for fiber length analysis, and molding parameters were sent to PNNL for process modeling. 2) Magna cut samples at four selected locations (named A, B, C and D) from the non-ribbed Magna-molded parts basedmore » on a plan discussed with PNNL and the team and shipped these samples to Virginia Tech for fiber orientation and length measurements. 3) Virginia Tech started fiber orientation and length measurements for the samples taken from the complex parts using Virginia Tech’s established procedure. 4) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, reviewed process datasheets and performed preliminary analyses of these complex parts using the actual molding parameters received from Magna and PlastiComp to compare predicted to experimental mold filling patterns. 5) Autodesk assisted PNNL in developing the workflow to use Moldflow fiber orientation and length results in ABAQUS® simulations. 6) Autodesk advised the team on the practicality and difficulty of material viscosity characterization from the D-LFT process. 7) PNNL developed a procedure to import fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS® model for structural analyses of the complex part for later weight reduction study. 8) In discussion with PNNL and Magna, Toyota developed mechanical test setups and built fixtures for three-point bending and torsion tests of the complex parts. 9) Toyota built a finite element model for the complex parts subjected to torsion loading. 10) PNNL built the 3D ABAQUS® model of the complex ribbed part subjected to 3-point bending. 11) University of Illinois (Prof. C.L. Tucker) advised the team on fiber orientation and fiber length measurement options, modeling issues as well as interpretation of data.« less
Miniature fiber optic loop subcomponent for compact sensors and dense routing
NASA Astrophysics Data System (ADS)
Gillham, Frederick J.; Stowe, David W.; Ouellette, Thomas R.; Pryshlak, Adrian P.
1999-05-01
Fiber optic data links and embedded sensors, such as Fabry- Perot and Mach-Zehnders, are important elements in smart structure architectures. Unfortunately, one problem with optical fiber is the inherent limit through which fibers and cables can be looped. A revolutionary, patented technology has been developed which overcomes this problem. Based on processing the fiber into low loss miniature bends, it permits routing the fiber to difficult areas, and minimizing the size of sensors and components. The minimum bend diameter for singlemode fiber is typically over two inches in diameter, to avoid light attenuation and limit stresses which could prematurely break the fiber. With the new miniature bend technology, bend diameters as small as 1 mm are readily achieved. One embodiment is a sub-component with standard singlemode fiber formed into a 180 degree bend and packaged in a glass tube only 1.5 mm OD X 8 mm long, Figure 1. Measured insertion loss is less than 0.2 dB from 1260 nm to 1680 nm. A final processing step which anneals the fiber into the eventual curvature, reduces the internal stress, thereby resulting in long life expectancy with robust immunity to external loading. This paper addresses the optical and physical performance of the sub-component. Particular attention is paid to attenuation spectra, polarization dependent loss, reflectance, thermal cycle, damp heat, and shock tests. Applications are presented which employs the bend technology. Concatenating right angle bends into a 'wire harness' demonstrates the ability to route fiber through a smart engine or satellite structure. Miniature optical coils are proposed for sensors and expansion joints.
Complex Event Recognition Architecture
NASA Technical Reports Server (NTRS)
Fitzgerald, William A.; Firby, R. James
2009-01-01
Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.
Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl
2016-01-01
High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time. PMID:27199682
Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl
2016-01-01
High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.
Microsurgical and Tractographic Anatomy of the Supplementary Motor Area Complex in Humans.
Bozkurt, Baran; Yagmurlu, Kaan; Middlebrooks, Erik H; Karadag, Ali; Ovalioglu, Talat Cem; Jagadeesan, Bharathi; Sandhu, Gauravjot; Tanriover, Necmettin; Grande, Andrew W
2016-11-01
To evaluate the microsurgical anatomy of the fiber tract connections of the supplementary motor area (SMA) and pre-SMA, and examine its potential functional role with reference to clinical trials in the literature. Ten postmortem formalin-fixed human brains (20 sides) and 1 cadaveric head were prepared following Klingler's method. The fiber dissection was performed in a stepwise fashion, from lateral to medial and also from medial to lateral, under an operating microscope, with 3D images captured at each stage. Our findings were supported by in vivo magnetic resonance imaging tractography in 2 healthy subjects. The connections of the SMA complex, composed of the pre-SMA and the SMA proper, are composed of short "U" association fibers and the superior longitudinal fasciculus I, cingulum, claustrocortical fibers, callosal fibers, corticospinal tract, frontal aslant tract, and frontostriatal tract. The claustrocortical fibers may play an important role in the integration of motor, language, and limbic functions of the SMA complex. The frontostriatal tract connects the pre-SMA to the putamen and caudate nucleus, and also forms parts of both the internal capsule and the dorsal external capsule. The SMA complex has numerous connections throughout the cerebrum. An understanding of these connections is important for presurgical planning for lesions in the frontal lobe and helps explain symptoms related to SMA injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David
2018-05-01
Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is available for this article.
Optical beam forming techniques for phased array antennas
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Chandler, C.
1993-01-01
Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid amplifier for RF power. The advantages are no SLM is required for this approach, and the complete antenna system is capable of full monolithic integration.
The development of brain network architecture.
Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah
2016-02-01
Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigio, I.J.; Boyer, J.; Johnson, T.M.
1994-10-01
The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.« less
High density array fabrication and readout method for a fiber optic biosensor
Pinkel, Daniel; Gray, Joe
1997-01-01
The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.
High density array fabrication and readout method for a fiber optic biosensor
Pinkel, Daniel; Gray, Joe; Albertson, Donna G.
2000-01-01
The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.
High density array fabrication and readout method for a fiber optic biosensor
Pinkel, Daniel; Gray, Joe; Albertson, Donna G.
2002-01-01
The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its "sensor end" biological "binding partners" (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor.
High density array fabrication and readout method for a fiber optic biosensor
Pinkel, D.; Gray, J.
1997-11-25
The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its ``sensor end`` biological ``binding partners`` (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor. 9 figs.
Architectural Adventures in Your Community
ERIC Educational Resources Information Center
Henn, Cynthia A.
2007-01-01
Due to architecture's complexity, it can be challenging to develop lessons for the students, and consequently, the teaching of architecture is frequently overlooked. Every community has an architectural history. For example, the community in which the author's students live has a variety of historic houses from when the community originated (the…
One-step Tape Casting of Composites via Slurry on Fiber
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2001-01-01
A process by which metal matrix composites can be made was presented. The process involves putting a powder slurry on fibers to make a precursor green tape. These green tapes are cut, stacked and hot pressed to form the fully dense composite. A computer program was presented which enables complete quantification and control of the process. Once some easily obtained properties of the slurry and its behavior are determined (such as the shrinkage from the wet to green state, and the density of the green tape) modification of the fiber spacing and blade height give the maker precise control of fiber volume fraction, and fiber architecture in the composite. The process was shown to be accurate and flexible through the production of a wide variety of volume fraction fiber composites made from a wide variety of fibers and powders. The most time consuming step of the tape casting process (other than hot pressing) was winding the fiber on the drum. The tape casting techniques developed resulted in high quality metal matrix composites, with ultimate tensile strength in the range of 215 ksi (1477 MPa), a strain at failure of 1.15 percent, and in fatigue at room temperature 0 to 120 ksi, n = 0.3 Hz, a 4-ply Ti-24Al-11Nb/SCS-6, 32 vol% fiber tape cast composite lasted 202,205 cycles with a maximum strain on the 100th cycle of 0.43 percent.
Workability of glass reinforced concrete (GRC) with granite and silica sand aggregates
NASA Astrophysics Data System (ADS)
Moceikis, R.; Kičaitė, A.; Keturakis, E.
2017-10-01
Glass fiber reinforced concrete (GRC) opens the door for lightweight and complex shaped innovative construction, adding architectural value to buildings. With panel thickness down to 15 mm, considerable amount of total loads and materials per square meter of facade can be saved, if compared to conventionally used 80 mm thickness outer layer in insulated precast concrete wall elements. Even though GRC is used for over 50 years in such countries as Great Britain, USA and Japan, there are very few examples and little research done in Eastern Europe with this building material. European Commission propagates sustainable design as commitment to energy efficiency, environmental stewardship and conservation. For this reason, GRC plays important role in mowing toward these goals. In this paper, GRC premix recipes including fine granite and silica sands, reinforced with 13mm length alkali resistant glass fibers are investigated. Two CEM I 52,5R cements with different particle sizes were used and severe water dissociation noticed in one of concrete mixes. Cement particle size distribution determined with laser diffraction particle analyser Cilas 1090LD. To determine modulus of rupture (M.O.R.) and limit of proportionality (L.O.P), plates thickness 15 and 20 mm were produced and tested for flexural resistance according to 4-point bending scheme. Concrete workability tests were made according EN 1170-1.
High speed optical wireless data transmission system for particle sensors in high energy physics
NASA Astrophysics Data System (ADS)
Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.
2015-08-01
High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.
Holmes, Benjamin; Castro, Nathan J; Li, Jian; Keidar, Michael; Zhang, Lijie Grace
2013-09-13
Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young's modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.
NASA Astrophysics Data System (ADS)
Holmes, Benjamin; Castro, Nathan J.; Li, Jian; Keidar, Michael; Zhang, Lijie Grace
2013-09-01
Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young’s modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.
Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament.
Nivedhitha Sundaram, M; Sowmya, S; Deepthi, S; Bumgardener, Joel D; Jayakumar, R
2016-05-01
Periodontitis is an inflammatory disease that causes destruction of tooth-supporting tissues and if left untreated leads to tooth loss. Current treatments have shown limited potential for simultaneous regeneration of the tooth-supporting tissues. To recreate the complex architecture of the periodontium, we developed a bilayered construct consisting of poly(caprolactone) (PCL) multiscale electrospun membrane (to mimic and regenerate periodontal ligament, PDL) and a chitosan/2wt % CaSO4 scaffold (to mimic and regenerate alveolar bone). Scanning electron microscopy results showed the porous nature of the scaffold and formation of beadless electrospun multiscale fibers. The fiber diameter of microfiber and nanofibers was in the range of 10 ± 3 µm and 377 ± 3 nm, respectively. The bilayered construct showed better protein adsorption compared to the control. Osteoblastic differentiation of human dental follicle stem cells (hDFCs) on chitosan/2wt % CaSO4 scaffold showed maximum alkaline phosphatase at seventh day followed by a decline thereafter when compared to chitosan control scaffold. Fibroblastic differentiation of hDFCs was confirmed by the expression of PLAP-1 and COL-1 proteins which were more prominent on PCL multiscale membrane in comparison to control membranes. Overall these results show that the developed bilayered construct might serve as a good candidate for the simultaneous regeneration of the alveolar bone and PDL. © 2015 Wiley Periodicals, Inc.
Zhang, Qichong; Wang, Xiaona; Pan, Zhenghui; Sun, Juan; Zhao, Jingxin; Zhang, Jun; Zhang, Cuixia; Tang, Lei; Luo, Jie; Song, Bin; Zhang, Zengxing; Lu, Weibang; Li, Qingwen; Zhang, Yuegang; Yao, Yagang
2017-04-12
The emergence of fiber-shaped supercapacitors (FSSs) has led to a revolution in portable and wearable electronic devices. However, obtaining high energy density FSSs for practical applications is still a key challenge. This article exhibits a facile and effective approach to directly grow well-aligned three-dimensional vanadium nitride (VN) nanowire arrays (NWAs) on carbon nanotube (CNT) fiber with an ultrahigh specific capacitance of 715 mF/cm 2 in a three-electrode system. Benefiting from their intriguing structural features, we successfully fabricated a prototype asymmetric coaxial FSS (ACFSS) with a maximum operating voltage of 1.8 V. From core to shell, this ACFSS consists of a CNT fiber core coated with VN@C NWAs as the negative electrode, Na 2 SO 4 poly(vinyl alcohol) (PVA) as the solid electrolyte, and MnO 2 /conducting polymer/CNT sheets as the positive electrode. The novel coaxial architecture not only fully enables utilization of the effective surface area and decreases the contact resistance between the two electrodes but also, more importantly, provides a short pathway for the ultrafast transport of axial electrons and ions. The electrochemical results show that the optimized ACFSS exhibits a remarkable specific capacitance of 213.5 mF/cm 2 and an exceptional energy density of 96.07 μWh/cm 2 , the highest areal capacitance and areal energy density yet reported in FSSs. Furthermore, the device possesses excellent flexibility in that its capacitance retention reaches 96.8% after bending 5000 times, which further allows it to be woven into flexible electronic clothes with conventional weaving techniques. Therefore, the asymmetric coaxial architectural design allows new opportunities to fabricate high-performance flexible FSSs for future portable and wearable electronic devices.
The HARPS-N archive through a Cassandra, NoSQL database suite?
NASA Astrophysics Data System (ADS)
Molinari, Emilio; Guerra, Jose; Harutyunyan, Avet; Lodi, Marcello; Martin, Adrian
2016-07-01
The TNG-INAF is developing the science archive for the WEAVE instrument. The underlying architecture of the archive is based on a non relational database, more precisely, on Apache Cassandra cluster, which uses a NoSQL technology. In order to test and validate the use of this architecture, we created a local archive which we populated with all the HARPSN spectra collected at the TNG since the instrument's start of operations in mid-2012, as well as developed tools for the analysis of this data set. The HARPS-N data set is two orders of magnitude smaller than WEAVE, but we want to demonstrate the ability to walk through a complete data set and produce scientific output, as valuable as that produced by an ordinary pipeline, though without accessing directly the FITS files. The analytics is done by Apache Solr and Spark and on a relational PostgreSQL database. As an example, we produce observables like metallicity indexes for the targets in the archive and compare the results with the ones coming from the HARPS-N regular data reduction software. The aim of this experiment is to explore the viability of a high availability cluster and distributed NoSQL database as a platform for complex scientific analytics on a large data set, which will then be ported to the WEAVE Archive System (WAS) which we are developing for the WEAVE multi object, fiber spectrograph.
High-speed digital fiber optic links for satellite traffic
NASA Technical Reports Server (NTRS)
Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.
1989-01-01
Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.
Effects of humidity and solution viscosity on electrospun fiber morphology.
Nezarati, Roya M; Eifert, Michelle B; Cosgriff-Hernandez, Elizabeth
2013-10-01
Electrospinning is a popular technique to fabricate tissue engineering scaffolds due to the exceptional tunability of fiber morphology that can be used to control scaffold mechanical properties, degradation rate, and cell behavior. Although the effects of modulating processing or solution parameters on fiber morphology have been extensively studied, there remains limited understanding of the impact of environmental parameters such as humidity. To address this gap, three polymers (poly(ethylene glycol) [PEG], polycaprolactone [PCL], and poly(carbonate urethane) [PCU]) were electrospun at a range of relative humidities (RH = 5%-75%) and the resulting fiber architecture characterized with scanning electron microscopy. Low relative humidity (< 50%) resulted in fiber breakage for all three polymers due to decreased electrostatic discharge from the jet. At high relative humidity (> 50%), three distinct effects were observed based on individual polymer properties. An increase in fiber breakage and loss of fiber morphology occurred in the PEG system as a result of increased water absorption at high relative humidity. In contrast, surface pores on PCL fibers were observed and hypothesized to have formed via vapor-induced phase separation. Finally, decreased PCU fiber collection occurred at high humidity likely due to increased electrostatic discharge. These findings highlight that the effects of relative humidity on electrospun fiber morphology are dependent on polymer hydrophobicity, solvent miscibility with water, and solvent volatility. An additional study was conducted to highlight that small changes in molecular weight can strongly influence solution viscosity and resulting fiber morphology. We propose that solution viscosity rather than concentration is a more useful parameter to report in electrospinning methodology to enable reproduction of findings. In summary, this study further elucidates key mechanisms in electrospun fiber formation that can be utilized to fabricate tissue engineering scaffolds with tunable and reproducible properties.
Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology
Nezarati, Roya M.; Eifert, Michelle B.
2013-01-01
Electrospinning is a popular technique to fabricate tissue engineering scaffolds due to the exceptional tunability of fiber morphology that can be used to control scaffold mechanical properties, degradation rate, and cell behavior. Although the effects of modulating processing or solution parameters on fiber morphology have been extensively studied, there remains limited understanding of the impact of environmental parameters such as humidity. To address this gap, three polymers (poly(ethylene glycol) [PEG], polycaprolactone [PCL], and poly(carbonate urethane) [PCU]) were electrospun at a range of relative humidities (RH=5%–75%) and the resulting fiber architecture characterized with scanning electron microscopy. Low relative humidity (<50%) resulted in fiber breakage for all three polymers due to decreased electrostatic discharge from the jet. At high relative humidity (>50%), three distinct effects were observed based on individual polymer properties. An increase in fiber breakage and loss of fiber morphology occurred in the PEG system as a result of increased water absorption at high relative humidity. In contrast, surface pores on PCL fibers were observed and hypothesized to have formed via vapor-induced phase separation. Finally, decreased PCU fiber collection occurred at high humidity likely due to increased electrostatic discharge. These findings highlight that the effects of relative humidity on electrospun fiber morphology are dependent on polymer hydrophobicity, solvent miscibility with water, and solvent volatility. An additional study was conducted to highlight that small changes in molecular weight can strongly influence solution viscosity and resulting fiber morphology. We propose that solution viscosity rather than concentration is a more useful parameter to report in electrospinning methodology to enable reproduction of findings. In summary, this study further elucidates key mechanisms in electrospun fiber formation that can be utilized to fabricate tissue engineering scaffolds with tunable and reproducible properties. PMID:23469941
Low complexity 1D IDCT for 16-bit parallel architectures
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar
2007-09-01
This paper shows that using the Loeffler, Ligtenberg, and Moschytz factorization of 8-point IDCT [2] one-dimensional (1-D) algorithm as a fast approximation of the Discrete Cosine Transform (DCT) and using only 16 bit numbers, it is possible to create in an IEEE 1180-1990 compliant and multiplierless algorithm with low computational complexity. This algorithm as characterized by its structure is efficiently implemented on parallel high performance architectures as well as due to its low complexity is sufficient for wide range of other architectures. Additional constraint on this work was the requirement of compliance with the existing MPEG standards. The hardware implementation complexity and low resources where also part of the design criteria for this algorithm. This implementation is also compliant with the precision requirements described in MPEG IDCT precision specification ISO/IEC 23002-1. Complexity analysis is performed as an extension to the simple measure of shifts and adds for the multiplierless algorithm as additional operations are included in the complexity measure to better describe the actual transform implementation complexity.
Surveillance technique for hybrid WDM/PS-PON using a tunable OTDR
NASA Astrophysics Data System (ADS)
Hann, Swook; Yoo, Jun-sang; Park, Chang-soo
2005-05-01
A surveillance technique for passive optical networks (PON) is presented. The technique is based on the remote sensing of fiber Bragg grating using a tunable OTDR. Hybrid architecture of WDM and passive splitter-PON can be analyzed by the surveillance method at the central office under in-service state of PON.
High Speed Computing, LANs, and WAMs
NASA Technical Reports Server (NTRS)
Bergman, Larry A.; Monacos, Steve
1994-01-01
Optical fiber networks may one day offer potential capacities exceeding 10 terabits/sec. This paper describes present gigabit network techniques for distributed computing as illustrated by the CASA gigabit testbed, and then explores future all-optic network architectures that offer increased capacity, more optimized level of service for a given application, high fault tolerance, and dynamic reconfigurability.
Efect of tri-species chromosome shuffling on agronomic and fiber traits in Upland cotton
USDA-ARS?s Scientific Manuscript database
Gossypium barbadense (L.), G. tomentosum (Seem.), G. mustelinum (Watt.) and G. darwinii (Watt.) are in the primary gene pool of Upland cotton (G. hirsutum). They share a common chromosome number (2n=52), similar AD-genome architecture, and form reasonably fertile F1 hybrids. However, reduced transm...
Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space
NASA Technical Reports Server (NTRS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler;
2015-01-01
NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.
Coding and Modulation for LMDS and Analysis of the LMDS Channel
Håkegård, Jan Erik
2000-01-01
Local Multipoint Distribution Service (LMDS) has the potential to become a viable alternative to coaxial cable, fiber and other wired and wireless technologies providing “last mile” communication services. A major obstacle, however, is the high equipment cost. While for example cable modems supporting two-way services are available for $200 to $300, LMDS modem providing similar services will cost over $1000. The major cost driver of LMDS equipment is the radio frequency (RF) unit, as Ka-band technology still is quite expensive. The modem design must minimize the overall architecture cost, and low-cost modems requiring an expensive architecture should not be used. The channel characteristics of LMDS systems are very different from those of fiber, coaxial cable, and lower frequency wireless links, major channel impairments being non-linear high power amplifier (HPA), high phase noise and high co-channel interference. Modems should therefore be developed specifically for LMDS systems. This report deals with the choice of coding and modulation schemes, the LMDS channel, and how the channel impairments should be overcome by digital signal processing algorithms. PMID:27551634
AFEII Analog Front End Board Design Specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinov, Paul; /Fermilab
2005-04-01
This document describes the design of the 2nd iteration of the Analog Front End Board (AFEII), which has the function of receiving charge signals from the Central Fiber Tracker (CFT) and providing digital hit pattern and charge amplitude information from those charge signals. This second iteration is intended to address limitations of the current AFE (referred to as AFEI in this document). These limitations become increasingly deleterious to the performance of the Central Fiber Tracker as instantaneous luminosity increases. The limitations are inherent in the design of the key front end chips on the AFEI board (the SVXIIe and themore » SIFT) and the architecture of the board itself. The key limitations of the AFEI are: (1) SVX saturation; (2) Discriminator to analog readout cross talk; (3) Tick to tick pedestal variation; and (4) Channel to channel pedestal variation. The new version of the AFE board, AFEII, addresses these limitations by use of a new chip, the TriP-t and by architectural changes, while retaining the well understood and desirable features of the AFEI board.« less
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
FTTH: the overview of existing technologies
NASA Astrophysics Data System (ADS)
Nowak, Dawid; Murphy, John
2005-06-01
The growing popularity of the Internet is the key driver behind the development of new access methods which would enable a customer to experience a true broadband. Amongst various technologies, the access methods based on the optical fiber are getting more and more attention as they offer the ultimate solution in delivering different services to the customers' premises. Three different architectures have been proposed that facilitate the roll out of Fiber-to-the-Home (FTTH) infrastructure. Point-to-point Ethernet networks are the most straightforward and already matured solution. Different flavors of Passive Optical Networks (PONs) with Time Division Multiplexing Access (TDMA) are getting more widespread as necessary equipment is becoming available on the market. The third main contender are PONs withWavelength DivisionMultiplexing Access (WDMA). Although still in their infancy, the laboratory tests show that they have many advantages over present solutions. In this paper we show a brief comparison of these three access methods. In our analysis the architecture of each solution is presented. The applicability of each system is looked at from different viewpoint and their advantages and disadvantages are highlighted.
Modeling and characterization of through-the-thickness properties of 3D woven composites
NASA Technical Reports Server (NTRS)
Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei
1995-01-01
The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.
Fiber-based, trace-gas, laser transmitter technology development for space
NASA Astrophysics Data System (ADS)
Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzales, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James
2015-09-01
NASA's Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter. In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.
NASA Astrophysics Data System (ADS)
Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.
2016-03-01
Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.
ERIC Educational Resources Information Center
Waalkens, Maaike; Aleven, Vincent; Taatgen, Niels
2013-01-01
Intelligent tutoring systems (ITS) support students in learning a complex problem-solving skill. One feature that makes an ITS architecturally complex, and hard to build, is support for strategy freedom, that is, the ability to let students pursue multiple solution strategies within a given problem. But does greater freedom mean that students…
Systems Biology of Skeletal Muscle: Fiber Type as an Organizing Principle
Greising, Sarah M; Gransee, Heather M; Mantilla, Carlos B; Sieck, Gary C
2012-01-01
Skeletal muscle force generation and contraction are fundamental to countless aspects of human life. The complexity of skeletal muscle physiology is simplified by fiber type classification where differences are observed from neuromuscular transmission to release of intracellular Ca2+ from the sarcoplasmic reticulum and the resulting recruitment and cycling of cross-bridges. This review uses fiber type classification as an organizing and simplifying principle to explore the complex interactions between the major proteins involved in muscle force generation and contraction. PMID:22811254
115. Photocopy of drawing (1964 architectural drawing by Koebig & ...
115. Photocopy of drawing (1964 architectural drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, SECTIONS AND ELEVATIONS, SHEET A-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Complex Processes from Dynamical Architectures with Time-Scale Hierarchy
Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor
2011-01-01
The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363
Digital tanlock loop architecture with no delay
NASA Astrophysics Data System (ADS)
Al-Kharji AL-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud; Ponnapalli, Prasad
2012-02-01
This article proposes a new architecture for a digital tanlock loop which eliminates the time-delay block. The ? (rad) phase shift relationship between the two channels, which is generated by the delay block in the conventional time-delay digital tanlock loop (TDTL), is preserved using two quadrature sampling signals for the loop channels. The proposed system outperformed the original TDTL architecture, when both systems were tested with frequency shift keying input signal. The new system demonstrated better linearity and acquisition speed as well as improved noise performance compared with the original TDTL architecture. Furthermore, the removal of the time-delay block enables all processing to be digitally performed, which reduces the implementation complexity. Both the original TDTL and the new architecture without the delay block were modelled and simulated using MATLAB/Simulink. Implementation issues, including complexity and relation to simulation of both architectures, are also addressed.
Reconfigurable optical interconnection network for multimode optical fiber sensor arrays
NASA Technical Reports Server (NTRS)
Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.
1992-01-01
A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.
Planning Multitechnology Access Networks with Performance Constraints
NASA Astrophysics Data System (ADS)
Chamberland, Steven
Considering the number of access network technologies and the investment needed for the “last mile” of a solution, in today’s highly competitive markets, planning tools are crucial for the service providers to optimize the network costs and accelerate the planning process. In this paper, we propose to tackle the problem of planning access networks composed of four technologies/architectures: the digital subscriber line (xDSL) technologies deployed directly from the central office (CO), the fiber-to-the-node (FTTN), the fiber-to-the-micro-node (FTTn) and the fiber-to-the-premises (FTTP). A mathematical programming model is proposed for this planning problem that is solved using a commercial implementation of the branch-and-bound algorithm. Next, a detailed access network planning example is presented followed by a systematic set of experiments designed to assess the performance of the proposed approach.
Peng, Hsiao-Chun; Lu, Hai-Han; Li, Chung-Yi; Su, Heng-Sheng; Hsu, Chin-Tai
2011-03-28
An integration of fiber-to-the-home (FTTH) and graded-index plastic optical fiber (GI-POF) in-house networks based on injection-locked vertical cavity surface emitting lasers (VCSELs) and direct-detection technique is proposed and experimentally demonstrated. Sufficient low bit error rate (BER) values were obtained over a combination of 20-km single-mode fiber (SMF) and 50-m GI-POF links. Signal qualities satisfy the worldwide interoperability for microwave access (WiMAX) requirement with data signals of 20 Mbps/5.8 GHz and 70 Mbps/10 GHz, respectively. Since our proposed network does not use sophisticated and expensive RF devices in premises, it reveals a prominent one with simpler and more economic advantages. Our proposed architecture is suitable for the SMF-based primary and GI-POF-based in-house networks.
Selecting a Benchmark Suite to Profile High-Performance Computing (HPC) Machines
2014-11-01
architectures. Machines now contain central processing units (CPUs), graphics processing units (GPUs), and many integrated core ( MIC ) architecture all...evaluate the feasibility and applicability of a new architecture just released to the market . Researchers are often unsure how available resources will...architectures. Having a suite of programs running on different architectures, such as GPUs, MICs , and CPUs, adds complexity and technical challenges
Group-velocity-locked vector soliton molecules in fiber lasers.
Luo, Yiyang; Cheng, Jianwei; Liu, Bowen; Sun, Qizhen; Li, Lei; Fu, Songnian; Tang, Dingyuan; Zhao, Luming; Liu, Deming
2017-05-24
Physics phenomena of multi-soliton complexes have enriched the life of dissipative solitons in fiber lasers. By developing a birefringence-enhanced fiber laser, we report the first experimental observation of group-velocity-locked vector soliton (GVLVS) molecules. The birefringence-enhanced fiber laser facilitates the generation of GVLVSs, where the two orthogonally polarized components are coupled together to form a multi-soliton complex. Moreover, the interaction of repulsive and attractive forces between multiple pulses binds the particle-like GVLVSs together in time domain to further form compound multi-soliton complexes, namely GVLVS molecules. By adopting the polarization-resolved measurement, we show that the two orthogonally polarized components of the GVLVS molecules are both soliton molecules supported by the strongly modulated spectral fringes and the double-humped intensity profiles. Additionally, GVLVS molecules with various soliton separations are also observed by adjusting the pump power and the polarization controller.
Zhu, Ping; Jafari, Rana; Jones, Travis; Trebino, Rick
2017-10-02
We introduce a simple delay-scanned complete spatiotemporal intensity-and-phase measurement technique based on wavelength-multiplexed holography to characterize long, complex pulses in space and time. We demonstrate it using pulses emerging from multi-mode fiber. This technique extends the temporal range and spectral resolution of the single-frame STRIPED FISH technique without using an otherwise-required expensive ultranarrow-bandpass filter. With this technique, we measured the complete intensity and phase of up to ten fiber modes from a multi-mode fiber (normalized frequency V ≈10) over a ~3ps time range. Spatiotemporal complexities such as intermodal delay, modal dispersion, and material dispersion were also intuitively displayed by the retrieved results. Agreement between the reconstructed color movies and the monitored time-averaged spatial profiles confirms the validity to this delay-scanned STRIPED FISH method.
Structure and Properties of Melt-spun Bio-based Polyamide/Eu(TTA)3Phen Composite fibers
NASA Astrophysics Data System (ADS)
Li, Yunye; Lou, Pengfei; Jia, Qingxiu
2018-02-01
In this paper, the bio-based polyamide (PA ) was melt polymerized from four bio-based monomers. Composites of the bio-based PA and europium complex Eu(TTA)3Phen were prepared through solution mixing using N, N-Dimethylformamide (DMF) and formic acid as the mixed solvent, and then composite fibers were obtained by melt spinning method. The structure and properties of the melt-spun composite fibers were characterized by FTIR and SEM. The results indicated that the Eu(TTA)3Phen complex, with the average diameter below 300 nm, was homogeneously dispersed in the PA matrix. FTIR spectra indicated that the coordination bond between carbonyl of BDIS and Eu(TTA)3Phen complex formed, which was also confirmed by the mechanical properties. The initial modulus and breaking strength of these fibers can arrived at 2.5GPa and 0.3GPa, respectively.
On the national characteristics of Chinese ancient architecture
NASA Astrophysics Data System (ADS)
Yan, Jun; Shan, Xiaoxian
2018-03-01
architecture is a complex composed of technology and art. It is a concrete reflection of everything in the local society at that time. The architecture is basically consistent with the social content and historical development. This paper analyzes the formation, characteristics and style of ancient Chinese architecture and expounds its national spirit and characteristics.
114. Photocopy of drawing (1964 architectural drawing by Koebig & ...
114. Photocopy of drawing (1964 architectural drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING; POINT ARGUELLO LAUNCH COMPLEX ONE; FLOOR PLANS, SECTIONS, AND DETAILS; SHEET A-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Superlattice Microstructured Optical Fiber
Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw
2014-01-01
A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693