Sample records for complex flow domains

  1. When music “flows”. State and trait in musical performance, composition and listening: a systematic review

    PubMed Central

    Chirico, Alice; Serino, Silvia; Cipresso, Pietro; Gaggioli, Andrea; Riva, Giuseppe

    2015-01-01

    It is not unusual to experience a sense of total absorption, concentration, action-awareness, distortion of time and intrinsic enjoyment during an activity that involves music. Indeed, it is noted that there is a special relationship between these two aspects (i.e., music and flow experience). In order to deeply explore flow in the musical domain, it is crucial to consider the complexity of the flow experience—both as a “state” and as a “trait.” Secondly, since music is a multifaceted domain, it is necessary to concentrate on specific music settings, such as (i) musical composition; (ii) listening; and (iii) musical performance. To address these issues, the current review aims to outline flow experience as a “trait” and as a “state” in the three above-mentioned musical domains. Clear and useful guidelines to distinguish between flow as a “state” and as a “trait” are provided by literature concerning flow assessment. For this purpose, three aspects of the selected studies are discussed and analyzed: (i) the characteristics of the flow assessments used; (ii) the experimental design; (iii) the results; and (iv) the interrelations between the three domains. Results showed that the dispositional approach is predominant in the above-mentioned settings, mainly regarding music performance. Several aspects concerning musical contexts still need to be deeply analyzed. Future challenges could include the role of a group level of analysis, overcoming a frequency approach toward dispositional flow, and integrating both state and dispositional flow perspectives in order to deepen comprehension of how flow takes place in musical contexts. Finally, to explain the complex relationship between these two phenomena, we suggest that music and flow could be seen as an emergent embodied system. PMID:26175709

  2. Vortex motion in doubly connected domains

    NASA Astrophysics Data System (ADS)

    Zannetti, L.; Gallizio, F.; Ottino, G. M.

    The unsteady two-dimensional rotational flow past doubly connected domains is analytically addressed. By concentrating the vorticity in point vortices, the flow is modelled as a potential flow with point singularities. The dependence of the complex potential on time is defined according to the Kelvin theorem. The general case of non-null circulations around the solid bodies is discussed. Vortex shedding and time evolution of the circulation past a two-element airfoil and past a two-bladed Darrieus turbine are presented as physically coherent examples.

  3. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is amore » fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.« less

  4. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  5. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  6. SToRM: A numerical model for environmental surface flows

    USGS Publications Warehouse

    Simoes, Francisco J.

    2009-01-01

    SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.

  7. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1993-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  8. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1992-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  9. Efficient Unstructured Cartesian/Immersed-Boundary Method with Local Mesh Refinement to Simulate Flows in Complex 3D Geometries

    NASA Astrophysics Data System (ADS)

    de Zelicourt, Diane; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit

    2008-11-01

    Image-guided computational fluid dynamics has recently gained attention as a tool for predicting the outcome of different surgical scenarios. Cartesian Immersed-Boundary methods constitute an attractive option to tackle the complexity of real-life anatomies. However, when such methods are applied to the branching, multi-vessel configurations typically encountered in cardiovascular anatomies the majority of the grid nodes of the background Cartesian mesh end up lying outside the computational domain, increasing the memory and computational overhead without enhancing the numerical resolution in the region of interest. To remedy this situation, the method presented here superimposes local mesh refinement onto an unstructured Cartesian grid formulation. A baseline unstructured Cartesian mesh is generated by eliminating all nodes that reside in the exterior of the flow domain from the grid structure, and is locally refined in the vicinity of the immersed-boundary. The potential of the method is demonstrated by carrying out systematic mesh refinement studies for internal flow problems ranging in complexity from a 90 deg pipe bend to an actual, patient-specific anatomy reconstructed from magnetic resonance.

  10. I-domain of lymphocyte function-associated antigen-1 mediates rolling of polystyrene particles on ICAM-1 under flow.

    PubMed

    Eniola, A Omolola; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel A

    2005-11-01

    In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.

  11. Application of an unstructured grid flow solver to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram

    1993-01-01

    Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.

  12. Strain distribution across a partially molten middle crust: Insights from the AMS mapping of the Carlos Chagas Anatexite, Araçuaí belt (East Brazil)

    NASA Astrophysics Data System (ADS)

    Cavalcante, Geane C. G.; Egydio-Silva, Marcos; Vauchez, Alain; Camps, Pierre; Oliveira, Eurídice

    2013-10-01

    The easternmost part of the Neoproterozoic Araçuaí belt comprises an anatectic domain that involves anatexites (the Carlos Chagas unit), leucogranites and migmatitic granulites that display a well-developed fabric. Microstructural observations support that the deformation occurred in the magmatic to submagmatic state. Structural mapping integrating field and anisotropy of magnetic susceptibility (AMS) revealed a complex, 3D structure. The northern domain displays gently dipping foliations bearing a NW-trending lineation, southward, the lineation trend progressively rotates to EW then SW and the foliation is gently folded. The eastern domain displays E-W and NE-SW trending foliations with moderate to steeply dips bearing a dominantly NS trending lineation. Magnetic mineralogy investigation suggests biotite as the main carrier of the magnetic susceptibility in the anatexites and ferromagnetic minerals in the granulites. Crystallographic preferred orientation (CPO) measurements using the electron backscatter diffraction (EBSD) technique suggest that the magnetic fabric comes from the crystalline anisotropy of biotite and feldspar grains, especially. The delineation of several structural domains with contrasted flow fabric suggests a 3D flow field involving westward thrusting orthogonal to the belt, northwestward orogen-oblique escape tectonics and NS orogen-parallel flow. This complex deformation pattern may be due to interplay of collision-driven and gravity-driven deformations.

  13. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  14. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.

    PubMed

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  15. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  16. Application of parallel distributed Lagrange multiplier technique to simulate coupled Fluid-Granular flows in pipes with varying Cross-Sectional area

    DOE PAGES

    Kanarska, Yuliya; Walton, Otis

    2015-11-30

    Fluid-granular flows are common phenomena in nature and industry. Here, an efficient computational technique based on the distributed Lagrange multiplier method is utilized to simulate complex fluid-granular flows. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. The particle–particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEMmore » method with some modifications using the volume of an overlapping region as an input to the contact forces. Here, a parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library.« less

  17. Optimal domain decomposition strategies

    NASA Technical Reports Server (NTRS)

    Yoon, Yonghyun; Soni, Bharat K.

    1995-01-01

    The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.

  18. Solving Partial Differential Equations on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less

  19. Numerical simulation of fire vortex

    NASA Astrophysics Data System (ADS)

    Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.

    2018-05-01

    The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.

  20. Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Betterton, Meredith D.; Jhang, An-Sheng; Shelley, Michael J.

    2017-09-01

    We analyze one of the simplest active suspensions with complex dynamics: a suspension of immotile "extensor" particles that exert active extensile dipolar stresses on the fluid in which they are immersed. This is relevant to several experimental systems, such as recently studied tripartite rods that create extensile flows by consuming a chemical fuel. We first describe the system through a Doi-Onsager kinetic theory based on microscopic modeling. This theory captures the active stresses produced by the particles that can drive hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead to nematic alignment. This active nematic system yields complex flows and disclination defect dynamics very similar to phenomenological Landau-deGennes Q -tensor theories for active nematic fluids, as well as by more complex Doi-Onsager theories for polar microtubule-motor-protein systems. We apply the quasiequilibrium Bingham closure, used to study suspensions of passive microscopic rods, to develop a nonstandard Q -tensor theory. We demonstrate through simulation that this B Q -tensor theory gives an excellent analytical and statistical accounting of the suspension's complex dynamics, at a far reduced computational cost. Finally, we apply the B Q -tensor model to study the dynamics of extensor suspensions in circular and biconcave domains. In circular domains, we reproduce previous results for systems with weak nematic alignment, but for strong alignment we find unusual dynamics with activity-controlled defect production and absorption at the boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the width of the neck connecting the two disks is varied.

  1. A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries

    PubMed Central

    Seo, Jung Hee; Mittal, Rajat

    2010-01-01

    A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129

  2. Entropy Generation/Availability Energy Loss Analysis Inside MIT Gas Spring and "Two Space" Test Rigs

    NASA Technical Reports Server (NTRS)

    Ebiana, Asuquo B.; Savadekar, Rupesh T.; Patel, Kaushal V.

    2006-01-01

    The results of the entropy generation and availability energy loss analysis under conditions of oscillating pressure and oscillating helium gas flow in two Massachusetts Institute of Technology (MIT) test rigs piston-cylinder and piston-cylinder-heat exchanger are presented. Two solution domains, the gas spring (single-space) in the piston-cylinder test rig and the gas spring + heat exchanger (two-space) in the piston-cylinder-heat exchanger test rig are of interest. Sage and CFD-ACE+ commercial numerical codes are used to obtain 1-D and 2-D computer models, respectively, of each of the two solution domains and to simulate the oscillating gas flow and heat transfer effects in these domains. Second law analysis is used to characterize the entropy generation and availability energy losses inside the two solution domains. Internal and external entropy generation and availability energy loss results predicted by Sage and CFD-ACE+ are compared. Thermodynamic loss analysis of simple systems such as the MIT test rigs are often useful to understand some important features of complex pattern forming processes in more complex systems like the Stirling engine. This study is aimed at improving numerical codes for the prediction of thermodynamic losses via the development of a loss post-processor. The incorporation of loss post-processors in Stirling engine numerical codes will facilitate Stirling engine performance optimization. Loss analysis using entropy-generation rates due to heat and fluid flow is a relatively new technique for assessing component performance. It offers a deep insight into the flow phenomena, allows a more exact calculation of losses than is possible with traditional means involving the application of loss correlations and provides an effective tool for improving component and overall system performance.

  3. Passive scalar transport to and from the surface of a Pocillopora coral colony

    NASA Astrophysics Data System (ADS)

    Hossain, Md Monir; Staples, Anne

    2016-11-01

    Three-dimensional simulations of flow through a single Pocillopora coral colony were performed to examine the interaction between the flow conditions and scalar transport near a coral colony. With corals currently undergoing a third global bleaching event, a fuller understanding of the transport of nutrients, weak temperature gradients, and other passive scalars to and from the coral polyp tissue is more important than ever. The complex geometry of a coral colony poses a significant challenge for numerical simulation. To simplify grid generation and minimize computational cost, the immersed boundary method was implemented. Large eddy simulation was chosen as the framework to capture the turbulent flow field in the range of realistic Reynolds numbers of 5,000 to 30,000 and turbulent Schmidt numbers of up to 1,000. Both uniform and oscillatory flows through the colony were investigated. Significant differences were found between the cases when the scalar originated at the edge of the flow domain and was transported into the colony, versus when the scalar originated on the surface of the colony and was transported away from the coral. The domain-to-colony transport rates were found to be orders of magnitude higher than the colony-to-domain rates.

  4. Nested high-resolution large-eddy simulations in WRF to support wind power

    NASA Astrophysics Data System (ADS)

    Mirocha, J.; Kirkil, G.; Kosovic, B.; Lundquist, J. K.

    2009-12-01

    The WRF model’s grid nesting capability provides a potentially powerful framework for simulating flow over a wide range of scales. One such application is computation of realistic inflow boundary conditions for large eddy simulations (LES) by nesting LES domains within mesoscale domains. While nesting has been widely and successfully applied at GCM to mesoscale resolutions, the WRF model’s nesting behavior at the high-resolution (Δx < 1000m) end of the spectrum is less well understood. Nesting LES within msoscale domains can significantly improve turbulent flow prediction at the scale of a wind park, providing a basis for superior site characterization, or for improved simulation of turbulent inflows encountered by turbines. We investigate WRF’s grid nesting capability at high mesh resolutions using nested mesoscale and large-eddy simulations. We examine the spatial scales required for flow structures to equilibrate to the finer mesh as flow enters a nest, and how the process depends on several parameters, including grid resolution, turbulence subfilter stress models, relaxation zones at nest interfaces, flow velocities, surface roughnesses, terrain complexity and atmospheric stability. Guidance on appropriate domain sizes and turbulence models for LES in light of these results is provided This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-ABS-416482

  5. Visual Modelling of Data Warehousing Flows with UML Profiles

    NASA Astrophysics Data System (ADS)

    Pardillo, Jesús; Golfarelli, Matteo; Rizzi, Stefano; Trujillo, Juan

    Data warehousing involves complex processes that transform source data through several stages to deliver suitable information ready to be analysed. Though many techniques for visual modelling of data warehouses from the static point of view have been devised, only few attempts have been made to model the data flows involved in a data warehousing process. Besides, each attempt was mainly aimed at a specific application, such as ETL, OLAP, what-if analysis, data mining. Data flows are typically very complex in this domain; for this reason, we argue, designers would greatly benefit from a technique for uniformly modelling data warehousing flows for all applications. In this paper, we propose an integrated visual modelling technique for data cubes and data flows. This technique is based on UML profiling; its feasibility is evaluated by means of a prototype implementation.

  6. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method

    PubMed Central

    Kojic, Milos; Filipovic, Nenad; Tsuda, Akira

    2012-01-01

    A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322

  7. The 3-D numerical study of airflow in the compressor/combustor prediffuser and dump diffuser of an industrial gas turbine

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Yang, Tah-Teh

    1993-01-01

    This paper describes the 3D computations of a flow field in the compressor/combustor diffusers of an industrial gas turbine. The geometry considered includes components such as the combustor support strut, the transition piece and the impingement sleeve with discrete cooling air holes on its surface. Because the geometry was complex and 3D, the airflow path was divided into two computational domains sharing an interface region. The body-fitted grid was generated independently in each of the two domains. The governing equations for incompressible Navier-Stokes equations were solved using the finite volume approach. The results show that the flow in the prediffuser is strongly coupled with the flow in the dump diffuser and vice versa. The computations also revealed that the flow in the dump diffuser is highly nonuniform.

  8. A note on singularities of the 3-D Euler equation

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1994-01-01

    In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.

  9. Flow simulations about steady-complex and unsteady moving configurations using structured-overlapped and unstructured grids

    NASA Technical Reports Server (NTRS)

    Newman, James C., III

    1995-01-01

    The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of comparable accuracy for these simulations. This study also indicated that, overall, the structured-overlapped scheme was slightly more CPU efficient than the unstructured approach.

  10. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  11. Navier-Stokes simulation of external/internal transonic flow on the forebody/inlet of the AV-8B Harrier II

    NASA Technical Reports Server (NTRS)

    Mysko, Stephen J.; Chyu, Wei J.; Stortz, Michael W.; Chow, Chuen-Yen

    1993-01-01

    In this work, the computation of combined external/internal transonic flow on the complex forebody/inlet configuration of the AV-8B Harrier II is performed. The actual aircraft has been measured and its surface and surrounding domain, in which the fuselage and inlet have a common wall, have been described using structured grids. The 'thin-layer' Navier-Stokes equations were used to model the flow along with the Chimera embedded multi-block technique. A fully conservative, alternating direction implicit (ADI), approximately factored, partially fluxsplit algorithm was employed to perform the computation. Comparisons to some experimental wind tunnel data yielded good agreement for flow at zero incidence and angle of attack. The aim of this paper is to provide a methodology or computational tool for the numerical solution of complex external/internal flows.

  12. Hydraulic jump and Bernoulli equation in nonlinear shallow water model

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yih

    2018-06-01

    A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.

  13. Predicting debris-flow initiation and run-out with a depth-averaged two-phase model and adaptive numerical methods

    NASA Astrophysics Data System (ADS)

    George, D. L.; Iverson, R. M.

    2012-12-01

    Numerically simulating debris-flow motion presents many challenges due to the complicated physics of flowing granular-fluid mixtures, the diversity of spatial scales (ranging from a characteristic particle size to the extent of the debris flow deposit), and the unpredictability of the flow domain prior to a simulation. Accurately predicting debris-flows requires models that are complex enough to represent the dominant effects of granular-fluid interaction, while remaining mathematically and computationally tractable. We have developed a two-phase depth-averaged mathematical model for debris-flow initiation and subsequent motion. Additionally, we have developed software that numerically solves the model equations efficiently on large domains. A unique feature of the mathematical model is that it includes the feedback between pore-fluid pressure and the evolution of the solid grain volume fraction, a process that regulates flow resistance. This feature endows the model with the ability to represent the transition from a stationary mass to a dynamic flow. With traditional approaches, slope stability analysis and flow simulation are treated separately, and the latter models are often initialized with force balances that are unrealistically far from equilibrium. Additionally, our new model relies on relatively few dimensionless parameters that are functions of well-known material properties constrained by physical data (eg. hydraulic permeability, pore-fluid viscosity, debris compressibility, Coulomb friction coefficient, etc.). We have developed numerical methods and software for accurately solving the model equations. By employing adaptive mesh refinement (AMR), the software can efficiently resolve an evolving debris flow as it advances through irregular topography, without needing terrain-fit computational meshes. The AMR algorithms utilize multiple levels of grid resolutions, so that computationally inexpensive coarse grids can be used where the flow is absent, and much higher resolution grids evolve with the flow. The reduction in computational cost, due to AMR, makes very large-scale problems tractable on personal computers. Model accuracy can be tested by comparison of numerical predictions and empirical data. These comparisons utilize controlled experiments conducted at the USGS debris-flow flume, which provide detailed data about flow mobilization and dynamics. Additionally, we have simulated historical large-scale debris flows, such as the (≈50 million m^3) debris flow that originated on Mt. Meager, British Columbia in 2010. This flow took a very complex route through highly variable topography and provides a valuable benchmark for testing. Maps of the debris flow deposit and data from seismic stations provide evidence regarding flow initiation, transit times and deposition. Our simulations reproduce many of the complex patterns of the event, such as run-out geometry and extent, and the large-scale nature of the flow and the complex topographical features demonstrate the utility of AMR in flow simulations.

  14. Metaphors and models: the ASR bubble in the Floridan aquifer.

    PubMed

    Vacher, H L; Hutchings, William C; Budd, David A

    2006-01-01

    Studies at the intersection of cognitive science and linguistics have revealed the crucial role that metaphors play in shaping our thoughts about phenomena we cannot see. According to the domains interaction theory of cognition, a metaphoric expression sets up mappings between a target domain that we wish to understand and a familiar source domain. The source domain contains elements ("commonplaces") that we manipulate mentally, like parts of an analogue model, to illuminate the target domain. This paper applies the structure of domains interaction theory to analyze the dynamics of a metaphor in hydrogeology: the so-called bubble formed by water injected into an aquifer during aquifer storage and recovery (ASR). Of the four commonplaces of bubbles--(1) they are discrete; (2) they are geometrically simple; (3) they rise; and (4) they burst--we focus on the first two using both displacement and dispersion (tracer) models for both homogeneous and heterogeneous storage zones patterned from geological studies of the Suwannee Limestone of Sarasota County, Florida. The displacement model easily shows that "bottle brush" better represents the geometric complexity predicted from the known and inferred heterogeneity. There is virtually no difference, however, in the prediction of recovery efficiency using the dispersion model for a bubble (homogeneous flow zone) vs. bottle brush (heterogeneous flow zone). On the other hand, only the bottle brush reveals that unrecovered tracer is located preferentially in the low-permeability layers that lie adjacent to high-permeability channels in the flow zones.

  15. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed laser sheet velocimetry yields nonintrusive measurements of two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high precision (1 pct) velocity estimates, but can require several hours of processing time on specialized array processors. Under some circumstances, a simple, fast, less accurate (approx. 5 pct), data reduction technique which also gives unambiguous velocity vector information is acceptable. A direct space domain processing technique was examined. The direct space domain processing technique was found to be far superior to any other techniques known, in achieving the objectives listed above. It employs a new data coding and reduction technique, where the particle time history information is used directly. Further, it has no 180 deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 minutes on an 80386 based PC, producing a 2-D velocity vector map of the flow field. Hence, using this new space domain vector scanning (VS) technique, pulsed laser velocimetry data can be reduced quickly and reasonably accurately, without specialized array processing hardware.

  16. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  17. An Initial Multi-Domain Modeling of an Actively Cooled Structure

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur

    1997-01-01

    A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.

  18. A hybrid structured-unstructured grid method for unsteady turbomachinery flow computations

    NASA Technical Reports Server (NTRS)

    Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.

    1993-01-01

    A hybrid grid technique for the solution of 2D, unsteady flows is developed. This technique is capable of handling complex, multiple component geometries in relative motion, such as those encountered in turbomachinery. The numerical approach utilizes a mixed structured-unstructured zonal grid topology along with modeling equations and solution methods that are most appropriate in the individual domains, therefore combining the advantages of both structured and unstructured grid techniques.

  19. Review of literature on the finite-element solution of the equations of two-dimensional surface-water flow in the horizontal plane

    USGS Publications Warehouse

    Lee, Jonathan K.; Froehlich, David C.

    1987-01-01

    Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.

  20. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

    2010-01-01

    Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

  1. RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1997-01-01

    Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.

  2. Predicting Flows of Rarefied Gases

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.; Wilmoth, Richard G.

    2005-01-01

    DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.

  3. Direct Numerical Simulation of Complex Turbulence

    NASA Astrophysics Data System (ADS)

    Hsieh, Alan

    Direct numerical simulations (DNS) of spanwise-rotating turbulent channel flow were conducted. The data base obtained from these DNS simulations were used to investigate the turbulence generation cycle for simple and complex turbulence. For turbulent channel flow, three theoretical models concerning the formation and evolution of sublayer streaks, three-dimensional hairpin vortices and propagating plane waves were validated using visualizations from the present DNS data. The principal orthogonal decomposition (POD) method was used to verify the existence of the propagating plane waves; a new extension of the POD method was derived to demonstrate these plane waves in a spatial channel model. The analyses of coherent structures was extended to complex turbulence and used to determine the proper computational box size for a minimal flow unit (MFU) at Rob < 0.5. Proper realization of Taylor-Gortler vortices in the highly turbulent pressure region was demonstrated to be necessary for acceptably accurate MFU turbulence statistics, which required a minimum spanwise domain length Lz = pi. A dependence of MFU accuracy on Reynolds number was also discovered and MFU models required a larger domain to accurately approximate higher-Reynolds number flows. In addition, the results obtained from the DNS simulations were utilized to evaluate several turbulence closure models for momentum and thermal transport in rotating turbulent channel flow. Four nonlinear eddy viscosity turbulence models were tested and among these, Explicit Algebraic Reynolds Stress Models (EARSM) obtained the Reynolds stress distributions in best agreement with DNS data for rotational flows. The modeled pressure-strain functions of EARSM were shown to have strong influence on the Reynolds stress distributions near the wall. Turbulent heatflux distributions obtained from two explicit algebraic heat flux models consistently displayed increasing disagreement with DNS data with increasing rotation rate. Results were also obtained regarding flow control of fully-developed spatially-evolving turbulent channel flow using phononic subsurface structures. Fluid-structure interaction (FSI) simulations were conducted by attaching phononic structures to the bottom wall of a turbulent channel flow field and reduction of turbulent kinetic energy was observed for different phononic designs.

  4. A dissipative particle dynamics method for arbitrarily complex geometries

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em

    2018-02-01

    Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its effectiveness is demonstrated by examining the rich dynamics of surfactant micelles, which are flowing around multiple small cylinders and stenotic regions in the microfluidic device without wall penetration. In addition to stationary arbitrary-shape objects, the new method is particularly useful for problems involving moving and deformable boundaries, because it only uses local information of neighboring particles and satisfies the desired boundary conditions on-the-fly.

  5. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  6. A Flow Solver for Three-Dimensional DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Zheng, Yao

    2002-01-01

    DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.

  7. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, K A

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model.more » First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.« less

  8. Overset grid applications on distributed memory MIMD computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana; Weeratunga, Sisira

    1994-01-01

    Analysis of modern aerospace vehicles requires the computation of flowfields about complex three dimensional geometries composed of regions with varying spatial resolution requirements. Overset grid methods allow the use of proven structured grid flow solvers to address the twin issues of geometrical complexity and the resolution variation by decomposing the complex physical domain into a collection of overlapping subdomains. This flexibility is accompanied by the need for irregular intergrid boundary communication among the overlapping component grids. This study investigates a strategy for implementing such a static overset grid implicit flow solver on distributed memory, MIMD computers; i.e., the 128 node Intel iPSC/860 and the 208 node Intel Paragon. Performance data for two composite grid configurations characteristic of those encountered in present day aerodynamic analysis are also presented.

  9. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the isotropic turbulent flow decay, at a relatively high turbulent Mach number, show a nicely behaved spectral decay rate for medium to high wave numbers. The high-order CESE schemes offer very robust solutions even with the presence of strong shocks or widespread shocklets. The explicit formulation in conjunction with a close to unity theoretical upper Courant number bound has the potential to offer an efficient numerical framework for general compressible turbulent flow simulations with unstructured meshes.

  10. A hybrid hydrostatic and non-hydrostatic numerical model for shallow flow simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxin; Liang, Dongfang; Liu, Hua

    2018-05-01

    Hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers, are often studied by solving shallow water model equations. Although hydrostatic models are accurate and cost efficient for many natural flows, there are situations where the hydrostatic assumption is invalid, whereby a fully hydrodynamic model is necessary to increase simulation accuracy. There is a growing concern about the decrease of the computational cost of non-hydrostatic pressure models to improve the range of their applications in large-scale flows with complex geometries. This study describes a hybrid hydrostatic and non-hydrostatic model to increase the efficiency of simulating shallow water flows. The basic numerical model is a three-dimensional hydrostatic model solved by the finite volume method (FVM) applied to unstructured grids. Herein, a second-order total variation diminishing (TVD) scheme is adopted. Using a predictor-corrector method to calculate the non-hydrostatic pressure, we extended the hydrostatic model to a fully hydrodynamic model. By localising the computational domain in the corrector step for non-hydrostatic pressure calculations, a hybrid model was developed. There was no prior special treatment on mode switching, and the developed numerical codes were highly efficient and robust. The hybrid model is applicable to the simulation of shallow flows when non-hydrostatic pressure is predominant only in the local domain. Beyond the non-hydrostatic domain, the hydrostatic model is still accurate. The applicability of the hybrid method was validated using several study cases.

  11. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  12. Simulation of blood flow through an artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, I-Dee; Rogers, Stuart E.; Kwak, Dochan

    1991-01-01

    A numerical simulation of the incompressible viscous flow through a prosthetic tilting disk heart valve is presented in order to demonstrate the current capability to model unsteady flows with moving boundaries. Both steady state and unsteady flow calculations are done by solving the incompressible Navier-Stokes equations in 3-D generalized curvilinear coordinates. In order to handle the moving boundary problems, the chimera grid embedding scheme which decomposes a complex computational domain into several simple subdomains is used. An algebraic turbulence model for internal flows is incorporated to reach the physiological values of Reynolds number. Good agreement is obtained between the numerical results and experimental measurements. It is found that the tilting disk valve causes large regions of separated flow, and regions of high shear.

  13. A Fictitious Domain Method for Resolving the Interaction of Blood Flow with Clot Growth

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Shadden, Shawn

    2016-11-01

    Thrombosis and thrombo-embolism cause a range of diseases including heart attack and stroke. Closer understanding of clot and blood flow mechanics provides valuable insights on the etiology, diagnosis, and treatment of thrombotic diseases. Such mechanics are complicated, however, by the discrete and multi-scale phenomena underlying thrombosis, and the complex interactions of unsteady, pulsatile hemodynamics with a clot of arbitrary shape and microstructure. We have developed a computational technique, based on a fictitious domain based finite element method, to study these interactions. The method can resolve arbitrary clot geometries, and dynamically couple fluid flow with static or growing clot boundaries. Macroscopic thrombus-hemodynamics interactions were investigated within idealized vessel geometries representative of the common carotid artery, with realistic unsteady flow profiles as inputs. The method was also employed successfully to resolve micro-scale interactions using a model driven by in-vivo morphology data. The results provide insights into the flow structures and hemodynamic loading around an arbitrarily grown clot at arterial length-scales, as well as flow and transport within the interstices of platelet aggregates composing the clot. The work was supported by AHA Award No: 16POST27500023.

  14. Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion.

    PubMed

    Barclay, Paul L; Lukes, Jennifer R

    2016-12-01

    A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.

  15. Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains

    NASA Astrophysics Data System (ADS)

    Han, Yi; Stoellinger, Michael; Naughton, Jonathan

    2016-09-01

    In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.

  16. High-Order Methods for Incompressible Fluid Flow

    NASA Astrophysics Data System (ADS)

    Deville, M. O.; Fischer, P. F.; Mund, E. H.

    2002-08-01

    High-order numerical methods provide an efficient approach to simulating many physical problems. This book considers the range of mathematical, engineering, and computer science topics that form the foundation of high-order numerical methods for the simulation of incompressible fluid flows in complex domains. Introductory chapters present high-order spatial and temporal discretizations for one-dimensional problems. These are extended to multiple space dimensions with a detailed discussion of tensor-product forms, multi-domain methods, and preconditioners for iterative solution techniques. Numerous discretizations of the steady and unsteady Stokes and Navier-Stokes equations are presented, with particular sttention given to enforcement of imcompressibility. Advanced discretizations. implementation issues, and parallel and vector performance are considered in the closing sections. Numerous examples are provided throughout to illustrate the capabilities of high-order methods in actual applications.

  17. The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography

    ERIC Educational Resources Information Center

    Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.

    2005-01-01

    Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…

  18. Large eddy simulation study of spanwise spacing effects on secondary flows in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Aliakbarimiyanmahaleh, Mohammad; Anderson, William

    2015-11-01

    The structure of turbulent flow over a complex topography composed of streamwise-aligned rows of cones with varying spanwise spacing, s is studied with large-eddy simulation (LES). Similar to the experimental study of Vanderwel and Ganapathisubramani, 2015: J. Fluid Mech., we investigate the relationship between secondary flow and s, for 0 . 25 <= s / δ <= 5 . For cases with s / δ > 2 , domain-scale rollers freely exist. These had previously been called ``turbulent secondary flows'' (Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.; Anderson et al., 2015: J. Fluid Mech.), but closer inspection of the statistics indicates these are a turbulent tertiary flow: they only remain ``anchored'' to the conical roughness elements for s / δ > 2 . For s / δ < 2 , turbulent tertiary flows are prevented from occupying the domain by virtue of proximity to adjacent, counter-rotating tertiary flows. Turbulent secondary flows are associated with the conical roughness elements. These turbulent secondary flows emanate from individual conical topographic elements and set the roughness sublayer depth. The turbulent secondary flows remain intact for large and small spacing. For s / δ < 1 , a mean tertiary flow is not present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at the Univ. of Texas.

  19. Higher dimensional curved domain walls on Kähler surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id; Radjabaycolle, Flinn C.

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  20. Model reduction of the numerical analysis of Low Impact Developments techniques

    NASA Astrophysics Data System (ADS)

    Brunetti, Giuseppe; Šimůnek, Jirka; Wöhling, Thomas; Piro, Patrizia

    2017-04-01

    Mechanistic models have proven to be accurate and reliable tools for the numerical analysis of the hydrological behavior of Low Impact Development (LIDs) techniques. However, their widespread adoption is limited by their complexity and computational cost. Recent studies have tried to address this issue by investigating the application of new techniques, such as surrogate-based modeling. However, current results are still limited and fragmented. One of such approaches, the Model Order Reduction (MOR) technique, can represent a valuable tool for reducing the computational complexity of a numerical problems by computing an approximation of the original model. While this technique has been extensively used in water-related problems, no studies have evaluated its use in LIDs modeling. Thus, the main aim of this study is to apply the MOR technique for the development of a reduced order model (ROM) for the numerical analysis of the hydrologic behavior of LIDs, in particular green roofs. The model should be able to correctly reproduce all the hydrological processes of a green roof while reducing the computational cost. The proposed model decouples the subsurface water dynamic of a green roof in a) one-dimensional (1D) vertical flow through a green roof itself and b) one-dimensional saturated lateral flow along the impervious rooftop. The green roof is horizontally discretized in N elements. Each element represents a vertical domain, which can have different properties or boundary conditions. The 1D Richards equation is used to simulate flow in the substrate and drainage layers. Simulated outflow from the vertical domain is used as a recharge term for saturated lateral flow, which is described using the kinematic wave approximation of the Boussinesq equation. The proposed model has been compared with the mechanistic model HYDRUS-2D, which numerically solves the Richards equation for the whole domain. The HYDRUS-1D code has been used for the description of vertical flow, while a Finite Volume Scheme has been adopted for lateral flow. Two scenarios involving flat and steep green roofs were analyzed. Results confirmed the accuracy of the reduced order model, which was able to reproduce both subsurface outflow and the moisture distribution in the green roof, significantly reducing the computational cost.

  1. Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting.

    PubMed

    Corzo, Gerald; Solomatine, Dimitri

    2007-05-01

    Natural phenomena are multistationary and are composed of a number of interacting processes, so one single model handling all processes often suffers from inaccuracies. A solution is to partition data in relation to such processes using the available domain knowledge or expert judgment, to train separate models for each of the processes, and to merge them in a modular model (committee). In this paper a problem of water flow forecast in watershed hydrology is considered where the flow process can be presented as consisting of two subprocesses -- base flow and excess flow, so that these two processes can be separated. Several approaches to data separation techniques are studied. Two case studies with different forecast horizons are considered. Parameters of the algorithms responsible for data partitioning are optimized using genetic algorithms and global pattern search. It was found that modularization of ANN models using domain knowledge makes models more accurate, if compared with a global model trained on the whole data set, especially when forecast horizon (and hence the complexity of the modelled processes) is increased.

  2. Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.

  3. Nesting large-eddy simulations within mesoscale simulations for wind energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, J K; Mirocha, J D; Chow, F K

    2008-09-08

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting thatmore » a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.« less

  4. An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.

    2014-01-01

    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.

  5. Multigrid calculation of internal flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Smith, K. M.; Vanka, S. P.

    1992-01-01

    The development, validation, and application of a general purpose multigrid solution algorithm and computer program for the computation of elliptic flows in complex geometries is presented. This computer program combines several desirable features including a curvilinear coordinate system, collocated arrangement of the variables, and Full Multi-Grid/Full Approximation Scheme (FMG/FAS). Provisions are made for the inclusion of embedded obstacles and baffles inside the flow domain. The momentum and continuity equations are solved in a decoupled manner and a pressure corrective equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. Despite the computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence results in reduced overall CPU time. The numerical scheme and selected results of several validation flows are presented. Finally, the procedure is applied to study the flowfield in a side-inlet dump combustor and twin jet impingement from a simulated aircraft fuselage.

  6. Combining numerical simulations with time-domain random walk for pathogen risk assessment in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Molin, S.

    2012-02-01

    We present a methodology that combines numerical simulations of groundwater flow and advective transport in heterogeneous porous media with analytical retention models for computing the infection risk probability from pathogens in aquifers. The methodology is based on the analytical results presented in [1,2] for utilising the colloid filtration theory in a time-domain random walk framework. It is shown that in uniform flow, the results from the numerical simulations of advection yield comparable results as the analytical TDRW model for generating advection segments. It is shown that spatial variability of the attachment rate may be significant, however, it appears to affect risk in a different manner depending on if the flow is uniform or radially converging. In spite of the fact that numerous issues remain open regarding pathogen transport in aquifers on the field scale, the methodology presented here may be useful for screening purposes, and may also serve as a basis for future studies that would include greater complexity.

  7. Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Perkins, A. Louise; Scroggs, Jeffrey S.

    1991-01-01

    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups.

  8. Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model

    USGS Publications Warehouse

    Long, Andrew J.

    2009-01-01

    Highly parameterized, physically based models may be no more effective at simulating the relations between rainfall and outflow from karst watersheds than are simpler models. Here an antecedent rainfall and convolution model was used to separate a karst watershed hydrograph into two outflow components: one originating from focused recharge in conduits and one originating from slow flow in a porous annex system. In convolution, parameters of a complex system are lumped together in the impulse-response function (IRF), which describes the response of the system to an impulse of effective precipitation. Two parametric functions in superposition approximate the two-domain IRF. The outflow hydrograph can be separated into flow components by forward modeling with isolated IRF components, which provides an objective criterion for separation. As an example, the model was applied to a karst watershed in the Madison aquifer, South Dakota, USA. Simulation results indicate that this watershed is characterized by a flashy response to storms, with a peak response time of 1 day, but that 89% of the flow results from the slow-flow domain, with a peak response time of more than 1 year. This long response time may be the result of perched areas that store water above the main water table. Simulation results indicated that some aspects of the system are stationary but that nonlinearities also exist.

  9. Curvilinear immersed-boundary method for simulating unsteady flows in shallow natural streams with arbitrarily complex obstacles

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.

  10. A Novel Multi-Scale Domain Overlapping CFD/STH Coupling Methodology for Multi-Dimensional Flows Relevant to Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Grunloh, Timothy P.

    The objective of this dissertation is to develop a 3-D domain-overlapping coupling method that leverages the superior flow field resolution of the Computational Fluid Dynamics (CFD) code STAR-CCM+ and the fast execution of the System Thermal Hydraulic (STH) code TRACE to efficiently and accurately model thermal hydraulic transport properties in nuclear power plants under complex conditions of regulatory and economic importance. The primary contribution is the novel Stabilized Inertial Domain Overlapping (SIDO) coupling method, which allows for on-the-fly correction of TRACE solutions for local pressures and velocity profiles inside multi-dimensional regions based on the results of the CFD simulation. The method is found to outperform the more frequently-used domain decomposition coupling methods. An STH code such as TRACE is designed to simulate large, diverse component networks, requiring simplifications to the fluid flow equations for reasonable execution times. Empirical correlations are therefore required for many sub-grid processes. The coarse grids used by TRACE diminish sensitivity to small scale geometric details such as Reactor Pressure Vessel (RPV) internals. A CFD code such as STAR-CCM+ uses much finer computational meshes that are sensitive to the geometric details of reactor internals. In turbulent flows, it is infeasible to fully resolve the flow solution, but the correlations used to model turbulence are at a low level. The CFD code can therefore resolve smaller scale flow processes. The development of a 3-D coupling method was carried out with the intention of improving predictive capabilities of transport properties in the downcomer and lower plenum regions of an RPV in reactor safety calculations. These regions are responsible for the multi-dimensional mixing effects that determine the distribution at the core inlet of quantities with reactivity implications, such as fluid temperature and dissolved neutron absorber concentration.

  11. Quantifying water flow and retention in an unsaturated fracture-facial domain

    USGS Publications Warehouse

    Nimmo, John R.; Malek-Mohammadi, Siamak

    2015-01-01

    Hydrologically significant flow and storage of water occur in macropores and fractures that are only partially filled. To accommodate such processes in flow models, we propose a three-domain framework. Two of the domains correspond to water flow and water storage in a fracture-facial region, in addition to the third domain of matrix water. The fracture-facial region, typically within a fraction of a millimeter of the fracture wall, includes a flowing phase whose fullness is determined by the availability and flux of preferentially flowing water, and a static storage portion whose fullness is determined by the local matric potential. The flow domain can be modeled with the source-responsive preferential flow model, and the roughness-storage domain can be modeled with capillary relations applied on the fracture-facial area. The matrix domain is treated using traditional unsaturated flow theory. We tested the model with application to the hydrology of the Chalk formation in southern England, coherently linking hydrologic information including recharge estimates, streamflow, water table fluctuation, imaging by electron microscopy, and surface roughness. The quantitative consistency of the three-domain matrix-microcavity-film model with this body of diverse data supports the hypothesized distinctions and active mechanisms of the three domains and establishes the usefulness of this framework.

  12. Hierarchically nested river landform sequences

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  13. Multi-resolution MPS method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki; Cardoso, Rui; Bahai, Hamid

    2018-04-01

    In this work, the Moving Particle Semi-implicit (MPS) method is enhanced for multi-resolution problems with different resolutions at different parts of the domain utilising a particle splitting algorithm for the finer resolution and a particle merging algorithm for the coarser resolution. The Least Square MPS (LSMPS) method is used for higher stability and accuracy. Novel boundary conditions are developed for the treatment of wall and pressure boundaries for the Multi-Resolution LSMPS method. A wall is represented by polygons for effective simulations of fluid flows with complex wall geometries and the pressure boundary condition allows arbitrary inflow and outflow, making the method easier to be used in flow simulations of channel flows. By conducting simulations of channel flows and free surface flows, the accuracy of the proposed method was verified.

  14. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1988-01-01

    The purpose is to document research to develop strategies for concurrent processing of complex algorithms in data driven architectures. The problem domain consists of decision-free algorithms having large-grained, computationally complex primitive operations. Such are often found in signal processing and control applications. The anticipated multiprocessor environment is a data flow architecture containing between two and twenty computing elements. Each computing element is a processor having local program memory, and which communicates with a common global data memory. A new graph theoretic model called ATAMM which establishes rules for relating a decomposed algorithm to its execution in a data flow architecture is presented. The ATAMM model is used to determine strategies to achieve optimum time performance and to develop a system diagnostic software tool. In addition, preliminary work on a new multiprocessor operating system based on the ATAMM specifications is described.

  15. Frontiers in Fluid Mechanics: A Collection of Research Papers Written in Commemoration of the 65th Birthday of Stanley Corrsin.

    DTIC Science & Technology

    1985-04-30

    analogous fashion. If the flow variable lFtis taken at x and F 6(xi,t) > d , - 1, . n, n > 1 is required, various subsets of the flow domain atare obtained...discussed: non-premixed and premixed combustion. The chemistry of combustion in the gas phase involves complex systems of reaction steps with numerous...components. In order to keep the problem tractable, only a greatly simplified and global description of chemistry will be employed. In both cases V

  16. Quantitative analysis of surface deformation and ductile flow in complex analogue geodynamic models based on PIV method.

    NASA Astrophysics Data System (ADS)

    Krýza, Ondřej; Lexa, Ondrej; Závada, Prokop; Schulmann, Karel; Gapais, Denis; Cosgrove, John

    2017-04-01

    Recently, a PIV (particle image velocimetry) analysis method is optical method abundantly used in many technical branches where material flow visualization and quantification is important. Typical examples are studies of liquid flow through complex channel system, gas spreading or combustion problematics. In our current research we used this method for investigation of two types of complex analogue geodynamic and tectonic experiments. First class of experiments is aimed to model large-scale oroclinal buckling as an analogue of late Paleozoic to early Mesozoic evolution of Central Asian Orogenic Belt (CAOB) resulting from nortward drift of the North-China craton towards the Siberian craton. Here we studied relationship between lower crustal and lithospheric mantle flows and upper crustal deformation respectively. A second class of experiments is focused to more general study of a lower crustal flow in indentation systems that represent a major component of some large hot orogens (e.g. Bohemian massif). The most of simulations in both cases shows a strong dependency of a brittle structures shape, that are situated in upper crust, on folding style of a middle and lower ductile layers which is influenced by rheological, geometrical and thermal conditions of different parts across shortened domain. The purpose of PIV application is to quantify material redistribution in critical domains of the model. The derivation of flow direction and calculation of strain-rate and total displacement field in analogue experiments is generally difficult and time-expensive or often performed only on a base of visual evaluations. PIV method operates with set of images, where small tracer particles are seeded within modeled domain and are assumed to faithfully follow the material flow. On base of pixel coordinates estimation the material displacement field, velocity field, strain-rate, vorticity, tortuosity etc. are calculated. In our experiments we used velocity field divergence to quantify the redistribution and flow of anatectic lower crust and to evaluate upper crust thickenning and topography evolution. As this method is very sensitive to resolution and color contrast of obtained images and used materials are mostly uniform within individual rheological layers and domains, we utilized various markers as flakes of a fluorescent wax or glitter to increase overall sensitivity. Applying this method to oroclinal buckling experiments we derived velocity field divergence associated with upper crustal deformation and evolution of topography. Scaled, dimensionless negative values of divergence reach minimum (˜ -1) in two elongated domains propagating from inflection area of modeled orocline. These values correlate with significant upper crust material removing and-or with redistribution of crustal material associated with formed pop-up and pop-down structures. Maximum positive values (˜ 0.1) correspond with material spreading alongside forming platforms that are situated in foreland of maximum elevations. Application of PIV method on lateral view, where ductile middle and lower crust is vertically folded during lithosphere shortening and indentation, revealed possibility to track melt migration from base of lower crust through interlimb area towards hinge zone of individual folds. Simultaneously with folds locking and material accumulation, whole structures are exhumed at the middle crust level. Melt flow and heat exchange with surrounding environment is responsible for increased plasticity of the middle crust marked by higher strain-rates observed inside fold envelope. It is also responsible for significant elevation above hinges during later stages of model evolution. Heterogeneous nature of deformation is well documented by heterogeneities in derived divergence field within folds interiors. Our results show distinct advantages of PIV method for post-processing of geodynamic and tectonic analogue models and demonstrate great potential of this method for quantitative processing of wide spectrum of analogue approaches to different natural systems.

  17. An ice-rich flow origin for the banded terrain in the Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Guallini, L.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Sutton, S.; Grindrod, P. M.

    2015-12-01

    The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (Context Camera and High-Resolution Imaging Science Experiment) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds, and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summertime temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively "temperate" climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

  18. Adaptive grid generation in a patient-specific cerebral aneurysm

    NASA Astrophysics Data System (ADS)

    Hodis, Simona; Kallmes, David F.; Dragomir-Daescu, Dan

    2013-11-01

    Adapting grid density to flow behavior provides the advantage of increasing solution accuracy while decreasing the number of grid elements in the simulation domain, therefore reducing the computational time. One method for grid adaptation requires successive refinement of grid density based on observed solution behavior until the numerical errors between successive grids are negligible. However, such an approach is time consuming and it is often neglected by the researchers. We present a technique to calculate the grid size distribution of an adaptive grid for computational fluid dynamics (CFD) simulations in a complex cerebral aneurysm geometry based on the kinematic curvature and torsion calculated from the velocity field. The relationship between the kinematic characteristics of the flow and the element size of the adaptive grid leads to a mathematical equation to calculate the grid size in different regions of the flow. The adaptive grid density is obtained such that it captures the more complex details of the flow with locally smaller grid size, while less complex flow characteristics are calculated on locally larger grid size. The current study shows that kinematic curvature and torsion calculated from the velocity field in a cerebral aneurysm can be used to find the locations of complex flow where the computational grid needs to be refined in order to obtain an accurate solution. We found that the complexity of the flow can be adequately described by velocity and vorticity and the angle between the two vectors. For example, inside the aneurysm bleb, at the bifurcation, and at the major arterial turns the element size in the lumen needs to be less than 10% of the artery radius, while at the boundary layer, the element size should be smaller than 1% of the artery radius, for accurate results within a 0.5% relative approximation error. This technique of quantifying flow complexity and adaptive remeshing has the potential to improve results accuracy and reduce computational time for patient-specific hemodynamics simulations, which are used to help assess the likelihood of aneurysm rupture using CFD calculated flow patterns.

  19. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network

    PubMed Central

    Soltani, M.; Chen, P.

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor’s surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy’s law for tissue, and simplified Navier–Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model. PMID:23840579

  20. Structure of Hole 1256D: The role of mechanical deformation in superfast-spread crust

    NASA Astrophysics Data System (ADS)

    Tartarotti, P.; Hayman, N. W.; Anma, R.; Crispini, L.; Veloso Espinosa, E. A.; Galli, L.

    2006-12-01

    One view of seafloor spreading is that mechanical deformation is not significant at high spreading rates. With recovery of up to 37%, and the vertical axis known for many pieces, shipboard visual core descriptions from Hole 1256D provide an opportunity to evaluate the significance of deformational structures in EPR-, superfast- (~220 mm-yr) spread crust. From top to bottom, the structural characteristics of crustal units are: (1) A relatively flat-lying, ~100-m thick "lava pond" that is largely free of deformational structures; (2) ~184 m of shallowly dipping lava flows remarkable for hyaloclastites and a cooling-related fracture system; (3) ~466 m of massive and sheet flows with flow-related fractures, hydrothermal veins, and (fault-related) cataclastic domains; (3) A ~61 m thick transition zone that contains a well-developed (fault-related) cataclastic domain; (4) A ~346 m thick sheeted dike complex, with abundant hydrothermal veins, local breccias, and magmatic flow features. Recovered chilled dike margins have a mean dip of 70° and range from 41-88°; (5) A ~100 m thick plutonic suite contains gabbroic rocks that intrude the sheeted dikes. Gabbros contain some local brittle structures and minor (largely static) recrystallized domains, but are more noteworthy for their magmatic features: dike/gabbro contacts and flow foliations are modestly dipping (e.g., ~45°) with leucocratic melt patches concentrated toward the top of the section. Brittle structures were subordinate to magmatic processes in accommodating large extensional strain. Brittle deformation was important, however, in accommodating magmatism and hydrothermal fluid flow, thereby affecting the variation of crustal physical properties and the distribution of oceanic alteration.

  1. Applying a general triclinic transpression model to highly partitioned brittle-ductile shear zones: A case study from the Torcal de Antequera massif, external Betics, southern Spain

    NASA Astrophysics Data System (ADS)

    Díaz-Azpiroz, M.; Barcos, L.; Balanyá, J. C.; Fernández, C.; Expósito, I.; Czeck, D. M.

    2014-11-01

    Oblique convergence and subsequent transpression kinematics can be considered as the general situation in most convergent and strike-slip tectonic boundaries. To better understand such settings, progressively more complex kinematic models have been proposed, which need to be tested against natural shear zones using standardized procedures that minimise subjectivism. In this work, a protocol to test a general triclinic transpression model is applied to the Torcal de Antequera massif (TAM), an essentially brittle shear zone. Our results, given as kinematic parameters of the transpressive flow (transpression obliquity, ϕ; extrusion obliquity, υ; and kinematic vorticity number, Wk), suggest that the bulk triclinic transpressive flow imposed on the TAM was partitioned into two different flow fields, following a general partitioning type. As such, one flow field produced narrow structural domains located at the limits of the TAM, where mainly dextral strike-slip simple-shear-dominated transpression took place (Outer domains, ODs). In contrast, the remaining part of the bulk flow produced pure-shear-dominated dextral triclinic transpression at the inner part of the TAM (Inner domain, ID). A graphical method relating internal (ϕ, Wk) to far-field (dip of the shear zone boundary, δ; angle of oblique convergence, α) transpression parameters is proposed to obtain the theoretical horizontal velocity vector (V→), which in the case of the TAM, ranges between 099 and 118. These results support the applicability of kinematic models of triclinic transpression to brittle-ductile shear zones and the potential utility of the proposed protocol.

  2. Stable Rotation of Microparticles using a Combination of Dielectrophoresis and Electroosmosis

    NASA Astrophysics Data System (ADS)

    Dutta, Prashanta; Rezanoor, Walid

    2016-11-01

    Electric field induced microparticle rotation has become a powerful technique to evaluate cell membrane dielectric properties and cell morphology. In this study, stable rotations of microparticles are demonstrated in a stationary AC electric field created from a set of coplanar interdigitated microelectrodes. The medium, particle size, and material are carefully chosen so that particle can be controlled by dielectrophoretic force, while a sufficiently high AC electroosmotic flow is produced for continuous particle rotation. Stable rotation up to 218 rpm is observed at 30 Vp-p applied sinusoidal potential in the frequency range of 80 - 1000 Hz. The particle spin rate observed from the experimental study is then validated with a numerical model. The model is formulated around complex charge conservation equation to determine the electric potential distribution in the domain. Stokes equation is employed to solve for AC electroosmotic fluid flow in the domain. Complexity arising from nonlinear potential drop across the electric double layer due to the application of a very large electric potential is also addressed by introducing modified capacitance equation which considers steric effect. This work was supported in part by the U.S. National Science Foundation under Grant No. DMS 1317671.

  3. Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective.

    PubMed

    Xi, Li; Bai, Xue

    2016-04-01

    The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.

  4. Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective

    NASA Astrophysics Data System (ADS)

    Xi, Li; Bai, Xue

    2016-04-01

    The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.

  5. Coupling lattice Boltzmann and continuum equations for flow and reactive transport in porous media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, Ethan; Porter, Mark L.; Kang, Qinjun

    2012-06-18

    In spatially and temporally localized instances, capturing sub-reservoir scale information is necessary. Capturing sub-reservoir scale information everywhere is neither necessary, nor computationally possible. The lattice Boltzmann Method for solving pore-scale systems. At the pore-scale, LBM provides an extremely scalable, efficient way of solving Navier-Stokes equations on complex geometries. Coupling pore-scale and continuum scale systems via domain decomposition. By leveraging the interpolations implied by pore-scale and continuum scale discretizations, overlapping Schwartz domain decomposition is used to ensure continuity of pressure and flux. This approach is demonstrated on a fractured medium, in which Navier-Stokes equations are solved within the fracture while Darcy'smore » equation is solved away from the fracture Coupling reactive transport to pore-scale flow simulators allows hybrid approaches to be extended to solve multi-scale reactive transport.« less

  6. On the complexity of turbulence near a wall

    NASA Technical Reports Server (NTRS)

    Moin, Parviz

    1992-01-01

    Some measures of the intrinsic complexity of the near wall turbulence are reviewed. The number of modes required in an 'optimal' eigenfunction expansion is compared with the dimension obtained from the calculation of Liapunov exponents. These measures are of the same order, but they are very large. It is argued that the basic building block element of the near wall turbulence can be isolated in a small region of space (minimal flow unit). When the size of the domain is taken into account, the dimension becomes more manageable.

  7. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  8. On the solution of two-point linear differential eigenvalue problems. [numerical technique with application to Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1976-01-01

    A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.

  9. Smoothed Particle Hydrodynamics Modeling of Gravity Currents on a Dry Porous Medium

    NASA Astrophysics Data System (ADS)

    Daly, E.; Grimaldi, S.; Bui, H.

    2014-12-01

    Gravity currents flowing over porous media occur in many environmental processes and industrial applications, such as irrigation, benthic boundary layers, and oil spills. The coupling of the flow over the porous surface and the infiltration of the fluid in the porous media is complex and difficult to model. Of particular interest is the prediction of the position of the runoff front and the depth of the infiltration front. We present here a model for the flow of a finite volume of a highly viscous Newtonian fluid over a dry, homogenous porous medium. The Navier-Stokes equations describing the runoff flow are coupled to the Volume Averaged Navier-Stokes equations for the infiltration flow. The numerical solution of these equations is challenging because of the presence of two free surfaces (runoff and infiltration waves), the lack of fixed boundary conditions at the runoff front, and the difficulties in defining appropriate conditions at the surface of the porous medium. The first two challenges were addressed by using Smoothed Particle Hydrodynamics, which is a Lagrangian, mesh-free particle method particularly suitable for modelling free surface flows. Two different approaches were used to model the flow conditions at the surface of the porous medium. The Two Domain Approach (TDA) assumes that runoff and infiltration flows occur in two separate homogenous domains; here, we assume the continuity of velocity and stresses at the interface of the two domains. The One Domain Approach (ODA) models runoff and infiltration flows as occurring through a medium whose hydraulic properties vary continuously in space. The transition from the hydraulic properties of the atmosphere and the porous medium occur in a layer near the surface of the porous medium. Expressions listed in literature were used to compute the thickness of this transition layer and the spatial variation of porosity and permeability within it. Our results showed that ODA led to slower velocities of the runoff front and enhanced infiltration when compared to the implemented formulation of TDA. In the ODA, depending on the description of the transition layer, the maximum distances travelled by the runoff front and the maximum depth of infiltration varied over a range of ±15% and ±50% when compared to their respective averaged values.

  10. Commercial turbofan engine exhaust nozzle flow analyses using PAB3D

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.

    1992-01-01

    Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.

  11. Linking fault pattern with groundwater flow in crystalline rocks at the Grimsel Test Site (Switzerland)

    NASA Astrophysics Data System (ADS)

    Schneeberger, Raphael; Berger, Alfons; Mäder, Urs K.; Niklaus Waber, H.; Kober, Florian; Herwegh, Marco

    2017-04-01

    Water flow across crystalline bedrock is of major interest for deep-seated geothermal energy projects as well as for underground disposal of radioactive waste. In crystalline rocks enhanced fluid flow is related to zones of increased permeability, i.e. to fractures that are associated to fault zones. The flow regime around the Grimsel Test Site (GTS, Central Aar massif) was assessed by establishing a 3D fault zone pattern on a local scale in the GTS underground facility (deca-meter scale) and on a regional scale at the surface (km-scale). The study reveals the existence of a dense fault zone network consisting of several km long and few tens of cm to meter wide, sub-vertically oriented major faults that are connected by tens to hundreds of meters long minor bridging faults. This geometrical information was used as input for the generation of a 3D fault zone network model. The faults originate from ductile shear zones that were reactivated as brittle faults under retrograde conditions during exhumation. Embrittlement and associated dilatancy along the faults provide the pathways for today's groundwater flow. Detection of the actual 3D flow paths is, however, challenging since flow seem to be not planar but rather tube-like. Two strategies are applied to constrain the 3D geometry of the flow tubes: (i) Characterization of the groundwater infiltrating into the GTS (location, yield, hydraulic head, and chemical composition) and (ii) stress modelling on the base of the 3D structural model to unravel potential domains of enhanced fluid flow such as fault plane intersections and domains of dilatancy. At the Grimsel Test Site, hydraulic and structural data demonstrate that the groundwater flow is head-driven from the surface towards the GTS located some 450 m below the surface. The residence time of the groundwater in this surface-near section is >60 years as evidenced by absence of detectable tritium. However, hydraulic heads obtained from interval pressure measurements within boreholes are variable and do not correspond to the overburden above the interval. Underground mapping revealed close spatial relation between water inflow points and faults, major water inflows occur in strongly deformed areas of the GTS. Furthermore, persistent differences in the groundwater chemical composition between infiltration points indicate that connectivity between different water flow paths is poor. Different findings indicate complex flow path geometries. However, domains of enhanced dilatancy and domains with increased number of fault intersections correlate with areas in the underground with 'high' water inflow.

  12. Characterization of local fluid flow in 3D porous construct characterized by Fourier domain Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, P. O.; Yang, Y.; El Haj, A.; Hinds, M. T.; Wang, R. K.

    2007-02-01

    In order to achieve functional tissue with the correct biomechanical properties it is critical to stimulate mechanically the cells. Perfusion bioreactor induces fluid shear stress that has been well characterized for two-dimensional culture where both simulation and experimental data are available. However these results can't be directly translated to tissue engineering that makes use of complex three-dimensional porous scaffold. Moreover, stimulated cells produce extensive extra-cellular matrix (ECM) that alter dramatically the micro-architecture of the constructs, changing the local flow dynamic. In this study a Fourier domain Doppler optical coherent tomography (FD-DOCT) system working at 1300nm with a bandwidth of 50nm has been used to determine the local flow rate inside different types of porous scaffolds used in tissue engineering. Local flow rates can then be linearly related, for Newtonian fluid, to the fluid shear stress occurring on the pores wall. Porous chitosan scaffolds (\\fgr 1.5mm x 3mm) with and without a central 250 μm microchannel have been produced by a freeze-drying technique. This techniques allow us to determine the actual shear stress applied to the cells and to optimise the input flow rate consequently, but also to relate the change of the flow distribution to the amount of ECM production allowing the monitoring of tissue formation.

  13. Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime

    2016-11-01

    An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.

  14. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    NASA Technical Reports Server (NTRS)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  15. Transport of phase space densities through tetrahedral meshes using discrete flow mapping

    NASA Astrophysics Data System (ADS)

    Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor

    2017-01-01

    Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.

  16. Application of multiple grids topology to supersonic internal/external flow interactions

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.; Smith, R. E.

    1988-01-01

    For many aerodynamic applications, it is very difficult to construct a smooth body-fitted grid around complex configurations. An approach, called 'multiple grids' or 'zonal grids', which subdivides the entire physical domain into several subdomains, is used to overcome such difficulties. The approach is applied to obtain the solutions to the Euler equations for the supersonic internal/external flow around a fighter-aircraft configuration. Steady-state solutions are presented for Mach 2 at 0, 3.79, 7, and 10 deg angles-of-attack. The problem of conservative treatment at the zonal interfaces is also addressed.

  17. Late Cenozoic sedimentation and volcanism during transtensional deformation in Wingate Wash and the Owlshead Mountains, Death Valley

    USGS Publications Warehouse

    Luckow, H.G.; Pavlis, T.L.; Serpa, L.F.; Guest, B.; Wagner, D.L.; Snee, L.; Hensley, T.M.; Korjenkov, A.

    2005-01-01

    New 1:24,000 scale mapping, geochemical analyses of volcanic rocks, and Ar/Ar and tephrochronology analyses of the Wingate Wash, northern Owlshead Mountain and Southern Panamint Mountain region document a complex structural history constrained by syntectonic volcanism and sedimentation. In this study, the region is divided into five structural domains with distinct, but related, histories: (1) The southern Panamint domain is a structurally intact, gently south-tilted block dominated by a middle Miocene volcanic center recognized as localized hypabyssal intrusives surrounded by proximal facies pyroclastic rocks. This Miocene volcanic sequence is an unusual alkaline volcanic assemblage ranging from trachybasalt to rhyolite, but dominated by trachyandesite. The volcanic rocks are overlain in the southwestern Panamint Mountains by a younger (Late Miocene?) fanglomerate sequence. (2) An upper Wingate Wash domain is characterized by large areas of Quaternary cover and complex overprinting of older structure by Quaternary deformation. Quaternary structures record ???N-S shortening concurrent with ???E-W extension accommodated by systems of strike-slip and thrust faults. (3) A central Wingate Wash domain contains a complex structural history that is closely tied to the stratigraphic evolution. In this domain, a middle Miocene volcanic package contains two distinct assemblages; a lower sequence dominated by alkaline pyroclastic rocks similar to the southern Panamint sequence and an upper basaltic sequence of alkaline basalt and basanites. This volcanic sequence is in turn overlain by a coarse clastic sedimentary sequence that records the unroofing of adjacent ranges and development of ???N-S trending, west-tilted fault blocks. We refer to this sedimentary sequence as the Lost Lake assemblage. (4) The lower Wingate Wash/northern Owlshead domain is characterized by a gently north-dipping stratigraphic sequence with an irregular unconformity at the base developed on granitic basement. The unconformity is locally overlain by channelized deposits of older Tertiary(?) red conglomerate, some of which predate the onset of extensive volcanism, but in most of the area is overlain by a moderately thick package of Middle Miocene trachybasalt, trachyandesitic, ash flows, lithic tuff, basaltic cinder, basanites, and dacitic pyroclastic, debris, and lahar flows with localized exposures of sedimentary rocks. The upper part of the Miocene stratigraphic sequence in this domain is comprised of coarse grained-clastic sediments that are apparently middle Miocene based on Ar/Ar dating of interbedded volcanic rocks. This sedimentary sequence, however, is lithologically indistinguishable from the structurally adjacent Late Miocene Lost Lake assemblage and a stratigraphically overlying Plio-Pleistocene alluvial fan; a relationship that handicaps tracing structures through this domain. This domain is also structurally complex and deformed by a series of northwest-southeast-striking, east-dipping, high-angle oblique, sinistral, normal faults that are cut by left-lateral strike-slip faults. The contact between the southern Panamint domain and the adjacent domains is a complex fault system that we interpret as a zone of Late Miocene distributed sinistral slip that is variably overprinted in different portions of the mapped area. The net sinistral slip across the Wingate Wash fault system is estimated at 7-9 km, based on offset of Proterozoic Crystal Springs Formation beneath the middle Miocene unconformity to as much as 15 km based on offset volcanic facies in Middle Miocene rocks. To the south of Wingate Wash, the northern Owlshead Mountains are also cut by a sinistral, northwest-dipping, oblique normal fault, (referred to as the Filtonny Fault) with significant slip that separates the Lower Wingate Wash and central Owlshead domains. The Filtonny Fault may represent a young conjugate fault to the dextral Southern Death Valley fault system and may be the northwest

  18. Improving National Water Modeling: An Intercomparison of two High-Resolution, Continental Scale Models, CONUS-ParFlow and the National Water Model

    NASA Astrophysics Data System (ADS)

    Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison to better understand differences in process and bias. This intercomparison is a step toward better understanding how much water we have and interactions between surface and subsurface. Our goal is to advance our understanding and simulation of the hydrologic system and ultimately improve hydrologic forecasts.

  19. Simulations of Cyclone Sidr in the Bay of Bengal with a High-Resolution Model: Sensitivity to Large-Scale Boundary Forcing

    NASA Technical Reports Server (NTRS)

    Kumar, Anil; Done, James; Dudhia, Jimy; Niyogi, Dev

    2011-01-01

    The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500 hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west side of the domain. The displacement error was significantly reduced after the domain size from the western model boundary was decreased. Study results demonstrate the capability and need of a high-resolution mesoscale modeling framework for simulating the complex interactions that contribute to the formation of tropical cyclones over the Bay of Bengal region

  20. Complex regression Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  1. Elliptic flow computation by low Reynolds number two-equation turbulence models

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Shih, T.-H.

    1991-01-01

    A detailed comparison of ten low-Reynolds-number k-epsilon models is carried out. The flow solver, based on an implicit approximate factorization method, is designed for incompressible, steady two-dimensional flows. The conservation of mass is enforced by the artificial compressibility approach and the computational domain is discretized using centered finite differences. The turbulence model predictions of the flow past a hill are compared with experiments at Re = 10 exp 6. The effects of the grid spacing together with the numerical efficiency of the various formulations are investigated. The results show that the models provide a satisfactory prediction of the flow field in the presence of a favorable pressure gradient, while the accuracy rapidly deteriorates when a strong adverse pressure gradient is encountered. A newly proposed model form that does not explicitly depend on the wall distance seems promising for application to complex geometries.

  2. Fluid-flow of a row of jets in crossflow - A numerical study

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Benson, T. J.

    1992-01-01

    A detailed computer-visualized flow field of a row of jets in a confined crossflow is presented. The Reynolds averaged Navier-Stokes equations are solved using a finite volume method that incorporates a partial differential equation for incremental pressure to obtain a divergence-free flow field. The turbulence is described by a multiple-time-scale turbulence model. The computational domain includes the upstream region of the circular jet so that the interaction between the jet and the crossflow is simulated accurately. It is shown that the row of jets in the crossflow is characterized by a highly complex flow field that includes a horse-shoe vortex and two helical vortices whose secondary velocity components are co-rotating in space. It is also shown that the horse-shoe vortex is a ring of reversed flows located along the circumference of the jet exit.

  3. Simulation of dilute polymeric fluids in a three-dimensional contraction using a multiscale FENE model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de

    The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less

  4. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  5. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  6. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains.

    PubMed

    Faulkner, Jonathan; Hu, Bill X; Kish, Stephen; Hua, Fei

    2009-11-03

    New mathematical and laboratory methods have been developed for simulating groundwater flow and solute transport in karst aquifers having conduits imbedded in a porous medium, such as limestone. The Stokes equations are used to model the flow in the conduits and the Darcy equation is used for the flow in the matrix. The Beavers-Joseph interface boundary conditions are adopted to describe the flow exchange at the interface boundary between the two domains. A laboratory analog is used to simulate the conduit and matrix domains of a karst aquifer. The conduit domain is located at the bottom of the transparent plexiglas laboratory analog and glass beads occupy the remaining space to represent the matrix domain. Water flows into and out of the two domains separately and each has its own supply and outflow reservoirs. Water and solute are exchanged through an interface between the two domains. Pressure transducers located within the matrix and conduit domains of the analog provide data that is processed and stored in digital format. Dye tracing experiments are recorded using time-lapse imaging. The data and images produced are analyzed by a spatial analysis program. The experiments provide not only hydraulic head distribution but also capture solute front images and mass exchange measurements between the conduit and matrix domains. In the experiment, we measure and record pressures, and quantify flow rates and solute transport. The results present a plausible argument that laboratory analogs can characterize groundwater water flow, solute transport, and mass exchange between the conduit and matrix domains in a karst aquifer. The analog validates the predictions of a numerical model and demonstrates the need of laboratory analogs to provide verification of proposed theories and the calibration of mathematical models.

  7. Parametric Study of a YAV-8B Harrier in Ground Effect using Time-Dependent Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir; Chaderjian, Neal; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A process is described which enables the generation of 35 time-dependent viscous solutions for a YAV-8B Harrier in ground effect in one week. Overset grids are used to model the complex geometry of the Harrier aircraft and the interaction of its jets with the ground plane and low-speed ambient flow. The time required to complete this parametric study is drastically reduced through the use of process automation, modern computational platforms, and parallel computing. Moreover, a dual-time-stepping algorithm is described which improves solution robustness. Unsteady flow visualization and a frequency domain analysis are also used to identify and correlated key flow structures with the time variation of lift.

  8. Asymptotic Approach to the Problem of Boundary Layer Instability in Transonic Flow

    NASA Astrophysics Data System (ADS)

    Zhuk, V. I.

    2018-03-01

    Tollmien-Schlichting waves can be analyzed using the Prandtl equations involving selfinduced pressure. This circumstance was used as a starting point to examine the properties of the dispersion relation and the eigenmode spectrum, which includes modes with amplitudes increasing with time. The fact that the asymptotic equations for a nonclassical boundary layer (near the lower branch of the neutral curve) have unstable fluctuation solutions is well known in the case of subsonic and transonic flows. At the same time, similar solutions for supersonic external flows do not contain unstable modes. The bifurcation pattern of the behavior of dispersion curves in complex domains gives a mathematical explanation of the sharp change in the stability properties occurring in the transonic range.

  9. Domain modeling and grid generation for multi-block structured grids with application to aerodynamic and hydrodynamic configurations

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.

    1992-01-01

    About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.

  10. Techniques for determining physical zones of influence

    DOEpatents

    Hamann, Hendrik F; Lopez-Marrero, Vanessa

    2013-11-26

    Techniques for analyzing flow of a quantity in a given domain are provided. In one aspect, a method for modeling regions in a domain affected by a flow of a quantity is provided which includes the following steps. A physical representation of the domain is provided. A grid that contains a plurality of grid-points in the domain is created. Sources are identified in the domain. Given a vector field that defines a direction of flow of the quantity within the domain, a boundary value problem is defined for each of one or more of the sources identified in the domain. Each of the boundary value problems is solved numerically to obtain a solution for the boundary value problems at each of the grid-points. The boundary problem solutions are post-processed to model the regions affected by the flow of the quantity on the physical representation of the domain.

  11. Rheologic properties of flowable, conventional hybrid, and condensable composite resins.

    PubMed

    Lee, In-Bog; Son, Ho-Hyun; Um, Chung-Moon

    2003-06-01

    This research was undertaken to investigate the viscoelastic properties related to handling characteristics of five commercial flowable, two conventional hybrid and two condensable composite resins and to investigate the effect on the viscosity of filler volume fraction of composites. A dynamic oscillatory shear test was used to evaluate the storage shear modulus (G'), loss shear modulus (G"), loss tangent (tan delta) and complex viscosity (eta(*)) of the composite resins as a function of frequency (omega)-dynamic frequency sweep test from 0.01 to 100 rad/s at 25 degrees C-using an Advanced Rheometric Expansion System. To investigate the effect on the viscosity of the composites of the filler volume fraction, the filler weight% and filler volume% were measured by the Archimedes' principle using a pyknometer. The complex viscosity eta(*) of flowable composites was lower than that of the hybrid composites and significant differences were observed between brands. The complex viscosity eta(*) of condensable composites was higher than that of hybrid composites. The order of complex viscosity eta(*) at omega=10 rad/s in order of decreasing viscosity was as follows, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it and Revolution. The complex viscosity of flowable composites, normalized with respect to Z-100, was 0.04-0.56 but Synergy compact was 2.158 times higher than that of Z-100. The patterns of the change of loss tangent (tan delta) of the composite resins with increasing frequency were significantly different between brands. Phase angles delta ranged from 30.9 to 78.1 degrees at omega=10 rad/s. All composite resins exhibit pseudoplastic behavior with increasing shear rate. The relationships between the complex shear modulus G(*), the phase angle delta, and the shear rate omega were represented by the frequency domain phasor form, G(*)(omega)=G(*)e(i delta)=G(*) 90 degree angle delta. Only a weak relationship was found between filler volume% and the viscosity of the composite resins. This investigation shows that the viscoelasticity of composites in the same class is significantly different between brands. This rheologic property of composite resins influences the handling characteristics of the materials. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composite resins.

  12. Numerical investigation of cavitation flow in journal bearing geometry

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Schmidt, M.; Stücke, P.

    2013-04-01

    The appearance of cavitation is still a problem in technical and industrial applications. Especially in automotive internal combustion engines, hydrodynamic journal bearings are used due to their favourable wearing quality and operating characteristics. Cavitation flows inside the bearings reduces the load capacity and leads to a risk of material damages. Therefore an understanding of the complex flow phenomena inside the bearing is necessary for the design development of hydrodynamic journal bearings. Experimental investigations in the fluid domain of the journal bearing are difficult to realize founded by the small dimensions of the bearing. In the recent years more and more the advantages of the computational fluid dynamics (CFD) are used to investigate the detail of the cavitation flows. The analysis in the paper is carried out in a two-step approach. At first an experimental investigation of journal bearing including cavitation is selected from the literature. The complex numerical model validated with the experimental measured data. In a second step, typically design parameters, such as a groove and feed hole, which are necessary to distribute the oil supply across the gap were added into the model. The paper reflects on the influence of the used design parameters and the variation of the additional supply flow rate through the feed hole regarding to cavitation effects in the bearing. Detailed pictures of the three-dimensional flow structures and the cavitation regions inside the flow film of the bearing are presented.

  13. Large-eddy simulation using the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.

    1993-10-01

    In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulencemore » modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.« less

  14. The computation of three-dimensional flows using unstructured grids

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.; Peiro, J.; Hassan, O.

    1991-01-01

    A general method is described for automatically discretizing, into unstructured assemblies of tetrahedra, the three-dimensional solution domains of complex shape which are of interest in practical computational aerodynamics. An algorithm for the solution of the compressible Euler equations which can be implemented on such general unstructured tetrahedral grids is described. This is an explicit cell-vertex scheme which follows a general Taylor-Galerkin philosophy. The approach is employed to compute a transonic inviscid flow over a standard wing and the results are shown to compare favorably with experimental observations. As a more practical demonstration, the method is then applied to the analysis of inviscid flow over a complete modern fighter configuration. The effect of using mesh adaptivity is illustrated when the method is applied to the solution of high speed flow in an engine inlet.

  15. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates the potential of the method to simulate turbulent flows past geometrically complex bodies on locally refined meshes. In all the cases, the results are found to be in very good agreement with published data and savings in computational resources are achieved.

  16. An interactive multi-block grid generation system

    NASA Technical Reports Server (NTRS)

    Kao, T. J.; Su, T. Y.; Appleby, Ruth

    1992-01-01

    A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.

  17. The Numerical Simulation of Time Dependent Flow Structures Over a Natural Gravel Surface.

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.; Lane, S. N.; Ferguson, R. I.; Parsons, D. R.

    2004-05-01

    Research undertaken over the last few years has demonstrated the importance of the structure of gravel river beds for understanding the interaction between fluid flow and sediment transport processes. This includes the observation of periodic high-speed fluid wedges interconnected by low-speed flow regions. Our understanding of these flows has been enhanced significantly through a series of laboratory experiments and supported by field observations. However, the potential of high resolution three dimensional Computational Fluid Dynamics (CFD) modeling has yet to be fully developed. This is largely the result of the problems of designing numerically stable meshes for use with complex bed topographies and that Reynolds averaged turbulence schemes are applied. This paper develops two novel techniques for dealing with these issues. The first is the development and validation of a method for representing the complex surface topography of gravel-bed rivers in high resolution three-dimensional computational fluid dynamic models. This is based upon a porosity treatment with a regular structured grid and the application of a porosity modification to the mass conservation equation in which: fully blocked cells are assigned a porosity of zero; fully unblocked cells are assigned a porosity of one; and partly blocked cells are assigned a porosity of between 0 and 1, according to the percentage of the cell volume that is blocked. The second is the application of Large Eddy Simulation (LES) which enables time dependent flow structures to be numerically predicted over the complex bed topographies. The regular structured grid with the embedded porosity algorithm maintains a constant grid cell size throughout the domain implying a constant filter scale for the LES simulation. This enables the prediction of coherent structures, repetitive quasi-cyclic large-scale turbulent motions, over the gravel surface which are of a similar magnitude and frequency to those previously observed in both flume and field studies. These structures are formed by topographic forcing within the domain and are scaled with the flow depth. Finally, this provides the numerical framework for the prediction of sediment transport within a time dependent framework. The turbulent motions make a significant contribution to the turbulent shear stress and the pressure fluctuations which significantly affect the forces acting on the bed and potentially control sediment motion.

  18. Circular flow patterns induced by ciliary activity in reconstituted human bronchial epithelium

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Khelloufi, Kamel; Gras, Delphine; Chanez, Pascal; Aix Marseille Univ., CNRS, CINaM, Marseille, France Team; Aix Marseille Univ., CNRS, Inserm, LAI, Marseille, France Team

    2016-11-01

    Mucociliary clearance is the transport at the surface of airways of a complex fluid layer, the mucus, moved by the beats of microscopic cilia present on epithelial ciliated cells. We explored the coupling between the spatial organisation and the activity of cilia and the transport of surface fluids on reconstituted cultures of human bronchial epithelium at air-liquid interface, obtained by human biopsies. We reveal the existence of stable local circular surface flow patterns of mucus or Newtonian fluid at the epithelium surface. We find a power law over more than 3 orders of magnitude showing that the average ciliated cell density controls the size of these flow patterns, and, therefore the distance over which mucus can be transported. We show that these circular flow patterns result from the radial linear increase of the local propelling forces (due to ciliary beats) on each flow domain. This linear increase of local forces is induced by a fine self-regulation of both cilia density and orientation of ciliary beats. Local flow domains grow and merge during ciliogenesis to provide macroscopic mucus transport. This is possible only when the viscoelastic mucus continuously exerts a shear stress on beating cilia, revealing a mechanosensitive function of cilia. M. K. Khelloufi thanks the society MedBioMed for financial support. This work was supported by the ANR MUCOCIL project, Grant ANR-13-BSV5-0015 of the French Agence Nationale de la Recherche.

  19. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains.

    PubMed

    Nash, Rupert W; Carver, Hywel B; Bernabeu, Miguel O; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V

    2014-02-01

    Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002); Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001); Junk and Yang, Phys. Rev. E 72, 066701 (2005)] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.

  20. Quantum Computational Studies of Electron Transfer in Respiratory Complex III and its Application for Designing New Mitocan Drugs

    NASA Astrophysics Data System (ADS)

    Hagras, Muhammad Ahmed

    Electron transfer occurs in many biological systems which are imperative to sustain life; oxidative phosphorylation in prokaryotes and eukaryotes, and photophosphorylation in photosynthetic and plant cells are well-balanced and complementary processes. Investigating electron transfer in those natural systems provides detailed knowledge of the atomistic events that lead eventually to production of ATP, or harvesting light energy. Ubiquinol:cytochrome c oxidoreductase complex (also known as bc 1 complex, or respiratory complex III) is a middle player in the electron transport proton pumping orchestra, located in the inner-mitochondrial membrane in eukaryotes or plasma membrane in prokaryotes, which converts the free energy of redox reactions to electrochemical proton gradient across the membrane, following the fundamental chemiosmotic principle discovered by Peter Mitchell 1. In humans, the malfunctioned bc1 complex plays a major role in many neurodegenerative diseases, stress-induced aging, and cancer development, because it produces most of the reactive oxygen species, which are also involved in cellular signaling 2. The mitochondrial bc1 complex has an intertwined dimeric structure comprised of 11 subunits in each monomer, but only three of them have catalytic function, and those are the only domains found in bacterial bc1 complex. The core subunits include: Rieske domain, which incorporates iron-sulfur cluster [2Fe-2S]; trans-membrane cytochrome b domain, incorporating low-potential heme group (heme b L) and high-potential heme group (heme b H); and cytochrome c1 domain, containing heme c1 group and two separate binding sites, Qo (or QP) site where the hydrophobic electron carrier ubihydroquinol QH2 is oxidized, and Qi (or QN) site where ubiquinone molecule Q is reduced 3. Electrons and protons in the bc1 complex flow according to the proton-motive Q-cycle proposed by Mitchell, which includes a unique electron flow bifurcation at the Qo site. At this site, one electron of a bound QH2 molecule transfers to [2Fe-2S] cluster of the Rieske domain, docked at the proximal docking site, and another electron transfers to heme b L , which subsequently passes it to heme bH , and finally to Q or SQ molecule bound at the Qi-site 4. Rieske domain undergoes a domain movement 22 A to bind at the distal docking site, where [2Fe-2S] cluster passes its electron to heme c1, which in turn passes it to heme c of the water-soluble cytochrome c carrier 3c, 5 (which shuttles it to cytochrome c oxidase, complex IV). In the current compiled work presented in the subsequent chapters, we deployed a stacking tiers hierarchy where each chapter's work presents a foundation for the next one. In chapter 1, we first present different methods to calculate tunneling currents in proteins including a new derivation method for the inter-atomic tunneling current method. In addition, we show the results of the inter-atomic tunneling current theory on models based on heme bL-heme bH redox pair system in bc1 complex. Afterwards, in chapter 2, we examine the electron tunneling pathways 6 between different intra-monomeric and inter-monomeric redox centers of bc1 complex, including its electron carriers - ubiquinol, ubiquinone, and cytochrome c molecules, using the well-studied coarse-grained interatomic method of the tunneling current theory 7. Going through the different tunneling pathways in bc1 complex, we discovered a pair of internal switches that modulate the electron transfer rate which we discuss in full details in chapter 3. Motivated by the discovery of those internal switches, we discuss in chapter 4 the discovery of a new binding pocket (designated as NonQ-site or NQ-site for short) in bc 1 complex which is located at the opposite side of the enzyme with respect to Qo site. In contrast to Qo site, however, the NQ-site penetrates deeply in the cytochrome b domain and reaches very closely the LH region. Hence the NQ-site provides a suitable binding pocket for ligands that can influence the orientation of Phe90 residue, and hence modulate the corresponding ET rate between heme b L and heme bH. Finally we present in chapter 5 our unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins.

  1. Flux-vector splitting algorithm for chain-rule conservation-law form

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.

    1991-01-01

    A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.

  2. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.

  3. Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott

    2017-11-01

    Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.

  4. Electrical Capacitance Volume Tomography: Design and Applications

    PubMed Central

    Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito

    2010-01-01

    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905

  5. Numerical Simulation of Plume Transport in Channel Bend with Different Sediment Diameters

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Chen, H. C.

    2017-12-01

    The flow and transport of suspended sediment particles, in the form of plume, were simulated using an in-house Computational Fluid Dynamics (CFD) solver FANS3D (Finite Analytic Navier-Stokes code for 3D flow). The motivation for this investigation is to provide a means to simulate and visualize dispersal systems in a complex flow environment. The physical domain considered is a 90-degrees channel bend with wingwall abutments, which induces complex, three-dimensional flow characteristics. At the inlet of the channel, a sediment plume with the volumetric concentration of 1,000 parts per million (ppm) was constantly supplied. For simplicity, it was assumed that neither deposition nor erosion takes place inside the channel and settling sediment was made to pass through the bed surface. The effect of the sediment particle size was also analyzed using two different median diameters: 0.10 mm and 0.20 mm. It was shown that flow acceleration and vortices cause strong mixing inside the channel. The three-dimensional time series from the simulation captured increasing suspended sediment concentration downstream of the abutments, along the outer bank. When the median diameter was varied, the sediment concentration at certain locations differed by orders of magnitude, indicating that the settling velocity dominates the transport process for larger diameters.

  6. Flow in horizontally anisotropic multilayered aquifer systems with leaky wells and aquitards

    EPA Science Inventory

    Flow problems in an anisotropic domain can be transformed into ones in an equivalent isotropic domain by coordinate transformations. Once analytical solutions are obtained for the equivalent isotropic domain, they can be back transformed to the original anisotropic domain. The ex...

  7. Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions

    NASA Astrophysics Data System (ADS)

    Cates, Michael E.; Tjhung, Elsen

    2018-02-01

    Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.

  8. Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2011-12-01

    Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h

  9. Kinome signaling through regulated protein-protein interactions in normal and cancer cells.

    PubMed

    Pawson, Tony; Kofler, Michael

    2009-04-01

    The flow of molecular information through normal and oncogenic signaling pathways frequently depends on protein phosphorylation, mediated by specific kinases, and the selective binding of the resulting phosphorylation sites to interaction domains present on downstream targets. This physical and functional interplay of catalytic and interaction domains can be clearly seen in cytoplasmic tyrosine kinases such as Src, Abl, Fes, and ZAP-70. Although the kinase and SH2 domains of these proteins possess similar intrinsic properties of phosphorylating tyrosine residues or binding phosphotyrosine sites, they also undergo intramolecular interactions when linked together, in a fashion that varies from protein to protein. These cooperative interactions can have diverse effects on substrate recognition and kinase activity, and provide a variety of mechanisms to link the stimulation of catalytic activity to substrate recognition. Taken together, these data have suggested how protein kinases, and the signaling pathways in which they are embedded, can evolve complex properties through the stepwise linkage of domains within single polypeptides or multi-protein assemblies.

  10. Axial U(1) current in Grabowska and Kaplan's formulation

    NASA Astrophysics Data System (ADS)

    Hamada, Yu; Kawai, Hikaru

    2017-06-01

    Recently, Grabowska and Kaplan [Phys. Rev. Lett. 116, 211602 (2016); Phys. Rev. D 94, 114504 (2016)] suggested a nonperturbative formulation of a chiral gauge theory, which consists of the conventional domain-wall fermion and a gauge field that evolves by gradient flow from one domain wall to the other. We introduce two sets of domain-wall fermions belonging to complex conjugate representations so that the effective theory is a 4D vector-like gauge theory. Then, as a natural definition of the axial-vector current, we consider a current that generates simultaneous phase transformations for the massless modes in 4 dimensions. However, this current is exactly conserved and does not reproduce the correct anomaly. In order to investigate this point precisely, we consider the mechanism of the conservation. We find that this current includes not only the axial current on the domain wall but also a contribution from the bulk, which is nonlocal in the sense of 4D fields. Therefore, the local current is obtained by subtracting the bulk contribution from it.

  11. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  12. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann, E-mail: j.fellner@tuwien.ac.a; Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.a

    2010-11-15

    The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flowsmore » in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r{sup 2} of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K{sub s} = 300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K{sub s} = 0.1 m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain.« less

  13. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    NASA Astrophysics Data System (ADS)

    Al-Marouf, M.; Samtaney, R.

    2017-05-01

    We present an embedded ghost fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  14. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase.

    PubMed

    Woronowicz, Kamil; Sha, Daniel; Frese, Raoul N; Sturgis, James N; Nanda, Vikas; Niederman, Robert A

    2011-08-01

    Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.

  15. A stochastic two-scale model for pressure-driven flow between rough surfaces

    PubMed Central

    Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas

    2016-01-01

    Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975

  16. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.

    2014-05-01

    Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting from the sudden high-velocity inflow of gas and ash; the formation of a particle-laden plume rising several hundred metres into the atmosphere; the eventual collapse of the plume which generates a volcanic ash fountain and a fast ground-hugging pyroclastic density current; and the growth of a dilute convective region that rises above the ash fountain as a result of buoyancy effects. The results from Fluidity are also compared with results from MFIX, a fixed structured mesh-based multiphase flow code, that uses the same set-up. The key flow features are also captured in MFIX, providing at least some confidence in the plausibility of the numerical results in the absence of quantitative field data. Finally, it is shown by a convergence analysis that Fluidity offers the same solution accuracy for reduced computational cost using an adaptive mesh, compared to the same simulation performed with a uniform fixed mesh.

  17. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains

    NASA Astrophysics Data System (ADS)

    Nash, Rupert W.; Carver, Hywel B.; Bernabeu, Miguel O.; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V.

    2014-02-01

    Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002), 10.1063/1.1471914; Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001), 10.1063/1.1399290; Junk and Yang, Phys. Rev. E 72, 066701 (2005), 10.1103/PhysRevE.72.066701] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.

  18. Direct numerical simulation and reduced-order modeling of the sound-induced flow through a cavity-backed circular under a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bodony, Daniel

    2014-11-01

    Commercial jet aircraft generate undesirable noise from several sources, with the engines being the most dominant sources at take-off and major contributors at all other stages of flight. Acoustic liners, which are perforated sheets of metal or composite mounted within the engine, have been an effective means of reducing internal engine noise from the fan, compressor, combustor, and turbine but their performance suffers when subjected to a turbulent grazing flow or to high-amplitude incident sound due to poorly understood interactions between the liner orifices and the exterior flow. Through the use of direct numerical simulations, the flow-orifice interaction is examined numerically, quantified, and modeled over a range of conditions that includes current and envisioned uses of acoustic liners and with detail that exceeds experimental capabilities. A new time-domain model of acoustic liners is developed that extends currently-available reduced-order models to more complex flow conditions but is still efficient for use at the design stage.

  19. On the Maas problem of seawater intrusion combated by infiltration

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.

    2008-09-01

    SummaryThe problem of Maas [Maas, K. 2007. Influence of climate change on a Ghijben-Herzberg lens. J. Hydrol. 347, 223-228] for infiltration inflow into a porous flat-roofed fresh water lens floating on the interface of an ascending Darcian saline water flow is shown to be in exact match with the Polubarinova-Kochina [Polubarinova-Kochina, P.Ya., 1977. Theory of Ground Water Movement. Nauka, Moscow (in Russian)] problem for flow in a lens capped by a cambered phreatic surface with a uniform accretion. The Maas complex potential in the domain of a heavy saline water seeping beneath the lens corresponds to one of an ideal fluid flow past an elliptical cylinder that makes possible conversion of this potential into ascending-descending seepage flows with floating (but stagnant) DNAPL-LNAPL volumes. Similar matching is possible for the velocity potential of an axisymmetric flow past an ellipsoid and hydrostatic pressure of a stagnant NAPL body stored in a semi-ellipsoidal pond.

  20. Interplay between membrane elasticity and active cytoskeleton forces regulates the aggregation dynamics of the immunological synapse

    NASA Astrophysics Data System (ADS)

    Dharan, Nadiv; Farago, Oded

    Adhesion between a T cell and an antigen presenting cell is achieved by TCR-pMHC and LFA1-ICAM1 protein complexes. These segregate to form a special pattern, known as the immunological synapse (IS), consisting of a central quasi-circular domain of TCR-pMHC bonds surrounded by a peripheral domain of LFA1-ICAM1 complexes. Insights gained from imaging studies had led to the conclusion that the formation of the central adhesion domain in the IS is driven by active (ATP-driven) mechanisms. Recent studies, however, suggested that passive (thermodynamic) mechanisms may also play an important role in this process. Here, we present a simple physical model, taking into account the membrane-mediated thermodynamic attraction between the TCR-pMHC bonds and the effective forces that they experience due to ATP-driven actin retrograde flow and transport by dynein motor proteins. Monte Carlo simulations of the model exhibit a good spatio-temporal agreement with the experimentally observed pattern evolution of the TCR-pMHC microclusters. The agreement is lost when one of the aggregation mechanisms is "muted", which helps to identify the respective roles in the process. We conclude that actin retrograde flow drives the centripetal motion of TCR-pMHC bonds, while the membrane-mediated interactions facilitate microcluster formation and growth. In the absence of dynein motors, the system evolves into a ring-shaped pattern, which highlights the role of dynein motors in the formation of the final concentric pattern. The interplay between the passive and active mechanisms regulates the rate of the accumulation process, which in the absence of one them proceeds either too quickly or slowly.

  1. Monolayer phase coarsening using oscillatory flow

    NASA Astrophysics Data System (ADS)

    Leung, J.; Lopez, J. M.; Vogel, M. J.

    2005-11-01

    The co-existing phase domains of monolayers commonly observed via microscope are examined on flowing systems. Recent evidence shows that co-existing phase domains have profound effects on monolayer response to bulk flow. The present flow geometry consists of an open-top rectangular cavity in which the flow is driven by the periodic oscillation of the floor in its own plane. The oscillation of the floor dilates and compresses any film at the gas/liquid interface while still maintaining an essentially flat interface. A range of flow conditions (oscillation frequency and amplitude) is chosen so that the flow remains essentially two-dimensional. Measurements at the interface, initially covered by an insoluble monolayer (vitamin K1 or stearic acid), are made using a Brewster angle microscope system with a pulsed laser. Various phenomena such as fragmentation (breaking up of co-existing domains into finer ones) had previously been observed in sheared monolayer flows. In this new flow regime, we have seen dramatic coarsening of the domains. Interesting relaxation behavior at short and long time scales will also be discussed.

  2. Insights into the role of wettability in cathode catalyst layer of proton exchange membrane fuel cell; pore scale immiscible flow and transport processes

    NASA Astrophysics Data System (ADS)

    Fathi, H.; Raoof, A.; Mansouri, S. H.

    2017-05-01

    The production of liquid water in cathode catalyst layer, CCL, is a significant barrier to increase the efficiency of proton exchange membrane fuel cell. Here we present, for the first time, a direct three-dimensional pore-scale modelling to look at the complex immiscible two-phase flow in CCL. After production of the liquid water at the surface of CCL agglomerates due to the electrochemical reactions, water spatial distribution affects transport of oxygen through the CCL as well as the rate of reaction at the agglomerate surfaces. To explore the wettability effects, we apply hydrophilic and hydrophobic properties using different surface contact angles. Effective diffusivity is calculated under several water saturation levels. Results indicate larger diffusive transport values for hydrophilic domain compared to the hydrophobic media where the liquid water preferentially floods the larger pores. However, hydrophobic domain showed more available surface area and higher oxygen consumption rate at the reaction sites under various saturation levels, which is explained by the effect of wettability on pore-scale distribution of water. Hydrophobic domain, with a contact angle of 150, reveals efficient water removal where only 28% of the pore space stays saturated. This condition contributes to the enhanced available reaction surface area and oxygen diffusivity.

  3. Fictitious domain method for fully resolved reacting gas-solid flow simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Longhui; Liu, Kai; You, Changfu

    2015-10-01

    Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.

  4. The hrp23 Protein in the Balbiani Ring Pre-mRNP Particles Is Released Just before or at the Binding of the Particles to the Nuclear Pore Complex

    PubMed Central

    Sun, Xin; Alzhanova-Ericsson, Alla T.; Visa, Neus; Aissouni, Youssef; Zhao, Jian; Daneholt, Bertil

    1998-01-01

    Balbiani ring (BR) pre-mRNP particles reside in the nuclei of salivary glands of the dipteran Chironomus tentans and carry the message for giant-sized salivary proteins. In the present study, we identify and characterize a new protein component in the BR ribonucleoprotein (RNP) particles, designated hrp23. The protein with a molecular mass of 20 kD has a single RNA-binding domain and a glycine-arginine-serine–rich auxiliary domain. As shown by immunoelectron microscopy, the hrp23 protein is added to the BR transcript concomitant with transcription, is still present in the BR particles in the nucleoplasm, but is absent from the BR particles that are bound to the nuclear pore complex or are translocating through the central channel of the complex. Thus, hrp23 is released just before or at the binding of the particles to the nuclear pore complex. It is noted that hrp23 behaves differently from two other BR RNP proteins earlier studied: hrp36 and hrp45. These proteins both reach the nuclear pore complex, and hrp36 even accompanies the RNA into the cytoplasm. It is concluded that each BR RNA-binding protein seems to have a specific flow pattern, probably related to the particular role of the protein in gene expression. PMID:9732280

  5. Moving Computational Domain Method and Its Application to Flow Around a High-Speed Car Passing Through a Hairpin Curve

    NASA Astrophysics Data System (ADS)

    Watanabe, Koji; Matsuno, Kenichi

    This paper presents a new method for simulating flows driven by a body traveling with neither restriction on motion nor a limit of a region size. In the present method named 'Moving Computational Domain Method', the whole of the computational domain including bodies inside moves in the physical space without the limit of region size. Since the whole of the grid of the computational domain moves according to the movement of the body, a flow solver of the method has to be constructed on the moving grid system and it is important for the flow solver to satisfy physical and geometric conservation laws simultaneously on moving grid. For this issue, the Moving-Grid Finite-Volume Method is employed as the flow solver. The present Moving Computational Domain Method makes it possible to simulate flow driven by any kind of motion of the body in any size of the region with satisfying physical and geometric conservation laws simultaneously. In this paper, the method is applied to the flow around a high-speed car passing through a hairpin curve. The distinctive flow field driven by the car at the hairpin curve has been demonstrated in detail. The results show the promising feature of the method.

  6. Hybrid Multiscale Simulation of Hydrologic and Biogeochemical Processes in the River-Groundwater Interaction Zone

    NASA Astrophysics Data System (ADS)

    Yang, X.; Scheibe, T. D.; Chen, X.; Hammond, G. E.; Song, X.

    2015-12-01

    The zone in which river water and groundwater mix plays an important role in natural ecosystems as it regulates the mixing of nutrients that control biogeochemical transformations. Subsurface heterogeneity leads to local hotspots of microbial activity that are important to system function yet difficult to resolve computationally. To address this challenge, we are testing a hybrid multiscale approach that couples models at two distinct scales, based on field research at the U. S. Department of Energy's Hanford Site. The region of interest is a 400 x 400 x 20 m macroscale domain that intersects the aquifer and the river and contains a contaminant plume. However, biogeochemical activity is high in a thin zone (mud layer, <1 m thick) immediately adjacent to the river. This microscale domain is highly heterogeneous and requires fine spatial resolution to adequately represent the effects of local mixing on reactions. It is not computationally feasible to resolve the full macroscale domain at the fine resolution needed in the mud layer, and the reaction network needed in the mud layer is much more complex than that needed in the rest of the macroscale domain. Hence, a hybrid multiscale approach is used to efficiently and accurately predict flow and reactive transport at both scales. In our simulations, models at both scales are simulated using the PFLOTRAN code. Multiple microscale simulations in dynamically defined sub-domains (fine resolution, complex reaction network) are executed and coupled with a macroscale simulation over the entire domain (coarse resolution, simpler reaction network). The objectives of the research include: 1) comparing accuracy and computing cost of the hybrid multiscale simulation with a single-scale simulation; 2) identifying hot spots of microbial activity; and 3) defining macroscopic quantities such as fluxes, residence times and effective reaction rates.

  7. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  8. Simulating Water Flow in Variably Saturated Soils - Exploring the Advantage of Three-dimensional Models

    NASA Astrophysics Data System (ADS)

    Hopp, L.; Ivanov, V. Y.

    2010-12-01

    There is still a debate in rainfall-runoff modeling over the advantage of using three-dimensional models based on partial differential equations describing variably saturated flow vs. models with simpler infiltration and flow routing algorithms. Fully explicit 3D models are computationally demanding but allow the representation of spatially complex domains, heterogeneous soils, conditions of ponded infiltration, and solute transport, among others. Models with simpler infiltration and flow routing algorithms provide faster run times and are likely to be more versatile in the treatment of extreme conditions such as soil drying but suffer from underlying assumptions and ad-hoc parameterizations. In this numerical study, we explore the question of whether these two model strategies are competing approaches or if they complement each other. As a 3D physics-based model we use HYDRUS-3D, a finite element model that numerically solves the Richards equation for variably-saturated water flow. As an example of a simpler model, we use tRIBS+VEGGIE that solves the 1D Richards equation for vertical flow and applies Dupuit-Forchheimer approximation for saturated lateral exchange and gravity-driven flow for unsaturated lateral exchange. The flow can be routed using either the D-8 (steepest descent) or D-infinity flow routing algorithms. We study lateral subsurface stormflow and moisture dynamics at the hillslope-scale, using a zero-order basin topography, as a function of storm size, antecedent moisture conditions and slope angle. The domain and soil characteristics are representative of a forested hillslope with conductive soils in a humid environment, where the major runoff generating process is lateral subsurface stormflow. We compare spatially integrated lateral subsurface flow at the downslope boundary as well as spatial patterns of soil moisture. We illustrate situations where both model approaches perform equally well and identify conditions under which the application of a fully-explicit 3D model may be required for a realistic description of the hydrologic response.

  9. Coherent structures in a supersonic complex nozzle

    NASA Astrophysics Data System (ADS)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  10. Progress in incompressible Navier-Stokes computations for propulsion flows and its dual-use applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1995-01-01

    Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.

  11. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.

    PubMed

    Kim, Mi Ok; O'Rourke, Michael F; Adji, Audrey; Avolio, Alberto P

    2016-01-01

    In the time domain, pulsatile flow and pressure can be characterised as the ratio of the late systolic boost of flow or pressure to the pulse amplitude so as to estimate the hydraulic input to the brain. While vascular impedance has been widely used to represent the load presented to the heart by the systemic circulation, it has not been applied to the cerebral circulation.We set out to study the relationship between the pressure and the flow augmentation index (AIx) in the time domain and to determine cerebral vascular impedance using aortic blood pressure and cerebral blood flow waveforms in the frequency domain. Twenty-four young subjects (aged 21-39 years) were recruited; aortic pressure was derived using SphygmoCor from radial pressure. Flow waveforms were recorded from the middle cerebral artery. In three subjects, we performed the Valsalva manoeuvre to investigate their response to physiological intervention. There was a linear relationship between flow and pressure AIx, and cerebral impedance values were similar to those estimated for low resistance vascular beds. Substantial change in pressure and flow wave contour was observed during the Valsalva manoeuvre; however, the relationship in both the time and the frequency domains were unchanged. This confirms that aortic pressure and cerebral flow waveform can be used to study cerebral impedance.

  12. Application of process tomography in gas-solid fluidised beds in different scales and structures

    NASA Astrophysics Data System (ADS)

    Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.

    2018-04-01

    Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.

  13. Large-eddy simulation of slope flow over and within a vegetation canopy

    NASA Astrophysics Data System (ADS)

    Li, W.; Katul, G. G.; Parlange, M. B.; Giometto, M. G.

    2017-12-01

    Large-eddy simulation is used to characterize the turbulent structure of katabatic flows interacting with vegetation canopies in the absence of rotation. Numerical experiments are conducted first considering homogeneous surface forcing over an infinite planar slope, resembling the settings of the classic Prandtl one-dimensional slope flow model. A series of homogeneous plant canopies are accounted for using a spatially-distributed drag and buoyancy-induced forces, both function of the canopy leaf-area density parameter. The current study provides a new perspective on the problem of canopy flows, whose numerical studies have to-date mostly focused on pressure-driven atmospheric boundary-layer flow settings or on complex topography but without buoyancy. The dependence of the solution to the grid stencil, subgrid-scale model, and domain size will be analyzed, to assess the quality and reliability of the proposed results. A sensitivity analysis will then be conducted to test the dependence of mean flow and turbulence to the model parameters. Results will be contrasted with those from corresponding runs with no vegetation canopy.

  14. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows

    PubMed Central

    Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis

    2013-01-01

    We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331

  15. An information theory framework for dynamic functional domain connectivity.

    PubMed

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Predicting vibratory stresses from aero-acoustic loads

    NASA Astrophysics Data System (ADS)

    Shaw, Matthew D.

    Sonic fatigue has been a concern of jet aircraft engineers for many years. As engines become more powerful, structures become more lightly damped and complex, and materials become lighter, stiffer, and more complicated, the need to understand and predict structural response to aeroacoustic loads becomes more important. Despite decades of research, vibration in panels caused by random pressure loads, such as those found in a supersonic jet, is still difficult to predict. The work in this research improves on current prediction methods in several ways, in particular for the structural response due to wall pressures induced by supersonic turbulent flows. First, solutions are calculated using time-domain input pressure loads that include shock cells and their interaction with turbulent flow. The solutions include both mean (static) and oscillatory components. Second, the time series of stresses are required for many fatigue assessment counting algorithms. To do this, a method is developed to compute time-dependent solutions in the frequency domain. The method is first applied to a single-degree-of-freedom system. The equations of motion are derived and solved in both the frequency domain and the time domain. The pressure input is a random (broadband) signal representative of jet flow. The method is then applied to a simply-supported beam vibrating in flexure using a line of pressure inputs computed with computational fluid dynamics (CFD). A modal summation approach is used to compute structural response. The coupling between the pressure field and the structure, through the joint acceptance, is reviewed and discussed for its application to more complicated structures. Results from the new method and from a direct time domain method are compared for method verification. Because the match is good and the new frequency domain method is faster computationally, it is chosen for use in a more complicated structure. The vibration of a two-dimensional panel loaded by jet nozzle discharge flow is addressed. The surface pressures calculated at Pratt and Whitney using viscous and compressible CFD are analyzed and compared to surface pressure measurements made at the United Technologies Research Center (UTRC). A structural finite element model is constructed to represent a flexible panel also used in the UTRC setup. The mode shapes, resonance frequencies, modal loss factors, and surface pressures are input into the solution method. Displacement time series and power spectral densities are computed and compared to measurement and show good agreement. The concept of joint acceptance is further addressed for two-dimensional plates excited by supersonic jet flow. Static and alternating stresses in the panel are also computed, and the most highly stressed modes are identified. The surface pressures are further analyzed in the wavenumber domain for insight into the physics of sonic fatigue. Most of the energy in the wall pressure wavenumber-frequency spectrum at subsonic speeds is in turbulent structures near the convective wavenumber. In supersonic flow, however, the shock region dominates the spectrum at low frequencies, but convective behavior is still dominant at higher frequencies. When the forcing function wavenumber energy overlaps the modal wavenumbers, the acceptance of energy by the structure from the flow field is greatest. The wavenumber analysis suggests a means of designing structures to minimize overlap of excitation and structural wavenumber peaks to minimize vibration and sonic fatigue.

  17. Comparison of Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Raj K.; Berg, Larry K.; Kosović, Branko

    High resolution numerical simulation can provide insight into important physical processes that occur within the planetary boundary layer (PBL). The present work employs large eddy simulation (LES) using the Weather Forecasting and Research (WRF) model, with the LES domain nested within mesoscale simulation, to simulate real conditions in the convective PBL over an area of complex terrain. A multiple nesting approach has been used to downsize the grid spacing from 12.15 km (mesoscale) to 0.03 km (LES). A careful selection of grid spacing in the WRF Meso domain has been conducted to minimize artifacts in the WRF-LES solutions. The WRF-LESmore » results have been evaluated with in situ and remote sensing observations collected during the US Department of Energy-supported Columbia BasinWind Energy Study (CBWES). Comparison of the first- and second-order moments, turbulence spectrum, and probability density function (PDF) of wind speed shows good agreement between the simulations and data. Furthermore, the WRF-LES variables show a great deal of variability in space and time caused by the complex topography in the LES domain. The WRF-LES results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day. In addition to basic studies related to boundary-layer meteorology, results from these simulations can be used in other applications, such as studying wind energy resources, atmospheric dispersion, fire weather etc.« less

  18. Three-Dimensional Navier-Stokes Method with Two-Equation Turbulence Models for Efficient Numerical Simulation of Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.

    1994-01-01

    A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in complex geometries with good accuracy.

  19. Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms.

    PubMed

    Mikhal, Julia; Geurts, Bernard J

    2013-12-01

    A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.

  20. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  1. PDF modeling of turbulent flows on unstructured grids

    NASA Astrophysics Data System (ADS)

    Bakosi, Jozsef

    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. Because the technique solves a transport equation for the PDF of the velocity and scalars, a mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Since both the turbulent velocity and scalar concentration fields are represented in a stochastic way, the method allows for a direct and close interaction between these fields, which is beneficial in computing accurate scalar statistics. Boundary conditions implemented along solid bodies are of the free-slip and no-slip type without the need for ghost elements. Boundary layers at no-slip boundaries are either fully resolved down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions or specified via logarithmic wall-functions. As in moment closures and large eddy simulation, these wall-treatments provide the usual trade-off between resolution and computational cost as required by the given application. Particular attention is focused on modeling the dispersion of passive scalars in inhomogeneous turbulent flows. Two different micromixing models are investigated that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. An adaptive algorithm to compute the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. The development also concentrates on a generally applicable micromixing timescale for complex flow domains. Several newly developed algorithms are described in detail that facilitate a stable numerical solution in arbitrarily complex flow geometries, including a stabilized mean-pressure projection scheme, the estimation of conditional and unconditional Eulerian statistics and their derivatives from stochastic particle fields employing finite element shapefunctions, particle tracking through unstructured grids, an efficient particle redistribution procedure and techniques related to efficient random number generation. The algorithm is validated and tested by computing three different turbulent flows: the fully developed turbulent channel flow, a street canyon (or cavity) flow and the turbulent wake behind a circular cylinder at a sub-critical Reynolds number. The solver has been parallelized and optimized for shared memory and multi-core architectures using the OpenMP standard. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed and presented in detail. The methodology shows great promise in the simulation of high-Reynolds-number incompressible inert or reactive turbulent flows in realistic configurations.

  2. Hypercluster Parallel Processor

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Cole, Gary L.; Milner, Edward J.; Quealy, Angela

    1992-01-01

    Hypercluster computer system includes multiple digital processors, operation of which coordinated through specialized software. Configurable according to various parallel-computing architectures of shared-memory or distributed-memory class, including scalar computer, vector computer, reduced-instruction-set computer, and complex-instruction-set computer. Designed as flexible, relatively inexpensive system that provides single programming and operating environment within which one can investigate effects of various parallel-computing architectures and combinations on performance in solution of complicated problems like those of three-dimensional flows in turbomachines. Hypercluster software and architectural concepts are in public domain.

  3. Analytical and experimental analysis of solute transport in heterogeneous porous media.

    PubMed

    Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael

    2014-01-01

    Knowledge of solute transport in heterogeneous porous media is crucial to monitor contaminant fate and transport in soil and groundwater systems. In this study, we present new findings from experimental and mathematical analysis to improve current understanding of solute transport in structured heterogeneous porous media. Three saturated columns packed with different sand combinations were used to examine the breakthrough behavior of bromide, a conservative tracer. Experimental results showed that bromide had different breakthrough responses in the three types of sand combinations, indicating that heterogeneity in hydraulic conductivity has a significant effect on the solute transport in structured heterogeneous porous media. Simulations from analytical solutions of a two-domain solute transport model matched experimental breakthrough data well for all the experimental conditions tested. Experimental and model results show that under saturated flow conditions, advection dominates solute transport in both fast-flow and slow-flow domains. The sand with larger hydraulic conductivity provided a preferential flow path for solute transport (fast-flow domain) that dominates the mass transfer in the heterogeneous porous media. Importantly, the transport in the slow-flow domain and mass exchange between the domains also contribute to the flow and solute transport processes and thus must be considered when investigating contaminant transport in heterogeneous porous media.

  4. Modeling of a pitching and plunging airfoil using experimental flow field and load measurements

    NASA Astrophysics Data System (ADS)

    Troshin, Victor; Seifert, Avraham

    2018-01-01

    The main goal of the current paper is to outline a low-order modeling procedure of a heaving airfoil in a still fluid using experimental measurements. Due to its relative simplicity, the proposed procedure is applicable for the analysis of flow fields within complex and unsteady geometries and it is suitable for analyzing the data obtained by experimentation. Currently, this procedure is used to model and predict the flow field evolution using a small number of low profile load sensors and flow field measurements. A time delay neural network is used to estimate the flow field. The neural network estimates the amplitudes of the most energetic modes using four sensory inputs. The modes are calculated using proper orthogonal decomposition of the flow field data obtained experimentally by time-resolved, phase-locked particle imaging velocimetry. To permit the use of proper orthogonal decomposition, the measured flow field is mapped onto a stationary domain using volume preserving transformation. The analysis performed by the model showed good estimation quality within the parameter range used in the training procedure. However, the performance deteriorates for cases out of this range. This situation indicates that, to improve the robustness of the model, both the decomposition and the training data sets must be diverse in terms of input parameter space. In addition, the results suggest that the property of volume preservation of the mapping does not affect the model quality as long as the model is not based on the Galerkin approximation. Thus, it may be relaxed for cases with more complex geometry and kinematics.

  5. Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching

    NASA Astrophysics Data System (ADS)

    Kwamen, C.; Rössle, M.; Reinhardt, M.; Leitenberger, W.; Zamponi, F.; Alexe, M.; Bargheer, M.

    2017-10-01

    Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domain walls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb (Zr0.2Ti0.8) O3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the R C time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling.

  6. An Object-Oriented Serial DSMC Simulation Package

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Cai, Chunpei

    2011-05-01

    A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP ("Generalized Rarefied gAs Simulation Package"), is reported in this paper. This package utilizes the concept of simulation engine, many C++ features and software design patterns. The package has an open architecture which can benefit further development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors. This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases indicate that this package has satisfactory accuracy for complex rarefied gas flows.

  7. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less

  8. Analysis of the Harrier forebody/inlet design using computational techniques

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen

    1993-01-01

    Under the support of this Cooperative Agreement, computations of transonic flow past the complex forebody/inlet configuration of the AV-8B Harrier II have been performed. The actual aircraft configuration was measured and its surface and surrounding domain were defined using computational structured grids. The thin-layer Navier-Stokes equations were used to model the flow along with the Chimera embedded multi-grid technique. A fully conservative, alternating direction implicit (ADI), approximately-factored, partially flux-split algorithm was employed to perform the computation. An existing code was altered to conform with the needs of the study, and some special engine face boundary conditions were developed. The algorithm incorporated the Chimera technique and an algebraic turbulence model in order to deal with the embedded multi-grids and viscous governing equations. Comparison with experimental data has yielded good agreement for the simplifications incorporated into the analysis. The aim of the present research was to provide a methodology for the numerical solution of complex, combined external/internal flows. This is the first time-dependent Navier-Stokes solution for a geometry in which the fuselage and inlet share a wall. The results indicate the methodology used here is a viable tool for transonic aircraft modeling.

  9. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less

  10. Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Ellerbee, Audrey K.; Yazdanfar, Siavash; Izatt, Joseph A.

    2006-03-01

    Spectral domain phase microscopy (SDPM) is a function extension of spectral domain optical coherence tomography. SDPM achieves exquisite levels of phase stability by employing common-path interferometry. We discuss the theory and limitations of Doppler flow imaging using SDPM, demonstrate monitoring the thermal contraction of a glass sample with nanometer per second velocity sensitivity, and apply this technique to measurement of cytoplasmic streaming in an Amoeba proteus pseudopod. We observe reversal of cytoplasmic flow induced by extracellular CaCl2, and report results that suggest parabolic flow of cytoplasm in the A. proteus pseudopod.

  11. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF.

    PubMed

    Yago, Tadayuki; Lou, Jizhong; Wu, Tao; Yang, Jun; Miner, Jonathan J; Coburn, Leslie; López, José A; Cruz, Miguel A; Dong, Jing-Fei; McIntire, Larry V; McEver, Rodger P; Zhu, Cheng

    2008-09-01

    Arterial blood flow enhances glycoprotein Ibalpha (GPIbalpha) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbalpha/vWF bonds first prolonged ("catch") and then shortened ("slip") bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbalpha dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbalpha-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif-13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbalpha on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding.

  12. Simulating Mass Removal of Groundwater Contaminant Plumes with Complex and Simple Models

    NASA Astrophysics Data System (ADS)

    Lopez, J.; Guo, Z.; Fogg, G. E.

    2016-12-01

    Chlorinated solvents used in industrial, commercial, and other applications continue to pose significant threats to human health through contamination of groundwater resources. A recent National Research Council report concludes that it is unlikely that remediation of these complex sites will be achieved in a time frame of 50-100 years under current methods and standards (NRC, 2013). Pump and treat has been a common strategy at many sites to contain and treat groundwater contamination. In these sites, extensive retention of contaminant mass in low-permeability materials (tailing) has been observed after years or decades of pumping. Although transport models can be built that contain enough of the complex, 3D heterogeneity to simulate the tailing and long cleanup times, this is seldom done because of the large data and computational burdens. Hence, useful, reliable models to simulate various cleanup strategies are rare. The purpose of this study is to explore other potential ways to simulate the mass-removal processes with shorter time and less cost but still produce robust results by capturing effects of the heterogeneity and long-term retention of mass. A site containing a trichloroethylene groundwater plume was selected as the study area. The plume is located within alluvial sediments in the Tucson Basin. A fully heterogeneous domain is generated first and MODFLOW is used to simulate the flow field. Contaminant transport is simulated using both MT3D and RWHet for the fully heterogeneous model. Other approaches, including dual-domain mass transfer and heterogeneous chemical reactions, are manipulated to simulate the mass removal in a less heterogeneous, or homogeneous, domain and results are compared to the results obtained from complex models. The capability of these simpler models to simulate remediation processes, especially capture the late-time tailing, are examined.

  13. SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.

    2005-01-01

    SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.

  14. Diffuse-Interface Modelling of Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Addy, Doug; Pradas, Marc; Schmuck, Marcus; Kalliadasis, Serafim

    2016-11-01

    Multiphase flows are ubiquitous in a wide spectrum of scientific and engineering applications, and their computational modelling often poses many challenges associated with the presence of free boundaries and interfaces. Interfacial flows in porous media encounter additional challenges and complexities due to their inherently multiscale behaviour. Here we investigate the dynamics of interfaces in porous media using an effective convective Cahn-Hilliard (CH) equation recently developed in from a Stokes-CH equation for microscopic heterogeneous domains by means of a homogenization methodology, where the microscopic details are taken into account as effective tensor coefficients which are given by a Poisson equation. The equations are decoupled under appropriate assumptions and solved in series using a classic finite-element formulation with the open-source software FEniCS. We investigate the effects of different microscopic geometries, including periodic and non-periodic, at the bulk fluid flow, and find that our model is able to describe the effective macroscopic behaviour without the need to resolve the microscopic details.

  15. Parallel Three-Dimensional Computation of Fluid Dynamics and Fluid-Structure Interactions of Ram-Air Parachutes

    NASA Technical Reports Server (NTRS)

    Tezduyar, Tayfun E.

    1998-01-01

    This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.

  16. Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front

    NASA Astrophysics Data System (ADS)

    Matti, R. S.; Kaplan, A. F. H.

    The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.

  17. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.

    PubMed

    Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla

    2010-02-01

    Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.

  18. Vessel Segmentation and Blood Flow Simulation Using Level-Sets and Embedded Boundary Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschamps, T; Schwartz, P; Trebotich, D

    In this article we address the problem of blood flow simulation in realistic vascular objects. The anatomical surfaces are extracted by means of Level-Sets methods that accurately model the complex and varying surfaces of pathological objects such as aneurysms and stenoses. The surfaces obtained are defined at the sub-pixel level where they intersect the Cartesian grid of the image domain. It is therefore straightforward to construct embedded boundary representations of these objects on the same grid, for which recent work has enabled discretization of the Navier-Stokes equations for incompressible fluids. While most classical techniques require construction of a structured meshmore » that approximates the surface in order to extrapolate a 3D finite-element gridding of the whole volume, our method directly simulates the blood-flow inside the extracted surface without losing any complicated details and without building additional grids.« less

  19. Parallel computation of three-dimensional aeroelastic fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mani

    This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.

  20. Viscous damping and spring force in periodic perforated planar microstructures when the Reynolds’ equation cannot be applied

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2010-01-01

    A model of squeeze-film behavior is developed based on Stokes’ equations for viscous, compressible isothermal flows. The flow domain is an axisymmetrical, unit cell approximation of a planar, periodic, perforated microstructure. The model is developed for cases when the lubrication approximation cannot be applied. The complex force generated by vibrations of the diaphragm driving the flow has two components: the damping force and the spring force. While for large frequencies the spring force dominates, at low (acoustical) frequencies the damping force is the most important part. The analytical approach developed here yields an explicit formula for both forces. In addition, using a finite element software package, the damping force is also obtained numerically. A comparison is made between the analytic result, numerical solution, and some experimental data found in the literature, which validates the analytic formula and provides compelling arguments about its value in designing microelectomechanical devices. PMID:20329828

  1. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson, R., E-mail: roland.masson@unice.fr; Team COFFEE INRIA Sophia Antipolis Méditerranée; Trenty, L., E-mail: laurent.trenty@andra.fr

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the massmore » exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.« less

  2. Intercomparison of Multiscale Modeling Approaches in Simulating Subsurface Flow and Transport

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mehmani, Y.; Barajas-Solano, D. A.; Song, H. S.; Balhoff, M.; Tartakovsky, A. M.; Scheibe, T. D.

    2016-12-01

    Hybrid multiscale simulations that couple models across scales are critical to advance predictions of the larger system behavior using understanding of fundamental processes. In the current study, three hybrid multiscale methods are intercompared: multiscale loose-coupling method, multiscale finite volume (MsFV) method and multiscale mortar method. The loose-coupling method enables a parallel workflow structure based on the Swift scripting environment that manages the complex process of executing coupled micro- and macro-scale models without being intrusive to the at-scale simulators. The MsFV method applies microscale and macroscale models over overlapping subdomains of the modeling domain and enforces continuity of concentration and transport fluxes between models via restriction and prolongation operators. The mortar method is a non-overlapping domain decomposition approach capable of coupling all permutations of pore- and continuum-scale models with each other. In doing so, Lagrange multipliers are used at interfaces shared between the subdomains so as to establish continuity of species/fluid mass flux. Subdomain computations can be performed either concurrently or non-concurrently depending on the algorithm used. All the above methods have been proven to be accurate and efficient in studying flow and transport in porous media. However, there has not been any field-scale applications and benchmarking among various hybrid multiscale approaches. To address this challenge, we apply all three hybrid multiscale methods to simulate water flow and transport in a conceptualized 2D modeling domain of the hyporheic zone, where strong interactions between groundwater and surface water exist across multiple scales. In all three multiscale methods, fine-scale simulations are applied to a thin layer of riverbed alluvial sediments while the macroscopic simulations are used for the larger subsurface aquifer domain. Different numerical coupling methods are then applied between scales and inter-compared. Comparisons are drawn in terms of velocity distributions, solute transport behavior, algorithm-induced numerical error and computing cost. The intercomparison work provides support for confidence in a variety of hybrid multiscale methods and motivates further development and applications.

  3. Eulerian Time-Domain Filtering for Spatial LES

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  4. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  5. VisFlow - Web-based Visualization Framework for Tabular Data with a Subset Flow Model.

    PubMed

    Yu, Bowen; Silva, Claudio T

    2017-01-01

    Data flow systems allow the user to design a flow diagram that specifies the relations between system components which process, filter or visually present the data. Visualization systems may benefit from user-defined data flows as an analysis typically consists of rendering multiple plots on demand and performing different types of interactive queries across coordinated views. In this paper, we propose VisFlow, a web-based visualization framework for tabular data that employs a specific type of data flow model called the subset flow model. VisFlow focuses on interactive queries within the data flow, overcoming the limitation of interactivity from past computational data flow systems. In particular, VisFlow applies embedded visualizations and supports interactive selections, brushing and linking within a visualization-oriented data flow. The model requires all data transmitted by the flow to be a data item subset (i.e. groups of table rows) of some original input table, so that rendering properties can be assigned to the subset unambiguously for tracking and comparison. VisFlow features the analysis flexibility of a flow diagram, and at the same time reduces the diagram complexity and improves usability. We demonstrate the capability of VisFlow on two case studies with domain experts on real-world datasets showing that VisFlow is capable of accomplishing a considerable set of visualization and analysis tasks. The VisFlow system is available as open source on GitHub.

  6. Numerical simulation of magma chamber dynamics.

    NASA Astrophysics Data System (ADS)

    Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea

    2010-05-01

    Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective patterns, giving origin to a density-stratified magma chamber.

  7. Adhesive properties of the isolated amino-terminal domain of platelet glycoprotein Ibα in a flow field

    PubMed Central

    Marchese, Patrizia; Saldívar, Enrique; Ware, Jerry; Ruggeri, Zaverio M.

    1999-01-01

    We have examined the interaction between the amino-terminal domain of platelet glycoprotein (GP) Ibα and immobilized von Willebrand Factor (vWF) under flow conditions in the absence of other components of the GP Ib–IX–V complex. Latex beads were coated with a recombinant fragment containing GP Ibα residues 1–302, either with normal sequence or with the single G233V substitution that causes enhanced affinity for plasma vWF in platelet-type pseudo-von-Willebrand disease. Beads coated with native fragment adhered to vWF in a manner comparable to platelets, showing surface translocation that reflected the transient nature of the bonds formed. Thus, the GP Ibα extracellular domain is necessary and sufficient for interacting with vWF under high shear stress. Beads coated with the mutated fragment became tethered to vWF in greater number and had lower velocity of translocation than beads coated with the normal counterpart, suggesting that the G233V mutation lowers the rate of bond dissociation. Our findings define an approach for studying the biomechanical properties of the GP Ibα–vWF bond and suggest that this interaction is tightly regulated to allow rapid binding at sites of vascular injury, while permitting the concurrent presence of receptor and ligand in the circulation. PMID:10393908

  8. A time-dependent model to determine the thermal conductivity of a nanofluid

    NASA Astrophysics Data System (ADS)

    Myers, T. G.; MacDevette, M. M.; Ribera, H.

    2013-07-01

    In this paper, we analyse the time-dependent heat equations over a finite domain to determine expressions for the thermal diffusivity and conductivity of a nanofluid (where a nanofluid is a fluid containing nanoparticles with average size below 100 nm). Due to the complexity of the standard mathematical analysis of this problem, we employ a well-known approximate solution technique known as the heat balance integral method. This allows us to derive simple analytical expressions for the thermal properties, which appear to depend primarily on the volume fraction and liquid properties. The model is shown to compare well with experimental data taken from the literature even up to relatively high concentrations and predicts significantly higher values than the Maxwell model for volume fractions approximately >1 %. The results suggest that the difficulty in reproducing the high values of conductivity observed experimentally may stem from the use of a static heat flow model applied over an infinite domain rather than applying a dynamic model over a finite domain.

  9. Cell fate regulation governed by a repurposed bacterial histidine kinase

    DOE PAGES

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; ...

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less

  10. Direct Numerical Simulation of Automobile Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kurbatskii, Konstantin; Tam, Christopher K. W.

    2000-01-01

    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  11. Investigating accident causation through information network modelling.

    PubMed

    Griffin, T G C; Young, M S; Stanton, N A

    2010-02-01

    Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.

  12. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  13. PIV Measurement of Wall Shear Stress and Flow Structures within an Intracranial Aneurysm Model

    NASA Astrophysics Data System (ADS)

    Chow, Ricky; Sparrow, Eph; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    The formation and rupture of an intracranial aneurysm (IA) is a debilitating and often lethal event. Geometric features of the aneurysm bulb and upstream artery, such as bulb size, bulb shape, and curvature of the artery, are two groups of factors that define the flow and stresses within an IA. Abnormal flow stresses are related to rupture. This presentation discusses the development of a quasi-3D PIV technique and its application in various glass models at Re = 275 and 550 to experimentally assess at a preliminary level the impact of geometry and flow rate. Some conclusions are to be drawn linking geometry of the flow domain to rupture risk. The extracted results also serve as the baseline case and as a precursor to a companion presentation by the authors discussing the impact of flow diverters, a new class of medical devices. The PIV experiments were performed in a fully index-matched flow facility, allowing for unobstructed observations over complex geometry. A reconstruction and analysis method was devised to obtain 3D mean wall stress distributions and flow fields. The quasi 3D measurements were reconstructed from orthogonal planes encompassing the entire glass model, spaced 0.4mm apart. Wall shear stresses were evaluated from the near-wall flow viscous stresses.

  14. Air quality impacted by local pollution sources and beyond - Using a prominent petro-industrial complex as a study case.

    PubMed

    Chen, Sheng-Po; Wang, Chieh-Heng; Lin, Wen-Dian; Tong, Yu-Huei; Chen, Yu-Chun; Chiu, Ching-Jui; Chiang, Hung-Chi; Fan, Chen-Lun; Wang, Jia-Lin; Chang, Julius S

    2018-05-01

    The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality. Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO 2 ) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO 2 and wind parameters. The SO 2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO 2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Fully developed pipe and triangular channel flow measurement using Magnetic Resonance Velocimetry

    NASA Astrophysics Data System (ADS)

    Baek, Seungchan; Hwang, Wontae

    2017-11-01

    Magnetic resonance velocimetry (MRV) is a non-intrusive flow visualization method which is able to measure the 3 dimensional 3 component (3D3C) mean velocity field in complex geometries, using a healthcare MRI scanner. Since this technique is based on nuclear magnetic resonance (NMR), it is free from optical distortion and does not require tracer particles. Due to these powerful advantages, MRV usage is gradually expanding from biomedical fields to the engineering domain. In this study, we validate the performance of MRV by measuring fully developed pipe flow and compare measured data with time averaged DNS data. We then investigate the overall flow characteristics in a triangular channel with a sharp corner. At the sharp corner, boundary layer effects dominate and the effect of turbulence is reduced. This information has implications for engineering applications such as flow in a turbine blade internal cooling passage at the sharp trailing edge. This research was supported by the Seoul National University Research Grant in 2017, and Doosan Heavy Industries & Construction. (Contract No. 2016900298 and 2017900095).

  16. Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian

    2018-01-01

    Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets.

  17. Nonuniform flow in soft glasses of colloidal rods

    NASA Astrophysics Data System (ADS)

    Dhont, J. K. G.; Kang, K.; Kriegs, H.; Danko, O.; Marakis, J.; Vlassopoulos, D.

    2017-04-01

    Despite our reasonably advanced understanding of the dynamics and flow of glasses made of spherical colloids, the role of shape, i.e., the respective behavior of glasses formed by rodlike, particles is virtually unexplored. Recently, long, thin and highly charged rods (fd-virus particles) were found to vitrify in aqueous suspensions at low ionic strength [Phys. Rev. Lett. 110, 015901 (2013), 10.1103/PhysRevLett.110.015901]. The glass transition of these long-ranged repulsive rods occurs at a concentration far above the isotropic-nematic coexistence region and is characterized by the unique arrest of both the dynamics of domains that constitute the chiral-nematic orientational texture, as well as individual rods inside the domains. Hence, two relevant length scales exist: the domain size of a few hundreds of microns, and the rod-cage size of a few microns, inside the domains. We show that the unique dual dynamic arrest and the existing of two widely separated length scales imparts an unprecedented, highly heterogeneous flow behavior with three distinct signatures. Beyond a weak stress plateau at very small shear rates that characterizes the glass, the kinetic arrest of the domain dynamics gives rise to internal fracture, as a result of domain-domain interactions, as well as wall partial slip. It is shown that, on increasing the shear rate, the fractured plug flow changes to a shear-banded flow profile due to the stress response of the kinetically arrested aligned rods within the domains. Shear-gradient banding occurs due to the strong thinning of the uniform chiral-nematic phase within the domains, i.e., complying with the classic shear-banding scenario, giving rise to a stress plateau in the flow curve. Finally, a linear (uniform) velocity profile is found at the highest shear rates. Vorticity banding is also observed at intermediate and high shear rates. These results point to the crucial role of particle shape in tailoring the flow properties of dense colloidal suspensions. Moreover, they strongly support the argument that the origin of shear banding in soft-particle glasses with long-ranged repulsive interactions is fundamentally different from that of hard-particle glasses with short-ranged repulsive interactions.

  18. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less

  19. A Multiscale Model for Virus Capsid Dynamics

    PubMed Central

    Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei

    2010-01-01

    Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. PMID:20224756

  20. Fluorescence anisotropy reveals order and disorder of protein domains in the nuclear pore complex.

    PubMed

    Mattheyses, Alexa L; Kampmann, Martin; Atkinson, Claire E; Simon, Sanford M

    2010-09-22

    We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. A nodally condensed SUPG formulation for free-surface computation of steady-state flows constrained by unilateral contact - Application to rolling

    NASA Astrophysics Data System (ADS)

    Arora, Shitij; Fourment, Lionel

    2018-05-01

    In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.

  2. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    NASA Astrophysics Data System (ADS)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The proposed diffuse interface immersed boundary method is shown to be discretely mass-preserving while being temporally second-order accurate and exhibits nominal second-order accuracy in space. We examine the efficacy of the proposed approach through extensive numerical experiments involving one or more fluids and solids, that include two-particle sedimentation in homogeneous and stratified environment. The results from the numerical simulations show that the proposed methodology results in reduced spurious force oscillations in case of moving bodies while accurately resolving complex flow phenomena in multiphase flows with moving solids. These studies demonstrate that the proposed diffuse interface immersed boundary method, which could be related to a class of penalisation approaches, is a robust and promising alternative to computationally expensive conformal moving mesh algorithms as well as the class of sharp interface immersed boundary methods for multibody problems in multi-phase flows.

  3. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    NASA Astrophysics Data System (ADS)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  4. Investigating the Structures of Turbulence in a Multi-Stream, Rectangular, Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Magstadt, Andrew S.

    Supersonic flight has become a standard for military aircraft, and is being seriously reconsidered for commercial applications. Engine technologies, enabling increased mission capabilities and vehicle performance, have evolved nozzles into complex geometries with intricate flow features. These engineering solutions have advanced at a faster rate than the understanding of the flow physics, however. The full consequences of the flow are thus not known, and using predictive tools becomes exceedingly difficult. Additionally, the increasing velocities associated with supersonic flight exacerbate the preexisting jet noise problem, which has troubled the engineering community for nearly 65 years. Even in the simplest flows, the full consequences of turbulence, e.g. noise production, are not fully understood. For composite flows, the fluid mechanics and acoustic properties have been studied even less sufficiently. Before considering the aeroacoustic problem, the development, structure, and evolution of the turbulent flow-field must be considered. This has prompted an investigation into the compressible flow of a complex nozzle. Experimental evidence is sought to explain the stochastic processes of the turbulent flow issuing from a complex geometry. Before considering the more complicated configuration, an experimental campaign of an axisymmetric jet is conducted. The results from this study are presented, and guide research of the primary flow under investigation. The design of a nozzle representative of future engine technologies is then discussed. Characteristics of this multi-stream rectangular supersonic nozzle are studied via time-resolved schlieren imaging, stereo PIV measurements, dynamic pressure transducers, and far-field acoustics. Experiments are carried out in the anechoic chamber at Syracuse University, and focus primarily on the flow-field. An extensive data set is generated, which reveals a detailed view of a very complex flow. Shear, shock waves, unequal entrainment, compressibility, and geometric features of the nozzle heavily influence the development of this jet plume. In the far-field, the acoustic radiation is found to be highly directional. Noise spectra contain high-frequency tonal signatures, and relations to the turbulent structures are made in an effort to explain the physics responsible for such acoustic generation. Analysis of the flow is made possible by the carefully planned experiments. By acquiring a large number of simultaneous data points, the stochastic processes are studied through statistical approaches. First- and second-order moments are used to describe the steady-state behavior of the flow. The wide array of sensors used in the tests allows for cross-moments to be computed, which provide evidence linking different phenomena. Proper orthogonal decomposition (POD) is used to separate flow-field quantities into temporal and spatial pieces, which are then further utilized in conjunction with other sensors. Through these methods, a high-frequency instability is discovered in the near-field of the jet, which pervades the flow-field and propagates ubiquitously throughout the acoustic domain. Additionally, the complex shock structure is found to play a vital role in redistributing disturbances throughout the flow. Finally, several POD modes in the side shear layer of the jet are found to be correlated with acoustic production.

  5. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Turbine Bladed Disks

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Schmauch, Preston

    2012-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.

  6. Effect of spin transfer torque on domain wall motion regimes in [Co/Ni] superlattice wires

    NASA Astrophysics Data System (ADS)

    Le Gall, S.; Vernier, N.; Montaigne, F.; Thiaville, A.; Sampaio, J.; Ravelosona, D.; Mangin, S.; Andrieu, S.; Hauet, T.

    2017-05-01

    The combined effect of magnetic field and current on domain wall motion is investigated in epitaxial [Co/Ni] microwires. Both thermally activated and flow regimes are found to be strongly affected by current. All experimental data can be understood by taking into account both adiabatic and nonadiabatic components of the spin transfer torque, the parameters of which are extracted. In the precessional flow regime, it is shown that the domain wall can move in the electron flow direction against a strong applied field, as previously observed. In addition, for a large range of applied magnetic field and injected current, a stochastic domain wall displacement after each pulse is observed. Two-dimensional micromagnetic simulations, including some disorder, show a random fluctuation of the domain wall position that qualitatively matches the experimental results.

  7. A 3-D chimera grid embedding technique

    NASA Technical Reports Server (NTRS)

    Benek, J. A.; Buning, P. G.; Steger, J. L.

    1985-01-01

    A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.

  8. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    PubMed Central

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-01-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability. PMID:26537788

  9. Using llama derived single domain antibodies to target botulinum neurotoxins

    NASA Astrophysics Data System (ADS)

    Swain, Marla D.; Anderson, George P.; Bernstein, Rachael D.; Liu, Jinny L.; Goldman, Ellen R.

    2010-04-01

    Llama serum contains both conventional IgG as well as unique forms of antibody that contain only heavy chains where antigen binding is mediated through a single variable domain. These variable domains can be expressed recombinantly and are referred to as single domain antibodies (sdAb). SdAb are among the smallest known naturally derived antigen binding fragments, possess good solubility, thermal stability, and can refold after heat and chemical denaturation. Llamas were immunized with either BoNT A or B toxoid and phage display libraries prepared. Single domain antibodies (sdAb) that were able to detect botulinum neurotoxin (BoNT) serotypes A and B were selected from their respective libraries. Here, the binders obtained by panning the BoNT B library on either BoNT B toxoid or BoNT B complex toxoid coated plates or BoNT B toxin coupled microspheres are described. Using these panning methods, we selected for binders that showed specificity for BoNT B. Phage displayed binders were screened, moved to a protein expression vector and soluble sdAb was produced. Using a Luminex flow cytometer binders were evaluated in direct binding assays. We have exploited the unique properties of sdAb and used them as biological recognition elements in immuno-based sensors that can detect BoNT B.

  10. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    NASA Astrophysics Data System (ADS)

    Wu, Qinke; Park, Ji-Hoon; Park, Sangwoo; Jung, Seong Jun; Suh, Hwansoo; Park, Noejung; Wongwiriyapan, Winadda; Lee, Sungjoo; Lee, Young Hee; Song, Young Jae

    2015-11-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can be selectively grown by controlling Cu-annealing time under argon atmosphere prior to h-BN growth, which provides the h-BN shape varies in triangular, trapezoidal, hexagonal and complex shapes. The uniform crystalline orientation of h-BN from different nucleation seeds can be easily confirmed by polarized optical microscopy (POM) with a liquid crystal coating. Furthermore, seamlessly merged h-BN flakes without structural domain boundaries were evidence by a selective hydrogen etching after a full coverage of a h-BN film was achieved. This seamless large-area and atomic monolayer of single crystalline h-BN film can offer as an ideal and practical template of graphene-based devices or alternative two-dimensional materials for industrial applications with scalability.

  11. Three-Dimensional Smoothed Particle Hydrodynamics Modeling of Preferential Flow Dynamics at Fracture Intersections on a High-Performance Computing Platform

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Bresinsky, L. T.

    2017-12-01

    The physical mechanisms that govern preferential flow dynamics in unsaturated fractured rock formations are complex and not well understood. Fracture intersections may act as an integrator of unsaturated flow, leading to temporal delay, intermittent flow and partitioning dynamics. In this work, a three-dimensional Pairwise-Force Smoothed Particle Hydrodynamics (PF-SPH) model is being applied in order to simulate gravity-driven multiphase flow at synthetic fracture intersections. SPH, as a meshless Lagrangian method, is particularly suitable for modeling deformable interfaces, such as three-phase contact dynamics of droplets, rivulets and free-surface films. The static and dynamic contact angle can be recognized as the most important parameter of gravity-driven free-surface flow. In SPH, surface tension and adhesion naturally emerges from the implemented pairwise fluid-fluid (sff) and solid-fluid (ssf) interaction force. The model was calibrated to a contact angle of 65°, which corresponds to the wetting properties of water on Poly(methyl methacrylate). The accuracy of the SPH simulations were validated against an analytical solution of Poiseuille flow between two parallel plates and against laboratory experiments. Using the SPH model, the complex flow mode transitions from droplet to rivulet flow of an experimental study were reproduced. Additionally, laboratory dimensionless scaling experiments of water droplets were successfully replicated in SPH. Finally, SPH simulations were used to investigate the partitioning dynamics of single droplets into synthetic horizontal fractures with various apertures (Δdf = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 mm) and offsets (Δdoff = -1.5, -1.0, -0.5, 0, 1.0, 2.0, 3.0 mm). Fluid masses were measured in the domains R1, R2 and R3. The perfect conditions of ideally smooth surfaces and the SPH inherent advantage of particle tracking allow the recognition of small scale partitioning mechanisms and its importance for bulk flow behavior.

  12. Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF

    PubMed Central

    Yago, Tadayuki; Lou, Jizhong; Wu, Tao; Yang, Jun; Miner, Jonathan J.; Coburn, Leslie; López, José A.; Cruz, Miguel A.; Dong, Jing-Fei; McIntire, Larry V.; McEver, Rodger P.; Zhu, Cheng

    2008-01-01

    Arterial blood flow enhances glycoprotein Ibα (GPIbα) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbα/vWF bonds first prolonged (“catch”) and then shortened (“slip”) bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbα dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbα-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif–13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbα on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding. PMID:18725999

  13. Using dual-domain advective-transport simulation to reconcile multiple-tracer ages and estimate dual-porosity transport parameters

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.; Niel Plummer, L.; Casile, Gerolamo; Busenberg, Ed; Nelms, David L.; Schlosser, Peter

    2017-06-01

    Dual-domain transport is an alternative conceptual and mathematical paradigm to advection-dispersion for describing the movement of dissolved constituents in groundwater. Here we test the use of a dual-domain algorithm combined with advective pathline tracking to help reconcile environmental tracer concentrations measured in springs within the Shenandoah Valley, USA. The approach also allows for the estimation of the three dual-domain parameters: mobile porosity, immobile porosity, and a domain exchange rate constant. Concentrations of CFC-113, SF6, 3H, and 3He were measured at 28 springs emanating from carbonate rocks. The different tracers give three different mean composite piston-flow ages for all the springs that vary from 5 to 18 years. Here we compare four algorithms that interpret the tracer concentrations in terms of groundwater age: piston flow, old-fraction mixing, advective-flow path modeling, and dual-domain modeling. Whereas the second two algorithms made slight improvements over piston flow at reconciling the disparate piston-flow age estimates, the dual-domain algorithm gave a very marked improvement. Optimal values for the three transport parameters were also obtained, although the immobile porosity value was not well constrained. Parameter correlation and sensitivities were calculated to help quantify the uncertainty. Although some correlation exists between the three parameters being estimated, a watershed simulation of a pollutant breakthrough to a local stream illustrates that the estimated transport parameters can still substantially help to constrain and predict the nature and timing of solute transport. The combined use of multiple environmental tracers with this dual-domain approach could be applicable in a wide variety of fractured-rock settings.

  14. Prioritisation of associations between protein domains and complex diseases using domain-domain interaction networks.

    PubMed

    Wang, W; Zhang, W; Jiang, R; Luan, Y

    2010-05-01

    It is of vital importance to find genetic variants that underlie human complex diseases and locate genes that are responsible for these diseases. Since proteins are typically composed of several structural domains, it is reasonable to assume that harmful genetic variants may alter structures of protein domains, affect functions of proteins and eventually cause disorders. With this understanding, the authors explore the possibility of recovering associations between protein domains and complex diseases. The authors define associations between protein domains and disease families on the basis of associations between non-synonymous single nucleotide polymorphisms (nsSNPs) and complex diseases, similarities between diseases, and relations between proteins and domains. Based on a domain-domain interaction network, the authors propose a 'guilt-by-proximity' principle to rank candidate domains according to their average distance to a set of seed domains in the domain-domain interaction network. The authors validate the method through large-scale cross-validation experiments on simulated linkage intervals, random controls and the whole genome. Results show that areas under receiver operating characteristic curves (AUC scores) can be as high as 77.90%, and the mean rank ratios can be as low as 21.82%. The authors further offer a freely accessible web interface for a genome-wide landscape of associations between domains and disease families.

  15. Sensitivity of the Carolina Coastal Ocean Circulation to Open Boundary and Atmospheric Forcing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Xie, L.; Pietrafesa, L.

    2003-12-01

    The ocean circulation on the continental shelf off the Carolina coast is characterized by a complex flow regime and temporal variability, which is influenced by atmospheric forcing, the Gulf Stream system, complex coastline and bathymetry, river discharge and tidal forcing. In this study, a triple-nested, HYbrid Coordinate Ocean Model (HYCOM) is used to simulate the coastal ocean circulation on the continental shelf off the Carolina coast and its interactions with the offshore large-scale ocean circulation system. The horizontal mesh size in the innermost domain was set to 1 km, whereas the outermost domain coincides with the near real-time 1/12­’ Atlantic HYCOM Nowcast/Forecast System operated at the Naval Research Laboratory. The intermediate domain uses a mesh size of 3 km. Atmospheric forcing fields for the Carolina coastal region are derived from the NOAA operational ETA model, the ECMWF reanalysis fields and NCEP/NCAR reanalysis fields. These forcing fields are derived at 0.8›¦, 1.125›¦ and 1.875›¦ resolutions, and at intervals of 6 hour, daily and monthly. The sensitivity of the model results to the spatial and temporal resolution of the atmospheric forcing fields is analyzed. To study the dependence of the model sensitivity on the model grid size, single-window simulations at resolutions of 1km, 3km and 9km are carried out using the same forcing fields that were applied to the nested system. Comparisons between the nested and the single domain simulation results will be presented.

  16. Volumetric data analysis using Morse-Smale complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, V; Pascucci, V

    2005-10-13

    The 3D Morse-Smale complex is a fundamental topological construct that partitions the domain of a real-valued function into regions having uniform gradient flow behavior. In this paper, we consider the construction and selective presentation of cells of the Morse-Smale complex and their use in the analysis and visualization of scientific datasets. We take advantage of the fact that cells of different dimension often characterize different types of features present in the data. For example, critical points pinpoint changes in topology by showing where components of the level sets are created, destroyed or modified in genus. Edges of the Morse-Smale complexmore » extract filament-like features that are not explicitly modeled in the original data. Interactive selection and rendering of portions of the Morse-Smale complex introduces fundamental data management challenges due to the unstructured nature of the complex even for structured inputs. We describe a data structure that stores the Morse-Smale complex and allows efficient selective traversal of regions of interest. Finally, we illustrate the practical use of this approach by applying it to cryo-electron microscopy data of protein molecules.« less

  17. Domain activities of PapC usher reveal the mechanism of action of an Escherichia coli molecular machine.

    PubMed

    Volkan, Ender; Ford, Bradley A; Pinkner, Jerome S; Dodson, Karen W; Henderson, Nadine S; Thanassi, David G; Waksman, Gabriel; Hultgren, Scott J

    2012-06-12

    P pili are prototypical chaperone-usher pathway-assembled pili used by Gram-negative bacteria to adhere to host tissues. The PapC usher contains five functional domains: a transmembrane β-barrel, a β-sandwich Plug, an N-terminal (periplasmic) domain (NTD), and two C-terminal (periplasmic) domains, CTD1 and CTD2. Here, we delineated usher domain interactions between themselves and with chaperone-subunit complexes and showed that overexpression of individual usher domains inhibits pilus assembly. Prior work revealed that the Plug domain occludes the pore of the transmembrane domain of a solitary usher, but the chaperone-adhesin-bound usher has its Plug displaced from the pore, adjacent to the NTD. We demonstrate an interaction between the NTD and Plug domains that suggests a biophysical basis for usher gating. Furthermore, we found that the NTD exhibits high-affinity binding to the chaperone-adhesin (PapDG) complex and low-affinity binding to the major tip subunit PapE (PapDE). We also demonstrate that CTD2 binds with lower affinity to all tested chaperone-subunit complexes except for the chaperone-terminator subunit (PapDH) and has a catalytic role in dissociating the NTD-PapDG complex, suggesting an interplay between recruitment to the NTD and transfer to CTD2 during pilus initiation. The Plug domain and the NTD-Plug complex bound all of the chaperone-subunit complexes tested including PapDH, suggesting that the Plug actively recruits chaperone-subunit complexes to the usher and is the sole recruiter of PapDH. Overall, our studies reveal the cooperative, active roles played by periplasmic domains of the usher to initiate, grow, and terminate a prototypical chaperone-usher pathway pilus.

  18. Visual analysis and exploration of complex corporate shareholder networks

    NASA Astrophysics Data System (ADS)

    Tekušová, Tatiana; Kohlhammer, Jörn

    2008-01-01

    The analysis of large corporate shareholder network structures is an important task in corporate governance, in financing, and in financial investment domains. In a modern economy, large structures of cross-corporation, cross-border shareholder relationships exist, forming complex networks. These networks are often difficult to analyze with traditional approaches. An efficient visualization of the networks helps to reveal the interdependent shareholding formations and the controlling patterns. In this paper, we propose an effective visualization tool that supports the financial analyst in understanding complex shareholding networks. We develop an interactive visual analysis system by combining state-of-the-art visualization technologies with economic analysis methods. Our system is capable to reveal patterns in large corporate shareholder networks, allows the visual identification of the ultimate shareholders, and supports the visual analysis of integrated cash flow and control rights. We apply our system on an extensive real-world database of shareholder relationships, showing its usefulness for effective visual analysis.

  19. Hydraulic analysis of harmonic pumping tests in frequency and time domains for identifying the conduits networks in a karstic aquifer

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Cardiff, M.; Lecoq, N.; Jourde, H.

    2018-04-01

    In a karstic field, the flow paths are very complex as they globally follow the conduit network. The responses generated from an investigation in this type of aquifer can be spatially highly variable. Therefore, the aim of the investigation in this case is to define a degree of connectivity between points of the field, in order to understand these flow paths. Harmonic pumping tests represent a possible investigation method for characterizing the subsurface flow of groundwater. They have several advantages compared to a constant-rate pumping (more signal possibilities, ease of extracting the signal in the responses and possibility of closed loop investigation). We show in this work that interpreting the responses from a harmonic pumping test is very useful for delineating a degree of connectivity between measurement points. We have firstly studied the amplitude and phase offset of responses from a harmonic pumping test in a theoretical synthetic modeling case in order to define a qualitative interpretation method in the time and frequency domains. Three different type of responses have been separated: a conduit connectivity response, a matrix connectivity, and a dual connectivity (response of a point in the matrix, but close to a conduit). We have then applied this method to measured responses at a field research site. Our interpretation method permits a quick and easy reconstruction of the main flow paths, and the whole set of field responses appear to give a similar range of responses to those seen in the theoretical synthetic case.

  20. Unsteady transonic flows - Introduction, current trends, applications

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.

    1985-01-01

    The computational treatment of unsteady transonic flows is discussed, reviewing the historical development and current techniques. The fundamental physical principles are outlined; the governing equations are introduced; three-dimensional linearized and two-dimensional linear-perturbation theories in frequency domain are described in detail; and consideration is given to frequency-domain FEMs and time-domain finite-difference and integral-equation methods. Extensive graphs and diagrams are included.

  1. Recovering Protein-Protein and Domain-Domain Interactions from Aggregation of IP-MS Proteomics of Coregulator Complexes

    PubMed Central

    Mazloom, Amin R.; Dannenfelser, Ruth; Clark, Neil R.; Grigoryan, Arsen V.; Linder, Kathryn M.; Cardozo, Timothy J.; Bond, Julia C.; Boran, Aislyn D. W.; Iyengar, Ravi; Malovannaya, Anna; Lanz, Rainer B.; Ma'ayan, Avi

    2011-01-01

    Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/. PMID:22219718

  2. Turbomachinery

    NASA Technical Reports Server (NTRS)

    Simoneau, Robert J.; Strazisar, Anthony J.; Sockol, Peter M.; Reid, Lonnie; Adamczyk, John J.

    1987-01-01

    The discipline research in turbomachinery, which is directed toward building the tools needed to understand such a complex flow phenomenon, is based on the fact that flow in turbomachinery is fundamentally unsteady or time dependent. Success in building a reliable inventory of analytic and experimental tools will depend on how the time and time-averages are treated, as well as on who the space and space-averages are treated. The raw tools at disposal (both experimentally and computational) are truly powerful and their numbers are growing at a staggering pace. As a result of this power, a case can be made that a situation exists where information is outstripping understanding. The challenge is to develop a set of computational and experimental tools which genuinely increase understanding of the fluid flow and heat transfer in a turbomachine. Viewgraphs outline a philosophy based on working on a stairstep hierarchy of mathematical and experimental complexity to build a system of tools, which enable one to aggressively design the turbomachinery of the next century. Examples of the types of computational and experimental tools under current development at Lewis, with progress to date, are examined. The examples include work in both the time-resolved and time-averaged domains. Finally, an attempt is made to identify the proper place for Lewis in this continuum of research.

  3. The linear and non-linear characterization of dust ion acoustic mode in complex plasma in presence of dynamical charging of dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Saurav, E-mail: sauravtsk.bhattacharjee@gmail.com; Das, Nilakshi

    2015-10-15

    A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping ofmore » DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.« less

  4. Parallel Fokker–Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchlin, Stephan, E-mail: kuechlin@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-01-01

    A major challenge for the conventional Direct Simulation Monte Carlo (DSMC) technique lies in the fact that its computational cost becomes prohibitive in the near continuum regime, where the Knudsen number (Kn)—characterizing the degree of rarefaction—becomes small. In contrast, the Fokker–Planck (FP) based particle Monte Carlo scheme allows for computationally efficient simulations of rarefied gas flows in the low and intermediate Kn regime. The Fokker–Planck collision operator—instead of performing binary collisions employed by the DSMC method—integrates continuous stochastic processes for the phase space evolution in time. This allows for time step and grid cell sizes larger than the respective collisionalmore » scales required by DSMC. Dynamically switching between the FP and the DSMC collision operators in each computational cell is the basis of the combined FP-DSMC method, which has been proven successful in simulating flows covering the whole Kn range. Until recently, this algorithm had only been applied to two-dimensional test cases. In this contribution, we present the first general purpose implementation of the combined FP-DSMC method. Utilizing both shared- and distributed-memory parallelization, this implementation provides the capability for simulations involving many particles and complex geometries by exploiting state of the art computer cluster technologies.« less

  5. A Cartesian-based embedded geometry technique with adaptive high-order finite differences for compressible flow around complex geometries

    NASA Astrophysics Data System (ADS)

    Uddin, H.; Kramer, R. M. J.; Pantano, C.

    2014-04-01

    An immersed boundary methodology to solve the compressible Navier-Stokes equations around complex geometries in Cartesian fluid dynamics solvers is described. The objective of the new approach is to enable smooth reconstruction of pressure and viscous stresses around the embedded objects without spurious numerical artifacts. A standard level set represents the boundary of the object and defines a fictitious domain into which the flow fields are smoothly extended. Boundary conditions on the surface are enforced by an approach inspired by analytic continuation. Each fluid field is extended independently, constrained only by the boundary condition associated with that field. Unlike most existing methods, no jump conditions or explicit derivation of them from the boundary conditions are required in this approach. Numerical stiffness that arises when the fluid-solid interface is close to grid points of the mesh is addressed by preconditioning. In addition, the embedded geometry technique is coupled with a stable high-order adaptive discretization that is enabled around the object boundary to enhance resolution. The stencils used to transition the order of accuracy of the discretization are derived using the summation-by-parts technique that ensures stability. Applications to shock reflections, shock-ramp interactions, and supersonic and low-Mach number flows over two- and three-dimensional geometries are presented.

  6. Transferability of a Three-Dimensional Air Quality Model between Two Different Sites in Complex Terrain.

    NASA Astrophysics Data System (ADS)

    Lange, Rolf

    1989-07-01

    The three-dimensional, diagnostic, particle-in-cell transport and diffusion model MATHEW/ADPIC is used to test its transferability from one site in complex terrain to another with different characteristics, under stable nighttime drainage flow conditions. The two sites were subject to extensive drainage flow tracer experiments under the multilaboratory Atmospheric Studies in Complex Terrain (ASCOT) program: the first being a valley in the Geysers geothermal region of northern California, and the second a canyon in western Colorado. The domain in each case is approximately 10 × 10 km. The 1980 Geysers model evaluation is only quoted. The 1984 Brush Creek model evaluation is described in detail.Results from comparing computed with measured concentrations from a variety of tracer releases indicate that 52% of the 4531 samples from five experiments in Brush Creek and 50% of the 831 samples from four experiments in the Geysers agreed within a factor of 5. When an angular 10° uncertainty, consistent with anemometer reliability limits in complex terrain, was allowed to be applied to the model results, model performance improved such that 78% of samples compared within a factor of 5 for Brush Creek and 77% for the Geysers. Looking at the range of other factors of concentration ratios, results indicate that the model is satisfactorily transferable without tuning it to a specific site.

  7. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    Understanding transport of solutes/contaminants through unsaturated soil in the shallow subsurface is vital to assess groundwater quality, nutrient cycling or to plan remediation projects. Alternating precipitation and evaporation conditions causing upward and downward flux with differing flow paths, changes in saturation and related structural heterogeneity make the description of transport in the unsaturated zone near the soil-surface a complex problem. Preferential flow paths strongly depend, among other things, on the saturation of a medium. Recent studies (e.g. Bechtold et al., 2011) showed lateral flow and solute transport during evaporation conditions (upward flux) in vertically layered sand columns. Results revealed that during evaporation water and solute are redistributed laterally from coarse to fine media deeper in the soil, and towards zones of lowest hydraulic head near to the soil surface. These zones at the surface can be coarse or fine grained depending on saturation status and evaporation flux. However, if boundary conditions are reversed and precipitation is applied, the flow field is not reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport in the shallow unsaturated zone. In this contribution, we analyze transport of a solute in the shallow subsurface to assess effects resulting from the superposition of heterogeneous soil structures and dynamic flow conditions on various spatial scales. Two-dimensional numerical simulations of unsaturated flow and transport in heterogeneous porous media under changing boundary conditions are carried out using a finite-volume code coupled to a particle tracking algorithm to quantify solute transport and leaching rates. In order to validate numerical simulations, results are qualitatively compared to those of a physical experiment (Bechtold et al., 2011). Numerical simulations differ in lateral scale reaching from 0.2 m to 1.5 m, while the height of the domain is kept constant to 1.5m. Strong material heterogeneity is realized through vertical layers of coarse and fine sand. Both materials remain permanently under liquid-flow-dominated ('stage1') evaporation conditions. Spatial moments as well as the dilution index (Kitanidis, 1994) are used for quantification of transport behaviour. Results show that, while all simulations led to anomalous transport, infiltration-evaporation cycles lead to faster solute leaching rates than solely infiltration at the same net-infiltration rate in both homogeneous and heterogeneous media. Flow and transport-paths significantly differed between infiltration and evaporation, resulting in lateral water fluxes and hence lateral solute transport. Variation of the width of the model domain shows faster leaching rates for domains with small horizontal extent.

  8. Lefschetz thimbles in fermionic effective models with repulsive vector-field

    NASA Astrophysics Data System (ADS)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2018-06-01

    We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.

  9. Slope instability in complex 3D topography promoted by convergent 3D groundwater flow

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Brien, D. L.

    2012-12-01

    Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both headlands and re-entrants to minimize slope effects on stability. Despite these equal slopes, our analyses, given dry conditions, illustrated that the headlands can be 5-7% less stable than the re-entrants, owing to the geometry of the 3D failure mass with the lowest stability. We then simulated groundwater flow in these landscapes; flow was caused by recharge perching on a horizontal low permeability layer with discharge at the bluff faces. By systematically varying recharge, hydraulic conductivity of the material, and conductance at the bluffs, we created different 3D pore-pressure fields. Recharge rates and hydraulic conductivities controlled the height of the water table, whereas bluff conductance influenced the gradient of the water table near the bluff face. Given elevated water tables with steep gradients, bluffs in the re-entrants became unstable where flow converged. Thus, with progressively stronger effects from water flow, overall instability evolved from relatively unstable headlands to more uniform stability to relatively unstable re-entrants. Larger re-entrants led to more 3D flow convergence and greater localized instability. One- or two-dimensional models cannot fully characterize slope instability in complex topography.

  10. The Robustness of a Signaling Complex to Domain Rearrangements Facilitates Network Evolution

    PubMed Central

    Sato, Paloma M.; Yoganathan, Kogulan; Jung, Jae H.; Peisajovich, Sergio G.

    2014-01-01

    The rearrangement of protein domains is known to have key roles in the evolution of signaling networks and, consequently, is a major tool used to synthetically rewire networks. However, natural mutational events leading to the creation of proteins with novel domain combinations, such as in frame fusions followed by domain loss, retrotranspositions, or translocations, to name a few, often simultaneously replace pre-existing genes. Thus, while proteins with new domain combinations may establish novel network connections, it is not clear how the concomitant deletions are tolerated. We investigated the mechanisms that enable signaling networks to tolerate domain rearrangement-mediated gene replacements. Using as a model system the yeast mitogen activated protein kinase (MAPK)-mediated mating pathway, we analyzed 92 domain-rearrangement events affecting 11 genes. Our results indicate that, while domain rearrangement events that result in the loss of catalytic activities within the signaling complex are not tolerated, domain rearrangements can drastically alter protein interactions without impairing function. This suggests that signaling complexes can maintain function even when some components are recruited to alternative sites within the complex. Furthermore, we also found that the ability of the complex to tolerate changes in interaction partners does not depend on long disordered linkers that often connect domains. Taken together, our results suggest that some signaling complexes are dynamic ensembles with loose spatial constraints that could be easily re-shaped by evolution and, therefore, are ideal targets for cellular engineering. PMID:25490747

  11. Viscous and gravitational fingering in multiphase compositional and compressible flow

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  12. Airbreathing Propulsion System Analysis Using Multithreaded Parallel Processing

    NASA Technical Reports Server (NTRS)

    Schunk, Richard Gregory; Chung, T. J.; Rodriguez, Pete (Technical Monitor)

    2000-01-01

    In this paper, parallel processing is used to analyze the mixing, and combustion behavior of hypersonic flow. Preliminary work for a sonic transverse hydrogen jet injected from a slot into a Mach 4 airstream in a two-dimensional duct combustor has been completed [Moon and Chung, 1996]. Our aim is to extend this work to three-dimensional domain using multithreaded domain decomposition parallel processing based on the flowfield-dependent variation theory. Numerical simulations of chemically reacting flows are difficult because of the strong interactions between the turbulent hydrodynamic and chemical processes. The algorithm must provide an accurate representation of the flowfield, since unphysical flowfield calculations will lead to the faulty loss or creation of species mass fraction, or even premature ignition, which in turn alters the flowfield information. Another difficulty arises from the disparity in time scales between the flowfield and chemical reactions, which may require the use of finite rate chemistry. The situations are more complex when there is a disparity in length scales involved in turbulence. In order to cope with these complicated physical phenomena, it is our plan to utilize the flowfield-dependent variation theory mentioned above, facilitated by large eddy simulation. Undoubtedly, the proposed computation requires the most sophisticated computational strategies. The multithreaded domain decomposition parallel processing will be necessary in order to reduce both computational time and storage. Without special treatments involved in computer engineering, our attempt to analyze the airbreathing combustion appears to be difficult, if not impossible.

  13. Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Xie, Huangjun; Yu, Liu; Zhou, Rui; Qiu, Limin; Zhang, Xiaobin

    2017-09-01

    The potential application of the 2-D eight-electrode electrical capacitance tomography (ECT) to the inversion imaging of the liquid nitrogen-vaporous nitrogen (LN2-VN2) flow in the tube is theoretically evaluated. The phase distribution of the computational domain is obtained using the simultaneous iterative reconstruction technique with variable iterative step size. The detailed mathematical derivations for the calculations are presented. The calculated phase distribution for the two detached LN2 column case shows the comparable results with the water-air case, regardless of the much reduced dielectric permittivity of LN2 compared with water. The inversion images of total eight different LN2-VN2 flow patterns are presented and quantitatively evaluated by calculating the relative void fraction error and the correlation coefficient. The results demonstrate that the developed reconstruction technique for ECT has the capacity to reconstruct the phase distribution of the complex LN2-VN2 flow, while the accuracy of the inversion images is significantly influenced by the size of the discrete phase. The influence of the measurement noise on the image quality is also considered in the calculations.

  14. Using Delft3D to Simulate Current Energy Conversion

    NASA Astrophysics Data System (ADS)

    James, S. C.; Chartrand, C.; Roberts, J.

    2015-12-01

    As public concern with renewable energy increases, current energy conversion (CEC) technology is being developed to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the ecosystem process surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array. This work validates Delft3D against several flume experiments by simulating the power generation and hydrodynamic response of flow through a turbine or actuator disc(s). Model parameters are then calibrated against these data sets to reproduce momentum removal and wake recovery data with 3-D flow simulations. Simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains.

  15. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    NASA Astrophysics Data System (ADS)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed flood extent data and measured water levels from a 2007 summer flood event on the river Severn. The area of interest is a 7 km reach in which the river passes through the city of Worcester, a low water slope, subcritical reach in which backwater effects are significant. For this domain, the catchment area between flow gauging stations extends over 540 km2. Four hydrological models from the FUSE framework (Framework for Understanding Structural Errors) were set up to simulate the rainfall-runoff process over this area. At this regional scale, a 2-dimensional hydraulic model that solves the local inertial approximation of the shallow water equations was applied to route the flow, whereas the full form of these equations was solved at the local scale to predict the urban flow field. This nested approach hence allows an examination of water fluxes from the catchment to the building scale, while requiring short setup and computational times. An accurate prediction of the magnitude and timing of the flood peak was obtained with the proposed method, in spite of the unusual structure of the rain episode and the complexity of the River Severn system. The findings highlight the importance of estimating boundary condition uncertainty and local rainfall contribution for accurate prediction of river flows and inundation.

  16. Temporal slow-growth formulation for direct numerical simulation of compressible wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Topalian, Victor; Oliver, Todd A.; Ulerich, Rhys; Moser, Robert D.

    2017-08-01

    A slow-growth formulation for DNS of wall-bounded turbulent flow is developed and demonstrated to enable extension of slow-growth modeling concepts to wall-bounded flows with complex physics. As in previous slow-growth approaches, the formulation assumes scale separation between the fast scales of turbulence and the slow evolution of statistics such as the mean flow. This separation enables the development of approaches where the fast scales of turbulence are directly simulated while the forcing provided by the slow evolution is modeled. The resulting model admits periodic boundary conditions in the streamwise direction, which avoids the need for extremely long domains and complex inflow conditions that typically accompany spatially developing simulations. Further, it enables the use of efficient Fourier numerics. Unlike previous approaches [Guarini, Moser, Shariff, and Wray, J. Fluid Mech. 414, 1 (2000), 10.1017/S0022112000008466; Maeder, Adams, and Kleiser, J. Fluid Mech. 429, 187 (2001), 10.1017/S0022112000002718; Spalart, J. Fluid Mech. 187, 61 (1988), 10.1017/S0022112088000345], the present approach is based on a temporally evolving boundary layer and is specifically tailored to give results for calibration and validation of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The use of a temporal homogenization simplifies the modeling, enabling straightforward extension to flows with complicating features, including cold and blowing walls. To generate data useful for calibration and validation of RANS models, special care is taken to ensure that the mean slow-growth forcing is closed in terms of the mean and other quantities that appear in standard RANS models, ensuring that there is no confounding between typical RANS closures and additional closures required for the slow-growth problem. The performance of the method is demonstrated on two problems: an essentially incompressible, zero-pressure-gradient boundary layer and a transonic boundary layer over a cooled, transpiring wall. The results show that the approach produces flows that are qualitatively similar to other slow-growth methods as well as spatially developing simulations and that the method can be a useful tool in investigating wall-bounded flows with complex physics.

  17. Multi-Zone Liquid Thrust Chamber Performance Code with Domain Decomposition for Parallel Processing

    NASA Technical Reports Server (NTRS)

    Navaz, Homayun K.

    2002-01-01

    Computational Fluid Dynamics (CFD) has considerably evolved in the last decade. There are many computer programs that can perform computations on viscous internal or external flows with chemical reactions. CFD has become a commonly used tool in the design and analysis of gas turbines, ramjet combustors, turbo-machinery, inlet ducts, rocket engines, jet interaction, missile, and ramjet nozzles. One of the problems of interest to NASA has always been the performance prediction for rocket and air-breathing engines. Due to the complexity of flow in these engines it is necessary to resolve the flowfield into a fine mesh to capture quantities like turbulence and heat transfer. However, calculation on a high-resolution grid is associated with a prohibitively increasing computational time that can downgrade the value of the CFD for practical engineering calculations. The Liquid Thrust Chamber Performance (LTCP) code was developed for NASA/MSFC (Marshall Space Flight Center) to perform liquid rocket engine performance calculations. This code is a 2D/axisymmetric full Navier-Stokes (NS) solver with fully coupled finite rate chemistry and Eulerian treatment of liquid fuel and/or oxidizer droplets. One of the advantages of this code has been the resemblance of its input file to the JANNAF (Joint Army Navy NASA Air Force Interagency Propulsion Committee) standard TDK code, and its automatic grid generation for JANNAF defined combustion chamber wall geometry. These options minimize the learning effort for TDK users, and make the code a good candidate for performing engineering calculations. Although the LTCP code was developed for liquid rocket engines, it is a general-purpose code and has been used for solving many engineering problems. However, the single zone formulation of the LTCP has limited the code to be applicable to problems with complex geometry. Furthermore, the computational time becomes prohibitively large for high-resolution problems with chemistry, two-equation turbulence model, and two-phase flow. To overcome these limitations, the LTCP code is rewritten to include the multi-zone capability with domain decomposition that makes it suitable for parallel processing, i.e., enabling the code to run every zone or sub-domain on a separate processor. This can reduce the run time by a factor of 6 to 8, depending on the problem.

  18. Lagrangian statistics and flow topology in forced two-dimensional turbulence.

    PubMed

    Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K

    2011-03-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.

  19. The high performance parallel algorithm for Unified Gas-Kinetic Scheme

    NASA Astrophysics Data System (ADS)

    Li, Shiyi; Li, Qibing; Fu, Song; Xu, Jinxiu

    2016-11-01

    A high performance parallel algorithm for UGKS is developed to simulate three-dimensional flows internal and external on arbitrary grid system. The physical domain and velocity domain are divided into different blocks and distributed according to the two-dimensional Cartesian topology with intra-communicators in physical domain for data exchange and other intra-communicators in velocity domain for sum reduction to moment integrals. Numerical results of three-dimensional cavity flow and flow past a sphere agree well with the results from the existing studies and validate the applicability of the algorithm. The scalability of the algorithm is tested both on small (1-16) and large (729-5832) scale processors. The tested speed-up ratio is near linear ashind thus the efficiency is around 1, which reveals the good scalability of the present algorithm.

  20. Final Report - High-Order Spectral Volume Method for the Navier-Stokes Equations On Unstructured Tetrahedral Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z J

    2012-12-06

    The overriding objective for this project is to develop an efficient and accurate method for capturing strong discontinuities and fine smooth flow structures of disparate length scales with unstructured grids, and demonstrate its potentials for problems relevant to DOE. More specifically, we plan to achieve the following objectives: 1. Extend the SV method to three dimensions, and develop a fourth-order accurate SV scheme for tetrahedral grids. Optimize the SV partition by minimizing a form of the Lebesgue constant. Verify the order of accuracy using the scalar conservation laws with an analytical solution; 2. Extend the SV method to Navier-Stokes equationsmore » for the simulation of viscous flow problems. Two promising approaches to compute the viscous fluxes will be tested and analyzed; 3. Parallelize the 3D viscous SV flow solver using domain decomposition and message passing. Optimize the cache performance of the flow solver by designing data structures minimizing data access times; 4. Demonstrate the SV method with a wide range of flow problems including both discontinuities and complex smooth structures. The objectives remain the same as those outlines in the original proposal. We anticipate no technical obstacles in meeting these objectives.« less

  1. On the determination of a generalized Darcy equation for yield stress fluid in porous media using a LB TRT scheme

    NASA Astrophysics Data System (ADS)

    Talon, Laurent; Chevalier, Thibaud

    2014-11-01

    Non-Newtonian fluids have practical applications in very different domains. Indeed, polymer mixture, paints, slurries, colloidal suspensions, emulsions, foams or heavy oil present complex rheologies. Among the large number of different non-Newtonian fluids an important class of behavior is represented by the yield-stress fluids, viz. fluids that require a minimum of stress to flow. Yield stress fluids are usually modelled as a Bingham fluid or by the Herschel-Bulkley equation. However, simulating flow of a Bingham fluid in porous media still remains a challenging task as the yield stress may significantly alter the numerical stability and precision. In the present work, we use a Lattice-Boltzmann TRT scheme to determine this type of flow in a synthetic porous medium or fracture. Different pressure drops ΔP have been applied in order to derive a generalization of the Darcy's equation. Three different scaling regimes can be distinguished when plotting the dimensionless flow rate q as function of the distance to the critical pressure ΔP - ΔPc . In this presentation, we will investigate the importance of the heterogeneities on those flowing regimes. ANR-12-MONU-0011.

  2. Continuum approach for aerothermal flow through ablative porous material using discontinuous Galerkin discretization.

    NASA Astrophysics Data System (ADS)

    Schrooyen, Pierre; Chatelain, Philippe; Hillewaert, Koen; Magin, Thierry E.

    2014-11-01

    The atmospheric entry of spacecraft presents several challenges in simulating the aerothermal flow around the heat shield. Predicting an accurate heat-flux is a complex task, especially regarding the interaction between the flow in the free stream and the erosion of the thermal protection material. To capture this interaction, a continuum approach is developed to go progressively from the region fully occupied by fluid to a receding porous medium. The volume averaged Navier-Stokes equations are used to model both phases in the same computational domain considering a single set of conservation laws. The porosity is itself a variable of the computation, allowing to take volumetric ablation into account through adequate source terms. This approach is implemented within a computational tool based on a high-order discontinuous Galerkin discretization. The multi-dimensional tool has already been validated and has proven its efficient parallel implementation. Within this platform, a fully implicit method was developed to simulate multi-phase reacting flows. Numerical results to verify and validate the methodology are considered within this work. Interactions between the flow and the ablated geometry are also presented. Supported by Fund for Research Training in Industry and Agriculture.

  3. Complex of Fas-associated Factor 1 (FAF1) with Valosin-containing Protein (VCP)-Npl4-Ufd1 and Polyubiquitinated Proteins Promotes Endoplasmic Reticulum-associated Degradation (ERAD)*

    PubMed Central

    Lee, Jae-Jin; Park, Joon Kyu; Jeong, Jaeho; Jeon, Hyesung; Yoon, Jong-Bok; Kim, Eunice EunKyeong; Lee, Kong-Joo

    2013-01-01

    Fas-associated factor 1 (FAF1) is a ubiquitin receptor containing multiple ubiquitin-related domains including ubiquitin-associated (UBA), ubiquitin-like (UBL) 1, UBL2, and ubiquitin regulatory X (UBX). We previously showed that N-terminal UBA domain recognizes Lys48-ubiquitin linkage to recruit polyubiquitinated proteins and that a C-terminal UBX domain interacts with valosin-containing protein (VCP). This study shows that FAF1 interacts only with VCP complexed with Npl4-Ufd1 heterodimer, a requirement for the recruitment of polyubiquitinated proteins to UBA domain. Intriguingly, VCP association to C-terminal UBX domain regulates ubiquitin binding to N-terminal UBA domain without direct interaction between UBA and UBX domains. These interactions are well characterized by structural and biochemical analysis. VCP-Npl4-Ufd1 complex is known as the machinery required for endoplasmic reticulum-associated degradation. We demonstrate here that FAF1 binds to VCP-Npl4-Ufd1 complex via UBX domain and polyubiquitinated proteins via UBA domain to promote endoplasmic reticulum-associated degradation. PMID:23293021

  4. LoyalTracker: Visualizing Loyalty Dynamics in Search Engines.

    PubMed

    Shi, Conglei; Wu, Yingcai; Liu, Shixia; Zhou, Hong; Qu, Huamin

    2014-12-01

    The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.

  5. Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number.

    PubMed

    Jus, Y; Longatte, E; Chassaing, J-C; Sagaut, P

    2014-10-01

    The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier-Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.

  6. Particle Deposition in Human Lungs due to Varying Cross-Sectional Ellipticity of Left and Right Main Bronchi

    NASA Astrophysics Data System (ADS)

    Roth, Steven; Oakes, Jessica; Shadden, Shawn

    2015-11-01

    Particle deposition in the human lungs can occur with every breathe. Airbourne particles can range from toxic constituents (e.g. tobacco smoke and air pollution) to aerosolized particles designed for drug treatment (e.g. insulin to treat diabetes). The effect of various realistic airway geometries on complex flow structures, and thus particle deposition sites, has yet to be extensively investigated using computational fluid dynamics (CFD). In this work, we created an image-based geometric airway model of the human lung and performed CFD simulations by employing multi-domain methods. Following the flow simulations, Lagrangian particle tracking was used to study the effect of cross-sectional shape on deposition sites in the conducting airways. From a single human lung model, the cross-sectional ellipticity (the ratio of major and minor diameters) of the left and right main bronchi was varied systematically from 2:1 to 1:1. The influence of the airway ellipticity on the surrounding flow field and particle deposition was determined.

  7. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  8. Development of Fourier domain optical coherence tomography for applications in developmental biology

    NASA Astrophysics Data System (ADS)

    Davis, Anjul Maheshwari

    Developmental biology is a field in which explorations are made to answer how an organism transforms from a single cell to a complex system made up of trillions of highly organized and highly specified cells. This field, however, is not just for discovery, it is crucial for unlocking factors that lead to diseases, defects, or malformations. The one key ingredient that contributes to the success of studies in developmental biology is the technology that is available for use. Optical coherence tomography (OCT) is one such technology. OCT fills a niche between the high resolution of confocal microscopy and deep imaging penetration of ultrasound. Developmental studies of the chicken embryo heart are of great interest. Studies in mature hearts, zebrafish animal models, and to a more limited degree chicken embryos, indicate a relationship between blood flow and development. It is believed that at the earliest stages, when the heart is still a tube, the purpose of blood flow is not for convective transport of oxygen, nutrients and waster, bur rather to induce shear-related gene expressions to induce further development. Yet, to this date, the simple question of "what makes blood flow?" has not been answered. This is mainly due limited availability to adequate imaging and blood flow measurement tools. Earlier work has demonstrated the potential of OCT for use in studying chicken embryo heart development, however quantitative measurement techniques still needed to be developed. In this dissertation I present technological developments I have made towards building an OCT system to study chick embryo heart development. I will describe: (1) a swept-source OCT with extended imaging depth; (2) a spectral domain OCT system for non-invasive small animal imaging; (3) Doppler flow imaging and techniques for quantitative blood flow measurement in living chicken embryos; and (4) application of the OCT system that was developed in the Specific Aims 2-5 to test hypotheses generated by a finite element model which treats the embryonic chick heart tube as a modified peristaltic pump.

  9. Fault and fracture patterns in low porosity chalk and their potential influence on sub-surface fluid flow-A case study from Flamborough Head, UK

    NASA Astrophysics Data System (ADS)

    Sagi, D. A.; De Paola, N.; McCaffrey, K. J. W.; Holdsworth, R. E.

    2016-10-01

    To better understand fault zone architecture and fluid flow in mesoscale fault zones, we studied normal faults in chalks with displacements up to 20 m, at two representative localities in Flamborough Head (UK). At the first locality, chalk contains cm-thick, interlayered marl horizons, whereas at the second locality marl horizons were largely absent. Cm-scale displacement faults at both localities display ramp-flat geometries. Mesoscale fault patterns in the marl-free chalk, including a larger displacement fault (20 m) containing multiple fault strands, show widespread evidence of hydraulically-brecciated rocks, whereas clays smears along fault planes, and injected into open fractures, and a simpler fault zone architecture is observed where marl horizons are present. Hydraulic brecciation and veins observed in the marl-free chalk units suggest that mesoscale fault patterns acted as localized fault conduit allowing for widespread fluid flow. On the other hand, mesoscale fault patterns developed in highly fractured chalk, which contains interlayered marl horizons can act as localized barriers to fluid flow, due to the sealing effect of clays smears along fault planes and introduced into open fractures in the damage zone. To support our field observations, quantitative analyses carried out on the large faults suggest a simple fault zone in the chalk with marl units with fracture density/connectivity decreasing towards the protolith. Where marls are absent, density is high throughout the fault zone, while connectivity is high only in domains nearest the fault core. We suggest that fluid flow in fractured chalk is especially influenced by the presence of marls. When present, it can smear onto fault planes, forming localised barriers. Fluid flow along relatively large displacement faults is additionally controlled by the complexity of the fault zone, especially the size/geometry of weakly and intensely connected damage zone domains.

  10. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases andmore » bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.« less

  11. Two-Phase Flow and Compaction Within and Outside a Sphere under Pure Shear

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, S.

    2017-12-01

    This work presents a framework for building analytical solutions for coupled flow in two interacting multiphase domains. The coupled system consists of a multiphase sphere embedded in a multiphase substrate. Each of these domains consist of an interconnected load bearing matrix phase and an inviscid interstitial fluid phase. This work outlines techniques for building analytical solutions for velocity, pressure, and compaction within each domain, subject to boundary conditions of continuity of matrix velocity and normal traction at the interface between the two domains. The solutions indicate that the flow is strongly dependent on the ratio of shear viscosities between the matrix phase in the sphere and the matrix phase in the substrate. When deformed under a pure shear deformation, the magnitude of flow within the sphere rapidly decreases with an increase in this ratio until it reaches a value of 40, after which, the velocity within the sphere becomes relatively insensitive to the increase in the viscosity contrast.

  12. Vehicle monitoring under Vehicular Ad-Hoc Networks (VANET) parameters employing illumination invariant correlation filters for the Pakistan motorway police

    NASA Astrophysics Data System (ADS)

    Gardezi, A.; Umer, T.; Butt, F.; Young, R. C. D.; Chatwin, C. R.

    2016-04-01

    A spatial domain optimal trade-off Maximum Average Correlation Height (SPOT-MACH) filter has been previously developed and shown to have advantages over frequency domain implementations in that it can be made locally adaptive to spatial variations in the input image background clutter and normalised for local intensity changes. The main concern for using the SPOT-MACH is its computationally intensive nature. However in the past enhancements techniques were proposed for the SPOT-MACH to make its execution time comparable to its frequency domain counterpart. In this paper a novel approach is discussed which uses VANET parameters coupled with the SPOT-MACH in order to minimise the extensive processing of the large video dataset acquired from the Pakistan motorways surveillance system. The use of VANET parameters gives us an estimation criterion of the flow of traffic on the Pakistan motorway network and acts as a precursor to the training algorithm. The use of VANET in this scenario would contribute heavily towards the computational complexity minimization of the proposed monitoring system.

  13. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins

    PubMed Central

    Sitar, Tomasz; Popowicz, Grzegorz M.; Siwanowicz, Igor; Huber, Robert; Holak, Tad A.

    2006-01-01

    Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1. PMID:16924115

  14. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang; Zou, Jianfeng

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less

  15. The Landlab v1.0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds

    NASA Astrophysics Data System (ADS)

    Adams, Jordan M.; Gasparini, Nicole M.; Hobley, Daniel E. J.; Tucker, Gregory E.; Hutton, Eric W. H.; Nudurupati, Sai S.; Istanbulluoglu, Erkan

    2017-04-01

    Representation of flowing water in landscape evolution models (LEMs) is often simplified compared to hydrodynamic models, as LEMs make assumptions reducing physical complexity in favor of computational efficiency. The Landlab modeling framework can be used to bridge the divide between complex runoff models and more traditional LEMs, creating a new type of framework not commonly used in the geomorphology or hydrology communities. Landlab is a Python-language library that includes tools and process components that can be used to create models of Earth-surface dynamics over a range of temporal and spatial scales. The Landlab OverlandFlow component is based on a simplified inertial approximation of the shallow water equations, following the solution of de Almeida et al.(2012). This explicit two-dimensional hydrodynamic algorithm simulates a flood wave across a model domain, where water discharge and flow depth are calculated at all locations within a structured (raster) grid. Here, we illustrate how the OverlandFlow component contained within Landlab can be applied as a simplified event-based runoff model and how to couple the runoff model with an incision model operating on decadal timescales. Examples of flow routing on both real and synthetic landscapes are shown. Hydrographs from a single storm at multiple locations in the Spring Creek watershed, Colorado, USA, are illustrated, along with a map of shear stress applied on the land surface by flowing water. The OverlandFlow component can also be coupled with the Landlab DetachmentLtdErosion component to illustrate how the non-steady flow routing regime impacts incision across a watershed. The hydrograph and incision results are compared to simulations driven by steady-state runoff. Results from the coupled runoff and incision model indicate that runoff dynamics can impact landscape relief and channel concavity, suggesting that, on landscape evolution timescales, the OverlandFlow model may lead to differences in simulated topography in comparison with traditional methods. The exploratory test cases described within demonstrate how the OverlandFlow component can be used in both hydrologic and geomorphic applications.

  16. Flow Charts: Visualization of Vector Fields on Arbitrary Surfaces

    PubMed Central

    Li, Guo-Shi; Tricoche, Xavier; Weiskopf, Daniel; Hansen, Charles

    2009-01-01

    We introduce a novel flow visualization method called Flow Charts, which uses a texture atlas approach for the visualization of flows defined over curved surfaces. In this scheme, the surface and its associated flow are segmented into overlapping patches, which are then parameterized and packed in the texture domain. This scheme allows accurate particle advection across multiple charts in the texture domain, providing a flexible framework that supports various flow visualization techniques. The use of surface parameterization enables flow visualization techniques requiring the global view of the surface over long time spans, such as Unsteady Flow LIC (UFLIC), particle-based Unsteady Flow Advection Convolution (UFAC), or dye advection. It also prevents visual artifacts normally associated with view-dependent methods. Represented as textures, Flow Charts can be naturally integrated into hardware accelerated flow visualization techniques for interactive performance. PMID:18599918

  17. Modeling reality

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    Although powerful computers have allowed complex physical and manmade hardware systems to be modeled successfully, we have encountered persistent problems with the reliability of computer models for systems involving human learning, human action, and human organizations. This is not a misfortune; unlike physical and manmade systems, human systems do not operate under a fixed set of laws. The rules governing the actions allowable in the system can be changed without warning at any moment, and can evolve over time. That the governing laws are inherently unpredictable raises serious questions about the reliability of models when applied to human situations. In these domains, computers are better used, not for prediction and planning, but for aiding humans. Examples are systems that help humans speculate about possible futures, offer advice about possible actions in a domain, systems that gather information from the networks, and systems that track and support work flows in organizations.

  18. A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs

    NASA Astrophysics Data System (ADS)

    Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.

    2018-01-01

    In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.

  19. Chaos in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; DeHaas, T.; Van Compernolle, B.

    2013-12-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Full three dimensional magnetic field and flows are measured at thousands of time steps. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer and induced electric fields. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. The permutation entropy1 ,which is related to the Lyapunov exponent, can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz, Gissinger and Henon process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time which reflects the change and possibly type of chaos associated with the ropes. The maps give insight as to the type of chaos (deterministic chaos, fractional diffusion , Levi flights..) and underlying dynamical process. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. Other quantities such as the Hurst exponent are evaluated for both magnetic fields and plasma flow. Work Supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF. 1) C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2) O. Russo et al., Phys. Rev. Lett., 99, 154102 (2007), J. Maggs, G.Morales, 55, 085015 (2013)

  20. Bridging the Particle Physics and Big Data Worlds

    NASA Astrophysics Data System (ADS)

    Pivarski, James

    2017-09-01

    For decades, particle physicists have developed custom software because the scale and complexity of our problems were unique. In recent years, however, the ``big data'' industry has begun to tackle similar problems, and has developed some novel solutions. Incorporating scientific Python libraries, Spark, TensorFlow, and machine learning tools into the physics software stack can improve abstraction, reliability, and in some cases performance. Perhaps more importantly, it can free physicists to concentrate on domain-specific problems. Building bridges isn't always easy, however. Physics software and open-source software from industry differ in many incidental ways and a few fundamental ways. I will show work from the DIANA-HEP project to streamline data flow from ROOT to Numpy and Spark, to incorporate ideas of functional programming into histogram aggregation, and to develop real-time, query-style manipulations of particle data.

  1. Second order upwind Lagrangian particle method for Euler equations

    DOE PAGES

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    2016-06-01

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  2. Mapping reactive flow patterns in monolithic nanoporous catalysts

    DOE PAGES

    Falcucci, Giacomo; Succi, Sauro; Montessori, Andrea; ...

    2016-07-06

    The development of high-efficiency porous catalyst membranes critically depends on our understanding of where the majority of the chemical conversions occur within the porous structure. This then requires mapping of chemical reactions and mass transport inside the complex nanoscale architecture of porous catalyst membranes which is a multiscale problem in both the temporal and spatial domains. In order to address this problem, we developed a multiscale mass transport computational framework based on the lattice Boltzmann method that allows us to account for catalytic reactions at the gas–solid interface by introducing a new boundary condition. In good agreement with experiments, themore » simulations reveal that most catalytic reactions occur near the gas-flow facing side of the catalyst membrane if chemical reactions are fast compared to mass transport within the porous catalyst membrane.« less

  3. Numerical Simulations of Free Surface Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema

    2003-11-01

    We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.

  4. Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids

    NASA Astrophysics Data System (ADS)

    Ma, Xinrong; Duan, Zhijian

    2018-04-01

    High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.

  5. Navier-Stokes simulation of rotor-body flowfield in hover using overset grids

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Ahmad, J. U.

    1993-01-01

    A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.

  6. Second order upwind Lagrangian particle method for Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  7. Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.

    PubMed

    Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W

    2013-09-15

    Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.

  9. Convergence of the flow of a chemically reacting gaseous mixture to incompressible Euler equations in a unbounded domain

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam

    2017-12-01

    The flow of chemically reacting gaseous mixture is associated with a variety of phenomena and processes. We study the combined quasineutral and inviscid limit from the flow of chemically reacting gaseous mixture governed by Poisson equation to incompressible Euler equations with the ill-prepared initial data in the unbounded domain R^2× T. Furthermore, the convergence rates are obtained.

  10. Numerical Investigation of the Acoustic Damping of Plane Acoustic Waves by Perforated Liners with Bias Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Zhong, Zhi Yuan

    Perforated liners are extensively used in aero-engines and gas turbine combustors to suppress combustion instabilities. These liners, typically subjected to a low Mach number bias flow (a cooling flow through perforated holes), are fitted along the bounding walls of a combustor to convert acoustic energy into flow energy by generating vorticity at the rims of the perforated apertures. To investigate the acoustic damping of such liners with bias flow on plane acoustic waves, a time-domain numerical model is developed to compute acoustic wave propagation in a cylindrical duct with a single-layer liner attached. The damping mechanism of the liner is characterized in real-time by using a 'compliance', developed especially for this work. It is a rational function representation of the frequency-domain homogeneous compliance adapted from the Rayleigh conductivity of a single aperture with mean bias flow in the z-domain. The liner 'compliance' model is then incorporated into partial differential equations of the duct system, which are solved by using the method of lines. The numerical results are then evaluated by comparing with the numerical results of Eldredge and Dowling's frequency-domain model. Good agreement is observed. This confirms that the model and the approach developed are suitable for real-time characterizing the acoustic damping of perforated liners.

  11. Discretization of three-dimensional free surface flows and moving boundary problems via elliptic grid methods based on variational principles

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Papaioannou, J.; Dimakopoulos, Y.; Tsamopoulos, J.

    2017-09-01

    A new boundary-fitted technique to describe free surface and moving boundary problems is presented. We have extended the 2D elliptic grid generator developed by Dimakopoulos and Tsamopoulos (2003) [19] and further advanced by Chatzidai et al. (2009) [18] to 3D geometries. The set of equations arises from the fulfillment of the variational principles established by Brackbill and Saltzman (1982) [21], and refined by Christodoulou and Scriven (1992) [22]. These account for both smoothness and orthogonality of the grid lines of tessellated physical domains. The elliptic-grid equations are accompanied by new boundary constraints and conditions which are based either on the equidistribution of the nodes on boundary surfaces or on the existing 2D quasi-elliptic grid methodologies. The capabilities of the proposed algorithm are first demonstrated in tests with analytically described complex surfaces. The sequence in which these tests are presented is chosen to help the reader build up experience on the best choice of the elliptic grid parameters. Subsequently, the mesh equations are coupled with the Navier-Stokes equations, in order to reveal the full potential of the proposed methodology in free surface flows. More specifically, the problem of gas assisted injection in ducts of circular and square cross-sections is examined, where the fluid domain experiences extreme deformations. Finally, the flow-mesh solver is used to calculate the equilibrium shapes of static menisci in capillary tubes.

  12. The Differential Effects of Task Complexity on Domain-Specific and Peer Assessment Skills

    ERIC Educational Resources Information Center

    van Zundert, Marjo J.; Sluijsmans, Dominique M. A.; Konings, Karen D.; van Merrienboer, Jeroen J. G.

    2012-01-01

    In this study the relationship between domain-specific skills and peer assessment skills as a function of task complexity is investigated. We hypothesised that peer assessment skills were superposed on domain-specific skills and will therefore suffer more when higher cognitive load is induced by increased task complexity. In a mixed factorial…

  13. Fluid-structure interaction with the entropic lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.

    2018-02-01

    We propose a fluid-structure interaction (FSI) scheme using the entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid domain in combination with a nonlinear finite element solver for the structural part. We show the validity of the proposed scheme for various challenging setups by comparison to literature data. Beyond validation, we extend the KBC model to multiphase flows and couple it with a finite element method (FEM) solver. Robustness and viability of the entropic multi-relaxation time model for complex FSI applications is shown by simulations of droplet impact on elastic superhydrophobic surfaces.

  14. Stabilization of domain walls between traveling waves by nonlinear mode coupling in Taylor-Couette flow.

    PubMed

    Heise, M; Hoffmann, Ch; Abshagen, J; Pinter, A; Pfister, G; Lücke, M

    2008-02-15

    We present a new mechanism that allows the stable existence of domain walls between oppositely traveling waves in pattern-forming systems far from onset. It involves a nonlinear mode coupling that results directly from the nonlinearities in the underlying momentum balance. Our work provides the first observation and explanation of such strongly nonlinearly driven domain walls that separate structured states by a phase generating or annihilating defect. Furthermore, the influence of a symmetry breaking externally imposed flow on the wave domains and the domain walls is studied. The results are obtained for vortex waves in the Taylor-Couette system by combining numerical simulations of the full Navier-Stokes equations and experimental measurements.

  15. Extreme-scale motions in turbulent plane Couette flows

    NASA Astrophysics Data System (ADS)

    Lee, Myoungkyu; Moser, Robert D.

    2018-05-01

    We study the size of large-scale motions in turbulent plane Couette flows at moderate Reynolds number up to $Re_\\tau$ = 500. Direct numerical simulation domains were as large as $100\\pi\\delta\\times2\\delta\\times5\\pi\\delta$, where $\\delta$ is half the distance between the walls. The results indicate that there are structures with streamwise extent, as measured by the wavelength, as long as 78$\\delta$ and at least 310$\\delta$ at $Re_\\tau$ = 220 and 500, respectively. The presence of these very long structures is apparent in the spectra of all three velocity components and the Reynolds stress. In DNS using a smaller domain, the large structures are constrained, eliminating the streamwise variations present in the larger domain. Effects of a smaller domain are also present in the mean velocity and the streamwise velocity variance in the outer flow.

  16. Structural and functional characterization of a cell cycle associated HDAC1/2 complex reveals the structural basis for complex assembly and nucleosome targeting

    PubMed Central

    Itoh, Toshimasa; Fairall, Louise; Muskett, Frederick W.; Milano, Charles P.; Watson, Peter J.; Arnaudo, Nadia; Saleh, Almutasem; Millard, Christopher J.; El-Mezgueldi, Mohammed; Martino, Fabrizio; Schwabe, John W.R.

    2015-01-01

    Recent proteomic studies have identified a novel histone deacetylase complex that is upregulated during mitosis and is associated with cyclin A. This complex is conserved from nematodes to man and contains histone deacetylases 1 and 2, the MIDEAS corepressor protein and a protein called DNTTIP1 whose function was hitherto poorly understood. Here, we report the structures of two domains from DNTTIP1. The amino-terminal region forms a tight dimerization domain with a novel structural fold that interacts with and mediates assembly of the HDAC1:MIDEAS complex. The carboxy-terminal domain of DNTTIP1 has a structure related to the SKI/SNO/DAC domain, despite lacking obvious sequence homology. We show that this domain in DNTTIP1 mediates interaction with both DNA and nucleosomes. Thus, DNTTIP1 acts as a dimeric chromatin binding module in the HDAC1:MIDEAS corepressor complex. PMID:25653165

  17. Volumetric blood flow via time-domain correlation: experimental verification.

    PubMed

    Embree, P M; O'Brien, W R

    1990-01-01

    A novel ultrasonic volumetric flow measurement method using time-domain correlation of consecutive pairs of echoes has been developed. An ultrasonic data acquisition system determined the time shift between a pair of range gated echoes by searching for the time shift with the maximum correlation between the RF sampled waveforms. Experiments with a 5-MHz transducer indicate that the standard deviation of the estimate of steady fluid velocity through 6-mm-diameter tubes is less than 10% of the mean. Experimentally, Sephadex (G-50; 20-80 mum dia.) particles in water and fresh porcine blood have been used as ultrasound scattering fluids. Two-dimensional (2-D) flow velocity can be estimated by slowly sweeping the ultrasonic beam across the blood vessel phantom. Volumetric flow through the vessel is estimated by integrating the 2-D flow velocity field and then is compared to hydrodynamic flow measurements to assess the overall experimental accuracy of the time-domain method. Flow rates from 50-500 ml/min have been estimated with an accuracy better than 10% under the idealized characteristics used in this study, which include straight circular thin-walled tubes, laminar axially-symmetric steady flow, and no intervening tissues.

  18. An integral formulation for wave propagation on weakly non-uniform potential flows

    NASA Astrophysics Data System (ADS)

    Mancini, Simone; Astley, R. Jeremy; Sinayoko, Samuel; Gabard, Gwénaël; Tournour, Michel

    2016-12-01

    An integral formulation for acoustic radiation in moving flows is presented. It is based on a potential formulation for acoustic radiation on weakly non-uniform subsonic mean flows. This work is motivated by the absence of suitable kernels for wave propagation on non-uniform flow. The integral solution is formulated using a Green's function obtained by combining the Taylor and Lorentz transformations. Although most conventional approaches based on either transform solve the Helmholtz problem in a transformed domain, the current Green's function and associated integral equation are derived in the physical space. A dimensional error analysis is developed to identify the limitations of the current formulation. Numerical applications are performed to assess the accuracy of the integral solution. It is tested as a means of extrapolating a numerical solution available on the outer boundary of a domain to the far field, and as a means of solving scattering problems by rigid surfaces in non-uniform flows. The results show that the error associated with the physical model deteriorates with increasing frequency and mean flow Mach number. However, the error is generated only in the domain where mean flow non-uniformities are significant and is constant in regions where the flow is uniform.

  19. The Application of Deterministic Spectral Domain Method to the Analysis of Planar Circuit Discontinuities on Open Substrates

    DTIC Science & Technology

    1990-08-01

    the spectral domain is extended to include the effects of two-dimensional, two-component current flow in planar transmission line discontinuities 6n...PROFESSOR: Tatsuo Itoh A deterministic formulation of the method of moments carried out in the spectral domain is extended to include the effects of...two-dimensional, two- component current flow in planar transmission line discontinuities on open substrates. The method includes the effects of space

  20. An Operator-Integration-Factor Splitting (OIFS) method for Incompressible Flows in Moving Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Saumil S.; Fischer, Paul F.; Min, Misun

    In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an effcient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian-Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of the scheme.

  1. Norovirus P particle efficiently elicits innate, humoral and cellular immunity.

    PubMed

    Fang, Hao; Tan, Ming; Xia, Ming; Wang, Leyi; Jiang, Xi

    2013-01-01

    Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4(+) T cell phenotypes (CD4(+) CD44(+) CD62L(+) CCR7(+)) and activated polyclonal CD4(+) T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4(+) T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+) T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4(+) T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.

  2. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography◊

    PubMed Central

    Wang, Yimin; Fawzi, Amani; Tan, Ou; Gil-Flamer, John; Huang, David

    2010-01-01

    We present human retinal blood flow investigation for diabetic patients using Doppler Fourier domain optical coherence tomography (FD-OCT). The scanning pattern consisted of two concentric circles around the optic nerve head. The blood flow in one patient with diabetes and no retinpathy and another patient with treated proliferative diabetic retinopathy were measured. The patient without retinopathy showed a total blood flow value at the lower level of the normal range. The flow distribution between superior and inferior retina was balanced. The patient with diabetic retinopathy had a flow value lower than the normal people. Our study shows that Doppler FD-OCT can be used to evaluate the total retinal blood flow in patients with retinal diseases. PMID:19259246

  3. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-Kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  4. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films.

    PubMed

    Kim, Tae Heon; Yoon, Jong-Gul; Baek, Seung Hyub; Park, Woong-kyu; Yang, Sang Mo; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Noh, Tae Won

    2015-07-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields.

  5. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    PubMed Central

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-01-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields. PMID:26130159

  6. Dynamics, Conformational Entropy, and Frustration in Protein-Protein Interactions Involving an Intrinsically Disordered Protein Domain.

    PubMed

    Lindström, Ida; Dogan, Jakob

    2018-05-18

    Intrinsically disordered proteins (IDPs) are abundant in the eukaryotic proteome. However, little is known about the role of subnanosecond dynamics and the conformational entropy that it represents in protein-protein interactions involving IDPs. Using nuclear magnetic resonance side chain and backbone relaxation, stopped-flow kinetics, isothermal titration calorimetry, and computational studies, we have characterized the interaction between the globular TAZ1 domain of the CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2). We show that the TAZ1/TAD-STAT2 complex retains considerable subnanosecond motions, with TAD-STAT2 undergoing only a partial disorder-to-order transition. We report here the first experimental determination of the conformational entropy change for both binding partners in an IDP binding interaction and find that the total change even exceeds in magnitude the binding enthalpy and is comparable to the contribution from the hydrophobic effect, demonstrating its importance in the binding energetics. Furthermore, we show that the conformational entropy change for TAZ1 is also instrumental in maintaining a biologically meaningful binding affinity. Strikingly, a spatial clustering of very high amplitude motions and a cluster of more rigid sites in the complex exist, which through computational studies we found to overlap with regions that experience energetic frustration and are less frustrated, respectively. Thus, the residual dynamics in the bound state could be necessary for faster dissociation, which is important for proteins that interact with multiple binding partners.

  7. The human Kell blood group binds the erythroid 4.1R protein: new insights into the 4.1R-dependent red cell membrane complex

    PubMed Central

    Azouzi, Slim; Collec, Emmanuel; Mohandas, Narla; An, Xiuli; Colin, Yves; Le Van Kim, Caroline

    2015-01-01

    Summary Protein 4.1R plays an important role in maintaining the mechanical properties of the erythrocyte membrane. We analysed the expression of Kell blood group protein in erythrocytes from a patient with hereditary elliptocytosis associated with complete 4.1R deficiency (4.1(−) HE). Flow cytometry and Western blot analyses revealed a severe reduction of Kell. In vitro pull down and co-immunoprecipitation experiments from erythrocyte membranes showed a direct interaction between Kell and 4.1R. Using different recombinant domains of 4.1R and the cytoplasmic domain of Kell, we demonstrated that the R46R motif in the juxta-membrane region of Kell binds to lobe B of the 4.1R FERM domain. We also observed that 4.1R deficiency is associated with a reduction of XK and DARC (also termed ACKR1) proteins, the absence of the glycosylated form of the urea transporter B and a slight decrease of band 3. The functional alteration of the 4.1(−) HE erythrocyte membranes was also determined by measuring various transport activities. We documented a slower rate of HCO3−/Cl− exchange, but normal water and ammonia transport across erythrocyte membrane in the absence of 4.1. These findings provide novel insights into the structural organization of blood group antigen proteins into the 4.1R complex of the human red cell membrane. PMID:26455906

  8. Recent developments and assessment of a three-dimensional PBL parameterization for improved wind forecasting over complex terrain

    NASA Astrophysics Data System (ADS)

    Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.

    2017-12-01

    At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.

  9. The Detection of Water Flow in Rectangular Microchannels by Terahertz Time Domain Spectroscopy

    PubMed Central

    Song, Yan; Zhao, Kun; Zuo, Jian; Wang, Cuicui; Li, Yizhang; Miao, Xinyang; Zhao, Xiaojing

    2017-01-01

    Flow characteristics of water were tested in a rectangular microchannel for Reynolds number (Re) between 0 and 446 by terahertz time domain spectroscopy (THz-TDS). Output THz peak trough intensities and the calculated absorbances of the flow were analyzed theoretically. The results show a rapid change for Re < 250 and a slow change as Re increases, which is caused by the early transition from laminar to transition flow beginning nearly at Re = 250. Then this finding is confirmed in the plot of the flow resistant. Our results demonstrate that the THz-TDS could be a valuable tool to monitor and character the flow performance in microscale structures. PMID:29027922

  10. Large-eddy simulations of mechanical and thermal processes within boundary layer of the Graciosa Island

    NASA Astrophysics Data System (ADS)

    Sever, G.; Collis, S. M.; Ghate, V. P.

    2017-12-01

    Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ < 100 meter) simulations. Ideal configurations include model initializations with ideal dry and moist temperature and wind profiles to capture flow features over an island-like topography. Real configurations will use observations from different climatological background states over the Eastern Northern Atlantic, Atmospheric Radiation Measurement (ENA-ARM) site on Graciosa Island. Initial small-domain large-eddy simulations (LES) of dry airflow produce cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.

  11. A low-complexity region in the YTH domain protein Mmi1 enhances RNA binding.

    PubMed

    Stowell, James A W; Wagstaff, Jane L; Hill, Chris H; Yu, Minmin; McLaughlin, Stephen H; Freund, Stefan M V; Passmore, Lori A

    2018-06-15

    Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding. © 2018 Stowell et al.

  12. Oil migration in a major growth fault: Structural analysis of the Pathfinder core, South Eugene Island Block 330, offshore Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losh, S.

    1998-09-01

    The Pathfinder core, collected in the South Eugene Island Block 330 field, offshore Louisiana, provides an outstanding sample of structures associated with a major growth fault that abuts a giant oil field and that is thought to have acted as a conduit for hydrocarbon migration into the producing reservoirs. The fault zone in the core consists of three structural domains, each characterized by a distinct rock type, distribution of fault dips and dip azimuths, and distribution of spacing between adjacent faults and fractures. Although all of the domains contain oil-bearing sands, only faults and fractures in the deepest domain containmore » oil, even though the oil-barren fault domains contain numerous faults and fractures that are parallel to those containing oil in the deepest domain. The deepest domain is also distinguished from the other two domains by a greater degree of structural complexity and by a well-defined power-law distribution of fault and fracture spacings. Even though oil is present in sands throughout the core, its restriction to faults and fractures in the youngest sampled portion of the fault zone implies that oil migrated only through that part of the fault that was active during the time when oil had access to it. The absence of oil in fractures or faults in the other, probably older, fault domains indicates that the oil was never sufficiently pressured to flow up the fault zone on its own, either by hydraulic fracture or by increased permeability as a result of decreased effective stress. Instead, fluid migration along faults and fractures in the Pathfinder core was enhanced by permeability created in response to relatively far-field stresses related to minibasin subsidence.« less

  13. Numerical modeling of flow and transport in the far-field of a generic nuclear waste repository in fractured crystalline rock using updated fracture continuum model

    NASA Astrophysics Data System (ADS)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2016-12-01

    Disposal of high-level radioactive waste in a deep geological repository in crystalline host rock is one of the potential options for long term isolation. Characterization of the natural barrier system is an important component of the disposal option. In this study we present numerical modeling of flow and transport in fractured crystalline rock using an updated fracture continuum model (FCM). The FCM is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The original method by McKenna and Reeves (2005) has been updated to provide capabilities that enhance representation of fractured rock. As reported in Hadgu et al. (2015) the method was first modified to include fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation. More recently the FCM has been extended to include three different methods. (1) The Sequential Gaussian Simulation (SGSIM) method uses spatial correlation to generate fractures and define their properties for FCM (2) The ELLIPSIM method randomly generates a specified number of ellipses with properties defined by probability distributions. Each ellipse represents a single fracture. (3) Direct conversion of discrete fracture network (DFN) output. Test simulations were conducted to simulate flow and transport using ELLIPSIM and direct conversion of DFN methods. The simulations used a 1 km x 1km x 1km model domain and a structured with grid block of size of 10 m x 10m x 10m, resulting in a total of 106 grid blocks. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the different methods were applied to generate representative permeability fields. The PFLOTRAN (Hammond et al., 2014) code was used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains. SAND2016-7509 A

  14. Hydrograph structure informed calibration in the frequency domain with time localization

    NASA Astrophysics Data System (ADS)

    Kumarasamy, K.; Belmont, P.

    2015-12-01

    Complex models with large number of parameters are commonly used to estimate sediment yields and predict changes in sediment loads as a result of changes in management or conservation practice at large watershed (>2000 km2) scales. As sediment yield is a strongly non-linear function that responds to channel (peak or mean) velocity or flow depth, it is critical to accurately represent flows. The process of calibration in such models (e.g., SWAT) generally involves the adjustment of several parameters to obtain better estimates of goodness of fit metrics such as Nash Sutcliff Efficiency (NSE). However, such indicators only provide a global view of model performance, potentially obscuring accuracy of the timing or magnitude of specific flows of interest. We describe an approach for streamflow calibration that will greatly reduce the black-box nature of calibration, when response from a parameter adjustment is not clearly known. Fourier Transform or the Short Term Fourier Transform could be used to characterize model performance in the frequency domain as well, however, the ambiguity of a Fourier transform with regards to time localization renders its implementation in a model calibration setting rather useless. Brief and sudden changes (e.g. stream flow peaks) in signals carry the most interesting information from parameter adjustments, which are completely lost in the transform without time localization. Wavelet transform captures the frequency component in the signal without compromising time and is applied to contrast changes in signal response to parameter adjustments. Here we employ the mother wavelet called the Mexican hat wavelet and apply a Continuous Wavelet Transform to understand the signal in the frequency domain. Further, with the use of the cross-wavelet spectrum we examine the relationship between the two signals (prior or post parameter adjustment) in the time-scale plane (e.g., lower scales correspond to higher frequencies). The non-stationarity of the streamflow signal does not hinder this assessment and regions of change called boundaries of influence (seasons or time when such change occurs in the hydrograph) for each parameter are delineated. In addition, we can discover the structural component of the signal (e.g., shifts or amplitude change) that has changed.

  15. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the conceptualization of nonlinear bioreactive transport in complex multidimensional domains by quasi 1-D travel-time models is valid for steady-state flow fields if the reactants are introduced over a wide cross-section, flow is at quasi steady state, and dispersive mixing is adequately parametrized. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A fictitious domain method for fluid/solid coupling applied to the lithosphere/asthenosphere interaction.

    NASA Astrophysics Data System (ADS)

    Cerpa, Nestor; Hassani, Riad; Gerbault, Muriel

    2014-05-01

    A large variety of geodynamical problems can be viewed as a solid/fluid interaction problem coupling two bodies with different physics. In particular the lithosphere/asthenosphere mechanical interaction in subduction zones belongs to this kind of problem, where the solid lithosphere is embedded in the asthenospheric viscous fluid. In many fields (Industry, Civil Engineering,etc.), in which deformations of solid and fluid are "small", numerical modelers consider the exact discretization of both domains and fit as well as possible the shape of the interface between the two domains, solving the discretized physic problems by the Finite Element Method (FEM). Although, in a context of subduction, the lithosphere is submitted to large deformation, and can evolve into a complex geometry, thus leading to important deformation of the surrounding asthenosphere. To alleviate the precise meshing of complex geometries, numerical modelers have developed non-matching interface methods called Fictitious Domain Methods (FDM). The main idea of these methods is to extend the initial problem to a bigger (and simpler) domain. In our version of FDM, we determine the forces at the immersed solid boundary required to minimize (at the least square sense) the difference between fluid and solid velocities at this interface. This method is first-order accurate and the stability depends on the ratio between the fluid background mesh size and the interface discretization. We present the formulation and provide benchmarks and examples showing the potential of the method : 1) A comparison with an analytical solution of a viscous flow around a rigid body. 2) An experiment of a rigid sphere sinking in a viscous fluid (in two and three dimensional cases). 3) A comparison with an analog subduction experiment. Another presentation aims at describing the geodynamical application of this method to Andean subduction dynamics, studying cyclic slab folding on the 660 km discontinuity, and its relationship with flat subduction.

  17. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.

    PubMed

    Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D

    2014-06-01

    In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0

  18. Integrated reservoir characterization and flow simulation for well targeting and reservoir management, Iagifu-Hedinia field, Southern Highlands Province, Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, S.P.; Livingston, J.E.; Fitzmorris, R.E.

    Infill drilling based on integrated reservoir characterization and flow simulation is increasing recoverable reserves by 20 MMBO, in lagifu-Hedinia Field (IHF). Stratigraphically-zoned models are input to window and full-field flow simulations, and results of the flow simulations target deviated and horizontal wells. Logging and pressure surveys facilitate detailed reservoir management. Flooding surfaces are the dominant control on differential depletion within and between reservoirs. The primary reservoir is the basal Cretaceous Toro Sandstone. Within the IHF, Toro is a 100 m quartz sandstone composed of stacked, coarsening-upward parasequences within a wave-dominated deltaic complex. Flooding surfaces are used to form a hydraulicmore » zonation. The zonation is refined using discontinuities in RIFT pressure gradients and logs from development wells. For flow simulation, models use 3D geostatistical techniques. First, variograms defining spatial correlation are developed. The variograms are used to construct 3D porosity and permeability models which reflect the stratigraphic facies models. Structure models are built using dipmeter, biostratigraphic, and surface data. Deviated wells often cross axial surfaces and geometry is predicted from dip domain and SCAT. Faults are identified using pressure transient data and dipmeter. The Toro reservoir is subnormally pressured and fluid contacts are hydrodynamically tilted. The hydrodynamic flow and tilted contacts are modeled by flow simulation and constrained by maps of the potentiometric surface.« less

  19. RIP1-HAT1-SIRT Complex Identification and Targeting in Treatment and Prevention of Cancer.

    PubMed

    Carafa, Vincenzo; Nebbioso, Angela; Cuomo, Francesca; Rotili, Dante; Cobellis, Gilda; Bontempo, Paola; Baldi, Alfonso; Spugnini, Enrico P; Citro, Gennaro; Chambery, Angela; Russo, Rosita; Ruvo, Menotti; Ciana, Paolo; Maravigna, Luca; Shaik, Jani; Radaelli, Enrico; De Antonellis, Pasquale; Tarantino, Domenico; Pirolli, Adele; Ragno, Rino; Zollo, Massimo; Stunnenberg, Hendrik G; Mai, Antonello; Altucci, Lucia

    2018-03-13

    Purpose: Alteration in cell death is a hallmark of cancer. A functional role regulating survival, apoptosis, and necroptosis has been attributed to RIP1/3 complexes. Experimental Design: We have investigated the role of RIP1 and the effects of MC2494 in cell death induction, using different methods as flow cytometry, transcriptome analysis, immunoprecipitation, enzymatic assays, transfections, mutagenesis, and in vivo studies with different mice models. Results: Here, we show that RIP1 is highly expressed in cancer, and we define a novel RIP1/3-SIRT1/2-HAT1/4 complex. Mass spectrometry identified five acetylations in the kinase and death domain of RIP1. The novel characterized pan-SIRT inhibitor, MC2494, increases RIP1 acetylation at two additional sites in the death domain. Mutagenesis of the acetylated lysine decreases RIP1-dependent cell death, suggesting a role for acetylation of the RIP1 complex in cell death modulation. Accordingly, MC2494 displays tumor-selective potential in vitro , in leukemic blasts ex vivo, and in vivo in both xenograft and allograft cancer models. Mechanistically, MC2494 induces bona fide tumor-restricted acetylated RIP1/caspase-8-mediated apoptosis. Excitingly, MC2494 displays tumor-preventive activity by blocking 7,12-dimethylbenz(α)anthracene-induced mammary gland hyperproliferation in vivo Conclusions: These preventive features might prove useful in patients who may benefit from a recurrence-preventive approach with low toxicity during follow-up phases and in cases of established cancer predisposition. Thus, targeting the newly identified RIP1 complex may represent an attractive novel paradigm in cancer treatment and prevention. Clin Cancer Res; 1-15. ©2018 AACR. ©2018 American Association for Cancer Research.

  20. Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems

    DOE PAGES

    Adalsteinsson, Helgi; Debusschere, Bert J.; Long, Kevin R.; ...

    2008-01-01

    Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C) multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-levelmore » dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.« less

  1. Large-eddy simulations of a solid-rocket booster jet

    NASA Astrophysics Data System (ADS)

    Paoli, Roberto; Poubeau, Adele; Cariolle, Daniel

    2014-11-01

    Emissions from solid-rocket boosters are responsible for a severe decrease in ozone concentration in the rocket plume during the first hours after a launch. The main source of ozone depletion is due to hydrogen chloride that is converted into chlorine in the high temperature regions of the jet (afterburning). The objective of this study is to evaluate the active chlorine concentration in the plume of a solid-rocket booster using large-eddy simulations. The gas is injected through the entire nozzle of the booster and a local time-stepping method based on coupling multi-instances of a fluid solver is used to extend the computational domain up to 600 nozzle exit diameters. The methodology is validated for a non-reactive case by analyzing the flow characteristics of supersonic co-flowing under expanded jets. Then, the chemistry of chlorine is studied offline using a complex chemistry solver and the LES data extracted from the mean trajectories of sample fluid particles. Finally, the online chemistry is analyzed by means of the multispecies version of the LES solver using a reduced chemistry scheme. The LES are able to capture the mixing of the exhaust with ambient air and the species concentrations, which is also useful to initialize atmospheric simulations on larger domains.

  2. Eigenvector centrality for geometric and topological characterization of porous media

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, Joaquin; Negre, Christian F. A.

    2017-07-01

    Solving flow and transport through complex geometries such as porous media is computationally difficult. Such calculations usually involve the solution of a system of discretized differential equations, which could lead to extreme computational cost depending on the size of the domain and the accuracy of the model. Geometric simplifications like pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed. These models, despite their ability to preserve the connectivity of the medium, have difficulties capturing preferential paths (high velocity) and stagnation zones (low velocity), as they do not consider the specific relations between nodes. Nonetheless, network theory approaches, where a complex network is a graph, can help to simplify and better understand fluid dynamics and transport in porous media. Here we present an alternative method to address these issues based on eigenvector centrality, which has been corrected to overcome the centralization problem and modified to introduce a bias in the centrality distribution along a particular direction to address the flow and transport anisotropy in porous media. We compare the model predictions with millifluidic transport experiments, which shows that, albeit simple, this technique is computationally efficient and has potential for predicting preferential paths and stagnation zones for flow and transport in porous media. We propose to use the eigenvector centrality probability distribution to compute the entropy as an indicator of the "mixing capacity" of the system.

  3. Extension of the Time-Spectral Approach to Overset Solvers for Arbitrary Motion

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas H.

    2012-01-01

    Forced periodic flows arise in a broad range of aerodynamic applications such as rotorcraft, turbomachinery, and flapping wing configurations. Standard practice involves solving the unsteady flow equations forward in time until the initial transient exits the domain and a statistically stationary flow is achieved. It is often required to simulate through several periods to remove the initial transient making unsteady design optimization prohibitively expensive for most realistic problems. An effort to reduce the computational cost of these calculations led to the development of the Harmonic Balance method [1, 2] which capitalizes on the periodic nature of the solution. The approach exploits the fact that forced temporally periodic flow, while varying in the time domain, is invariant in the frequency domain. Expanding the temporal variation at each spatial node into a Fourier series transforms the unsteady governing equations into a steady set of equations in integer harmonics that can be tackled with the acceleration techniques afforded to steady-state flow solvers. Other similar approaches, such as the Nonlinear Frequency Domain [3,4,5], Reduced Frequency [6] and Time-Spectral [7, 8, 9] methods, were developed shortly thereafter. Additionally, adjoint-based optimization techniques can be applied [10, 11] as well as frequency-adaptive methods [12, 13, 14] to provide even more flexibility to the method. The Fourier temporal basis functions imply spectral convergence as the number of harmonic modes, and correspondingly number of time samples, N, is increased. Some elect to solve the equations in the frequency domain directly, while others choose to transform the equations back into the time domain to simplify the process of adding this capability to existing solvers, but each harnesses the underlying steady solution in the frequency domain. These temporal projection methods will herein be collectively referred to as Time-Spectral methods. Time-Spectral methods have demonstrated marked success in reducing the computational costs associated with simulating periodic forced flows, but have yet to be fully applied to overset or Cartesian solvers for arbitrary motion with dynamic hole-cutting. Overset and Cartesian grid methodologies are versatile techniques capable of handling complex geometry configurations in practical engineering applications, and the combination of the Time-Spectral approach with this general capability potentially provides an enabling new design and analysis tool. In an arbitrary moving-body scenario for these approaches, a Lagrangian body moves through a fixed Eulerian mesh and mesh points in the Eulerian mesh interior to the solid body are removed (cut or blanked), leaving a hole in the Eulerian mesh. During the dynamic motion some gridpoints in the domain are blanked and do not have a complete set of time-samples preventing a direct implementation of the Time-Spectral method. Murman[6] demonstrated the Time-Spectral approach for a Cartesian solver with a rigid domain motion, wherein the hole cutting remains constant. Similarly, Custer et al. [15, 16] used the NASA overset OVERFLOW solver and limited the amount of relative motion to ensure static hole-cutting and interpolation. Recently, Mavriplis and Mundis[17] demonstrated a qualitative method for applying the Time-Spectral approach to an unstructured overset solver for arbitrary motion. The goal of the current work is to develop a robust and general method for handling arbitrary motion with the Time-Spectral approach within an overset or Cartesian mesh method, while still approaching the spectral convergence rate of the original Time-Spectral approach. The viscous OVERFLOW solver will be augmented with the new Time-Spectral algorithm and the capability of the method for benchmark problems in rotorcraft and turbomachinery will be demonstrated. This abstract begins with a brief synopsis of the Time-Spectral approach for overset grids and provides details of e current approach to allow for arbitrary motion. Model problem results in one and two dimensions are included to demonstrate the viability of the method and the convergence properties. Section IV briefly outlines the implementation into the OVERFLOW solver, and the abstract closes with a description of the benchmark test cases which will be included in the final paper.

  4. The impact of domain aspect ratio on the inverse cascade in rotationally constrained convection.

    NASA Astrophysics Data System (ADS)

    Julien, K. A.; Plumley, M.; Knobloch, E.

    2017-12-01

    Rotationally constrained convective flows are characterized as buoyantly unstable flows with a primary geostrophic balance (i.e. a pointwise balance between the Coriolis and pressure gradient forces). Such flows are known to occur within planetary and stellar interiors and also within isolated regions of the worlds oceans. Rapidly rotating Rayleigh-B'enard convection represents the simplest paradigm for investigations. Recent numerical studies, performed in square domains, have discovered the existence of a strong non-local inverse energy cascade that results in a box filling dipole vortex upon which geostrophic turbulent convection resides. Utilizing the non-hydrostatic quasi-geostrophic equations, the effect of domain aspect ratio on the inverse energy cascade is explored. As the domain aspect ratio becomes anisotropy it is demonstrated that the large-scale states evolve from vortical dipoles to jets. Properties of these jets will be presented and discussed.

  5. The impact of domain aspect ratio on the inverse cascade in rotationally constrained convection

    NASA Astrophysics Data System (ADS)

    Julien, Keith; Knobloch, Edgar; Plumley, Meredith

    2017-11-01

    Rotationally constrained convective flows are characterized as buoyantly unstable flows with a primary geostrophic balance (i.e. a pointwise balance between the Coriolis and pressure gradient forces). Such flows are known to occur within planetary and stellar interiors and also within isolated regions of the worlds oceans. Rapidly rotating Rayleigh-Benard convection represents the simplest paradigm for investigations. Recent numerical studies, performed in square domains, have discovered the existence of a strong non-local inverse energy cascade that results in a box filling dipole vortex upon which geostrophic turbulent convection resides. Utilizing the non-hydrostatic quasi-geostrophic equations, the effect of domain aspect ratio on the inverse energy cascade is explored. As the domain aspect ratio becomes anisotropy it is demonstrated that the large-scale states evolve from vortical dipoles to jets. Properties of these jets will be presented and discussed.

  6. Spatial-temporal dynamics of Newtonian and viscoelastic turbulence in channel flow

    NASA Astrophysics Data System (ADS)

    Wang, Sung-Ning; Shekar, Ashwin; Graham, Michael

    2016-11-01

    Introducing a trace amount of polymer into liquid turbulent flows can result in substantial reduction of friction drag. This phenomenon has been widely used in fluid transport; however, the mechanism is not well understood. Past studies have found that in minimal domain turbulent simulations, there areoccasional time periods when flow exhibits features such as weaker vortices, lower friction drag and larger log-law slope; these have been denoted as "hibernatingturbulence". Here we address the question of whether similar behavior arises spatio-temporally in extended domains, focusing on turbulence at friction Reynolds numbers near transition and Weissenberg numbers resulting in low-medium drag reduction. By using image analysis and conditional sampling tools, we identify the hibernating states in extended domains and show that they display striking similarity as those in minimal domains. The hibernating states among different Weissenberg numbers exhibit similar flow statistics, suggesting they are unaltered by low to medium viscoelasticity. In addition, the polymer is much less stretched during hibernation. Finally, these hibernating states vanish as Reynolds number increases. However, they reoccur and gradually become dominant with increasing viscoelasticity.

  7. Spectral domain phase microscopy: a new tool for measuring cellular dynamics and cytoplasmic flow

    NASA Astrophysics Data System (ADS)

    McDowell, Emily J.; Choma, Michael A.; Ellerbee, Audrey K.; Izatt, Joseph A.

    2005-03-01

    Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved interferometric phase information via coherence gating. Here a phase sensitive technique called spectral domain phase microscopy (SDPM) is presented. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity. This sensitivity is made possible by the inherent phase stability of spectral domain OCT combined with common-path interferometry. The theory that underlies this technique is presented, the sensitivity of the technique is demonstrated by the measurement of the thermal expansion coefficient of borosilicate glass, and the response of an Amoeba proteus to puncture of its cell membrane is measured. We also exploit the phase stability of SDPM to perform Doppler flow imaging of cytoplasmic streaming in A. proteus. We show reversal of cytoplasmic flow in response to stimuli, and we show that the cytoplasmic flow is laminar (i.e. parabolic) in nature. We are currently investigating the use of SDPM in a variety of different cell types.

  8. Stochastic analysis of three-dimensional flow in a bounded domain

    USGS Publications Warehouse

    Naff, R.L.; Vecchia, A.V.

    1986-01-01

    A commonly accepted first-order approximation of the equation for steady state flow in a fully saturated spatially random medium has the form of Poisson's equation. This form allows for the advantageous use of Green's functions to solve for the random output (hydraulic heads) in terms of a convolution over the random input (the logarithm of hydraulic conductivity). A solution for steady state three- dimensional flow in an aquifer bounded above and below is presented; consideration of these boundaries is made possible by use of Green's functions to solve Poisson's equation. Within the bounded domain the medium hydraulic conductivity is assumed to be a second-order stationary random process as represented by a simple three-dimensional covariance function. Upper and lower boundaries are taken to be no-flow boundaries; the mean flow vector lies entirely in the horizontal dimensions. The resulting hydraulic head covariance function exhibits nonstationary effects resulting from the imposition of boundary conditions. Comparisons are made with existing infinite domain solutions.

  9. A new hybrid active/passive sound absorber with variable surface impedance

    NASA Astrophysics Data System (ADS)

    Betgen, Benjamin; Galland, Marie-Annick

    2011-07-01

    The context of the present paper is the wall treatment of flow ducts, notably aero-engine nacelle intakes and outlets. For this purpose, hybrid active/passive absorbers have been developed at the LMFA for about 15 years. A hybrid cell combines passive absorbent properties of a porous layer and active control at its rear face. Active control is mainly used to increase absorption at low frequencies by cancelling the imaginary part of the surface impedance presented by the absorber. However, the optimal impedance (i.e. the one that produces the highest noise reduction) of an absorber for flow duct applications is generally complex and frequency dependent. A new hybrid absorber intended to realise any of impedance has therefore been developed. The new cell uses one microphone on each side of a resistive cloth. Normal velocity can then be deduced by a simple pressure difference, which allows an estimation of the surface impedance of the absorber. In order to obtain an error signal related to a target impedance, the target impedance has to be reproduced in time domain. The design of a stable and causal filter is a difficult task, considering the kind of frequency response we seek. An alternative way of representing the impedance in time domain is therefore given. The new error signal is integrated into a feedback control structure. Fast convergence and good stability are observed for a wide range of target impedances. Typical optimal impedances with a positive increasing real part and a negative decreasing imaginary part have been successfully realised. Measurements in a grazing-incidence tube show that the new complex impedance absorber clearly outperforms the former active absorber.

  10. Reduced modeling of signal transduction – a modular approach

    PubMed Central

    Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter

    2007-01-01

    Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494

  11. Small-scale collisions with big-scale effects: Direct numerical simulations of crystal interactions in dense suspensions and ramifications for magmatic differentiation

    NASA Astrophysics Data System (ADS)

    Sethian, J.; Suckale, J.; Yu, J.; Elkins-Tanton, L. T.

    2011-12-01

    Numerous problems in the Earth sciences involve the dynamic interaction between solid bodies and viscous flow. The goal of this contribution is to develop and validate a computational methodology for modeling complex solid-fluid interactions with minimal simplifying assumptions. The approach we develop is general enough to be applicable in a wide range of geophysical systems ranging from crystal-bearing lava flows to sediment-rich rivers and aerosol transport. Our algorithm relies on a two-step projection scheme: In the first step, we solve the multiple-phase Navier-Stokes or Stokes equation, respectively, in both domains. In the second step, we project the velocity field in the solid domain onto a rigid-body motion by enforcing that the deformation tensor in the respective domain is zero. An important component of the numerical scheme is the accurate treatment of collisions between an arbitrary number of suspended solid bodies based on the impact Stokes number and the elasticity parameters of the solid phase. We perform several benchmark computations to validate our computations including wake formation behind fixed and mobile cylinders and cuboids, the settling speed of particles, and laboratory experiments of collision modes. Finally, we apply our method to investigate the competing effect of entrainment and fractionation in crystalline suspensions - an important question in the context of magma differentiation processes in magma chambers and magma oceans. We find that the properties and volume fraction of the crystalline phase play an important role for evaluating differentiation efficiency.

  12. Food for Thought: Cross-Classification and Category Organization in a Complex Real-World Domain.

    ERIC Educational Resources Information Center

    Ross, Brian H.; Murphy, Gregory L.

    1999-01-01

    Seven studies involving 256 undergraduates examined how people represent, access, and make inferences about the real-world category domain, foods. Results give a detailed picture of the use of cross-classification in a complex domain. (SLD)

  13. Enhanced Line Integral Convolution with Flow Feature Detection

    NASA Technical Reports Server (NTRS)

    Lane, David; Okada, Arthur

    1996-01-01

    The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain. The method produces a flow texture image based on the input velocity field defined in the domain. Because of the nature of the algorithm, the texture image tends to be blurry. This sometimes makes it difficult to identify boundaries where flow separation and reattachments occur. We present techniques to enhance LIC texture images and use colored texture images to highlight flow separation and reattachment boundaries. Our techniques have been applied to several flow fields defined in 3D curvilinear multi-block grids and scientists have found the results to be very useful.

  14. 2D modeling of direct laser metal deposition process using a finite particle method

    NASA Astrophysics Data System (ADS)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  15. An immersed boundary method for modeling a dirty geometry data

    NASA Astrophysics Data System (ADS)

    Onishi, Keiji; Tsubokura, Makoto

    2017-11-01

    We present a robust, fast, and low preparation cost immersed boundary method (IBM) for simulating an incompressible high Re flow around highly complex geometries. The method is achieved by the dispersion of the momentum by the axial linear projection and the approximate domain assumption satisfying the mass conservation around the wall including cells. This methodology has been verified against an analytical theory and wind tunnel experiment data. Next, we simulate the problem of flow around a rotating object and demonstrate the ability of this methodology to the moving geometry problem. This methodology provides the possibility as a method for obtaining a quick solution at a next large scale supercomputer. This research was supported by MEXT as ``Priority Issue on Post-K computer'' (Development of innovative design and production processes) and used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science.

  16. Parallel Continuous Flow: A Parallel Suffix Tree Construction Tool for Whole Genomes

    PubMed Central

    Farreras, Montse

    2014-01-01

    Abstract The construction of suffix trees for very long sequences is essential for many applications, and it plays a central role in the bioinformatic domain. With the advent of modern sequencing technologies, biological sequence databases have grown dramatically. Also the methodologies required to analyze these data have become more complex everyday, requiring fast queries to multiple genomes. In this article, we present parallel continuous flow (PCF), a parallel suffix tree construction method that is suitable for very long genomes. We tested our method for the suffix tree construction of the entire human genome, about 3GB. We showed that PCF can scale gracefully as the size of the input genome grows. Our method can work with an efficiency of 90% with 36 processors and 55% with 172 processors. We can index the human genome in 7 minutes using 172 processes. PMID:24597675

  17. Simplified behaviors from increased heterogeneity: I. 2-D uranium transport experiments at the decimeter scale.

    PubMed

    Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D

    2013-05-01

    Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44×1.22×0.076 m (tank 1) and 2.44×0.61×0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)3(0). However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition. Published by Elsevier B.V.

  18. An Implementation of Hydrostatic Boundary Conditions for Variable Density Lattice Boltzmann Methods

    NASA Astrophysics Data System (ADS)

    Bardsley, K. J.; Thorne, D. T.; Lee, J. S.; Sukop, M. C.

    2006-12-01

    Lattice Boltzmann Methods (LBMs) have been under development for the last two decades and have become another capable numerical method for simulating fluid flow. Recent advances in lattice Boltzmann applications involve simulation of density-dependent fluid flow in closed (Dixit and Babu, 2006; D'Orazio et al., 2004) or periodic (Guo and Zhao, 2005) domains. However, standard pressure boundary conditions (BCs) are incompatible with concentration-dependent density flow simulations that use a body force for gravity. An implementation of hydrostatic BCs for use under these conditions is proposed here. The basis of this new implementation is an additional term in the pressure BC. It is derived to account for the incorporation of gravity as a body force and the effect of varying concentration in the fluid. The hydrostatic BC expands the potential of density-dependent LBM to simulate domains with boundaries other than the closed or periodic boundaries that have appeared in previous literature on LBM simulations. With this new implementation, LBM will be able to simulate complex concentration-dependent density flows, such as salt water intrusion in the classic Henry and Henry-Hilleke problems. This is demonstrated using various examples, beginning with a closed box system, and ending with a system containing two solid walls, one velocity boundary and one pressure boundary, as in the Henry problem. References Dixit, H. N., V. Babu, (2006), Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. Heat Mass Transfer, 49, 727-739. D'Orazio, A., M. Corcione, G.P. Celata, (2004), Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary conditions, Int. J. Thermal Sci., 43, 575-586. Gou, Z., T.S. Zhao, (2005), Lattice Boltzmann simulation of natural convection with temperature-dependant viscosity in a porous cavity, Numerical Heat Transfer, Part B, 47, 157-177.

  19. Simplified behaviors from increased heterogeneity: I. 2-D uranium transport experiments at the decimeter scale

    NASA Astrophysics Data System (ADS)

    Miller, Andrew W.; Rodriguez, Derrick R.; Honeyman, Bruce D.

    2013-05-01

    Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44 × 1.22 × 0.076 m (tank 1) and 2.44 × 0.61 × 0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)30. However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition.

  20. A spectral multi-domain technique applied to high-speed chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Streett, Craig L.; Hussaini, M. Yousuff

    1989-01-01

    The first applications of a spectral multidomain method for viscous compressible flow is presented. The method imposes a global flux balance condition at the interface so that high-order continuity of the solution is preserved. The global flux balance is imposed in terms of a spectral integral of the discrete equations across adjoining domains. Since the discretized equations interior to each domain solved are uncoupled from each other, and since the interface relation has a block structure, the solution scheme can be adapted to the particular requirements of each subdomain. The spectral multidomain technique presented is well-suited for the multiple scales associated with the chemically reacting and transition flows in hypersonic research. A nonstaggered multidomain discretization is used for the chemically reacting flow calculation, and the first implementation of a staggered multidomain mesh is presented for accurately solving the stability equation for a viscous compressible fluid.

  1. Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.

    2001-01-01

    A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.

  2. Biot-Savart helicity versus physical helicity: A topological description of ideal flows

    NASA Astrophysics Data System (ADS)

    Sahihi, Taliya; Eshraghi, Homayoon

    2014-08-01

    For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity in hydrodynamics and the magnetic field in MHD is presented by constant coefficients (fluxes) when expanded in terms of one of the time dependent base functions.

  3. Unified pipe network method for simulation of water flow in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  4. A single cognitive heuristic process meets the complexity of domain-specific moral heuristics.

    PubMed

    Dubljević, Veljko; Racine, Eric

    2014-10-01

    The inherence heuristic (a) offers modest insights into the complex nature of both the is-ought tension in moral reasoning and moral reasoning per se, and (b) does not reflect the complexity of domain-specific moral heuristics. Formal and general in nature, we contextualize the process described as "inherence heuristic" in a web of domain-specific heuristics (e.g., agent specific; action specific; consequences specific).

  5. An updated version of NPIDB includes new classifications of DNA–protein complexes and their families

    PubMed Central

    Zanegina, Olga; Kirsanov, Dmitriy; Baulin, Eugene; Karyagina, Anna; Alexeevski, Andrei; Spirin, Sergey

    2016-01-01

    The recent upgrade of nucleic acid–protein interaction database (NPIDB, http://npidb.belozersky.msu.ru/) includes a newly elaborated classification of complexes of protein domains with double-stranded DNA and a classification of families of related complexes. Our classifications are based on contacting structural elements of both DNA: the major groove, the minor groove and the backbone; and protein: helices, beta-strands and unstructured segments. We took into account both hydrogen bonds and hydrophobic interaction. The analyzed material contains 1942 structures of protein domains from 748 PDB entries. We have identified 97 interaction modes of individual protein domain–DNA complexes and 17 DNA–protein interaction classes of protein domain families. We analyzed the sources of diversity of DNA–protein interaction modes in different complexes of one protein domain family. The observed interaction mode is sometimes influenced by artifacts of crystallization or diversity in secondary structure assignment. The interaction classes of domain families are more stable and thus possess more biological sense than a classification of single complexes. Integration of the classification into NPIDB allows the user to browse the database according to the interacting structural elements of DNA and protein molecules. For each family, we present average DNA shape parameters in contact zones with domains of the family. PMID:26656949

  6. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    PubMed

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  7. Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry

    NASA Astrophysics Data System (ADS)

    Yue, L.; Hsu, T. J.

    2017-12-01

    Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.

  8. On the maximum-entropy/autoregressive modeling of time series

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1984-01-01

    The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.

  9. Physiomodel - an integrative physiology in Modelica.

    PubMed

    Matejak, Marek; Kofranek, Jiri

    2015-08-01

    Physiomodel (http://www.physiomodel.org) is our reimplementation and extension of an integrative physiological model called HumMod 1.6 (http://www.hummod.org) using our Physiolibrary (http://www.physiolibrary.org). The computer language Modelica is well-suited to exactly formalize integrative physiology. Modelica is an equation-based, and object-oriented language for hybrid ordinary differential equations (http:// www.modelica.org). Almost every physiological term can be defined as a class in this language and can be instantiated as many times as it occurs in the body. Each class has a graphical icon for use in diagrams. These diagrams are self-describing; the Modelica code generated from them is the full representation of the underlying mathematical model. Special Modelica constructs of physical connectors from Physiolibrary allow us to create diagrams that are analogies of electrical circuits with Kirchhoff's laws. As electric currents and electric potentials are connected in electrical domain, so are molar flows and concentrations in the chemical domain; volumetric flows and pressures in the hydraulic domain; flows of heat energy and temperatures in the thermal domain; and changes and amounts of members in the population domain.

  10. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  11. The regulation mechanisms of AhR by molecular chaperone complex.

    PubMed

    Kudo, Ikuru; Hosaka, Miki; Haga, Asami; Tsuji, Noriko; Nagata, Yuhtaroh; Okada, Hirotaka; Fukuda, Kana; Kakizaki, Yuka; Okamoto, Tomoya; Grave, Ewa; Itoh, Hideaki

    2018-03-01

    The AhR, so called the dioxin receptor, is a member of the nuclear receptor superfamily. The ligand-free AhR forms a cytosolic protein complex with the molecular chaperone HSP90, co-chaperone p23, and XAP2 in the cytoplasm. Following ligand binding like 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), the AhR translocates into the nucleus. Although it has been reported that HSP90 regulates the translocation of the AhR to the nucleus, the precise activation mechanisms of the AhR have not yet been fully understood. AhR consists of the N-terminal bHLH domain containing NLS and NES, the middle PAS domain and the C-terminal transactivation domain. The PAS domain is familiar as a ligand and HSP90 binding domain. In this study, we focused on the bHLH domain that was thought to be a HSP90 binding domain. We investigated the binding properties of bHLH to HSP90. We analyzed the direct interaction of bHLH with HSP90, p23 and XAP2 using purified proteins. We found that not only the PAS domain but also the bHLH domain bound to HSP90. The bHLH domain forms complex with HSP90, p23 and XAP2. We also determined the bHLH binding domain was HSP90 N-domain. The bHLH domain makes a complex with HSP90, p23 and XAP2 via the HSP90 N-domain. Although the NLS is closed in the absence of a ligand, the structure of AhR will be changed in the presence of a ligand, which leads to NLS open, result in the nuclear translocation of AhR.

  12. Developing a Domain Ontology: the Case of Water Cycle and Hydrology

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Pozzi, W.; Piasecki, M.; Imam, B.; Houser, P.; Raskin, R.; Ramachandran, R.; Martinez Baquero, G.

    2008-12-01

    A semantic web ontology enables semantic data integration and semantic smart searching. Several organizations have attempted to implement smart registration and integration or searching using ontologies. These are the NOESIS (NSF project: LEAD) and HydroSeek (NSF project: CUAHS HIS) data discovery engines and the NSF project GEON. All three applications use ontologies to discover data from multiple sources and projects. The NASA WaterNet project was established to identify creative, innovative ways to bridge NASA research results to real world applications, linking decision support needs to available data, observations, and modeling capability. WaterNet (NASA project) utilized the smart query tool Noesis as a testbed to test whether different ontologies (and different catalog searches) could be combined to match resources with user needs. NOESIS contains the upper level SWEET ontology that accepts plug in domain ontologies to refine user search queries, reducing the burden of multiple keyword searches. Another smart search interface was that developed for CUAHSI, HydroSeek, that uses a multi-layered concept search ontology, tagging variables names from any number of data sources to specific leaf and higher level concepts on which the search is executed. This approach has proven to be quite successful in mitigating semantic heterogeneity as the user does not need to know the semantic specifics of each data source system but just uses a set of common keywords to discover the data for a specific temporal and geospatial domain. This presentation will show tests with Noesis and Hydroseek lead to the conclusion that the construction of a complex, and highly heterogeneous water cycle ontology requires multiple ontology modules. To illustrate the complexity and heterogeneity of a water cycle ontology, Hydroseek successfully utilizes WaterOneFlow to integrate data across multiple different data collections, such as USGS NWIS. However,different methodologies are employed by the Earth Science, the Hydrological, and Hydraulic Engineering Communities, and each community employs models that require different input data. If a sub-domain ontology is created for each of these,describing water balance calculations, then the resulting structure of the semantic network describing these various terms can be rather complex, heterogeneous, and overlapping, and will require "mapping" between equivalent terms in the ontologies, along with the development of an upper level conceptual or domain ontology to utilize and link to those already in existence.

  13. Expression, refolding and crystallizations of the Grb2-like (GADS) C-terminal SH3 domain complexed with a SLP-76 motif peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faravelli, Alessandro; Dimasi, Nazzareno, E-mail: ndimasi@gmail.com

    Several crystals of the Grb2-like C-terminal SH3 domain in complex with a motif peptide from the SLP-76 protein were obtained and characterized. The Grb2-like adaptor protein GADS is composed of an N-terminal SH3 domain, an SH2 domain, a proline-rich region and a C-terminal SH3 domain. GADS interacts through its C-terminal SH3 domain with the adaptor protein SLP-76, thus recruiting this protein and other associated molecules to the linker for activation of T-cell (LAT) protein. The DNA encoding the C-terminal SH3 domain of GADS (GADS-cSH3) was assembled synthetically using a recursive PCR technique and the protein was overexpressed in Escherichia coli,more » refolded and purified. Several crystals of this domain in complex with the SLP-76 peptide were obtained and characterized.« less

  14. Archaeal MCM has separable processivity, substrate choice and helicase domains

    PubMed Central

    Barry, Elizabeth R.; McGeoch, Adam T.; Kelman, Zvi; Bell, Stephen D.

    2007-01-01

    The mini-chromosome maintenance (MCM) complex is the principal candidate for the replicative helicase of archaea and eukaryotes. Here, we describe a functional dissection of the roles of the three principal structural modules of the homomultimeric MCM of the hyperthermophilic archaeon Sulfolobus solfataricus. Our results include the first analysis of the central AAA+ domain in isolation. This domain possesses ATPase and helicase activity, defining this as the minimal helicase domain. Reconstitution experiments show that the helicase activity of the AAA+ domain can be stimulated by addition of the isolated N-terminal half in trans. Addition of the N-terminus influences both the processivity of the helicase and the choice of substrate that can be melted by the ATPase domain. The degenerate helix-turn-helix domain at the C-terminus of MCM exerts a negative effect on the helicase activity of the complex. These results provide the first evidence for extensive regulatory inter-domain communication within the MCM complex. PMID:17259218

  15. Solution structure of the His12 --> Cys mutant of the N-terminal zinc binding domain of HIV-1 integrase complexed to cadmium.

    PubMed Central

    Cai, M.; Huang, Y.; Caffrey, M.; Zheng, R.; Craigie, R.; Clore, G. M.; Gronenborn, A. M.

    1998-01-01

    The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex. PMID:9865962

  16. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces

    PubMed Central

    Szent-Gyorgyi, Chris; Stanfield, Robyn L.; Andreko, Susan; Dempsey, Alison; Ahmed, Mushtaq; Capek, Sara; Waggoner, Alan; Wilson, Ian A.; Bruchez, Marcel P.

    2013-01-01

    We report that a symmetric small molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* Fluorogen Activating Protein (FAP) is a VL domain that binds malachite green dye (MG) to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity determining regions (CDRs) are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1,000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high affinity protein tags and capture reagents. PMID:23978698

  17. Rapid Activation of Bone Morphogenic Protein 9 by Receptor-mediated Displacement of Pro-domains*

    PubMed Central

    Kienast, Yvonne; Jucknischke, Ute; Scheiblich, Stefan; Thier, Martina; de Wouters, Mariana; Haas, Alexander; Lehmann, Christian; Brand, Verena; Bernicke, Dirk; Honold, Konrad; Lorenz, Stefan

    2016-01-01

    By non-covalent association after proteolytic cleavage, the pro-domains modulate the activities of the mature growth factor domains across the transforming growth factor-β family. In the case of bone morphogenic protein 9 (BMP9), however, the pro-domains do not inhibit the bioactivity of the growth factor, and the BMP9·pro-domain complexes have equivalent biological activities as the BMP9 mature ligand dimers. By using real-time surface plasmon resonance, we could demonstrate that either binding of pro-domain-complexed BMP9 to type I receptor activin receptor-like kinase 1 (ALK1), type II receptors, co-receptor endoglin, or to mature BMP9 domain targeting antibodies leads to immediate and complete displacement of the pro-domains from the complex. Vice versa, pro-domain binding by an anti-pro-domain antibody results in release of the mature BMP9 growth factor. Based on these findings, we adjusted ELISA assays to measure the protein levels of different BMP9 variants. Although mature BMP9 and inactive precursor BMP9 protein were directly detectable by ELISA, BMP9·pro-domain complex could only be measured indirectly as dissociated fragments due to displacement of mature growth factor and pro-domains after antibody binding. Our studies provide a model in which BMP9 can be readily activated upon getting into contact with its receptors. This increases the understanding of the underlying biology of BMP9 activation and also provides guidance for ELISA development for the detection of circulating BMP9 variants. PMID:26677222

  18. Simulation of unsteady flows through stator and rotor blades of a gas turbine using the Chimera method

    NASA Technical Reports Server (NTRS)

    Nakamura, S.; Scott, J. N.

    1993-01-01

    A two-dimensional model to solve compressible Navier-Stokes equations for the flow through stator and rotor blades of a turbine is developed. The flow domains for the stator and rotor blades are coupled by the Chimera method that makes grid generation easy and enhances accuracy because the area of the grid that have high turning of grid lines or high skewness can be eliminated from the computational domain after the grids are generated. The results of flow computations show various important features of unsteady flows including the acoustic waves interacting with boundary layers, Karman vortex shedding from the trailing edge of the stator blades, pulsating incoming flow to a rotor blade from passing stator blades, and flow separation from both suction and pressure sides of the rotor blades.

  19. Time-gated flow cytometry: an ultra-high selectivity method to recover ultra-rare-event μ-targets in high-background biosamples

    NASA Astrophysics Data System (ADS)

    Jin, Dayong; Piper, James A.; Leif, Robert C.; Yang, Sean; Ferrari, Belinda C.; Yuan, Jingli; Wang, Guilan; Vallarino, Lidia M.; Williams, John W.

    2009-03-01

    A fundamental problem for rare-event cell analysis is auto-fluorescence from nontarget particles and cells. Time-gated flow cytometry is based on the temporal-domain discrimination of long-lifetime (>1 μs) luminescence-stained cells and can render invisible all nontarget cell and particles. We aim to further evaluate the technique, focusing on detection of ultra-rare-event 5-μm calibration beads in environmental water dirt samples. Europium-labeled 5-μm calibration beads with improved luminescence homogeneity and reduced aggregation were evaluated using the prototype UV LED excited time-gated luminescence (TGL) flow cytometer (FCM). A BD FACSAria flow cytometer was used to sort accurately a very low number of beads (<100 events), which were then spiked into concentrated samples of environmental water. The use of europium-labeled beads permitted the demonstration of specific detection rates of 100%+/-30% and 91%+/-3% with 10 and 100 target beads, respectively, that were mixed with over one million nontarget autofluorescent background particles. Under the same conditions, a conventional FCM was unable to recover rare-event fluorescein isothiocyanate (FITC) calibration beads. Preliminary results on Giardia detection are also reported. We have demonstrated the scientific value of lanthanide-complex biolabels in flow cytometry. This approach may augment the current method that uses multifluorescence-channel flow cytometry gating.

  20. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, Dennis W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.

  1. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits. Copyright © 2016 the American Physiological Society.

  2. Overview of the GRC Stirling Convertor System Dynamic Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Regan, Timothy F.

    2004-01-01

    A Stirling Convertor System Dynamic Model has been developed at the Glenn Research Center for controls, dynamics, and systems development of free-piston convertor power systems. It models the Stirling cycle thermodynamics, heat flow, gas, mechanical, and mounting dynamics, the linear alternator, and the controller. The model's scope extends from the thermal energy input to thermal, mechanical dynamics, and electrical energy out, allowing one to study complex system interactions among subsystems. The model is a non-linear time-domain model containing sub-cycle dynamics, allowing it to simulate transient and dynamic phenomena that other models cannot. The model details and capability are discussed.

  3. Probing eukaryotic cell mechanics via mesoscopic simulations

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor V.; Lykov, Kirill; Nematbakhsh, Yasaman; Shang, Menglin; Lim, Chwee Teck

    2017-11-01

    We developed a new mesoscopic particle based eukaryotic cell model which takes into account cell membrane, cytoskeleton and nucleus. The breast epithelial cells were used in our studies. To estimate the viscoelastic properties of cells and to calibrate the computational model, we performed micropipette aspiration experiments. The model was then validated using data from microfluidic experiments. Using the validated model, we probed contributions of sub-cellular components to whole cell mechanics in micropipette aspiration and microfluidics experiments. We believe that the new model will allow to study in silico numerous problems in the context of cell biomechanics in flows in complex domains, such as capillary networks and microfluidic devices.

  4. Solution of internal ballistic problem for SRM with grain of complex shape during main firing phase

    NASA Astrophysics Data System (ADS)

    Kiryushkin, A. E.; Minkov, L. L.

    2017-10-01

    Solid rocket motor (SRM) internal ballistics problems are related to the problems with moving boundaries. The algorithm able to solve similar problems in axisymmetric formulation on Cartesian mesh with an arbitrary order of accuracy is considered in this paper. The base of this algorithm is the ghost point extrapolation using inverse Lax-Wendroff procedure. Level set method is used as an implicit representation of the domain boundary. As an example, the internal ballistics problem for SRM with umbrella type grain was solved during the main firing phase. In addition, flow parameters distribution in the combustion chamber was obtained for different time moments.

  5. Modeling of Subsurface Lagrangian Sensor Swarms for Spatially Distributed Current Measurements in High Energy Coastal Environments

    NASA Astrophysics Data System (ADS)

    Harrison, T. W.; Polagye, B. L.

    2016-02-01

    Coastal ecosystems are characterized by spatially and temporally varying hydrodynamics. In marine renewable energy applications, these variations strongly influence project economics and in oceanographic studies, they impact accuracy of biological transport and pollutant dispersion models. While stationary point or profile measurements are relatively straight forward, spatial representativeness of point measurements can be poor due to strong gradients. Moving platforms, such as AUVs or surface vessels, offer better coverage, but suffer from energetic constraints (AUVs) and resolvable scales (vessels). A system of sub-surface, drifting sensor packages is being developed to provide spatially distributed, synoptic data sets of coastal hydrodynamics with meter-scale resolution over a regional extent of a kilometer. Computational investigation has informed system parameters such as drifter size and shape, necessary position accuracy, number of drifters, and deployment methods. A hydrodynamic domain with complex flow features was created using a computational fluid dynamics code. A simple model of drifter dynamics propagate the drifters through the domain in post-processing. System parameters are evaluated relative to their ability to accurately recreate domain hydrodynamics. Implications of these results for an inexpensive, depth-controlled Lagrangian drifter system is presented.

  6. Tertiary extension and mineral deposits, southwestern U.S.

    USGS Publications Warehouse

    Rehrig, William A.; Hardy, James.J.

    1996-01-01

    Starting in Las Vegas, we will traverse through many of the geometric elements and complexities of hanging wall deformation above the regional detachment systems of the Colorado River extensional terrane. We will study the interaction of normal faults as arranged in regional, crustal-scale mega-domains and the bounding structures that separate these tilt domains. As we progress through the classic Eldorado Mountains-Hoover Dam region, where many of the ideas of listric normal faulting were first popularized, we will see both the real rocks and the historic rationale for their deformation. By examining the listric versus domino models for normal faulting, we will utilize different geometric techniques for determining the depth to the detachment structures and percent extension. Continuing further south toward southernmost Nevada, we will cross the accommodation zone that separates the Lake Mead and Whipple dip domains and further descend to deeper structural levels to examine lower levels of the major normal faults and their tilting of upper-crustal blocks and associated offset along the regional detachment faults. Fluid flow within the shattered fault zones and its relationship to the 3-D geometries of the fault surfaces will be studied both along the faults and within the hydrothermally altered and mineralized wallrocks.

  7. Dimer formation through domain swapping in the crystal structure of the Grb2-SH2-Ac-pYVNV complex.

    PubMed

    Schiering, N; Casale, E; Caccia, P; Giordano, P; Battistini, C

    2000-11-07

    Src homology 2 (SH2) domains are key modules in intracellular signal transduction. They link activated cell surface receptors to downstream targets by binding to phosphotyrosine-containing sequence motifs. The crystal structure of a Grb2-SH2 domain-phosphopeptide complex was determined at 2.4 A resolution. The asymmetric unit contains four polypeptide chains. There is an unexpected domain swap so that individual chains do not adopt a closed SH2 fold. Instead, reorganization of the EF loop leads to an open, nonglobular fold, which associates with an equivalent partner to generate an intertwined dimer. As in previously reported crystal structures of canonical Grb2-SH2 domain-peptide complexes, each of the four hybrid SH2 domains in the two domain-swapped dimers binds the phosphopeptide in a type I beta-turn conformation. This report is the first to describe domain swapping for an SH2 domain. While in vivo evidence of dimerization of Grb2 exists, our SH2 dimer is metastable and a physiological role of this new form of dimer formation remains to be demonstrated.

  8. Time-Domain Filtering for Spatial Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.

  9. Nonlinear (time domain) and linearized (time and frequency domain) solutions to the compressible Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.

    1995-01-01

    Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.

  10. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  11. Linking Domain-Specific Models to Describe the Complex Dynamics and Management Options of a Saline Floodplain

    NASA Astrophysics Data System (ADS)

    Woods, J.; Laattoe, T.

    2016-12-01

    Complex hydrological environments present management challenges where surface water-groundwater interactions involve interlinked processes at multiple scales. One example is Australia's River Murray, which flows through a semi-arid landscape with highly saline groundwater. In this region, the floodplain ecology depends on freshwater provided from the main river channel, anabranches, and floodwaters. However, in the past century access to freshwater has been further limited due to river regulation, land clearance, and irrigation. A programme to improve ecosystem health at Pike Floodplain, South Australia, is evaluating management options such as environmental watering and groundwater pumping. Due to the complicated interdependencies between processes moving water and salt within the floodplain, a series of inter-linked models were developed to assist with management decisions. The models differ by hydrological domain, scale, and dimensionality. Together they simulate surface water, the unsaturated zone, and groundwater on regional, floodplain, and local scales. Outputs from regional models provide boundary conditions for floodplain models, which in turn provide inputs for the local scale models. The results are interpreted based on (i) ecohydrological requirements for key species of tree and fish, and (ii) impacts on river salinity for downstream users. When combined, the models provide an integrated and interdiscplinary understanding of the hydrology and management of saline floodplains.

  12. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    NASA Astrophysics Data System (ADS)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R < 20. A realistic IBC is then employed, derived via an inverse Helmholtz solver analysis of an ultrasonically absorbing carbon-fiber-reinforced carbon ceramic sample used in recent hypersonic transition experiments by Dr. Wagner and co-workers at DLR-Göttingen.

  13. An Immersed Boundary-Lattice Boltzmann Method for Simulating Particulate Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Cheng, Ming; Lou, Jing

    2013-11-01

    A two-dimensional momentum exchange-based immersed boundary-lattice Boltzmann method developed by X.D. Niu et al. (2006) has been extended in three-dimensions for solving fluid-particles interaction problems. This method combines the most desirable features of the lattice Boltzmann method and the immersed boundary method by using a regular Eulerian mesh for the flow domain and a Lagrangian mesh for the moving particles in the flow field. The non-slip boundary conditions for the fluid and the particles are enforced by adding a force density term into the lattice Boltzmann equation, and the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. This method preserves the advantages of lattice Boltzmann method in tracking a group of particles and, at the same time, provides an alternative approach to treat solid-fluid boundary conditions. Numerical validations show that the present method is very accurate and efficient. The present method will be further developed to simulate more complex problems with particle deformation, particle-bubble and particle-droplet interactions.

  14. Quantifying the deformation of the red blood cell skeleton in shear flow

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Zhu, Qiang

    2012-02-01

    To quantitatively predict the response of red blood cell (RBC) membrane in shear flow, we carried out multiphysics simulations by coupling a three-level multiscale approach of RBC membranes with a Boundary Element Method (BEM) for surrounding flows. Our multiscale approach includes a model of spectrins with the domain unfolding feature, a molecular-based model of the junctional complex with detailed protein connectivity and a whole cell Finite Element Method (FEM) model with the bilayer-skeleton friction derived from measured transmembrane protein diffusivity based on the Einstein-Stokes relation. Applying this approach, we investigated the bilayer-skeleton slip and skeleton deformation of healthy RBCs and RBCs with hereditary spherocytosis anemia during tank-treading motion. Compared with healthy cells, cells with hereditary spherocytosis anemia sustain much larger skeleton-bilayer slip and area deformation of the skeleton due to deficiency of transmembrane proteins. This leads to extremely low skeleton density and large bilayer-skeleton interaction force, both of which may cause bilayer loss. This finding suggests a possible mechanism of the development of hereditary spherocytosis anemia.

  15. Infiltration into soils: Conceptual approaches and solutions

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel

    2013-04-01

    Infiltration is a key process in aspects of hydrology, agricultural and civil engineering, irrigation design, and soil and water conservation. It is complex, depending on soil and rainfall properties and initial and boundary conditions within the flow domain. During the last century, a great deal of effort has been invested to understand the physics of infiltration and to develop quantitative predictors of infiltration dynamics. Jean-Yves Parlange and Wilfried Brutsaert have made seminal contributions, especially in the area of infiltration theory and related analytical solutions to the flow equations. This review retraces the landmark discoveries and the evolution of the conceptual approaches and the mathematical solutions applied to the problem of infiltration into porous media, highlighting the pivotal contributions of Parlange and Brutsaert. A historical retrospective of physical models of infiltration is followed by the presentation of mathematical methods leading to analytical solutions of the flow equations. This review then addresses the time compression approximation developed to estimate infiltration at the transition between preponding and postponding conditions. Finally, the effects of special conditions, such as the presence of air and heterogeneity in soil properties, on infiltration are considered.

  16. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  17. Myocilin, a Component of a Membrane-Associated Protein Complex Driven by a Homologous Q-SNARE Domain

    PubMed Central

    Dismuke, W. Michael; McKay, Brian S.; Stamer, W. Daniel

    2012-01-01

    Myocilin is a widely expressed protein with no known function, however, mutations in myocilin appear to manifest uniquely as ocular hypertension and the blinding disease glaucoma. Using the protein homology/analogy recognition engine (PHYRE) we find that the olfactomedin domain of myocilin is similar in sequence motif and structure to a six-bladed, kelch repeat motif based on the known crystal structures of such proteins. Additionally, using sequence analysis we identify a coiled-coil segment of myocilin with homology to human Q-SNARE proteins. Using COS-7 cells expressing full length human myocilin and a version lacking the C-terminal olfactomedin domain, we identified a membrane-associated protein complex containing myocilin by hydrodynamic analysis. The myocilin construct that included the coiled-coil but lacked the olfactomedin domain formed complexes similar to the full-length protein, indicating that the coiled-coil domain of myocilin is sufficient for myocilin to bind to the large detergent resistant complex. In human retina and retinal pigment epithelium, which express myocilin, we detected the protein in a large, SDS-resistant, membrane-associated complex. We characterized the hydrodynamic properties of myocilin in human tissues as either a 15s complex with an Mr=405,000–440,000 yielding a slightly elongated globular shape similar to known SNARE complexes or a dimer of 6.4s and Mr=108,000. By identifying the Q-SNARE homology within the second coil of myocilin and documenting its participation in a SNARE-like complex, we provide evidence of a SNARE domain containing protein associated with a human disease. PMID:22463803

  18. Differential Dynamic Engagement within 24 SH3 Domain: Peptide Complexes Revealed by Co-Linear Chemical Shift Perturbation Analysis

    PubMed Central

    Stollar, Elliott J.; Lin, Hong; Davidson, Alan R.; Forman-Kay, Julie D.

    2012-01-01

    There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences. PMID:23251481

  19. Modal element method for potential flow in non-uniform ducts: Combining closed form analysis with CFD

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Baumeister, Joseph F.

    1994-01-01

    An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.

  20. Model of a ternary complex between activated factor VII, tissue factor and factor IX.

    PubMed

    Chen, Shu-wen W; Pellequer, Jean-Luc; Schved, Jean-François; Giansily-Blaizot, Muriel

    2002-07-01

    Upon binding to tissue factor, FVIIa triggers coagulation by activating vitamin K-dependent zymogens, factor IX (FIX) and factor X (FX). To understand recognition mechanisms in the initiation step of the coagulation cascade, we present a three-dimensional model of the ternary complex between FVIIa:TF:FIX. This model was built using a full-space search algorithm in combination with computational graphics. With the known crystallographic complex FVIIa:TF kept fixed, the FIX docking was performed first with FIX Gla-EGF1 domains, followed by the FIX protease/EGF2 domains. Because the FIXa crystal structure lacks electron density for the Gla domain, we constructed a chimeric FIX molecule that contains the Gla-EGF1 domains of FVIIa and the EGF2-protease domains of FIXa. The FVIIa:TF:FIX complex has been extensively challenged against experimental data including site-directed mutagenesis, inhibitory peptide data, haemophilia B database mutations, inhibitor antibodies and a novel exosite binding inhibitor peptide. This FVIIa:TF:FIX complex provides a powerful tool to study the regulation of FVIIa production and presents new avenues for developing therapeutic inhibitory compounds of FVIIa:TF:substrate complex.

  1. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets.

    PubMed

    Interlandi, Gianluca; Yakovenko, Olga; Tu, An-Yue; Harris, Jeff; Le, Jennie; Chen, Junmei; López, José A; Thomas, Wendy E

    2017-11-10

    The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp 1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Crystal structures of the CBS and DRTGG domains of the regulatory region of Clostridiumperfringens pyrophosphatase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate.

    PubMed

    Tuominen, H; Salminen, A; Oksanen, E; Jämsen, J; Heikkilä, O; Lehtiö, L; Magretova, N N; Goldman, A; Baykov, A A; Lahti, R

    2010-05-07

    Nucleotide-binding cystathionine beta-synthase (CBS) domains serve as regulatory units in numerous proteins distributed in all kingdoms of life. However, the underlying regulatory mechanisms remain to be established. Recently, we described a subfamily of CBS domain-containing pyrophosphatases (PPases) within family II PPases. Here, we express a novel CBS-PPase from Clostridium perfringens (CPE2055) and show that the enzyme is inhibited by AMP and activated by a novel effector, diadenosine 5',5-P1,P4-tetraphosphate (AP(4)A). The structures of the AMP and AP(4)A complexes of the regulatory region of C. perfringens PPase (cpCBS), comprising a pair of CBS domains interlinked by a DRTGG domain, were determined at 2.3 A resolution using X-ray crystallography. The structures obtained are the first structures of a DRTGG domain as part of a larger protein structure. The AMP complex contains two AMP molecules per cpCBS dimer, each bound to a single monomer, whereas in the activator-bound complex, one AP(4)A molecule bridges two monomers. In the nucleotide-bound structures, activator binding induces significant opening of the CBS domain interface, compared with the inhibitor complex. These results provide structural insight into the mechanism of CBS-PPase regulation by nucleotides. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, F.; Stec, B; Pop, C

    The death inducing signalling complex (DISC) formed by Fas receptor, FADD (Fas-associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis1, 2, 3. The Fas-FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation4, 5. Thus, characterizing the mechanistic basis for the Fas-FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed andmore » isolated the human Fas-FADD death domain complex and report the 2.7 A crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.« less

  4. Coupling unbiased mutagenesis to high-throughput DNA sequencing uncovers functional domains in the Ndc80 kinetochore protein of Saccharomyces cerevisiae.

    PubMed

    Tien, Jerry F; Fong, Kimberly K; Umbreit, Neil T; Payen, Celia; Zelter, Alex; Asbury, Charles L; Dunham, Maitreya J; Davis, Trisha N

    2013-09-01

    During mitosis, kinetochores physically link chromosomes to the dynamic ends of spindle microtubules. This linkage depends on the Ndc80 complex, a conserved and essential microtubule-binding component of the kinetochore. As a member of the complex, the Ndc80 protein forms microtubule attachments through a calponin homology domain. Ndc80 is also required for recruiting other components to the kinetochore and responding to mitotic regulatory signals. While the calponin homology domain has been the focus of biochemical and structural characterization, the function of the remainder of Ndc80 is poorly understood. Here, we utilized a new approach that couples high-throughput sequencing to a saturating linker-scanning mutagenesis screen in Saccharomyces cerevisiae. We identified domains in previously uncharacterized regions of Ndc80 that are essential for its function in vivo. We show that a helical hairpin adjacent to the calponin homology domain influences microtubule binding by the complex. Furthermore, a mutation in this hairpin abolishes the ability of the Dam1 complex to strengthen microtubule attachments made by the Ndc80 complex. Finally, we defined a C-terminal segment of Ndc80 required for tetramerization of the Ndc80 complex in vivo. This unbiased mutagenesis approach can be generally applied to genes in S. cerevisiae to identify functional properties and domains.

  5. Parametrization of turbulence models using 3DVAR data assimilation in laboratory conditions

    NASA Astrophysics Data System (ADS)

    Olbert, A. I.; Nash, S.; Ragnoli, E.; Hartnett, M.

    2013-12-01

    In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ɛ model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ɛ model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. Such analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows. This research further demonstrates how 3DVAR can be utilized to identify and quantify shortcomings of the numerical model and consequently to improve forecasting by correct parameterization of the turbulence models. Such improvements may greatly benefit physical oceanography in terms of understanding and monitoring of coastal systems and the engineering sector through applications in coastal structure design, marine renewable energy and pollutant transport.

  6. Simulation of geothermal water extraction in heterogeneous reservoirs using dynamic unstructured mesh optimisation

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.

    2017-12-01

    It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required to reduce an error metric based on the Hessian of the field. This allows the local pressure drawdown to be captured without user¬ driven modification of the mesh. We demonstrate that the method has wide application in reservoir ¬scale models of geothermal fields, and regional models of groundwater resources.

  7. Large-eddy simulations with wall models

    NASA Technical Reports Server (NTRS)

    Cabot, W.

    1995-01-01

    The near-wall viscous and buffer regions of wall-bounded flows generally require a large expenditure of computational resources to be resolved adequately, even in large-eddy simulation (LES). Often as much as 50% of the grid points in a computational domain are devoted to these regions. The dense grids that this implies also generally require small time steps for numerical stability and/or accuracy. It is commonly assumed that the inner wall layers are near equilibrium, so that the standard logarithmic law can be applied as the boundary condition for the wall stress well away from the wall, for example, in the logarithmic region, obviating the need to expend large amounts of grid points and computational time in this region. This approach is commonly employed in LES of planetary boundary layers, and it has also been used for some simple engineering flows. In order to calculate accurately a wall-bounded flow with coarse wall resolution, one requires the wall stress as a boundary condition. The goal of this work is to determine the extent to which equilibrium and boundary layer assumptions are valid in the near-wall regions, to develop models for the inner layer based on such assumptions, and to test these modeling ideas in some relatively simple flows with different pressure gradients, such as channel flow and flow over a backward-facing step. Ultimately, models that perform adequately in these situations will be applied to more complex flow configurations, such as an airfoil.

  8. Strategic optimisation of microgrid by evolving a unitised regenerative fuel cell system operational criterion

    NASA Astrophysics Data System (ADS)

    Bhansali, Gaurav; Singh, Bhanu Pratap; Kumar, Rajesh

    2016-09-01

    In this paper, the problem of microgrid optimisation with storage has been addressed in an unaccounted way rather than confining it to loss minimisation. Unitised regenerative fuel cell (URFC) systems have been studied and employed in microgrids to store energy and feed it back into the system when required. A value function-dependent on line losses, URFC system operational cost and stored energy at the end of the day are defined here. The function is highly complex, nonlinear and multi dimensional in nature. Therefore, heuristic optimisation techniques in combination with load flow analysis are used here to resolve the network and time domain complexity related with the problem. Particle swarm optimisation with the forward/backward sweep algorithm ensures optimal operation of microgrid thereby minimising the operational cost of the microgrid. Results are shown and are found to be consistently improving with evolution of the solution strategy.

  9. Isotropic stochastic rotation dynamics

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten

    2017-12-01

    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  10. Efficient Multiscale Computation with Improved Momentum Flux Coupling via Operator-Splitting and Probabilistic Uncertainty Quantification

    DTIC Science & Technology

    2016-08-23

    Different percentages of clay (10 to 30%) and sand (35 to 55%) have been used to represent various flow concentrations (Table 1). Dynamic viscosity of the... viscosity , was adopted as the wall boundary treatment method. 2.2 Physical Domain The domain consists of a 7.0m long flume, which has an inclination of...the shear stress, μapp is the apparent viscosity , K is the flow consistency index, n is the flow behavior index, and γ is the shear rate, which is

  11. Computational methods for aerodynamic design using numerical optimization

    NASA Technical Reports Server (NTRS)

    Peeters, M. F.

    1983-01-01

    Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.

  12. Analysis of mesoscopic attenuation in gas-hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Rubino, J. G.; Ravazzoli, C. L.; Santos, J. E.

    2007-05-01

    Several authors have shown that seismic wave attenuation combined with seismic velocities constitute a useful geophysical tool to infer the presence and amounts of gas hydrates lying in the pore space of the sediments. However, it is still not fully understood the loss mechanism associated to the presence of the hydrates, and most of the works dealing with this problem focuse on macroscopic fluid flow, friction between hydrates and sediment matrix and squirt flow. It is well known that an important cause of the attenuation levels observed in seismic data from some sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths. In order to analyze this effect in heterogeneous gas-hydrate bearing sediments, we developed a finite-element procedure to obtain the effective complex modulus of an heterogeneous porous material containing gas hydrates in its pore space using compressibility tests at different oscillatory frequencies in the seismic range. The complex modulus were obtained by solving Biot's equations of motion in the space-frequency domain with appropriate boundary conditions representing a gedanken laboratory experiment measuring the complex volume change of a representative sample of heterogeneous bulk material. This complex modulus in turn allowed us to obtain the corresponding effective phase velocity and quality factor for each frequency and spatial gas hydrate distribution. Physical parameters taken from the Mallik 5L-38 Gas Hydrate Research well (Mackenzie Delta, Canada) were used to analyze the mesoscopic effects in realistic hydrated sediments.

  13. Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; He, Ya-Ling; Kang, Qinjun

    2013-12-15

    A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of whichmore » obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.« less

  14. Bridging Numerical and Analytical Models of Transient Travel Time Distributions: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Danesh Yazdi, M.; Klaus, J.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Recent advancements in analytical solutions to quantify water and solute time-variant travel time distributions (TTDs) and the related StorAge Selection (SAS) functions synthesize catchment complexity into a simplified, lumped representation. While these analytical approaches are easy and efficient in application, they require high frequency hydrochemical data for parameter estimation. Alternatively, integrated hydrologic models coupled to Lagrangian particle-tracking approaches can directly simulate age under different catchment geometries and complexity at a greater computational expense. Here, we compare and contrast the two approaches by exploring the influence of the spatial distribution of subsurface heterogeneity, interactions between distinct flow domains, diversity of flow pathways, and recharge rate on the shape of TTDs and the relating SAS functions. To this end, we use a parallel three-dimensional variably saturated groundwater model, ParFlow, to solve for the velocity fields in the subsurface. A particle-tracking model, SLIM, is then implemented to determine the age distributions at every real time and domain location, facilitating a direct characterization of the SAS functions as opposed to analytical approaches requiring calibration of such functions. Steady-state results reveal that the assumption of random age sampling scheme might only hold in the saturated region of homogeneous catchments resulting in an exponential TTD. This assumption is however violated when the vadose zone is included as the underlying SAS function gives a higher preference to older ages. The dynamical variability of the true SAS functions is also shown to be largely masked by the smooth analytical SAS functions. As the variability of subsurface spatial heterogeneity increases, the shape of TTD approaches a power-law distribution function, including a broader distribution of shorter and longer travel times. We further found that larger (smaller) magnitude of effective precipitation shifts the scale of TTD towards younger (older) travel times, while the shape of the TTD remains untouched. This work constitutes a first step in linking a numerical transport model and analytical solutions of TTD to study their assumptions and limitations, providing physical inferences for empirical parameters.

  15. Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think of a mechanism that activates the split form of the equations only at some parts of the domain. Another issue is how to define good sensors for determining in which parts of the computational domain a certain feature should be filtered by the appropriate numerical dissipation. For the present study we employ a wavelet technique introduced in as sensors. Here, the method is briefly described with selected numerical experiments.

  16. Bulk rheology and simulated episodic tremor and slip within a numerically-modeled block-dominated subduction melange

    NASA Astrophysics Data System (ADS)

    Webber, S.; Ellis, S. M.; Fagereng, A.

    2015-12-01

    We investigate the influence of melange rheology in a subduction thrust interface on stress and slip cycling constrained by observations from an exhumed subduction complex at Chrystalls Beach, New Zealand. A two-phase mélange dominated by large, competent brittle-viscous blocks surrounded by a weak non-linear viscous matrix is numerically modeled, and the evolution of bulk stress are analysed as the domain deforms. The models produce stress cycling behaviour under constant shear strain rate boundary conditions for a wide range of physical conditions that roughly corresponds to depths and strain rates calculated for instrumentally observed episodic tremor and slip (ETS) in presently-deforming subduction thrust interfaces. Stress cycling is accompanied by mixed brittle plastic-viscous deformation, and occurs as a consequence of geometric reorganisation and the progressive development and breakdown of stress bridges as blocks mutually obstruct one another. We argue that periods of low differential stress correspond to periods of rapid mixed-mode deformation and ETS. Stress cycling episodicities are a function of shear strain rate and pressure/temperature conditions at depth. The time period of stress cycling is principally controlled by the geometry (block distribution and density through time) and stress cycling amplitudes are controlled by effective stress. The duration of stress cycling events in the models (months-years) and rapid strain rates are comparable to instrumentally observed ETS. Shear strain rates are 1 - 2 orders of magnitude slower between stress cycling events, suggesting episodic return times within a single model domain are long duration (> centennial timescales), assuming constant flow stress. Finally, we derive a bulk viscous flow law for block dominated subduction mélanges for conditions 300 - 500°C and elevated pore fluid pressures. Bulk flow laws calculated for block-dominated subduction mélanges are non-linear, owing to a combination of non-linear matrix viscosity and development of tensile fractures at rapid shear strain rates. Model behaviour, including the generation of mixed-mode deformation, is highly comparable to the exhumed block-dominated melange found within the Chrystalls Beach Complex.

  17. Mapping of interaction domains between human repair proteins ERCC1 and XPF.

    PubMed

    de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H

    1998-09-15

    ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1.

  18. Mapping of interaction domains between human repair proteins ERCC1 and XPF.

    PubMed Central

    de Laat, W L; Sijbers, A M; Odijk, H; Jaspers, N G; Hoeijmakers, J H

    1998-01-01

    ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1. PMID:9722633

  19. The structure of the nucleoprotein binding domain of lyssavirus phosphoprotein reveals a structural relationship between the N-RNA binding domains of Rhabdoviridae and Paramyxoviridae.

    PubMed

    Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé

    2010-01-01

    The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.

  20. Numerical investigation of flow parameters for solid rigid spheroidal particle in a pulsatile pipe flow

    NASA Astrophysics Data System (ADS)

    Varghese, Joffin; Jayakumar, J. S.

    2017-09-01

    Quantifying, forecasting and analysing the displacement rates of suspended particles are essential while discussing about blood flow analysis. Because blood is one of the major organs in the body, which enables transport phenomena, comprising of numerous blood cells. In order to model the blood flow, a flow domain was created and numerically simulated. Flow field velocity in the stream is solved utilizing Finite Volume Method utilizing FVM unstructured solver. In pulsatile flow, the effect of parameters such as average Reynolds number, tube radius, particle size and Womersley number are taken into account. In this study spheroidal particle trajectory in axial direction is simulated at different values of pulsating frequency including 1.2 Hz, 3.33 Hz and 4.00 Hz and various densities including 1005 kg/m3 and 1025 kg/m3 for the flow domain. The analysis accomplishes the interaction study of blood constituents for different flow situations which have applications in diagnosis and treatment of cardio vascular related diseases.

  1. Turbulent complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  2. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart-Hutchinson, P.J.; Hale, Christopher M.; Wirtz, Denis

    The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affectmore » cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins.« less

  3. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain

    NASA Technical Reports Server (NTRS)

    Jaeger, L.; Wright, M. C.; Joyce, G. F.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 10(16) different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3',5'-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3' hydroxyl and the other a 5' triphosphate. Ligation occurs in the context of a Watson-Crick duplex, with a catalytic rate of 0.26 min(-1) under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.

  4. Modeling software systems by domains

    NASA Technical Reports Server (NTRS)

    Dippolito, Richard; Lee, Kenneth

    1992-01-01

    The Software Architectures Engineering (SAE) Project at the Software Engineering Institute (SEI) has developed engineering modeling techniques that both reduce the complexity of software for domain-specific computer systems and result in systems that are easier to build and maintain. These techniques allow maximum freedom for system developers to apply their domain expertise to software. We have applied these techniques to several types of applications, including training simulators operating in real time, engineering simulators operating in non-real time, and real-time embedded computer systems. Our modeling techniques result in software that mirrors both the complexity of the application and the domain knowledge requirements. We submit that the proper measure of software complexity reflects neither the number of software component units nor the code count, but the locus of and amount of domain knowledge. As a result of using these techniques, domain knowledge is isolated by fields of engineering expertise and removed from the concern of the software engineer. In this paper, we will describe kinds of domain expertise, describe engineering by domains, and provide relevant examples of software developed for simulator applications using the techniques.

  5. The cyanobacterial cytochrome b6f subunit PetP adopts an SH3 fold in solution.

    PubMed

    Veit, Sebastian; Nagadoi, Aritaka; Rögner, Matthias; Rexroth, Sascha; Stoll, Raphael; Ikegami, Takahisa

    2016-06-01

    PetP is a peripheral subunit of the cytochrome b(6)f complex (b(6)f) present in both, cyanobacteria and red algae. It is bound to the cytoplasmic surface of this membrane protein complex where it greatly affects the efficiency of the linear photosynthetic electron flow although it is not directly involved in the electron transfer reactions. Despite the crystal structures of the b(6)f core complex, structural information for the transient regulatory b(6)f subunits is still missing. Here we present the first structure of PetP at atomic resolution as determined by solution NMR. The protein adopts an SH3 fold, which is a common protein motif in eukaryotes but comparatively rare in prokaryotes. The structure of PetP enabled the identification of the potential interaction site for b(6)f binding by conservation mapping. The interaction surface is mainly formed by two large loop regions and one short 310 helix which also exhibit an increased flexibility as indicated by heteronuclear steady-state {(1)H}-(15)N NOE and random coil index parameters. The properties of this potential b(6)f binding site greatly differ from the canonical peptide binding site which is highly conserved in eukaryotic SH3 domains. Interestingly, three other proteins of the photosynthetic electron transport chain share this SH3 fold with PetP: NdhS of the photosynthetic NADH dehydrogenase-like complex (NDH-1), PsaE of the photosystem 1 and subunit α of the ferredoxin-thioredoxin reductase have, similar to PetP, a great impact on the photosynthetic electron transport. Finally, a model is presented to illustrate how SH3 domains modulate the photosynthetic electron transport processes in cyanobacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Cytochrome b6 arginine 214 of Synechococcus sp. PCC 7002, a key residue for quinone-reductase site function and turnover of the cytochrome bf complex.

    PubMed

    Nelson, Matthew E; Finazzi, Giovanni; Wang, Qing Jun; Middleton-Zarka, Kelly A; Whitmarsh, John; Kallas, Toivo

    2005-03-18

    Quinone-reductase (Q(i)) domains of cyanobacterial/chloroplast cytochrome bf and bacterial/mitochondrial bc complexes differ markedly, and the cytochrome bf Q(i) site mechanism remains largely enigmatic. To investigate the bf Q(i) domain, we constructed the mutation R214H, which substitutes histidine for a conserved arginine in the cytochrome b(6) polypeptide of the cyanobacterium Synechococcus sp. SPCC 7002. At high light intensity, the R214H mutant grew approximately 2.5-fold more slowly than the wild type. Slower growth arose from correspondingly slower overall turnover of the bf complex. Specifically, as shown in single flash turnover experiments of cytochrome b(6) reduction and oxidation, the R214H mutation partially blocked electron transfer to the Q(i) site, mimicking the effect of the Q(i) site inhibitor 2-N-4-hydroxyquinoline-N-oxide. The kinetics of cytochrome b(6) oxidation were largely unaffected by hydrogen-deuterium exchange in the mutant but were slowed considerably in the wild type. This suggests that although protonation events influenced the kinetics of cytochrome b(6) oxidation at the Q(i) site in the wild type, electron flow limited this reaction in the R214H mutant. Redox titration of membranes revealed midpoint potentials (E(m,7)) of the two b hemes similar to those in the wild type. Our data define cytochrome b(6) Arg(214) as a key residue for Q(i) site catalysis and turnover of the cytochrome bf complex. In the recent cytochrome bf structures, Arg(214) lies near the Q(i) pocket and the newly discovered c(i) or x heme. We propose a model for Q(i) site function and a role for Arg(214) in plastoquinone binding.

  7. Adaptive multigrid domain decomposition solutions for viscous interacting flows

    NASA Technical Reports Server (NTRS)

    Rubin, Stanley G.; Srinivasan, Kumar

    1992-01-01

    Several viscous incompressible flows with strong pressure interaction and/or axial flow reversal are considered with an adaptive multigrid domain decomposition procedure. Specific examples include the triple deck structure surrounding the trailing edge of a flat plate, the flow recirculation in a trough geometry, and the flow in a rearward facing step channel. For the latter case, there are multiple recirculation zones, of different character, for laminar and turbulent flow conditions. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable, non-staggered grid computation.

  8. A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Sparks, S. Patrick

    1987-01-01

    A 3-D, quasi-steady, full potential flow solver was adapted to include realistic wake influence for the aerodynamic analysis of helicopter rotors. The method is based on a finite difference solution of the full potential equation, using an inner and outer domain procedure for the blade flowfield to accommodate wake effects. The nonlinear flow is computed in the inner domain region using a finite difference solution method. The wake is modeled by a vortex lattice using prescribed geometry techniques to allow for the inclusion of realistic rotor wakes. The key feature of the analysis is that vortices contained within the finite difference mesh (inner domain) were treated with a vortex embedding technique while the influence of the remaining portion of the wake (in the outer domain) is impressed as a boundary condition on the outer surface of the finite difference mesh. The solution procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. The method has been applied to both hover and forward flight conditions. Correlation with subsonic and transonic hover airload data is shown which demonstrates the merits of the approach.

  9. Expression and functional analysis of novel molecule - Latcripin-13 domain from Lentinula edodes C91-3 produced in prokaryotic expression system.

    PubMed

    Wang, Jia; Zhong, Mintao; Liu, Ben; Sha, Li; Lun, Yongzhi; Zhang, Wei; Li, Xingyun; Wang, Xiaoli; Cao, Jing; Ning, Anhong; Huang, Min

    2015-01-25

    The shiitake mushroom Lentinula edodes has health benefits and is used to treat various diseases due to its immunomodulatory and antineoplastic properties. In the present study, the Latcripin-13 domain, isolated from L. edodes, was expressed in Escherichia coli Rosetta-gami(DE3) in the form of inclusion bodies. The Latcripin-13 domain was purified by Ni-His affinity chromatography with high purity and refolded by urea gradient dialysis. The product showed biological activity in A549 cells, a human lung cancer cell line, by flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) method. The MTT assay and the flow cytometry results revealed that there was a great difference between the Latcripin-13 domain-treated group and the control group (p<0.05). Similarly, cell apoptosis observed by transmission electron microscopy (TEM) supported the flow cytometry results. This work demonstrated that the Latcripin-13 domain can induce apoptosis of A549 cells, which will bring new insights into the development of new antitumor drugs in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A study of the dynamics of seizure propagation across micro domains in the vicinity of the seizure onset zone.

    PubMed

    Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J; Anderson, William S

    2015-08-01

    The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the [Formula: see text] Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately [Formula: see text]. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.

  11. A study of the dynamics of seizure propagation across micro domains in the vicinity of the seizure onset zone

    NASA Astrophysics Data System (ADS)

    Basu, Ishita; Kudela, Pawel; Korzeniewska, Anna; Franaszczuk, Piotr J.; Anderson, William S.

    2015-08-01

    Objective. The use of micro-electrode arrays to measure electrical activity from the surface of the brain is increasingly being investigated as a means to improve seizure onset zone (SOZ) localization. In this work, we used a multivariate autoregressive model to determine the evolution of seizure dynamics in the 70-110 Hz high frequency band across micro-domains sampled by such micro-electrode arrays. We showed that a directed transfer function (DTF) can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with known propagation pattern. Approach. We used seven complex partial seizures recorded from four patients undergoing intracranial monitoring for surgical evaluation to reconstruct the seizure propagation pattern over sliding windows using a DTF measure. Main results. We showed that a DTF can be used to estimate the flow of seizure activity in a set of simulated micro-electrode data with a known propagation pattern. In general, depending on the location of the micro-electrode grid with respect to the clinical SOZ and the time from seizure onset, ictal propagation changed in directional characteristics over a 2-10 s time scale, with gross directionality limited to spatial dimensions of approximately 9 m{{m}2}. It was also seen that the strongest seizure patterns in the high frequency band and their sources over such micro-domains are more stable over time and across seizures bordering the clinically determined SOZ than inside. Significance. This type of propagation analysis might in future provide an additional tool to epileptologists for characterizing epileptogenic tissue. This will potentially help narrowing down resection zones without compromising essential brain functions as well as provide important information about targeting anti-epileptic stimulation devices.

  12. Fourier/Chebyshev methods for the incompressible Navier-Stokes equations in finite domains

    NASA Technical Reports Server (NTRS)

    Corral, Roque; Jimenez, Javier

    1992-01-01

    A fully spectral numerical scheme for the incompressible Navier-Stokes equations in domains which are infinite or semi-infinite in one dimension. The domain is not mapped, and standard Fourier or Chebyshev expansions can be used. The handling of the infinite domain does not introduce any significant overhead. The scheme assumes that the vorticity in the flow is essentially concentrated in a finite region, which is represented numerically by standard spectral collocation methods. To accomodate the slow exponential decay of the velocities at infinity, extra expansion functions are introduced, which are handled analytically. A detailed error analysis is presented, and two applications to Direct Numerical Simulation of turbulent flows are discussed in relation with the numerical performance of the scheme.

  13. Transient upset models in computer systems

    NASA Technical Reports Server (NTRS)

    Mason, G. M.

    1983-01-01

    Essential factors for the design of transient upset monitors for computers are discussed. The upset is a system level event that is software dependent. It can occur in the program flow, the opcode set, the opcode address domain, the read address domain, and the write address domain. Most upsets are in the program flow. It is shown that simple, external monitors functioning transparently relative to the system operations can be built if a detailed accounting is made of the characteristics of the faults that can happen. Sample applications are provided for different states of the Z-80 and 8085 based system.

  14. Big cats as a model system for the study of the evolution of intelligence.

    PubMed

    Borrego, Natalia

    2017-08-01

    Currently, carnivores, and felids in particular, are vastly underrepresented in cognitive literature, despite being an ideal model system for tests of social and ecological intelligence hypotheses. Within Felidae, big cats (Panthera) are uniquely suited to studies investigating the evolutionary links between social, ecological, and cognitive complexity. Intelligence likely did not evolve in a unitary way but instead evolved as the result of mutually reinforcing feedback loops within the physical and social environments. The domain-specific social intelligence hypothesis proposes that social complexity drives only the evolution of cognitive abilities adapted only to social domains. The domain-general hypothesis proposes that the unique demands of social life serve as a bootstrap for the evolution of superior general cognition. Big cats are one of the few systems in which we can directly address conflicting predictions of the domain-general and domain-specific hypothesis by comparing cognition among closely related species that face roughly equivalent ecological complexity but vary considerably in social complexity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA

    NASA Astrophysics Data System (ADS)

    Ren, Qinlong

    Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.

  16. Hybrid fully nonlinear BEM-LBM numerical wave tank with applications in naval hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mivehchi, Amin; Grilli, Stephan T.; Dahl, Jason M.; O'Reilly, Chris M.; Harris, Jeffrey C.; Kuznetsov, Konstantin; Janssen, Christian F.

    2017-11-01

    simulation of the complex dynamics response of ships in waves is typically modeled by nonlinear potential flow theory, usually solved with a higher order BEM. In some cases, the viscous/turbulent effects around a structure and in its wake need to be accurately modeled to capture the salient physics of the problem. Here, we present a fully 3D model based on a hybrid perturbation method. In this method, the velocity and pressure are decomposed as the sum of an inviscid flow and viscous perturbation. The inviscid part is solved over the whole domain using a BEM based on cubic spline element. These inviscid results are then used to force a near-field perturbation solution on a smaller domain size, which is solved with a NS model based on LBM-LES, and implemented on GPUs. The BEM solution for large grids is greatly accelerated by using a parallelized FMM, which is efficiently implemented on large and small clusters, yielding an almost linear scaling with the number of unknowns. A new representation of corners and edges is implemented, which improves the global accuracy of the BEM solver, particularly for moving boundaries. We present model results and the recent improvements of the BEM, alongside results of the hybrid model, for applications to problems. Office of Naval Research Grants N000141310687 and N000141612970.

  17. 3D Structure and Interaction of p24β and p24δ Golgi Dynamics Domains: Implication for p24 Complex Formation and Cargo Transport.

    PubMed

    Nagae, Masamichi; Hirata, Tetsuya; Morita-Matsumoto, Kana; Theiler, Romina; Fujita, Morihisa; Kinoshita, Taroh; Yamaguchi, Yoshiki

    2016-10-09

    The p24 family consists of four subfamilies (p24α, p24β, p24γ, and p24δ), and the proteins are thought to form hetero-oligomeric complexes for efficient transport of cargo proteins from the endoplasmic reticulum to the Golgi apparatus. The proteins possess a conserved luminal Golgi dynamics (GOLD) domain, whose functions are largely unknown. Here, we present structural and biochemical studies of p24β1 and p24δ1 GOLD domains. Use of GOLD domain-deleted mutants revealed that the GOLD domain of p24δ1 is required for proper p24 hetero-oligomeric complex formation and efficient transport of GPI-anchored proteins. The p24β1 and p24δ1 GOLD domains share a common β-sandwich fold with a characteristic intrasheet disulfide bond. The GOLD domain of p24δ1 crystallized as dimers, allowing the analysis of a homophilic interaction site. Surface plasmon resonance and solution NMR analyses revealed that p24β1 and p24δ1 GOLD domains interact weakly (K d = ~10 -4 M). Bi-protein titration provided interaction site maps. We propose that the heterophilic interaction of p24 GOLD domains contributes to the formation of the p24 hetero-oligomeric complex and to efficient cargo transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Habc Domain of the SNARE Vam3 Interacts with the HOPS Tethering Complex to Facilitate Vacuole Fusion*

    PubMed Central

    Lürick, Anna; Kuhlee, Anne; Bröcker, Cornelia; Kümmel, Daniel; Raunser, Stefan; Ungermann, Christian

    2015-01-01

    Membrane fusion at vacuoles requires a consecutive action of the HOPS tethering complex, which is recruited by the Rab GTPase Ypt7, and vacuolar SNAREs to drive membrane fusion. It is assumed that the Sec1/Munc18-like Vps33 within the HOPS complex is largely responsible for SNARE chaperoning. Here, we present direct evidence for HOPS binding to SNAREs and the Habc domain of the Vam3 SNARE protein, which may explain its function during fusion. We show that HOPS interacts strongly with the Vam3 Habc domain, assembled Q-SNAREs, and the R-SNARE Ykt6, but not the Q-SNARE Vti1 or the Vam3 SNARE domain. Electron microscopy combined with Nanogold labeling reveals that the binding sites for vacuolar SNAREs and the Habc domain are located in the large head of the HOPS complex, where Vps16 and Vps33 have been identified before. Competition experiments suggest that HOPS bound to the Habc domain can still interact with assembled Q-SNAREs, whereas Q-SNARE binding prevents recognition of the Habc domain. In agreement, membranes carrying Vam3ΔHabc fuse poorly unless an excess of HOPS is provided. These data suggest that the Habc domain of Vam3 facilitates the assembly of the HOPS/SNARE machinery at fusion sites and thus supports efficient membrane fusion. PMID:25564619

  19. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  20. A consensus for the development of a vector model to assess clinical complexity.

    PubMed

    Corazza, Gino Roberto; Klersy, Catherine; Formagnana, Pietro; Lenti, Marco Vincenzo; Padula, Donatella

    2017-12-01

    The progressive rise in multimorbidity has made management of complex patients one of the most topical and challenging issues in medicine, both in clinical practice and for healthcare organizations. To make this easier, a score of clinical complexity (CC) would be useful. A vector model to evaluate biological and extra-biological (socio-economic, cultural, behavioural, environmental) domains of CC was proposed a few years ago. However, given that the variables that grade each domain had never been defined, this model has never been used in clinical practice. To overcome these limits, a consensus meeting was organised to grade each domain of CC, and to establish the hierarchy of the domains. A one-day consensus meeting consisting of a multi-professional panel of 25 people was held at our Hospital. In a preliminary phase, the proponents selected seven variables as qualifiers for each of the five above-mentioned domains. In the course of the meeting, the panel voted for five variables considered to be the most representative for each domain. Consensus was established with 2/3 agreement, and all variables were dichotomised. Finally, the various domains were parametrized and ranked within a feasible vector model. A Clinical Complexity Index was set up using the chosen variables. All the domains were graphically represented through a vector model: the biological domain was chosen as the most significant (highest slope), followed by the behavioural and socio-economic domains (intermediate slope), and lastly by the cultural and environmental ones (lowest slope). A feasible and comprehensive tool to evaluate CC in clinical practice is proposed herein.

  1. Experimental study of the spill and vaporization of a volatile liquid.

    PubMed

    Bohl, Douglas; Jackson, Gregory

    2007-02-09

    Pool and vapor cloud characteristics of an acetone spill issuing from the downstream wall of a flow obstruction oriented perpendicular to a uniform flow were investigated experimentally. Data indicate that the spill event was largely governed by the temperature of the surface in relation to the boiling point of the spilled liquid. The free stream velocity (ranging from 0.75 to 3.0m/s) also impacted the spreading of the spill. Planar laser-induced fluorescence (PLIF) was used to measure acetone vapor concentrations during the transient pool spreading and vaporization in a window 60cm long by 50cm high and located downstream of the 16cm high obstruction. The recirculation region induced by the flow obstruction caused upstream transport of the acetone vapor along the spill surface, after which it was convected vertically along the obstruction wall before being entrained into the flow and convected downstream. The recirculating flow caused regions of vapor within the flammability limits to be localized near the flow obstruction. These regions moved into and out of the measurement plane by large three-dimensional flow structures. The flammable region of the evolved vapor cloud was observed to grow well past the downstream edge of the measurement domain. With decreasing wind speeds, both the mass of acetone vapor within the flammability limits and the total spill event time increased significantly. The data presented herein provides a basis for validating future spill models of hazardous chemical releases, where complex turbulent flow modeling must be coupled with spill spreading and vaporization dynamics.

  2. Application of higher-order cepstral techniques in problems of fetal heart signal extraction

    NASA Astrophysics Data System (ADS)

    Sabry-Rizk, Madiha; Zgallai, Walid; Hardiman, P.; O'Riordan, J.

    1996-10-01

    Recently, cepstral analysis based on second order statistics and homomorphic filtering techniques have been used in the adaptive decomposition of overlapping, or otherwise, and noise contaminated ECG complexes of mothers and fetals obtained by a transabdominal surface electrodes connected to a monitoring instrument, an interface card, and a PC. Differential time delays of fetal heart beats measured from a reference point located on the mother complex after transformation to cepstra domains are first obtained and this is followed by fetal heart rate variability computations. Homomorphic filtering in the complex cepstral domain and the subuent transformation to the time domain results in fetal complex recovery. However, three problems have been identified with second-order based cepstral techniques that needed rectification in this paper. These are (1) errors resulting from the phase unwrapping algorithms and leading to fetal complex perturbation, (2) the unavoidable conversion of noise statistics from Gaussianess to non-Gaussianess due to the highly non-linear nature of homomorphic transform does warrant stringent noise cancellation routines, (3) due to the aforementioned problems in (1) and (2), it is difficult to adaptively optimize windows to include all individual fetal complexes in the time domain based on amplitude thresholding routines in the complex cepstral domain (i.e. the task of `zooming' in on weak fetal complexes requires more processing time). The use of third-order based high resolution differential cepstrum technique results in recovery of the delay of the order of 120 milliseconds.

  3. Advanced processing of airborne FDEM data for improved imaging of groundwater conduits and sea water layering near Tulum, Mexico

    NASA Astrophysics Data System (ADS)

    Schiller, Arnulf; Schattauer, Ingrid; Supper, Robert; Motschka, Klaus; Alonso Merediz, Gonzalo; Lopez Tamayo, Alejandro

    2017-04-01

    The study presented herein is part of a series of international research cooperations, started in the year 2006 and still ongoing, which have the general objective to develop and test new approaches of data acquisition and modelling methods for studying a complex ground/seawater regime and its interaction. The study area is located at the Yucatan Peninsula, Mexico, and comprises the northern most part of the Sian Ka'an biosphere reserve, a coastal wetland of international recognition, as well as the town of Tulum and part of the worlds second largest barrier reef. In the subsurface, and below the city, the whole area is nerved by a complex network of underwater caves. The upper most fresh water layer of the karstic aquifer actually represents the only significant fresh water resource in the region. In principle, karst aquifers are characterized by the presence of two distinct flow domains: the limestone matrix and the karst conduits. A flow model of karst aquifers requires detailed, spatially distributed information on the characteristics of the two domains. Electromagnetic methods determining the distribution of the electrical resistivity within the subsurface can provide such information. To explore the applicability of airborne electromagnetics, several airborne surveys in the area were conducted in 2007, 2008, and 2015 by the Geological Survey of Austria, covering an area of some 300 square kilometres in total. Above the reef, data has been acquired along distinct flight lines. Adapted and new processing techniques retrieved increased resolution of apparent electrical resistivity anomalies. These can be interpreted as vast complex conduit network inland partially confirmed by explored cave systems. Consequentely, a 3d-model of the network as well as complex halocline table and further aquifer structures have been derived. Furthermore, advanced processing of offshore lines delivered improved resolution of seawater layering primarily due to variation in temperature and/or salinity down to depths below skin depth. This recommends the AEM-method also for oceanographic studies concerning the most significant upper ocean layer and ocean/atmospheric interaction. Advanced data processing and numerical simulations show the opportunities of a common airborne FDEM system without specific hardware adaptions in hydrogeological studies encouraging further development including decoupled transmitter/receiver configuration as well as squid-sensors and adapted data processing.

  4. Formation and biochemical characterization of tube/pelle death domain complexes: critical regulators of postreceptor signaling by the Drosophila toll receptor.

    PubMed

    Schiffmann, D A; White, J H; Cooper, A; Nutley, M A; Harding, S E; Jumel, K; Solari, R; Ray, K P; Gay, N J

    1999-09-07

    In Drosophila, the Toll receptor signaling pathway is required for embryonic dorso-ventral patterning and at later developmental stages for innate immune responses. It is thought that dimerization of the receptor by binding of the ligand spätzle causes the formation of a postreceptor activation complex at the cytoplasmic surface of the membrane. Two components of this complex are the adaptor tube and protein kinase pelle. These proteins both have "death domains", protein interaction motifs found in a number of signaling pathways, particularly those involved in apoptotic cell death. It is thought that pelle is bound by tube during formation of the activation complexes, and that this interaction is mediated by the death domains. In this paper, we show using the yeast two-hybrid system that the wild-type tube and pelle death domains bind together. Mutant tube proteins which do not support signaling in the embryo are also unable to bind pelle in the 2-hybrid assay. We have purified proteins corresponding to the death domains of tube and pelle and show that these form corresponding heterodimeric complexes in vitro. Partial proteolysis reveals a smaller core consisting of the minimal death domain sequences. We have studied the tube/pelle interaction with the techniques of surface plasmon resonance, analytical ultracentrifugation and isothermal titration calorimetry. These measurements produce a value of K(d) for the complex of about 0.5 microM.

  5. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  6. A source-controlled data center network model.

    PubMed

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  7. A source-controlled data center network model

    PubMed Central

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  8. Numerical simulation of water flow and Nitrate transport through variably saturated porous media in laboratory condition using HYDRUS 2D

    NASA Astrophysics Data System (ADS)

    Jahangeer, F.; Gupta, P. K.; Yadav, B. K.

    2017-12-01

    Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, polluted site remediation and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone model by Richards' equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate transport in 2D sand tank setup. A single porosity model was used for the simulation of water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Moreover, the nitrate movement was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The findings of the study help to enhance the understanding of the sustainable soil-water resources management and agricultural practices.

  9. Time domain numerical calculations of unsteady vortical flows about a flat plate airfoil

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping; Scott, J. R.

    1989-01-01

    A time domain numerical scheme is developed to solve for the unsteady flow about a flat plate airfoil due to imposed upstream, small amplitude, transverse velocity perturbations. The governing equation for the resulting unsteady potential is a homogeneous, constant coefficient, convective wave equation. Accurate solution of the problem requires the development of approximate boundary conditions which correctly model the physics of the unsteady flow in the far field. A uniformly valid far field boundary condition is developed, and numerical results are presented using this condition. The stability of the scheme is discussed, and the stability restriction for the scheme is established as a function of the Mach number. Finally, comparisons are made with the frequency domain calculation by Scott and Atassi, and the relative strengths and weaknesses of each approach are assessed.

  10. Rugged Energy Landscapes in Multiphase Porous Media Flow: A Discrete-Domain Description

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Immiscible displacements in porous media involve a complex sequence of pore-scale events, from the smooth, reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion cascades. Discontinuous changes in pressure or saturation have been referred to as Haines jumps, and they emerge as a key mechanism to understand the origin of hysteresis in porous media flow. Hysteresis persists at the many-pore scale: when multiple cycles of drainage and imbibition of a porous sample are conducted, a dense hysteresis diagram emerges. The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the heart of early hysteresis models, and in recent experiments, and points to an inherently non-equilibrium behavior. For a given volume fraction of fluids occupying the pore space, many stable configurations are possible, due to the tortuous network of nonuniform pores and throats that compose the porous medium, and to complex wetting and capillary transitions. Multistability indicates that porous media systems exhibit rugged energy landscapes, where the system may remain pinned at local energy minima for long times. We address the question of developing a zero-dimensional model that inherits the path-dependence and `'bursty'' behavior of immiscible displacements, and propose a discrete-domain model that captures the role of metastability and local equilibria in the origin of hysteresis. We describe the porous medium and fluid system as a discrete set of weakly connected, multistable compartments, charaterized by a unique free energy function. This description does not depend explicitly on past saturations, turning points, or drainage/imbibition labels. The system behaves hysteretically, and we rationalize its behavior as sweeping a complex metastability diagram, with dissipation arising from discrete switches among metastable branches. The hysteretic behavior of the pressure-saturation curve is controlled by the topography of the energy landscape, through the number of metastable regions of the compartments and characteristic height of the energy barriers separating the different basins. Our model opens the door to fully explore the interplay between hysteresis and fluctuations in multiphase displacements in porous media.

  11. CAPS and Munc13: CATCHRs that SNARE Vesicles.

    PubMed

    James, Declan J; Martin, Thomas F J

    2013-12-04

    CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.

  12. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    PubMed

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  13. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex

    PubMed Central

    Tamada, Taro; Honjo, Eijiro; Maeda, Yoshitake; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota

    2006-01-01

    A crystal structure of the signaling complex between human granulocyte colony-stimulating factor (GCSF) and a ligand binding region of GCSF receptor (GCSF-R), has been determined to 2.8 Å resolution. The GCSF:GCSF-R complex formed a 2:2 stoichiometry by means of a cross-over interaction between the Ig-like domains of GCSF-R and GCSF. The conformation of the complex is quite different from that between human GCSF and the cytokine receptor homologous domain of mouse GCSF-R, but similar to that of the IL-6/gp130 signaling complex. The Ig-like domain cross-over structure necessary for GCSF-R activation is consistent with previously reported thermodynamic and mutational analyses. PMID:16492764

  14. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations, and FDS influence functions will be compared with those generated from WRF and the Lagrangian Particle Dispersion Model. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions.

  15. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  16. Frozen reaction fronts in steady flows: A burning-invariant-manifold perspective

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Li, John; Boyer, Carleen; Solomon, Tom; Mitchell, Kevin A.

    2015-12-01

    The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state in which the reacted domain is static, and the front appears "frozen." Our central result is that these frozen fronts in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of front-element dynamics in x y θ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted domains from nonreacted domains for all time. The second main result of this paper is an understanding of bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both experimental and numerical studies that support the theoretical analysis developed here.

  17. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis.

    PubMed Central

    Liu, Y; Levit, M; Lurz, R; Surette, M G; Stock, J B

    1997-01-01

    Chemotaxis responses of Escherichia coli and Salmonella are mediated by type I membrane receptors with N-terminal extracytoplasmic sensing domains connected by transmembrane helices to C-terminal signaling domains in the cytoplasm. Receptor signaling involves regulation of an associated protein kinase, CheA. Here we show that kinase activation by a soluble signaling domain construct involves the formation of a large complex, with approximately 14 receptor signaling domains per CheA dimer. Electron microscopic examination of these active complexes indicates a well defined bundle composed of numerous receptor filaments. Our findings suggest a mechanism for transmembrane signaling whereby stimulus-induced changes in lateral packing interactions within an array of receptor-sensing domains at the cell surface perturb an equilibrium between active and inactive receptor-kinase complexes within the cytoplasm. PMID:9405352

  18. Tapping the Brake for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Thompson, Kyle; Korzun, Ashley

    2016-01-01

    A matrix of simulations of hypersonic flow over blunt entry vehicles with steady and pulsing retropropulsion jets is presented. Retropropulsion in the supersonic domain is primarily designed to reduce vehicle velocity directly with thrust. Retropropulsion in the hypersonic domain may enable significant pressure recovery through unsteady, oblique shocks while providing a buffer of reactant gases with relatively low total temperature. Improved pressure recovery, a function of Mach number squared and oblique shock angle, could potentially serve to increase aerodynamic drag in this domain. Pulsing jets are studied to include an additional degree of freedom to search for resonances in an already unsteady flow domain with an objective to maximize the time-averaged drag coefficient. In this paradigm, small jets with minimal footprints of the nozzle exit on the vehicle forebody may be capable of delivering the requisite perturbations to the flow. Simulations are executed assuming inviscid, symmetric flow of a perfect gas to enable a rapid assessment of the parameter space (nozzle geometry, plenum conditions, jet pulse frequency). The pulsed-jet configuration produces moderately larger drag than the constant jet configuration but smaller drag than the jet-off case in this preliminary examination of a single design point. The fundamentals of a new algorithm for this challenging application with time dependent, interacting discontinuities using the feature detection capabilities of Walsh functions are introduced.

  19. Predicting vertically-nonsequential wetting patterns with a source-responsive model

    USGS Publications Warehouse

    Nimmo, John R.; Mitchell, Lara

    2013-01-01

    Water infiltrating into soil of natural structure often causes wetting patterns that do not develop in an orderly sequence. Because traditional unsaturated flow models represent a water advance that proceeds sequentially, they fail to predict irregular development of water distribution. In the source-responsive model, a diffuse domain (D) represents flow within soil matrix material following traditional formulations, and a source-responsive domain (S), characterized in terms of the capacity for preferential flow and its degree of activation, represents preferential flow as it responds to changing water-source conditions. In this paper we assume water undergoing rapid source-responsive transport at any particular time is of negligibly small volume; it becomes sensible at the time and depth where domain transfer occurs. A first-order transfer term represents abstraction from the S to the D domain which renders the water sensible. In tests with lab and field data, for some cases the model shows good quantitative agreement, and in all cases it captures the characteristic patterns of wetting that proceed nonsequentially in the vertical direction. In these tests we determined the values of the essential characterizing functions by inverse modeling. These functions relate directly to observable soil characteristics, rendering them amenable to evaluation and improvement through hydropedologic development.

  20. A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Meldi, M.; Poux, A.

    2017-10-01

    A Kalman filter based sequential estimator is presented in this work. The estimator is integrated in the structure of segregated solvers for the analysis of incompressible flows. This technique provides an augmented flow state integrating available observation in the CFD model, naturally preserving a zero-divergence condition for the velocity field. Because of the prohibitive costs associated with a complete Kalman Filter application, two model reduction strategies have been proposed and assessed. These strategies dramatically reduce the increase in computational costs of the model, which can be quantified in an augmentation of 10%- 15% with respect to the classical numerical simulation. In addition, an extended analysis of the behavior of the numerical model covariance Q has been performed. Optimized values are strongly linked to the truncation error of the discretization procedure. The estimator has been applied to the analysis of a number of test cases exhibiting increasing complexity, including turbulent flow configurations. The results show that the augmented flow successfully improves the prediction of the physical quantities investigated, even when the observation is provided in a limited region of the physical domain. In addition, the present work suggests that these Data Assimilation techniques, which are at an embryonic stage of development in CFD, may have the potential to be pushed even further using the augmented prediction as a powerful tool for the optimization of the free parameters in the numerical simulation.

  1. Cross-β Polymerization of Low Complexity Sequence Domains.

    PubMed

    Kato, Masato; McKnight, Steven L

    2017-03-01

    Most transcription factors and RNA regulatory proteins encoded by eukaryotic genomes ranging from yeast to humans contain polypeptide domains variously described as intrinsically disordered, prion-like, or of low complexity (LC). These LC domains exist in an unfolded state when DNA and RNA regulatory proteins are studied in biochemical isolation from cells. Upon incubation in the purified state, many of these LC domains polymerize into homogeneous, labile amyloid-like fibers. Here, we consider several lines of evidence that may favor biologic utility for LC domain polymers. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Noncoding RNAs of the Ultrabithorax Domain of the Drosophila Bithorax Complex

    PubMed Central

    Pease, Benjamin; Borges, Ana C.; Bender, Welcome

    2013-01-01

    RNA transcripts without obvious coding potential are widespread in many creatures, including the fruit fly, Drosophila melanogaster. Several noncoding RNAs have been identified within the Drosophila bithorax complex. These first appear in blastoderm stage embryos, and their expression patterns indicate that they are transcribed only from active domains of the bithorax complex. It has been suggested that these noncoding RNAs have a role in establishing active domains, perhaps by setting the state of Polycomb Response Elements A comprehensive survey across the proximal half of the bithorax complex has now revealed nine distinct noncoding RNA transcripts, including four within the Ultrabithorax transcription unit. At the blastoderm stage, the noncoding transcripts collectively span ∼75% of the 135 kb surveyed. Recombination-mediated cassette exchange was used to invert the promoter of one of the noncoding RNAs, a 23-kb transcript from the bxd domain of the bithorax complex. The resulting animals fail to make the normal bxd noncoding RNA and show no transcription across the bxd Polycomb Response Element in early embryos. The mutant flies look normal; the regulation of the bxd domain appears unaffected. Thus, the bxd noncoding RNA has no apparent function. PMID:24077301

  3. Cadherin Domains in the Polysaccharide-Degrading Marine Bacterium Saccharophagus degradans 2-40 Are Carbohydrate-Binding Modules▿

    PubMed Central

    Fraiberg, Milana; Borovok, Ilya; Bayer, Edward A.; Weiner, Ronald M.; Lamed, Raphael

    2011-01-01

    The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the bacterium. PMID:21036994

  4. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

    PubMed

    Login, Frédéric H; Jensen, Helene H; Pedersen, Gitte A; Amieva, Manuel R; Nejsum, Lene N

    2018-06-19

    Enteropathogenic Escherichia coli (EPEC) causes watery diarrhea when colonizing the surface of enterocytes. The translocated intimin receptor (Tir):intimin receptor complex facilitates tight adherence to epithelial cells and formation of actin pedestals beneath EPEC. We found that the host cell adherens junction protein E-cadherin (Ecad) was recruited to EPEC microcolonies. Live-cell and confocal imaging revealed that Ecad recruitment depends on, and occurs after, formation of the Tir:intimin complex. Combinatorial binding experiments using wild-type EPEC, isogenic mutants lacking Tir or intimin, and E. coli expressing intimin showed that the extracellular domain of Ecad binds the bacterial surface in a Tir:intimin-dependent manner. Finally, addition of the soluble extracellular domain of Ecad to the infection medium or depletion of Ecad extracellular domain from the cell surface reduced EPEC adhesion to host cells. Thus, the soluble extracellular domain of Ecad may be used in the design of intervention strategies targeting EPEC adherence to host cells.-Login, F. H., Jensen, H. H., Pedersen, G. A., Amieva, M. R., Nejsum, L. N. The soluble extracellular domain of E-cadherin interferes with EPEC adherence via interaction with the Tir:intimin complex.

  5. Numerical aspects in modeling high Deborah number flow and elastic instability

    NASA Astrophysics Data System (ADS)

    Kwon, Youngdon

    2014-05-01

    Investigating highly nonlinear viscoelastic flow in 2D domain, we explore problem as well as property possibly inherent in the streamline upwinding technique (SUPG) and then present various results of elastic instability. The mathematically stable Leonov model written in tensor-logarithmic formulation is employed in the framework of finite element method for spatial discretization of several representative problem domains. For enhancement of computation speed, decoupled integration scheme is applied for shear thinning and Boger-type fluids. From the analysis of 4:1 contraction flow at low and moderate values of the Deborah number (De) the solution with SUPG method does not show noticeable difference from the one by the computation without upwinding. On the other hand, in the flow regime of high De, especially in the state of elastic instability the SUPG significantly distorts the flow field and the result differs considerably from the solution acquired straightforwardly. When the strength of elastic flow and thus the nonlinearity further increase, the computational scheme with upwinding fails to converge and evolutionary solution does not become available any more. All this result suggests that extreme care has to be taken on occasions where upwinding is applied, and one has to first of all prove validity of this algorithm in the case of high nonlinearity. On the contrary, the straightforward computation with no upwinding can efficiently model representative phenomena of elastic instability in such benchmark problems as 4:1 contraction flow, flow over a circular cylinder and flow over asymmetric array of cylinders. Asymmetry of the flow field occurring in the symmetric domain, enhanced spatial and temporal fluctuation of dynamic variables and flow effects caused by extension hardening are properly described in this study.

  6. Structural Study of the RIPoptosome Core Reveals a Helical Assembly for Kinase Recruitment

    PubMed Central

    2015-01-01

    Receptor interaction protein kinase 1 (RIP1) is a molecular cell-fate switch. RIP1, together with Fas-associated protein with death domain (FADD) and caspase-8, forms the RIPoptosome that activates apoptosis. RIP1 also associates with RIP3 to form the necrosome that triggers necroptosis. The RIPoptosome assembles through interactions between the death domains (DDs) of RIP1 and FADD and between death effector domains (DEDs) of FADD and caspase-8. In this study, we analyzed the overall structure of the RIP1 DD/FADD DD complex, the core of the RIPoptosome, by negative-stain electron microscopy and modeling. The results show that RIP1 DD and FADD DD form a stable complex in vitro similar to the previously described Fas DD/FADD DD complex, suggesting that the RIPoptosome and the Fas death-inducing signaling complex share a common assembly mechanism. Both complexes adopt a helical conformation that requires type I, II, and III interactions between the death domains. PMID:25119434

  7. Structural and functional organization of the ESCRT-I trafficking complex

    PubMed Central

    Kostelansky, Michael S.; Sun, Ji; Lee, Sangho; Kim, Jaewon; Ghirlando, Rodolfo; Hierro, Aitor; Emr, Scott D.; Hurley, James H.

    2006-01-01

    Summary The Endosomal Sorting Complex Required for Transport (ESCRT) complexes are central to receptor downregulation, lysosome biogenesis, and budding of HIV. The yeast ESCRT-I complex contains the Vps23, Vps28, and Vps37 proteins and its assembly is directed by the C-terminal steadiness box of Vps23, the N-terminal half of Vps28, and the C-terminal half of Vps37. The crystal structures of a Vps23:Vps28 core subcomplex and the Vps23:Vps28:Vps37 core were solved at 2.1 and 2.8 Å resolution. Each subunit contains a structurally similar pair of helices that form the core. The N-terminal domain of Vps28 has a hydrophobic binding site on its surface that is conformationally dynamic. The C-terminal domain of Vps28 binds the ESCRT-II complex. The structure shows how ESCRT-I is assembled by a compact core from which the Vps23 UEVdomain, the Vps28 C-domain, and other domains project to bind their partners. PMID:16615894

  8. Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue

    NASA Astrophysics Data System (ADS)

    Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  9. Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS

    NASA Astrophysics Data System (ADS)

    Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.

    2015-12-01

    Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.

  10. External Boundary Conditions for Three-Dimensional Problems of Computational Aerodynamics

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon V.

    1997-01-01

    We consider an unbounded steady-state flow of viscous fluid over a three-dimensional finite body or configuration of bodies. For the purpose of solving this flow problem numerically, we discretize the governing equations (Navier-Stokes) on a finite-difference grid. The grid obviously cannot stretch from the body up to infinity, because the number of the discrete variables in that case would not be finite. Therefore, prior to the discretization we truncate the original unbounded flow domain by introducing some artificial computational boundary at a finite distance of the body. Typically, the artificial boundary is introduced in a natural way as the external boundary of the domain covered by the grid. The flow problem formulated only on the finite computational domain rather than on the original infinite domain is clearly subdefinite unless some artificial boundary conditions (ABC's) are specified at the external computational boundary. Similarly, the discretized flow problem is subdefinite (i.e., lacks equations with respect to unknowns) unless a special closing procedure is implemented at this artificial boundary. The closing procedure in the discrete case is called the ABC's as well. In this paper, we present an innovative approach to constructing highly accurate ABC's for three-dimensional flow computations. The approach extends our previous technique developed for the two-dimensional case; it employs the finite-difference counterparts to Calderon's pseudodifferential boundary projections calculated in the framework of the difference potentials method (DPM) by Ryaben'kii. The resulting ABC's appear spatially nonlocal but particularly easy to implement along with the existing solvers. The new boundary conditions have been successfully combined with the NASA-developed production code TLNS3D and used for the analysis of wing-shaped configurations in subsonic (including incompressible limit) and transonic flow regimes. As demonstrated by the computational experiments and comparisons with the standard (local) methods, the DPM-based ABC's allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable increase of the convergence rate of multigrid iterations.

  11. Brains, brawn and sociality: a hyaena’s tale

    PubMed Central

    Holekamp, Kay E.; Dantzer, Ben; Stricker, Gregory; Shaw Yoshida, Kathryn C.; Benson-Amram, Sarah

    2015-01-01

    Theoretically intelligence should evolve to help animals solve specific types of problems posed by the environment, but it remains unclear how environmental complexity or novelty facilitates the evolutionary enhancement of cognitive abilities, or whether domain-general intelligence can evolve in response to domain-specific selection pressures. The social complexity hypothesis, which posits that intelligence evolved to cope with the labile behaviour of conspecific group-mates, has been strongly supported by work on the sociocognitive abilities of primates and other animals. Here we review the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas, and describe our tests of predictions of the social complexity hypothesis in regard to both cognition and brain size in hyaenas. Behavioural data indicate that there has been remarkable convergence between primates and hyaenas with respect to their abilities in the domain of social cognition. Furthermore, within the family Hyaenidae, our data suggest that social complexity might have contributed to enlargement of the frontal cortex. However, social complexity failed to predict either brain volume or frontal cortex volume in a larger array of mammalian carnivores. To address the question of whether or not social complexity might be able to explain the evolution of domain-general intelligence as well as social cognition in particular, we presented simple puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species housed in zoos and found that species with larger brains relative to their body mass were more innovative and more successful at opening the boxes. However, social complexity failed to predict success in solving this problem. Overall our work suggests that, although social complexity enhances social cognition, there are no unambiguous causal links between social complexity and either brain size or performance in problem-solving tasks outside the social domain in mammalian carnivores. PMID:26160980

  12. Paleointensity results for 0 and 4 ka from Hawaiian lava flows: a new approach to sampling

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Tauxe, L.; Staudigel, H.; Ron, H.; Trusdell, F.

    2012-04-01

    Paleointensity data are typically generated from core samples drilled out of the massive parts of lava flows. During Thellier-Thellier type experiments, these massive samples suffer from very low success rates (~20%), as shown by failure to meet statistical criteria. Low success generally occurs for two reasons: 1) alteration of the sample during the heating process, and 2) multi-domain behavior of massive material. Moreover, recent studies of historical lava flows show that massive samples may not accurately reflect the intensity of the magnetic field even when they are successful (Valet et al., 2010). Alternatively, submarine basaltic glasses (SBG) produce high success rates (~80%) for Thellier-Thellier type experiments, likely due to near instantaneous cooling rates which produce single-domain magnetic grains. In addition, SBG have been proven to produce accurate records of the magnetic field (e.g., Pick and Tauxe, 1993). In this study we investigate the success of paleointensity experiments on subaerial quenched basalts from Hawaii in the quest for single domain, rapidly cooled subaerial analogs to SBG. We also examine the effects of grain size and cooling rate on the accuracy of paleointensity results. During March 2011, we collected samples from 31 dated lava flows (0-3800 BP), including the historical 1950 C.E. and 2010 C.E. flows. Each lava flow was additionally subsampled when unique cooling structures within the unit could be identified. Single-domain, rapidly quenched glasses from the 1950 and 2010 flows are ideally behaved, i.e. straight Arai plots, and accurately record the expected geomagnetic field strength. However, slower cooled specimens from the same flows produce sagged Arai plots and consistently underestimate expected geomagnetic field intensity. Results from ideally behaved glasses over the last 4 ka indicate periods of rapid field change in Hawaii and a possible high intensity field spike around 2.7 ka. We will present new results from our comprehensive data set of Hawaii paleointensity on about the last 4 ka.

  13. Applying the Brakes to Multi-Site SR Protein Phosphorylation: Substrate-Induced Effects on the Splicing Kinase SRPK1†

    PubMed Central

    Aubol, Brandon E.; Adams, Joseph A.

    2011-01-01

    To investigate how a protein kinase interacts with its protein substrate during extended, multi-site phosphorylation, the kinetic mechanism of a protein kinase involved in mRNA splicing control was investigated using rapid quench flow techniques. The protein kinase SRPK1 phosphorylates approximately 10 serines in the arginine-serine-rich domain (RS domain) of the SR protein SRSF1 in a C-to-N-terminal direction, a modification that directs this essential splicing factor from the cytoplasm to the nucleus. Transient-state kinetic experiments illustrate that the first phosphate is added rapidly onto the RS domain of SRSF1 (t1/2 = 0.1 sec) followed by slower, multi-site phosphorylation at the remaining serines (t1/2 = 15 sec). Mutagenesis experiments suggest that efficient phosphorylation rates are maintained by an extensive hydrogen bonding and electrostatic network between the RS domain of the SR protein and the active site and docking groove of the kinase. Catalytic trapping and viscosometric experiments demonstrate that while the phosphoryl transfer step is fast, ADP release limits multi-site phosphorylation. By studying phosphate incorporation into selectively pre-phosphorylated forms of the enzyme-substrate complex, the kinetic mechanism for site-specific phosphorylation along the reaction coordinate was assessed. The binding affinity of the SR protein, the phosphoryl transfer rate and ADP exchange rate were found to decline significantly as a function of progressive phosphorylation in the RS domain. These findings indicate that the protein substrate actively modulates initiation, extension and termination events associated with prolonged, multi-site phosphorylation. PMID:21728354

  14. Exploring the molecular basis of RNA recognition by the dimeric RNA-binding protein via molecular simulation methods.

    PubMed

    Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren

    2016-11-01

    RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain.

  15. Exploring the molecular basis of RNA recognition by the dimeric RNA-binding protein via molecular simulation methods

    PubMed Central

    Chang, Shan; Zhang, Da-Wei; Xu, Lei; Wan, Hua; Hou, Ting-Jun; Kong, Ren

    2016-01-01

    ABSTRACT RNA-binding protein with multiple splicing (RBPMS) is critical for axon guidance, smooth muscle plasticity, and regulation of cancer cell proliferation and migration. Recently, different states of the RNA-recognition motif (RRM) of RBPMS, one in its free form and another in complex with CAC-containing RNA, were determined by X-ray crystallography. In this article, the free RRM domain, its wild type complex and 2 mutant complex systems are studied by molecular dynamics (MD) simulations. Through comparison of free RRM domain and complex systems, it's found that the RNA binding facilitates stabilizing the RNA-binding interface of RRM domain, especially the C-terminal loop. Although both R38Q and T103A/K104A mutations reduce the binding affinity of RRM domain and RNA, the underlining mechanisms are different. Principal component analysis (PCA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) methods were used to explore the dynamical and recognition mechanisms of RRM domain and RNA. R38Q mutation is positioned on the homodimerization interface and mainly induces the large fluctuations of RRM domains. This mutation does not directly act on the RNA-binding interface, but some interfacial hydrogen bonds are weakened. In contrast, T103A/K104A mutations are located on the RNA-binding interface of RRM domain. These mutations obviously break most of high occupancy hydrogen bonds in the RNA-binding interface. Meanwhile, the key interfacial residues lose their favorable energy contributions upon RNA binding. The ranking of calculated binding energies in 3 complex systems is well consistent with that of experimental binding affinities. These results will be helpful in understanding the RNA recognition mechanisms of RRM domain. PMID:27592836

  16. The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Szabo, Peter S. B.; Früh, Wolf-Gerrit

    2018-02-01

    Magnetic fluid flow and heat transfer by natural and thermomagnetic convection was studied numerically in a square enclosure. The aim was to investigate the transition from natural convection to thermomagnetic convection by exploring situations where buoyancy and the Kelvin body force would be opposing each other such that the magnetic effects would in some cases be the dominant factor throughout the domain and in other cases only in a part of the fluid. The numerical model coupled the solution of the magnetostatic field equation with the heat and fluid flow equations to simulate the fluid flow under a realistic magnetic field generated by a permanent magnet. The results suggest that the domain of influence over the flow field is largely aligned with the domain of dominance of the respective driving force. The result is that the transition from a single buoyancy-driven convection cell to a single thermomagnetically driven cell is via a two-cell structure and that the local effect on the flow field leads to a global effect on the heat transfer with a minimum of the Nusselt number in the transition region.

  17. Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, M.; Tynan, G. R.; Holland, C.

    2010-03-15

    Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{submore » S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.« less

  18. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex.

    PubMed

    Man, Si Ming; Hopkins, Lee J; Nugent, Eileen; Cox, Susan; Glück, Ivo M; Tourlomousis, Panagiotis; Wright, John A; Cicuta, Pietro; Monie, Tom P; Bryant, Clare E

    2014-05-20

    Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro-IL-1β substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing during Salmonella infection.

  19. Two-dimensional simulation of a two-phase, regenerative pumped radiator loop utilizing direct contact heat transfer with phase change

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester L.; Wetch, Joseph R.; Jang, Jong H.; Juhasz, Albert J.

    An innovative pumped loop concept for 600 K space power system radiators utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup, is under development. The heat transfer process with melting/freezing of Li in an NaK flow was studied through two-dimensional time-dependent numerical simulations to characterize and predict the Li/NaK radiator performance during startup (thawing) and shutdown (cold-trapping). Effects of system parameters and the criteria for the plugging domain are presented together with temperature distribution patterns in solid Li and subsequent melting surface profile variations in time.

  20. Crystal structures of the reverse transcriptase-associated ribonuclease H domain of xenotropic murine leukemia-virus related virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dongwen; Chung, Suhman; Miller, Maria

    2012-06-19

    The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site {alpha}-hydroxytropolone inhibitor. Enzymatic assays showed that the intactmore » RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with {beta}-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.« less

  1. Examining Complexity across Domains: Relating Subjective and Objective Measures of Affective Environmental Scenes, Paintings and Music

    PubMed Central

    Marin, Manuela M.; Leder, Helmut

    2013-01-01

    Subjective complexity has been found to be related to hedonic measures of preference, pleasantness and beauty, but there is no consensus about the nature of this relationship in the visual and musical domains. Moreover, the affective content of stimuli has been largely neglected so far in the study of complexity but is crucial in many everyday contexts and in aesthetic experiences. We thus propose a cross-domain approach that acknowledges the multidimensional nature of complexity and that uses a wide range of objective complexity measures combined with subjective ratings. In four experiments, we employed pictures of affective environmental scenes, representational paintings, and Romantic solo and chamber music excerpts. Stimuli were pre-selected to vary in emotional content (pleasantness and arousal) and complexity (low versus high number of elements). For each set of stimuli, in a between-subjects design, ratings of familiarity, complexity, pleasantness and arousal were obtained for a presentation time of 25 s from 152 participants. In line with Berlyne’s collative-motivation model, statistical analyses controlling for familiarity revealed a positive relationship between subjective complexity and arousal, and the highest correlations were observed for musical stimuli. Evidence for a mediating role of arousal in the complexity-pleasantness relationship was demonstrated in all experiments, but was only significant for females with regard to music. The direction and strength of the linear relationship between complexity and pleasantness depended on the stimulus type and gender. For environmental scenes, the root mean square contrast measures and measures of compressed file size correlated best with subjective complexity, whereas only edge detection based on phase congruency yielded equivalent results for representational paintings. Measures of compressed file size and event density also showed positive correlations with complexity and arousal in music, which is relevant for the discussion on which aspects of complexity are domain-specific and which are domain-general. PMID:23977295

  2. Examining complexity across domains: relating subjective and objective measures of affective environmental scenes, paintings and music.

    PubMed

    Marin, Manuela M; Leder, Helmut

    2013-01-01

    Subjective complexity has been found to be related to hedonic measures of preference, pleasantness and beauty, but there is no consensus about the nature of this relationship in the visual and musical domains. Moreover, the affective content of stimuli has been largely neglected so far in the study of complexity but is crucial in many everyday contexts and in aesthetic experiences. We thus propose a cross-domain approach that acknowledges the multidimensional nature of complexity and that uses a wide range of objective complexity measures combined with subjective ratings. In four experiments, we employed pictures of affective environmental scenes, representational paintings, and Romantic solo and chamber music excerpts. Stimuli were pre-selected to vary in emotional content (pleasantness and arousal) and complexity (low versus high number of elements). For each set of stimuli, in a between-subjects design, ratings of familiarity, complexity, pleasantness and arousal were obtained for a presentation time of 25 s from 152 participants. In line with Berlyne's collative-motivation model, statistical analyses controlling for familiarity revealed a positive relationship between subjective complexity and arousal, and the highest correlations were observed for musical stimuli. Evidence for a mediating role of arousal in the complexity-pleasantness relationship was demonstrated in all experiments, but was only significant for females with regard to music. The direction and strength of the linear relationship between complexity and pleasantness depended on the stimulus type and gender. For environmental scenes, the root mean square contrast measures and measures of compressed file size correlated best with subjective complexity, whereas only edge detection based on phase congruency yielded equivalent results for representational paintings. Measures of compressed file size and event density also showed positive correlations with complexity and arousal in music, which is relevant for the discussion on which aspects of complexity are domain-specific and which are domain-general.

  3. Modeling Endovascular Coils as Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Yadollahi Farsani, H.; Herrmann, M.; Chong, B.; Frakes, D.

    2016-12-01

    Minimally invasive surgeries are the stat-of-the-art treatments for many pathologies. Treating brain aneurysms is no exception; invasive neurovascular clipping is no longer the only option and endovascular coiling has introduced itself as the most common treatment. Coiling isolates the aneurysm from blood circulation by promoting thrombosis within the aneurysm. One approach to studying intra-aneurysmal hemodynamics consists of virtually deploying finite element coil models and then performing computational fluid dynamics. However, this approach is often computationally expensive and requires extensive resources to perform. The porous medium approach has been considered as an alternative to the conventional coil modeling approach because it lessens the complexities of computational fluid dynamics simulations by reducing the number of mesh elements needed to discretize the domain. There have been a limited number of attempts at treating the endovascular coils as homogeneous porous media. However, the heterogeneity associated with coil configurations requires a more accurately defined porous medium in which the porosity and permeability change throughout the domain. We implemented this approach by introducing a lattice of sample volumes and utilizing techniques available in the field of interactive computer graphics. We observed that the introduction of the heterogeneity assumption was associated with significant changes in simulated aneurysmal flow velocities as compared to the homogeneous assumption case. Moreover, as the sample volume size was decreased, the flow velocities approached an asymptotical value, showing the importance of the sample volume size selection. These results demonstrate that the homogeneous assumption for porous media that are inherently heterogeneous can lead to considerable errors. Additionally, this modeling approach allowed us to simulate post-treatment flows without considering the explicit geometry of a deployed endovascular coil mass, greatly simplifying computation.

  4. Evolution of the PWWP-domain encoding genes in the plant and animal lineages

    PubMed Central

    2012-01-01

    Background Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing a tendency to occur in diverse combinations (‘promiscuous’ domains) are involved in versatile architectures in proteins with different functions. Current models, based on global-level analyses of domain combinations in multiple genomes, have suggested that the propensity of some domains to associate with other domains in high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic trees propose that domains have become promiscuous independently in different lineages through convergent evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein architectures have occurred by accretion from simpler systems and whether the appearance of multidomain combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain and ask whether its appearance in combinations with other domains into multidomain architectures is linked with the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species selected for their established position in the evolution of the respective lineages. Results Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination with other domains in higher-level protein architectures. We found that as a single module the PWWP domain occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements (‘cassettes’). Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii. Conclusion Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms. PMID:22734652

  5. Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo.

    PubMed

    Wu, Lin; Pan, Lifeng; Wei, Zhiyi; Zhang, Mingjie

    2011-02-11

    The unconventional myosin VIIa (MYO7A) is one of the five proteins that form a network of complexes involved in formation of stereocilia. Defects in these proteins cause syndromic deaf-blindness in humans [Usher syndrome I (USH1)]. Many disease-causing mutations occur in myosin tail homology 4-protein 4.1, ezrin, radixin, moesin (MyTH4-FERM) domains in the myosin tail that binds to another USH1 protein, Sans. We report the crystal structure of MYO7A MyTH4-FERM domains in complex with the central domain (CEN) of Sans at 2.8 angstrom resolution. The MyTH4 and FERM domains form an integral structural and functional supramodule binding to two highly conserved segments (CEN1 and 2) of Sans. The MyTH4-FERM/CEN complex structure provides mechanistic explanations for known deafness-causing mutations in MYO7A MyTH4-FERM. The structure will also facilitate mechanistic and functional studies of MyTH4-FERM domains in other myosins.

  6. Using Multiple Grids To Compute Flows

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    1991-01-01

    Paper discusses decomposition of global grids into multiple patched and/or overlaid local grids in computations of fluid flow. Such "domain decomposition" particularly useful in computation of flows about complicated bodies moving relative to each other; for example, flows associated with rotors and stators in turbomachinery and rotors and fuselages in helicopters.

  7. Aortic Valve Stenosis Increases Helical Flow and Flow Complexity: A Study of Intra-Operative Cardiac Vector Flow Imaging.

    PubMed

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Kjaergaard, Jesper; Jensen, Maiken Brit; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2017-08-01

    Aortic valve stenosis alters blood flow in the ascending aorta. Using intra-operative vector flow imaging on the ascending aorta, secondary helical flow during peak systole and diastole, as well as flow complexity of primary flow during systole, were investigated in patients with normal, stenotic and replaced aortic valves. Peak systolic helical flow, diastolic helical flow and flow complexity during systole differed between the groups (p < 0.0001), and correlated to peak systolic velocity (R = 0.94, 0.87 and 0.88, respectively). The study indicates that aortic valve stenosis increases helical flow and flow complexity, which are measurable with vector flow imaging. For assessment of aortic stenosis and optimization of valve surgery, vector flow imaging may be useful. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.

    1999-01-01

    Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the north reflects the southern flank of a structural dome that led to the Pavant Range homocline and whose southern edge lies along the Clear Creek downwarp.

  9. The SH2 Domain–Containing Proteins in 21 Species Establish the Provenance and Scope of Phosphotyrosine Signaling in Eukaryotes

    PubMed Central

    Liu, Bernard A.; Shah, Eshana; Jablonowski, Karl; Stergachis, Andrew; Engelmann, Brett; Nash, Piers D.

    2014-01-01

    The Src homology 2 (SH2) domains are participants in metazoan signal transduction, acting as primary mediators for regulated protein-protein interactions with tyrosine-phosphorylated substrates. Here, we describe the origin and evolution of SH2 domain proteins by means of sequence analysis from 21 eukaryotic organisms from the basal unicellular eukaryotes, where SH2 domains first appeared, through the multicellular animals and increasingly complex metazoans. On the basis of our results, SH2 domains and phosphotyrosine signaling emerged in the early Unikonta, and the numbers of SH2 domains expanded in the choanoflagellate and metazoan lineages with the development of tyrosine kinases, leading to rapid elaboration of phosphotyrosine signaling in early multicellular animals. Our results also indicated that SH2 domains coevolved and the number of the domains expanded alongside protein tyrosine kinases and tyrosine phosphatases, thereby coupling phosphotyrosine signaling to downstream signaling networks. Gene duplication combined with domain gain or loss produced novel SH2-containing proteins that function within phosphotyrosine signaling, which likely have contributed to diversity and complexity in metazoans. We found that intra- and intermolecular interactions within and between SH2 domain proteins increased in prevalence along with organismal complexity and may function to generate more highly connected and robust phosphotyrosine signaling networks. PMID:22155787

  10. Expression, Refolding and Crystallizations of the Grb2-like (GADS) C-Terminal SH3 Domain Complexed with a SLP-76 Motif Peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faravelli,A.; Dimasi, N.

    The Grb2-like adaptor protein GADS is composed of an N-terminal SH3 domain, an SH2 domain, a proline-rich region and a C-terminal SH3 domain. GADS interacts through its C-terminal SH3 domain with the adaptor protein SLP-76, thus recruiting this protein and other associated molecules to the linker for activation of T-cell (LAT) protein. The DNA encoding the C-terminal SH3 domain of GADS (GADS-cSH3) was assembled synthetically using a recursive PCR technique and the protein was overexpressed in Escherichia coli, refolded and purified. Several crystals of this domain in complex with the SLP-76 peptide were obtained and characterized.

  11. Exact Solutions to Several Nonlinear Cases of Generalized Grad-Shafranov Equation for Ideal Magnetohydrodynamic Flows in Axisymmetric Domain

    NASA Astrophysics Data System (ADS)

    Adem, Abdullahi Rashid; Moawad, Salah M.

    2018-05-01

    In this paper, the steady-state equations of ideal magnetohydrodynamic incompressible flows in axisymmetric domains are investigated. These flows are governed by a second-order elliptic partial differential equation as a type of generalized Grad-Shafranov equation. The problem of finding exact equilibria to the full governing equations in the presence of incompressible mass flows is considered. Two different types of constraints on position variables are presented to construct exact solution classes for several nonlinear cases of the governing equations. Some of the obtained results are checked for their applications to magnetic confinement plasma. Besides, they cover many previous configurations and include new considerations about the nonlinearity of magnetic flux stream variables.

  12. Experimental investigations on airfoils with different geometries in the domain of high angles of attack-flow separation

    NASA Technical Reports Server (NTRS)

    Keil, J.

    1985-01-01

    Wind tunnel tests were conducted on airfoil models in order to study the flow separation phenomena occurring for high angles of attack. Pressure distribution on wings of different geometries were measured. Results show that for three-dimensional airfoils layout and span lift play a role. Separation effects on airfoils with moderate extension are three-dimensional. The flow domains separated from the air foil must be treated three-dimensionally. The rolling-up of separated vortex layers increases with angle in intensity and induction effect and shows strong nonlinearities. Boundary layer material moves perpendicularly to the flow direction due to the pressure gradients at the airfoil; this has a stabilizing effect. The separation starts earlier with increasing pointed profiles.

  13. Assessment of resting-state blood flow through anterior cerebral arteries using trans-cranial doppler recordings.

    PubMed

    Huang, Hanrui; Sejdić, Ervin

    2013-12-01

    Trans-cranial Doppler (TCD) recordings are used to monitor cerebral blood flow in the main cerebral arteries. The resting state is usually characterized by the mean velocity or the maximum Doppler shift frequency (an envelope signal) by insonating the middle cerebral arteries. In this study, we characterized cerebral blood flow in the anterior cerebral arteries. We analyzed both envelope signals and raw signals obtained from bilateral insonation. We recruited 20 healthy patients and conducted the data acquisition for 15 min. Features were extracted from the time domain, the frequency domain and the time-frequency domain. The results indicate that a gender-based statistical difference exists in the frequency and time-frequency domains. However, no handedness effect was found. In the time domain, information-theoretic features indicated that mutual dependence is higher in raw signals than in envelope signals. Finally, we concluded that insonation of the anterior cerebral arteries serves as a complement to middle cerebral artery studies. Additionally, investigation of the raw signals provided us with additional information that is not otherwise available from envelope signals. Use of direct trans-cranial Doppler raw data is therefore validated as a valuable method for characterizing the resting state. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Methodology to estimate the relative pressure field from noisy experimental velocity data

    NASA Astrophysics Data System (ADS)

    Bolin, C. D.; Raguin, L. G.

    2008-11-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  15. Simulation of ground-water flow, surface-water flow, and a deep sewer tunnel system in the Menomonee Valley, Milwaukee, Wisconsin

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.; Hunt, R.J.; Krohelski, J.T.

    2004-01-01

    Numerical models were constructed for simulation of ground-water flow in the Menomonee Valley Brownfield, in Milwaukee, Wisconsin. An understanding of ground-water flow is necessary to develop an efficient program to sample ground water for contaminants. Models were constructed in a stepwise fashion, beginning with a regional, single-layer, analytic-element model (GFLOW code) that provided boundary conditions for a local, eight layer, finite-difference model (MODFLOW code) centered on the Menomonee Valley Brownfield. The primary source of ground water to the models is recharge over the model domains; primary sinks for ground water within the models are surface-water features and the Milwaukee Metropolitan Sewerage District Inline Storage System (ISS). Calibration targets were hydraulic heads, surface-water fluxes, vertical gradients, and ground-water infiltration to the ISS. Simulation of ground-water flow by use of the MODFLOW model indicates that about 73 percent of recharge within the MODFLOW domain circulates to the ISS and 27 percent discharges to gaining surface-water bodies. In addition, infiltration to the ISS comes from the following sources: 36 percent from recharge within the model domain, 45 percent from lateral flow into the domain, 15 percent from Lake Michigan, and 4 percent from other surface-water bodies. Particle tracking reveals that the median traveltime from the recharge point to surface-water features is 8 years; the median time to the ISS is 255 years. The traveltimes to the ISS are least over the northern part of the valley, where dolomite is near the land surface. The distribution of traveltimes in the MODFLOW simulation is greatly influenced by the effective porosity values assigned to the various lithologies.

  16. Endophilin-A1 BAR domain interaction with arachidonyl CoA.

    PubMed

    Petoukhov, Maxim V; Weissenhorn, Winfried; Svergun, Dmitri I

    2014-01-01

    Endophilin-A1 belongs to the family of BAR domain containing proteins that catalyze membrane remodeling processes via sensing, inducing and stabilizing membrane curvature. We show that the BAR domain of endophilin-A1 binds arachidonic acid and molds its coenzyme A (CoA) activated form, arachidonyl-CoA into a defined structure. We studied low resolution structures of endophilin-A1-BAR and its complex with arachidonyl-CoA in solution using synchrotron small-angle X-ray scattering (SAXS). The free endophilin-A1-BAR domain is shown to be dimeric at lower concentrations but builds tetramers and higher order complexes with increasing concentrations. Extensive titration SAXS studies revealed that the BAR domain produces a homogenous complex with the lipid micelles. The structural model of the complexes revealed two arachidonyl-CoA micelles bound to the distal arms of an endophilin-A1-BAR dimer. Intriguingly, the radius of the bound micelles significantly decreases compared to that of the free micelles, and this structural result may provide hints on the potential biological relevance of the endophilin-A1-BAR interaction with arachidonyl CoA.

  17. Atomic structure of an alphabeta T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody.

    PubMed Central

    Wang, J; Lim, K; Smolyar, A; Teng, M; Liu, J; Tse, A G; Liu, J; Hussey, R E; Chishti, Y; Thomson, C T; Sweet, R M; Nathenson, S G; Chang, H C; Sacchettini, J C; Reinherz, E L

    1998-01-01

    Each T cell receptor (TCR) recognizes a peptide antigen bound to a major histocompatibility complex (MHC) molecule via a clonotypic alphabeta heterodimeric structure (Ti) non-covalently associated with the monomorphic CD3 signaling components. A crystal structure of an alphabeta TCR-anti-TCR Fab complex shows an Fab fragment derived from the H57 monoclonal antibody (mAb), interacting with the elongated FG loop of the Cbeta domain, situated beneath the Vbeta domain. This loop, along with the partially exposed ABED beta sheet of Cbeta, and glycans attached to both Cbeta and Calpha domains, forms a cavity of sufficient size to accommodate a single non-glycosylated Ig domain such as the CD3epsilon ectodomain. That this asymmetrically localized site is embedded within the rigid constant domain module has implications for the mechanism of signal transduction in both TCR and pre-TCR complexes. Furthermore, quaternary structures of TCRs vary significantly even when they bind the same MHC molecule, as manifested by a unique twisting of the V module relative to the C module. PMID:9427737

  18. Interdisciplinary Pathways for Urban Metabolism Research

    NASA Astrophysics Data System (ADS)

    Newell, J. P.

    2011-12-01

    With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material urban metabolism, which adds spatial differentiation to materials flows and form, as well as a focus on equity, access, and governance dimensions of the urban metabolism.

  19. A novel physical eco-hydrological model concept for preferential flow based on experimental applications.

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; van Schaik, Loes; Graeff, Thomas; Zehe, Erwin

    2014-05-01

    Preferential flow through macropores often determines hydrological characteristics - especially regarding runoff generation and fast transport of solutes. Macropore settings may yet be very different in nature and dynamics, depending on their origin. While biogenic structures follow activity cycles (e.g. earth worms) and population conditions (e.g. roots), pedogenic and geogenic structures may depend on water stress (e.g. cracks) or large events (e.g. flushed voids between skeleton and soil pipes) or simply persist (e.g. bedrock interface). On the one hand, such dynamic site characteristics can be observed in seasonal changes in its reaction to precipitation. On the other hand, sprinkling experiments accompanied by tracers or time-lapse 3D Ground-Penetrating-Radar are suitable tools to determine infiltration patterns and macropore configuration. However, model representation of the macropore-matrix system is still problematic, because models either rely on effective parameters (assuming well-mixed state) or on explicit advection strongly simplifying or neglecting interaction with the diffusive flow domain. Motivated by the dynamic nature of macropores, we present a novel model approach for interacting diffusive and advective water, solutes and energy transport in structured soils. It solely relies on scale- and process-aware observables. A representative set of macropores (data from sprinkling experiments) determines the process model scale through 1D advective domains. These are connected to a 2D matrix domain which is defined by pedo-physical retention properties. Water is represented as particles. Diffusive flow is governed by a 2D random walk of these particles while advection may take place in the macropore domain. Macropore-matrix interaction is computed as dissipation of the advective momentum of a particle by its experienced drag from the matrix domain. Through a representation of matrix and macropores as connected diffusive and advective domains for water transport we open up double domain concepts linking porescale physics to preferential macroscale fingerprints without effective parameterisation or mixing assumptions. Moreover, solute transport, energy balance aspects and lateral heterogeneity in soil moisture distribution are intrinsically captured. In addition, macropore and matrix domain settings may change over time based on physical and stochastic observations. The representativity concept allows scaleability from plotscale to the lower mesoscale.

  20. Minimum-domain impulse theory for unsteady aerodynamic force

    NASA Astrophysics Data System (ADS)

    Kang, L. L.; Liu, L. Q.; Su, W. D.; Wu, J. Z.

    2018-01-01

    We extend the impulse theory for unsteady aerodynamics from its classic global form to finite-domain formulation then to minimum-domain form and from incompressible to compressible flows. For incompressible flow, the minimum-domain impulse theory raises the finding of Li and Lu ["Force and power of flapping plates in a fluid," J. Fluid Mech. 712, 598-613 (2012)] to a theorem: The entire force with discrete wake is completely determined by only the time rate of impulse of those vortical structures still connecting to the body, along with the Lamb-vector integral thereof that captures the contribution of all the rest disconnected vortical structures. For compressible flows, we find that the global form in terms of the curl of momentum ∇ × (ρu), obtained by Huang [Unsteady Vortical Aerodynamics (Shanghai Jiaotong University Press, 1994)], can be generalized to having an arbitrary finite domain, but the formula is cumbersome and in general ∇ × (ρu) no longer has discrete structures and hence no minimum-domain theory exists. Nevertheless, as the measure of transverse process only, the unsteady field of vorticity ω or ρω may still have a discrete wake. This leads to a minimum-domain compressible vorticity-moment theory in terms of ρω (but it is beyond the classic concept of impulse). These new findings and applications have been confirmed by our numerical experiments. The results not only open an avenue to combine the theory with computation-experiment in wide applications but also reveal a physical truth that it is no longer necessary to account for all wake vortical structures in computing the force and moment.

  1. Multi-functional angiographic OFDI using frequency-multiplexed dual-beam illumination

    PubMed Central

    Kim, SunHee; Park, Taejin; Jang, Sun-Joo; Nam, Ahhyun S.; Vakoc, Benjamin J.; Oh, Wang-Yuhl

    2015-01-01

    Detection of blood flow inside the tissue sample can be achieved by measuring the local change of complex signal over time in angiographic optical coherence tomography (OCT). In conventional angiographic OCT, the transverse displacement of the imaging beam during the time interval between a pair of OCT signal measurements must be significantly reduced to minimize the noise due to the beam scanning-induced phase decorrelation at the expense of the imaging speed. Recent introduction of dual-beam scan method either using polarization encoding or two identical imaging systems in spectral-domain (SD) OCT scheme shows potential for high-sensitivity vasculature imaging without suffering from spurious phase noise caused by the beam scanning-induced spatial decorrelation. In this paper, we present multi-functional angiographic optical frequency domain imaging (OFDI) using frequency-multiplexed dual-beam illumination. This frequency multiplexing scheme, utilizing unique features of OFDI, provides spatially separated dual imaging beams occupying distinct electrical frequency bands that can be demultiplexed in the frequency domain processing. We demonstrate the 3D multi-functional imaging of the normal mouse skin in the dorsal skin fold chamber visualizing distinct layer structures from the intensity imaging, information about mechanical integrity from the polarization-sensitive imaging, and depth-resolved microvasculature from the angiographic imaging that are simultaneously acquired and automatically co-registered. PMID:25968731

  2. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  3. On the large eddy simulation of turbulent flows in complex geometry

    NASA Technical Reports Server (NTRS)

    Ghosal, Sandip

    1993-01-01

    Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.

  4. Application of the method of lines for solutions of the Navier-Stokes equations using a nonuniform grid distribution

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1983-01-01

    The feasibility of the method of lines for solutions of physical problems requiring nonuniform grid distributions is investigated. To attain this, it is also necessary to investigate the stiffness characteristics of the pertinent equations. For specific applications, the governing equations considered are those for viscous, incompressible, two dimensional and axisymmetric flows. These equations are transformed from the physical domain having a variable mesh to a computational domain with a uniform mesh. The two governing partial differential equations are the vorticity and stream function equations. The method of lines is used to solve the vorticity equation and the successive over relaxation technique is used to solve the stream function equation. The method is applied to three laminar flow problems: the flow in ducts, curved-wall diffusers, and a driven cavity. Results obtained for different flow conditions are in good agreement with available analytical and numerical solutions. The viability and validity of the method of lines are demonstrated by its application to Navier-Stokes equations in the physical domain having a variable mesh.

  5. Characterization of Hot Deformation Behavior of a Fe-Cr-Ni-Mo-N Superaustenitic Stainless Steel Using Dynamic Materials Modeling

    NASA Astrophysics Data System (ADS)

    Pu, Enxiang; Zheng, Wenjie; Song, Zhigang; Feng, Han; Zhu, Yuliang

    2017-03-01

    Hot deformation behavior of a Fe-24Cr-22Ni-7Mo-0.5N superaustenitic stainless steel was investigated by hot compression tests in a wide temperature range of 950-1250 °C and strain rate range of 0.001-10 s-1. The flow curves show that the flow stress decreases as the deformation temperature increases or the strain rate decreases. The processing maps developed on the basis of the dynamic materials model and flow stress data were adopted to optimize the parameters of hot working. It was found that the strain higher than 0.2 has no significant effect on the processing maps. The optimum processing conditions were in the temperature range of 1125-1220 °C and strain rate range of 0.1-3 s-1. Comparing to other stable domains, microstructural observations in this domain revealed the complete dynamic recrystallization (DRX) with finer and more uniform grain size. Flow instability occurred in the domain of temperature lower than 1100 °C and strain rate higher than 0.1 s-1.

  6. A Uranium Bioremediation Reactive Transport Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introducesmore » acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.« less

  7. Development and application of a generic CFD toolkit covering the heat flows in combined solid-liquid systems with emphasis on the thermal design of HiLumi superconducting magnets

    NASA Astrophysics Data System (ADS)

    Bozza, Gennaro; Malecha, Ziemowit M.; Van Weelderen, Rob

    2016-12-01

    The main objective of this work is to develop a robust multi-region numerical toolkit for the modeling of heat flows in combined solid-liquid systems. Specifically heat transfer in complex cryogenic system geometries involving super-fluid helium. The incentive originates from the need to support the design of superconductive magnets in the framework of the HiLumi-LHC project (Brüning and Rossi, 2015) [1]. The intent is, instead of solving heat flows in restricted domains, to be able to model a full magnet section in one go including all relevant construction details as accurately as possible. The toolkit was applied to the so-called MQXF quadrupole magnet design. Parametrisation studies were used to find a compromise in thermal design and electro-mechanical construction constraints. The cooling performance is evaluated in terms of temperature margin of the magnets under full steady state heat load conditions and in terms of maximal sustainable load. We also present transient response to pulse heat loads of varying duration and power and the system response to time-varying cold source temperatures.

  8. A dummy cell immersed boundary method for incompressible turbulence simulations over dirty geometries

    NASA Astrophysics Data System (ADS)

    Onishi, Keiji; Tsubokura, Makoto

    2016-11-01

    A methodology to eliminate the manual work required for correcting the surface imperfections of computer-aided-design (CAD) data, will be proposed. Such a technique is indispensable for CFD analysis of industrial applications involving complex geometries. The CAD geometry is degenerated into cell-oriented values based on Cartesian grid. This enables the parallel pre-processing as well as the ability to handle 'dirty' CAD data that has gaps, overlaps, or sharp edges without necessitating any fixes. An arbitrary boundary representation is used with a dummy-cell technique based on immersed boundary (IB) method. To model the IB, a forcing term is directly imposed at arbitrary ghost cells by linear interpolation of the momentum. The mass conservation is satisfied in the approximate domain that covers fluid region except the wall including cells. Attempts to Satisfy mass conservation in the wall containing cells leads to pressure oscillations near the IB. The consequence of this approximation will be discussed through fundamental study of an LES based channel flow simulation, and high Reynolds number flow around a sphere. And, an analysis comparing our results with wind tunnel experiments of flow around a full-vehicle geometry will also be presented.

  9. Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers

    NASA Astrophysics Data System (ADS)

    Fraga Filho, C. A. D.; Chacaltana, J. T. A.; Pinto, W. J. N.

    2018-01-01

    SPH is a recent particle method applied in the cavities study, without many results available in the literature. The lid-driven cavity flow is a classic problem of the fluid mechanics, extensively explored in the literature and presenting a considerable complexity. The aim of this paper is to present a solution from the Lagrangian viewpoint for this problem. The discretization of the continuum domain is performed using the Lagrangian particles. The physical laws of mass, momentum and energy conservation are presented by the Navier-Stokes equations. A serial numerical code, written in Fortran programming language, has been used to perform the numerical simulations. The application of the SPH and comparison with the literature (mesh methods and a meshless collocation method) have been done. The positions of the primary vortex centre and the non-dimensional velocity profiles passing through the geometric centre of the cavity have been analysed. The numerical Lagrangian results showed a good agreement when compared to the results found in the literature, specifically for { Re} < 100.00 . Suggestions for improvements in the SPH model presented are listed, in the search for better results for flows with higher Reynolds numbers.

  10. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  11. Crystal structure of a shark single-domain antibody V region in complex with lysozyme.

    PubMed

    Stanfield, Robyn L; Dooley, Helen; Flajnik, Martin F; Wilson, Ian A

    2004-09-17

    Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.

  12. Crystal Structure of the Eukaryotic Origin Recognition Complex

    PubMed Central

    Bleichert, Franziska; Botchan, Michael R.; Berger, James M.

    2015-01-01

    Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. The 3.5 Å resolution crystal structure of Drosophila ORC reveals that the 270 kDa initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ ATPase folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident, including highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighboring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate a ~20 Å wide channel in the center of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the MCM2-7 complex during replicative helicase loading; however, an observed >90° out-of-plane rotation for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions. PMID:25762138

  13. Maximally Expressive Task Modeling

    NASA Technical Reports Server (NTRS)

    Japp, John; Davis, Elizabeth; Maxwell, Theresa G. (Technical Monitor)

    2002-01-01

    Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiment activities for the Space Station. The equipment used in these experiments is some of the most complex hardware ever developed by mankind, the information sought by these experiments is at the cutting edge of scientific endeavor, and the procedures for executing the experiments are intricate and exacting. Scheduling is made more difficult by a scarcity of space station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling space station experiment operations calls for a "maximally expressive" modeling schema. Modeling even the simplest of activities cannot be automated; no sensor can be attached to a piece of equipment that can discern how to use that piece of equipment; no camera can quantify how to operate a piece of equipment. Modeling is a human enterprise-both an art and a science. The modeling schema should allow the models to flow from the keyboard of the user as easily as works of literature flowed from the pen of Shakespeare. The Ground Systems Department at the Marshall Space Flight Center has embarked on an effort to develop a new scheduling engine that is highlighted by a maximally expressive modeling schema. This schema, presented in this paper, is a synergy of technological advances and domain-specific innovations.

  14. Protein-Protein Interactions in the Complex between the Enhancer Binding Protein NIFA and the Sensor NIFL from Azotobacter vinelandii

    PubMed Central

    Money, Tracy; Barrett, Jason; Dixon, Ray; Austin, Sara

    2001-01-01

    The enhancer binding protein NIFA and the sensor protein NIFL from Azotobacter vinelandii comprise an atypical two-component regulatory system in which signal transduction occurs via complex formation between the two proteins rather than by the phosphotransfer mechanism, which is characteristic of orthodox systems. The inhibitory activity of NIFL towards NIFA is stimulated by ADP binding to the C-terminal domain of NIFL, which bears significant homology to the histidine protein kinase transmitter domains. Adenosine nucleotides, particularly MgADP, also stimulate complex formation between NIFL and NIFA in vitro, allowing isolation of the complex by cochromatography. Using limited proteolysis of the purified proteins, we show here that changes in protease sensitivity of the Q linker regions of both NIFA and NIFL occurred when the complex was formed in the presence of MgADP. The N-terminal domain of NIFA adjacent to the Q linker was also protected by NIFL. Experiments with truncated versions of NIFA demonstrate that the central domain of NIFA is sufficient to cause protection of the Q linker of NIFL, although in this case, stable protein complexes are not detectable by cochromatography. PMID:11157949

  15. Analysis and control of supersonic vortex breakdown flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1990-01-01

    Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.

  16. Enhanced line integral convolution with flow feature detection

    DOT National Transportation Integrated Search

    1995-01-01

    Prepared ca. 1995. The Line Integral Convolution (LIC) method, which blurs white noise textures along a vector field, is an effective way to visualize overall flow patterns in a 2D domain [Cabral & Leedom '93]. The method produces a flow texture imag...

  17. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  18. Simplified contaminant source depletion models as analogs of multiphase simulators

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.

    2008-04-01

    Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.

  19. Simplified contaminant source depletion models as analogs of multiphase simulators.

    PubMed

    Basu, Nandita B; Fure, Adrian D; Jawitz, James W

    2008-04-28

    Four simplified dense non-aqueous phase liquid (DNAPL) source depletion models recently introduced in the literature are evaluated for the prediction of long-term effects of source depletion under natural gradient flow. These models are simple in form (a power function equation is an example) but are shown here to serve as mathematical analogs to complex multiphase flow and transport simulators. The spill and subsequent dissolution of DNAPLs was simulated in domains having different hydrologic characteristics (variance of the log conductivity field=0.2, 1 and 3) using the multiphase flow and transport simulator UTCHEM. The dissolution profiles were fitted using four analytical models: the equilibrium streamtube model (ESM), the advection dispersion model (ADM), the power law model (PLM) and the Damkohler number model (DaM). All four models, though very different in their conceptualization, include two basic parameters that describe the mean DNAPL mass and the joint variability in the velocity and DNAPL distributions. The variability parameter was observed to be strongly correlated with the variance of the log conductivity field in the ESM and ADM but weakly correlated in the PLM and DaM. The DaM also includes a third parameter that describes the effect of rate-limited dissolution, but here this parameter was held constant as the numerical simulations were found to be insensitive to local-scale mass transfer. All four models were able to emulate the characteristics of the dissolution profiles generated from the complex numerical simulator, but the one-parameter PLM fits were the poorest, especially for the low heterogeneity case.

  20. Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

    USGS Publications Warehouse

    Wang, John D.; Swain, Eric D.; Wolfert, Melinda A.; Langevin, Christian D.; James, Dawn E.; Telis, Pamela A.

    2007-01-01

    The Comprehensive Everglades Restoration Plan requires numerical modeling to achieve a sufficient understanding of coastal freshwater flows, nutrient sources, and the evaluation of management alternatives to restore the ecosystem of southern Florida. Numerical models include a regional water-management model to represent restoration changes to the hydrology of southern Florida and a hydrodynamic model to represent the southern and western offshore waters. The coastal interface between these two systems, however, has complex surface-water/ground-water and freshwater/saltwater interactions and requires a specialized modeling effort. The Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) code was developed to represent connected surface- and ground-water systems with variable-density flow. The first use of FTLOADDS is the Southern Inland and Coastal Systems (SICS) application to the southeastern part of the Everglades/Florida Bay coastal region. The need to (1) expand the domain of the numerical modeling into most of Everglades National Park and the western coastal area, and (2) better represent the effect of water-delivery control structures, led to the application of the FTLOADDS code to the Tides and Inflows in the Mangroves of the Everglades (TIME) domain. This application allows the model to address a broader range of hydrologic issues and incorporate new code modifications. The surface-water hydrology is of primary interest to water managers, and is the main focus of this study. The coupling to ground water, however, was necessary to accurately represent leakage exchange between the surface water and ground water, which transfers substantial volumes of water and salt. Initial calibration and analysis of the TIME application produced simulated results that compare well statistically with field-measured values. A comparison of TIME simulation results to previous SICS results shows improved capabilities, particularly in the representation of coastal flows. This improvement most likely is due to a more stable numerical representation of the coastal creek outlets. Sensitivity analyses were performed by varying frictional resistance, leakage, barriers to flow, and topography. Changing frictional resistance values in inland areas was shown to improve water-level representation locally, but to have a negligible effect on area-wide values. These changes have only local effects and are not physically based (as are the unchanged values), and thus have limited validity. Sensitivity tests indicate that the overall accuracy of the simulation is diminished if leakage between surface water and ground water is not simulated. The inclusion of a major road as a complete barrier to surface-water flow influenced the local distribution and timing of flow; however, the changes in total flow and individual creekflows were negligible. The model land-surface altitude was lowered by 0.1 meter to determine the sensitivity to topographic variation. This topographic sensitivity test produced mixed results in matching field data. Overall, the representation of stage did not improve definitively. A final calibration utilized the results of the sensitivity analysis to refine the TIME application. To accomplish this calibration, the friction coefficient was reduced at the northern boundary inflow and increased in the southwestern corner of the model, the evapotranspiration function was varied, additional data were used for the ground-water head boundary along the southeast, and the frictional resistance of the primary coastal creek outlet was increased. The calibration improved the match between measured and simulated total flows to Florida Bay and coastal salinities. Agreement also was improved at most of the water-level sites throughout the model domain.

  1. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  2. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture.

    PubMed

    Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S

    2012-01-10

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Finite-time braiding exponents

    NASA Astrophysics Data System (ADS)

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  4. Finite-time braiding exponents.

    PubMed

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  5. LINCing complex functions at the nuclear envelope

    PubMed Central

    Rothballer, Andrea; Schwartz, Thomas U.; Kutay, Ulrike

    2013-01-01

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell. PMID:23324460

  6. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  7. BamA POTRA Domain Interacts with a Native Lipid Membrane Surface.

    PubMed

    Fleming, Patrick J; Patel, Dhilon S; Wu, Emilia L; Qi, Yifei; Yeom, Min Sun; Sousa, Marcelo Carlos; Fleming, Karen G; Im, Wonpil

    2016-06-21

    The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly β-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein β-barrel assembly machine (BAM) catalyzes the insertion and folding of the β-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane β-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate β-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane β-barrel proteins. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Variational formulation of hybrid problems for fully 3-D transonic flow with shocks in rotor

    NASA Technical Reports Server (NTRS)

    Liu, Gao-Lian

    1991-01-01

    Based on previous research, the unified variable domain variational theory of hybrid problems for rotor flow is extended to fully 3-D transonic rotor flow with shocks, unifying and generalizing the direct and inverse problems. Three variational principles (VP) families were established. All unknown boundaries and flow discontinuities (such as shocks, free trailing vortex sheets) are successfully handled via functional variations with variable domain, converting almost all boundary and interface conditions, including the Rankine Hugoniot shock relations, into natural ones. This theory provides a series of novel ways for blade design or modification and a rigorous theoretical basis for finite element applications and also constitutes an important part of the optimal design theory of rotor bladings. Numerical solutions to subsonic flow by finite elements with self-adapting nodes given in Refs., show good agreement with experimental results.

  9. The integrated model of sport confidence: a canonical correlation and mediational analysis.

    PubMed

    Koehn, Stefan; Pearce, Alan J; Morris, Tony

    2013-12-01

    The main purpose of the study was to examine crucial parts of Vealey's (2001) integrated framework hypothesizing that sport confidence is a mediating variable between sources of sport confidence (including achievement, self-regulation, and social climate) and athletes' affect in competition. The sample consisted of 386 athletes, who completed the Sources of Sport Confidence Questionnaire, Trait Sport Confidence Inventory, and Dispositional Flow Scale-2. Canonical correlation analysis revealed a confidence-achievement dimension underlying flow. Bias-corrected bootstrap confidence intervals in AMOS 20.0 were used in examining mediation effects between source domains and dispositional flow. Results showed that sport confidence partially mediated the relationship between achievement and self-regulation domains and flow, whereas no significant mediation was found for social climate. On a subscale level, full mediation models emerged for achievement and flow dimensions of challenge-skills balance, clear goals, and concentration on the task at hand.

  10. A knowledge-based approach to automated flow-field zoning for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1989-01-01

    An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.

  11. Mechanism of calmodulin recognition of the binding domain of isoform 1b of the plasma membrane Ca2+-ATPase: kinetic pathway and effects of methionine oxidation

    PubMed Central

    Slaughter, Brian D.; Bieber Urbauer, Ramona J.; Urbauer, Jeffrey L.; Johnson, Carey K.

    2008-01-01

    Calmodulin (CaM) binds to a domain near the C-terminus of the plasma-membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide (C28W(1b)) corresponding to the CaM binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or on the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism where an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the lower effectiveness of oxidized CaM in activating the Ca2+ pump. PMID:17343368

  12. A solution algorithm for fluid–particle flows across all flow regimes

    DOE PAGES

    Kong, Bo; Fox, Rodney O.

    2017-05-12

    Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less

  13. A solution algorithm for fluid-particle flows across all flow regimes

    NASA Astrophysics Data System (ADS)

    Kong, Bo; Fox, Rodney O.

    2017-09-01

    Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.

  14. A solution algorithm for fluid–particle flows across all flow regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo; Fox, Rodney O.

    Many fluid–particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are closepacked as well as very dilute regions where particle–particle collisions are rare. Thus, in order to simulate such fluid–particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in themore » flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas–particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid–particle flows.« less

  15. Structural studies on Pax-8 Prd domain/DNA complex.

    PubMed

    Campagnolo, M; Pesaresi, A; Zelezetsky, I; Geremia, S; Randaccio, L; Bisca, A; Tell, G

    2007-04-01

    Pax-8 is a member of the Pax family of transcription factors and is essential in the development of thyroid follicular cells. Pax-8 has two DNA-binding domains: the paired domain and the homeo domain. In this study, a preliminary X-ray diffraction analysis of the mammalian Pax-8 paired domain in complex with the C-site of the thyroglobulin promoter was achieved. The Pax-8 paired domain was crystallized by the hanging-drop vapor-diffusion method in complex with both a blunt-ended 26 bp DNA fragment and with a sticky-ended 24 bp DNA fragment with two additional overhanging bases. Crystallization experiments make clear that the growth of transparent crystals with large dimensions and regular shape is particularly influenced by ionic strength. The crystals of Pax-8 complex with blunt-ended and sticky-ended DNA, diffracted synchrotron radiation to 6.0 and 8.0 A resolution and belongs both to the C centered monoclinic system with cell dimensions: a = 89.88 A, b = 80.05 A, c = 67.73 A, and beta = 124.3 degrees and a = 256.56, b = 69.07, c = 99.32 A, and beta = 98.1 degrees , respectively. Fluorescence experiments suggest that the crystalline disorder, deduced by the poor diffraction, can be attributed to the low homogeneity of the protein-DNA sample. The theoretical comparative model of the Pax-8 paired domain complexed with the C-site of the thyroglobulin promoter shows the probable presence of some specific protein-DNA interactions already observed in other Pax proteins and the important role of the cysteine residues of PAI subdomain in the redox control of the DNA recognition.

  16. The Crystal Structure of the Ubiquitin-like Domain of Ribosome Assembly Factor Ytm1 and Characterization of Its Interaction with the AAA-ATPase Midasin*

    PubMed Central

    Romes, Erin M.; Sobhany, Mack; Stanley, Robin E.

    2016-01-01

    The synthesis of eukaryotic ribosomes is a complex, energetically demanding process requiring the aid of numerous non-ribosomal factors, such as the PeBoW complex. The mammalian PeBoW complex, composed of Pes1, Bop1, and WDR12, is essential for the processing of the 32S preribosomal RNA. Previous work in Saccharomyces cerevisiae has shown that release of the homologous proteins in this complex (Nop7, Erb1, and Ytm1, respectively) from preribosomal particles requires Rea1 (midasin or MDN1 in humans), a large dynein-like protein. Midasin contains a C-terminal metal ion-dependent adhesion site (MIDAS) domain that interacts with the N-terminal ubiquitin-like (UBL) domain of Ytm1/WDR12 as well as the UBL domain of Rsa4/Nle1 in a later step in the ribosome maturation pathway. Here we present the crystal structure of the UBL domain of the WDR12 homologue from S. cerevisiae at 1.7 Å resolution and demonstrate that human midasin binds to WDR12 as well as Nle1 through their respective UBL domains. Midasin contains a well conserved extension region upstream of the MIDAS domain required for binding WDR12 and Nle1, and the interaction is dependent upon metal ion coordination because removal of the metal or mutation of residues that coordinate the metal ion diminishes the interaction. Mammalian WDR12 displays prominent nucleolar localization that is dependent upon active ribosomal RNA transcription. Based upon these results, we propose that release of the PeBoW complex and subsequent release of Nle1 by midasin is a well conserved step in the ribosome maturation pathway in both yeast and mammalian cells. PMID:26601951

  17. Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen

    2018-04-01

    This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.

  18. Rapid distortion theory and the 'problems' of turbulence

    NASA Astrophysics Data System (ADS)

    Hunt, J. C. R.; Carruthers, D. J.

    1990-03-01

    This paper describes some developments in the techniques of the rapid distortion theory (RDT) and in the general understanding of how it can be used. It is noted in particular that the theory provides a rational basis for analyzing rapidly changing turbulent flows (RCT), and a heuristic method for estimating certain features of slowly changing turbulent flows (SCT). Recent developments of the RDT are reviewed, including criteria for its validity and new solutions allowing for the effects of inhomogeneities and boundaries. The problems associated with analyzing different kinds of turbulent flow and different methods of solution are classified and discussed with reference to how the turbulent structure in a flow domain depends on the scale and geometry of the domain's boundary, and on the information provided in the boundary conditions.

  19. Internal Wave-Convection-Mean Flow Interactions

    NASA Astrophysics Data System (ADS)

    Lecoanet, D.; Couston, L. A.; Favier, B.; Le Bars, M.

    2017-12-01

    We present a series of simulations of Boussinesq fluid with a nonlinear equation of state which in thermal equilibrium is convective in the bottom part of the domain, but stably stratified in the upper part of the domain. The stably stratified region supports internal gravity waves, which are excited by the convection. The convection can significantly affected by the stably stratified region. Furthermore, the waves in the stable region can interact nonlinearly to drive coherent mean flows which exhibit regular oscillations, similar to the QBO in the Earth's atmosphere. We will describe the dependence of the mean flow oscillations on the properties of the convection which generate the internal waves. This provides a novel framework for understanding mean flow oscillations in the Earth's atmosphere, as well as the atmospheres of giant planets.

  20. Construct validity of the pediatric evaluation of disability inventory computer adaptive test (PEDI-CAT) in children with medical complexity.

    PubMed

    Dumas, Helene M; Fragala-Pinkham, Maria A; Rosen, Elaine L; O'Brien, Jane E

    2017-11-01

    To assess construct (convergent and divergent) validity of the Pediatric Evaluation of Disability Inventory Computer Adaptive Test (PEDI-CAT) in a sample of children with complex medical conditions. Demographics, clinical information, PEDI-CAT normative score, and the Post-Acute Acuity Rating for Children (PAARC) level were collected for all post-acute hospital admissions (n = 110) from 1 April 2015 to 1 March 2016. Correlations between the PEDI-CAT Daily Activities, Mobility, and Social/Cognitive domain scores for the total sample and across three age groups (infant, preschool, and school-age) were calculated. Differences in mean PEDI-CAT scores for each domain across two groups, children with "Less Complexity," or "More Complexity" based on PAARC level were examined. All correlations for the total sample and age subgroups were statistically significant and trends across age groups were evident with the stronger associations between domains for the infant group. Significant differences were found between mean PEDI-CAT Daily Activities, Mobility, and Social/Cognitive normative scores across the two complexity groups with children in the "Less Complex" group having higher PEDI-CAT scores for all domains. This study provides evidence indicating the PEDI-CAT can be used with confidence in capturing and differentiating children's level of function in a post-acute care setting. Implications for Rehabilitation The PEDI-CAT is measure of function for children with a variety of conditions and can be used in any clinical setting. Convergent validity of the PEDI-CAT's Daily Activities, Mobility, and Social/Cognitive domains was significant and particularly strong for infants and young children with medical complexity. The PEDI-CAT was able to discriminate groups of children with differing levels of medical complexity admitted to a pediatric post-acute care hospital.

Top