Sample records for complex flow system

  1. Data flow modeling techniques

    NASA Technical Reports Server (NTRS)

    Kavi, K. M.

    1984-01-01

    There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.

  2. Information and material flows in complex networks

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Armbruster, Dieter; Mikhailov, Alexander S.; Lefeber, Erjen

    2006-04-01

    In this special issue, an overview of the Thematic Institute (TI) on Information and Material Flows in Complex Systems is given. The TI was carried out within EXYSTENCE, the first EU Network of Excellence in the area of complex systems. Its motivation, research approach and subjects are presented here. Among the various methods used are many-particle and statistical physics, nonlinear dynamics, as well as complex systems, network and control theory. The contributions are relevant for complex systems as diverse as vehicle and data traffic in networks, logistics, production, and material flows in biological systems. The key disciplines involved are socio-, econo-, traffic- and bio-physics, and a new research area that could be called “biologistics”.

  3. An R Package for Open, Reproducible Analysis of Urban Water Systems, With Application to Chicago

    EPA Science Inventory

    Urban water systems consist of natural and engineered flows of water interacting in complex ways. System complexity can be understood via mass conservative models that account for the interrelationships among all major flows and storages. We have developed a generic urban water s...

  4. Water Flow Test at Launch Complex 39B

    NASA Image and Video Library

    2017-12-20

    Water flowed during a test at Launch Complex 39B at NASA’s Kennedy Space Center in Florida. About 450,000 gallons of water flowed at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test at Launch Complex 39B. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was a milestone to confirm and baseline the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  5. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  6. Information Flows? A Critique of Transfer Entropies

    NASA Astrophysics Data System (ADS)

    James, Ryan G.; Barnett, Nix; Crutchfield, James P.

    2016-06-01

    A central task in analyzing complex dynamics is to determine the loci of information storage and the communication topology of information flows within a system. Over the last decade and a half, diagnostics for the latter have come to be dominated by the transfer entropy. Via straightforward examples, we show that it and a derivative quantity, the causation entropy, do not, in fact, quantify the flow of information. At one and the same time they can overestimate flow or underestimate influence. We isolate why this is the case and propose several avenues to alternate measures for information flow. We also address an auxiliary consequence: The proliferation of networks as a now-common theoretical model for large-scale systems, in concert with the use of transferlike entropies, has shoehorned dyadic relationships into our structural interpretation of the organization and behavior of complex systems. This interpretation thus fails to include the effects of polyadic dependencies. The net result is that much of the sophisticated organization of complex systems may go undetected.

  7. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  8. Modeling Groundwater Flow System of a Drainage Basin in the Basement Complex Environment of Southwestern Nigera

    NASA Astrophysics Data System (ADS)

    Akinwumiju, Akinola S.; Olorunfemi, Martins O.

    2018-05-01

    This study attempted to model the groundwater flow system of a drainage basin within the Basement Complex environment of Southwestern Nigeria. Four groundwater models were derived from Vertical Electrical Sounding (VES) Data, remotely sensed data, geological information (hydrolineaments and lithology) and borehole data. Subsequently, two sub-surface (local and regional) flow systems were delineated in the study area. While the local flow system is controlled by surface topography, the regional flow system is controlled by the networks of intermediate and deep seated faults/fractures. The local flow system is characterized by convergence, divergence, inflow and outflow in places, while the regional flow system is dominated by NNE-SSW and W-E flow directions. Minor flow directions include NNW-SSE and E-W with possible linkages to the main flow-paths. The NNE-SSW regional flow system is a double open ended flow system with possible linkage to the Niger Trough. The W-E regional flow system is a single open ended system that originates within the study area (with possible linkage to the NNE-SSW regional flow system) and extends to Ikogosi in the adjoining drainage basin. Thus, the groundwater drainage basin of the study area is much larger and extensive than its surface drainage basin. The all year round flowing (perennial) rivers are linked to groundwater outcrops from faults/fractures and contact zones. Consequently, larger percentage of annual rainwater usually leaves the basin in form of runoff and base flow. Therefore, the basin is categorized as a donor basin but with suspected subsurface water input at its northeastern axis.

  9. The application of a unique flow modeling technique to complex combustion systems

    NASA Astrophysics Data System (ADS)

    Waslo, J.; Hasegawa, T.; Hilt, M. B.

    1986-06-01

    This paper describes the application of a unique three-dimensional water flow modeling technique to the study of complex fluid flow patterns within an advanced gas turbine combustor. The visualization technique uses light scattering, coupled with real-time image processing, to determine flow fields. Additional image processing is used to make concentration measurements within the combustor.

  10. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  11. Weighted complex network analysis of the Beijing subway system: Train and passenger flows

    NASA Astrophysics Data System (ADS)

    Feng, Jia; Li, Xiamiao; Mao, Baohua; Xu, Qi; Bai, Yun

    2017-05-01

    In recent years, complex network theory has become an important approach to the study of the structure and dynamics of traffic networks. However, because traffic data is difficult to collect, previous studies have usually focused on the physical topology of subway systems, whereas few studies have considered the characteristics of traffic flows through the network. Therefore, in this paper, we present a multi-layer model to analyze traffic flow patterns in subway networks, based on trip data and an operation timetable obtained from the Beijing Subway System. We characterize the patterns in terms of the spatiotemporal flow size distributions of both the train flow network and the passenger flow network. In addition, we describe the essential interactions between these two networks based on statistical analyses. The results of this study suggest that layered models of transportation systems can elucidate fundamental differences between the coexisting traffic flows and can also clarify the mechanism that causes these differences.

  12. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    NASA Astrophysics Data System (ADS)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  13. Simulations of Instabilities in Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.

    2006-01-01

    CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.

  14. Mentat: An object-oriented macro data flow system

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Liu, Jane W. S.

    1988-01-01

    Mentat, an object-oriented macro data flow system designed to facilitate parallelism in distributed systems, is presented. The macro data flow model is a model of computation similar to the data flow model with two principal differences: the computational complexity of the actors is much greater than in traditional data flow systems, and there are persistent actors that maintain state information between executions. Mentat is a system that combines the object-oriented programming paradigm and the macro data flow model of computation. Mentat programs use a dynamic structure called a future list to represent the future of computations.

  15. A new simulation system of traffic flow based on cellular automata principle

    NASA Astrophysics Data System (ADS)

    Shan, Junru

    2017-05-01

    Traffic flow is a complex system of multi-behavior so it is difficult to give a specific mathematical equation to express it. With the rapid development of computer technology, it is an important method to study the complex traffic behavior by simulating the interaction mechanism between vehicles and reproduce complex traffic behavior. Using the preset of multiple operating rules, cellular automata is a kind of power system which has discrete time and space. It can be a good simulation of the real traffic process and a good way to solve the traffic problems.

  16. [Design of Complex Cavity Structure in Air Route System of Automated Peritoneal Dialysis Machine].

    PubMed

    Quan, Xiaoliang

    2017-07-30

    This paper introduced problems about Automated Peritoneal Dialysis machine(APD) that the lack of technical issues such as the structural design of the complex cavities. To study the flow characteristics of this special structure, the application of ANSYS CFX software is used with k-ε turbulence model as the theoretical basis of fluid mechanics. The numerical simulation of flow field simulation result in the internal model can be gotten after the complex structure model is imported into ANSYS CFX module. Then, it will present the distribution of complex cavities inside the flow field and the flow characteristics parameter, which will provide an important reference design for APD design.

  17. Regimes of Flow over Complex Structures of Endothelial Glycocalyx: A Molecular Dynamics Simulation Study.

    PubMed

    Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H

    2018-04-10

    Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.

  18. System-focused environmental flow regime prescription, monitoring and adaptive management

    NASA Astrophysics Data System (ADS)

    Hetherington, David; Lexartza Artza, Irantzu

    2016-04-01

    The definition of appropriate environmental flow regimes through hydropower schemes and water storage reservoirs is key part of mitigation. Insufficient (magnitude and variability) environmental flows can result in much environmental harm with negative impacts being encountered by morphological, ecological and societal systems. Conventionally, environmental flow regimes have been determined by using generic protocols and guidance such as the Tennant method of environmental flow estimation. It is generally accepted that such approaches to minimum environmental flow definition, although being a useful starting point, are not universally applicable across catchment typologies and climatic regions. Such approaches will not always produce conditions that would be associated with 'Good Ecological Status' under the Water framework Directive (or equivalent). Other similar approaches to minimum environmental flow estimation are used that are specific to geographies, yet still the associated guidance rarely thoroughly covers appropriate definition for healthy holistic systems across the flow regime. This paper draws on experience of system-focused environmental flow regime determination in the UK and the Georgian Caucasus Mountains, which allowed for a critical analysis of more conventional methods to be undertaken. The paper describes a recommended approach for determining appropriate environmental flow regimes based on analysis of the impacted geomorphological, ecological and societal systems in a way which is sensitive to the local holistic environment and associated complexities and interactions. The paper suggests that a strong understanding of the local geomorphology in key in predicting how flows will manifest habitat differently across the flow regime, and be spatially dynamic. Additionally, an understanding of the geomorphological system allows the flow of course and fine sediment to be factored into the initial suggested environmental flow regime. It is suggested that more peripheral influencing factors should be given serious consideration when developing environmental flow regimes. These factors could include the development of ice, non-fluvial geomorphic processes such as landslides, connectivity with groundwater and provision for local cottage industries. Even with a thorough appreciation of the holistic system, the value of detailed environmental monitoring and adaptive management plans cannot be underestimated as a means of further managing risk and uncertainty in complex systems. It is suggested that by taking a more holistic and system-focused approach to environmental flow definition, that environmental flow regimes can be tailored to the specificity and complexity of any given location. By improving the way that environmental flow regimes and associated physical mitigation are prescribed, monitored and managed it should be possible to develop more sustainable forms of energy production whilst minimising environmental harm as far as possible.

  19. Inviscid and viscous flow modelling of complex aircraft configurations using the CFD simulation system sauna

    NASA Astrophysics Data System (ADS)

    Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.; Shaw, Jonathon A.

    1994-04-01

    This paper is concerned with the flow modelling capabilities of an advanced CFD simulation system known by the acronym SAUNA. This system is aimed primarily at complex aircraft configurations and possesses a unique grid generation strategy in its use of block-structured, unstructured or hybrid grids, depending on the geometric complexity of the addressed configuration. The main focus of the paper is in demonstrating the recently developed multi-grid, block-structured grid, viscous flow capability of SAUNA, through its evaluation on a number of configurations. Inviscid predictions are also presented, both as a means of interpreting the viscous results and with a view to showing more completely the capabilities of SAUNA. It is shown that accuracy and flexibility are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.

  20. Computer program determines gas flow rates in piping systems

    NASA Technical Reports Server (NTRS)

    Franke, R.

    1966-01-01

    Computer program calculates the steady state flow characteristics of an ideal compressible gas in a complex piping system. The program calculates the stagnation and total temperature, static and total pressure, loss factor, and forces on each element in the piping system.

  1. The threshold algorithm: Description of the methodology and new developments

    NASA Astrophysics Data System (ADS)

    Neelamraju, Sridhar; Oligschleger, Christina; Schön, J. Christian

    2017-10-01

    Understanding the dynamics of complex systems requires the investigation of their energy landscape. In particular, the flow of probability on such landscapes is a central feature in visualizing the time evolution of complex systems. To obtain such flows, and the concomitant stable states of the systems and the generalized barriers among them, the threshold algorithm has been developed. Here, we describe the methodology of this approach starting from the fundamental concepts in complex energy landscapes and present recent new developments, the threshold-minimization algorithm and the molecular dynamics threshold algorithm. For applications of these new algorithms, we draw on landscape studies of three disaccharide molecules: lactose, maltose, and sucrose.

  2. Optimization of information content in a mass spectrometry based flow-chemistry system by investigating different ionization approaches.

    PubMed

    Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A

    2011-05-15

    Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  4. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.

    PubMed

    Safavieh, Roozbeh; Juncker, David

    2013-11-07

    Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.

  5. 93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND SYSTEM 2, FACING WEST IN MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. Complex groundwater flow systems as traveling agent models

    PubMed Central

    Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455

  7. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  8. Complexity, flow, and antifragile healthcare systems: implications for nurse executives.

    PubMed

    Clancy, Thomas R

    2015-04-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on the application of management strategies in health systems. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. In this article, I further discuss the concept of fragility, its impact on system behavior, and ways to reduce it.

  9. ­Understanding Information Flow Interaction along Separable Causal Paths in Environmental Signals

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Kumar, P.

    2017-12-01

    Multivariate environmental signals reflect the outcome of complex inter-dependencies, such as those in ecohydrologic systems. Transfer entropy and information partitioning approaches have been used to characterize such dependencies. However, these approaches capture net information flow occurring through a multitude of pathways involved in the interaction and as a result mask our ability to discern the causal interaction within an interested subsystem through specific pathways. We build on recent developments of momentary information transfer along causal paths proposed by Runge [2015] to develop a framework for quantifying information decomposition along separable causal paths. Momentary information transfer along causal paths captures the amount of information flow between any two variables lagged at two specific points in time. Our approach expands this concept to characterize the causal interaction in terms of synergistic, unique and redundant information flow through separable causal paths. Multivariate analysis using this novel approach reveals precise understanding of causality and feedback. We illustrate our approach with synthetic and observed time series data. We believe the proposed framework helps better delineate the internal structure of complex systems in geoscience where huge amounts of observational datasets exist, and it will also help the modeling community by providing a new way to look at the complexity of real and modeled systems. Runge, Jakob. "Quantifying information transfer and mediation along causal pathways in complex systems." Physical Review E 92.6 (2015): 062829.

  10. Assessment of the urban water system with an open, reproducible process applied to Chicago

    EPA Science Inventory

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green...

  11. Pt(ii) coordination complexes as visible light photocatalysts for the oxidation of sulfides using batch and flow processes.

    PubMed

    Casado-Sánchez, Antonio; Gómez-Ballesteros, Rocío; Tato, Francisco; Soriano, Francisco J; Pascual-Coca, Gustavo; Cabrera, Silvia; Alemán, José

    2016-07-12

    A new catalytic system for the photooxidation of sulfides based on Pt(ii) complexes is presented. The catalyst is capable of oxidizing a large number of sulfides containing aryl, alkyl, allyl, benzyl, as well as more complex structures such as heterocycles and methionine amino acid, with complete chemoselectivity. In addition, the first sulfur oxidation in a continuous flow process has been developed.

  12. Quasi 3D modeling of water flow in vadose zone and groundwater

    USDA-ARS?s Scientific Manuscript database

    The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In ...

  13. Transient Flows in a Pipe System with Pump Shut-Down and the Simultaneous Closing of a Spherical Valve

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2016-11-01

    Because of the limited value of the wave propagation speed in water the propagation of a pressure surge in transient flows can be tracked in the time series. This enables both the pressure head and the flow velocity in pipe flows to be determined as a function of both the coordinate along the pipe and the time. The propagation of the pressure surge includes both wave transmission and reflection. The latter occurs where the flow section is changed. The wave tracking method has been demonstrated as highly accurate and subsequently was applied to much more complex hydraulic systems, in which the pump is shut off and the spherical valve is simultaneously progressively closed. A combined four-quadrant characteristic of the pump and a spherical valve has been worked out, with which the computational procedure for the transient flow in the complex system could be significantly simplified. It has been demonstrated that not only the pressure surge in the hydraulic system but also the rotational speed of the pump could be satisfactorily computed. The computational algorithm has been demonstrated as quite simple, so that all calculations could be performed simply by means of the Microsoft Excel module.

  14. Hypothetical Modeling of Redox Conditions Within a Complex Ground-Water Flow Field in a Glacial Setting

    USGS Publications Warehouse

    Feinstein, Daniel T.; Thomas, Mary Ann

    2009-01-01

    This report describes a modeling approach for studying how redox conditions evolve under the influence of a complex ground-water flow field. The distribution of redox conditions within a flow system is of interest because of the intrinsic susceptibility of an aquifer to redox-sensitive, naturally occurring contaminants - such as arsenic - as well as anthropogenic contaminants - such as chlorinated solvents. The MODFLOW-MT3D-RT3D suite of code was applied to a glacial valley-fill aquifer to demonstrate a method for testing the interaction of flow patterns, sources of reactive organic carbon, and availability of electron acceptors in controlling redox conditions. Modeling results show how three hypothetical distributions of organic carbon influence the development of redox conditions in a water-supply aquifer. The distribution of strongly reduced water depends on the balance between the rate of redox reactions and the capability of different parts of the flow system to transmit oxygenated water. The method can take account of changes in the flow system induced by pumping that result in a new distribution of reduced water.

  15. Enterprise Systems Analysis

    DTIC Science & Technology

    2016-03-14

    flows , or continuous state changes, with feedback loops and lags modeled in the flow system. Agent based simulations operate using a discrete event...DeLand, S. M., Rutherford, B . M., Diegert, K. V., & Alvin, K. F. (2002). Error and uncertainty in modeling and simulation . Reliability Engineering...intrinsic complexity of the underlying social systems fundamentally limits the ability to make

  16. Stability and dynamical properties of material flow systems on random networks

    NASA Astrophysics Data System (ADS)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  17. A chimera grid scheme. [multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Dougherty, F. C.; Benek, J. A.

    1983-01-01

    A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.

  18. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    PubMed

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Andrews, William J.; Stark, James R.; Fong, Alison L.; Fallon, James D.

    2005-01-01

    Although land use had substantial effects on ground-water quality, the distribution of contaminants in the aquifer also is affected by complex combinations of factors and processes that include sources of natural and anthropogenic contaminants, three-dimensional advective flow, physical and hydrologic settings, age and evolution of ground water, and transformation of chemical compounds along the flow system. Compounds such as nitrate and dissolved oxygen were greatest in water samples from the upgradient end of the flow system and near the water table. Specific conductance and dissolved solids increased along the flow system and with depth due to increase in residence time in the flow system and dissolution of aquifer materials.

  20. A system for the real time, direct measurement of natural gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, T.

    1995-12-31

    PMI/Badger Meter, Inc. with partial sponsorship from the Gas Research Institute, has designed and developed direct measurement total energy flow metering instrumentation. As industry demands for improved accuracy and speed of measurement have increased so has the complexity of the overall hardware and software systems. Considering traditional system approaches, few companies have the in house capability of maintaining a complete system. This paper addresses efforts to implement a direct, total gas energy flow metering system which is simple to use and cost effective.

  1. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  2. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  3. A flow system for the spectrophotometric determination of lead in different types of waters using ion-exchange for pre-concentration and elimination of interferences.

    PubMed

    Mesquita, Raquel B R; Fernandes, Sílvia M V; Rangel, António O S S

    2004-02-06

    A flow system for the spectrophotometric determination of lead in natural and waste waters is proposed. The determination is based on the colorimetric reaction between malachite green and iodide, followed by the formation of a ternary complex between those reagents and lead cations. The developed flow system includes a lead pre-concentration step in a column packed with a cationic resin (Chelex 100) operating in a sequential injection mode. To improve the mixture of sample and reagents, a flow injection approach was adopted for the colorimetric determination. This way a hybrid flow system, involving both sequential and flow injection concepts was designed. Another feature of the proposed system is the efficient elimination of major interferent species, such as cadmium and copper. The elimination of cadmium interference is obtained by complexing Cd(2+) with chloride and retaining the formed negatively charged complexes in an anionic resin, AG1 X-8. As for copper, with the presence of both ionic resins as well as the conditions for cadmium elimination, it no longer acts as an interferent. Different ranges of lead concentration (50-300 and 300-1000mugl(-1)) can be determined with minor changes in the controlling software, useful for application to both natural and waste waters. Therefore, a detection limit of 25mugl(-1) was achieved. Repeatability was evaluated from 10 consecutive determinations being the results better than 4%. The recoveries of lead spikes added to the samples ranged from 93 to 102%. The sampling frequency was 17 and 24 determinations per hour, for 50-300 and 300-1000mugl(-1) ranges, respectively.

  4. Rich complex behaviour of self-assembled nanoparticles far from equilibrium

    PubMed Central

    Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F. Ömer

    2017-01-01

    A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish. PMID:28443636

  5. Rich complex behaviour of self-assembled nanoparticles far from equilibrium

    NASA Astrophysics Data System (ADS)

    Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F. Ömer

    2017-04-01

    A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish.

  6. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  7. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M.-S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  8. SToRM: A numerical model for environmental surface flows

    USGS Publications Warehouse

    Simoes, Francisco J.

    2009-01-01

    SToRM (System for Transport and River Modeling) is a numerical model developed to simulate free surface flows in complex environmental domains. It is based on the depth-averaged St. Venant equations, which are discretized using unstructured upwind finite volume methods, and contains both steady and unsteady solution techniques. This article provides a brief description of the numerical approach selected to discretize the governing equations in space and time, including important aspects of solving natural environmental flows, such as the wetting and drying algorithm. The presentation is illustrated with several application examples, covering both laboratory and natural river flow cases, which show the model’s ability to solve complex flow phenomena.

  9. Asynchronous oscillations of rigid rods drive viscous fluid to swirl

    NASA Astrophysics Data System (ADS)

    Hayashi, Rintaro; Takagi, Daisuke

    2017-12-01

    We present a minimal system for generating flow at low Reynolds number by oscillating a pair of rigid rods in silicone oil. Experiments show that oscillating them in phase produces no net flow, but a phase difference alone can generate rich flow fields. Tracer particles follow complex trajectory patterns consisting of small orbital movements every cycle and then drifting or swirling in larger regions after many cycles. Observations are consistent with simulations performed using the method of regularized Stokeslets, which reveal complex three-dimensional flow structures emerging from simple oscillatory actuation. Our findings reveal the basic underlying flow structure around oscillatory protrusions such as hairs and legs as commonly featured on living and nonliving bodies.

  10. First-order system least squares and the energetic variational approach for two-phase flow

    NASA Astrophysics Data System (ADS)

    Adler, J. H.; Brannick, J.; Liu, C.; Manteuffel, T.; Zikatanov, L.

    2011-07-01

    This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.

  11. Comparison of an algebraic multigrid algorithm to two iterative solvers used for modeling ground water flow and transport

    USGS Publications Warehouse

    Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.

    2002-01-01

    Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.

  12. "Time-dependent flow-networks"

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Molkentin, Nora; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marwan, Norbert; Kurths, Jürgen

    2015-04-01

    Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply information or heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e. high computational complexity and fixed variety of the flows in the underlying system, we introduce a new, method of flow-networks for changing in time velocity fields including external forcing in the system, noise and temperature-decay. Method of the flow-network construction can be divided into several steps: first we obtain the linear recursive equation for the temperature time-series. Then we compute the correlation matrix for time-series averaging the tensor product over all realizations of the noise, which we interpret as a weighted adjacency matrix of the flow-network and analyze using network measures. We apply the method to different types of moving flows with geographical relevance such as meandering flow. Analyzing the flow-networks using network measures we find that our approach can highlight zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. Flow-networks can be powerful tool to understand the connection between system's dynamics and network's topology analyzed using network measures in order to shed light on different climatic phenomena.

  13. Examining Food Risk in the Large using a Complex, Networked System-of-sytems Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosiano, John; Newkirk, Ryan; Mc Donald, Mark P

    2010-12-03

    The food production infrastructure is a highly complex system of systems. Characterizing the risks of intentional contamination in multi-ingredient manufactured foods is extremely challenging because the risks depend on the vulnerabilities of food processing facilities and on the intricacies of the supply-distribution networks that link them. A pure engineering approach to modeling the system is impractical because of the overall system complexity and paucity of data. A methodology is needed to assess food contamination risk 'in the large', based on current, high-level information about manufacturing facilities, corrunodities and markets, that will indicate which food categories are most at risk ofmore » intentional contamination and warrant deeper analysis. The approach begins by decomposing the system for producing a multi-ingredient food into instances of two subsystem archetypes: (1) the relevant manufacturing and processing facilities, and (2) the networked corrunodity flows that link them to each other and consumers. Ingredient manufacturing subsystems are modeled as generic systems dynamics models with distributions of key parameters that span the configurations of real facilities. Networks representing the distribution systems are synthesized from general information about food corrunodities. This is done in a series of steps. First, probability networks representing the aggregated flows of food from manufacturers to wholesalers, retailers, other manufacturers, and direct consumers are inferred from high-level approximate information. This is followed by disaggregation of the general flows into flows connecting 'large' and 'small' categories of manufacturers, wholesalers, retailers, and consumers. Optimization methods are then used to determine the most likely network flows consistent with given data. Vulnerability can be assessed for a potential contamination point using a modified CARVER + Shock model. Once the facility and corrunodity flow models are instantiated, a risk consequence analysis can be performed by injecting contaminant at chosen points in the system and propagating the event through the overarching system to arrive at morbidity and mortality figures. A generic chocolate snack cake model, consisting of fluid milk, liquid eggs, and cocoa, is described as an intended proof of concept for multi-ingredient food systems. We aim for an eventual tool that can be used directly by policy makers and planners.« less

  14. Mechanical Analyses for coupled Vegetation-Flow System

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Stone, M.

    2010-12-01

    Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.

  15. Assessment of Surrogate Fractured Rock Networks for Evidence of Complex Behavior

    NASA Astrophysics Data System (ADS)

    Wood, T. R.; McJunkin, T. R.; Podgorney, R. K.; Glass, R. J.; Starr, R. C.; Stoner, D. L.; Noah, K. S.; LaViolette, R. A.; Fairley, J.

    2001-12-01

    A complex system or complex process is -"one whose properties are not fully explained by an understanding of its component parts". Results from field experiments conducted at the Hell's Half-Acre field site (Arco, Idaho) suggest that the flow of water in an unsaturated, fractured medium exhibits characteristics of a complex process. A series of laboratory studies is underway with sufficient rigor to determine if complex behavior observed in the field is in fact a fundamental characteristic of water flow in unsaturated, fractured media. As an initial step, a series of four duplicate experiments has been performed using an array of bricks to simulate fractured, unsaturated media. The array consisted of 12 limestone blocks cut to uniform size (5cm x 7 cm x 30 cm) stacked on end 4 blocks wide and 3 blocks high with the interfaces between adjacent blocks representing 3 vertical fractures intersecting 2 horizontal fractures. Water was introduced at three point sources on the upper boundary of the model at the top of the vertical fractures. Water was applied under constant flux at a rate below the infiltration capacity of the system, thus maintaining unsaturated flow conditions. Water was collected from the lower boundary via fiberglass wicks at the bottom of each fracture. An automated system acquired and processed water inflow and outflow data and time-lapse photographic data during each of the 72-hour tests. From these experiments, we see that a few general statements can be made on the overall advance of the wetting front in the surrogate fracture networks. For instance, flow generally converged with depth to the center fracture in the bottom row of bricks. Another observation is that fracture intersections integrate the steady flow in overlying vertical fractures and allow or cause short duration high discharge pulses or "avalanches" of flow to quickly traverse the fracture network below. Smaller scale tests of single fracture and fracture intersections are underway to evaluate a wide array of unit processes that are believed to contribute to complex behavior. Examples of these smaller scale experiments include the role of fracture intersections in integrating a steady inflow to generate giant fluctuations in network discharge; the influence of microbe growth on flow; and the role of geochemistry in alterations of flow paths. Experiments are planned at the meso and field scale to document and understand the controls on self-organized behavior. Modeling is being conducted in parallel with the experiments to understand how simulations can be improved to capture the complexity of fluid flow in fractured rock vadose zones and to make better predictions of contaminant transport.

  16. A statistical learning strategy for closed-loop control of fluid flows

    NASA Astrophysics Data System (ADS)

    Guéniat, Florimond; Mathelin, Lionel; Hussaini, M. Yousuff

    2016-12-01

    This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz'63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.

  17. Design of Flow Systems for Improved Networking and Reduced Noise in Biomolecular Signal Processing in Biocomputing and Biosensing Applications

    PubMed Central

    Verma, Arjun; Fratto, Brian E.; Privman, Vladimir; Katz, Evgeny

    2016-01-01

    We consider flow systems that have been utilized for small-scale biomolecular computing and digital signal processing in binary-operating biosensors. Signal measurement is optimized by designing a flow-reversal cuvette and analyzing the experimental data to theoretically extract the pulse shape, as well as reveal the level of noise it possesses. Noise reduction is then carried out numerically. We conclude that this can be accomplished physically via the addition of properly designed well-mixing flow-reversal cell(s) as an integral part of the flow system. This approach should enable improved networking capabilities and potentially not only digital but analog signal-processing in such systems. Possible applications in complex biocomputing networks and various sense-and-act systems are discussed. PMID:27399702

  18. Shape complexes: the intersection of label orderings and star convexity constraints in continuous max-flow medical image segmentation

    PubMed Central

    Baxter, John S. H.; Inoue, Jiro; Drangova, Maria; Peters, Terry M.

    2016-01-01

    Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of “shape complexes,” which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems. PMID:28018937

  19. The Effect of Functional Flow Diagrams on Apprentice Aircraft Mechanics' Technical System Understanding.

    ERIC Educational Resources Information Center

    Johnson, Scott D.; Satchwell, Richard E.

    1993-01-01

    Describes an experimental study that tested the impact of a conceptual illustration on college students' understanding of the structure, function, and behavior of complex technical systems. The use of functional flow diagrams in aircraft mechanics' training is explained, a concept map analysis is discussed, and implications for technical training…

  20. Automated campaign system

    NASA Astrophysics Data System (ADS)

    Vondran, Gary; Chao, Hui; Lin, Xiaofan; Beyer, Dirk; Joshi, Parag; Atkins, Brian; Obrador, Pere

    2006-02-01

    To run a targeted campaign involves coordination and management across numerous organizations and complex process flows. Everything from market analytics on customer databases, acquiring content and images, composing the materials, meeting the sponsoring enterprise brand standards, driving through production and fulfillment, and evaluating results; all processes are currently performed by experienced highly trained staff. Presented is a developed solution that not only brings together technologies that automate each process, but also automates the entire flow so that a novice user could easily run a successful campaign from their desktop. This paper presents the technologies, structure, and process flows used to bring this system together. Highlighted will be how the complexity of running a targeted campaign is hidden from the user through technologies, all while providing the benefits of a professionally managed campaign.

  1. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  2. Simulation of groundwater flow in the glacial aquifer system of northeastern Wisconsin with variable model complexity

    USGS Publications Warehouse

    Juckem, Paul F.; Clark, Brian R.; Feinstein, Daniel T.

    2017-05-04

    The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle tracking is anticipated to evaluate if these model design considerations are similarly important for understanding the primary modeling objective - to simulate reasonable groundwater age distributions.

  3. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Eckardt, D.

    1978-01-01

    Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.

  4. The application of CFD to the modelling of fires in complex geometries

    NASA Astrophysics Data System (ADS)

    Burns, A. D.; Clarke, D. S.; Guilbert, P.; Jones, I. P.; Simcox, S.; Wilkes, N. S.

    The application of Computational Fluid Dynamics (CFD) to industrial safety is a challenging activity. In particular it involves the interaction of several different physical processes, including turbulence, combustion, radiation, buoyancy, compressible flow and shock waves in complex three-dimensional geometries. In addition, there may be multi-phase effects arising, for example, from sprinkler systems for extinguishing fires. The FLOW3D software (1-3) from Computational Fluid Dynamics Services (CFDS) is in widespread use in industrial safety problems, both within AEA Technology, and also by CFDS's commercial customers, for example references (4-13). This paper discusses some other applications of FLOW3D to safety problems. These applications illustrate the coupling of the gas flows with radiation models and combustion models, particularly for complex geometries where simpler radiation models are not applicable.

  5. Velocimetry with refractive index matching for complex flow configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.

    1987-01-01

    The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.

  6. Manipulating parallel circuits: the perioperative management of patients with complex congenital cardiac disease.

    PubMed

    Lawrenson, John; Eyskens, Benedicte; Vlasselaers, Dirk; Gewillig, Marc

    2003-08-01

    In all patients undergoing cardiac surgery, the effective delivery of oxygen to the tissues is of paramount importance. In the patient with relatively normal cardiac structures, the pulmonary and systemic circulations are relatively independent of each other. In the patient with a functional single ventricle, the pulmonary and systemic circulations are dependent on the same pump. As a consequence of this interdependency, the haemodynamic changes following complex palliative procedures, such as the Norwood operation, can be difficult to understand. Comparison of the newly created surgical connections to a simple set of direct current electrical circuits may help the practitioner to successfully care for the patient. In patients undergoing complex palliations, the pulmonary and systemic circulations can be compared to two circuits in parallel. Manipulations of variables, such as resistance or flow, in one circuit, can profoundly affect the performance of the other circuit. A large pulmonary flow might result in a large increase in the saturation of haemoglobin with oxygen returning to the heart via the pulmonary veins at the expense of a decreased systemic flow. Accurate balancing of these parallel circulations requires an appreciation of all interventions that can affect individual components of both circulations.

  7. Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System.

    PubMed

    Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-07-07

    An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.

  8. A NEW FRAMEWORK FOR URBAN SUSTAINABILITY ASSESSMENTS: LINKING COMPLEXITY, INFORMATION AND POLICY

    EPA Science Inventory

    Urban systems emerge as distinct entities from the complex interactions among social, economic and cultural attributes, and information, energy and material stocks and flows that operate on different temporal and spatial scales. Such complexity poses a challenge to identify the...

  9. NEW FRAMEWORKS FOR URBAN SUSTAINABILITY ASSESSMENTS: LINKING COMPLEXITY, INFORMATION AND POLICY

    EPA Science Inventory

    Urban systems emerge as distinct entities from the complex interactions among social, economic and cultural attributes, and information, energy and material stocks and flows that operate on different temporal and spatial scales. Such complexity poses a challenge to identify the c...

  10. Unsteady Reynolds-averaged Navier-Stokes simulations of inlet distortion in the fan system of a gas-turbine aero-engine

    NASA Astrophysics Data System (ADS)

    Spotts, Nathan

    As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is valuable for engine system design.

  11. Water tunnel flow visualization using a laser

    NASA Technical Reports Server (NTRS)

    Beckner, C.; Curry, R. E.

    1985-01-01

    Laser systems for flow visualization in water tunnels (similar to the vapor screen technique used in wind tunnels) can provide two-dimensional cross-sectional views of complex flow fields. This parametric study documents the practical application of the laser-enhanced visualization (LEV) technique to water tunnel testing. Aspects of the study include laser power levels, flow seeding (using flourescent dyes and embedded particulates), model preparation, and photographic techniques. The results of this study are discussed to provide potential users with basic information to aid in the design and setup of an LEV system.

  12. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  13. Structured grid technology to enable flow simulation in an integrated system environment

    NASA Astrophysics Data System (ADS)

    Remotigue, Michael Gerard

    An application-driven Computational Fluid Dynamics (CFD) environment needs flexible and general tools to effectively solve complex problems in a timely manner. In addition, reusable, portable, and maintainable specialized libraries will aid in rapidly developing integrated systems or procedures. The presented structured grid technology enables the flow simulation for complex geometries by addressing grid generation, grid decomposition/solver setup, solution, and interpretation. Grid generation is accomplished with the graphical, arbitrarily-connected, multi-block structured grid generation software system (GUM-B) developed and presented here. GUM-B is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a solid-modeling data structure that utilizes a structured grid generation library and a geometric library based on Non-Uniform Rational B-Splines (NURBS). A presented modification of the solid-modeling data structure provides the capability for arbitrarily-connected regions between the grid blocks. The presented grid generation library provides algorithms that are reliable and accurate. GUM-B has been utilized to generate numerous structured grids for complex geometries in hydrodynamics, propulsors, and aerodynamics. The versatility of the libraries that compose GUM-B is also displayed in a prototype to automatically regenerate a grid for a free-surface solution. Grid decomposition and solver setup is accomplished with the graphical grid manipulation and repartition software system (GUMBO) developed and presented here. GUMBO is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a structured grid-tools library. The described functions within the grid-tools library reduce the possibility of human error during decomposition and setup for the numerical solver by accounting for boundary conditions and connectivity. GUMBO is linked with a flow solver interface, to the parallel UNCLE code, to provide load balancing tools and solver setup. Weeks of boundary condition and connectivity specification and validation has been reduced to hours. The UNCLE flow solver is utilized for the solution of the flow field. To accelerate convergence toward a quick engineering answer, a full multigrid (FMG) approach coupled with UNCLE, which is a full approximation scheme (FAS), is presented. The prolongation operators used in the FMG-FAS method are compared. The procedure is demonstrated on a marine propeller in incompressible flow. Interpretation of the solution is accomplished by vortex feature detection. Regions of "Intrinsic Swirl" are located by interrogating the velocity gradient tensor for complex eigenvalues. The "Intrinsic Swirl" parameter is visualized on a solution of a marine propeller to determine if any vortical features are captured. The libraries and the structured grid technology presented herein are flexible and general enough to tackle a variety of complex applications. This technology has significantly enabled the capability of the ERC personnel to effectively calculate solutions for complex geometries.

  14. Integration of models of various types of aquifers for water quality management in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy).

    PubMed

    Vižintin, Goran; Ravbar, Nataša; Janež, Jože; Koren, Eva; Janež, Naško; Zini, Luca; Treu, Francesco; Petrič, Metka

    2018-04-01

    Due to intrinsic characteristics of aquifers groundwater frequently passes between various types of aquifers without hindrance. The complex connection of underground water paths enables flow regardless of administrative boundaries. This can cause problems in water resources management. Numerical modelling is an important tool for the understanding, interpretation and management of aquifers. Useful and reliable methods of numerical modelling differ with regard to the type of aquifer, but their connections in a single hydrodynamic model are rare. The purpose of this study was to connect different models into an integrated system that enables determination of water travel time from the point of contamination to water sources. The worst-case scenario is considered. The system was applied in the Soča/Isonzo basin, a transboundary river in Slovenia and Italy, where there is a complex contact of karst and intergranular aquifers and surface flows over bedrock with low permeability. Time cell models were first elaborated separately for individual hydrogeological units. These were the result of numerical hydrological modelling (intergranular aquifer and surface flow) or complex GIS analysis taking into account the vulnerability map and tracer tests results (karst aquifer). The obtained cellular models present the basis of a contamination early-warning system, since it allows an estimation when contaminants can be expected to appear, and in which water sources. The system proves that the contaminants spread rapidly through karst aquifers and via surface flows, and more slowly through intergranular aquifers. For this reason, karst water sources are more at risk from one-off contamination incidents, while water sources in intergranular aquifers are more at risk in cases of long-term contamination. The system that has been developed is the basis for a single system of protection, action and quality monitoring in the areas of complex aquifer systems within or on the borders of administrative units. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantifying the drivers of water security risks in a complex northern deltaic ecosystem

    NASA Astrophysics Data System (ADS)

    Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    There is still a need for improved, scientific evaluations of potential impacts of a changing flow regime on the northern deltaic ecosystems. This is particularly the case for the Slave River Delta (SRD) which is believed to be drying. Although streamflow regulation in the major headwater tributary and climate change have been presented as major contributors of hydro-ecological change in the SRD, a wide range of drivers such as large scale water withdrawal, land-use change and flow modulation by the upstream delta (i.e. the Peace-Athabasca Delta) could pose challenges to water security. However, limited numbers of studies with inadequate data make it difficult to understand the principal drivers of the hydro-ecological changes. One of the least explored drivers is the upstream delta which attenuates the peak flows, retains the floodwater and reduces the downstream flood intensity. This can have significant impact on the productivity and ecological diversity of the SRD, which are governed by water and nutrient-rich sediment supplied during flood events. Thus, the Slave River basin presents a complex river system where multiple drivers are in interplay resulting in a different (new) flow regime. However, any river flow alterations could significantly affect this ecologically and socio-economically delicate ecosystem. In this study, we investigate the critical challenges related to water security in a complex deltaic ecosystem, quantifying the relative impacts of climate change, human interventions and the upstream delta on the SRD. We demonstrate that the sustainability issues of northern deltaic systems are dynamic, complex and multi-faceted, and require an understanding of intricate relationships and feedback mechanisms between human and natural systems.

  16. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  17. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.

    PubMed

    Hammel, Jörg U; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes.

  18. A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System

    PubMed Central

    Hammel, Jörg U.; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes. PMID:25409176

  19. Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems

    DOEpatents

    Kong, Peter C.; Grandy, Jon D.

    2002-01-01

    In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.

  20. Advanced Methodology for Simulation of Complex Flows Using Structured Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur; Modiano, David

    1995-01-01

    Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.

  1. Assessing Hydrologic Impacts of Land Configuration Changes Using an Integrated Hydrologic Model at the Rocky Flats Environmental Technology Site, Colorado

    NASA Astrophysics Data System (ADS)

    Prucha, R. H.; Dayton, C. S.; Hawley, C. M.

    2002-12-01

    The Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, a former Department of Energy nuclear weapons manufacturing facility, is currently undergoing closure. The natural semi-arid interaction between surface and subsurface flow at RFETS is complex and complicated by the industrial modifications to the flow system. Using a substantial site data set, a distributed parameter, fully-integrated hydrologic model was developed to assess the hydrologic impact of different hypothetical site closure configurations on the current flow system and to better understand the integrated hydrologic behavior of the system. An integrated model with this level of detail has not been previously developed in a semi-arid area, and a unique, but comprehensive, approach was required to calibrate and validate the model. Several hypothetical scenarios were developed to simulate hydrologic effects of modifying different aspects of the site. For example, some of the simulated modifications included regrading the current land surface, changing the existing surface channel network, removing subsurface trenches and gravity drain flow systems, installing a slurry wall and geotechnical cover, changing the current vegetative cover, and converting existing buildings and pavement to permeable soil areas. The integrated flow model was developed using a rigorous physically-based code so that realistic design parameters can simulate these changes. This code also permitted evaluation of changes to complex integrated hydrologic system responses that included channelized and overland flow, pond levels, unsaturated zone storage, groundwater heads and flow directions, and integrated water balances for key areas. Results generally show that channel flow offsite decreases substantially for different scenarios, while groundwater heads generally increase within the reconfigured industrial area most of which is then discharged as evapotranspiration. These changes have significant implications to site closure and operation.

  2. Speech as a breakthrough signaling resource in the cognitive evolution of biological complex adaptive systems.

    PubMed

    Mattei, Tobias A

    2014-12-01

    In self-adapting dynamical systems, a significant improvement in the signaling flow among agents constitutes one of the most powerful triggering events for the emergence of new complex behaviors. Ackermann and colleagues' comprehensive phylogenetic analysis of the brain structures involved in acoustic communication provides further evidence of the essential role which speech, as a breakthrough signaling resource, has played in the evolutionary development of human cognition viewed from the standpoint of complex adaptive system analysis.

  3. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results

    NASA Astrophysics Data System (ADS)

    Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin

    2008-03-01

    We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.

  4. Ab Initio and Monte Carlo Approaches For the MagnetocaloricEffect in Co- and In-Doped Ni-Mn-Ga Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Sokolovskiy, Vladimir; Grünebohm, Anna; Buchelnikov, Vasiliy; Entel, Peter

    2014-09-01

    This special issue collects contributions from the participants of the "Information in Dynamical Systems and Complex Systems" workshop, which cover a wide range of important problems and new approaches that lie in the intersection of information theory and dynamical systems. The contributions include theoretical characterization and understanding of the different types of information flow and causality in general stochastic processes, inference and identification of coupling structure and parameters of system dynamics, rigorous coarse-grain modeling of network dynamical systems, and exact statistical testing of fundamental information-theoretic quantities such as the mutual information. The collective efforts reported herein reflect a modern perspective of the intimate connection between dynamical systems and information flow, leading to the promise of better understanding and modeling of natural complex systems and better/optimal design of engineering systems.

  5. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  6. Heat transfer in a rotating cavity with a stationary stepped casing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzaee, I.; Quinn, P.; Wilson, M.

    1999-04-01

    In the system considered here, corotating turbine disks are cooled by air supplied at the periphery of the system. The system comprises two corotating disks, connected by a rotating cylindrical hub and shrouded by a stepped, stationary cylindrical outer casing. Cooling air enters the system through holes in the periphery of one disk, and leaves through the clearances between the outer casing and the disks. The paper describes a combined computational and experimental study of the heat transfer in the above-described system. In the experiments, one rotating disk is heated, the hub and outer casing are insulated, and the othermore » disk is quasi-adiabatic. Thermocouples and fluxmeters attached to the heated disc enable the Nusselt numbers, Nu, to be determined for a wide range of rotational speeds and coolant flow rates. Computations are carried out using an axisymmetric elliptic solver incorporating the Launder-Sharma low-Reynolds-number {kappa}-{epsilon} turbulence model. The flow structure is shown to be complex and depends strongly on the so-called turbulent flow parameter, {lambda}{sub T}, which incorporates both rotational speed and flow rate. For a given value of {lambda}{sub T}, the computations show that Nu increases as Re{sub {phi}}, the rotational Reynolds number, increases. Despite the complexity of the flow, the agreement between the computed and measured Nusselt numbers is reasonably good.« less

  7. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  8. Complexity and dynamics of topological and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2017-07-01

    Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.

  9. SAFSIM theory manual: A computer program for the engineering simulation of flow systems

    NASA Astrophysics Data System (ADS)

    Dobranich, Dean

    1993-12-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.

  10. Flow networks for Ocean currents

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen

    2014-05-01

    Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.

  11. Heat flow in relation to hydrothermal activity in the southern Black Rock Desert, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sass, J.H.; Zoback, M.L.; Galanis, S.P. Jr.

    1979-01-01

    As part of an investigation of the Gerlach NE KGRA (Known Geothermal Resource Area) a number of heat-flow measurements were made in playa sediments of the southern Black Rock Desert, northwestern Nevada. These data together with additional previously unpublished heat-flow values reveal a complex pattern of heat flow with values ranging between 1.0 to 5.0 HFU (40 to 100 mWm/sup -2/) outside of the hot springs area. The mean heat flow for the 13 reported sites in the southern Black Rock Desert is 1.8 +- 0.15 HFU (75 +- 6 mWm/sup -2/). The complexity of the pattern of heat flowmore » is believed to arise from hydrothermal circulation supporting the numerous hot springs throughout the region. The fact that the lowest observed heat flow occurs in the deepest part of the basin strongly suggests that fluid movement within the basin represents part of the recharge for the hydrothermal system. A thermal balance for the system incorporating both anomalous conductive heat loss and convective heat loss from the spring systems indicate a total energy loss of about 8.0 Mcal/sec or 34 megawatts over an estimated 1000 km/sup 2/ region. Consideration of this additional heat loss yields a mean regional heat flow of 2.5 + HFU (100 + mWm/sup -2/) and warrants inclusion of this region in the Battle Mountain heat-flow high (Lachenbruch and Sass, 1977, 1978).« less

  12. Numerical and Experimental Methods for Wake Flow Analysis in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Piccioni, Emanuele; Terzi, Ludovico

    2015-06-01

    Assessment and interpretation of the quality of wind farms power output is a non-trivial task, which poses at least three main challenges: reliable comprehension of free wind flow, which is stretched to the limit on very complex terrains, realistic model of how wake interactions resemble on the wind flow, awareness of the consequences on turbine control systems, including alignment patterns to the wind and, consequently, power output. The present work deals with an onshore wind farm in southern Italy, which has been a test case of IEA- Task 31 Wakebench project: 17 turbines, with 2.3 MW of rated power each, are sited on a very complex terrain. A cluster of machines is investigated through numerical and experimental methods: CFD is employed for simulating wind fields and power extraction, as well as wakes, are estimated through the Actuator Disc model. SCADA data mining techniques are employed for comparison between models and actual performances. The simulations are performed both on the real terrain and on flat terrain, in order to disentangle the effects of complex flow and wake effects. Attention is devoted to comparison between actual alignment patterns of the cluster of turbines and predicted flow deviation.

  13. Unification of the complex Langevin method and the Lefschetzthimble method

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun; Shimasaki, Shinji

    2018-03-01

    Recently there has been remarkable progress in solving the sign problem, which occurs in investigating statistical systems with a complex weight. The two promising methods, the complex Langevin method and the Lefschetz thimble method, share the idea of complexifying the dynamical variables, but their relationship has not been clear. Here we propose a unified formulation, in which the sign problem is taken care of by both the Langevin dynamics and the holomorphic gradient flow. We apply our formulation to a simple model in three different ways and show that one of them interpolates the two methods by changing the flow time.

  14. Lagrangian turbulence near walls: Structures and mixing in admissible model flows

    NASA Astrophysics Data System (ADS)

    Ottino, J. M.

    1989-05-01

    The general objective of work during this period was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: a perturbed Kelvin cat eyes flow, and prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: production flows capable of producing complex distributions of vorticity, and constructed flow fields, based on solutions of the Navier Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence.

  15. Preferential pathways in complex fracture systems and their influence on large scale transport

    NASA Astrophysics Data System (ADS)

    Willmann, M.; Mañé, R.; Tyukhova, A.

    2017-12-01

    Many subsurface applications in complex fracture systems require large-scale predictions. Precise predictions are difficult because of the existence of preferential pathways at different scales. The intrinsic complexity of fracture systems increases within fractured sedimentary formations, because also the coupling of fractures and matrix has to be taken into account. This interplay of fracture system and the sedimentary matrix is strongly controlled by the actual fracture aperture of an individual fracture. And an effective aperture cannot be easily be determined because of the preferential pathways along the fracture plane. We investigate the influence of these preferential pathways on large scale solute transport and upscale the aperture. By explicitly modeling flow and particle tracking in individual fractures, we develop a new effective transport aperture, which is weighted by the aperture along the preferential paths, a Lagrangian aperture. We show that this new aperture is consistently larger than existing definitions of effective flow and transport apertures. Finally, we apply our results to a fractured sedimentary formation in Northern Switzerland.

  16. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  17. Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification

    NASA Astrophysics Data System (ADS)

    Armstrong, Craig G.; Toghill, Kathryn E.

    2017-05-01

    A single species redox flow battery employing a new class of cobalt(II) complexes with 'tunable' tridentate azole-pyridine type ligands is reported. Four structures were synthesised and their electrochemical, physical and battery characteristics were investigated as a function of successive substitution of the ligand terminal pyridyl donors. The Co(II/I) and Co(III/II) couples are stable and quasi-reversible on gold and glassy carbon electrodes, however redox potentials are tunable allowing the cobalt potential difference to be preferentially increased from 1.07 to 1.91 V via pyridine substitution with weaker σ-donating/π-accepting 3,5-dimethylpyrazole groups. The charge-discharge properties of the system were evaluated using an H-type glass cell and graphite rod electrodes. The complexes delivered high Coulombic efficiencies of 89.7-99.8% and very good voltaic efficiencies of 70.3-81.0%. Consequently, energy efficiencies are high at 63.1-80.8%, marking an improvement on other similar non-aqueous systems. Modification of the ligands also improved solubility from 0.18 M to 0.50 M via pyridyl substitution with 3,5-dimethylpyrazole, though the low solubility of the complexes limits the overall energy capacity to between 2.58 and 12.80 W h L-1. Preliminary flow cell studies in a prototype flow cell are also demonstrated.

  18. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Eugene; Lustbader, Jason; Leighton, Daniel

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided bymore » the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.« less

  19. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Gene; Lustbader, Jason; Leighton, Daniel

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided bymore » the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.« less

  20. Bioconvection in Second Grade Nanofluid Flow Containing Nanoparticles and Gyrotactic Microorganisms

    NASA Astrophysics Data System (ADS)

    Khan, Noor Saeed

    2018-04-01

    The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.

  1. Bioconvection in Second Grade Nanofluid Flow Containing Nanoparticles and Gyrotactic Microorganisms

    NASA Astrophysics Data System (ADS)

    Khan, Noor Saeed

    2018-06-01

    The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.

  2. A Novel Approach for Modeling Chemical Reaction in Generalized Fluid System Simulation Program

    NASA Technical Reports Server (NTRS)

    Sozen, Mehmet; Majumdar, Alok

    2002-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a computer code developed at NASA Marshall Space Flight Center for analyzing steady state and transient flow rates, pressures, temperatures, and concentrations in a complex flow network. The code, which performs system level simulation, can handle compressible and incompressible flows as well as phase change and mixture thermodynamics. Thermodynamic and thermophysical property programs, GASP, WASP and GASPAK provide the necessary data for fluids such as helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, water, a hydrogen, isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, several refrigerants, nitrogen trifluoride and ammonia. The program which was developed out of need for an easy to use system level simulation tool for complex flow networks, has been used for the following purposes to name a few: Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump Secondary Flow Circuits, Axial Thrust Balance of the Fastrac Engine Turbopump, Pressurized Propellant Feed System for the Propulsion Test Article at Stennis Space Center, X-34 Main Propulsion System, X-33 Reaction Control System and Thermal Protection System, and International Space Station Environmental Control and Life Support System design. There has been an increasing demand for implementing a combustion simulation capability into GFSSP in order to increase its system level simulation capability of a liquid rocket propulsion system starting from the propellant tanks up to the thruster nozzle for spacecraft as well as launch vehicles. The present work was undertaken for addressing this need. The chemical equilibrium equations derived from the second law of thermodynamics and the energy conservation equation derived from the first law of thermodynamics are solved simultaneously by a Newton-Raphson method. The numerical scheme was implemented as a User Subroutine in GFSSP.

  3. A Reduced-Complexity Investigation of Blunt Leading-Edge Separation Motivated by UCAV Aerodynamics

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Boelens, Okko J.

    2015-01-01

    A reduced complexity investigation for blunt-leading-edge vortical separation has been undertaken. The overall approach is to design the fundamental work in such a way so that it relates to the aerodynamics of a more complex Uninhabited Combat Air Vehicle (UCAV) concept known as SACCON. Some of the challenges associated with both the vehicle-class aerodynamics and the fundamental vortical flows are reviewed, and principles from a hierarchical complexity approach are used to relate flow fundamentals to system-level interests. The work is part of roughly 6-year research program on blunt-leading-edge separation pertinent to UCAVs, and was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel.

  4. Modular microfluidic systems using reversibly attached PDMS fluid control modules

    NASA Astrophysics Data System (ADS)

    Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin

    2013-05-01

    The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.

  5. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

    NASA Astrophysics Data System (ADS)

    Xu, Ao; Shyy, Wei; Zhao, Tianshou

    2017-06-01

    Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

  6. GCKP84-general chemical kinetics code for gas-phase flow and batch processes including heat transfer effects

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1984-01-01

    A general chemical kinetics code is described for complex, homogeneous ideal gas reactions in any chemical system. The main features of the GCKP84 code are flexibility, convenience, and speed of computation for many different reaction conditions. The code, which replaces the GCKP code published previously, solves numerically the differential equations for complex reaction in a batch system or one dimensional inviscid flow. It also solves numerically the nonlinear algebraic equations describing the well stirred reactor. A new state of the art numerical integration method is used for greatly increased speed in handling systems of stiff differential equations. The theory and the computer program, including details of input preparation and a guide to using the code are given.

  7. Information flow in the pharmaceutical supply chain.

    PubMed

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead.

  8. Tracking trade transactions in water resource systems: A node-arc optimization formulation

    NASA Astrophysics Data System (ADS)

    Erfani, Tohid; Huskova, Ivana; Harou, Julien J.

    2013-05-01

    We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).

  9. Flow characterization in the Santee Cave system in the Chapel Branch Creek watershed, upper coastal plain of South Carolina, USA

    Treesearch

    Amy E. Edwards; Devendra M. Amatya; Thomas M. Williams; Daniel R. Hitchcock; April L. James

    2013-01-01

    Karst watersheds possess both diffuse and conduit flow and varying degrees of connectivity between surface and groundwater over spatial scales that result in complex hydrology and contaminant transport processes. The flow regime and surface-groundwater connection must be properly identified and characterized to improve management in karst watersheds with impaired water...

  10. Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels

    NASA Astrophysics Data System (ADS)

    Zhu, Huayang; Jackson, Gregory

    2000-11-01

    Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.

  11. Annual Research Briefs - 2006

    DTIC Science & Technology

    2006-12-01

    IACCARINO AND Q. WANG 3 Strain and stress analysis of uncertain engineering systems . D. GHOSH, C. FARHAT AND P. AVERY 17 Separated flow in a three...research in predictive science in complex systems , CTR has strived to maintain a critical mass in numerical analysis , computer science and physics based... analysis for a linear problem: heat conduction The design and analysis of complex engineering systems is challenging not only be- cause of the physical

  12. VisFlow - Web-based Visualization Framework for Tabular Data with a Subset Flow Model.

    PubMed

    Yu, Bowen; Silva, Claudio T

    2017-01-01

    Data flow systems allow the user to design a flow diagram that specifies the relations between system components which process, filter or visually present the data. Visualization systems may benefit from user-defined data flows as an analysis typically consists of rendering multiple plots on demand and performing different types of interactive queries across coordinated views. In this paper, we propose VisFlow, a web-based visualization framework for tabular data that employs a specific type of data flow model called the subset flow model. VisFlow focuses on interactive queries within the data flow, overcoming the limitation of interactivity from past computational data flow systems. In particular, VisFlow applies embedded visualizations and supports interactive selections, brushing and linking within a visualization-oriented data flow. The model requires all data transmitted by the flow to be a data item subset (i.e. groups of table rows) of some original input table, so that rendering properties can be assigned to the subset unambiguously for tracking and comparison. VisFlow features the analysis flexibility of a flow diagram, and at the same time reduces the diagram complexity and improves usability. We demonstrate the capability of VisFlow on two case studies with domain experts on real-world datasets showing that VisFlow is capable of accomplishing a considerable set of visualization and analysis tasks. The VisFlow system is available as open source on GitHub.

  13. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  14. Wet Flow Test at Launch Complex 39B

    NASA Image and Video Library

    2017-12-20

    About 450,000 gallons of water flowed at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test at Launch Pad 39B at NASA's Kennedy Space Center in Florida. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was a milestone to confirm and baseline the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  15. Mixing and reactions in multiphase flow through porous media

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.

    2016-12-01

    The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.

  16. Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex

    DTIC Science & Technology

    2010-05-01

    of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy, solar heating (and cooling), and...peaks of individual buildings; thus the needed gen- eration and back-up capacity is smaller. To develop the community energy concept, energy models...overall thermal energy system, a hydraulic flow model (Figure 5) should be used to analyze critical capacities and flows in the system. This material is

  17. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    PubMed

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  18. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.

    PubMed

    Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan

    2017-04-01

    As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An investigation of multitasking information behavior and the influence of working memory and flow

    NASA Astrophysics Data System (ADS)

    Alexopoulou, Peggy; Hepworth, Mark; Morris, Anne

    2015-02-01

    This study explored the multitasking information behaviour of Web users and how this is influenced by working memory, flow and Personal, Artefact and Task characteristics, as described in the PAT model. The research was exploratory using a pragmatic, mixed method approach. Thirty University students participated; 10 psychologists, 10 accountants and 10 mechanical engineers. The data collection tools used were: pre and post questionnaires, a working memory test, a flow state scale test, audio-visual data, web search logs, think aloud data, observation, and the critical decision method. All participants searched information on the Web for four topics: two for which they had prior knowledge and two more without prior knowledge. Perception of task complexity was found to be related to working memory. People with low working memory reported a significant increase in task complexity after they had completed information searching tasks for which they had no prior knowledge, this was not the case for tasks with prior knowledge. Regarding flow and task complexity, the results confirmed the suggestion of the PAT model (Finneran and Zhang, 2003), which proposed that a complex task can lead to anxiety and low flow levels as well as to perceived challenge and high flow levels. However, the results did not confirm the suggestion of the PAT model regarding the characteristics of web search systems and especially perceived vividness. All participants experienced high vividness. According to the PAT model, however, only people with high flow should experience high levels of vividness. Flow affected the degree of change of knowledge of the participants. People with high flow gained more knowledge for tasks without prior knowledge rather than people with low flow. Furthermore, accountants felt that tasks without prior knowledge were less complex at the end of the web seeking procedure than psychologists and mechanical engineers. Finally, the three disciplines appeared to differ regarding the multitasking information behaviour characteristics such as queries, web search sessions and opened tabs/windows.

  20. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  1. An analytical study on groundwater flow in drainage basins with horizontal wells

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong

    2014-06-01

    Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.

  2. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  3. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    PubMed

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  4. Microfluidic-SANS: insitu molecular insight into complex fluid processing and high throughput characterisation

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos; Watanabe, Takaichi; Cabral, Joao; Graham, Peter; Porcar, Lionel; Martel, Anne

    2014-03-01

    The coupling of microfluidics and small angle neutron scattering (SANS) is successfully demonstrated for the first time. We have developed novel microdevices with suitably low SANS background and high pressure compatibility for the investigation of flow-induced phenomena and high throughput phase mapping of complex fluids. We successfully obtained scattering profiles from 50 micron channels, in 10s - 100s second acquisition times. The microfluidic geometry enables the variation of both flow type and magnitude, beyond traditional rheo-SANS setups, and is exceptionally well-suited for complex fluids due to the commensurability of relevant time and lengthscales. We demonstrate our approach by studying model flow responsive systems, including surfactant/co-surfactant/water mixtures, with well-known equilibrium phase behaviour,: sodium dodecyl sulfate (SDS)/octanol/brine, cetyltrimethyl ammonium chloride (C16TAC)/pentanol/water and a model microemulsion system (C10E4 /decane/ D20), as well as polyelectrolyte solutions. Finally, using an online micromixer we are able to implement a high throughput approach, scanning in excess of 10 scattering profiles/min for a continuous aqueous surfactant dilution over two decades in concentration.

  5. CFD propels NASP propulsion progress

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Dwoyer, Douglas L.; Green, Michael J.

    1990-01-01

    The most complex aerothermodynamics encountered in the National Aerospace Plane (NASP) propulsion system are associated with the fuel-mixing and combustion-reaction flows of its combustor section; adequate CFD tools must be developed to model shock-wave systems, turbulent hydrogen/air mixing, flow separation, and combustion. Improvements to existing CFD codes have involved extension from two dimensions to three, as well as the addition of finite-rate hydrogen-air chemistry. A novel CFD code for the treatment of reacting flows throughout the NASP, designated GASP, uses the most advanced upwind-differencing technology.

  6. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.

    2002-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.

  7. CFD propels NASP propulsion progress

    NASA Astrophysics Data System (ADS)

    Povinelli, Louis A.; Dwoyer, Douglas L.; Green, Michael J.

    1990-07-01

    The most complex aerothermodynamics encountered in the National Aerospace Plane (NASP) propulsion system are associated with the fuel-mixing and combustion-reaction flows of its combustor section; adequate CFD tools must be developed to model shock-wave systems, turbulent hydrogen/air mixing, flow separation, and combustion. Improvements to existing CFD codes have involved extension from two dimensions to three, as well as the addition of finite-rate hydrogen-air chemistry. A novel CFD code for the treatment of reacting flows throughout the NASP, designated GASP, uses the most advanced upwind-differencing technology.

  8. Water Deluge Test at Launch Complex 39B

    NASA Image and Video Library

    2018-05-24

    About 450,000 gallons of water flow at high speed from a holding tank through new and modified piping and valves, the flame trench, flame deflector nozzles and mobile launcher interface risers during a wet flow test on May 24, 2018, at Launch Pad 39B at NASA's Kennedy Space Center in Florida. At peak flow, the water reached about 100 feet in the air above the pad surface. The test was performed by Exploration Ground Systems to confirm the performance of the Ignition Overpressure/Sound Suppression system. During launch of NASA's Space Launch System rocket and Orion spacecraft, the high-speed water flow will help protect the vehicle from the extreme acoustic and temperature environment during ignition and liftoff.

  9. Three dimensional nozzle-exhaust flow field analysis by a reference plane technique.

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Del Guidice, P. D.

    1972-01-01

    A numerical method based on reference plane characteristics has been developed for the calculation of highly complex supersonic nozzle-exhaust flow fields. The difference equations have been developed for three coordinate systems. Local reference plane orientations are employed using the three coordinate systems concurrently thus catering to a wide class of flow geometries. Discontinuities such as the underexpansion shock and contact surfaces are computed explicitly for nonuniform vehicle external flows. The nozzles considered may have irregular cross-sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. Results are presented for several nozzle configurations.

  10. Deep Vadose Zone Flow and Transport Behavior at T-Tunnel Complex, Rainier Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Parashar, R.; Reeves, D. M.

    2010-12-01

    Rainier Mesa, a tuffaceous plateau on the Nevada National Security Site, has been the location of numerous subsurface nuclear tests conducted in a series of tunnel complexes located approximately 450 m below the top of the mesa and 500 m above the regional groundwater flow system. The tunnels were constructed near the middle of an 800 m Tertiary sequence of faulted, low-permeability welded and non-welded bedded, vitric, and zeolitized tuff units. Water levels from wells in the vicinity of the T-tunnel complex indicate the presence of a perched saturation zone located approximately 100 m above the T-tunnel complex. This upper zone of saturation extends downward through most of the Tertiary sequence. The groundwater table is located at an elevation of 1300 m within a thrust sheet of Paleozoic carbonates, corresponding to the lower carbonate aquifer hydrostratigraphic unit (LCA3). The LCA3 is considered to be hydraulically connected to the Death Valley regional flow system. The objective of this project is to simulate complex downward patterns of fluid flow and radionuclide transport from the T-tunnel complex through the matrix and fault networks of the Tertiary tuff units to the water table. We developed an improved fracture characterization and mapping methodology consisting of displacement-length scaling relationships, simulation of realistic fault networks based on site-specific data, and the development of novel fracture network upscaling techniques that preserves fracture network flow and transport properties on coarse continuum grid. Development of upscaling method for fracture continua is based on the concepts of discrete fracture network modeling approach which performs better at honoring network connectivity and anisotropy of sparse networks in comparison to other established methods such as a tensor approach. Extensive flow simulations in the dual-continuum framework demonstrate that the characteristics of fault networks strongly influences the saturation profile and formation of perched zones, although they may not conduct a large amount of flow when compared to the matrix continua. The simulated results are found to be very sensitive to distribution of fracture aperture, density of the network, and spatial pattern of fracture clustering. The faults provide rapid pathways for radionuclide transport and the conceptual modeling of diffusional mass transfer between matrix and fracture continua plays a vital role in prediction of the overall behavior of the breakthrough curve.

  11. Feedback-induced phase transitions in active heterogeneous conductors.

    PubMed

    Ocko, Samuel A; Mahadevan, L

    2015-04-03

    An active conducting medium is one where the resistance (conductance) of the medium is modified by the current (flow) and in turn modifies the flow, so that the classical linear laws relating current and resistance, e.g., Ohm's law or Darcy's law, are modified over time as the system itself evolves. We consider a minimal model for this feedback coupling in terms of two parameters that characterize the way in which addition or removal of matter follows a simple local (or nonlocal) feedback rule corresponding to either flow-seeking or flow-avoiding behavior. Using numerical simulations and a continuum mean field theory, we show that flow-avoiding feedback causes an initially uniform system to become strongly heterogeneous via a tunneling (channel-building) phase separation; flow-seeking feedback leads to an immuring (wall-building) phase separation. Our results provide a qualitative explanation for the patterning of active conducting media in natural systems, while suggesting ways to realize complex architectures using simple rules in engineered systems.

  12. Flow interactions with cells and tissues: cardiovascular flows and fluid-structure interactions. Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008, Pasadena, California.

    PubMed

    Friedman, Morton H; Krams, Rob; Chandran, Krishnan B

    2010-03-01

    Interactions between flow and biological cells and tissues are intrinsic to the circulatory, respiratory, digestive and genitourinary systems. In the circulatory system, an understanding of the complex interaction between the arterial wall (a living multi-component organ with anisotropic, nonlinear material properties) and blood (a shear-thinning fluid with 45% by volume consisting of red blood cells, platelets, and white blood cells) is vital to our understanding of the physiology of the human circulation and the etiology and development of arterial diseases, and to the design and development of prosthetic implants and tissue-engineered substitutes. Similarly, an understanding of the complex dynamics of flow past native human heart valves and the effect of that flow on the valvular tissue is necessary to elucidate the etiology of valvular diseases and in the design and development of valve replacements. In this paper we address the influence of biomechanical factors on the arterial circulation. The first part presents our current understanding of the impact of blood flow on the arterial wall at the cellular level and the relationship between flow-induced stresses and the etiology of atherosclerosis. The second part describes recent advances in the application of fluid-structure interaction analysis to arterial flows and the dynamics of heart valves.

  13. Microfluidic-SANS: flow processing of complex fluids

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.

    2015-01-01

    Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (~3-15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01-0.3 Å-1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter.

  14. Design applications for supercomputers

    NASA Technical Reports Server (NTRS)

    Studerus, C. J.

    1987-01-01

    The complexity of codes for solutions of real aerodynamic problems has progressed from simple two-dimensional models to three-dimensional inviscid and viscous models. As the algorithms used in the codes increased in accuracy, speed and robustness, the codes were steadily incorporated into standard design processes. The highly sophisticated codes, which provide solutions to the truly complex flows, require computers with large memory and high computational speed. The advent of high-speed supercomputers, such that the solutions of these complex flows become more practical, permits the introduction of the codes into the design system at an earlier stage. The results of several codes which either were already introduced into the design process or are rapidly in the process of becoming so, are presented. The codes fall into the area of turbomachinery aerodynamics and hypersonic propulsion. In the former category, results are presented for three-dimensional inviscid and viscous flows through nozzle and unducted fan bladerows. In the latter category, results are presented for two-dimensional inviscid and viscous flows for hypersonic vehicle forebodies and engine inlets.

  15. Advances in cardiovascular fluid mechanics: bench to bedside.

    PubMed

    Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P

    2009-04-01

    This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.

  16. Modeling Fluid Flow and Microbial Reactions in the Peru Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Matmon, D.

    2002-12-01

    Accretionary complexes are sites where sediment compaction and deeper reactions drive large-scale flow systems that can affect global solute budgets. Extensive modeling and drilling studies have elucidated the origin of the fluids, pore pressures, duration of flow, and major flow paths in these settings. An important research goal is to quantify the effect of these flow systems on global chemical budgets of reactive solutes such as carbon. The Peru margin represents an end member setting that can serve as a basis to extend the results to other margins. The sediments are relatively high in organic carbon with an average value of 2.6%. The subduction rate at ~9 cm/yr and taper angle at 14-17° are among the largest in the world. Recent microbial studies on Ocean Drilling Program Leg 201 at the Peru accretionary margin provide many key elements needed to quantify the processes affecting organic carbon in an accretionary complex. Pore water chemistry data from Site 1230 located in the Peru accretionary prism indicate that sulfate reduction is important in the top 8 mbsf. Below this depth, methanogenesis is the dominant process and methane concentrations are among the highest measured at any site on Leg 201. The presence of high methane concentrations at shallow depths suggests that methane is transported upward in the prism by fluid flow. Measurements of in-situ pore pressures and temperatures also support the presence of upward fluid flow. A single in-situ pressure measurement at ~100 mbsf indicated an overpressure of 0.14 MPa. For a reasonable formation permeability of ~ 10-16 m2, the measured overpressure is adequate to produce flow at a rate of ~5 mm/yr. This rate is comparable to previous model estimates for flow rates in the Peru accretionary prism. In addition, curvature in the downhole temperature profile can best be explained by upward fluid flow of 1-10 mm/yr. These data are used to constrain a two-dimensional coupled fluid flow and reactive transport model focusing on the fate of organic carbon entering in the Peru accretionary complex. The proposed work is the first attempt at a quantitative estimate of the processes affecting the fate of organic carbon entering a subduction zone.

  17. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  18. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  19. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1990-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  20. Information flow in the pharmaceutical supply chain

    PubMed Central

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead. PMID:26664401

  1. A Framework for Simulating Turbine-Based Combined-Cycle Inlet Mode-Transition

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; Vrnak, Daniel R.; Slater, John W.; Hessel, Emil O.

    2012-01-01

    A simulation framework based on the Memory-Mapped-Files technique was created to operate multiple numerical processes in locked time-steps and send I/O data synchronously across to one-another to simulate system-dynamics. This simulation scheme is currently used to study the complex interactions between inlet flow-dynamics, variable-geometry actuation mechanisms, and flow-controls in the transition from the supersonic to hypersonic conditions and vice-versa. A study of Mode-Transition Control for a high-speed inlet wind-tunnel model with this MMF-based framework is presented to illustrate this scheme and demonstrate its usefulness in simulating supersonic and hypersonic inlet dynamics and controls or other types of complex systems.

  2. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  3. ControlShell: A real-time software framework

    NASA Technical Reports Server (NTRS)

    Schneider, Stanley A.; Chen, Vincent W.; Pardo-Castellote, Gerardo

    1994-01-01

    The ControlShell system is a programming environment that enables the development and implementation of complex real-time software. It includes many building tools for complex systems, such as a graphical finite state machine (FSM) tool to provide strategic control. ControlShell has a component-based design, providing interface definitions and mechanisms for building real-time code modules along with providing basic data management. Some of the system-building tools incorporated in ControlShell are a graphical data flow editor, a component data requirement editor, and a state-machine editor. It also includes a distributed data flow package, an execution configuration manager, a matrix package, and an object database and dynamic binding facility. This paper presents an overview of ControlShell's architecture and examines the functions of several of its tools.

  4. Dependence of energy characteristics of ascending swirling air flow on velocity of vertical blowing

    NASA Astrophysics Data System (ADS)

    Volkov, R. E.; Obukhov, A. G.; Kutrunov, V. N.

    2018-05-01

    In the model of a compressible continuous medium, for the complete Navier-Stokes system of equations, an initial boundary problem is proposed that corresponds to the conducted and planned experiments and describes complex three-dimensional flows of a viscous compressible heat-conducting gas in ascending swirling flows that are initiated by a vertical cold blowing. Using parallelization methods, three-dimensional nonstationary flows of a polytropic viscous compressible heat-conducting gas are constructed numerically in different scaled ascending swirling flows under the condition when gravity and Coriolis forces act. With the help of explicit difference schemes and the proposed initial boundary conditions, approximate solutions of the complete system of Navier-Stokes equations are constructed as well as the velocity and energy characteristics of three-dimensional nonstationary gas flows in ascending swirling flows are determined.

  5. The 1984 Mauna Loa eruption and planetary geolgoy

    NASA Technical Reports Server (NTRS)

    Moore, Henry J.

    1987-01-01

    In planetary geology, lava flows on the Moon and Mars are commonly treated as relatively simple systems. Some of the complexities of actual lava flows are illustrated using the main flow system of the 1984 Mauna Loa eruption. The outline, brief narrative, and results given are based on a number of sources. The implications of the results to planetary geology are clear. Volume flow rates during an eruption depend, in part, on the volatile content of the lava. These differ from the volume flow rates calculated from post eruption flow dimensions and the duration of the eruption and from those using models that assume a constant density. Mass flow rates might be more appropriate because the masses of volatiles in lavas are usually small, but variable and sometimes unknown densities impose severe restrictions on mass estimates.

  6. Managing resource capacity using hybrid simulation

    NASA Astrophysics Data System (ADS)

    Ahmad, Norazura; Ghani, Noraida Abdul; Kamil, Anton Abdulbasah; Tahar, Razman Mat

    2014-12-01

    Due to the diversity of patient flows and interdependency of the emergency department (ED) with other units in hospital, the use of analytical models seems not practical for ED modeling. One effective approach to study the dynamic complexity of ED problems is by developing a computer simulation model that could be used to understand the structure and behavior of the system. Attempts to build a holistic model using DES only will be too complex while if only using SD will lack the detailed characteristics of the system. This paper discusses the combination of DES and SD in order to get a better representation of the actual system than using either modeling paradigm solely. The model is developed using AnyLogic software that will enable us to study patient flows and the complex interactions among hospital resources for ED operations. Results from the model show that patients' length of stay is influenced by laboratories turnaround time, bed occupancy rate and ward admission rate.

  7. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chong; Irwin, Daniel; Lin, Yu

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupledmore » to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary data and, with further studies, a high potential for translatability to real tissues with arbitrary boundaries. A requisite correction was also found for measurements in the fashion of scDCT to recover accurate speckle contrast of deep tissues.« less

  8. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  9. Periodicity and chaos from switched flow systems - Contrasting examples of discretely controlled continuous systems

    NASA Technical Reports Server (NTRS)

    Chase, Christopher; Serrano, Joseph; Ramadge, Peter J.

    1993-01-01

    We analyze two examples of the discrete control of a continuous variable system. These examples exhibit what may be regarded as the two extremes of complexity of the closed-loop behavior: one is eventually periodic, the other is chaotic. Our examples are derived from sampled deterministic flow models. These are of interest in their own right but have also been used as models for certain aspects of manufacturing systems. In each case, we give a precise characterization of the closed-loop behavior.

  10. Feedback systems for nontraditional medicines: a case for the signal flow diagram.

    PubMed

    Tice, B S

    1998-11-01

    The signal flow diagram is a graphic method used to represent complex data that is found in the field of biology and hence the field of medicine. The signal flow diagram is analyzed against a table of data and a flow chart of data and evaluated on the clarity and simplicity of imparting this information. The data modeled is from previous clinical studies and nontraditional medicine from Africa, China, and South America. This report is a development from previous presentations of the signal flow diagram.1-4

  11. On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.

    Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.

  12. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    NASA Astrophysics Data System (ADS)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  13. Applicability of Complexity Theory to Martian Fluvial Systems: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Rosenshein, E. B.

    2003-01-01

    In the last 15 years, terrestrial geomorphology has been revolutionized by the theories of chaotic systems, fractals, self-organization, and selforganized criticality. Except for the application of fractal theory to the analysis of lava flows and rampart craters on Mars, these theories have not yet been applied to problems of Martian landscape evolution. These complexity theories are elucidated below, along with the methods used to relate these theories to the realities of Martian fluvial systems.

  14. Multiverse data-flow control.

    PubMed

    Schindler, Benjamin; Waser, Jürgen; Ribičić, Hrvoje; Fuchs, Raphael; Peikert, Ronald

    2013-06-01

    In this paper, we present a data-flow system which supports comparative analysis of time-dependent data and interactive simulation steering. The system creates data on-the-fly to allow for the exploration of different parameters and the investigation of multiple scenarios. Existing data-flow architectures provide no generic approach to handle modules that perform complex temporal processing such as particle tracing or statistical analysis over time. Moreover, there is no solution to create and manage module data, which is associated with alternative scenarios. Our solution is based on generic data-flow algorithms to automate this process, enabling elaborate data-flow procedures, such as simulation, temporal integration or data aggregation over many time steps in many worlds. To hide the complexity from the user, we extend the World Lines interaction techniques to control the novel data-flow architecture. The concept of multiple, special-purpose cursors is introduced to let users intuitively navigate through time and alternative scenarios. Users specify only what they want to see, the decision which data are required is handled automatically. The concepts are explained by taking the example of the simulation and analysis of material transport in levee-breach scenarios. To strengthen the general applicability, we demonstrate the investigation of vortices in an offline-simulated dam-break data set.

  15. Fan array wind tunnel: a multifunctional, complex environmental flow manipulator

    NASA Astrophysics Data System (ADS)

    Dougherty, Christopher; Veismann, Marcel; Gharib, Morteza

    2017-11-01

    The recent emergence of small unmanned aerial vehicles (UAVs) has reshaped the aerospace testing environment. Traditional closed-loop wind tunnels are not particularly suited nor easily retrofit to take advantage of these coordinated, controls-based rotorcraft. As such, a highly configurable, novel wind tunnel aimed at addressing the unmet technical challenges associated with single or formation flight performance of autonomous drone systems is presented. The open-loop fan array wind tunnel features 1296 individually controllable DC fans arranged in a 2.88m x 2.88m array. The fan array can operate with and without a tunnel enclosure and is able to rotate between horizontal and vertical testing configurations. In addition to standard variable speed uniform flow, the fan array can generate both unsteady and shear flows. Through the aid of smaller side fan array units, vortex flows are also possible. Conceptual design, fabrication, and validation of the tunnel performance will be presented, including theoretical and computational predictions of flow speed and turbulence intensity. Validation of these parameters is accomplished through standard pitot-static and hot-wire techniques. Particle image velocimetry (PIV) of various complex flows will also be shown. This material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  16. Graphical Language for Data Processing

    NASA Technical Reports Server (NTRS)

    Alphonso, Keith

    2011-01-01

    A graphical language for processing data allows processing elements to be connected with virtual wires that represent data flows between processing modules. The processing of complex data, such as lidar data, requires many different algorithms to be applied. The purpose of this innovation is to automate the processing of complex data, such as LIDAR, without the need for complex scripting and programming languages. The system consists of a set of user-interface components that allow the user to drag and drop various algorithmic and processing components onto a process graph. By working graphically, the user can completely visualize the process flow and create complex diagrams. This innovation supports the nesting of graphs, such that a graph can be included in another graph as a single step for processing. In addition to the user interface components, the system includes a set of .NET classes that represent the graph internally. These classes provide the internal system representation of the graphical user interface. The system includes a graph execution component that reads the internal representation of the graph (as described above) and executes that graph. The execution of the graph follows the interpreted model of execution in that each node is traversed and executed from the original internal representation. In addition, there are components that allow external code elements, such as algorithms, to be easily integrated into the system, thus making the system infinitely expandable.

  17. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.

    1988-01-01

    The purpose is to document research to develop strategies for concurrent processing of complex algorithms in data driven architectures. The problem domain consists of decision-free algorithms having large-grained, computationally complex primitive operations. Such are often found in signal processing and control applications. The anticipated multiprocessor environment is a data flow architecture containing between two and twenty computing elements. Each computing element is a processor having local program memory, and which communicates with a common global data memory. A new graph theoretic model called ATAMM which establishes rules for relating a decomposed algorithm to its execution in a data flow architecture is presented. The ATAMM model is used to determine strategies to achieve optimum time performance and to develop a system diagnostic software tool. In addition, preliminary work on a new multiprocessor operating system based on the ATAMM specifications is described.

  18. Rapid determination of tartaric acid in wines.

    PubMed

    Bastos, Sandra S T; Tafulo, Paula A R; Queirós, Raquel B; Matos, Cristina D; Sales, M Goreti F

    2009-08-01

    A flow-spectrophotometric method is proposed for the routine determination of tartaric acid in wines. The reaction between tartaric acid and vanadate in acetic media is carried out in flowing conditions and the subsequent colored complex is monitored at 475 nm. The stability of the complex and the corresponding formation constant are presented. The effect of wavelength and pH was evaluated by batch experiments. The selected conditions were transposed to a flow-injection analytical system. Optimization of several flow parameters such as reactor lengths, flow-rate and injection volume was carried out. Using optimized conditions, a linear behavior was observed up to 1000 microg mL(-1) tartaric acid, with a molar extinction coefficient of 450 L mg(-1) cm(-1) and +/- 1 % repeatability. Sample throughput was 25 samples per hour. The flow-spectrophotometric method was satisfactorily applied to the quantification of TA in wines from different sources. Its accuracy was confirmed by statistical comparison to the conventional Rebelein procedure and to a certified analytical method carried out in a routine laboratory.

  19. Bacterial Trapping in Porous Media Flows

    NASA Astrophysics Data System (ADS)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2016-11-01

    Swimming bacteria inhabit heterogeneous, microstructured environments that are often characterized by complex, ambient flows. Understanding the physical mechanisms underlying cell transport in these systems is key to controlling important processes such as bioremediation in porous soils and infections in human tissues. We study the transport of swimming bacteria (Bacillus subtilis) in quasi-two-dimensional porous microfluidic channels with a range of periodic microstructures and flow strengths. Measured cell trajectories and the local cell number density reveal the formation of filamentous cell concentration patterns within the porous structures. The local cell densification is maximized at shear rates in the range 1-10 s-1, but widely varies with pore geometry and flow topology. Experimental observations are complemented by Langevin simulations to demonstrate that the filamentous patterns result from a coupling of bacterial motility to the complex flow fields via Jeffery orbits, which effectively 'trap' the bacteria on streamlines. The resulting microscopic heterogeneity observed here suppresses bacterial transport and likely has implications for both mixing and cell nutrient uptake in porous media flows. NSF CBET-1511340.

  20. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  1. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    NASA Technical Reports Server (NTRS)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study is focused on the response of an inlet/compressor system to acoustic disturbances. From the viewpoint of inlet computations, acoustic disturbances are clearly the most important, since they are the only ones capable of moving upstream. Convective and entropy disturbances may also produce upstream-moving acoustic waves, but such processes are outside the scope of the present study.

  2. Investigating low flow process controls, through complex modelling, in a UK chalk catchment

    NASA Astrophysics Data System (ADS)

    Lubega Musuuza, Jude; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Woods, Ross; Howden, Nicholas

    2017-04-01

    The typical streamflow response of Chalk catchments is dominated by groundwater contributions due the high degree of groundwater recharge through preferential flow pathways. The groundwater store attenuates the precipitation signal, which causes a delay between the corresponding high and low extremes in the precipitation and the stream flow signals. Streamflow responses can therefore be quite out of phase with the precipitation input to a Chalk catchment. Therefore characterising such catchment systems, including modelling approaches, clearly need to reproduce these percolation and groundwater dominated pathways to capture these dominant flow pathways. The simulation of low flow conditions for chalk catchments in numerical models is especially difficult due to the complex interactions between various processes that may not be adequately represented or resolved in the models. Periods of low stream flows are particularly important due to competing water uses in the summer, including agriculture and water supply. In this study we apply and evaluate the physically-based Pennstate Integrated Hydrologic Model (PIHM) to the River Kennet, a sub-catchment of the Thames Basin, to demonstrate how the simulations of a chalk catchment are improved by a physically-based system representation. We also use an ensemble of simulations to investigate the sensitivity of various hydrologic signatures (relevant to low flows and droughts) to the different parameters in the model, thereby inferring the levels of control exerted by the processes that the parameters represent.

  3. The Efficacy of International Regulation of Transborder Data Flows: The Case for the Clipper Chip.

    ERIC Educational Resources Information Center

    Mhlaba, Sondlo Leonard

    1995-01-01

    Discusses origins of Transborder Data Flows (TDFs) as an international problem in the early 1970s. Shows how technological development in telecommunications and networks has made regulation more complex and urgent. Recommends the internationalization of the Key Escrowed Encryption System (KEES) and the development of broad international TDF…

  4. Assessment of electrical conductivity as a surrogate measurement for water samples in a tracer injection experiment

    USDA-ARS?s Scientific Manuscript database

    The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...

  5. Lagrangian turbulence: Structures and mixing in admissible model flows

    NASA Astrophysics Data System (ADS)

    Ottino, Julio M.

    1991-12-01

    The goal of our research was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: (1) a perturbed-Kelvin cat eyes flow, and (2) prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: we have been able to produce flows capable of producing complex distributions of vorticity, and we have been able to construct flowfields, based on solutions of the Navier-Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence. These results exemplify typical mechanisms of mixing enhancement in transitional flows.

  6. Dynamics and Control of Newtonian and Viscoelastic Fluids

    NASA Astrophysics Data System (ADS)

    Lieu, Binh K.

    Transition to turbulence represents one of the most intriguing natural phenomena. Flows that are smooth and ordered may become complex and disordered as the flow strength increases. This process is known as transition to turbulence. In this dissertation, we develop theoretical and computational tools for analysis and control of transition and turbulence in shear flows of Newtonian, such as air and water, and complex viscoelastic fluids, such as polymers and molten plastics. Part I of the dissertation is devoted to the design and verification of sensor-free and feedback-based strategies for controlling the onset of turbulence in channel flows of Newtonian fluids. We use high fidelity simulations of the nonlinear flow dynamics to demonstrate the effectiveness of our model-based approach to flow control design. In Part II, we utilize systems theoretic tools to study transition and turbulence in channel flows of viscoelastic fluids. For flows with strong elastic forces, we demonstrate that flow fluctuations can experience significant amplification even in the absence of inertia. We use our theoretical developments to uncover the underlying physical mechanism that leads to this high amplification. For turbulent flows with polymer additives, we develop a model-based method for analyzing the influence of polymers on drag reduction. We demonstrate that our approach predicts drag reducing trends observed in full-scale numerical simulations. In Part III, we develop mathematical framework and computational tools for calculating frequency responses of spatially distributed systems. Using state-of-the-art automatic spectral collocation techniques and new integral formulation, we show that our approach yields more reliable and accurate solutions than currently available methods.

  7. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    PubMed Central

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  8. An in vitro test bench reproducing coronary blood flow signals.

    PubMed

    Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory

    2015-08-07

    It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.

  9. Application of PSAT to Load Flow Analysis with STATCOM under Load Increase Scenario and Line Contingencies

    NASA Astrophysics Data System (ADS)

    Telang, Aparna S.; Bedekar, P. P.

    2017-09-01

    Load flow analysis is the initial and essential step for any power system computation. It is required for choosing better options for power system expansion to meet with ever increasing load demand. Implementation of Flexible AC Transmission System (FACTS) device like STATCOM, in the load flow, which is having fast and very flexible control, is one of the important tasks for power system researchers. This paper presents a simple and systematic approach for steady state power flow calculations with FACTS controller, static synchronous compensator (STATCOM) using command line usage of MATLAB tool-power system analysis toolbox (PSAT). The complexity of MATLAB language programming increases due to incorporation of STATCOM in an existing Newton-Raphson load flow algorithm. Thus, the main contribution of this paper is to show how command line usage of user friendly MATLAB tool, PSAT, can extensively be used for quicker and wider interpretation of the results of load flow with STATCOM. The novelty of this paper lies in the method of applying the load increase pattern, where the active and reactive loads have been changed simultaneously at all the load buses under consideration for creating stressed conditions for load flow analysis with STATCOM. The performance have been evaluated on many standard IEEE test systems and the results for standard IEEE-30 bus system, IEEE-57 bus system, and IEEE-118 bus system are presented.

  10. A laser-sheet flow visualization technique for the large wind tunnels of the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Reinath, M. S.; Ross, J. C.

    1990-01-01

    A flow visualization technique for the large wind tunnels of the National Full Scale Aerodynamics Complex (NFAC) is described. The technique uses a laser sheet generated by the NFAC Long Range Laser Velocimeter (LRLV) to illuminate a smoke-like tracer in the flow. The LRLV optical system is modified slightly, and a scanned mirror is added to generate the sheet. These modifications are described, in addition to the results of an initial performance test conducted in the 80- by 120-Foot Wind Tunnel. During this test, flow visualization was performed in the wake region behind a truck as part of a vehicle drag reduction study. The problems encountered during the test are discussed, in addition to the recommended improvements needed to enhance the performance of the technique for future applications.

  11. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Ramsey, Michael S.

    2017-08-01

    The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows. Flow patterns and local interfingering and overlapping relationships are delineated in CTX images and allow reconstruction of the complex flow field surfaces. Darker channel-/tube-fed flows are generally younger than adjacent thicker, bright, rugged flows; however, the diversity and complexity of temporal relationships observed, along with the thermophysical variability, suggests that lava sources with different eruptive styles and magnitudes and/or lavas that experienced different local emplacement conditions were active contemporaneously.

  12. Research on the laser transmission characteristics simulation and comprehensive test in complex channel environment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Liu, Jianhua; Wang, Xiaoman; Jiang, Huilin; Liu, Zhi

    2014-12-01

    The laser transmission characteristics affected in the complex channel environment, which limits the performance of laser equipment and engineering application severely. The article aim at the influence of laser transmission in atmospheric and seawater channels, summarizes the foreign researching work of the simulation and comprehensive test regarding to the laser transmission characteristics in complex environment. And researched the theory of atmospheric turbulence effect, water attenuation features, and put forward the corresponding theoretical model. And researched the simulate technology of atmospheric channel and sea water channel, put forward the analog device plan, adopt the similar theory of flowing to simulate the atmosphere turbulence .When the flowing has the same condition of geometric limits including the same Reynolds, they must be similar to each other in the motivation despite of the difference in the size, speed, and intrinsic quality. On this basis, set up a device for complex channel simulation and comprehensive testing, the overall design of the structure of the device, Hot and Cold Air Convection Simulation of Atmospheric Turbulence, mainly consists of cell body, heating systems, cooling systems, automatic control system. he simulator provides platform and method for the basic research of laser transmission characteristics in the domestic.

  13. An unstructured-grid software system for solving complex aerodynamic problems

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar; Parikh, Paresh

    1995-01-01

    A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.

  14. Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas

    NASA Astrophysics Data System (ADS)

    Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.

    2015-11-01

    Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.

  15. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  16. Particle Streak Anemometry: A New Method for Proximal Flow Sensing from Aircraft

    NASA Astrophysics Data System (ADS)

    Nichols, T. W.

    Accurate sensing of relative air flow direction from fixed-wing small unmanned aircraft (sUAS) is challenging with existing multi-hole pitot-static and vane systems. Sub-degree direction accuracy is generally not available on such systems and disturbances to the local flow field, induced by the airframe, introduce an additional error source. An optical imaging approach to make a relative air velocity measurement with high-directional accuracy is presented. Optical methods offer the capability to make a proximal measurement in undisturbed air outside of the local flow field without the need to place sensors on vulnerable probes extended ahead of the aircraft. Current imaging flow analysis techniques for laboratory use rely on relatively thin imaged volumes and sophisticated hardware and intensity thresholding in low-background conditions. A new method is derived and assessed using a particle streak imaging technique that can be implemented with low-cost commercial cameras and illumination systems, and can function in imaged volumes of arbitrary depth with complex background signal. The new technique, referred to as particle streak anemometry (PSA) (to differentiate from particle streak velocimetry which makes a field measurement rather than a single bulk flow measurement) utilizes a modified Canny Edge detection algorithm with a connected component analysis and principle component analysis to detect streak ends in complex imaging conditions. A linear solution for the air velocity direction is then implemented with a random sample consensus (RANSAC) solution approach. A single DOF non-linear, non-convex optimization problem is then solved for the air speed through an iterative approach. The technique was tested through simulation and wind tunnel tests yielding angular accuracies under 0.2 degrees, superior to the performance of existing commercial systems. Air speed error standard deviations varied from 1.6 to 2.2 m/s depending on the techniques of implementation. While air speed sensing is secondary to accurate flow direction measurement, the air speed results were in line with commercial pitot static systems at low speeds.

  17. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.

    PubMed

    Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E

    2016-06-01

    The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.

  18. Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Popok, Daniel

    1999-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  19. Discrete event simulation as a tool in optimization of a professional complex adaptive system.

    PubMed

    Nielsen, Anders Lassen; Hilwig, Helmer; Kissoon, Niranjan; Teelucksingh, Surujpal

    2008-01-01

    Similar urgent needs for improvement of health care systems exist in the developed and developing world. The culture and the organization of an emergency department in developing countries can best be described as a professional complex adaptive system, where each agent (employee) are ignorant of the behavior of the system as a whole; no one understands the entire system. Each agent's action is based on the state of the system at the moment (i.e. lack of medicine, unavailable laboratory investigation, lack of beds and lack of staff in certain functions). An important question is how one can improve the emergency service within the given constraints. The use of simulation signals is one new approach in studying issues amenable to improvement. Discrete event simulation was used to simulate part of the patient flow in an emergency department. A simple model was built using a prototyping approach. The simulation showed that a minor rotation among the nurses could reduce the mean number of visitors that had to be refereed to alternative flows within the hospital from 87 to 37 on a daily basis with a mean utilization of the staff between 95.8% (the nurses) and 87.4% (the doctors). We conclude that even faced with resource constraints and lack of accessible data discrete event simulation is a tool that can be used successfully to study the consequences of changes in very complex and self organizing professional complex adaptive systems.

  20. Modeling hospital surgical delivery process design using system simulation: optimizing patient flow and bed capacity as an illustration.

    PubMed

    Kumar, Sameer

    2011-01-01

    It is increasingly recognized that hospital operation is an intricate system with limited resources and many interacting sources of both positive and negative feedback. The purpose of this study is to design a surgical delivery process in a county hospital in the U.S where patient flow through a surgical ward is optimized. The system simulation modeling is used to address questions of capacity planning, throughput management and interacting resources which constitute the constantly changing complexity that characterizes designing a contemporary surgical delivery process in a hospital. The steps in building a system simulation model is demonstrated using an example of building a county hospital in a small city in the US. It is used to illustrate a modular system simulation modeling of patient surgery process flows. The system simulation model development will enable planners and designers how they can build in overall efficiencies in a healthcare facility through optimal bed capacity for peak patient flow of emergency and routine patients.

  1. Complex terrain experiments in the New European Wind Atlas.

    PubMed

    Mann, J; Angelou, N; Arnqvist, J; Callies, D; Cantero, E; Arroyo, R Chávez; Courtney, M; Cuxart, J; Dellwik, E; Gottschall, J; Ivanell, S; Kühn, P; Lea, G; Matos, J C; Palma, J M L M; Pauscher, L; Peña, A; Rodrigo, J Sanz; Söderberg, S; Vasiljevic, N; Rodrigues, C Veiga

    2017-04-13

    The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Authors.

  2. Complex terrain experiments in the New European Wind Atlas

    PubMed Central

    Angelou, N.; Callies, D.; Cantero, E.; Arroyo, R. Chávez; Courtney, M.; Cuxart, J.; Dellwik, E.; Gottschall, J.; Ivanell, S.; Kühn, P.; Lea, G.; Matos, J. C.; Palma, J. M. L. M.; Peña, A.; Rodrigo, J. Sanz; Söderberg, S.; Vasiljevic, N.; Rodrigues, C. Veiga

    2017-01-01

    The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265025

  3. Development of a structured approach for decomposition of complex systems on a functional basis

    NASA Astrophysics Data System (ADS)

    Yildirim, Unal; Felician Campean, I.

    2014-07-01

    The purpose of this paper is to present the System State Flow Diagram (SSFD) as a structured and coherent methodology to decompose a complex system on a solution- independent functional basis. The paper starts by reviewing common function modelling frameworks in literature and discusses practical requirements of the SSFD in the context of the current literature and current approaches in industry. The proposed methodology is illustrated through the analysis of a case study: design analysis of a generic Bread Toasting System (BTS).

  4. An Assessment of Wind Plant Complex Flows Using Advanced Doppler Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gunter, W. S.; Schroeder, J.; Hirth, B.; Duncan, J.; Guynes, J.

    2015-12-01

    As installed wind energy capacity continues to steadily increase, the need for comprehensive measurements of wind plant complex flows to further reduce the cost of wind energy has been well advertised by the industry as a whole. Such measurements serve diverse perspectives including resource assessment, turbine inflow and power curve validation, wake and wind plant layout model verification, operations and maintenance, and the development of future advanced wind plant control schemes. While various measurement devices have been matured for wind energy applications (e.g. meteorological towers, LIDAR, SODAR), this presentation will focus on the use of advanced Doppler radar systems to observe the complex wind flows within and surrounding wind plants. Advanced Doppler radars can provide the combined advantage of a large analysis footprint (tens of square kilometers) with rapid data analysis updates (a few seconds to one minute) using both single- and dual-Doppler data collection methods. This presentation demonstrates the utility of measurements collected by the Texas Tech University Ka-band (TTUKa) radars to identify complex wind flows occurring within and nearby operational wind plants, and provide reliable forecasts of wind speeds and directions at given locations (i.e. turbine or instrumented tower sites) 45+ seconds in advance. Radar-derived wind maps reveal commonly observed features such as turbine wakes and turbine-to-turbine interaction, high momentum wind speed channels between turbine wakes, turbine array edge effects, transient boundary layer flow structures (such as wind streaks, frontal boundaries, etc.), and the impact of local terrain. Operational turbine or instrumented tower data are merged with the radar analysis to link the observed complex flow features to turbine and wind plant performance.

  5. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 < Kn < 0.5). Currently, the study of slip-flows is for the most part limited to simple tube and channel geometries, however, the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  6. Three-dimensional self-adaptive grid method for complex flows

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Deiwert, George S.

    1988-01-01

    A self-adaptive grid procedure for efficient computation of three-dimensional complex flow fields is described. The method is based on variational principles to minimize the energy of a spring system analogy which redistributes the grid points. Grid control parameters are determined by specifying maximum and minimum grid spacing. Multidirectional adaptation is achieved by splitting the procedure into a sequence of successive applications of a unidirectional adaptation. One-sided, two-directional constraints for orthogonality and smoothness are used to enhance the efficiency of the method. Feasibility of the scheme is demonstrated by application to a multinozzle, afterbody, plume flow field. Application of the algorithm for initial grid generation is illustrated by constructing a three-dimensional grid about a bump-like geometry.

  7. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    PubMed

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The 1980-81 AFOSR (Air Force Office of Scientific Research)-HTTM (Heat Transfer and Turbulence Mechanics)-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment. Volume 3. Comparison of Computation with Experiment, and Computors’ Summary Report.

    DTIC Science & Technology

    1981-09-01

    organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square

  9. Power flow control using quadrature boosters

    NASA Astrophysics Data System (ADS)

    Sadanandan, Sandeep N.

    A power system that can be controlled within security constraints would be an advantage to power planners and real-time operators. Controlling flows can lessen reliability issues such as thermal limit violations, power stability problems, and/or voltage stability conditions. Control of flows can also mitigate market issues by reducing congestion on some lines and rerouting power to less loaded lines or onto preferable paths. In the traditional control of power flows, phase shifters are often used. More advanced methods include using Flexible AC Transmission System (FACTS) Controllers. Some examples include Thyristor Controlled Series Capacitors, Synchronous Series Static Compensators, and Unified Power Flow Controllers. Quadrature Boosters (QBs) have similar structures to phase-shifters, but allow for higher voltage magnitude during real power flow control. In comparison with other FACTS controllers QBs are not as complex and not as expensive. The present study proposes to use QBs to control power flows on a power system. With the inclusion of QBs, real power flows can be controlled to desired scheduled values. In this thesis, the linearized power flow equations used for power flow analysis were modified for the control problem. This included modifying the Jacobian matrix, the power error vector, and calculating the voltage injected by the quadrature booster for the scheduled real power flow. Two scenarios were examined using the proposed power flow control method. First, the power flow in a line in a 5-bus system was modified with a QB using the method developed in this thesis. Simulation was carried out using Matlab. Second, the method was applied to a 30-bus system and then to a 118-bus system using several QBs. In all the cases, the calculated values of the QB voltages led to desired power flows in the designated line.

  10. Systems genetics approaches to understand complex traits

    PubMed Central

    Civelek, Mete; Lusis, Aldons J.

    2014-01-01

    Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease. PMID:24296534

  11. Using dye tracing to establish groundwater flow paths in a limestone marble aquifer, University of California, Santa Cruz, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, J.; Bertschinger, V.; Aley, T.

    1993-04-01

    Areas underlain by karst aquifers are characterized by soluble rock with sinkholes, caves, and a complex underground drainage network. Groundwater issues such as flow direction, well pumping impacts, spring recharge areas, and potential contamination transport routes are greatly complicated by the unique structure of karst aquifers. Standard aquifer analysis techniques cannot be applied unless the structure of the karst aquifer is understood. Water soluble fluorescent dyes are a powerful tool for mapping the irregular subsurface connections and flow paths in karst aquifers. Mapping the subsurface connections allows reasonable estimates of the hydrologic behavior of the aquifer. Two different fluorescent dyesmore » were injected at two points in a limestone karst aquifer system beneath the University of California, Santa Cruz campus. Flow paths in the marble were thought to be closely tied to easily recognized geomorphic alignments of sinkholes associated with fault and fracture zones. The dye tests revealed unexpected and highly complex interconnections. These complex flow paths only partially corresponded to previous surface mapping and aerial photo analysis of fracture systems. Several interfingering but hydrologically unconnected flow paths evidently exist within the cavernous aquifer. For example, dye did not appear at some discharge springs close to the dye injection points, but did appear at more distant springs. This study shows how a dye tracing study in a small, well-defined limestone body can shed light on a variety of environmental and hydrological issues, including potential well pumping impact areas, wellhead protection and recharge areas, parking lot runoff injection to aquifers, and drainage routes from hazardous materials storage areas.« less

  12. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  13. Discovering complex groundwater dynamics of a multiple aquifer system on the base of stable and radio-isotope patterns

    NASA Astrophysics Data System (ADS)

    Wilske, Cornelia; Rödiger, Tino; Suckow, Axel; Geyer, Stefan; Weise, Stephan; Merchel, Silke; Rugel, Georg; Pavetich, Stefan; Merkel, Broder; Siebert, Christian

    2017-04-01

    The water supply in semi-arid Israel and Palestine, predominantly relies on groundwater as freshwater resource, stressed by increasing demand and low recharge rates. Sustainable management of such resources requires a sound understanding of its groundwater migration through space and time, particularly in structurally complex multi-aquifer systems as the Eastern Mountain Aquifer, affected by salting. To differentiate between the flow paths of the different water bodies and their respective residence times, a multi-tracer approach, combining age dating isotopes (36Cl/Cl; 3H) with rock specific isotopes like 87Sr/86Sr and δ34S-SO4 was applied. As a result, the investigated groundwaters from the two Cretaceous aquifers and their respective flow paths are differentiable by e.g. their 87Sr/86Sr signatures, resembling the intensity of the rock-water interaction and hence indirectly residence times. In the discharge areas within the Jordan Valley and along the Dead Sea shore, δ34S-SO4 ratios reveal the different sources of salinity (ascending brines, interstitial brines and dissolved salts). Based on 36Cl and 3H and the atmospheric input functions, very heterogeneous infiltration times and effective flow velocities, respectively, indicate an at least dual porosity system, resulting in distinctly different regimes of matrix and pipe flow.

  14. Sustainability and Resilience in the Urban Environment

    EPA Science Inventory

    Urban systems are formed by a diversity of actors and activities, and consist of complex interactions involving financial, information, energy, ecological, and material stocks and flows that operate on different spatial and temporal scales. The urban systems that emerge from thes...

  15. Manipulating the Flow of Thermal Noise in Quantum Devices

    NASA Astrophysics Data System (ADS)

    Barzanjeh, Shabir; Aquilina, Matteo; Xuereb, André

    2018-02-01

    There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.

  16. Manipulating the Flow of Thermal Noise in Quantum Devices.

    PubMed

    Barzanjeh, Shabir; Aquilina, Matteo; Xuereb, André

    2018-02-09

    There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.

  17. Analysis of Software Systems for Specialized Computers,

    DTIC Science & Technology

    computer) with given computer hardware and software . The object of study is the software system of a computer, designed for solving a fixed complex of...purpose of the analysis is to find parameters that characterize the system and its elements during operation, i.e., when servicing the given requirement flow. (Author)

  18. 3D-printed devices for continuous-flow organic chemistry.

    PubMed

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy

    2013-01-01

    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  19. A numerical simulation of the NFAC (National Full-scale Aerodynamics Complex) open-return wind tunnel inlet flow

    NASA Technical Reports Server (NTRS)

    Kaul, U. K.; Ross, J. C.; Jacocks, J. L.

    1985-01-01

    The flow into an open return wind tunnel inlet was simulated using Euler equations. An explicit predictor-corrector method was employed to solve the system. The calculation is time-accurate and was performed to achieve a steady-state solution. The predictions are in reasonable agreement with the experimental data. Wall pressures are accurately predicted except in a region of recirculating flow. Flow-field surveys agree qualitatively with laser velocimeter measurements. The method can be used in the design process for open return wind tunnels.

  20. Complex Physical, Biophysical and Econophysical Systems

    NASA Astrophysics Data System (ADS)

    Dewar, Robert L.; Detering, Frank

    1. Introduction to complex and econophysics systems: a navigation map / T. Aste and T. Di Matteo -- 2. An introduction to fractional diffusion / B. I. Henry, T.A.M. Langlands and P. Straka -- 3. Space plasmas and fusion plasmas as complex systems / R. O. Dendy -- 4. Bayesian data analysis / M. S. Wheatland -- 5. Inverse problems and complexity in earth system science / I. G. Enting -- 6. Applied fluid chaos: designing advection with periodically reoriented flows for micro to geophysical mixing and transport enhancement / G. Metcalfe -- 7. Approaches to modelling the dynamical activity of brain function based on the electroencephalogram / D. T. J. Liley and F. Frascoli -- 8. Jaynes' maximum entropy principle, Riemannian metrics and generalised least action bound / R. K. Niven and B. Andresen -- 9. Complexity, post-genomic biology and gene expression programs / R. B. H. Williams and O. J.-H. Luo -- 10. Tutorials on agent-based modelling with NetLogo and network analysis with Pajek / M. J. Berryman and S. D. Angus.

  1. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū

    2015-04-01

    Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.

  2. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  3. Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI.

    PubMed

    Stramaglia, Sebastiano; Angelini, Leonardo; Wu, Guorong; Cortes, Jesus M; Faes, Luca; Marinazzo, Daniele

    2016-12-01

    We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits.

  4. Optimization of Cooling Water Flow Rate in Nuclear and Thermal Power Plants Based on a Mathematical Model of Cooling Systems{sup 1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval1@mail.ru; Kochetkov, A. V.; Glazova, E. G.

    A mathematical model and algorithms are proposed for automatic calculation of the optimum flow rate of cooling water in nuclear and thermal power plants with cooling systems of arbitrary complexity. An unlimited number of configuration and design variants are assumed with the possibility of obtaining a result for any computational time interval, from monthly to hourly. The structural solutions corresponding to an optimum cooling water flow rate can be used for subsequent engineering-economic evaluation of the best cooling system variant. The computerized mathematical model and algorithms make it possible to determine the availability and degree of structural changes for themore » cooling system in all stages of the life cycle of a plant.« less

  5. Interregional flows of ecosystem services: Concepts, typology and four cases

    USGS Publications Warehouse

    Schröter, Matthias; Koellner, Thomas; Alkemade, Rob; Arnhold, Sebastian; Bagstad, Kenneth J.; Frank, Karin; Erb, Karl-Heinz; Kastner, Thomas; Kissinger, Meidad; Liu, Jianguo; López-Hoffman, Laura; Maes, Joachim; Marques, Alexandra; Martín-López, Berta; Meyer, Carsten; Schulp, Catharina J. E.; Thober, Jule; Wolff, Sarah; Bonn, Aletta

    2018-01-01

    Conserving and managing global natural capital requires an understanding of the complexity of flows of ecosystem services across geographic boundaries. Failing to understand and to incorporate these flows into national and international ecosystem assessments leads to incomplete and potentially skewed conclusions, impairing society’s ability to identify sustainable management and policy choices. In this paper, we synthesise existing knowledge and develop a conceptual framework for analysing interregional ecosystem service flows. We synthesise the types of such flows, the characteristics of sending and receiving socio-ecological systems, and the impacts of ecosystem service flows on interregional sustainability. Using four cases (trade of certified coffee, migration of northern pintails, flood protection in the Danube watershed, and information on giant pandas), we test the conceptual framework and show how an enhanced understanding of interregional telecouplings in socio-ecological systems can inform ecosystem service-based decision making and governance with respect to sustainability goals.

  6. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y. Y.; Graduate University of the Chinese Academy of Sciences, Beijing, 100049; Luo, E. C.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermalmore » regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.« less

  7. Instabilities in wormlike micelle systems. From shear-banding to elastic turbulence.

    PubMed

    Fardin, M-A; Lerouge, S

    2012-09-01

    Shear-banding is ubiquitous in complex fluids. It is related to the organization of the flow into macroscopic bands bearing different viscosities and local shear rates and stacked along the velocity gradient direction. This flow-induced transition towards a heterogeneous flow state has been reported in a variety of systems, including wormlike micellar solutions, telechelic polymers, emulsions, clay suspensions, colloidal gels, star polymers, granular materials, or foams. In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In wormlike micelle solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Different candidates have been identified, the main ones being wall slip, interfacial instability between bands or bulk instability of one of the bands. In this review, we present experimental evidence for a purely elastic instability of the high shear rate band as the main origin for fluctuating shear-banding flows.

  8. Geometric quantification of features in large flow fields.

    PubMed

    Kendall, Wesley; Huang, Jian; Peterka, Tom

    2012-01-01

    Interactive exploration of flow features in large-scale 3D unsteady-flow data is one of the most challenging visualization problems today. To comprehensively explore the complex feature spaces in these datasets, a proposed system employs a scalable framework for investigating a multitude of characteristics from traced field lines. This capability supports the examination of various neighborhood-based geometric attributes in concert with other scalar quantities. Such an analysis wasn't previously possible because of the large computational overhead and I/O requirements. The system integrates visual analytics methods by letting users procedurally and interactively describe and extract high-level flow features. An exploration of various phenomena in a large global ocean-modeling simulation demonstrates the approach's generality and expressiveness as well as its efficacy.

  9. Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution

    USGS Publications Warehouse

    Burns, Erick R.; Ingebritsen, Steven E.; Manga, Michael; Williams, Colin F.

    2016-01-01

    A one-dimensional (1-D) analytic solution is developed for heat transport through an aquifer system where the vertical temperature profile in the aquifer is nearly uniform. The general anisotropic form of the viscous heat generation term is developed for use in groundwater flow simulations. The 1-D solution is extended to more complex geometries by solving the equation for piece-wise linear or uniform properties and boundary conditions. A moderately complex example, the Eastern Snake River Plain (ESRP), is analyzed to demonstrate the use of the analytic solution for identifying important physical processes. For example, it is shown that viscous heating is variably important and that heat conduction to the land surface is a primary control on the distribution of aquifer and spring temperatures. Use of published values for all aquifer and thermal properties results in a reasonable match between simulated and measured groundwater temperatures over most of the 300 km length of the ESRP, except for geothermal heat flow into the base of the aquifer within 20 km of the Yellowstone hotspot. Previous basal heat flow measurements (∼110 mW/m2) made beneath the ESRP aquifer were collected at distances of >50 km from the Yellowstone Plateau, but a higher basal heat flow of 150 mW/m2 is required to match groundwater temperatures near the Plateau. The ESRP example demonstrates how the new tool can be used during preliminary analysis of a groundwater system, allowing efficient identification of the important physical processes that must be represented during more-complex 2-D and 3-D simulations of combined groundwater and heat flow.

  10. Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebotich, D

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscousmore » flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.« less

  11. Modeling complex biological flows in multi-scale systems using the APDEC framework

    NASA Astrophysics Data System (ADS)

    Trebotich, David

    2006-09-01

    We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.

  12. UPIOM: a new tool of MFA and its application to the flow of iron and steel associated with car production.

    PubMed

    Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya

    2011-02-01

    Identification of the flow of materials and substances associated with a product system provides useful information for Life Cycle Analysis (LCA), and contributes to extending the scope of complementarity between LCA and Materials Flow Analysis/Substances Flow Analysis (MFA/SFA), the two major tools of industrial ecology. This paper proposes a new methodology based on input-output analysis for identifying the physical input-output flow of individual materials that is associated with the production of a unit of given product, the unit physical input-output by materials (UPIOM). While the Sankey diagram has been a standard tool for the visualization of MFA/SFA, with an increase in the complexity of the flows under consideration, which will be the case when economy-wide intersectoral flows of materials are involved, the Sankey diagram may become too complex for effective visualization. An alternative way to visually represent material flows is proposed which makes use of triangulation of the flow matrix based on degrees of fabrication. The proposed methodology is applied to the flow of pig iron and iron and steel scrap that are associated with the production of a passenger car in Japan. Its usefulness to identify a specific MFA pattern from the original IO table is demonstrated.

  13. Investigating chaotic wake dynamics past a flapping airfoil and the role of vortex interactions behind the chaotic transition

    NASA Astrophysics Data System (ADS)

    Bose, Chandan; Sarkar, Sunetra

    2018-04-01

    The present study investigates the complex vortex interactions in two-dimensional flow-field behind a symmetric NACA0012 airfoil undergoing a prescribed periodic pitching-plunging motion in low Reynolds number regime. The flow-field transitions from periodic to chaotic through a quasi-periodic route as the plunge amplitude is gradually increased. This study unravels the role of the complex interactions that take place among the main vortex structures in making the unsteady flow-field transition from periodicity to chaos. The leading-edge separation plays a key role in providing the very first trigger for aperiodicity. Subsequent mechanisms like shredding, merging, splitting, and collision of vortices in the near-field that propagate and sustain the disturbance have also been followed and presented. These fundamental mechanisms are seen to give rise to spontaneous and irregular formation of new vortex couples at arbitrary locations, which are the primary agencies for sustaining chaos in the flow-field. The interactions have been studied for each dynamical state to understand the course of transition in the flow-field. The qualitative changes observed in the flow-field are manifestation of changes in the underlying dynamical system. The overall dynamics are established in the present study by means of robust quantitative measures derived from classical and non-classical tools from the dynamical system theory. As the present analysis involves a high fidelity multi-unknown system, non-classical dynamical tools such as recurrence-based time series methods are seen to be very efficient. Moreover, their application is novel in the context of pitch-plunge flapping flight.

  14. A microfluidic investigation of gas exsolution in glass and shale fracture networks

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Harrison, A.; Currier, R.; Viswanathan, H. S.

    2016-12-01

    Microfluidic investigations of pore-scale fluid flow and transport phenomena has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real-time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. In this work, we describe a unique high pressure (up to 10.3 MPa) and temperature (up to 80 °C) microfluidics experimental system that allows us to investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in fractured rocks. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase gas (CO2 and N2) injection experiments designed to enhance oil recovery. In these experiments gas was injected into micromodels saturated with oil and allowed to soak for approximately 12 hours at elevated pressures. The pressure in the system was then decreased to atmospheric, causing the gas to expand and/or dissolve out of solution, subsequently mobilizing the oil. In addition to the experimental results, we present a relatively simple model designed to quantify the amount of oil mobilized as a function of decreasing system pressure. We will show comparisons between the experiments and model, and discuss the potential use of the model in field-scale reservoir simulations.

  15. A Systems Approach towards an Intelligent and Self-Controlling Platform for Integrated Continuous Reaction Sequences**

    PubMed Central

    Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V

    2015-01-01

    Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747

  16. Flow around an individual morphologically complex plant: investigating the role of plant aspect in the numerical prediction of complex river flow

    NASA Astrophysics Data System (ADS)

    Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.

    2015-12-01

    Aquatic vegetation has a significant influence on the hydraulic functioning of river systems. Plant morphology has previously been shown to alter the mean and turbulent properties of flow, influenced by the spatial distribution of branches and foliage, and these effects can be further investigated through numerical models. We report on a novel method for the measurement and incorporation of complex plant morphologies into a computational fluid dynamics (CFD) model. The morphological complexity of Prunus laurocerasus is captured under foliated and defoliated states through terrestrial laser scanning (TLS). Point clouds are characterised by a voxelised representation and incorporated into a CFD scheme using a mass flux scaling algorithm, allowing the numerical prediction of flows around individual plants. Here we examine the sensitivity of plant aspect, i.e. the positioning of the plant relative to the primary flow direction, by rotating the voxelised plant representation through 15° increments (24 rotations) about the vertical axis. This enables the impact of plant aspect to be quantified upon the velocity and pressure fields, and in particular how this effects species-specific drag forces and drag coefficients. Plant aspect is shown to considerably influence the flow field response, producing spatially heterogeneous downstream velocity fields with both symmetric and asymmetric wake shapes, and point of reattachments that extend up to seven plant lengths downstream. For the same plant, changes in aspect are shown to account for a maximum variation in drag force of 168%, which equates to a 65% difference in the drag coefficient. An explicit consideration of plant aspect is therefore important in studies concerning flow-vegetation interactions, especially when reducing the uncertainty in parameterising the effect of vegetation in numerical models.

  17. System model the processing of heterogeneous sensory information in robotized complex

    NASA Astrophysics Data System (ADS)

    Nikolaev, V.; Titov, V.; Syryamkin, V.

    2018-05-01

    Analyzed the scope and the types of robotic systems consisting of subsystems of the form "a heterogeneous sensors data processing subsystem". On the basis of the Queuing theory model is developed taking into account the unevenness of the intensity of information flow from the sensors to the subsystem of information processing. Analytical solution to assess the relationship of subsystem performance and uneven flows. The research of the obtained solution in the range of parameter values of practical interest.

  18. Methods and new approaches to the calculation of physiological parameters by videodensitometry

    NASA Technical Reports Server (NTRS)

    Kedem, D.; Londstrom, D. P.; Rhea, T. C., Jr.; Nelson, J. H.; Price, R. R.; Smith, C. W.; Graham, T. P., Jr.; Brill, A. B.; Kedem, D.

    1976-01-01

    A complex system featuring a video-camera connected to a video disk, cine (medical motion picture) camera and PDP-9 computer with various input/output facilities has been developed. This system enables the performance of quantitative analysis of various functions recorded in clinical studies. Several studies are described, such as heart chamber volume calculations, left ventricle ejection fraction, blood flow through the lungs and also the possibility of obtaining information about blood flow and constrictions in small cross-section vessels

  19. Viscous streaming for locomotion and transport

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Parthasarathy, Tejaswin

    2017-11-01

    Rectified and oscillatory flows associated with vibrating boundaries have been employed in a variety of tasks, especially in microfluidics. The associated fluid mechanics is well known in the case of simple geometries, cylinders in particular, yet little is known in the case of active, complex systems. Motivated by potential applications in swimming mini-bots, we established an accurate and robust computational framework to investigate the flow behavior associated with oscillations of multiple and deforming shapes with an emphasis on streaming assisted locomotion and transport systems.

  20. Development of an automated analysis system for data from flow cytometric intracellular cytokine staining assays from clinical vaccine trials

    PubMed Central

    Shulman, Nick; Bellew, Matthew; Snelling, George; Carter, Donald; Huang, Yunda; Li, Hongli; Self, Steven G.; McElrath, M. Juliana; De Rosa, Stephen C.

    2008-01-01

    Background Intracellular cytokine staining (ICS) by multiparameter flow cytometry is one of the primary methods for determining T cell immunogenicity in HIV-1 clinical vaccine trials. Data analysis requires considerable expertise and time. The amount of data is quickly increasing as more and larger trials are performed, and thus there is a critical need for high throughput methods of data analysis. Methods A web based flow cytometric analysis system, LabKey Flow, was developed for analyses of data from standardized ICS assays. A gating template was created manually in commercially-available flow cytometric analysis software. Using this template, the system automatically compensated and analyzed all data sets. Quality control queries were designed to identify potentially incorrect sample collections. Results Comparison of the semi-automated analysis performed by LabKey Flow and the manual analysis performed using FlowJo software demonstrated excellent concordance (concordance correlation coefficient >0.990). Manual inspection of the analyses performed by LabKey Flow for 8-color ICS data files from several clinical vaccine trials indicates that template gates can appropriately be used for most data sets. Conclusions The semi-automated LabKey Flow analysis system can analyze accurately large ICS data files. Routine use of the system does not require specialized expertise. This high-throughput analysis will provide great utility for rapid evaluation of complex multiparameter flow cytometric measurements collected from large clinical trials. PMID:18615598

  1. Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)

    2001-01-01

    For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.

  2. The 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    NASA Astrophysics Data System (ADS)

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute's book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems - the focus of work at SFI - involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, and the Gross National Product (GNP) of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  3. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of workmore » at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.« less

  4. Aortic Valve Stenosis Increases Helical Flow and Flow Complexity: A Study of Intra-Operative Cardiac Vector Flow Imaging.

    PubMed

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Kjaergaard, Jesper; Jensen, Maiken Brit; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2017-08-01

    Aortic valve stenosis alters blood flow in the ascending aorta. Using intra-operative vector flow imaging on the ascending aorta, secondary helical flow during peak systole and diastole, as well as flow complexity of primary flow during systole, were investigated in patients with normal, stenotic and replaced aortic valves. Peak systolic helical flow, diastolic helical flow and flow complexity during systole differed between the groups (p < 0.0001), and correlated to peak systolic velocity (R = 0.94, 0.87 and 0.88, respectively). The study indicates that aortic valve stenosis increases helical flow and flow complexity, which are measurable with vector flow imaging. For assessment of aortic stenosis and optimization of valve surgery, vector flow imaging may be useful. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Calibration of an Unsteady Groundwater Flow Model for a Complex, Strongly Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Curtis, Z. K.; Liao, H.; Li, S. G.; Phanikumar, M. S.; Lusch, D.

    2016-12-01

    Modeling of groundwater systems characterized by complex three-dimensional structure and heterogeneity remains a significant challenge. Most of today's groundwater models are developed based on relatively simple conceptual representations in favor of model calibratibility. As more complexities are modeled, e.g., by adding more layers and/or zones, or introducing transient processes, more parameters have to be estimated and issues related to ill-posed groundwater problems and non-unique calibration arise. Here, we explore the use of an alternative conceptual representation for groundwater modeling that is fully three-dimensional and can capture complex 3D heterogeneity (both systematic and "random") without over-parameterizing the aquifer system. In particular, we apply Transition Probability (TP) geostatistics on high resolution borehole data from a water well database to characterize the complex 3D geology. Different aquifer material classes, e.g., `AQ' (aquifer material), `MAQ' (marginal aquifer material'), `PCM' (partially confining material), and `CM' (confining material), are simulated, with the hydraulic properties of each material type as tuning parameters during calibration. The TP-based approach is applied to simulate unsteady groundwater flow in a large, complex, and strongly heterogeneous glacial aquifer system in Michigan across multiple spatial and temporal scales. The resulting model is calibrated to observed static water level data over a time span of 50 years. The results show that the TP-based conceptualization enables much more accurate and robust calibration/simulation than that based on conventional deterministic layer/zone based conceptual representations.

  6. Spring hydrograph simulation of karstic aquifers: Impacts of variable recharge area, intermediate storage and memory effects

    NASA Astrophysics Data System (ADS)

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2017-09-01

    A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model computes the spring discharge hydrograph through three parallel linear reservoirs for base-flow, intermediate-flow, and quick-flow. Three antecedent recharge indices are defined and embedded in the model structure to deal with the memory effect of three karst flow systems to antecedent recharge flow. The Sasan Karst aquifer located in the semi-arid region of south-west Iran with a continuous long-term (21-years) daily meteorological and discharge data are considered to describe model calibration and validation procedures. The effects of temporal variations of RA of karst formations during the hydrological year namely invariant RA, two RA (winter and summer), four RA (seasonal), and twelve RA (monthly) are assessed to determine their impact on the model efficiency. Results indicated that the proposed model with monthly-variant RA is able to reproduce acceptable simulation results based on modified Kling-Gupta efficiency (KGE = -0.83). The results of density-based global sensitivity analysis for dry (June to September) and a wet (October to May) period reveal the dominant influence of RA (with sensitivity indices equal to 0.89 and 0.93, respectively) in spring discharge simulation. The sensitivity of simulated spring discharge to memory effect of different karst formations during the dry period is greater than the wet period. In addition, the results reveal the important role of intermediate-flow system in the hydrological modeling of karst systems during the wet period. Precise estimation of groundwater budgets for a better decision making regarding water supplies from complex karst systems with long memory effect can considerably be improved by use of the proposed model.

  7. Microfluidic Investigation of Oil Mobilization in Shale Fracture Networks at Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Investigations of pore-scale fluid flow and transport phenomena using engineered micromodels has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. One drawback to these studies is the use of engineered materials that do not faithfully represent the rock properties (e.g., porosity, wettability, roughness, etc.) encountered in subsurface formations. In this work, we describe a unique high pressure (up to 1500 psi) and temperature (up to 80 °C) microfluidics experimental system in which we investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in hydraulically fractured shale. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase huff-and-puff experiments involving N2 and n-Decane, as well as three-phase displacement experiments involving supercritical CO2, brine, and n-Decane.

  8. A multiple-point geostatistical approach to quantifying uncertainty for flow and transport simulation in geologically complex environments

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Phelps, G. A.; Boucher, A.

    2011-12-01

    In many geologic settings, the pathways of groundwater flow are controlled by geologic heterogeneities which have complex geometries. Models of these geologic heterogeneities, and consequently, their effects on the simulated pathways of groundwater flow, are characterized by uncertainty. Multiple-point geostatistics, which uses a training image to represent complex geometric descriptions of geologic heterogeneity, provides a stochastic approach to the analysis of geologic uncertainty. Incorporating multiple-point geostatistics into numerical models provides a way to extend this analysis to the effects of geologic uncertainty on the results of flow simulations. We present two case studies to demonstrate the application of multiple-point geostatistics to numerical flow simulation in complex geologic settings with both static and dynamic conditioning data. Both cases involve the development of a training image from a complex geometric description of the geologic environment. Geologic heterogeneity is modeled stochastically by generating multiple equally-probable realizations, all consistent with the training image. Numerical flow simulation for each stochastic realization provides the basis for analyzing the effects of geologic uncertainty on simulated hydraulic response. The first case study is a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. The SNESIM algorithm is used to stochastically model geologic heterogeneity conditioned to the mapped surface geology as well as vertical drill-hole data. Numerical simulation of groundwater flow and contaminant transport through geologic models produces a distribution of hydraulic responses and contaminant concentration results. From this distribution of results, the probability of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary. The second case study considers a characteristic lava-flow aquifer system in Pahute Mesa, Nevada. A 3D training image is developed by using object-based simulation of parametric shapes to represent the key morphologic features of rhyolite lava flows embedded within ash-flow tuffs. In addition to vertical drill-hole data, transient pressure head data from aquifer tests can be used to constrain the stochastic model outcomes. The use of both static and dynamic conditioning data allows the identification of potential geologic structures that control hydraulic response. These case studies demonstrate the flexibility of the multiple-point geostatistics approach for considering multiple types of data and for developing sophisticated models of geologic heterogeneities that can be incorporated into numerical flow simulations.

  9. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations

    NASA Astrophysics Data System (ADS)

    Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong

    2018-04-01

    The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.

  10. Composition and Realization of Source-to-Sink High-Performance Flows: File Systems, Storage, Hosts, LAN and WAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase Qishi

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. To support such capabilities, significant progress has been made in various components including the deployment of 100 Gbps networks with future 1 Tbps bandwidth, increases in end-host capabilities with multiple cores and buses, capacity improvements in large disk arrays, and deployment of parallel file systems such as Lustre and GPFS. High-performance source-to-sink datamore » flows must be composed of these component systems, which requires significant optimizations of the storage-to-host data and execution paths to match the edge and long-haul network connections. In particular, end systems are currently supported by 10-40 Gbps Network Interface Cards (NIC) and 8-32 Gbps storage Host Channel Adapters (HCAs), which carry the individual flows that collectively must reach network speeds of 100 Gbps and higher. Indeed, such data flows must be synthesized using multicore, multibus hosts connected to high-performance storage systems on one side and to the network on the other side. Current experimental results show that the constituent flows must be optimally composed and preserved from storage systems, across the hosts and the networks with minimal interference. Furthermore, such a capability must be made available transparently to the science users without placing undue demands on them to account for the details of underlying systems and networks. And, this task is expected to become even more complex in the future due to the increasing sophistication of hosts, storage systems, and networks that constitute the high-performance flows. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align and transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections. These solutions will be tested using (1) 100 Gbps connection(s) between Oak Ridge National Laboratory (ORNL) and Argonne National Laboratory (ANL) with storage systems supported by Lustre and GPFS file systems with an asymmetric connection to University of Memphis (UM); (2) ORNL testbed with multicore and multibus hosts, switches with OpenFlow capabilities, and network emulators; and (3) 100 Gbps connections from ESnet and their Openflow testbed, and other experimental connections. This proposal brings together the expertise and facilities of the two national laboratories, ORNL and ANL, and UM. It also represents a collaboration between DOE and the Department of Defense (DOD) projects at ORNL by sharing technical expertise and personnel costs, and leveraging the existing DOD Extreme Scale Systems Center (ESSC) facilities at ORNL.« less

  11. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the flow system, ground water flows through zones of high transmissivity that have resulted from regional faulting and fracturing. The conceptual model of the Death Valley regional ground-water flow system used for this study is adapted from the two previous ground-water modeling studies. The three-dimensional digital hydrogeologic framework model developed for the region also contains elements of both of the hydrogeologic framework models used in the previous investigations. As dictated by project scope, very little reinterpretation and refinement were made where these two framework models disagree; therefore, limitations in the hydrogeologic representation of the flow system exist. Despite limitations, the framework model provides the best representation to date of the hydrogeologic units and structures that control regional ground-water flow and serves as an important information source used to construct and calibrate the predevelopment, steady-state flow model. In addition to the hydrogeologic framework, a complex array of mechanisms accounts for flow into, through, and out of the regional ground-water flow system. Natural discharges from the regional ground-water flow system occur by evapotranspiration, springs, and subsurface outflow. In this study, evapotranspiration rates were adapted from a related investigation that developed maps of evapotranspiration areas and computed rates from micrometeorological data collected within the local area over a multiyear period. In some cases, historical spring flow records were used to derive ground-water discharge rates for isolated regional springs. For this investigation, a process-based, numerical model was developed to estimat

  12. Hierarchically nested river landform sequences

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Weber, M. D.; Brown, R. A.; Baig, D.

    2017-12-01

    River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In this study we developed, tested, and implemented a new way to create river classifications by mapping domains of fluvial processes with respect to the hierarchical organization of topographic complexity that drives fluvial dynamism. We tested this approach on flow convergence routing, a morphodynamic mechanism with different states depending on the structure of nondimensional topographic variability. Five nondimensional landform types with unique functionality (nozzle, wide bar, normal channel, constricted pool, and oversized) represent this process at any flow. When this typology is nested at base flow, bankfull, and floodprone scales it creates a system with up to 125 functional types. This shows how a single mechanism produces complex dynamism via nesting. Given the classification, we answered nine specific scientific questions to investigate the abundance, sequencing, and hierarchical nesting of these new landform types using a 35-km gravel/cobble river segment of the Yuba River in California. The nested structure of flow convergence routing landforms found in this study revealed that bankfull landforms are nested within specific floodprone valley landform types, and these types control bankfull morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in-channel, bankfull, and/or small flood flows. Such flows are too small to initiate widespread sediment transport in a gravel/cobble river with topographic complexity.

  13. Design for testability and diagnosis at the system-level

    NASA Technical Reports Server (NTRS)

    Simpson, William R.; Sheppard, John W.

    1993-01-01

    The growing complexity of full-scale systems has surpassed the capabilities of most simulation software to provide detailed models or gate-level failure analyses. The process of system-level diagnosis approaches the fault-isolation problem in a manner that differs significantly from the traditional and exhaustive failure mode search. System-level diagnosis is based on a functional representation of the system. For example, one can exercise one portion of a radar algorithm (the Fast Fourier Transform (FFT) function) by injecting several standard input patterns and comparing the results to standardized output results. An anomalous output would point to one of several items (including the FFT circuit) without specifying the gate or failure mode. For system-level repair, identifying an anomalous chip is sufficient. We describe here an information theoretic and dependency modeling approach that discards much of the detailed physical knowledge about the system and analyzes its information flow and functional interrelationships. The approach relies on group and flow associations and, as such, is hierarchical. Its hierarchical nature allows the approach to be applicable to any level of complexity and to any repair level. This approach has been incorporated in a product called STAMP (System Testability and Maintenance Program) which was developed and refined through more than 10 years of field-level applications to complex system diagnosis. The results have been outstanding, even spectacular in some cases. In this paper we describe system-level testability, system-level diagnoses, and the STAMP analysis approach, as well as a few STAMP applications.

  14. Communication in diagnostic radiology: meeting the challenges of complexity.

    PubMed

    Larson, David B; Froehle, Craig M; Johnson, Neil D; Towbin, Alexander J

    2014-11-01

    As patients and information flow through the imaging process, value is added step-by-step when information is acquired, interpreted, and communicated back to the referring clinician. However, radiology information systems are often plagued with communication errors and delays. This article presents theories and recommends strategies to continuously improve communication in the complex environment of modern radiology. Communication theories, methods, and systems that have proven their effectiveness in other environments can serve as models for radiology.

  15. Using steady-state equations for transient flow calculation in natural gas pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, R.N.; Zhou, P.

    1984-04-02

    Maddox and Zhou have extended their technique for calculating the unsteady-state behavior of straight gas pipelines to complex pipeline systems and networks. After developing the steady-state flow rate and pressure profile for each pipe in the network, analysts can perform the transient-state analysis in the real-time step-wise manner described for this technique.

  16. Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades.

    Treesearch

    A. Jefferson; G. Grant; T. Rose

    2006-01-01

    Spring systems on the west slope of the Oregon High Cascades exhibit complex relationships among modern topography, lava flow geometries, and groundwater flow patterns. Seven cold springs were continuously monitored for discharge and temperature in the 2004 water year, and they were periodically sampled for ?18O, ?D, tritium, and dissolved noble gases. Anomalously high...

  17. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    NASA Astrophysics Data System (ADS)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  18. The Development of the Multi-Center Traffic Management Advisor (MCTMA): Traffic Flow Management Research in a Multi-Facility Environment

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Davis, Thomas J.; Levin, Kerry M.; Rowe, Dennis W.

    2001-01-01

    The Traffic Management Advisor (TMA) is a decision-support tool for traffic managers and air traffic controllers that provides traffic flow visualization and other flow management tools. TMA creates an efficiently sequenced and safely spaced schedule for arrival traffic that meets but does not exceed specified airspace system constraints. TMA is being deployed at selected facilities throughout the National Airspace System in the US as part of the FAA's Free Flight Phase 1 program. TMA development and testing, and its current deployment, focuses on managing the arrival capacity for single major airports within single terminal areas and single en route centers. The next phase of development for this technology is the expansion of the TMA capability to complex facilities in which a terminal area or airport is fed by multiple en route centers, thus creating a multicenter TMA functionality. The focus of the multi-center TMA (McTMA) development is on the busy facilities in the Northeast comdor of the US. This paper describes the planning and development of McTMA and the challenges associated with adapting a successful traffic flow management tool for a very complex airspace.

  19. 'Complexity-compatible' policy for integrated care? Lessons from the implementation of Ontario's Health Links.

    PubMed

    Grudniewicz, Agnes; Tenbensel, Tim; Evans, Jenna M; Steele Gray, Carolyn; Baker, G Ross; Wodchis, Walter P

    2018-02-01

    Complex adaptive systems (CAS) theory views healthcare as numerous sub-systems characterized by diverse agents that interact, self-organize, and continuously adapt. We apply this complexity science perspective to examine the extent to which CAS theory is a useful lens for designing and implementing health policies. We present the case of Health Links, a "low rules" policy intervention in Ontario, Canada aimed at stimulating the development of voluntary networks of health and social organizations to improve care coordination for the most frequent users of the healthcare system. Our sample consisted of stakeholders from regional governance bodies and organizations partnering in Health Links. Qualitative interview data were coded using the key complexity concepts of sensemaking, self-organization, interconnections, coevolution, and emergence. We found that the complexity-compatible policy design successfully stimulated local dynamics of flexibility, experimentation, and learning and that important mediating factors include leadership, readiness, relationship-building, role clarity, communication, and resources. However, we saw tensions between preferences for flexibility and standardization. Desirable developments occurred only in some settings and failed to flow upward to higher levels, resulting in a piecemeal and patchy landscape. Attention needs to be paid not only to local dynamics and processes, but also to regional and provincial levels to ensure that learning flows to the top and informs decision-making. We conclude that implementation of complexity-compatible policies needs a balance between flexibility and consistency and the right leadership to coordinate the two. Complexity-compatible policy for integrated healthcare is more than simply 'letting a thousand flowers bloom'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mathematic modeling of complex aquifer: Evian Natural Mineral Water case study considering lumped and distributed models.

    NASA Astrophysics Data System (ADS)

    Henriot, abel; Blavoux, bernard; Travi, yves; Lachassagne, patrick; Beon, olivier; Dewandel, benoit; Ladouche, bernard

    2013-04-01

    The Evian Natural Mineral Water (NMW) aquifer is a highly heterogeneous Quaternary glacial deposits complex composed of three main units, from bottom to top: - The "Inferior Complex" mainly composed of basal and impermeable till lying on the Alpine rocks. It outcrops only at the higher altitudes but is known in depth through drilled holes. - The "Gavot Plateau Complex" is an interstratified complex of mainly basal and lateral till up to 400 m thick. It outcrops at heights above approximately 850 m a.m.s.l. and up to 1200 m a.m.s.l. over a 30 km² area. It is the main recharge area known for the hydromineral system. - The "Terminal Complex" from which the Evian NMW is emerging at 410 m a.m.s.l. It is composed of sand and gravel Kame terraces that allow water to flow from the deep "Gavot Plateau Complex" permeable layers to the "Terminal Complex". A thick and impermeable terminal till caps and seals the system. Aquifer is then confined at its downstream area. Because of heterogeneity and complexity of this hydrosystem, distributed modeling tools are difficult to implement at the whole system scale: important hypothesis would have to be made about geometry, hydraulic properties, boundary conditions for example and extrapolation would lead with no doubt to unacceptable errors. Consequently a modeling strategy is being developed and leads also to improve the conceptual model of the hydrosystem. Lumped models mainly based on tritium time series allow the whole hydrosystem to be modeled combining in series: an exponential model (superficial aquifers of the "Gavot Plateau Complex"), a dispersive model (Gavot Plateau interstratified complex) and a piston flow model (sand and gravel from the Kame terraces) respectively 8, 60 and 2.5 years of mean transit time. These models provide insight on the governing parameters for the whole mineral aquifer. They help improving the current conceptual model and are to be improved with other environmental tracers such as CFC, SF6. A deterministic approach (distributed model; flow and transport) is performed at the scale of the terminal complex. The geometry of the system is quite well known from drill holes and the aquifer properties from data processing of hydraulic heads and pumping tests interpretation. A multidisciplinary approach (hydrodynamic, hydrochemistry, geology, isotopes) for the recharge area (Gavot Plateau Complex) aims to provide better constraint for the upstream boundary of distributed model. More, perfect tracer modeling approach highly constrains fitting of this distributed model. The result is a high resolution conceptual model leading to a future operational management tool of the aquifer.

  1. National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application

    EPA Science Inventory

    Understanding the ways in which ecosystems provide flows of “services” to humans is critical for decision making in many contexts; however, relationships between natural and human systems are complex. A well-defined framework for classifying ecosystem services is essential for sy...

  2. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles, theory

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1979-01-01

    The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.

  3. A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh

    2011-10-01

    We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receivingmore » complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.« less

  4. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  5. ALGE3D: A Three-Dimensional Transport Model

    NASA Astrophysics Data System (ADS)

    Maze, G. M.

    2017-12-01

    Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.

  6. Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures

    NASA Astrophysics Data System (ADS)

    Guo, Wenzhang; Wang, Hao; Wu, Zhengping

    2018-03-01

    Most existing cascading failure mitigation strategy of power grids based on complex network ignores the impact of electrical characteristics on dynamic performance. In this paper, the robustness of the power grid under a power decentralization strategy is analysed through cascading failure simulation based on AC flow theory. The flow-sensitive (FS) centrality is introduced by integrating topological features and electrical properties to help determine the siting of the generation nodes. The simulation results of the IEEE-bus systems show that the flow-sensitive centrality method is a more stable and accurate approach and can enhance the robustness of the network remarkably. Through the study of the optimal flow-sensitive centrality selection for different networks, we find that the robustness of the network with obvious small-world effect depends more on contribution of the generation nodes detected by community structure, otherwise, contribution of the generation nodes with important influence on power flow is more critical. In addition, community structure plays a significant role in balancing the power flow distribution and further slowing the propagation of failures. These results are useful in power grid planning and cascading failure prevention.

  7. The mysteries of the diffusion region in asymmetric systems

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Aunai, N.; Zenitani, S.; Kuznetsova, M. M.; Birn, J.

    2013-12-01

    Unlike in symmetric systems, where symmetry dictates a comparatively simple structure of the reconnection region, asymmetric systems offer a surprising, much more complex, structure of the diffusion region. Beyond the well-known lack of colocation of flow stagnation and magnetic null, the physical mechanism underpinning the reconnection electric field also appears to be considerably more complex. In this presentation, we will perform a detailed analysis of the reconnection diffusion region in an asymmetric system. We will show that, unlike in symmetric systems, the immediate reconnection electric field is not given by electron pressure tensor nongyrotropies, but by electron inertial contributions. We will further discuss the role of pressure nongyrotropies, and we will study the origin of the complex structures of electron distributions in the central part of the diffusion region.

  8. Predicting System Accidents with Model Analysis During Hybrid Simulation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Fleming, Land D.; Throop, David R.

    2002-01-01

    Standard discrete event simulation is commonly used to identify system bottlenecks and starving and blocking conditions in resources and services. The CONFIG hybrid discrete/continuous simulation tool can simulate such conditions in combination with inputs external to the simulation. This provides a means for evaluating the vulnerability to system accidents of a system's design, operating procedures, and control software. System accidents are brought about by complex unexpected interactions among multiple system failures , faulty or misleading sensor data, and inappropriate responses of human operators or software. The flows of resource and product materials play a central role in the hazardous situations that may arise in fluid transport and processing systems. We describe the capabilities of CONFIG for simulation-time linear circuit analysis of fluid flows in the context of model-based hazard analysis. We focus on how CONFIG simulates the static stresses in systems of flow. Unlike other flow-related properties, static stresses (or static potentials) cannot be represented by a set of state equations. The distribution of static stresses is dependent on the specific history of operations performed on a system. We discuss the use of this type of information in hazard analysis of system designs.

  9. Evaluation of the hydrological flow paths in a gravel bed filter modeling a horizontal subsurface flow wetland by using a multi-tracer experiment.

    PubMed

    Birkigt, Jan; Stumpp, Christine; Małoszewski, Piotr; Nijenhuis, Ivonne

    2018-04-15

    In recent years, constructed wetland systems have become into focus as means of cost-efficient organic contaminant management. Wetland systems provide a highly reactive environment in which several removal pathways of organic chemicals may be present at the same time; however, specific elimination processes and hydraulic conditions are usually separately investigated and thus not fully understood. The flow system in a three dimensional pilot-scale horizontal subsurface constructed wetland was investigated applying a multi-tracer test combined with a mathematical model to evaluate the flow and transport processes. The results indicate the existence of a multiple flow system with two distinct flow paths through the gravel bed and a preferential flow at the bottom transporting 68% of tracer mass resulting from the inflow design of the model wetland system. There the removal of main contaminant chlorobenzene was up to 52% based on different calculation approaches. Determined retention times in the range of 22d to 32.5d the wetland has a heterogeneous flow pattern. Differences between simulated and measured tracer concentrations in the upper sediment indicate diffusion dominated processes due to stagnant water zones. The tracer study combining experimental evaluation with mathematical modeling demonstrated the complexity of flow and transport processes in the constructed wetlands which need to be taken into account during interpretation of the determining attenuation processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A dissipative particle dynamics method for arbitrarily complex geometries

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em

    2018-02-01

    Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its effectiveness is demonstrated by examining the rich dynamics of surfactant micelles, which are flowing around multiple small cylinders and stenotic regions in the microfluidic device without wall penetration. In addition to stationary arbitrary-shape objects, the new method is particularly useful for problems involving moving and deformable boundaries, because it only uses local information of neighboring particles and satisfies the desired boundary conditions on-the-fly.

  11. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less

  12. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less

  13. Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.

    1990-01-01

    The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

  14. Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.

    1991-01-01

    The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.

  15. Human life support during interplanetary travel and domicile. II - Generic Modular Flow Schematic modeling

    NASA Technical Reports Server (NTRS)

    Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.

    1991-01-01

    This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.

  16. Optimal power flow with optimal placement TCSC device on 500 kV Java-Bali electrical power system using genetic Algorithm-Taguchi method

    NASA Astrophysics Data System (ADS)

    Apribowo, Chico Hermanu Brillianto; Ibrahim, Muhammad Hamka; Wicaksono, F. X. Rian

    2018-02-01

    The growing burden of the load and the complexity of the power system has had an impact on the need for optimization of power system operation. Optimal power flow (OPF) with optimal location placement and rating of thyristor controlled series capacitor (TCSC) is an effective solution used to determine the economic cost of operating the plant and regulate the power flow in the power system. The purpose of this study is to minimize the total cost of generation by placing the location and the optimal rating of TCSC using genetic algorithm-design of experiment techniques (GA-DOE). Simulation on Java-Bali system 500 kV with the amount of TCSC used by 5 compensator, the proposed method can reduce the generation cost by 0.89% compared to OPF without using TCSC.

  17. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery.

    PubMed

    Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott

    2018-05-01

    The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.

  18. Automating Network Node Behavior Characterization by Mining Communication Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    Enterprise networks of scale are complex, dynamic computing environments that respond to evolv- ing business objectives and requirements. Characteriz- ing system behaviors in these environments is essential for network management and cyber security operations. Characterization of system’s communication is typical and is supported using network flow information (NetFlow). Related work has characterized behavior using theoretical graph metrics; results are often difficult to interpret by enterprise staff. We propose a different approach, where flow information is mapped to sets of tags that contextualize the data in terms of network principals and enterprise concepts. Frequent patterns are then extracted and are expressedmore » as behaviors. Behaviors can be com- pared, identifying systems expressing similar behaviors. We evaluate the approach using flow information collected by a third party.« less

  19. A wireless monitoring system for Hydrocephalus shunts.

    PubMed

    Narayanaswamy, A; Nourani, M; Tamil, L; Bianco, S

    2015-08-01

    Patients with Hydrocephalus are usually treated by diverting the excess Cerebrospinal Fluid (CSF) to other parts of the body using shunts. More than 40 percentage of shunts implanted fail within the first two years. Obstruction in the shunts is one of the major causes of failure (45 percent) and the detection of obstruction reduces the complexity of the revision surgery. This paper describes a proposed wireless monitoring system for clog detection and flow measurement in shunts. A prototype was built using multiple pressure sensors along the shunt catheters for sensing the location of clog and flow rate. Regular monitoring of flow rates can be used to adjust the valve in the shunt to prevent over drainage or under drainage of CSF. The accuracy of the flow measurement is more than 90 percent.

  20. On the application of Chimera/unstructured hybrid grids for conjugate heat transfer

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1995-01-01

    A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.

  1. Inferred flows of electric currents in solar active regions

    NASA Technical Reports Server (NTRS)

    Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.

    1985-01-01

    Techniques to identify sources of major current systems in active regions and their channels of flow are explored. Measured photospheric vector magnetic fields together with high resolution white light and H-alpha photographs provide the data base to derive the current systems in the photosphere and chromosphere of a solar active region. Simple mathematical constructions of active region fields and currents are used to interpret these data under the assumptions that the fields in the lower atmosphere (below 200 km) may not be force free but those in the chromosphere and higher are. The results obtained for the complex active region AR 2372 are: (1) Spots exhibiting significant spiral structure in the penumbral filaments were the source of vertical currents at the photospheric surface; (2) Magnetic neutral lines where the transverse magnetic field was strongly sheared were channels along which a strong current system flowed; (3) The inferred current systems produced a neutral sheet and oppositely-flowing currents in the area of the magnetic delta configuration that was the site of flaring.

  2. Application of material flow analysis to estimate the efficiency of e-waste management systems: the case of Lithuania.

    PubMed

    Gurauskiene, Inga; Stasiskiene, Zaneta

    2011-07-01

    Electrical and electronic equipment (EEE) has penetrated everyday life. The EEE industry is characterized by a rapid technological change which in turn prompts consumers to replace EEE in order to keep in step with innovations. These factors reduce an EEE life span and determine the exponential growth of the amount of obsolete EEE as well as EEE waste (e-waste). E-waste management systems implemented in countries of the European Union (EU) are not able to cope with the e-waste problem properly, especially in the new EU member countries. The analysis of particular e-waste management systems is essential in evaluation of the complexity of these systems, describing and quantifying the flows of goods throughout the system, and all the actors involved in it. The aim of this paper is to present the research on the regional agent based material flow analysis in e-waste management systems, as a measure to reveal the potential points for improvement. Material flow analysis has been performed as a flow of goods (EEE). The study has shown that agent-based EEE flow analysis incorporating a holistic and life cycle thinking approach in national e-waste management systems gives a broader view to the system than a common administrative one used to cover. It helps to evaluate the real efficiency of e-waste management systems and to identify relevant impact factors determining the current operation of the system.

  3. Computation of steady and unsteady quasi-one-dimensional viscous/inviscid interacting internal flows at subsonic, transonic, and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence

    1992-01-01

    Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.

  4. Hypersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen; Ryan, James S.

    1987-01-01

    While the zonal grid system of Transonic Navier-Stokes (TNS) provides excellent modeling of complex geometries, improved shock capturing, and a higher Mach number range will be required if flows about hypersonic aircraft are to be modeled accurately. A computational fluid dynamics (CFD) code, the Compressible Navier-Stokes (CNS), is under development to combine the required high Mach number capability with the existing TNS geometry capability. One of several candidate flow solvers for inclusion in the CNS is that of F3D. This upwinding flow solver promises improved shock capturing, and more accurate hypersonic solutions overall, compared to the solver currently used in TNS.

  5. 3D-printed devices for continuous-flow organic chemistry

    PubMed Central

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J

    2013-01-01

    Summary We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products. PMID:23766811

  6. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  7. Computational Systems for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Soni, Bharat; Haupt, Tomasz; Koomullil, Roy; Luke, Edward; Thompson, David

    2002-01-01

    In this paper, we briefly describe our efforts to develop complex simulation systems. We focus first on four key infrastructure items: enterprise computational services, simulation synthesis, geometry modeling and mesh generation, and a fluid flow solver for arbitrary meshes. We conclude by presenting three diverse applications developed using these technologies.

  8. Ryan King | NREL

    Science.gov Websites

    research focuses on optimization and machine learning applied to complex energy systems and turbulent flows techniques to improve wind plant design and controls and developed a new data-driven machine learning closure

  9. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    PubMed

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  10. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.

    PubMed

    Joyner, Michael J; Casey, Darren P

    2015-04-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. Copyright © 2015 the American Physiological Society.

  11. Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs

    PubMed Central

    Joyner, Michael J.; Casey, Darren P.

    2015-01-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. PMID:25834232

  12. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  13. Extended shortest path selection for package routing of complex networks

    NASA Astrophysics Data System (ADS)

    Ye, Fan; Zhang, Lei; Wang, Bing-Hong; Liu, Lu; Zhang, Xing-Yi

    The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.

  14. Disposable and removable nucleic acid extraction and purification cartridges for automated flow-through systems

    DOEpatents

    Regan, John Frederick

    2014-09-09

    Removable cartridges are used on automated flow-through systems for the purpose of extracting and purifying genetic material from complex matrices. Different types of cartridges are paired with specific automated protocols to concentrate, extract, and purifying pathogenic or human genetic material. Their flow-through nature allows large quantities sample to be processed. Matrices may be filtered using size exclusion and/or affinity filters to concentrate the pathogen of interest. Lysed material is ultimately passed through a filter to remove the insoluble material before the soluble genetic material is delivered past a silica-like membrane that binds the genetic material, where it is washed, dried, and eluted. Cartridges are inserted into the housing areas of flow-through automated instruments, which are equipped with sensors to ensure proper placement and usage of the cartridges. Properly inserted cartridges create fluid- and air-tight seals with the flow lines of an automated instrument.

  15. Co-evolution and thresholds in arid floodplain wetland ecosystems.

    NASA Astrophysics Data System (ADS)

    Sandi, Steven; Rodriguez, Jose; Riccardi, Gerardo; Wen, Li; Saintilan, Neil

    2017-04-01

    Vegetation in arid floodplain wetlands consist of water dependent and flood tolerant species that rely on periodical floods in order to maintain healthy conditions. The floodplain often consist of a complex system of marshes, swamps and lagoons interconnected by a network of streams and poorly defined rills. Over time, feedbacks develop between vegetation and flow paths producing areas of flow obstruction and flow concentration, which combined with depositional and erosional process lead to a continuous change on the position and characteristics of inundation areas. This coevolution of flow paths and vegetation can reach a threshold that triggers major channel transformations and abandonment of wetland areas, in a process that is irreversible. The Macquarie Marshes is a floodplain wetland complex in the semi-arid region of north western NSW, Australia. The site is characterised by a low-gradient topography that leads to channel breakdown processes where the river network becomes practically non-existent and the flow extends over large areas of wetland that later re-join and reform channels exiting the system. Due to a combination of climatic and anthropogenic pressures, the wetland ecosystem in the Macquarie Marshes has deteriorated over the past few decades. This has been linked to decreasing inundation frequencies and extent, with whole areas of flood dependent species such as Water Couch and Common Reed undergoing complete succession to terrestrial species and dryland. In this presentation we provide an overview of an ecogeomorphological model that we have developed in order to simulate the complex dynamics of the marshes. The model combines hydrodynamic, vegetation and channel evolution modules. We focus on the vegetation component of the model and the transitional rules to predict wetland invasion by terrestrial vegetation.

  16. Capture zone of a multi-well system in bounded peninsula-shaped aquifers.

    PubMed

    Zarei-Doudeji, Somayeh; Samani, Nozar

    2014-08-01

    In this paper we present the equation of capture zone for multi-well system in peninsula-shaped confined and unconfined aquifers. The aquifer is rectangular in plan view, bounded along three sides, and extends to infinity at the fourth side. The bounding boundaries are either no-flow (impervious) or in-flow (constant head) so that aquifers with six possible boundary configurations are formed. The well system is consisted of any number of extraction or injection wells or combination of both with any flow rates. The complex velocity potential equations for such a well-aquifer system are derived to delineate the capture envelop. Solutions are provided for the aquifers with and without a uniform regional flow of any directions. The presented equations are of general character and have no limitations in terms of well numbers, positions and types, extraction/injection rate, and regional flow rate and direction. These solutions are presented in form of capture type curves which are useful tools in hands of practitioners to design in-situ groundwater remediation systems, to contain contaminant plumes, to evaluate the surface-subsurface water interaction and to verify numerical models. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dual-plane ultrasound flow measurements in liquid metals

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  18. Visualization of Flow Alternatives, Lower Missouri River

    USGS Publications Warehouse

    Jacobson, Robert B.; Heuser, Jeanne

    2002-01-01

    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  19. A Density Perturbation Method to Study the Eigenstructure of Two-Phase Flow Equation Systems

    NASA Astrophysics Data System (ADS)

    Cortes, J.; Debussche, A.; Toumi, I.

    1998-12-01

    Many interesting and challenging physical mechanisms are concerned with the mathematical notion of eigenstructure. In two-fluid models, complex phasic interactions yield a complex eigenstructure which may raise numerous problems in numerical simulations. In this paper, we develop a perturbation method to examine the eigenvalues and eigenvectors of two-fluid models. This original method, based on the stiffness of the density ratio, provides a convenient tool to study the relevance of pressure momentum interactions and allows us to get precise approximations of the whole flow eigendecomposition for minor requirements. Roe scheme is successfully implemented and some numerical tests are presented.

  20. A Finite Layer Formulation for Groundwater Flow to Horizontal Wells.

    PubMed

    Xu, Jin; Wang, Xudong

    2016-09-01

    A finite layer approach for the general problem of three-dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three-layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems. © 2016, National Ground Water Association.

  1. Application of GIS and Visualization Technology in the Regional-Scale Ground-Water Modeling of the Twentynine Palms and San Jose Areas, California

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2003-12-01

    Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ­¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also helped to identify the temporal changes induced by human activities, such as pumping. For the San Jose area, a regional-scale ground-water/surface-water flow model was developed with 6 model layers, 360 monthly stress periods, and complex flow components. The model was visualized by creating animations for both hydraulic head and land subsidence. Cell-by-cell flow of individual flow components was also animated. These included simulated infiltration from climatically variable natural recharge, interlayer flow through multi-aquifer well bores, flow gains and losses along stream channels, and storage change in response to system recharge and discharge. These animations were used to examine consistency with other independent observations, such as measured water-level distribution, mapped gaining and losing stream reaches, and INSAR-interpreted subsidence and uplift. In addition, they revealed enormous detail on the spatial and temporal variation of both individual flow components as well as the entire flow system, and thus significantly increased understanding of system dynamics and improved the accuracy of model simulations.

  2. Thermosolutal convection in high-aspect-ratio enclosures

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chen, C. T.

    1988-01-01

    Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.

  3. A novel bridge scour monitoring and prediction system

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Michalis, Panagiotis; Zhang, Hanqing

    2015-04-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the use of a novel methodology is proposed for the prediction of bridge scour. Specifically, the use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation. Training of the system to new bridge geometries and flow conditions can be achieved by obtaining real time data, via novel electromagnetic sensors monitoring scour depth. Once the model is trained with data representative of the new system, bridge scour prediction can be performed for high/design flows or floods.

  4. Microfluidics to Mimic Blood Flow in Health and Disease

    NASA Astrophysics Data System (ADS)

    Sebastian, Bernhard; Dittrich, Petra S.

    2018-01-01

    Throughout history, capillary systems have aided the establishment of the fundamental laws of blood flow and its non-Newtonian properties. The advent of microfluidics technology in the 1990s propelled the development of highly integrated lab-on-a-chip platforms that allow highly accurate replication of vascular systems' dimensions, mechanical properties, and biological complexity. Applications include the detection of pathological changes to red blood cells, white blood cells, and platelets at unparalleled sensitivity and the efficacy assessment of drug treatment. Recent efforts have aimed at the development of microfluidics-based tests usable in a clinial environment or the replication of more complex diseases such as thrombosis. These microfluidic disease models enable the study of onset and progression of disease as well as the identification of key players and risk factors, which have led to a spectrum of clinically relevant findings.

  5. Mineralized and unmineralized calderas in Spain; Part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits

    USGS Publications Warehouse

    Rytuba, J.J.; Arribas, A.; Cunningham, C.G.; McKee, E.H.; Podwysocki, M.H.; Smith, James G.; Kelly, W.C.; Arribas, A.

    1990-01-01

    The Rodalquilar caldera complex is located in the western part of the Cabo de Gata volcanic field in southeastern Spain and is the first documented example of epithermal gold-alunite mineralization within a caldera in Europe. The Rodalquilar caldera is an oval collapse structure having a maximum diameter of 8 km and formed at 11 Ma from eruption of the Cinto ash-flow tuff. The oval Lomilla caldera, with a diameter of 2 km, is nested within the central resurgent dome of the older Rodalquilar caldera. The Lomilla caldera resulted from the eruption of the Lazaras ash-flow tuff which was ponded within the moat of the Rodalquilar caldera. The last phase of volcanic activity in the caldera complex was the emplacement of hornblende andesite flows and intrusions. This magmatic event resulted in structural doming of the caldera, opening of fractures and faults, and provided the heat source for the large hydrothermal systems which deposited quartz-alunite type gold deposits and base metal vein systems. The gold-alunite deposits are enclosed in areas of intense acid sulfate alteration and localized in ring and radial faults and fractures present in the east wall of the Lomilla caldera. Like other acid-sulfate type deposits, the Rodalquilar gold-alunite deposits are closely related in time and space to porphyritic, intermediate composition magma emplaced along caldera structures but unrelated to the caldera forming magmatic system. ?? 1990 Springer-Verlag.

  6. A novel rheo-optical device for studying complex fluids in a double shear plate geometry.

    PubMed

    Boitte, Jean-Baptiste; Vizcaïno, Claude; Benyahia, Lazhar; Herry, Jean-Marie; Michon, Camille; Hayert, Murielle

    2013-01-01

    A new rheo-optical shearing device was designed to investigate the structural evolution of complex material under shear flow. Seeking to keep the area under study constantly within the field of vision, it was conceived to produce shear flow by relying on the uniaxial translation of two parallel plates. The device features three modes of translation motion: step strain (0.02-320), constant shear rate (0.01-400 s(-1)), and oscillation (0.01-20 Hz) flow. Because the temperature is controlled by using a Peltier module coupled with a water cooling system, temperatures can range from 10 to 80 °C. The sample is loaded onto a user-friendly plate on which standard glasses can be attached with a depression vacuum pump. The principle innovation of the proposed rheo-optical shearing device lies in the fact that this suction system renders the microscopy glasses one with the plates, thereby ensuring their perfect planarity and parallelism. The gap width between the two plates can range from 0 to 5 mm. The device was designed to fit on any inverted confocal laser scanning microscope. In terms of controlled deformation, the conception and technical solutions achieve a high level of accuracy. Moreover, user-friendly software has been developed to control both shear flow parameters and temperature. The validation of specifications as well as the three modes of motion was carried out, first of all without a sample, and then by tracking fluorescent particles in a model system, in our case a micro-gel. Real values agreed well with those we targeted. In addition, an experiment with bread dough deformation under shear flow was initiated to gain some insight into the potential use of our device. These results show that the RheOptiCAD(®) promises to be a useful tool to better understand, from both a fundamental and an industrial point of view, the rheological behavior of the microstructure of complex fluids under controlled thermo-mechanical parameters in the case of food and non-food systems.

  7. A novel rheo-optical device for studying complex fluids in a double shear plate geometry

    NASA Astrophysics Data System (ADS)

    Boitte, Jean-Baptiste; Vizcaïno, Claude; Benyahia, Lazhar; Herry, Jean-Marie; Michon, Camille; Hayert, Murielle

    2013-01-01

    A new rheo-optical shearing device was designed to investigate the structural evolution of complex material under shear flow. Seeking to keep the area under study constantly within the field of vision, it was conceived to produce shear flow by relying on the uniaxial translation of two parallel plates. The device features three modes of translation motion: step strain (0.02-320), constant shear rate (0.01-400 s-1), and oscillation (0.01-20 Hz) flow. Because the temperature is controlled by using a Peltier module coupled with a water cooling system, temperatures can range from 10 to 80 °C. The sample is loaded onto a user-friendly plate on which standard glasses can be attached with a depression vacuum pump. The principle innovation of the proposed rheo-optical shearing device lies in the fact that this suction system renders the microscopy glasses one with the plates, thereby ensuring their perfect planarity and parallelism. The gap width between the two plates can range from 0 to 5 mm. The device was designed to fit on any inverted confocal laser scanning microscope. In terms of controlled deformation, the conception and technical solutions achieve a high level of accuracy. Moreover, user-friendly software has been developed to control both shear flow parameters and temperature. The validation of specifications as well as the three modes of motion was carried out, first of all without a sample, and then by tracking fluorescent particles in a model system, in our case a micro-gel. Real values agreed well with those we targeted. In addition, an experiment with bread dough deformation under shear flow was initiated to gain some insight into the potential use of our device. These results show that the RheOptiCAD® promises to be a useful tool to better understand, from both a fundamental and an industrial point of view, the rheological behavior of the microstructure of complex fluids under controlled thermo-mechanical parameters in the case of food and non-food systems.

  8. Integrated Analysis of Flow, Form, and Function for River Management and Design Testing

    NASA Astrophysics Data System (ADS)

    Lane, B. A. A.; Pasternack, G. B.; Sandoval Solis, S.

    2017-12-01

    Rivers are highly complex, dynamic systems that support numerous ecosystem functions including transporting sediment, modulating biogeochemical processes, and regulating habitat availability for native species. The extent and timing of these functions is largely controlled by the interplay of hydrologic dynamics (i.e. flow) and the shape and composition of the river corridor (i.e. form). This study applies synthetic channel design to the evaluation of river flow-form-function linkages, with the aim of evaluating these interactions across a range of flows and forms to inform process-driven management efforts with limited data and financial requirements. In an application to California's Mediterranean-montane streams, the interacting roles of channel form, water year type, and hydrologic impairment were evaluated across a suite of ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Channel form acted as the dominant control on hydrogeomorphic processes considered, while water year type controlled salmonid habitat functions. Streamflow alteration for hydropower increased redd dewatering risk and altered aquatic habitat availability and riparian recruitment dynamics. Study results highlight critical tradeoffs in ecosystem function performance and emphasize the significance of spatiotemporal diversity of flow and form at multiple scales for maintaining river ecosystem integrity. The approach is broadly applicable and extensible to other systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies.

  9. Investigating summer flow paths in a Dutch agricultural field using high frequency direct measurements

    NASA Astrophysics Data System (ADS)

    Delsman, J. R.; Waterloo, M. J.; Groen, M. M. A.; Groen, J.; Stuyfzand, P. J.

    2014-11-01

    The search for management strategies to cope with projected water scarcity and water quality deterioration calls for a better understanding of the complex interaction between groundwater and surface water in agricultural catchments. We separately measured flow routes to tile drains and an agricultural ditch in a deep polder in the coastal region of the Netherlands, characterized by exfiltration of brackish regional groundwater flow and intake of diverted river water for irrigation and water quality improvement purposes. We simultaneously measured discharge, electrical conductivity and temperature of these separate flow routes at hourly frequencies, disclosing the complex and time-varying patterns and origins of tile drain and ditch exfiltration. Tile drainage could be characterized as a shallow flow system, showing a non-linear response to groundwater level changes. Tile drainage was fed primarily by meteoric water, but still transported the majority (80%) of groundwater-derived salt to surface water. In contrast, deep brackish groundwater exfiltrating directly in the ditch responded linearly to groundwater level variations and is part of a regional groundwater flow system. We could explain the observed salinity of exfiltrating drain and ditch water from the interaction between the fast-responding pressure distribution in the subsurface that determined groundwater flow paths (wave celerity), and the slow-responding groundwater salinity distribution (water velocity). We found water demand for maintaining water levels and diluting salinity through flushing to greatly exceed the actual sprinkling demand. Counterintuitively, flushing demand was found to be largest during precipitation events, suggesting the possibility of water savings by operational flushing control.

  10. Effective control of complex turbulent dynamical systems through statistical functionals.

    PubMed

    Majda, Andrew J; Qi, Di

    2017-05-30

    Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shear turbulence. Control of flows in the transition to turbulence, where there is a small dimension of instabilities about a basic mean state, is an important and successful discipline. In complex turbulent dynamical systems, it is impossible to track and control the large dimension of instabilities, which strongly interact and exchange energy, and new control strategies are needed. The goal of this paper is to propose an effective statistical control strategy for complex turbulent dynamical systems based on a recent statistical energy principle and statistical linear response theory. We illustrate the potential practical efficiency and verify this effective statistical control strategy on the 40D Lorenz 1996 model in forcing regimes with various types of fully turbulent dynamics with nearly one-half of the phase space unstable.

  11. Funding California Schools: The Revenue Limit System

    ERIC Educational Resources Information Center

    Weston, Margaret

    2010-01-01

    Tax revenue flows to California's nearly 1,000 school districts through many different channels. According to the Governor's Committee on Education Excellence (2007), this system is so complex that the state cannot determine how revenues are distributed among school districts, and after reviewing a large number of academic studies in the Getting…

  12. Studies of Heat Transfer in Complex Internal Flows.

    DTIC Science & Technology

    1982-01-01

    D.C. 20362 (Tel 202-692-6874) Mr. Richard S. Carlton Director, Engines Division, Code 523 NC #4 Naval Sea Systems Command Washington, D.C. 20362...Walter Ritz Code 033C Naval Ships Systems Engineering Station Philadelphia, Pennsylvania 19112 (Tel. 215-755-3841) Dr. Simion Kuo United Tech. Res

  13. Radiation Hardness Assurance (RHA) for Small Missions

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2016-01-01

    Varied mission life and complexity is growing for small spacecraft. Small missions benefit from detailed hazard definition and evaluation as done in the past. Requirements need to flow from the system down to the parts level and aid system level radiation tolerance. RHA is highlighted with increasing COTS usage.

  14. 109. EAST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    109. EAST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751): TEMPERATURE, FLOW RATE, AND HUMIDITY MONITORING CONTROLS FOR SYSTEM 1 AND SYSTEM 2 AIR HANDLING - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 92. EAST WALL OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. EAST WALL OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770). TEMPERATURE, FLOW RATE, AND HUMIDITY MONITORING CONTROLS FOR SYSTEM 1 AND SYSTEM 2 AIR HANDLING. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Enhancing the Internet of Things Architecture with Flow Semantics

    ERIC Educational Resources Information Center

    DeSerranno, Allen Ronald

    2017-01-01

    Internet of Things ("IoT") systems are complex, asynchronous solutions often comprised of various software and hardware components developed in isolation of each other. These components function with different degrees of reliability and performance over an inherently unreliable network, the Internet. Many IoT systems are developed within…

  17. An improved large-field focusing schlieren system

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1991-01-01

    The analysis and performance of a high-brightness large-field focusing schlieren system is described. The system can be used to examine complex two- and three-dimensional flows. Techniques are described to obtain focusing schlieren through distorting optical elements, to use multiple colors in a time multiplexing technique, and to use diffuse screen holography for three-dimensional photographs.

  18. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  19. 3D Numerical simulation of bed morphological responses to complex in-streamstructures

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liu, X.

    2017-12-01

    In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.

  20. A coupled wave-hydrodynamic model of a highly frictional atoll reef system: mechanisms for flow, connectivity, and ecological implications

    NASA Astrophysics Data System (ADS)

    Rogers, J.; Monismith, S. G.; Fringer, O. B.; Koweek, D.; Dunbar, R. B.

    2016-12-01

    We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. While high mean flow and travel time less than 20 hours appears to differentiate very productive coral regions, low temperature and moderate wave stress appear to be the most ideal conditions for high coral cover on Palmyra.

  1. Investigating accident causation through information network modelling.

    PubMed

    Griffin, T G C; Young, M S; Stanton, N A

    2010-02-01

    Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.

  2. Rheoencephalographic (REG) Assessment of Head and Neck Cooling for use with Multiple Sclerosis Patients

    NASA Technical Reports Server (NTRS)

    Montogomery, Leslie D.; Ku, Yu-Tsuan E.; Webbon, Bruce W. (Technical Monitor)

    1995-01-01

    We have prepared a computer program (RHEOSYS:RHEOencephalographic impedance trace scanning SyStem) that can be used to automate the analysis of segmental impedance blood flow waveforms. This program was developed to assist in the post test analysis of recorded impedance traces from multiple segments of the body. It incorporates many of the blood flow, segmental volume, and vascular state indices reported in the world literature. As it is currently programmed, seven points are selected from each blood flow pulse and associated ECG waveforrn: 1. peak of the first ECG QRS complex, 2. start of systolic slope on the blood flow trace, 3. maximum amplitude of the impedance pulse, 4. position of the dicrotic notch, 5. maximum amplitude of the postdicrotic segment, 6. peak of the second ECG QRS complex, and 7. start of the next blood flow pulse. These points we used to calculate various geometric, area, and time-related values associated with the impedance pulse morphology. RHEOSYS then calculates a series of 34 impedance and cardiac cycle parameters which include pulse amplitudes; areas; pulse propagation times; cardiac cycle times; and various measures of arterial and various tone, contractility, and pulse volume. We used this program to calculate the scalp and intracranial blood flow responses to head and neck cooling as it may be applied to lower the body temperatures of multiple sclerosis patients. Twelve women and twelve men were tested using a commercially available head and neck cooling system operated at its maximum cooling capacity for a period of 30 minutes. Head and neck cooling produced a transient change in scalp blood flow and a significant, (P<0.05) decrease of approx. 30% in intracranial blood flow. Results of this experiment will illustrate how REG and RHEOSYS can be used in biomedical applications.

  3. Solute transport with equilibrium aqueous complexation and either sorption or ion exchange: Simulation methodology and applications

    USGS Publications Warehouse

    Lewis, F.M.; Voss, C.I.; Rubin, J.

    1987-01-01

    Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.

  4. Parameter Optimization for Turbulent Reacting Flows Using Adjoints

    NASA Astrophysics Data System (ADS)

    Lapointe, Caelan; Hamlington, Peter E.

    2017-11-01

    The formulation of a new adjoint solver for topology optimization of turbulent reacting flows is presented. This solver provides novel configurations (e.g., geometries and operating conditions) based on desired system outcomes (i.e., objective functions) for complex reacting flow problems of practical interest. For many such problems, it would be desirable to know optimal values of design parameters (e.g., physical dimensions, fuel-oxidizer ratios, and inflow-outflow conditions) prior to real-world manufacture and testing, which can be expensive, time-consuming, and dangerous. However, computational optimization of these problems is made difficult by the complexity of most reacting flows, necessitating the use of gradient-based optimization techniques in order to explore a wide design space at manageable computational cost. The adjoint method is an attractive way to obtain the required gradients, because the cost of the method is determined by the dimension of the objective function rather than the size of the design space. Here, the formulation of a novel solver is outlined that enables gradient-based parameter optimization of turbulent reacting flows using the discrete adjoint method. Initial results and an outlook for future research directions are provided.

  5. Coupling Network Computing Applications in Air-cooled Turbine Blades Optimization

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Yan, Peigang; Xie, Ming; Han, Wanjin

    2018-05-01

    Through establishing control parameters from blade outside to inside, the parametric design of air-cooled turbine blade based on airfoil has been implemented. On the basis of fast updating structure features and generating solid model, a complex cooling system has been created. Different flow units are modeled into a complex network topology with parallel and serial connection. Applying one-dimensional flow theory, programs have been composed to get pipeline network physical quantities along flow path, including flow rate, pressure, temperature and other parameters. These inner units parameters set as inner boundary conditions for external flow field calculation program HIT-3D by interpolation, thus to achieve full field thermal coupling simulation. Referring the studies in literatures to verify the effectiveness of pipeline network program and coupling algorithm. After that, on the basis of a modified design, and with the help of iSIGHT-FD, an optimization platform had been established. Through MIGA mechanism, the target of enhancing cooling efficiency has been reached, and the thermal stress has been effectively reduced. Research work in this paper has significance for rapid deploying the cooling structure design.

  6. Heat transfer simulation of unsteady swirling flow in a vortex tube

    NASA Astrophysics Data System (ADS)

    Veretennikov, S. V.; Piralishvili, Sh A.; Evdokimov, O. A.; Guryanov, A. I.

    2018-03-01

    Effectiveness of not-adiabatic vortex tube application in the cooling systems of gas turbine blades depends on characteristics of swirling flows formed in the energy separation chamber. An analysis of the flow structure in the vortex tube channels has shown a presence of a complex three-dimensional spiral vortex, formed under relatively high turbulence intensity and vortex core precession. This indicates the presence of a significant unsteady flow in the energy separation chamber of the vortex tube that has a great influence on convective heat transfer of the swirling flow to the inner surface of tube. The paper contains the results of investigation of gas dynamics and heat transfer in the vortex tube taking into account the flow unsteadiness.

  7. Application of CFD codes to the design and development of propulsion systems

    NASA Technical Reports Server (NTRS)

    Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.

    1987-01-01

    The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.

  8. Wind turbine wake measurement in complex terrain

    NASA Astrophysics Data System (ADS)

    Hansen, KS; Larsen, GC; Menke, R.; Vasiljevic, N.; Angelou, N.; Feng, J.; Zhu, WJ; Vignaroli, A.; W, W. Liu; Xu, C.; Shen, WZ

    2016-09-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology.

  9. Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.

    2017-01-01

    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.

  10. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    PubMed Central

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  11. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  12. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  13. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.

  14. Multigrid calculation of internal flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Smith, K. M.; Vanka, S. P.

    1992-01-01

    The development, validation, and application of a general purpose multigrid solution algorithm and computer program for the computation of elliptic flows in complex geometries is presented. This computer program combines several desirable features including a curvilinear coordinate system, collocated arrangement of the variables, and Full Multi-Grid/Full Approximation Scheme (FMG/FAS). Provisions are made for the inclusion of embedded obstacles and baffles inside the flow domain. The momentum and continuity equations are solved in a decoupled manner and a pressure corrective equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. Despite the computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence results in reduced overall CPU time. The numerical scheme and selected results of several validation flows are presented. Finally, the procedure is applied to study the flowfield in a side-inlet dump combustor and twin jet impingement from a simulated aircraft fuselage.

  15. Time-dependent limited penetrable visibility graph analysis of nonstationary time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong

    2017-06-01

    Recent years have witnessed the development of visibility graph theory, which allows us to analyze a time series from the perspective of complex network. We in this paper develop a novel time-dependent limited penetrable visibility graph (TDLPVG). Two examples using nonstationary time series from RR intervals and gas-liquid flows are provided to demonstrate the effectiveness of our approach. The results of the first example suggest that our TDLPVG method allows characterizing the time-varying behaviors and classifying heart states of healthy, congestive heart failure and atrial fibrillation from RR interval time series. For the second example, we infer TDLPVGs from gas-liquid flow signals and interestingly find that the deviation of node degree of TDLPVGs enables to effectively uncover the time-varying dynamical flow behaviors of gas-liquid slug and bubble flow patterns. All these results render our TDLPVG method particularly powerful for characterizing the time-varying features underlying realistic complex systems from time series.

  16. Complex traffic flow that allows as well as hampers lane-changing intrinsically contains social-dilemma structures

    NASA Astrophysics Data System (ADS)

    Iwamura, Yoshiro; Tanimoto, Jun

    2018-02-01

    To investigate an interesting question as to whether or not social dilemma structures can be found in a realistic traffic flow reproduced by a model, we built a new microscopic model in which an intentional driver may try lane-changing to go in front of other vehicles and may hamper others’ lane-changes. Our model consists of twofold parts; cellular automaton emulating a real traffic flow and evolutionary game theory to implement a driver’s decision making-process. Numerical results reveal that a social dilemma like the multi-player chicken game or prisoner’s dilemma game emerges depending on the traffic phase. This finding implies that a social dilemma, which has been investigated by applied mathematics so far, hides behind a traffic flow, which has been explored by fluid dynamics. Highlight - Complex system of traffic flow with consideration of driver’s decision making process is concerned. - A new model dovetailing cellular automaton with game theory is established. - Statistical result from numerical simulations reveals a social dilemma structure underlying traffic flow. - The social dilemma is triggered by a driver’s egocentric actions of lane-changing and hampering other’s lane-change.

  17. Traffic flow theory and chaotic behavior

    DOT National Transportation Integrated Search

    1989-03-01

    Many commonly occurring natural systems are modeled with mathematical experessions and exhibit a certain stability. The inherent stability of these equations allows them to serve as the basis for engineering predictions. More complex models, such as ...

  18. GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA

    NASA Astrophysics Data System (ADS)

    Ren, Qinlong

    Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.

  19. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    NASA Astrophysics Data System (ADS)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are otherwise challenging to observe. The method could allow water managers to document spatiotemporal variation in PWSS flow patterns, critical for interrogating the distribution system to inform operation decision making or disaster response, optimize water supply and, monitor and enforce water rights.

  20. Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Ye, Qiang; Hu, Jing; Cheng, Ping; Ma, Zhiqi

    2015-11-01

    Trade-off between shunt current loss and pumping loss is a major challenge in the design of the electrolyte piping network in a flow battery system. It is generally recognized that longer and thinner ducts are beneficial to reduce shunt current but detrimental to minimize pumping power. Base on the developed analog circuit model and the flow network model, we make case studies of multi-stack vanadium flow battery piping systems and demonstrate that both shunt current and electrolyte flow resistance can be simultaneously minimized by using longer and thicker ducts in the piping network. However, extremely long and/or thick ducts lead to a bulky system and may be prohibited by the stack structure. Accordingly, the intrinsic design trade-off is between system efficiency and compactness. Since multi-stack configurations bring both flexibility and complexity to the design process, we perform systematic comparisons among representative piping system designs to illustrate the complicated trade-offs among numerous parameters including stack number, intra-stack channel resistance and inter-stack pipe resistance. As the final design depends on various technical and economical requirements, this paper aims to provide guidelines rather than solutions for designers to locate the optimal trade-off points according to their specific cases.

  1. Information flow and causality as rigorous notions ab initio

    NASA Astrophysics Data System (ADS)

    Liang, X. San

    2016-11-01

    Information flow or information transfer the widely applicable general physics notion can be rigorously derived from first principles, rather than axiomatically proposed as an ansatz. Its logical association with causality is firmly rooted in the dynamical system that lies beneath. The principle of nil causality that reads, an event is not causal to another if the evolution of the latter is independent of the former, which transfer entropy analysis and Granger causality test fail to verify in many situations, turns out to be a proven theorem here. Established in this study are the information flows among the components of time-discrete mappings and time-continuous dynamical systems, both deterministic and stochastic. They have been obtained explicitly in closed form, and put to applications with the benchmark systems such as the Kaplan-Yorke map, Rössler system, baker transformation, Hénon map, and stochastic potential flow. Besides unraveling the causal relations as expected from the respective systems, some of the applications show that the information flow structure underlying a complex trajectory pattern could be tractable. For linear systems, the resulting remarkably concise formula asserts analytically that causation implies correlation, while correlation does not imply causation, providing a mathematical basis for the long-standing philosophical debate over causation versus correlation.

  2. High-speed Particle Image Velocimetry Near Surfaces

    PubMed Central

    Lu, Louise; Sick, Volker

    2013-01-01

    Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (> 1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included. PMID:23851899

  3. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  4. Wind tunnel investigation of a high lift system with pneumatic flow control

    NASA Astrophysics Data System (ADS)

    Victor, Pricop Mihai; Mircea, Boscoianu; Daniel-Eugeniu, Crunteanu

    2016-06-01

    Next generation passenger aircrafts require more efficient high lift systems under size and mass constraints, to achieve more fuel efficiency. This can be obtained in various ways: to improve/maintain aerodynamic performance while simplifying the mechanical design of the high lift system going to a single slotted flap, to maintain complexity and improve the aerodynamics even more, etc. Laminar wings have less efficient leading edge high lift systems if any, requiring more performance from the trailing edge flap. Pulsed blowing active flow control (AFC) in the gap of single element flap is investigated for a relatively large model. A wind tunnel model, test campaign and results and conclusion are presented.

  5. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  6. An Initial Multi-Domain Modeling of an Actively Cooled Structure

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur

    1997-01-01

    A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.

  7. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  8. Emergence of Life-Like Properties from Dissipative Self-Assembly of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Ozgun; Tokel, Onur; Pavlov, Ihor; Gulseren, Oguz; Ilday, F. Omer

    A profoundly fundamental question at the interface between physics and biology remains open: What are the minimum requirements for emergence of life-like properties from non-living systems? Here, we address this question and report emergent complex behavior of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: The system is driven far from equilibrium by ultrafast laser pulses, which create spatiotemporal temperature gradients, inducing Marangoni-type flow that drags the particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between the flow, the aggregate, and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behavior, analogous to those commonly seen in living organisms, emerges, whereby the aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise of only one pattern or bifurcated patterns can co-exist, compete, survive or die.

  9. A practical model for pressure probe system response estimation (with review of existing models)

    NASA Astrophysics Data System (ADS)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  10. Emergence of criticality in the transportation passenger flow: scaling and renormalization in the Seoul bus system.

    PubMed

    Goh, Segun; Lee, Keumsook; Choi, Moo Young; Fortin, Jean-Yves

    2014-01-01

    Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) "block stop" and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.

  11. Emergence of Criticality in the Transportation Passenger Flow: Scaling and Renormalization in the Seoul Bus System

    PubMed Central

    Goh, Segun; Lee, Keumsook; Choi, MooYoung; Fortin, Jean-Yves

    2014-01-01

    Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) “block stop” and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow. PMID:24599221

  12. Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Betterton, Meredith D.; Jhang, An-Sheng; Shelley, Michael J.

    2017-09-01

    We analyze one of the simplest active suspensions with complex dynamics: a suspension of immotile "extensor" particles that exert active extensile dipolar stresses on the fluid in which they are immersed. This is relevant to several experimental systems, such as recently studied tripartite rods that create extensile flows by consuming a chemical fuel. We first describe the system through a Doi-Onsager kinetic theory based on microscopic modeling. This theory captures the active stresses produced by the particles that can drive hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead to nematic alignment. This active nematic system yields complex flows and disclination defect dynamics very similar to phenomenological Landau-deGennes Q -tensor theories for active nematic fluids, as well as by more complex Doi-Onsager theories for polar microtubule-motor-protein systems. We apply the quasiequilibrium Bingham closure, used to study suspensions of passive microscopic rods, to develop a nonstandard Q -tensor theory. We demonstrate through simulation that this B Q -tensor theory gives an excellent analytical and statistical accounting of the suspension's complex dynamics, at a far reduced computational cost. Finally, we apply the B Q -tensor model to study the dynamics of extensor suspensions in circular and biconcave domains. In circular domains, we reproduce previous results for systems with weak nematic alignment, but for strong alignment we find unusual dynamics with activity-controlled defect production and absorption at the boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the width of the neck connecting the two disks is varied.

  13. A Mesoscale Model-Based Climatography of Nocturnal Boundary-Layer Characteristics over the Complex Terrain of North-Western Utah.

    PubMed

    Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C

    Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.

  14. An analysis code for the Rapid Engineering Estimation of Momentum and Energy Losses (REMEL)

    NASA Technical Reports Server (NTRS)

    Dechant, Lawrence J.

    1994-01-01

    Nonideal behavior has traditionally been modeled by defining efficiency (a comparison between actual and isentropic processes), and subsequent specification by empirical or heuristic methods. With the increasing complexity of aeropropulsion system designs, the reliability of these more traditional methods is uncertain. Computational fluid dynamics (CFD) and experimental methods can provide this information but are expensive in terms of human resources, cost, and time. This report discusses an alternative to empirical and CFD methods by applying classical analytical techniques and a simplified flow model to provide rapid engineering estimates of these losses based on steady, quasi-one-dimensional governing equations including viscous and heat transfer terms (estimated by Reynold's analogy). A preliminary verification of REMEL has been compared with full Navier-Stokes (FNS) and CFD boundary layer computations for several high-speed inlet and forebody designs. Current methods compare quite well with more complex method results and solutions compare very well with simple degenerate and asymptotic results such as Fanno flow, isentropic variable area flow, and a newly developed, combined variable area duct with friction flow solution. These solution comparisons may offer an alternative to transitional and CFD-intense methods for the rapid estimation of viscous and heat transfer losses in aeropropulsion systems.

  15. National Combustion Code Validated Against Lean Direct Injection Flow Field Data

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.

    2003-01-01

    Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics.

  16. Flow over Canopies with Complex Morphologies

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Ling, B.; Battiato, I.

    2017-12-01

    Quantifying and predicting how submerged vegetation affects the velocity profile of riverine systems is crucial in ecohydraulics to properly assess the water quality and ecological functions or rivers. The state of the art includes a plethora of models to study the flow and transport over submerged canopies. However, most of them are validated against data collected in flume experiments with rigid cylinders. With the objective of investigating the capability of a simple analytical solution for vegetated flow to reproduce and predict the velocity profile of complex shaped flexible canopies, we use the flow model proposed by Battiato and Rubol [WRR 2013] as the analytical approximation of the mean velocity profile above and within the canopy layer. This model has the advantages (i) to threat the canopy layer as a porous medium, whose geometrical properties are associated with macroscopic effective permeability and (ii) to use input parameters that can be estimated by remote sensing techniques, such us the heights of the water level and the canopy. The analytical expressions for the average velocity profile and the discharge are tested against data collected across a wide range of canopy morphologies commonly encountered in riverine systems, such as grasses, woody vegetation and bushes. Results indicate good agreement between the analytical expressions and the data for both simple and complex plant geometry shapes. The rescaled low submergence velocities in the canopy layer followed the same scaling found in arrays of rigid cylinders. In addition, for the dataset analyzed, the Darcy friction factor scaled with the inverse of the bulk Reynolds number multiplied by the ratio of the fluid to turbulent viscosity.

  17. Can nanotechnology help advance glaciological research?

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; McNew, C.; Wang, C.; McLaughlin, S.; Kocis, T. N.

    2017-12-01

    In a rapidly changing cryosphere, identifying sources, pathways, and residence times of snow and glacier meltwater is critical to developing improved understanding of watershed-stream connections and hydrological/glaciological melt models. Traditionally, glaciologists have used a variety of tracers, including chloride, microparticles, and dyes, to identify the structure and morphology of subglacial drainage systems. However, minimum detection limits, tracer expense, and the ability of watersheds to retain a memory of past tracer inputs have restricted both the scale of tracer application and the repeated or simultaneous use of most known tracers, thus limiting our ability to study complex glacial systems. These shortcomings in hydrologic tracers can be overcome by utilizing a tracer that allows for the unique identification between spatial and temporal inputs while maintaining identical transport characteristics. Here, we present the use of DNA-labeled nanoparticles, developed for nano-medicine and drug delivery, as environmental tracers. The DNA-labeled particle tracers consist of short DNA strands encapsulated within biodegradable polymer microspheres, which allow for repeatable production of numerous uniquely labelled tracers of pre-determined size and physical transport properties. Each batch of tracers are independently quantifiable; even a single DNA molecule can be detected with cost-effective quantitative polymerase chain reaction (qPCR). We have tested our tracer technology in complex systems such as valley glaciers in Sweden and Alaska and in both laboratory and field studies of channel flow, overland flow, and flow in porous media; these proof-of-concept studies indicate that nanotechnology allows for powerful characterization, description, and, ultimately, prediction of flow pathways in glacial systems and the environment.

  18. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    USGS Publications Warehouse

    Gosselin, D.C.; Harvey, F.E.; Frost, C.; Stotler, R.; Macfarlane, P.A.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist. ?? 2003 Elsevier Ltd. All rights reserved.

  19. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  20. An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback

    NASA Technical Reports Server (NTRS)

    Humphreys, William M, Jr.; Culliton, William G.

    2008-01-01

    Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.

  1. Flow effects in a vertical CVD reactor

    NASA Technical Reports Server (NTRS)

    Young, G. W.; Hariharan, S. I.; Carnahan, R.

    1992-01-01

    A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.

  2. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.

  3. Reverse osmosis water purification system

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  4. Multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Parker, J. C.

    1989-08-01

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.

  5. Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán

    2016-11-01

    Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.

  6. The characteristics of hydrogeochemical zonation of groundwater in inland plain

    NASA Astrophysics Data System (ADS)

    Xin-yu, HOU; Li-ting, XING; Yi, YANG; Wen-jing, ZHANG; Guang-yao, CHI

    2018-05-01

    To find out the hydrochemical zoning of groundwaterin the inland plain, taking Jiyang plain as an example, based on mathematical statistics, ion ratio coefficient and isotopic analysis method, the characteristics of water chemical composition and its zoning at different depths of 500m were studied. The result shows: ①The groundwater flow system in the study area can be divided into local flow system, intermediate flow system and regional flow system. ②The hydrochemical type of shallow groundwater is complex. The hydrochemical types of middle confined water are mainly ClṡSO4—MgṡNa and SO4ṡCl—NaṡMg. The deep confined water is mainly HCO3. ③The TDS of shallow groundwater increases gradually along the direction of groundwater flow. ④The shallow saltwater and freshwater are alternately distributed in horizontal direction, and saltwater is distributed sporadically in the interfluve area with sporadic punctate or banded, and hydrochemical types are mainly ClṡSO4—NaṡMgṡCa. Conclusion: Groundwater in the study area is affected by complicated hydrogeochemical action, mainly in the form of filtration, cation exchange and evaporation. The inland plain area is characterized by hydrogeochemical zonation in horizontal and vertical.

  7. Development of a flow system for studying biofilm formation on medical devices with microcalorimetry.

    PubMed

    Said, Jawal; Walker, Michael; Parsons, David; Stapleton, Paul; Beezer, Anthony E; Gaisford, Simon

    2015-04-01

    Isothermal microcalorimetry (IMC) is particularly suited to the study of microbiological samples in complex or heterogeneous environments because it does not require optical clarity of the sample and can detect metabolic activity from as few as 10(4) CFU/mL cells. While the use of IMC for studying planktonic cultures is well established, in the clinical environment bacteria are most likely to be present as biofilms. Biofilm prevention and eradication present a number of challenges to designers and users of medical devices and implants, since bacteria in biofilm colonies are usually more resistant to antimicrobial agents. Analytical tools that facilitate investigation of biofilm formation are therefore extremely useful. While it is possible to study pre-prepared biofilms in closed ampoules, better correlation with in vivo behaviour can be achieved using a system in which the bacterial suspension is flowing. Here, we discuss the potential of flow microcalorimetry for studying biofilms and report the development of a simple flow system that can be housed in a microcalorimeter. The use of the flow system is demonstrated with biofilms of Staphylococcus aureus. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Introduction to the internal fluid mechanics research session

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Povinelli, Louis A.

    1990-01-01

    Internal fluid mechanics research at LeRC is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The following three papers summarize ongoing work and indicate future emphasis in three major research thrusts: inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows. The underlying goal of the research in each of these areas is to bring internal computational fluid mechanic to a state of practical application for aerospace propulsion systems. Achievement of this goal requires that carefully planned and executed experiments be conducted in order to develop and validate useful codes. It is critical that numerical code development work and experimental work be closely coupled. The insights gained are represented by mathematical models that form the basis for code development. The resultant codes are then tested by comparing them with appropriate experiments in order to ensure their validity and determine their applicable range. The ultimate user community must be a part of this process to assure relevancy of the work and to hasten its practical application. Propulsion systems are characterized by highly complex and dynamic internal flows. Many complex, 3-D flow phenomena may be present, including unsteadiness, shocks, and chemical reactions. By focusing on specific portions of a propulsion system, it is often possible to identify the dominant phenomena that must be understood and modeled for obtaining accurate predictive capability. The three major research thrusts serve as a focus leading to greater understanding of the relevant physics and to an improvement in analytic tools. This in turn will hasten continued advancements in propulsion system performance and capability.

  9. Investigating the Performance of One- and Two-dimensional Flood Models in a Channelized River Network: A Case Study of the Obion River System

    NASA Astrophysics Data System (ADS)

    Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.

    2015-12-01

    Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.

  10. Assessing regional differences in nitrogen losses from U.S. dairy farms using the integrated farm systems model

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) enters and leaves a dairy production system through many pathways and in many forms: undergoing numerous transformations as it passes from feed to animal to milk or manure and back again. Due to the complexity of the dairy system, estimates of N flows and losses require the use of model...

  11. Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregs

    NASA Astrophysics Data System (ADS)

    Sorba, G.; Binetruy, C.; Syerko, E.; Leygue, A.; Comas-Cardona, S.; Belnoue, J. P.-H.; Nixon-Pearson, O. J.; Ivanov, D. S.; Hallett, S. R.; Advani, S. G.

    2018-05-01

    Consolidation is a crucial step in manufacturing of composite parts with prepregs because its role is to eliminate inter- and intra-ply gaps and porosity. Some thermoset prepreg systems are toughened with thermoplastic particles. Depending on their size, thermoplastic particles can be either located in between plies or distributed within the inter-fibre regions. When subjected to transverse compaction, resin will bleed out of low-viscosity unidirectional prepregs along the fibre direction, whereas one would expect transverse squeeze flow to dominate for higher viscosity prepregs. Recent experimental work showed that the consolidation of uncured toughened prepregs involves complex flow and deformation mechanisms where both bleeding and squeeze flow patterns are observed [1]. Micrographs of compacted and cured samples confirm these features as shown in Fig.1. A phenomenological model was proposed [2] where bleeding flow and squeeze flow are combined. A criterion for the transition from shear flow to resin bleeding was also proposed. However, the micrographs also reveal a resin rich layer between plies which may be contributing to the complex flow mechanisms during the consolidation process. In an effort to provide additional insight into these complex mechanisms, this work focuses on the 3D numerical modelling of the compaction of uncured toughened prepregs in the cross-ply configuration described in [1]. A transversely isotropic fluid model is used to describe the flow behaviour of the plies coupled with interplay resin flow of an isotropic fluid. The multi-scale flow model used is based on [3, 4]. A numerical parametric study is carried out where the resin viscosity, permeability and inter-ply thickness are varied to identify the role of important variables. The squeezing flow and the bleeding flow are compared for a range of process parameters to investigate the coupling and competition between the two flow mechanisms. Figure 4 shows the predicted displacement of the sample edge with the multi-scale compaction model after one time step [3]. The ply distortion and resin flow observed in Fig.1 is qualitatively retrieved by the computational model.

  12. Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals

    PubMed Central

    Matt, Dominik T.

    2017-01-01

    Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system. PMID:29065578

  13. Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals.

    PubMed

    Arcidiacono, Gabriele; Matt, Dominik T; Rauch, Erwin

    2017-01-01

    Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system.

  14. Axiomatic Design of a Framework for the Comprehensive Optimization of Patient Flows in Hospitals

    PubMed

    Arcidiacono, Gabriele; Matt, Dominik T.; Rauch, Erwin

    2017-01-01

    Lean Management and Six Sigma are nowadays applied not only to the manufacturing industry but also to service industry and public administration. The manifold variables affecting the Health Care system minimize the effect of a narrow Lean intervention. Therefore, this paper aims to discuss a comprehensive, system-based approach to achieve a factual holistic optimization of patient flows. This paper debates the efficacy of Lean principles applied to the optimization of patient flows and related activities, structures, and resources, developing a theoretical framework based on the principles of the Axiomatic Design. The demand for patient-oriented and efficient health services leads to use these methodologies to improve hospital processes. In the framework, patients with similar characteristics are clustered in families to achieve homogeneous flows through the value stream. An optimization checklist is outlined as the result of the mapping between Functional Requirements and Design Parameters, with the right sequence of the steps to optimize the patient flow according to the principles of Axiomatic Design. The Axiomatic Design-based top-down implementation of Health Care evidence, according to Lean principles, results in a holistic optimization of hospital patient flows, by reducing the complexity of the system. © 2017 Gabriele Arcidiacono et al.

  15. Customizable 3D Printed ‘Plug and Play’ Millifluidic Devices for Programmable Fluidics

    PubMed Central

    Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J.; Yoshida, Mari; Cronin, Leroy

    2015-01-01

    Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves. PMID:26558389

  16. Known Data Problems | ECHO | US EPA

    EPA Pesticide Factsheets

    EPA manages a series of national information systems that include data flowing from staff in EPA and state/tribal/local offices. Given this fairly complex set of transactions, occasional problems occur with the migration of data into the national systems. This page is meant to explain known data quality problems with larger sets of data.

  17. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    NASA Astrophysics Data System (ADS)

    Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.

  18. Computation of turbulent reacting flow in a solid-propellant ducted rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Y.; Chou, W.; Liu, S.

    1995-05-01

    A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined bymore » studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder`s ASM incorporated with Sarkar`s modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield. 36 refs.« less

  19. Close to real life. [solving for transonic flow about lifting airfoils using supercomputers

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Bailey, F. Ron

    1988-01-01

    NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.

  20. Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow

    NASA Astrophysics Data System (ADS)

    Aida-zade, K. R.; Ashrafova, E. R.

    2017-12-01

    An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.

  1. Revealing Adaptive Management of Environmental Flows

    NASA Astrophysics Data System (ADS)

    Allan, Catherine; Watts, Robyn J.

    2018-03-01

    Managers of land, water, and biodiversity are working with increasingly complex social ecological systems with high uncertainty. Adaptive management (learning from doing) is an ideal approach for working with this complexity. The competing social and environmental demands for water have prompted interest in freshwater adaptive management, but its success and uptake appear to be slow. Some of the perceived "failure" of adaptive management may reflect the way success is conceived and measured; learning, rarely used as an indicator of success, is narrowly defined when it is. In this paper, we document the process of adaptive flow management in the Edward-Wakool system in the southern Murray-Darling Basin, Australia. Data are from interviews with environmental water managers, document review, and the authors' structured reflection on their experiences of adaptive management and environmental flows. Substantial learning occurred in relation to the management of environmental flows in the Edward-Wakool system, with evidence found in planning documents, water-use reports, technical reports, stakeholder committee minutes, and refereed papers, while other evidence was anecdotal. Based on this case, we suggest it may be difficult for external observers to perceive the success of large adaptive management projects because evidence of learning is dispersed across multiple documents, and learning is not necessarily considered a measure of success. We suggest that documentation and sharing of new insights, and of the processes of learning, should be resourced to facilitate social learning within the water management sector, and to help demonstrate the successes of adaptive management.

  2. Revealing Adaptive Management of Environmental Flows.

    PubMed

    Allan, Catherine; Watts, Robyn J

    2018-03-01

    Managers of land, water, and biodiversity are working with increasingly complex social ecological systems with high uncertainty. Adaptive management (learning from doing) is an ideal approach for working with this complexity. The competing social and environmental demands for water have prompted interest in freshwater adaptive management, but its success and uptake appear to be slow. Some of the perceived "failure" of adaptive management may reflect the way success is conceived and measured; learning, rarely used as an indicator of success, is narrowly defined when it is. In this paper, we document the process of adaptive flow management in the Edward-Wakool system in the southern Murray-Darling Basin, Australia. Data are from interviews with environmental water managers, document review, and the authors' structured reflection on their experiences of adaptive management and environmental flows. Substantial learning occurred in relation to the management of environmental flows in the Edward-Wakool system, with evidence found in planning documents, water-use reports, technical reports, stakeholder committee minutes, and refereed papers, while other evidence was anecdotal. Based on this case, we suggest it may be difficult for external observers to perceive the success of large adaptive management projects because evidence of learning is dispersed across multiple documents, and learning is not necessarily considered a measure of success. We suggest that documentation and sharing of new insights, and of the processes of learning, should be resourced to facilitate social learning within the water management sector, and to help demonstrate the successes of adaptive management.

  3. A coupled wave-hydrodynamic model of an atoll with high friction: Mechanisms for flow, connectivity, and ecological implications

    NASA Astrophysics Data System (ADS)

    Rogers, Justin S.; Monismith, Stephen G.; Fringer, Oliver B.; Koweek, David A.; Dunbar, Robert B.

    2017-02-01

    We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. Moderate wave stress, short travel time (days since entering the reef system), and low temperature appear to be the most ideal conditions for high coral cover at this site.

  4. Effects of different boundary conditions on the simulation of groundwater flow in a multi-layered coastal aquifer system (Taranto Gulf, southern Italy)

    NASA Astrophysics Data System (ADS)

    De Filippis, Giovanna; Foglia, Laura; Giudici, Mauro; Mehl, Steffen; Margiotta, Stefano; Negri, Sergio L.

    2017-11-01

    The evaluation of the accuracy or reasonableness of numerical models of groundwater flow is a complex task, due to the uncertainties in hydrodynamic properties and boundary conditions and the scarcity of good-quality field data. To assess model reliability, different calibration techniques are joined to evaluate the effects of different kinds of boundary conditions on the groundwater flow in a coastal multi-layered aquifer in southern Italy. In particular, both direct and indirect approaches for inverse modeling were joined through the calibration of one of the most uncertain parameters, namely the hydraulic conductivity of the karst deep hydrostratigraphic unit. The methodology proposed here, and applied to a real case study, confirmed that the selection of boundary conditions is among the most critical and difficult aspects of the characterization of a groundwater system for conceptual analysis or numerical simulation. The practical tests conducted in this study show that incorrect specification of boundary conditions prevents an acceptable match between the model response to the hydraulic stresses and the behavior of the natural system. Such effects have a negative impact on the applicability of numerical modeling to simulate groundwater dynamics in complex hydrogeological situations. This is particularly important for management of the aquifer system investigated in this work, which represents the only available freshwater resource of the study area, and is threatened by overexploitation and saltwater intrusion.

  5. Assessment of the urban water system with an open ...

    EPA Pesticide Factsheets

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green infrastructure) to modify specific flows of urban water (e.g. drinking water, stormwater) that may have systemic effects. We have developed a general model that specifies the relationships among urban water system components, and a set of tools for evaluating the model for any city as the R package CityWaterBalance. CityWaterBalance provides a reproducible workflow for assessing urban water system(s) by facilitating the retrieval of open data, largely via web services, and analysis of these data using open-source R functions. It allows the user to 1) quickly assemble a quantitative, unified picture of flows thorough an urban area, and 2) easily change the spatial and temporal boundaries of analysis to match scales relevant to local decision-making. We used CityWaterBalance to evaluate the water system in the Chicago metropolitan area on a monthly basis for water years 2001-2010. Results, including the relative magnitudes and temporal variability of major water flows in greater Chicago, are used to consider 1) trade-offs associated with management alternatives for stormwater and combined sewer overflows and 2) the significance of future changes in precipitation, which is the largest

  6. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system

    PubMed Central

    Stevens, Richard C.; Soelberg, Scott D.; Near, Steve; Furlong, Clement E.

    2011-01-01

    Saliva provides a useful and non-invasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a 6-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/ml (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/ml (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrices. PMID:18656950

  7. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  8. Considerations on non equilibrium thermodynamics of interactions

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the ;first; engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  9. U.S. Geological Survey Groundwater Modeling Software: Making Sense of a Complex Natural Resource

    USGS Publications Warehouse

    Provost, Alden M.; Reilly, Thomas E.; Harbaugh, Arlen W.; Pollock, David W.

    2009-01-01

    Computer models of groundwater systems simulate the flow of groundwater, including water levels, and the transport of chemical constituents and thermal energy. Groundwater models afford hydrologists a framework on which to organize their knowledge and understanding of groundwater systems, and they provide insights water-resources managers need to plan effectively for future water demands. Building on decades of experience, the U.S. Geological Survey (USGS) continues to lead in the development and application of computer software that allows groundwater models to address scientific and management questions of increasing complexity.

  10. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    NASA Technical Reports Server (NTRS)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  11. Microfluidic Model Porous Media: Fabrication and Applications.

    PubMed

    Anbari, Alimohammad; Chien, Hung-Ta; Datta, Sujit S; Deng, Wen; Weitz, David A; Fan, Jing

    2018-05-01

    Complex fluid flow in porous media is ubiquitous in many natural and industrial processes. Direct visualization of the fluid structure and flow dynamics is critical for understanding and eventually manipulating these processes. However, the opacity of realistic porous media makes such visualization very challenging. Micromodels, microfluidic model porous media systems, have been developed to address this challenge. They provide a transparent interconnected porous network that enables the optical visualization of the complex fluid flow occurring inside at the pore scale. In this Review, the materials and fabrication methods to make micromodels, the main research activities that are conducted with micromodels and their applications in petroleum, geologic, and environmental engineering, as well as in the food and wood industries, are discussed. The potential applications of micromodels in other areas are also discussed and the key issues that should be addressed in the near future are proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  13. Schlieren photography on freely flying hawkmoth.

    PubMed

    Liu, Yun; Roll, Jesse; Van Kooten, Stephen; Deng, Xinyan

    2018-05-01

    The aerodynamic force on flying insects results from the vortical flow structures that vary both spatially and temporally throughout flight. Due to these complexities and the inherent difficulties in studying flying insects in a natural setting, a complete picture of the vortical flow has been difficult to obtain experimentally. In this paper, Schlieren , a widely used technique for highspeed flow visualization, was adapted to capture the vortex structures around freely flying hawkmoth ( Manduca ). Flow features such as leading-edge vortex, trailing-edge vortex, as well as the full vortex system in the wake were visualized directly. Quantification of the flow from the Schlieren images was then obtained by applying a physics-based optical flow method, extending the potential applications of the method to further studies of flying insects. © 2018 The Author(s).

  14. A calculation procedure for viscous flow in turbomachines, volume 2

    NASA Technical Reports Server (NTRS)

    Khalil, J.; Tabakoff, W.

    1980-01-01

    Turbulent flow within turbomachines having arbitrary blade geometries is examined. Effects of turbulence are modeled using two equations, one expressing the development of the turbulence kinetic energy and the other its dissipation rate. To account for complicated blade geometries, the flow equations are formulated in terms of a nonorthogonal boundary fitted coordinate system. The analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between the different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

  15. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  16. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems

    USGS Publications Warehouse

    O'Connor, Ben L.; Harvey, Judson W.

    2008-01-01

    Hyporheic exchange and biogeochemical reactions are difficult to quantify because of the range in fluid‐flow and sediment conditions inherent to streams, wetlands, and nearshore marine ecosystems. Field measurements of biogeochemical reactions in aquatic systems are impeded by the difficulty of measuring hyporheic flow simultaneously with chemical gradients in sediments. Simplified models of hyporheic exchange have been developed using Darcy's law generated by flow and bed topography at the sediment‐water interface. However, many modes of transport are potentially involved (molecular diffusion, bioturbation, advection, shear, bed mobility, and turbulence) with even simple models being difficult to apply in complex natural systems characterized by variable sediment sizes and irregular bed geometries. In this study, we synthesize information from published hyporheic exchange investigations to develop a scaling relationship for estimating mass transfer in near‐surface sediments across a range in fluid‐flow and sediment conditions. Net hyporheic exchange was quantified using an effective diffusion coefficient (De) that integrates all of the various transport processes that occur simultaneously in sediments, and dimensional analysis was used to scale De to shear stress velocity, roughness height, and permeability that describe fluid‐flow and sediment characteristics. We demonstrated the value of the derived scaling relationship by using it to quantify dissolved oxygen (DO) uptake rates on the basis of DO profiles in sediments and compared them to independent flux measurements. The results support a broad application of the De scaling relationship for quantifying coupled hyporheic exchange and biogeochemical reaction rates in streams and other aquatic ecosystems characterized by complex fluid‐flow and sediment conditions.

  17. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  18. Computational reacting gas dynamics

    NASA Technical Reports Server (NTRS)

    Lam, S. H.

    1993-01-01

    In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).

  19. Control of Electron Flow Direction in Photoexcited Cycloplatinated Complex Containing Conjugated Polymer-Single Walled Carbon Nanotube Hybrids.

    PubMed

    Xiong, Wenjuan; Du, Lili; Lo, Kin Cheung; Shi, Haiting; Takaya, Tomohisa; Iwata, Koichi; Chan, Wai Kin; Phillips, David Lee

    2018-06-25

    Conjugated polymers incorporated with cycloplatinated complexes (P1-Pt and P2-Pt) were used as dispersants for single walled carbon nanotubes (SWCNTs). Significant changes in the UV-vis absorption spectra were observed after the formation of the polymer/SWCNT hybrids. Molecular dynamics (MD) simulations revealed the presence of a strong interaction between the cycloplatinated complex moieties and the SWCNT surface. The photoinduced electron transfer processes in these hybrids were strongly dependent on the type of the comonomer unit. Upon photoexcitation, the excited P1-Pt donates electrons to the SWCNT, while P2-Pt accepts electrons from the photoexcited SWCNT. These observations were supported by results from Raman and femtosecond time-resolved transient absorption spectroscopy experiments. The strong electronic interaction between the Pt complexes and the SWCNT gives rise to a new hybrid system that has a controllable photo-induced electron transfer flow, which are important in regulating the charge transport processes SWCNT-based optoelectronic devices.

  20. NMRI Measurements of Flow of Granular Mixtures

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  1. Observations on Rotating Cavitation and Cavitation Surge from the Development of the Fastrac Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas F.

    2000-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac engine turbopump are discussed. Detailed observations acquired from the analysis of both water flow and liquid oxygen test data are offered in this paper. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a lumped-parameter hydraulic system model developed to better understand observed data is given.

  2. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  3. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems

    NASA Astrophysics Data System (ADS)

    Vijayamohan, Prithvi

    As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed in water. These experiments indicate that the partially dispersed systems tend to be problematic and are more severe cases with respect to flow assurance when compared to systems where the water is completely dispersed in oil. We have found that the partially dispersed systems are distinct, and are not an intermediate case between water dominated, and water-in-oil emulsified systems. Instead the experiments indicate that the hydrate formation and plugging mechanism for these systems are very complex. Hydrate growth is very rapid for such systems when compared to 100% water cut systems. The plugging mechanism for these systems is a combination of various phenomena (wall growth, agglomeration, bedding/settling, etc). Three different oils with different viscosities have been used to investigate the transportability of hydrates with respect to oil properties. The experiments indicate that the transportability of hydrates increases with increase in oil viscosity. The data from the tests performed provide the basis for a mechanistic model for hydrate formation and plugging in partially dispersed systems. It is found that in systems that were in stratified flow regime before hydrate onset, the hydrates eventually settled on the pipe walls thereby decreasing the flow area for the flow of fluids. In systems that were in the slug flow regime before hydrate formation, moving beds of hydrates were the main cause for plugging. In both the flow regimes, the systems studied entered a plugging regime beyond a certain hydrate concentration. This is termed as φplugging onset and can be used as an indicator to calculate the amount of hydrates that can be transported safely without requiring any additional treatment for a given set of flow characteristics. A correlation to calculate this hydrate concentration based on easily accessible parameters is developed in terms of flow characteristics and oil properties. The work performed in this thesis has enhanced the understanding of the hydrate plug mechanism in pipelines having high amounts of water. This work has also shown the effect of hydrate formation in different flow regimes thereby shedding light on the effects of hydrates on multiphase flow and vice versa. Lessons resulting from this work could be incorporated into flow assurance models, as well as operating company production strategies to reduce or mitigate hydrate plugging risks in complex multiphase systems.

  4. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  5. Scale-invariant cascades in turbulence and evolution

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas Ryan

    In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a separation of spatial or temporal scales can enhance selection pressure on parameters that only matter several generations down the line. Because of this, I conclude that the prime candidates for the emergence of novel evolutionary mechanisms are biofilms and things living in oscillating environments. Finally, in the problem of social organization, I show that different types of control hierarchies - leaders or communal decision making - can emerge depending on the relationship between the environment in which members of the social group act and the development and exchange of information.

  6. A three-dimensional analytical model to simulate groundwater flow during operation of recirculating wells

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Goltz, Mark N.

    2005-11-01

    The potential for using pairs of so-called horizontal flow treatment wells (HFTWs) to effect in situ capture and treatment of contaminated groundwater has recently been demonstrated. To apply this new technology, design engineers need to be able to simulate the relatively complex groundwater flow patterns that result from HFTW operation. In this work, a three-dimensional analytical solution for steady flow in a homogeneous, anisotropic, contaminated aquifer is developed to efficiently calculate the interflow of water circulating between a pair of HFTWs and map the spatial extent of contaminated groundwater flowing from upgradient that is captured. The solution is constructed by superposing the solutions for the flow fields resulting from operation of partially penetrating wells. The solution is used to investigate the flow resulting from operation of an HFTW well pair and to quantify how aquifer anisotropy, well placement, and pumping rate impact capture zone width and interflow. The analytical modeling method presented here provides a fast and accurate technique for representing the flow field resulting from operation of HFTW systems, and represents a tool that can be useful in designing in situ groundwater contamination treatment systems.

  7. The combustion program at CTR

    NASA Technical Reports Server (NTRS)

    Poinsot, Thierry J.

    1993-01-01

    Understanding and modeling of turbulent combustion are key problems in the computation of numerous practical systems. Because of the lack of analytical theories in this field and of the difficulty of performing precise experiments, direct numerical simulation (DNS) appears to be one of the most attractive tools to use in addressing this problem. The general objective of DNS of reacting flows is to improve our knowledge of turbulent combustion but also to use this information for turbulent combustion models. For the foreseeable future, numerical simulation of the full three-dimensional governing partial differential equations with variable density and transport properties as well as complex chemistry will remain intractable; thus, various levels of simplification will remain necessary. On one hand, the requirement to simplify is not necessarily a handicap: numerical simulations allow the researcher a degree of control in isolating specific physical phenomena that is inaccessible in experiments. CTR has pursued an intensive research program in the field of DNS for turbulent reacting flows since 1987. DNS of reacting flows is quite different from DNS of non-reacting flows: without reaction, the equations to solve are clearly the five conservation equations of the Navier Stokes system for compressible situations (four for incompressible cases), and the limitation of the approach is the Reynolds number (or in other words the number of points in the computation). For reacting flows, the choice of the equations, the species (each species will require one additional conservation equation), the chemical scheme, and the configuration itself is more complex.

  8. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors

    NASA Astrophysics Data System (ADS)

    Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick

    2010-08-01

    This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).

  9. Literature review relevant to particle erosion in complex geometries

    NASA Astrophysics Data System (ADS)

    Volent, Eirik; Dahlhaug, Ole Gunnar

    2018-06-01

    Erosion is a challenge in many industries where fluid is transferred through pipe and valve arrangements. Wear can occur in a variety of systems and is often related to the presents of droplets or solid particles in the fluid stream. Solid particles are in many cases present in hydropower systems, and can cause severe damage to system components. Flow conditions, particle size and concentration vary greatly and can thus cause a vast variety of damage, ranging from manageable wear to component failure. The following paper will present a summary of literature relevant to the prediction of erosion in complex geometries. The intention of the review is to investigate the current state of the art, directly relevant to the prediction of wear due to solid particle erosion in complex geometries.

  10. Wind Tunnel Seeding Systems for Laser Velocimeters

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Compiler); Nichols, C. E., Jr. (Compiler)

    1985-01-01

    The principal motivating factor for convening the Workshop on the Development and Application of Wind Tunnel Seeding Systems for Laser Velocimeters is the necessity to achieve efficient operation and, most importantly, to insure accurate measurements with velocimeter techniques. The ultimate accuracy of particle scattering based laser velocimeter measurements of wind tunnel flow fields depends on the ability of the scattering particle to faithfully track the local flow field in which it is embedded. A complex relationship exists between the particle motion and the local flow field. This relationship is dependent on particle size, size distribution, shape, and density. To quantify the accuracy of the velocimeter measurements of the flow field, the researcher has to know the scattering particle characteristics. In order to obtain optimum velocimeter measurements, the researcher is striving to achieve control of the particle characteristics and to verify those characteristics at the measurement point. Additionally, the researcher is attempting to achieve maximum measurement efficiency through control of particle concentration and location in the flow field.

  11. Network community-based model reduction for vortical flows

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan Meena, Muralikrishnan; Nair, Aditya G.; Taira, Kunihiko

    2018-06-01

    A network community-based reduced-order model is developed to capture key interactions among coherent structures in high-dimensional unsteady vortical flows. The present approach is data-inspired and founded on network-theoretic techniques to identify important vortical communities that are comprised of vortical elements that share similar dynamical behavior. The overall interaction-based physics of the high-dimensional flow field is distilled into the vortical community centroids, considerably reducing the system dimension. Taking advantage of these vortical interactions, the proposed methodology is applied to formulate reduced-order models for the inter-community dynamics of vortical flows, and predict lift and drag forces on bodies in wake flows. We demonstrate the capabilities of these models by accurately capturing the macroscopic dynamics of a collection of discrete point vortices, and the complex unsteady aerodynamic forces on a circular cylinder and an airfoil with a Gurney flap. The present formulation is found to be robust against simulated experimental noise and turbulence due to its integrating nature of the system reduction.

  12. Theoretical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.

  13. Complex adaptive systems: concept analysis.

    PubMed

    Holden, Lela M

    2005-12-01

    The aim of this paper is to explicate the concept of complex adaptive systems through an analysis that provides a description, antecedents, consequences, and a model case from the nursing and health care literature. Life is more than atoms and molecules--it is patterns of organization. Complexity science is the latest generation of systems thinking that investigates patterns and has emerged from the exploration of the subatomic world and quantum physics. A key component of complexity science is the concept of complex adaptive systems, and active research is found in many disciplines--from biology to economics to health care. However, the research and literature related to these appealing topics have generated confusion. A thorough explication of complex adaptive systems is needed. A modified application of the methods recommended by Walker and Avant for concept analysis was used. A complex adaptive system is a collection of individual agents with freedom to act in ways that are not always totally predictable and whose actions are interconnected. Examples include a colony of termites, the financial market, and a surgical team. It is often referred to as chaos theory, but the two are not the same. Chaos theory is actually a subset of complexity science. Complexity science offers a powerful new approach--beyond merely looking at clinical processes and the skills of healthcare professionals. The use of complex adaptive systems as a framework is increasing for a wide range of scientific applications, including nursing and healthcare management research. When nursing and other healthcare managers focus on increasing connections, diversity, and interactions they increase information flow and promote creative adaptation referred to as self-organization. Complexity science builds on the rich tradition in nursing that views patients and nursing care from a systems perspective.

  14. Non-contact flow gauging for the extension and development of rating curves

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves. The approach is suited to water management authorities throughout Europe who seek ever-increasingly cost-effective and non-invasive techniques for maximising the monitoring capabilities of their operational network.

  15. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  16. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    PubMed

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  17. Controller and interface module for the High-Speed Data Acquisition System correlator/accumulator

    NASA Technical Reports Server (NTRS)

    Brokl, S. S.

    1985-01-01

    One complex channel of the High-Speed Data Acquisition System (a subsystem used in the Goldstone solar system radar), consisting of two correlator modules and one accumulator module, is operated by the controller and interface module interfaces are provided to the VAX UNIBUS for computer control, monitor, and test of the controller and correlator/accumulator. The correlator and accumulator modules controlled by this module are the key digital signal processing elements of the Goldstone High-Speed Data Acquisition System. This fully programmable unit provides for a wide variety of correlation and filtering functions operating on a three megaword/second data flow. Data flow is to the VAX by way of the I/O port of a FPS 5210 array processor.

  18. Efficient calculation of open quantum system dynamics and time-resolved spectroscopy with distributed memory HEOM (DM-HEOM).

    PubMed

    Kramer, Tobias; Noack, Matthias; Reinefeld, Alexander; Rodríguez, Mirta; Zelinskyy, Yaroslav

    2018-06-11

    Time- and frequency-resolved optical signals provide insights into the properties of light-harvesting molecular complexes, including excitation energies, dipole strengths and orientations, as well as in the exciton energy flow through the complex. The hierarchical equations of motion (HEOM) provide a unifying theory, which allows one to study the combined effects of system-environment dissipation and non-Markovian memory without making restrictive assumptions about weak or strong couplings or separability of vibrational and electronic degrees of freedom. With increasing system size the exact solution of the open quantum system dynamics requires memory and compute resources beyond a single compute node. To overcome this barrier, we developed a scalable variant of HEOM. Our distributed memory HEOM, DM-HEOM, is a universal tool for open quantum system dynamics. It is used to accurately compute all experimentally accessible time- and frequency-resolved processes in light-harvesting molecular complexes with arbitrary system-environment couplings for a wide range of temperatures and complex sizes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  20. Lattice Boltzmann Modeling of Complex Flows for Engineering Applications

    NASA Astrophysics Data System (ADS)

    Montessori, Andrea; Falcucci, Giacomo

    2018-01-01

    Nature continuously presents a huge number of complex and multiscale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since the very first years of the third millennium, the Lattice Boltzmann method (LB) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LB, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. In this book, the authors present the most recent advances of the application of the LB to complex flow phenomena of scientific and technical interest with focus on the multiscale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

  1. Human performance cognitive-behavioral modeling: a benefit for occupational safety.

    PubMed

    Gore, Brian F

    2002-01-01

    Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.

  2. Human performance cognitive-behavioral modeling: a benefit for occupational safety

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2002-01-01

    Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.

  3. Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    1998-01-01

    Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations indicate that nearly 71% of the incoming water in the sediments leaves the accretionary wedge via diffuse flow out the seafloor, 0-5% escapes by focused flow along the de??collement, and roughly 1% is subducted. Copyright 1998 by the American Geophysical Union.

  4. Problems of Automation and Management Principles Information Flow in Manufacturing

    NASA Astrophysics Data System (ADS)

    Grigoryuk, E. N.; Bulkin, V. V.

    2017-07-01

    Automated control systems of technological processes are complex systems that are characterized by the presence of elements of the overall focus, the systemic nature of the implemented algorithms for the exchange and processing of information, as well as a large number of functional subsystems. The article gives examples of automatic control systems and automated control systems of technological processes held parallel between them by identifying strengths and weaknesses. Other proposed non-standard control system of technological process.

  5. Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river

    USGS Publications Warehouse

    Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.

    2010-01-01

    Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response thresholds, which are commonly driven by geomorphic thresholds or mediated by geomorphic processes, and the importance of spatial and temporal variation in the effects of flows on ecosystems, which can result from factors such as longitudinal complexity and ecohydrological feedbacks. ?? Published 2009.

  6. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  7. Numerical computation of complex multi-body Navier-Stokes flows with applications for the integrated Space Shuttle launch vehicle

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    1993-01-01

    An enhanced grid system for the Space Shuttle Orbiter was built by integrating CAD definitions from several sources and then generating the surface and volume grids. The new grid system contains geometric components not modeled previously plus significant enhancements on geometry that has been modeled in the old grid system. The new orbiter grids were then integrated with new grids for the rest of the launch vehicle. Enhancements were made to the hyperbolic grid generator HYPGEN and new tools for grid projection, manipulation, and modification, Cartesian box grid and far field grid generation and post-processing of flow solver data were developed.

  8. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianguo; Dou, Yue; Batistella, Mateus

    The world has become increasingly telecoupled through distant flows of information, energy, people, organisms, goods, and matter. Recent advances suggest that telecouplings such as trade and species invasion often generate spillover systems with profound effects. To untangle spillover complexity, we make the first attempt to develop a typology of spillover systems based on six criteria: flows from and to sending and receiving systems, distances from sending and receiving systems, types of spillover effects, sizes of spillover systems, roles of agents in spillover systems, and the origin of spillover systems. Furthermore, we highlight a portfolio of qualitative and quantitative methods formore » detecting the often-overlooked spillover systems. To effectively govern spillover systems for global sustainability, we also propose an overall goal (minimize negative and maximize positive spillover effects) and three general principles (fairness, responsibility, and capability).« less

  9. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability

    DOE PAGES

    Liu, Jianguo; Dou, Yue; Batistella, Mateus; ...

    2018-05-05

    The world has become increasingly telecoupled through distant flows of information, energy, people, organisms, goods, and matter. Recent advances suggest that telecouplings such as trade and species invasion often generate spillover systems with profound effects. To untangle spillover complexity, we make the first attempt to develop a typology of spillover systems based on six criteria: flows from and to sending and receiving systems, distances from sending and receiving systems, types of spillover effects, sizes of spillover systems, roles of agents in spillover systems, and the origin of spillover systems. Furthermore, we highlight a portfolio of qualitative and quantitative methods formore » detecting the often-overlooked spillover systems. To effectively govern spillover systems for global sustainability, we also propose an overall goal (minimize negative and maximize positive spillover effects) and three general principles (fairness, responsibility, and capability).« less

  10. Design and Experimental Study of an Over-Under TBCC Exhaust System.

    PubMed

    Mo, Jianwei; Xu, Jinglei; Zhang, Liuhuan

    2014-01-01

    Turbine-based combined-cycle (TBCC) propulsion systems have been a topic of research as a means for more efficient flight at supersonic and hypersonic speeds. The present study focuses on the fundamental physics of the complex flow in the TBCC exhaust system during the transition mode as the turbine exhaust is shut off and the ramjet exhaust is increased. A TBCC exhaust system was designed using methods of characteristics (MOC) and subjected to experimental and computational study. The main objectives of the study were: (1) to identify the interactions between the two exhaust jet streams during the transition mode phase and their effects on the whole flow-field structure; (2) to determine and verify the aerodynamic performance of the over-under TBCC exhaust nozzle; and (3) to validate the simulation ability of the computational fluid dynamics (CFD) software according to the experimental conditions. Static pressure taps and Schlieren apparatus were employed to obtain the wall pressure distributions and flow-field structures. Steady-state tests were performed with the ramjet nozzle cowl at six different positions at which the turbine flow path were half closed and fully opened, respectively. Methods of CFD were used to simulate the exhaust flow and they complemented the experimental study by providing greater insight into the details of the flow field and a means of verifying the experimental results. Results indicated that the flow structure was complicated because the two exhaust jet streams interacted with each other during the exhaust system mode transition. The exhaust system thrust coefficient varied from 0.9288 to 0.9657 during the process. The CFD simulation results agree well with the experimental data, which demonstrated that the CFD methods were effective in evaluating the aerodynamic performance of the TBCC exhaust system during the mode transition.

  11. Stability and sensitivity analysis of hypersonic flow past a blunt cone

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Cook, David; Brock, Joseph M.; Candler, Graham V.

    2017-11-01

    We investigate the effects of nosetip bluntness and low-level distributed roughness on instabilities leading to transition on a 7 degree half-angle blunt cone at Mach 10. To study the sensitivity of boundary layer instabilities to bluntness and roughness, we numerically extract Jacobian matrices directly from the unstructured hypersonic flow solver US3D. These matrices govern the dynamics of small perturbations about otherwise laminar base flows. We consider the frequency response of the resulting linearized dynamical system between different input and output locations along the cone, including close to the nosetip. Using adjoints, our method faithfully captures effects of complex geometry such as strong curvature and roughness that lead to flow acceleration and localized heating in this region. These effects violate the assumption of a slowly-varying base flow that underpins traditional linear stability analyses. We compare our results, which do not rely upon this assumption, to experimental measurements of a Mach 10 blunt cone taken at the AEDC Hypervelocity Ballistic Range G facility. In particular, we assess whether effects of complex geometry can explain discrepancies previously noted between traditional stability analysis and observations. This work is supported by the Office of Naval Research through Grant Number N00014-17-1-2496.

  12. Fractality of pulsatile flow in speckle images

    NASA Astrophysics Data System (ADS)

    Nemati, M.; Kenjeres, S.; Urbach, H. P.; Bhattacharya, N.

    2016-05-01

    The scattering of coherent light from a system with underlying flow can be used to yield essential information about dynamics of the process. In the case of pulsatile flow, there is a rapid change in the properties of the speckle images. This can be studied using the standard laser speckle contrast and also the fractality of images. In this paper, we report the results of experiments performed to study pulsatile flow with speckle images, under different experimental configurations to verify the robustness of the techniques for applications. In order to study flow under various levels of complexity, the measurements were done for three in-vitro phantoms and two in-vivo situations. The pumping mechanisms were varied ranging from mechanical pumps to the human heart for the in vivo case. The speckle images were analyzed using the techniques of fractal dimension and speckle contrast analysis. The results of these techniques for the various experimental scenarios were compared. The fractal dimension is a more sensitive measure to capture the complexity of the signal though it was observed that it is also extremely sensitive to the properties of the scattering medium and cannot recover the signal for thicker diffusers in comparison to speckle contrast.

  13. Simplifications for hydronic system models in modelica

    DOE PAGES

    Jorissen, F.; Wetter, M.; Helsen, L.

    2018-01-12

    Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less

  14. Biological system interactions.

    PubMed Central

    Adomian, G; Adomian, G E; Bellman, R E

    1984-01-01

    Mathematical modeling of cellular population growth, interconnected subsystems of the body, blood flow, and numerous other complex biological systems problems involves nonlinearities and generally randomness as well. Such problems have been dealt with by mathematical methods often changing the actual model to make it tractable. The method presented in this paper (and referenced works) allows much more physically realistic solutions. PMID:6585837

  15. Investigation of Biogrout processes by numerical analysis at pore scale

    NASA Astrophysics Data System (ADS)

    Bergwerff, Luke; van Paassen, Leon A.; Picioreanu, Cristian; van Loosdrecht, Mark C. M.

    2013-04-01

    Biogrout is a soil improving process that aims to improve the strength of sandy soils. The process is based on microbially induced calcite precipitation (MICP). In this study the main process is based on denitrification facilitated by bacteria indigenous to the soil using substrates, which can be derived from pretreated waste streams containing calcium salts of fatty acids and calcium nitrate, making it a cost effective and environmentally friendly process. The goal of this research is to improve the understanding of the process by numerical analysis so that it may be improved and applied properly for varying applications, such as borehole stabilization, liquefaction prevention, levee fortification and mitigation of beach erosion. During the denitrification process there are many phases present in the pore space including a liquid phase containing solutes, crystals, bacteria forming biofilms and gas bubbles. Due to the amount of phases and their dynamic changes (multiphase flow with (non-linear) reactive transport), there are many interactions making the process very complex. To understand this complexity in the system, the interactions between these phases are studied in a reductionist approach, increasing the complexity of the system by one phase at a time. The model will initially include flow, solute transport, crystal nucleation and growth in 2D at pore scale. The flow will be described by Navier-Stokes equations. Initial study and simulations has revealed that describing crystal growth for this application on a fixed grid can introduce significant fundamental errors. Therefore a level set method will be employed to better describe the interface of developing crystals in between sand grains. Afterwards the model will be expanded to 3D to provide more realistic flow, nucleation and clogging behaviour at pore scale. Next biofilms and lastly gas bubbles may be added to the model. From the results of these pore scale models the behaviour of the system may be studied and eventually observations may be extrapolated to a larger continuum scale.

  16. An algorithm for automatic reduction of complex signal flow graphs

    NASA Technical Reports Server (NTRS)

    Young, K. R.; Hoberock, L. L.; Thompson, J. G.

    1976-01-01

    A computer algorithm is developed that provides efficient means to compute transmittances directly from a signal flow graph or a block diagram. Signal flow graphs are cast as directed graphs described by adjacency matrices. Nonsearch computation, designed for compilers without symbolic capability, is used to identify all arcs that are members of simple cycles for use with Mason's gain formula. The routine does not require the visual acumen of an interpreter to reduce the topology of the graph, and it is particularly useful for analyzing control systems described for computer analyses by means of interactive graphics.

  17. Dynamics of traffic flow with real-time traffic information

    NASA Astrophysics Data System (ADS)

    Yokoya, Yasushi

    2004-01-01

    We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic information based on advancements in telecommunication technology is expected to facilitate the efficient utilization of available road capacity. This system has a potentiality of not only engineering for road usage but also the science of complexity series. In the system, the information plays a role of feedback connecting microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper, we tried to clarify how the information works in a network of traffic flow from the perspective of statistical physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilibrium statistical physics and a computer simulation based on cellular automaton. We found that the information disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.

  18. Extraction of skin-friction fields from surface flow visualizations as an inverse problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu

    2013-12-01

    Extraction of high-resolution skin-friction fields from surface flow visualization images as an inverse problem is discussed from a unified perspective. The surface flow visualizations used in this study are luminescent oil-film visualization and heat-transfer and mass-transfer visualizations with temperature- and pressure-sensitive paints (TSPs and PSPs). The theoretical foundations of these global methods are the thin-oil-film equation and the limiting forms of the energy- and mass-transport equations at a wall, which are projected onto the image plane to provide the relationships between a skin-friction field and the relevant quantities measured by using an imaging system. Since these equations can be re-cast in the same mathematical form as the optical flow equation, they can be solved by using the variational method in the image plane to extract relative or normalized skin-friction fields from images. Furthermore, in terms of instrumentation, essentially the same imaging system for measurements of luminescence can be used in these surface flow visualizations. Examples are given to demonstrate the applications of these methods in global skin-friction diagnostics of complex flows.

  19. Swept Impinging Oblique Shock/Boundary-Layer Interactions

    NASA Astrophysics Data System (ADS)

    Little, Jesse; Threadgill, James; Stab, Ilona

    2016-11-01

    Oblique shock waves impinging on boundary layers are common flow features associated with high-speed flows around complex body geometries and through internal channel flows. The increasingly three-dimensional surface geometries of modern vehicles has led to a prevalence of complex shock/boundary-layer interactions. Sweep has been observed to vary the interaction structure, unsteadinesses, and similarity scalings. Sharp-fins and highly-swept ramps have been noted to induce a quasi-conical development of the interaction, in contrast to a quasi-cylindrical scaling observed in low-sweep interactions. However, swept impinging oblique shock cases have largely been overlooked, with evidence of only cylindrical similarities observed in hypersonic conditions. Flow deflection beyond the maximum turning angle has been proposed as the mechanism for conical interaction development but such behavior has not been established for the present configuration. This study examines the effect of sweep on the interaction induced by a 12.5° generator in Mach 2.3 flow using oil-flow, Schlieren and PIV. Results document the development of similarity scalings at various angles of sweep, and highlight the difficulty in replicating a quasi-infinite span conditions in a moderately sized wind tun Supported by the Air Force Office of Scientific Research (FA9550-15-1-0430) and Raytheon Missile Systems.

  20. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  1. Acceleration methods for multi-physics compressible flow

    NASA Astrophysics Data System (ADS)

    Peles, Oren; Turkel, Eli

    2018-04-01

    In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation rocket motor. The numerical examples in this work include transonic flow about a RAE2822 airfoil, about a M6 Onera wing, NACA0012 airfoil at very low Mach number, two-phase flow inside a Ballistic evaluation motor (BEM), a turbulent reactive shear layer and a time dependent Sod's tube problem.

  2. A model for Entropy Production, Entropy Decrease and Action Minimization in Self-Organization

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Chatterjee, Atanu; Vu, Thanh; Iannacchione, Germano

    In self-organization energy gradients across complex systems lead to change in the structure of systems, decreasing their internal entropy to ensure the most efficient energy transport and therefore maximum entropy production in the surroundings. This approach stems from fundamental variational principles in physics, such as the principle of least action. It is coupled to the total energy flowing through a system, which leads to increase the action efficiency. We compare energy transport through a fluid cell which has random motion of its molecules, and a cell which can form convection cells. We examine the signs of change of entropy, and the action needed for the motion inside those systems. The system in which convective motion occurs, reduces the time for energy transmission, compared to random motion. For more complex systems, those convection cells form a network of transport channels, for the purpose of obeying the equations of motion in this geometry. Those transport networks are an essential feature of complex systems in biology, ecology, economy and society.

  3. Flow induced streamer formation in particle laden complex flows

    NASA Astrophysics Data System (ADS)

    Debnath, Nandini; Hassanpourfard, Mahtab; Ghosh, Ranajay; Trivedi, Japan; Thundat, Thomas; Kumar, Aloke

    2016-11-01

    We study the combined flow of a polyacrylamide (PAM)solution with polystyrene (PS) nanoparticles, through a microfluidic device containing an array of micropillars. The flow is characterized by a very low Reynolds number (Re<<1). We find that for exceeding a critical Weissenberg number (Wi >= 20), PS nanoparticles localize near pillar walls to form thin slender string-like structures, which we call 'streamers' due to their morphology. Post-formation, these streamers show significant viscous behavior for short observational time-scales, and at longer observational time scales elastic response dominates. Our abiotic streamers could provide a framework for understanding similar structures that often form in biological systems. PhD student, Department of Mechanical Engineering.

  4. Regional modeling of groundwater flow and arsenic transport in the Bengal Basin: challenges of scale and complexity (Invited)

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Voss, C. I.

    2009-12-01

    Widespread arsenic poisoning is occurring in large areas of Bangladesh and West Bengal, India due to high arsenic levels in shallow groundwater, which is the primary source of irrigation and drinking water in the region. The high-arsenic groundwater exists in aquifers of the Bengal Basin, a huge sedimentary system approximately 500km x 500km wide and greater than 15km deep in places. Deeper groundwater (>150m) is nearly universally low in arsenic and a potential source of safe drinking water, but evaluation of its sustainability requires understanding of the entire, interconnected regional aquifer system. Numerical modeling of flow and arsenic transport in the basin introduces problems of scale: challenges in representing the system in enough detail to produce meaningful simulations and answer relevant questions while maintaining enough simplicity to understand controls on processes and operating within computational constraints. A regional groundwater flow and transport model of the Bengal Basin was constructed to assess the large-scale functioning of the deep groundwater flow system, the vulnerability of deep groundwater to pumping-induced migration from above, and the effect of chemical properties of sediments (sorption) on sustainability. The primary challenges include the very large spatial scale of the system, dynamic monsoonal hydrology (small temporal scale fluctuations), complex sedimentary architecture (small spatial scale heterogeneity), and a lack of reliable hydrologic and geologic data. The approach was simple. Detailed inputs were reduced to only those that affect the functioning of the deep flow system. Available data were used to estimate upscaled parameter values. Nested small-scale simulations were performed to determine the effects of the simplifications, which include treatment of the top boundary condition and transience, effects of small-scale heterogeneity, and effects of individual pumping wells. Simulation of arsenic transport at the large scale adds another element of complexity. Minimization of numerical oscillation and mass balance errors required experimentation with solvers and discretization. In the face of relatively few data in a very large-scale model, sensitivity analyses were essential. The scale of the system limits evaluation of localized behavior, but results clearly identified the primary controls on the system and effects of various pumping scenarios and sorptive properties. It was shown that limiting deep pumping to domestic supply may result in sustainable arsenic-safe water for 90% of the arsenic-affected region over a 1000 year timescale, and that sorption of arsenic onto deep, oxidized Pleistocene sediments may increase the breakthrough time in unsustainable zones by more than an order of magnitude. Thus, both hydraulic and chemical defenses indicate the potential for sustainable, managed use of deep, safe groundwater resources in the Bengal Basin.

  5. Emplacement and dewatering of the world's largest exposed sand injectite complex

    NASA Astrophysics Data System (ADS)

    Sherry, Timothy J.; Rowe, Christie D.; Kirkpatrick, James D.; Brodsky, Emily E.

    2012-08-01

    Sandstone injectites form by up or down-section flow of a mobilized sand slurry through fractures in overlying rock. They act as reservoirs and high-permeability conduits through lower permeability rock in hydrocarbon systems. The Yellow Bank Creek Complex, Santa Cruz County, California is the largest known exposure of a sandstone injectite in the world. The complex contains granular textures that record processes of sand slurry flow, multiple pore fluids, and dewatering after emplacement. The injection was initially mobilized from a source containing both water and hydrocarbons. The water-sand slurry reached emplacement depth first, due to lower fluid viscosity. As the sand slurry emplaced, the transition from slurry flow to pore water percolation occurred. This transition resulted in preferred flow channels ˜6 mm wide in which sand grains were weakly aligned (laminae). The hydrocarbon-sand slurry intruded the dewatering sands and locally deformed the laminae. Compaction of the injectite deposit and pore fluid escape caused spaced compaction bands and dewatering pipes which created convolutions of the laminae. The hydrocarbon-rich sand slurry is preserved today as dolomite-cemented sand with oil inclusions. The laminae in this injectite are easily detected due to preferential iron oxide-cementation of the well-aligned sand laminae, and lack of cement in the alternating laminae. Subtle textures like these may develop during sand flow and be present but difficult to detect in other settings. They may explain permeability anisotropy in other sand deposits.

  6. Composite volcanoes in the south-eastern part of İzmir-Balıkesir Transfer Zone, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Seghedi, Ioan; Helvacı, Cahit; Pécskay, Zoltan

    2015-01-01

    During the Early-Middle Miocene (Western Anatolia) several volcanic fields occur along a NE-SW-trending shear zone, known as İzmir-Balıkesir Transfer Zone. This is a deformed crustal-scale sinistral strike-slip fault zone crossing the Bornova flysch and extending along the NW-boundary of the Menderes Massif by accommodating the differential deformation between the Cycladic and Menderes core complexes within the Aegean extensional system. Here we discuss the volcanic activity in Yamanlar and Yuntdağı fields that is closely related to the extensional tectonics of the İzmir-Balıkesir Transfer Zone and in the same time with the episodic core complex denudation of the Menderes Massif. This study documents two composite volcanoes (Yamanlar and Yuntdağı), whose present vent area is strongly eroded and cut by a variety of strike-slip and normal fault systems, the transcurrent NW-SE being the dominant one. The erosional remnants of the vent areas, resembling a shallow crater intrusive complex, illustrate the presence of numerous dykes or variably sized neck-like intrusions and lava flows, typically associated with hydrothermal alteration processes (propylitic and argillic). Such vent areas were observed in both the examined volcanic fields, having ~ 6 km in diameter and being much more eroded toward the south, along the NW-SE fault system. Lava flows and lava domes are sometimes associated with proximal block and ash flow deposits. In the cone-building association part, besides lava flows and remnants of lava domes, rare block and ash and pumice-rich pyroclastic flow deposits, as well as a series of debris-flow deposits, have been observed. The rocks display a porphyritic texture and contain various proportions of plagioclase, clinopyroxene, orthopyroxene, amphibole, rare biotite and corroded quartz. The examined rocks fall at the limit between calc-alkaline to alkaline field, and plot predominantly in high-K andesite and dacite fields and one is rhyolite. The trace element distribution suggests fractional crystallization processes and mixing in upper crustal magma chambers and suggests a metasomatized lithospheric mantle/lower crust source. This preliminary volcanological-petrological and geochronological base study allowed documenting the Yamanlar and Yuntdağı as composite volcanoes generated during post-collisional Early-Middle Miocene transtensional tectonic movements.

  7. Application of color to reduce complexity in air traffic control.

    DOT National Transportation Integrated Search

    2002-11-01

    The United States Air Traffic Control (ATC) system is designed to provide for the safe and efficient flow of air : traffic from origin to destination. The Federal Aviation Administration predicts that traffic levels will continue : increasing over th...

  8. Post-processing of a low-flow forecasting system in the Thur basin (Switzerland)

    NASA Astrophysics Data System (ADS)

    Bogner, Konrad; Joerg-Hess, Stefanie; Bernhard, Luzi; Zappa, Massimiliano

    2015-04-01

    Low-flows and droughts are natural hazards with potentially severe impacts and economic loss or damage in a number of environmental and socio-economic sectors. As droughts develop slowly there is time to prepare and pre-empt some of these impacts. Real-time information and forecasting of a drought situation can therefore be an effective component of drought management. Although Switzerland has traditionally been more concerned with problems related to floods, in recent years some unprecedented low-flow situations have been experienced. Driven by the climate change debate a drought information platform has been developed to guide water resources management during situations where water resources drop below critical low-flow levels characterised by the indices duration (time between onset and offset), severity (cumulative water deficit) and magnitude (severity/duration). However to gain maximum benefit from such an information system it is essential to remove the bias from the meteorological forecast, to derive optimal estimates of the initial conditions, and to post-process the stream-flow forecasts. Quantile mapping methods for pre-processing the meteorological forecasts and improved data assimilation methods of snow measurements, which accounts for much of the seasonal stream-flow predictability for the majority of the basins in Switzerland, have been tested previously. The objective of this study is the testing of post-processing methods in order to remove bias and dispersion errors and to derive the predictive uncertainty of a calibrated low-flow forecast system. Therefore various stream-flow error correction methods with different degrees of complexity have been applied and combined with the Hydrological Uncertainty Processor (HUP) in order to minimise the differences between the observations and model predictions and to derive posterior probabilities. The complexity of the analysed error correction methods ranges from simple AR(1) models to methods including wavelet transformations and support vector machines. These methods have been combined with forecasts driven by Numerical Weather Prediction (NWP) systems with different temporal and spatial resolutions, lead-times and different numbers of ensembles covering short to medium to extended range forecasts (COSMO-LEPS, 10-15 days, monthly and seasonal ENS) as well as climatological forecasts. Additionally the suitability of various skill scores and efficiency measures regarding low-flow predictions will be tested. Amongst others the novel 2afc (2 alternatives forced choices) score and the quantile skill score and its decompositions will be applied to evaluate the probabilistic forecasts and the effects of post-processing. First results of the performance of the low-flow predictions of the hydrological model PREVAH initialised with different NWP's will be shown.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.; Patchen, D.G.; Heald, M.

    Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less

  10. Recent Developments in X-Ray Diagnostics for Cryogenic and Optically Dense Coaxial Rocket Sprays

    NASA Technical Reports Server (NTRS)

    Radke, Christopher D.; Kastengren, Alan L.; Meyer, Terrence R.

    2017-01-01

    The mixing and atomization of propellants is often characterized by optically dense flow fields and complex breakup dynamics. In the development of propulsion systems, the complexity of relevant physics and the range of spatio-temporal scales often makes computational simulation impractical for full scale injector elements; consequently, continued research into improved systems for experimental flow diagnostics is ongoing. One area of non-invasive flow diagnostics which has seen widespread growth is using synchrotron based x-ray diagostics. Over the past 3 years, a series of water and cryogenic based experiments were performed at the Advanced Photon Source, Argonne National Lab, on a NASA in-house designed swirl co-axial rocket injector, designed for operation using liquid oxygen and liquid methane in support of Project Morpheus. A range of techniques, such as x-ray fluorescence and time-averaged radiography were performed providing qualitative and quantitative mass and phase distributions, and were complemented by investigations using time-resolved radiography and white beam imaging, which provided information on breakup and mixing dynamics. Results of these investigations are presented, and conclusions regarding the viability of x-ray based diagnostics are discussed.

  11. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina

    PubMed Central

    Braaf, Boy; Donner, Sabine; Nam, Ahhyun S.; Bouma, Brett E.; Vakoc, Benjamin J.

    2018-01-01

    Complex differential variance (CDV) provides phase-sensitive angiographic imaging for optical coherence tomography (OCT) with immunity to phase-instabilities of the imaging system and small-scale axial bulk motion. However, like all angiographic methods, measurement noise can result in erroneous indications of blood flow that confuse the interpretation of angiographic images. In this paper, a modified CDV algorithm that corrects for this noise-bias is presented. This is achieved by normalizing the CDV signal by analytically derived upper and lower limits. The noise-bias corrected CDV algorithm was implemented into an experimental 1 μm wavelength OCT system for retinal imaging that used an eye tracking scanner laser ophthalmoscope at 815 nm for compensation of lateral eye motions. The noise-bias correction improved the CDV imaging of the blood flow in tissue layers with a low signal-to-noise ratio and suppressed false indications of blood flow outside the tissue. In addition, the CDV signal normalization suppressed noise induced by galvanometer scanning errors and small-scale lateral motion. High quality cross-section and motion-corrected en face angiograms of the retina and choroid are presented. PMID:29552388

  12. Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina.

    PubMed

    Braaf, Boy; Donner, Sabine; Nam, Ahhyun S; Bouma, Brett E; Vakoc, Benjamin J

    2018-02-01

    Complex differential variance (CDV) provides phase-sensitive angiographic imaging for optical coherence tomography (OCT) with immunity to phase-instabilities of the imaging system and small-scale axial bulk motion. However, like all angiographic methods, measurement noise can result in erroneous indications of blood flow that confuse the interpretation of angiographic images. In this paper, a modified CDV algorithm that corrects for this noise-bias is presented. This is achieved by normalizing the CDV signal by analytically derived upper and lower limits. The noise-bias corrected CDV algorithm was implemented into an experimental 1 μm wavelength OCT system for retinal imaging that used an eye tracking scanner laser ophthalmoscope at 815 nm for compensation of lateral eye motions. The noise-bias correction improved the CDV imaging of the blood flow in tissue layers with a low signal-to-noise ratio and suppressed false indications of blood flow outside the tissue. In addition, the CDV signal normalization suppressed noise induced by galvanometer scanning errors and small-scale lateral motion. High quality cross-section and motion-corrected en face angiograms of the retina and choroid are presented.

  13. Hydrological and pesticide transfer modeling in a tropical volcanic watershed with the WATPPASS model

    NASA Astrophysics Data System (ADS)

    Mottes, Charles; Lesueur-Jannoyer, Magalie; Charlier, Jean-Baptiste; Carles, Céline; Guéné, Mathilde; Le Bail, Marianne; Malézieux, Eric

    2015-10-01

    Simulation of flows and pollutant transfers in heterogeneous media is widely recognized to be a remaining frontier in hydrology research. We present a new modeling approach to simulate agricultural pollutions in watersheds: WATPPASS, a model for Watershed Agricultural Techniques and Pesticide Practices ASSessment. It is designed to assess mean pesticide concentrations and loads that result from the use of pesticides in horticultural watersheds located on heterogeneous subsoil. WATPPASS is suited for small watershed with significant groundwater flows and complex aquifer systems. The model segments the watershed into fields with independent hydrological and pesticide transfers at the ground surface. Infiltrated water and pesticides are routed toward outlet using a conceptual reservoir model. We applied WATPPASS on a heterogeneous tropical volcanic watershed of Martinique in the French West Indies. We carried out and hydrological analysis that defined modeling constraints: (i) a spatial variability of runoff/infiltration partitioning according to land use, and (ii) a predominance of groundwater flow paths in two overlapping aquifers under permeable soils (50-60% of annual flows). We carried out simulations on a 550 days period at a daily time step for hydrology (Nashsqrt > 0.75). Weekly concentrations and loads of a persistent organic pesticide (chlordecone) were simulated for 67 weeks to evaluate the modeling approach. Pesticide simulations without specific calibration detected the mean long-term measured concentration, leading to a good quantification of the cumulative loads (5% error), but failed to represent the concentration peaks at the correct timing. Nevertheless, we succeed in adjusting the model structure to better represent the temporal dynamic of pesticide concentrations. This modification requires a proper evaluation on an independent dataset. Finally, WATPPASS is a compromise between complexity and easiness of use that makes it suited for cropping system assessment in complex pedological and geological environment.

  14. Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization

    PubMed Central

    2015-01-01

    A nanoporous membrane system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzyme complex system was demonstrated. Genetically modified glycosylation enzyme, OleD Loki variant, was immobilized onto nanometer-scale electrodes at the pore entrances/exits of anodic aluminum oxide membranes through His6-tag affinity binding. The enzyme activity was assessed in two reactions—a one-step “reverse” sugar nucleotide formation reaction (UDP-Glc) and a two-step sequential sugar nucleotide formation and sugar nucleotide-based glycosylation reaction. For the one-step reaction, enzyme specific activity of 6–20 min–1 on membrane supports was seen to be comparable to solution enzyme specific activity of 10 min–1. UDP-Glc production efficiencies as high as 98% were observed at a flow rate of 0.5 mL/min, at which the substrate residence time over the electrode length down pore entrances was matched to the enzyme activity rate. This flow geometry also prevented an unwanted secondary product hydrolysis reaction, as observed in the test homogeneous solution. Enzyme utilization increased by a factor of 280 compared to test homogeneous conditions due to the continuous flow of fresh substrate over the enzyme. To mimic enzyme complex systems, a two-step sequential reaction using OleD Loki enzyme was performed at membrane pore entrances then exits. After UDP-Glc formation at the entrance electrode, aglycon 4-methylumbelliferone was supplied at the exit face of the reactor, affording overall 80% glycosylation efficiency. The membrane platform showed the ability to be regenerated with purified enzyme as well as directly from expression crude, thus demonstrating a single-step immobilization and purification process. PMID:25025628

  15. A first-order Green's function approach to supersonic oscillatory flow: A mixed analytic and numeric treatment

    NASA Technical Reports Server (NTRS)

    Freedman, M. I.; Sipcic, S.; Tseng, K.

    1985-01-01

    A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.

  16. Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.

    2015-01-01

    Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.

  17. Unsteady Analysis of Separated Aerodynamic Flows Using an Unstructured Multigrid Algorithm

    NASA Technical Reports Server (NTRS)

    Pelaez, Juan; Mavriplis, Dimitri J.; Kandil, Osama

    2001-01-01

    An implicit method for the computation of unsteady flows on unstructured grids is presented. The resulting nonlinear system of equations is solved at each time step using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Validation of the code using a one-equation turbulence model is performed for the well-known case of flow over a cylinder. A Detached Eddy Simulation model is also implemented and its performance compared to the one equation Spalart-Allmaras Reynolds Averaged Navier-Stokes (RANS) turbulence model. Validation cases using DES and RANS include flow over a sphere and flow over a NACA 0012 wing including massive stall regimes. The project was driven by the ultimate goal of computing separated flows of aerodynamic interest, such as massive stall or flows over complex non-streamlined geometries.

  18. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Brandes, Christian; Winsemann, Jutta

    2017-03-01

    Erosion and deposition by supercritical density flows can strongly impact the facies distribution and architecture of submarine fans. Field examples from coarse-grained channel-levée complexes from the Sandino Forearc Basin (southern Central America) show that cyclic-step and antidune deposits represent common sedimentary facies of these depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. During channel avulsion, large-scale scour-fill complexes (18 to 29 m deep, 18 to 25 m wide, 60 to > 120 m long) were incised by supercritical density flows. The multi-storey infill of the large-scale scour-fill complexes comprises amalgamated massive, normally coarse-tail graded or widely spaced subhorizontally stratified conglomerates and pebbly sandstones, interpreted as deposits of the hydraulic-jump zone of cyclic steps. The large-scale scour-fill complexes can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump zone deposits. Channel fills include repeated successions deposited by cyclic steps with superimposed antidunes. The deposits of the hydraulic-jump zone of cyclic steps comprise regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m long) infilled by intraclast-rich conglomerates or pebbly sandstones, displaying normal coarse-tail grading or backsets. These deposits are laterally and vertically associated with subhorizontally stratified, low-angle cross-stratified or sinusoidally stratified sandstones and pebbly sandstones, which were deposited by antidunes on the stoss side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic steps with superimposed antidunes form fining-upwards successions with decreasing antidune wavelengths, indicating waning flows. Such cyclic step-antidune successions form the characteristic basal infill of mid-fan channels, and are inferred to be related to successive supercritical high-density turbidity flows triggered by retrogressive slope failures.

  19. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  20. Bioinspired Concepts: Unified Theory for Complex Biological and Engineering Systems

    DTIC Science & Technology

    2006-01-01

    i.e., data flows of finite size arrive at the system randomly. For such a system , we propose a modified dual scheduling algorithm that stabilizes ...demon. We compute the efficiency of the controller over finite and infinite time intervals, and since the controller is optimal, this yields hard limits...and highly optimized tolerance. PNAS, 102, 2005. 51. G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with finite feedback

  1. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.

    2007-09-01

    While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound implications for water resource managers charged with determining sustainable pumping rates from confined aquifers that host ice sheet meltwater.

  2. Topological characteristics underpin intermittency and anomalous transport behavior in soil-like porous media

    NASA Astrophysics Data System (ADS)

    Holzner, M.; Morales, V.; Willmann, M.; Jerjen, I.; Kaufmann, R.; Dentz, M.

    2016-12-01

    Continuum models of porous media are based on the validity of the Darcy equation for fluid and Fick's law for scalar fluxes on a representative elementary volume. Fluctuations of pore-scale flow and scalar transport are averaged out and represented in terms of effective parameters such as hydrodynamic dispersion. However, the intermittent behavior of pore-scale flow impacts on the nature of particle and scalar transport, and it determines the way dissolved substances mix and react. The understanding of the origin of these processes is of both fundamental and practical importance in applications ranging from reactive transport in groundwater flow to diffusion in fuel cells or biological systems. A central issue in porous medium flow is therefore to relate intermittent behavior of Lagrangian velocity at pore scale imposed by the complex pore network geometry to transport properties at larger scales. Lagrangian measurements in porous systems are nonetheless scarce and most experimental techniques do not provide access to all three velocity components. In this contribution we report 3D measurements of Lagrangian velocity in soil-like porous media. We complement these measurements with detailed X-ray scans of the pore network. We find sharp velocity transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity and a superlinear evolution of particle dispersion. We demonstrate that porosity and pore size distribution alone cannot explain the observed features of the flow. Rather, anomalous transport is better interpreted in terms of how pores of various geometries are interconnected. We reproduce the main observations using a continuous-time random walk (CTRW) model revealing the main features that control the system and showing the potential of this simple model to capture transport in complex geometries.

  3. Accessible Modelling of Complexity in Health (AMoCH) and associated data flows: asthma as an exemplar.

    PubMed

    Liyanage, Harshana; Luzi, Daniela; De Lusignan, Simon; Pecoraro, Fabrizio; McNulty, Richard; Tamburis, Oscar; Krause, Paul; Rigby, Michael; Blair, Mitch

    2016-04-18

    Background Modelling is an important part of information science. Models are abstractions of reality. We use models in the following contexts: (1) to describe the data and information flows in clinical practice to information scientists, (2) to compare health systems and care pathways, (3) to understand how clinical cases are recorded in record systems and (4) to model health care business models.Asthma is an important condition associated with a substantial mortality and morbidity. However, there are difficulties in determining who has the condition, making both its incidence and prevalence uncertain.Objective To demonstrate an approach for modelling complexity in health using asthma prevalence and incidence as an exemplar.Method The four steps in our process are:1. Drawing a rich picture, following Checkland's soft systems methodology;2. Constructing data flow diagrams (DFDs);3. Creating Unified Modelling Language (UML) use case diagrams to describe the interaction of the key actors with the system;4. Activity diagrams, either UML activity diagram or business process modelling notation diagram.Results Our rich picture flagged the complexity of factors that might impact on asthma diagnosis. There was consensus that the principle issue was that there were undiagnosed and misdiagnosed cases as well as correctly diagnosed. Genetic predisposition to atopy; exposure to environmental triggers; impact of respiratory health on earnings or ability to attend education or participate in sport, charities, pressure groups and the pharmaceutical industry all increased the likelihood of a diagnosis of asthma. Stigma and some factors within the health system diminished the likelihood of a diagnosis. The DFDs and other elements focused on better case finding.Conclusions This approach flagged the factors that might impact on the reported prevalence or incidence of asthma. The models suggested that applying selection criteria may improve the specificity of new or confirmed diagnosis.

  4. Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion

    NASA Astrophysics Data System (ADS)

    Lv, Yu; Ihme, Matthias

    2014-08-01

    This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.

  5. Consistency between 2D-3D Sediment Transport models

    NASA Astrophysics Data System (ADS)

    Villaret, Catherine; Jodeau, Magali

    2017-04-01

    Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.

  6. Froude space: An aquatic currency derived from remote sensing data for assessing ecological potential of river floodplains

    NASA Astrophysics Data System (ADS)

    Lorang, M. S.; Stanford, J.; Steele, B.

    2009-12-01

    In this research we take a systems ecology approach to the evaluation of river floodplains by ranking them according to their energetic complexity at or near base flow conditions. The underlying hypothesis is that energetic complexity equates to a higher potential for sustaining maximum biological diversity, in particular as it relates to Salmonids. Fr number is a hydraulic index of relative specific energy in a flowing water column ranging from calm, no flow conditions where Fr = 0 to 0.8 at the onset of rapids and higher values approaching 1 or > at locations of breaking waves and hydraulic jumps. Most of the water flowing in a gravel-bed river exists in the transition range of Fr = 0.1 to 0.8, creating a complex array of potential hydrologic habitat commonly described through observation as riffles, runs, pools eddies, and so on. We use 1.6 m2 resolution multispectral satellite imagery to predict and map water depth (h), mean flow velocity (V) and Froude number (Fr=V/(gh)^0.5) by using a distribution-free statistical learner and error analysis approach. This approach links measures of V and h made from a raft deploying an acoustic Doppler profiler (ADP) and GPS with the reflectance characteristics from the satellite imagery (4 bands) that correspond to each ADP profile. This analysis of Fr space in combination with independent classification of depth and velocity provides physical metrics related to the energetic state of flow in the river at the time of image acquisition. We use these metrics, determined from a suite of 23 floodplains spread across the rim of the North Pacific (including British Columbia, Alaska and the Kamchatka Peninsula of Russia) and covering the range in fluvial geomorphic type from braided to meandering, to rank them in terms of energetic complexity.

  7. An integrated Riverine Environmental Flow Decision Support System (REFDSS) to evaluate the ecological effects of alternative flow scenarios on river ecosystems

    USGS Publications Warehouse

    Maloney, Kelly O.; Talbert, Colin B.; Cole, Jeffrey C.; Galbraith, Heather S.; Blakeslee, Carrie J.; Hanson, Leanne; Holmquist-Johnson, Christopher L.

    2015-01-01

    In regulated rivers, managers must evaluate competing flow release scenarios that attempt to balance both human and natural needs. Meeting these natural flow needs is complex due to the myriad of interacting physical and hydrological factors that affect ecosystems. Tools that synthesize the voluminous scientific data and models on these factors will facilitate management of these systems. Here, we present the Riverine Environmental Flow Decision Support System (REFDSS), a tool that enables evaluation of competing flow scenarios and other variables on instream habitat. We developed a REFDSS for the Upper Delaware River, USA, a system that is regulated by three headwater reservoirs. This version of the REFDSS has the ability to integrate any set of spatially explicit data and synthesizes modeled discharge for three competing management scenarios, flow-specific 2-D hydrodynamic modeled estimates of local hydrologic conditions (e.g., depth, velocity, shear stress, etc.) at a fine pixel-scale (1 m2), and habitat suitability criteria (HSC) for a variety of taxa. It contains all individual model outputs, computationally integrates these data, and outputs the amount of potentially available habitat for a suite of species of interest under each flow release scenario. Users have the flexibility to change the time period of interest and vary the HSC. The REFDSS was developed to enable side-by-side evaluation of different flow management scenarios and their effects on potential habitat availability, allowing managers to make informed decisions on the best flow scenarios. An exercise comparing two alternative flow scenarios to a baseline scenario for several key species is presented. The Upper Delaware REFDSS was robust to minor changes in HSC (± 10 %). The general REFDSS platform was developed as a user-friendly Windows desktop application that was designed to include other potential parameters of interest (e.g., temperature) and for transferability to other riverine systems.

  8. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  9. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination Threats (PRoTECT)" supported by the National Institute of Environmental Health Sciences (NIEHS, Grant Award No. P42ES017198).

  10. Built-In Data-Flow Integration Testing in Large-Scale Component-Based Systems

    NASA Astrophysics Data System (ADS)

    Piel, Éric; Gonzalez-Sanchez, Alberto; Gross, Hans-Gerhard

    Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from a previous one in the flow and sends output data to other components. This organisation expresses information flows adequately, and also favours decoupling between the components, leading to easier maintenance and quicker evolution of the system. Integration testing is a major means to ensure the quality of large systems. Their size and complexity, together with the fact that they are developed and maintained by several stake holders, make Built-In Testing (BIT) an attractive approach to manage their integration testing. However, so far no technique has been proposed that combines BIT and data-flow integration testing. We have introduced the notion of a virtual component in order to realize such a combination. It permits to define the behaviour of several components assembled to process a flow of data, using BIT. Test-cases are defined in a way that they are simple to write and flexible to adapt. We present two implementations of our proposed virtual component integration testing technique, and we extend our previous proposal to detect and handle errors in the definition by the user. The evaluation of the virtual component testing approach suggests that more issues can be detected in systems with data-flows than through other integration testing approaches.

  11. Recent Advancements towards Full-System Microfluidics

    PubMed Central

    Miled, Amine

    2017-01-01

    Microfluidics is quickly becoming a key technology in an expanding range of fields, such as medical sciences, biosensing, bioactuation, chemical synthesis, and more. This is helping its transformation from a promising R&D tool to commercially viable technology. Fuelling this expansion is the intensified focus on automation and enhanced functionality through integration of complex electrical control, mechanical properties, in situ sensing and flow control. Here we highlight recent contributions to the Sensors Special Issue series called “Microfluidics-Based Microsystem Integration Research” under the following categories: (i) Device fabrication to support complex functionality; (ii) New methods for flow control and mixing; (iii) Towards routine analysis and point of care applications; (iv) In situ characterization; and (v) Plug and play microfluidics. PMID:28757587

  12. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    PubMed Central

    2016-01-01

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C7eq → C7ax transition of the alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition. PMID:27004858

  13. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenjin; Ma, Ao, E-mail: aoma@uic.edu

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C{sub 7eq} → C{sub 7ax} transition of themore » alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition.« less

  14. The Importance of Protons in Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of proton adsorption is of utmost importance to reactive transport modeling.

  15. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418

  16. Inner-outer interactions in a turbulent boundary layer overlying complex roughness

    NASA Astrophysics Data System (ADS)

    Pathikonda, Gokul; Christensen, Kenneth T.

    2017-04-01

    Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.

  17. Review of literature on the finite-element solution of the equations of two-dimensional surface-water flow in the horizontal plane

    USGS Publications Warehouse

    Lee, Jonathan K.; Froehlich, David C.

    1987-01-01

    Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.

  18. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation

    NASA Astrophysics Data System (ADS)

    Hemraj, Deevesh A.; Hossain, A.; Ye, Qifeng; Qin, Jian G.; Leterme, Sophie C.

    2017-03-01

    Anthropogenic modification of aquatic systems has diverse impacts on food web interactions and ecosystem states. To reverse the adverse effects of modified freshwater flow, adequate management of discharge is required, especially due to higher water requirements and abstractions for human use. Here, we look at the effects of anthropogenically controlled freshwater flow regimes on the planktonic food web of a Ramsar listed coastal lagoon that is under recovery from degradation. Our results show shifts in water quality and plankton community interactions associated to changes in water flow. These shifts in food web interactions represent modifications in habitat complexity and water quality. At high flow, phytoplankton-zooplankton interactions dominate the food web. Conversely, at low flow, bacteria, viruses and nano/picoplankton interactions are more dominant, with a substantial switch of the food web towards heterotrophy. This switch can be associated with excess organic matter loading, decomposition of dead organisms, and synergistic and antagonistic interactions. We suggest that a lower variability in flow amplitude could be beneficial for the long-term sustaining of water quality and food web interactions, while improving the ecosystem health of systems facing similar stresses as the Coorong.

  19. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation

    PubMed Central

    Hemraj, Deevesh A.; Hossain, A.; Ye, Qifeng; Qin, Jian G.; Leterme, Sophie C.

    2017-01-01

    Anthropogenic modification of aquatic systems has diverse impacts on food web interactions and ecosystem states. To reverse the adverse effects of modified freshwater flow, adequate management of discharge is required, especially due to higher water requirements and abstractions for human use. Here, we look at the effects of anthropogenically controlled freshwater flow regimes on the planktonic food web of a Ramsar listed coastal lagoon that is under recovery from degradation. Our results show shifts in water quality and plankton community interactions associated to changes in water flow. These shifts in food web interactions represent modifications in habitat complexity and water quality. At high flow, phytoplankton-zooplankton interactions dominate the food web. Conversely, at low flow, bacteria, viruses and nano/picoplankton interactions are more dominant, with a substantial switch of the food web towards heterotrophy. This switch can be associated with excess organic matter loading, decomposition of dead organisms, and synergistic and antagonistic interactions. We suggest that a lower variability in flow amplitude could be beneficial for the long-term sustaining of water quality and food web interactions, while improving the ecosystem health of systems facing similar stresses as the Coorong. PMID:28327643

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chase

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align andmore » transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections.« less

  1. Turbulence spectra in the noise source regions of the flow around complex surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D. R.

    1983-01-01

    The complex turbulent flow around three complex surfaces was measured in detail with a hot wire. The measured data include extensive spatial surveys of the mean velocity and turbulence intensity and measurements of the turbulence spectra and scale length at many locations. The publication of the turbulence data is completed by reporting a summary of the turbulence spectra that were measured within the noise source locations of the flow. The results suggest some useful simplifications in modeling the very complex turbulent flow around complex surfaces for aeroacoustic predictive models. The turbulence spectra also show that noise data from scale models of moderate size can be accurately scaled up to full size.

  2. Regional Patterns of Stress Transfer in the Ablation Zone of the Western Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Andrews, L. C.; Hoffman, M. J.; Neumann, T.; Catania, G. A.; Luethi, M. P.; Hawley, R. L.

    2016-12-01

    Current understanding of the subglacial system indicates that the seasonal evolution of ice flow is strongly controlled by the gradual upstream progression of an inefficient - efficient transition within the subglacial hydrologic system followed by the reduction of melt and a downstream collapse of the efficient system. Using a spatiotemporally dense network of GPS-derived surface velocities from the Pâkitsoq Region of the western Greenland Ice Sheet, we find that this pattern of subglacial development is complicated by heterogeneous bed topography, resulting in complex patterns of ice flow. Following low elevation melt onset, early melt season strain rate anomalies are dominated by regional extension, which then gives way to spatially expansive compression. However, once daily minimum ice velocities fall below the observed winter background velocities, an alternating spatial pattern of extension and compression prevails. This pattern of strain rate anomalies is correlated with changing basal topography and differences in the magnitude of diurnal surface ice speeds. Along subglacial ridges, diurnal variability in ice speed is large, suggestive of a mature, efficient subglacial system. In regions of subglacial lows, diurnal variability in ice velocity is relatively low, likely associated with a less developed efficient subglacial system. The observed pattern suggests that borehole observations and modeling results demonstrating the importance of longitudinal stress transfer at a single field location are likely widely applicable in our study area and other regions of the Greenland Ice Sheet with highly variable bed topography. Further, the complex pattern of ice flow and evidence of spatially extensive longitudinal stress transfer add to the body of work indicating that the bed character plays an important role in the development of the subglacial system; closely matching diurnal ice velocity patterns with subglacial models may be difficult without coupling these models to high order ice flow models.

  3. Rotating permanent magnet excitation for blood flow measurement.

    PubMed

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  4. Multicomponent-flow analyses by multimode method of characteristics

    USGS Publications Warehouse

    Lai, Chintu

    1994-01-01

    For unsteady open-channel flows having N interacting unknown variables, a system of N mutually independent, partial differential equations can be used to describe the flow-field. The system generally belongs to marching-type problems and permits transformation into characteristic equations that are associated with N distinct characteristics directions. Because characteristics can be considered 'wave' or 'disturbance' propagation, a fluvial system so described can be viewed as adequately definable using these N component waves. A numerical algorithm to solve the N families of characteristics can then be introduced for formulation of an N-component flow-simulation model. The multimode method of characteristics (MMOC), a new numerical scheme that has a combined capacity of several specified-time-interval (STI) schemes of the method of characteristics, makes numerical modeling of such N-component riverine flows feasible and attainable. Merging different STI schemes yields different kinds of MMOC schemes, for which two kinds are displayed herein. With the MMOC, each characteristics is dynamically treated by an appropriate numerical mode, which should lead to an effective and suitable global simulation, covering various types of unsteady flow. The scheme is always linearly stable and its numerical accuracy can be systematically analyzed. By increasing the N value, one can develop a progressively sophisticated model that addresses increasingly complex river-mechanics problems.

  5. An upwind multigrid method for solving viscous flows on unstructured triangular meshes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bonhaus, Daryl Lawrence

    1993-01-01

    A multigrid algorithm is combined with an upwind scheme for solving the two dimensional Reynolds averaged Navier-Stokes equations on triangular meshes resulting in an efficient, accurate code for solving complex flows around multiple bodies. The relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear system using a red-black procedure. Roe's flux-splitting scheme is used to discretize convective and pressure terms, while a central difference is used for the diffusive terms. The multigrid scheme is demonstrated for several flows around single and multi-element airfoils, including inviscid, laminar, and turbulent flows. The results show an appreciable speed up of the scheme for inviscid and laminar flows, and dramatic increases in efficiency for turbulent cases, especially those on increasingly refined grids.

  6. Conceptualization of preferential flow for hillslope stability assessment

    NASA Astrophysics Data System (ADS)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  7. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  8. Garden City Vein Complex, Gale Crater, Mars: Implications for Late Diagenetic Fluid Flow

    NASA Astrophysics Data System (ADS)

    Kronyak, R. E.; Kah, L. C.; Blaney, D. L.; Sumner, D. Y.; Fisk, M. R.; Rapin, W.; Nachon, M.; Mangold, N.; Grotzinger, J. P.; Wiens, R. C.

    2015-12-01

    Calcium sulfate filled fractures are observed in nearly all stratigraphic units encountered by the Mars Science Laboratory (MSL) Curiosity rover. The mm-scale of veins, however, provides little evidence for emplacement style. From sols 924-949, Curiosity observed a vein rich outcrop called Garden City, which shows variation in both thickness and complexity of veins. Extensive Mastcam and MAHLI imaging was conducted across the outcrop to provide textural detail that can be related to emplacement mechanisms. Additionally, Curiosity collected geochemical data on 17 ChemCam targets and 7 APXS targets, shedding light on the composition and variety of potential vein fluids. The Garden City vein system records (1) the presence of distinct dark-toned and light-toned (calcium sulfate) mineralization, and (2) the presence of laminated, epitaxial, and brecciated fabrics that suggest multiple emplacement modes. Dark-toned mineralization is observed as erosionally resistant ridges predominantly along fracture walls. Although erosional resistance may reflect the permeability of host rock to fracture-borne fluids, at Garden City, laminated textures suggest that at least some mineralization may have occurred as fracture-fill. Light-toned mineralization often bisects dark-toned material, indicating re-use of fluid pathways. Light-toned veinlets permeate fracture walls, and the largest veins entrain host rock and dark-toned material within calcium sulfate matrix. Such brecciation indicates high forces associated with fluid expulsion. Elsewhere, linear patterns occur broadly perpendicular to fracture walls, and are interpreted to represent epitaxial crystal growth, suggesting lower flow rates and fluid flow pressures within the fracture system. Together these observations indicate multiple episodes of fluid flow in the Gale Crater system.

  9. Development of a Methodology for Incorporating FESWMS-2DH Results

    DOT National Transportation Integrated Search

    2000-05-01

    This study presents the analysis of a complex flow system that contains two roadways with multiple openings: US Highway 75 and the Southeast Kansas Corridor. Typical analyses of floodplains at such sites involve the use of the one-dimensional backwat...

  10. Improved numerical modelling of morphodynamics of rivers with steep banks

    USDA-ARS?s Scientific Manuscript database

    The flow and sediment transport processes near steep streambanks, which are commonly found in meandering, braided, and anastomosing stream systems, exhibit complex patterns. The interactions between bed and bank morphologic adjustment, and their governing processes are still not well understood. Inc...

  11. TSPA 1991: An initial total-system performance assessment for Yucca Mountain; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, R.W.; Wilson, M.L.; Dockery, H.A.

    1992-07-01

    This report describes an assessment of the long-term performance of a repository system that contains deeply buried highly radioactive waste; the system is assumed to be located at the potential site at Yucca Mountain, Nevada. The study includes an identification of features, events, and processes that might affect the potential repository, a construction of scenarios based on this identification, a selection of models describing these scenarios (including abstraction of appropriate models from detailed models), a selection of probability distributions for the parameters in the models, a stochastic calculation of radionuclide releases for the scenarios, and a derivation of complementary cumulativemore » distribution functions (CCDFs) for the releases. Releases and CCDFs are calculated for four categories of scenarios: aqueous flow (modeling primarily the existing conditions at the site, with allowances for climate change), gaseous flow, basaltic igneous activity, and human intrusion. The study shows that models of complex processes can be abstracted into more simplified representations that preserve the understanding of the processes and produce results consistent with those of more complex models.« less

  12. Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation

    USGS Publications Warehouse

    Souza, W.R.; Voss, C.I.

    1987-01-01

    The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.

  13. Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies

    NASA Technical Reports Server (NTRS)

    Chen, Y.- J.; Davis, S. H.

    1999-01-01

    A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.

  14. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  15. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.

  16. Variable Trends in High Peak Flow Generation Across the Swedish Sub-Arctic

    NASA Astrophysics Data System (ADS)

    Matti, B.; Dahlke, H. E.; Lyon, S. W.

    2015-12-01

    There is growing concern about increased frequency and severity of floods and droughts globally in recent years. Improving knowledge on the complexity of hydrological systems and their interactions with climate is essential to be able to determine drivers of these extreme events and to predict changes in these drivers under altered climate conditions. This is particularly true in cold regions such as the Swedish Sub-Arctic where independent shifts in both precipitation and temperature can have significant influence on extremes. This study explores changes in the magnitude and timing of the annual maximum daily flows in 18 Swedish sub-arctic catchments. The Mann-Kendall trend test was used to estimate changes in selected hydrological signatures. Further, a flood frequency analysis was conducted by fitting a Gumbel (Extreme Value type I) distribution whereby selected flood percentiles were tested for stationarity using a generalized least squares regression approach. Our results showed that hydrological systems in cold climates have complex, heterogeneous interactions with climate. Shifts from a snowmelt-dominated to a rainfall-dominated flow regime were evident with all significant trends pointing towards (1) lower flood magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest permafrost thawing and are in agreement with the increasing trends in annual minimum flows. Trends in the selected flood percentiles showed an increase in extreme events over the entire period of record, while trends were variable under shorter periods. A thorough uncertainty analysis emphasized that the applied trend test is highly sensitive to the period of record considered. As such, no clear overall regional pattern could be determined suggesting that how catchments are responding to changes in climatic drivers is strongly influenced by their physical characteristics.

  17. MFIRE-2: A Multi Agent System for Flow-Based Intrusion Detection Using Stochastic Search

    DTIC Science & Technology

    2012-03-01

    attacks that are distributed in nature , but may not protect individual systems effectively without incurring large bandwidth penalties while collecting...system-level information to help prepare for more significant attacks. The type of information potentially revealed by footprinting includes account...key areas where MAS may be appropriate: • The environment is open, highly dynamic, uncertain, or complex • Agents are a natural metaphor—Many

  18. Structure and Dynamics of an Arp2/3 Complex-independent Component of the Lamellipodial Actin Network

    PubMed Central

    Henson, John H.; Cheung, David; Fried, Christopher A.; Shuster, Charles B.; McClellan, Mary K.; Voss, Meagen K.; Sheridan, John T.; Oldenbourg, Rudolf

    2010-01-01

    Sea urchin coelomocytes contain an unusually broad lamellipodial region and have served as a useful model experimental system for studying the process of actin-based retrograde/centripetal flow. In the current study the small molecule drug 2,3-butanedione monoxime (BDM) was employed as a means of delocalizing the Arp2/3 complex from the cell edge in an effort to investigate the Arp2/3 complex-independent aspects of retrograde flow. Digitally-enhanced phase contrast, fluorescence and polarization light microscopy, along with rotary shadow TEM methods demonstrated that BDM treatment resulted in the centripetal displacement of the Arp2/3 complex and the associated dendritic lamellipodial (LP) actin network from the cell edge. In its wake there remained an array of elongate actin filaments organized into concave arcs that displayed retrograde flow at approximately one quarter the normal rate. Actin polymerization inhibitor experiments indicated that these arcs were generated by polymerization at the cell edge, while active myosin-based contraction in BDM treated cells was demonstrated by localization with anti-phospho-MRLC antibody, the retraction of the cytoskeleton in the presence of BDM, and the response of the BDM arcs to laser-based severing. The results suggest that BDM treatment reveals an Arp2/3 complex-independent actin structure in coelomocytes consisting of elongate filaments integrated into the LP network and that these filaments represent a potential connection between the LP network and the central cytoskeleton. PMID:19530177

  19. Additional band broadening of peptides in the first size-exclusion chromatographic dimension of an automated stop-flow two-dimensional high performance liquid chromatography.

    PubMed

    Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan

    2017-10-27

    The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the generated time averaged flow rates. Developed coupled solid and fluid mechanics models can be utilized to integrate flow-through sensors with microfluidic chips.

  1. On the Unsteady Shock Wave Interaction with a Backward-Facing Step: Viscous Analysis

    NASA Astrophysics Data System (ADS)

    Mendoza, N.; Bowersox, R. D. W.

    Unsteady shock propagation through ducts with varying cross-sectional area occurs in many engineering applications, such as explosions in underground tunnels, blast shelter design, engine exhaust systems, and high-speed propulsion systems. These complex, transient flows are rich in fundamental fluid-dynamic phenomena and are excellent testbeds for improving our understanding of unsteady fluid dynamics

  2. Effect of Flow on Gene Regulation in Smooth Muscle Cells and Macromolecular Transport Across Endothelial Cell Monolayers

    NASA Technical Reports Server (NTRS)

    McIntire, Larry V.; Wagner, John E.; Papadaki, Maria; Whitson, Peggy A.; Eskin, Suzanne G.

    1996-01-01

    Endothelial cells line all of the vessels of the circulatory system, providing a non-thrombogenic conduit for blood flow; they regulate many complex functions in the vasculature, such as coagulation, fibrinolysis, platelet aggregation, vessel tone and growth, and leukocyte traffic; and they form the principal barrier to transport of substances between the blood and the surrounding tissue space. The permeability of endothelial cell changes with environmental stimuli; shear stress, in particular, applied either in vivo, or in vitro, induces changes in protein expression and secretion of vasoactive factors by endothelial cells. The ability to study the effects of shear on the macromolecular permeability of the cerebral vasculature is particularly important, since in no other place is the barrier function of the endothelium more important than in the brain. The endothelial cells of this organ have developed special barrier properties that keep the cerebral system from experiencing any drastic change in composition; together with glial cells, they form the blood brain barrier (BBB). We have studied the effect of flow on bovine BBB using flow chambers and tissue culture systems.

  3. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  4. Development of new vibration energy flow analysis software and its applications to vehicle systems

    NASA Astrophysics Data System (ADS)

    Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.

    2005-09-01

    The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.

  5. Solving Problems With SINDA/FLUINT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    SINDA/FLUINT, the NASA standard software system for thermohydraulic analysis, provides computational simulation of interacting thermal and fluid effects in designs modeled as heat transfer and fluid flow networks. The product saves time and money by making the user's design process faster and easier, and allowing the user to gain a better understanding of complex systems. The code is completely extensible, allowing the user to choose the features, accuracy and approximation levels, and outputs. Users can also add their own customizations as needed to handle unique design tasks or to automate repetitive tasks. Applications for SINDA/FLUINT include the pharmaceutical, petrochemical, biomedical, electronics, and energy industries. The system has been used to simulate nuclear reactors, windshield wipers, and human windpipes. In the automotive industry, it simulates the transient liquid/vapor flows within air conditioning systems.

  6. Cross-Correlations and Structures of Aero-Engine Gas Path System Based on DCCA Coefficient and Rooted Tree

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Fan, Jie; Gao, You

    2015-12-01

    Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.

  7. When music “flows”. State and trait in musical performance, composition and listening: a systematic review

    PubMed Central

    Chirico, Alice; Serino, Silvia; Cipresso, Pietro; Gaggioli, Andrea; Riva, Giuseppe

    2015-01-01

    It is not unusual to experience a sense of total absorption, concentration, action-awareness, distortion of time and intrinsic enjoyment during an activity that involves music. Indeed, it is noted that there is a special relationship between these two aspects (i.e., music and flow experience). In order to deeply explore flow in the musical domain, it is crucial to consider the complexity of the flow experience—both as a “state” and as a “trait.” Secondly, since music is a multifaceted domain, it is necessary to concentrate on specific music settings, such as (i) musical composition; (ii) listening; and (iii) musical performance. To address these issues, the current review aims to outline flow experience as a “trait” and as a “state” in the three above-mentioned musical domains. Clear and useful guidelines to distinguish between flow as a “state” and as a “trait” are provided by literature concerning flow assessment. For this purpose, three aspects of the selected studies are discussed and analyzed: (i) the characteristics of the flow assessments used; (ii) the experimental design; (iii) the results; and (iv) the interrelations between the three domains. Results showed that the dispositional approach is predominant in the above-mentioned settings, mainly regarding music performance. Several aspects concerning musical contexts still need to be deeply analyzed. Future challenges could include the role of a group level of analysis, overcoming a frequency approach toward dispositional flow, and integrating both state and dispositional flow perspectives in order to deepen comprehension of how flow takes place in musical contexts. Finally, to explain the complex relationship between these two phenomena, we suggest that music and flow could be seen as an emergent embodied system. PMID:26175709

  8. Critical care nursing: Embedded complex systems.

    PubMed

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  9. Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain front range

    USGS Publications Warehouse

    Caine, Jonathan S.; Tomusiak, S.R.A.

    2003-01-01

    Expansion of the Denver metropolitan area has resulted in substantial residential development in the foothills of the Rocky Mountain Front Range. This type of sub-urban growth, characteristic of much of the semiarid intermountain west, often relies on groundwater from individual domestic wells and is exemplified in the Turkey Creek watershed. The watershed is underlain by complexly deformed and fractured crystalline bedrock in which groundwater resources are poorly understood, and concerns regarding groundwater mining and degradation have arisen. As part of a pilot project to establish quantitative bounds on the groundwater resource, an outcrop-based geologic characterization and numerical modeling study of the brittle structures and their controls on the flow system was initiated. Existing data suggest that ground-water storage, flow, and contaminant transport are primarily controlled by a heterogeneous array of fracture networks. Inspections of well-permit data and field observations led to a conceptual model in which three dominant lithologic groups underlying sparse surface deposits form the aquifer system-metamorphic rocks, a complex array of granitic intrusive rocks, and major brittle fault zones. Pervasive but variable jointing of each lithologic group forms the "background" permeability structure and is an important component of the bulk storage capacity. This "background" is cut by brittle fault zones of varying structural styles and by pegmatite dikes, both with much higher fracture intensities relative to "background" that likely make them spatially complex conduits. Probabilistic, discrete-fracture-network and finite-element modeling was used to estimate porosity and permeability at the outcrop scale using fracture network data collected in the field. The models were conditioned to limited aquifer test and borehole geophysical data and give insight into the relative hydraulic properties between locations and geologic controls on storage and flow. Results from this study reveal a complex aquifer system in which the upper limits on estimated hydraulic properties suggest limited storage capacity and permeability as compared with many sedimentary-rock and surficial-deposit aquifers.

  10. Adaptive Conditioning of Multiple-Point Geostatistical Facies Simulation to Flow Data with Facies Probability Maps

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, M.; Jafarpour, B.

    2013-12-01

    Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.

  11. Open problems in active chaotic flows: Competition between chaos and order in granular materials.

    PubMed

    Ottino, J. M.; Khakhar, D. V.

    2002-06-01

    There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of Physics.

  12. Reciprocating free-flow isoelectric focusing device for preparative separation of proteins.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; Wang, Yi; Li, Guo-Qing; Li, Shan; Xiao, Hua; Fan, Liu-Yin; Liu, Shao-Rong; Cao, Cheng-Xi

    2015-11-27

    The traditional recycling free-flow isoelectric focusing (RFFIEF) suffered from complex structure, tedious operations and poor extensibility as well as high cost. To address these issues, a novel reciprocating free-flow isoelectric focusing device (ReFFIEF) was developed for proteins or peptides pre-fractionation. In the new device, a reciprocating background flow was for the first time introduced into free flow electrophoresis (FFE) system. The gas cushion injector (GCI) used in the previous continuous free-flow electrophoresis (CFFE) was redesigned for the reciprocating background flow. With the GCI, the reciprocating background flow could be achieved between the GCI, separation chamber and transient self-balance collector (tSBC). In a run, process fluid flowed to and from, forming a stable reciprocating fluid flow in the separation chamber. A pH gradient was created within the separation chamber, and at the same time proteins were focused repeatedly when passing through the chamber under perpendicular electric field. The ReFFIEF procedure was optimized for fractionations of three model proteins, and the optimized method was further used for pre-fractionation of model human serum samples. As compared with the traditional RFFIEF devices developed about 25 years ago, the new ReFFIEF system showed several merits, such as simple design and structure, user-friendly operation and easy to extend as well as low cost. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. System Guidelines for EMC Safety-Critical Circuits: Design, Selection, and Margin Demonstration

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.

    1996-01-01

    Demonstration of required safety margins on critical electrical/electronic circuits in large complex systems has become an implementation and cost problem. These margins are the difference between the activation level of the circuit and the electrical noise on the circuit in the actual operating environment. This document discusses the origin of the requirement and gives a detailed process flow for the identification of the system electromagnetic compatibility (EMC) critical circuit list. The process flow discusses the roles of engineering disciplines such as systems engineering, safety, and EMC. Design and analysis guidelines are provided to assist the designer in assuring the system design has a high probability of meeting the margin requirements. Examples of approaches used on actual programs (Skylab and Space Shuttle Solid Rocket Booster) are provided to show how variations of the approach can be used successfully.

  14. Acute asthma severity identification of expert system flow in emergency department

    NASA Astrophysics Data System (ADS)

    Sharif, Nurul Atikah Mohd; Ahmad, Norazura; Ahmad, Nazihah; Desa, Wan Laailatul Hanim Mat

    2017-11-01

    Integration of computerized system in healthcare management help in smoothening the documentation of patient records, highly accesses of knowledge and clinical practices guideline, and advice on decision making. Exploit the advancement of artificial intelligent such as fuzzy logic and rule-based reasoning may improve the management of emergency department in terms of uncertainty condition and medical practices adherence towards clinical guideline. This paper presenting details of the emergency department flow for acute asthma severity identification with the embedding of acute asthma severity identification expert system (AASIES). Currently, AASIES is still in preliminary stage of system validation. However, the implementation of AASIES in asthma bay management is hope can reduce the usage of paper for manual documentation and be a pioneer for the development of a more complex decision support system to smoothen the ED management and more systematic.

  15. Improvement of driving safety in road traffic system

    NASA Astrophysics Data System (ADS)

    Li, Ke-Ping; Gao, Zi-You

    2005-05-01

    A road traffic system is a complex system in which humans participate directly. In this system, human factors play a very important role. In this paper, a kind of control signal is designated at a given site (i.e., signal point) of the road. Under the effect of the control signal, the drivers will decrease their velocities when their vehicles pass the signal point. Our aim is to transit the traffic flow states from disorder to order and then improve the traffic safety. We have tested this technique for the two-lane traffic model that is based on the deterministic Nagel-Schreckenberg (NaSch) traffic model. The simulation results indicate that the traffic flow states can be transited from disorder to order. Different order states can be observed in the system and these states are safer.

  16. OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Chan, William M.

    2012-01-01

    Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.

  17. Exergy Based Analysis for the Environmental Control and Life Support Systems of the International Space Station

    NASA Technical Reports Server (NTRS)

    Clem, Kirk A.; Nelson, George J.; Mesmer, Bryan L.; Watson, Michael D.; Perry, Jay L.

    2016-01-01

    When optimizing the performance of complex systems, a logical area for concern is improving the efficiency of useful energy. The energy available for a system to perform work is defined as a system's energy content. Interactions between a system's subsystems and the surrounding environment can be accounted for by understanding various subsystem energy efficiencies. Energy balance of reactants and products, and enthalpies and entropies, can be used to represent a chemical process. Heat transfer energy represents heat loads, and flow energy represents system flows and filters. These elements allow for a system level energy balance. The energy balance equations are developed for the subsystems of the Environmental Control and Life Support (ECLS) system aboard the International Space Station (ISS). The use of these equations with system information would allow for the calculation of the energy efficiency of the system, enabling comparisons of the ISS ECLS system to other systems as well as allows for an integrated systems analysis for system optimization.

  18. A production-theory-based framework for analysing recycling systems in the e-waste sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Mario

    2005-07-15

    Modern approaches in the production theory of business and management economics propose that objects (e.g. materials) be divided into good, bad or neutral. In transformation processes such as occur in production or recycling this makes it possible to distinguish stringently between the economic revenue of a process and the economic and ecological expenditures for it. This approach can be transferred to entire systems of processes in order to determine the system revenue and the system expenditure. Material flow nets or graphs are used for this purpose. In complex material flow systems it becomes possible to calculate not only the costs,more » but also the direct and indirect environmental impacts of an individual process or a system revenue (for example a product or the elimination of waste) consistently. The approach permits a stringent analysis as well as different analysis perspectives of a material flow system. It is particularly suitable for closed-loop economic systems in which material backflows occur. With the aid of an example developed jointly with Hewlett Packard Europe, the paper outlines how this approach can be employed in the field of e-waste management.« less

  19. Particle-tracking analysis of contributing areas of public-supply wells in simple and complex flow systems, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Barlow, Paul M.

    1997-01-01

    Steady-state, two- and three-dimensional, ground-water-flow models coupled with particle tracking were evaluated to determine their effectiveness in delineating contributing areas of wells pumping from stratified-drift aquifers of Cape Cod, Massachusetts. Several contributing areas delineated by use of the three-dimensional models do not conform to simple ellipsoidal shapes that are typically delineated by use of two-dimensional analytical and numerical modeling techniques and included discontinuous areas of the water table.

  20. International Neural Network Society Annual Meeting (1994) Held in San Diego, California on 5-9 June 1994. Volume 3.

    DTIC Science & Technology

    1994-06-09

    Competitive Neural Nets Speed Complex Fluid Flow Calculations 1-366 T. Long, E. Hanzevack Neural Networks for Steam Boiler MIMO Modeling and Advisory Control...Gallinr The Cochlear Nucleus and Primary Cortex as a Sequence of Distributed Neural Filters in Phoneme IV-607 Perception J. Antrobus, C. Tarshish, S...propulsion linear model, a fuel flow actuator modelled as a linear second order system with position and rate limits, and a thrust vectoring actuator

Top