Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; McEntee, Monica; Tang, Wenjie
2016-01-12
Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less
Clark, Kevin D.; Strand, Michael R.
2013-01-01
The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate. PMID:23553628
NASA Astrophysics Data System (ADS)
Dong, Peng; Wang, Rong; Yu, Xuegong; Chen, Lin; Ma, Xiangyang; Yang, Deren
2017-07-01
We have quantitatively investigated the formation kinetics of metastable vacancy-dioxygen (VO2) complex in a structure of [VO + Oi], where a VO complex is trapped in a next-neighbor position to an interstitial oxygen atom (Oi). It is found that the VO annihilation is accompanied by the generation of metastable [VO + Oi] complex during annealing in the temperature range of 220-250 °C. The activation energy for [VO + Oi] generation appears at around 0.48 eV, which is much lower than the counterpart of stable VO2 complex. This indicates that the formation of [VO + Oi] complex originates from the reaction between VO and Oi. The ab initio calculations show that the formation energy of [VO + Oi] complex is larger than that of VO2 complex, which means that [VO + Oi] complex is thermodynamically unfavorable as compared to VO2 complex. However, the binding energy of [VO + Oi] complex is positive, indicating that [VO + Oi] complex is stable against decomposition of VO and Oi in silicon. It is believed that [VO + Oi] complex serves as the intermediate for VO to VO2 conversion.
Su, Cai Xia; Chen, Jie; Shi, Fu Ming; Guo, Ming Shen; Chang, Yan Lin
2017-07-01
The acrosome complex plays an indispensable role in the normal function of mature spermatozoa. However, the dynamic process of acrosome complex formation in insect remains poorly understood. Gampsocleis gratiosa Brunner von Wattenwyl possesses the typical characteristic of insect sperms, which is tractable in terms of size, and therefore was selected for the acrosome formation study in this report. The results show that acrosome formation can be divided into six phases: round, rotating, rhombic, cylindrical, transforming and mature phase, based on the morphological dynamics of acrosome complex and nucleus. In addition, the cytoskeleton plays a critical role in the process of acrosome formation. The results from this study indicate that: (1) glycoprotein is the major component of the acrosome proper; (2) the microfilament is one element of the acrosome complex, and may mediate the morphologic change of the acrosome complex; (3) the microtubules might also shape the nucleus and acrosome complex during the acrosome formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin
Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less
NASA Astrophysics Data System (ADS)
Singh, Neeti; Khan, Ishaat M.; Ahmad, Afaq
2010-04-01
The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment ( μEN), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used.
NASA Astrophysics Data System (ADS)
Singh, Neeti; Ahmad, Afaq
2010-04-01
The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in less polar solvent is high. The stoichiometry of the complex was found to be 1: 1 ratio by straight line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant ( K CT), molar extinction coefficient (ɛCT), standard free energy (Δ G°), oscillator strength ( f), transition dipole moment (μEN), resonance energy ( R N) and ionization potential ( I D). The results indicate that the formation constant ( K CT) for the complex were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used.
NASA Astrophysics Data System (ADS)
Gaballa, Akmal S.; Wagner, Christoph; Teleb, Said M.; Nour, El-Metwally; Elmosallamy, M. A. F.; Kaluđerović, Goran N.; Schmidt, Harry; Steinborn, Dirk
2008-03-01
Charge-transfer (CT) complexes formed in the reactions of 2,9-dimethyl-1,10-phenanthroline (Me 2phen) with some acceptors such as chloranil (Chl), picric acid (HPA) and chloranilic acid (H 2CA) have been studied in the defined solvent at room temperature. Based on elemental analysis and infrared spectra of the solid CT-complexes along with the photometric titration curves for the reactions, obtained data indicate the formation of 1:1 charge-transfer complexes [(Me 2phen)(Chl)] ( 1), [(Me 2phenH)(PA)] ( 2) and [(Me 2phenH)(HCA)] ( 3), respectively, was proposed. In the three complexes, infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction and as far as complexes 2 and 3 are concerned this interaction is associated with a hydrogen bonding. The formation constants for the complexes ( KC) were shown to be dependent upon the nature of the electron acceptors used. The X-ray structure of complex 3 indicate the formation of dimeric units [Me 2phenH] 2[(HCA) 2] in which the two anions (HCA) - are connected by two O-H⋯O hydrogen bonds whereas the cations and anions are joined together by strong three-center (bifurcated) N-H⋯O hydrogen bonds. Furthermore, the cations are arranged in a π-π stacking.
Charge-transfer complexes of sulfamethoxazole drug with different classes of acceptors
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; El-Korashy, Sabry A.; El-Deen, Ibrahim M.; El-Sayed, Shaima M.
2010-09-01
The charge-transfer complexes of the donor sulfamethoxazole (SZ) with iodine (I 2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), p-chloranil (CHL) and picric acid (PA) have been studied spectrophotometrically in chloroform or methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CT-complexes in case of four acceptors. The stoichiometry of the complexes was found to be 1:1 ratio by molar ratio method between donor and acceptor with maximum absorption bands (CT band). The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G°), oscillator strength (ƒ), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complexes were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used. IR, 1H NMR, mass spectra, UV-Vis techniques, elemental analyses (CHN) and TG-DTG investigation were used to characterize the four sulfamethoxazole charge-transfer complexes.
Copper-phospholipid interaction at cell membrane model hydrophobic surfaces.
Mlakar, Marina; Cuculić, Vlado; Frka, Sanja; Gašparović, Blaženka
2018-04-01
Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10 -11 molcm -2 . Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
STAR FORMATION ACROSS THE W3 COMPLEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio
We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts amore » large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.« less
Lipophilic ternary complexes in liquid-liquid extraction of trivalent lanthanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.; Levitskaia, Tatiana G.; Latesky, Stanley
2012-03-01
The formation of ternary complexes between lanthanide ions [Nd(III) or Eu(III)], octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO), and bis-(2-ethylhexyl)phosphoric acid (HDEHP) was probed by liquid-liquid extraction and spectroscopic techniques. Equilibrium modeling of data for the extraction of Nd(III) or Eu(III) from lactic acid media into n-dodecane solutions of CMPO and HDEHP indicates the predominant extracted species are of the type [Ln(AHA){sub 2}(A)] and [Ln(CMPO)(AHA){sub 2}(A)], where Ln = Nd or Eu and A represents the DEHP{sup -} anion. FTIR (for both Eu and Nd) and visible spectrophotometry (in the case of Nd) indicate the formation of the [Ln(CMPO)(A){sup 3}] complexes when CMPO ismore » added to n-dodecane solutions of the LnA{sub 3} compounds. Both techniques indicate a stronger propensity of CMPO to complex Nd(III) versus Eu(III).« less
Catalytic effects of glycine on prebiotic divaline and diproline formation.
Plankensteiner, Kristof; Reiner, Hannes; Rode, Bernd M
2005-07-01
The catalytic effects of the simple amino acid glycine on the formation of diproline and divaline in the prebiotically relevant salt-induced peptide formation (SIPF) reaction was investigated in systems of different amino acid starting concentrations and using the two enantiomeric forms of the respective amino acid. Results show an improved applicability of the SIPF reaction to prebiotic conditions, especially at low amino acid concentrations, as presumably present in a primordial scenario, and indicate excellent conditions and resources for chemical evolution of peptides and proteins on the early earth. For valine, furthermore differences in catalytic yield increase are found indicating a chiral selectivity of the active copper complex of the reaction and showing a connection to previously found enantiomeric differences in complex formation constants with amino acids.
Antonini, E; Ascenzi, P; Bolognesi, M; Menegatti, E; Guarneri, M
1983-04-25
The formation of the bovine beta-trypsin-bovine basic pancreatic trypsin inhibitor (Kunitz) (BPTI) complex was monitored, making use of three different signals: proflavine displacement, optical density changes in the ultraviolet region, and the loss of the catalytic activity. The rates of the reactions indicated by the three different signals were similar at neutral pH, but diverged at low pH. At pH 3.50, proflavine displacement precedes the optical density changes in the ultraviolet and the loss of enzyme activity by several orders of magnitude in time (Antonini, E., Ascenzi, P., Menegatti, E., and Guarneri, M. (1983) Biopolymers 22, 363-375). These data indicated that the bovine beta-trypsin-BPTI complex formation is a multistage process and led to the prediction that, at pH 3.50, BPTI addition to the bovine beta-trypsin-proflavine complex would remove proflavine inhibition and the enzyme would recover transiently its catalytic activity before being irreversibly inhibited by completion of BPTI binding. The kinetic evidences, by completion of BPTI binding. The kinetic evidences, here shown, verified this prediction, indicating that during the bovine beta-trypsin-BPTI complex formation one transient intermediate occurs, which is not able to bind proflavine but may bind and hydrolyze the substrate. Thus, the observed peculiar catalytic behavior is in line with the proposed reaction mechanism for the bovine beta-trypsin-BPTI complex formation, which postulates a sequence of distinct polar and apolar interactions at the contact area.
NASA Astrophysics Data System (ADS)
Teleb, Said M.; Gaballa, Akmal S.
2005-11-01
Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H 2CA) have been studied in CHCl 3 and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH 2)(CA)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants ( KC) for the complexes were shown to be dependent on the structure of the electron acceptors used.
Teleb, Said M; Gaballa, Akmal S
2005-11-01
Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H(2)CA) have been studied in CHCl(3) and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH(2))(CA)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants (K(C)) for the complexes were shown to be dependent on the structure of the electron acceptors used.
Lacy, Eilyn R; Nguyen, Binh; Le, Minh; Cox, Kari K; OHare, Caroline; Hartley, John A; Lee, Moses; Wilson, W David
2004-01-01
To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T.G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T.G-polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T.G mismatch containing DNA hairpin duplex and a similar DNA with only Watson-Crick base pairs. Large negative binding enthalpies for all of the polyamide-DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T.G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T.G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T.G mismatch sites.
Lacy, Eilyn R.; Nguyen, Binh; Le, Minh; Cox, Kari K.; O'Hare, Caroline; Hartley, John A.; Lee, Moses; Wilson, W. David
2004-01-01
To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T·G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T·G–polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T·G mismatch containing DNA hairpin duplex and a similar DNA with only Watson–Crick base pairs. Large negative binding enthalpies for all of the polyamide–DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T·G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T·G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T·G mismatch sites. PMID:15064359
Singh, Neeti; Khan, Ishaat M; Ahmad, Afaq
2010-04-01
The charge transfer complexes of the donor p-toluidine with pi-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (K(CT)), molar extinction coefficient (epsilon(CT)), standard free energy (DeltaG(o)), oscillator strength (f), transition dipole moment (mu(EN)), resonance energy (R(N)) and ionization potential (I(D)). The results indicate that the formation constant (K(CT)) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used. Copyright 2010 Elsevier B.V. All rights reserved.
Self-association and cyclodextrin solubilization of drugs.
Loftsson, Thorsteinn; Magnúsdóttir, Auethur; Másson, Már; Sigurjónsdóttir, Jóhanna F
2002-11-01
Phase-solubility diagrams are frequently used to calculate stoichiometry of drug/cyclodextrin complexes. Linear diagrams (A(L)-type systems) are thought to indicate that the complexes are first order with respect to cyclodextrin and first or higher order with respect to the drug. Positive deviation from linearity (A(P)-type systems) are thought to indicate formation of complexes that are first order with respect to the drug but second or higher order with respect to cyclodextrin. The phase solubility of several different compounds, i.e., cholesterol, ibuprofen, diflunisal, alprazolam, 17beta-estradiol and diethylstilbestrol, and various charged and uncharged cyclodextrins was investigated. Phase-solubility diagrams of cholesterol in aqueous cyclodextrin solutions were all of A(P) type. However, the phase-solubility diagrams obtained with charged cyclodextrins could not be fitted to complexes of second or higher order with respect to cyclodextrin. The phase-solubility diagrams of ibuprofen and diflunisal were of A(L) type with slope greater than unity indicating formation of 2:1 drug/cyclodextrin complexes. However, Job's plots and space filling docking studies indicated that 1:1 complexes were formed. These and other observations show that stoichiometry of drug/cyclodextrin complexes cannot be derived from simple phase-solubility studies. Furthermore, the results indicate that drug/cyclodextrin complexes can self-associate to form water-soluble aggregates, which then can further solubilize the drug through non-inclusion complexation. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2307-2316, 2002
14-3-3 Regulates Actin Filament Formation in the Deep-Branching Eukaryote Giardia lamblia
Xu, Jennifer; Steele-Ogus, Melissa; Alas, Germain C. M.
2017-01-01
ABSTRACT The phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote Giardia lamblia; however, Giardia lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of G. lamblia 14-3-3 (Gl-14-3-3) in actin regulation was unknown. Gl-14-3-3 depletion resulted in an overall disruption of actin organization characterized by ectopically distributed short actin filaments. Using phosphatase and kinase inhibitors, we demonstrated that actin phosphorylation correlated with destabilization of the actin network and increased complex formation with 14-3-3, while blocking actin phosphorylation stabilized actin filaments and attenuated complex formation. Giardia’s sole Rho family GTPase, Gl-Rac, modulates Gl-14-3-3’s association with actin, providing the first connection between Gl-Rac and the actin cytoskeleton in Giardia. Giardia actin (Gl-actin) contains two putative 14-3-3 binding motifs, one of which (S330) is conserved in mammalian actin. Mutation of these sites reduced, but did not completely disrupt, the association with 14-3-3. Native gels and overlay assays indicate that intermediate proteins are required to support complex formation between 14-3-3 and actin. Overall, our results support a role for 14-3-3 as a regulator of actin; however, the presence of multiple 14-3-3–actin complexes suggests a more complex regulatory relationship than might be expected for a minimalistic parasite. IMPORTANCE Giardia lacks canonical actin-binding proteins. Gl-14-3-3 was identified as an actin interactor, but the significance of this interaction was unknown. Loss of Gl-14-3-3 results in ectopic short actin filaments, indicating that Gl-14-3-3 is an important regulator of the actin cytoskeleton in Giardia. Drug studies indicate that Gl-14-3-3 complex formation is in part phospho-regulated. We demonstrate that complex formation is downstream of Giardia’s sole Rho family GTPase, Gl-Rac. This result provides the first mechanistic connection between Gl-Rac and Gl-actin in Giardia. Native gels and overlay assays indicate intermediate proteins are required to support the interaction between Gl-14-3-3 and Gl-actin, suggesting that Gl-14-3-3 is regulating multiple Gl-actin complexes. PMID:28932813
Reduced graphene oxide and porphyrin. An interactive affair in 2-D.
Wojcik, Aleksandra; Kamat, Prashant V
2010-11-23
Photoexcited cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) undergoes charge-transfer interaction with chemically reduced graphene oxide (RGO). Formation of the ground-state TMPyP-RGO complex in solution is marked by the red-shift of the porphyrin absorption band. This complexation was analyzed by Benesi-Hildebrand plot. Porphyrin fluorescence lifetime reduced from 5 to 1 ns upon complexation with RGO, indicating excited-state interaction between singlet excited porphyrin and RGO. Femtosecond transient absorption measurements carried out with TMPyP adsorbed on RGO film revealed fast decay of the singlet excited state, followed by the formation of a longer-living product with an absorption maximum around 515 nm indicating the formation of a porphyrin radical cation. The ability of TMPyP-RGO to undergo photoinduced charge separation was further confirmed from the photoelectrochemical measurements. TMPyP-RGO coated conducting glass electrodes are capable of generating photocurrent under visible excitation. These results are indicative of the electron transfer between photoexcited porphyrin and RGO. The role of graphene in accepting and shuttling electrons in light-harvesting assemblies is discussed.
Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids.
Chao, Chen; Yu, Jinglin; Wang, Shuo; Copeland, Les; Wang, Shujun
2018-01-10
This study aimed to reveal the mechanism of formation of complexes between native maize starch (NMS) and different types of lipids, namely palmitic acid (PA), monopalmitate glycerol (MPG), dipalmitate glycerol (DPG), and tripalmitate glycerol (TPG). The complexing index followed the order of MPG (96.3%) > PA (41.8%) > TPG (8.3%) > DPG (1.1%), indicating that MPG formed more complexes with NMS than PA, and that few complexes were formed between NMS and DPG and TPG. The NMS-PA complex presented higher thermal transition temperatures and lower enthalpy change than the NMS-MPG complex, indicating that although MPG formed more starch complexes, they had less stable crystalline structures than the complex between NMS and PA. X-ray diffraction (XRD) and Raman spectroscopy showed that both MPG and PA formed V-type crystalline structures with NMS, and confirmed that no complexes were formed between NMS and DPG and TPG. We conclude that the monoglyceride formed more starch-lipid complex with maize starch than PA, but that the monoglyceride complex had a less stable structure than that formed with PA. The di- and triglycerides did not form complexes with maize starch.
RacGAP50C is sufficient to signal cleavage furrow formation during cytokinesis.
D'Avino, Pier Paolo; Savoian, Matthew S; Capalbo, Luisa; Glover, David M
2006-11-01
Several studies indicate that spindle microtubules determine the position of the cleavage plane at the end of cell division, but their exact role in triggering the formation and ingression of the cleavage furrow is still unclear. Here we show that in Drosophila depletion of either the GAP (GTPase-activating protein) or the kinesin-like subunit of the evolutionary conserved centralspindlin complex prevents furrowing without affecting the association of astral microtubules with the cell cortex. Moreover, time-lapse imaging indicates that astral microtubules serve to deliver the centralspindlin complex to the equatorial cortex just before furrow formation. However, when the GAP-signaling component was mislocalized around the entire cortex using a membrane-tethering motif, this caused ectopic furrowing even in the absence of its motor partner. Thus, the GAP component of centralspindlin is both necessary and sufficient for furrow formation and ingression and astral microtubules provide a route for its delivery to the cleavage site.
Saha, Abhijit; Manna, Swarup; Nandi, Arun K
2007-12-18
The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (
The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition
NASA Astrophysics Data System (ADS)
Potapov, Alexey; Jäger, Cornelia; Henning, Thomas; Jonusas, Mindaugas; Krim, Lahouari
2017-09-01
An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H2CO is an indication for a possible methanol formation route in such systems.
Jang, M H; Scrutton, N S; Hille, R
2000-04-28
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.
Naleskina, L A
1985-01-01
Analysis of the topography peculiarities and distribution of oxidized melanine and its precursors (DOPA-oxide activity and catecholamine) in pigment nevuses and malignant melanomas of skin shows that the studied peculiarities are a complex of intersupplementary markers of melanine formation, correlate with the quality and the degree of proliferative process expression in tumours of this genesis and may be used for their malignancy rating.
Does Formative Assessment Improve Student Learning and Performance in Soil Science?
ERIC Educational Resources Information Center
Kopittke, Peter M.; Wehr, J. Bernhard; Menzies, Neal W.
2012-01-01
Soil science students are required to apply knowledge from a range of disciplines to unfamiliar scenarios to solve complex problems. To encourage deep learning (with student performance an indicator of learning), a formative assessment exercise was introduced to a second-year soil science subject. For the formative assessment exercise, students…
Upreti, Mani; Strassburger, Ken; Chen, You L.; Wu, Shaoxiong; Prakash, Indra
2011-01-01
Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes. PMID:22174615
Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon
NASA Astrophysics Data System (ADS)
Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri
2001-07-01
Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Elfalaky, A.; Elesh, Eman
2011-03-01
Charge-transfer complexes formed between norfloxacin (nor) or ciprofloxacin (cip) drugs as donors with picric acid (PA) and/or 3,5-dinitrobenzoic acid (DNB) as π-acceptors have been studied spectrophotometrically in methanol solvent at room temperature. The results indicated the formation of CT-complexes with molar ratio1:1 between donor and acceptor at maximum CT-bands. In the terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment (μ), resonance energy ( RN) and ionization potential ( ID) were estimated. IR, H NMR, UV-Vis techniques, elemental analyses (CHN) and TG-DTG investigations were used to characterize the structural of charge-transfer complexes. It indicates that the CT interaction was associated with a proton migration from each acceptor to nor or cip donors which followed by appearing intermolecular hydrogen bond. In addition, X-ray investigation was carried out to scrutinize the crystal structure of the resulted CT-complexes.
Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S.; Okada, Manabu; Langenbach, Robert
2009-01-01
Prostaglandin E2 (PGE2) is elevated in many tumor types, but PGE2's contributions to tumor growth are largely unknown. To investigate PGE2's roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors—cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2—were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE2 production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3′,5′-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2−/− mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR–β-arrestin–Src complex. Indeed, immunoprecipitation of β-arrestin1 or p-Src indicated the presence of an EP2–β-arrestin1–p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with β-arrestin1 and Src that contributed to signaling and/or EP2 desensitization. PMID:19587094
NASA Astrophysics Data System (ADS)
Moghadam, Hadi Shafaii; Li, Xian-Hua; Stern, Robert J.; Ghorbani, Ghasem; Bakhshizad, Farzaneh
2016-01-01
We study migmatites and other metamorphic rocks in the Zanjan-Takab region of NW Iran and use these results to report the first evidence of Oligocene core complex formation in Iran. Four samples of migmatites associated with paragneisses, including leucosomes and associated para-amphibolite melanosomes were selected for U-Pb dating and Hf-O isotopic analysis. Zircon cores - interpreted as originally detrital zircons - have variable ages that peak at ca. 100-110 Ma, but their sedimentation age - indicated by the youngest 206Pb/238U ages - is ca. 35-40 Ma. New zircons associated with incipient melting occur as overgrowths around zircon cores and/or as newly grown grains. Morphologies and internal structures suggest that rim growth and formation of new zircons were associated with partial melting. All four samples contain zircons with rims that yield 206Pb/238U ages of 28-25 Ma, indicating that partial melting occurred in Late Oligocene time. δ18O values for zircon rims vary between 8.2 and 12.3‰, significantly higher than expected for mantle inputs (δ18O 6‰) and consistent with equilibrium with surface materials. Zircon rims yield εHf(t) between 2.2 and 12.4 and two-stage Hf model ages of 448-562 Ma, indicating that the region is underlain by Cadomian-Caledonian crust. According to the Hf-O isotopic values, the main mechanism forming zircon rims was dissolution of pre-existing detrital zircons with reprecipitation of new zircon shortly thereafter. Oligocene ages indicate that partial melting accompanied core complex formation in the Zanjan-Takab region. Extension, melting, and core complex formation in south-central Iran are Eocene in age, but younger ages of Oligocene-Miocene in NW Iran and Turkey indicate that extension was distributed throughout the region during Cenozoic time.
The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapov, Alexey; Jäger, Cornelia; Henning, Thomas
An understanding of possible scenarios for the formation of astrophysically relevant molecules, particularly complex organic molecules, will bring us one step closer to the understanding of our astrochemical heritage. In this context, formaldehyde is an important molecule as a precursor of methanol, which in turn is a starting point for the formation of more complex organic species. In the present experiments, for the first time, following the synthesis of CO, formaldehyde has been produced on the surface of interstellar grain analogs, hydrogenated fullerene-like carbon grains, by O and H atom bombardment. The formation of H{sub 2}CO is an indication formore » a possible methanol formation route in such systems.« less
Li, Zuo-Xi; Zhao, Jiong-Peng; Sañudo, E C; Ma, Hong; Pan, Zhong-Da; Zeng, Yong-Fei; Bu, Xian-He
2009-12-21
Sparked by the strategy of pillared-layer MOFs, three formate coordination polymers, {[Ni(2)(HCO(2))(3)(L)(2)](NO(3)).2H(2)O}(infinity) (1), {[Co(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (2), and {[Cu(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (3), have been synthesized by employing the rodlike ligand 4,4'-bis(imidazol-1-yl)biphenyl (L) as the pillar. Structural analysis indicates that the title complexes 1-3 are isostructural compounds, which possess metal-formate 2D layers perpendicularly pillared by the ligand L to afford a 3D open framework. This is an interesting example of a Kagome lattice based on the formate mediator. Moreover, the formate anion of this 2D Kagome layer exhibits various bridging modes: anti-anti, syn-anti, and 3.21 modes. Their magnetic measurements reveals that only complex 1 presents the spin canting phenomenon, while its isostructural Co(II) and Cu(II) complexes are simply paramagnets with antiferromagnetic coupling.
NASA Astrophysics Data System (ADS)
Singh, Neeti; Ahmad, Afaq
2010-08-01
The charge transfer complex of 1-Naphthylamine as a donor with π-acceptor picric acid has been studied spectrophotometrically in different solvents at room temperature. The results indicate that the formation of charge transfer complex is high in less polar solvent. The stoichiometry of the complex was found to be 1:1 by straight line method. The data are analysed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G o), oscillator strength ( ƒ), transition dipole moment ( μ EN), resonance energy ( R N) and ionization potential ( I D). It is concluded that the formation constant ( KCT) of the complex is found to be depends upon the nature of both electron acceptor and donor and also on the polarity of solvents. Further the charge transfer molecular complex between picric acid and 1-Naphthylamine is stabilized by hydrogen bonding.
SEPALLATA3: the 'glue' for MADS box transcription factor complex formation
Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C
2009-01-01
Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611
NASA Astrophysics Data System (ADS)
Gaballa, Akmal S.; Amin, Alaa S.
2015-06-01
The reactions of electron acceptors such as picric acid (HPA) and 7,7‧,8,8‧-tetracyano-p-quinodimethane (TCNQ) with 2-hydroxypyridine (HPyO) have been investigated in EtOH at room temperature. Based on elemental analysis and IR spectra of the solid CT-complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge transfer complexes [(H2PyO)(PA)] and [(PyO)(HTCNQ)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding in [(H2PyO)(PA)] complex. Another charge transfer interaction was observed in [(PyO)(HTCNQ)] complex. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes and the kinetics of thermal decomposition of the complexes have been studied. The CT complexes were screened for their antibacterial activities against selected bacterial strains.
Gaballa, Akmal S; Amin, Alaa S
2015-06-15
The reactions of electron acceptors such as picric acid (HPA) and 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) with 2-hydroxypyridine (HPyO) have been investigated in EtOH at room temperature. Based on elemental analysis and IR spectra of the solid CT-complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge transfer complexes [(H2PyO)(PA)] and [(PyO)(HTCNQ)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding in [(H2PyO)(PA)] complex. Another charge transfer interaction was observed in [(PyO)(HTCNQ)] complex. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes and the kinetics of thermal decomposition of the complexes have been studied. The CT complexes were screened for their antibacterial activities against selected bacterial strains. Copyright © 2015 Elsevier B.V. All rights reserved.
Pattern formation based on complex coupling mechanism in dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Weibo; College of Aeronautical Engineering, Binzhou University, Binzhou 256603; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com
2016-08-15
The pattern formation of cinque-dice square superlattice pattern (CDSSP) is investigated based on the complex coupling mechanism in a dielectric barrier discharge (DBD) system. The spatio-temporal structure of CDSSP obtained by using an intensified-charge coupled device indicates that CDSSP is an interleaving of two kinds of subpatterns (mixture of rectangle and square, and dot-line square) which discharge twice in one half voltage, respectively. Selected by the complex coupling of two subpatterns, the CDSSP can be formed and shows good stability. This investigation based on gas discharge theory together with nonlinear theory may provide a deeper understanding for the nonlinear characteristicsmore » and even the formation mechanism of patterns in DBD.« less
Nie, Shufang; Zhang, Shu; Pan, Weisan; Liu, Yanli
2011-05-01
The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble β-cyclodextrin-epichlorohydrin polymer (β-CDP), as an effective drug carrier to enhance the dissolution rate and oral bioavailability of glipizide as a poorly water-soluble model drug. Inclusion complexes of glipizide with β-CDP were prepared by the co-evaporation method and characterized by phase solubility, dissolution, and differential scanning calorimetry. The solubility curve was classified as type A(L), which indicated the formation of 1:1 complex between glipizide and β-CDP. β-CDP had better properties of increasing the aqueous solubility of glipizide compared with HP-β-CD. The dissolution rate of drug from the β-CDP complexes was significantly greater than that of the corresponding physical mixtures indicating that the formation of amorphous complex increased the solubility of glipizide. Moreover, the increment in drug dissolution rate from the glipizide/β-CDP systems was higher than that from the corresponding ones with HP-β-CD, which indicated that β-CDP could provide greater capability of solubilization for poorly soluble drugs. Furthermore, in vivo study revealed that the bioavailability of glipizide was significantly improved by glipizide /β-CDP inclusion complex after oral administration to beagle dogs.
Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I
NASA Astrophysics Data System (ADS)
Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.
2018-05-01
We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.
Zheng, Kaijie; Tian, Hainan; Hu, Qingnan; Guo, Hongyan; Yang, Li; Cai, Ling; Wang, Xutong; Liu, Bao; Wang, Shucai
2016-01-01
In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins for binding bHLH proteins, thus blocking the formation of the MBW complex. By BLASTing the rice (Oryza sativa) protein database using the entire amino acid sequence of Arabidopsis R3 MYB transcription factor TRICHOMELESS1 (TCL1), we found that there are two genes in rice genome encoding R3 MYB transcription factors, namely Oryza sativa TRICHOMELESS1 (OsTCL1) and OsTCL2. Expressing OsTCL1 in Arabidopsis inhibited trichome formation and promoted root hair formation, and OsTCL1 interacted with GL3 when tested in Arabidopsis protoplasts. Consistent with these observations, expression levels of GL2, R2R3 MYB transcription factor gene GLABRA1 (GL1) and several R3 MYB genes were greatly reduced, indicating that OsTCL1 is functional R3 MYB. However, trichome and root hair formation in transgenic rice plants overexpressing OsTCL1 remained largely unchanged, and elevated expression of OsGL2 was observed in the transgenic rice plants, indicating that rice may use different mechanisms to regulate trichome formation. PMID:26758286
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.
2013-04-01
Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D
2010-05-28
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.
NASA Astrophysics Data System (ADS)
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M.; Graham, Matthew J.; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z. D.
2010-05-01
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with β-cyclodextrin (β-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state C13 NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the β-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in C13 solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after β-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of β-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that β-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using H1 NMR, and a 3:1 (PO unit to β-CD) was found for all inclusion complexes, which indicated that the number of threaded β-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the β-CD in the inclusion complex formed a channel-like structure that is different from the pure β-CD crystal structure.
Fröhlich, Daniel R; Kremleva, Alena; Rossberg, André; Skerencak-Frech, Andrej; Koke, Carsten; Krüger, Sven; Rösch, Notker; Panak, Petra J
2017-06-19
The complexation of Am(III) with formate in aqueous solution is studied as a function of the pH value using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy, iterative transformation factor analysis (ITFA), and quantum chemical calculations. The Am L III -edge EXAFS spectra are analyzed to determine the molecular structure (coordination numbers; Am-O and Am-C distances) of the formed Am(III)-formate species and to track the shift of the Am(III) speciation with increasing pH. The experimental data are compared to predictions from density functional calculations. The results indicate that formate binds to Am(III) in a monodentate fashion, in agreement with crystal structures of lanthanide formates. Furthermore, the investigations are complemented by thermodynamic speciation calculations to verify further the results obtained.
Ahn, Steven T; Bielinski, Elizabeth A; Lane, Elizabeth M; Chen, Yanqiao; Bernskoetter, Wesley H; Hazari, Nilay; Palmore, G Tayhas R
2015-04-07
An iridium(III) trihydride complex supported by a pincer ligand with a hydrogen bond donor in the secondary coordination sphere promotes the electrocatalytic reduction of CO2 to formate in water/acetonitrile with excellent Faradaic efficiency and low overpotential. Preliminary mechanistic experiments indicate formate formation is facile while product release is a kinetically difficult step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisenberg, C.W.
1979-01-01
The Feather River Ultramafic Complex is a partially serpentinized body of metamorphosed alpine peridotite and gabbro that lies along the northern part of the Melones fault zone, a NNW trending belt in the Northern Sierra Nevada. The complex was studied in the area of Red Hill, near the canyon of the North Fork, Feather River. The complex is separated from the Calaveras Terrain and Arlington Formation country rocks by steep faults; the Melones Fault on the east and the Rich Bar Fault on the west. Units recognized within the complex include Rich Bar metamorphic rocks, peridotite, metaperidotite, tremolite-olivine schist, hornblendemore » schist, and layered metagabbro. The Rich Bar metamorphic rocks are tectonic slices of amphibolite grade hornblende schist, mica schist, and quartzite found along the Rich Bar Fault. The complex shows evidence of 4 major events. E-1 (Pennsylvania-Permian) was formation of the peridotite-gabbro complex. E-2 (Permo-Triassic) consisted of pervasive shearing parallel to the Rich Bar Fault associated with initial emplacement within the Sierra Nevada. E-3 is believed to be compression and metamorphism (serpentinization) associated with the Nevadan orogeny. E-4 was associated with intrusion of nearby plutons. The regional association of the complex with late paleozoic arc volcanics of the Taylorsville area suggest formation near or under an island arc. Metamorphism during emplacement indicates association with the arc at that time. Left-lateral shear during emplacement along the Rich Bar Fault indicates NW directed thrusting when the layering in metagabbro is rotated to horizontal.« less
Pinske, Constanze; Jaroschinsky, Monique; Sawers, R Gary
2013-06-01
The membrane-associated formate hydrogenlyase (FHL) complex of bacteria like Escherichia coli is responsible for the disproportionation of formic acid into the gaseous products carbon dioxide and dihydrogen. It comprises minimally seven proteins including FdhF and HycE, the catalytic subunits of formate dehydrogenase H and hydrogenase 3, respectively. Four proteins of the FHL complex have iron-sulphur cluster ([Fe-S]) cofactors. Biosynthesis of [Fe-S] is principally catalysed by the Isc or Suf systems and each comprises proteins for assembly and for delivery of [Fe-S]. This study demonstrates that the Isc system is essential for biosynthesis of an active FHL complex. In the absence of the IscU assembly protein no hydrogen production or activity of FHL subcomponents was detected. A deletion of the iscU gene also resulted in reduced intracellular formate levels partially due to impaired synthesis of pyruvate formate-lyase, which is dependent on the [Fe-S]-containing regulator FNR. This caused reduced expression of the formate-inducible fdhF gene. The A-type carrier (ATC) proteins IscA and ErpA probably deliver [Fe-S] to specific apoprotein components of the FHL complex because mutants lacking either protein exhibited strongly reduced hydrogen production. Neither ATC protein could compensate for the lack of the other, suggesting that they had independent roles in [Fe-S] delivery to complex components. Together, the data indicate that the Isc system modulates FHL complex biosynthesis directly by provision of [Fe-S] as well as indirectly by influencing gene expression through the delivery of [Fe-S] to key regulators and enzymes that ultimately control the generation and oxidation of formate.
Inhibition of amyloid peptide fibril formation by gold-sulfur complexes.
Wang, Wenji; Zhao, Cong; Zhu, Dengsen; Gong, Gehui; Du, Weihong
2017-06-01
Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Balraj, C.; Ganesh, K.; Elango, K. P.
2011-07-01
Spectroscopic and spectrofluorimetric techniques have been employed to investigate the structure of the charge transfer (CT) complexes of Trimethoprim (TMP) and Cimitidine (CTD) drugs with 2,3,5,6-tetrachloro-1,4-benzoquinone ( p-chloranil, p-CHL). The stoichiometry of the complexes was found to be 1:2 for TMP- p-CHL system and 1:1 for CTD- p-CHL system. The thermodynamic results indicated that the formation of molecular complex between the donors and the acceptor is spontaneous and endothermic. The results of electronic spectral studies indicated that the formation constant for CTD- p-CHL system is found to be higher than that for TMP- p-CHL system. The observation is well supported by the results of fluorescence quenching studies and the association constants calculated for CTD- p-CHL system is 36.2 × 10 3 mol L -1 and that for TMP- p-CHL system is 2.6 × 10 3 mol L -1. The kinetic results, in both the cases, indicated that the interaction is first order each with respect to the concentration of the donor and the acceptor. The physico-chemical parameters viz. oscillator strength, dipole moment, ionization potential and dissociation energy of the complexes were also determined and discussed. Structural characterization of the complexes were done using FT-IR and 1H NMR spectral techniques and the results indicated that, in TMP, the free NH 2 group while in CTD the pyrazole N sbnd H moiety involves in complexation with the acceptor, p-CHL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joulin, Y.; Delaforge, M.; Hoellinger, H.
1990-01-01
p-125I-amphetamine (I-Amp) is retained significantly in liver and lung during brain tomoscintigraphy. To attempt to explain this clinical observation, we have investigated the interaction of I-Amp with rat liver and lung microsomal proteins. Studies using spectral shift technique indicate that low concentration of I-Amp gives a type I complex and high concentration appears very stable type II complex with cytochrome P-450 Fe III. In the presence of NADPH, I-Amp gives rise to a 455 nm absorbing complex with similar properties to the Fe-RNO complexes. This complex formation was greatly enhanced with phenobarbital treated liver microsomes. The in vitro binding studymore » shows that I-Amp and/or its metabolites was covalently bound to macromolecules in the presence of the molecular oxygen and NADPH-generating system. Incubation in the presence of glutathione, cystein and radical scavengers decreases binding. Mixed function oxydase (MFO) inhibitors diminish the amount of covalent binding and alter the extent of metabolite formation. The total covalent binding level increased with liver microsomes from PB pretreated rats as it was observed with the 455nm complex formation. The radioactivity distribution on microsomal proteins was examinated with SDS polyacrylamide gel electrophoresis and autoradiography. This experiment proves that the radiolabelled compounds are bound on the cytochrome P-450. The radioactivity bound increased when the PB induced rat liver microsomes were used. All these results indicate that I-Amp was activated by an oxydative process dependent on the MFO system which suggests a N-oxydation of I-Amp and the formation of reactive entities which covalently bind to proteins.« less
Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa
2015-02-14
The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.
Ellagic acid inhibits iron-mediated free radical formation
NASA Astrophysics Data System (ADS)
Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo
2017-02-01
Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.
Demixing-stimulated lane formation in binary complex plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, C.-R.; Jiang, K.; Suetterlin, K. R.
2011-11-29
Recently lane formation and phase separation have been reported for experiments with binary complex plasmas in the PK3-Plus laboratory onboard the International Space Station (ISS). Positive non-additivity of particle interactions is known to stimulate phase separation (demixing), but its effect on lane formation is unknown. In this work, we used Langevin dynamics (LD) simulation to probe the role of non-additivity interactions on lane formation. The competition between laning and demixing leads to thicker lanes. Analysis based on anisotropic scaling indices reveals a crossover from normal laning mode to a demixing-stimulated laning mode. Extensive numerical simulations enabled us to identify amore » critical value of the non-additivity parameter {Delta} for the crossover.« less
The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.
Nash, K L; Brigham, D; Shehee, T C; Martin, A
2012-12-28
The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.
Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates
Franz, Cerstin; Askjaer, Peter; Antonin, Wolfram; Iglesias, Carmen López; Haselmann, Uta; Schelder, Malgorzata; de Marco, Ario; Wilm, Matthias; Antony, Claude; Mattaj, Iain W
2005-01-01
Nuclear envelope (NE) formation during cell division in multicellular organisms is a central yet poorly understood biological process. We report that the conserved nucleoporin Nup155 has an essential function in NE formation in Caenorhabditis elegans embryos and in Xenopus laevis egg extracts. In vivo depletion of Nup155 led to failure of nuclear lamina formation and defects in chromosome segregation at anaphase. Nup155 depletion inhibited accumulation of nucleoporins at the nuclear periphery, including those recruited to chromatin early in NE formation. Electron microscopy analysis revealed that Nup155 is also required for the formation of a continuous nuclear membrane in vivo and in vitro. Time-course experiments indicated that Nup155 is recruited to chromatin at the time of NE sealing, suggesting that nuclear pore complex assembly has to progress to a relatively late stage before NE membrane assembly occurs. PMID:16193066
NASA Astrophysics Data System (ADS)
Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour
2008-09-01
The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.
Kar, Paramita; Biswas, Rituparna; Drew, Michael G B; Ida, Yumi; Ishida, Takayuki; Ghosh, Ashutosh
2011-04-07
The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate- and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO(2))](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-antiμ-1κO:2κO' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of χ(ac)' and a concomitant increase of χ(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The μ-nitrito-1κO:2κO' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the χ(ac)' and χ(ac)'' show frequency dependence. © The Royal Society of Chemistry 2011
Blanes-Mira, Clara; Merino, Jaime M; Valera, Elvira; Fernández-Ballester, Gregorio; Gutiérrez, Luis M; Viniegra, Salvador; Pérez-Payá, Enrique; Ferrer-Montiel, Antonio
2004-01-01
Synthetic peptides patterned after the C-terminus of synaptosomal associated protein of 25 kDa (SNAP25) efficiently abrogate regulated exocytosis. In contrast, the use of SNAP25 N-terminal-derived peptides to modulate SNAP receptors (SNARE) complex assembly and neurosecretion has not been explored. Here, we show that the N-terminus of SNAP25, specially the segment that encompasses 22Ala-44Ile, is essential for the formation of the SNARE complex. Peptides patterned after this protein domain are potent inhibitors of SNARE complex formation. The inhibitory activity correlated with their propensity to adopt an alpha-helical secondary structure. These peptides abrogated SNARE complex formation only when added previous to the onset of aggregate assembly. Analysis of the mechanism of action revealed that these peptides disrupted the binary complex formed by SNAP25 and syntaxin. The identified peptides inhibited Ca2+-dependent exocytosis from detergent-permeabilized excitable cells. Noteworthy, these amino acid sequences markedly protected intact hippocampal neurones against hypoglycaemia-induced, glutamate-mediated excitotoxicity with a potency that rivalled that displayed by botulinum neurotoxins. Our findings indicate that peptides patterned after the N-terminus of SNAP25 are potent inhibitors of SNARE complex formation and neuronal exocytosis. Because of their activity in intact neurones, these cell permeable peptides may be hits for antispasmodic and analgesic drug development.
NASA Astrophysics Data System (ADS)
Sharma, S. S.; Kadia, M. V.
2014-12-01
The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (Δ G, Δ H, and Δ S) are also evaluated. Negative Δ G and Δ H values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the "gadolinium break." Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.
Zhang, Liwen; Xu, Hua; Chen, Chwen-Lih; Green-Church, Kari B.; Freitas, Michael A.; Chen, Yeong-Renn
2008-01-01
Protein thiols with regulatory functions play a critical role in maintaining the homeostasis of the redox state in mitochondria. One major host of regulatory cysteines in mitochondria is complex I, with the thiols primarily located on its 51 kDa FMN-binding subunit. In response to oxidative stress, these thiols are expected to form intra-molecular disulfide bridges as one of their oxidative post-translational modifications. Here, to test this hypothesis and gain insights into the molecular pattern of disulfide in complex I, the isolated bovine complex I was prepared. Superoxide (O2•−) is generated by complex I under the conditions of enzyme turnover. O2•−-induced intra-molecular disulfide formation at the 51 kDa subunit was determined by tandem mass spectrometry and database searching, with the latter accomplished by adaptation of the in-house developed database search engine, MassMatrix [Xu H., et. al J. Proteome Res. (2008) 7, 138–44]. LC/MS/MS analysis of tryptic/chymotryptic digests of the 51 kDa subunit from alkylated complex I revealed that four specific cysteines (C125, C142, C187, and C206) of the 51 kDa subunit were involved in the formation of mixed intra-molecular disulfide linkages. In all, three cysteine pairs were observed: C125/C142, C187/C206, and C142/C206. The formation of disulfide bond was subsequently inhibited by superoxide dismutase, indicating the involvement of O2•−. These results elucidated by mass spectrometry indicates that the residues of C125, C142, C187, and C206 are the specific regulatory cysteines of complex I, and they participate in the oxidative modification with disulfide formation under the physiological or pathophysiological conditions of oxidative stress. PMID:18789718
Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.
Urakawa, Atsushi; Iannuzzi, Marcella; Hutter, Jürg; Baiker, Alfons
2007-01-01
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.
Structural evaluation of crystalline ternary γ-cyclodextrin complex.
Higashi, Kenjirou; Ideura, Saori; Waraya, Haruka; Moribe, Kunikazu; Yamamoto, Keiji
2011-01-01
The structure of a crystalline γ-cyclodextrin (γ-CD) ternary complex containing salicylic acid (SA) and flurbiprofen (FBP) prepared by sealed heating was investigated. FBP/γ-CD inclusion complex was prepared by coprecipitation; its molar ratio was determined as 1/1. Powder X-ray diffraction measurements showed that the molecular packing of γ-CD changed from hexagonal to monoclinic columnar form by sealed heating of SA with dried FBP/γ-CD inclusion complex, indicating ternary complex formation. The stoichiometry of SA/FBP/γ-CD was estimated as 2/1/1. Solid-state transformation of γ-CD molecular packing upon water vapor adsorption and desorption was irreversible for this ternary complex, in contrast to the reversible transition for the FBP/γ-CD inclusion complex. The ternary complex contained one FBP molecule in the cavity of γ-CD and two SA molecules in the intermolecular space between neighboring γ-CD column stacks. Infrared and (13) C solid-state NMR spectroscopies revealed that the molecular states of SA and FBP changed upon ternary complex formation. In the complex, dimer FBP molecules were sandwiched between two γ-CD molecules whereas each monomer SA molecule was present in the intermolecular space of γ-CD. Ternary complex formation was also observed for other drug-guest systems using naproxen and ketoprofen. Thus, the complex can be used to formulate variety of drugs. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Hanson, Kelsey L.; VandenBrink, Brooke M.; Babu, Kantipudi N.; Allen, Kyle E.; Nelson, Wendel L.
2010-01-01
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine ≫ primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d3-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation. PMID:20200233
Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L
2010-06-01
Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.
Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex
Zha, Dongqing; Chen, Cheng; Liang, Wei; Chen, Xinghua; Ma, Tean; Yang, Hongxia; van Goor, Harry; Ding, Guohua
2013-01-01
Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-α-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism. [BMB Reports 2013; 46(4): 230-235] PMID:23615266
Rodrigues, Lindaiane Bezerra; Martins, Anita Oliveira Brito Pereira Bezerra; Ribeiro-Filho, Jaime; Cesário, Francisco Rafael Alves Santana; E Castro, Fyama Ferreira; de Albuquerque, Thaís Rodrigues; Fernandes, Maria Neyze Martins; da Silva, Bruno Anderson Fernandes; Quintans Júnior, Lucindo José; Araújo, Adriano Antunes de Sousa; Menezes, Paula Dos Passos; Nunes, Paula Santos; Matos, Isabella Gonçalves; Coutinho, Henrique Douglas Melo; Goncalves Wanderley, Almir; de Menezes, Irwin Rose Alencar
2017-11-01
Cyclodextrins (CDs) are cyclic oligosaccharides can enhance the bioavailability of drugs. Ocimum basilicum is an aromatic plant found in Brazil used in culinary. The essential oil of this plant presents anti-edematogenic and anti-inflammatory activities in acute and chronic inflammation. The aim of this study was to investigate the anti-inflammatory effects of the essential oil obtained from O. basilicum complexed with β - cyclodextrin (OBEO/β-CD) in mice. The complexation with β-cyclodextrin (β-CD) was performed by different methods and analyzed by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). The anti-inflammatory activity was evaluated using mice models of paw edema induced by carrageenan, dextran, histamine and arachidonic acid (AA); vascular permeability and peritonitis induced by carrageenan and granuloma induced by cotton block introduction. The DSC, TG and SEM analysis indicated that the OBEO was successfully complexed with β-CD. The oral administration of OEOB/β-CD prevented paw edema formation by decreasing vascular permeability in vivo, inhibited leukocyte recruitment to the peritoneal cavity, and inhibited granuloma formation in mice. Our results indicate that conjugation with β-CD improves the anti-inflammatory effects of OBEO in mice models of acute and chronic inflammation, indicating that this complex can be used in anti-inflammatory drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermodynamic aspects of dicarboxylate recognition by simple artificial receptors.
Linton, B R; Goodman, M S; Fan, E; van Arman, S A; Hamilton, A D
2001-11-02
Recognition of dicarboxylates by bis-functional hydrogen-bonding receptors displays divergent thermodynamics in different solvent systems. NMR titration and isothermal titration calorimetry indicated that neutral bis-urea and bis-thiourea receptors form exothermic complexes with dicarboxylates in DMSO, with a near zero entropic contribution to binding. The increased binding strength of bis-guanidinium receptors precluded quantitative measurement of binding constants in DMSO, but titration calorimetry offered a qualitative picture of the association. Formation of these 1:1 complexes was also exothermic, but additional endothermic events occurred at both lower and higher host-guest ratios. These events indicated multiple binding equilibria but did not always occur at a discrete 2:1 or 1:2 host-guest molar ratio, suggesting higher aggregates. With increasing amounts of methanol as solvent, bis-guanidinium receptors form more endothermic complexes with dicarboxylates, with a favorable entropy of association. This switch from association driven by enthalpy to one driven by entropy may reflect a change from complexation involving the formation of hydrogen bonds to that promoted by solvent liberation from binding sites.
Facile NOx interconversion over preoxidized Ag(111)
NASA Astrophysics Data System (ADS)
Klacar, S.; Martin, N. M.; Gustafson, J.; Blomberg, S.; Liu, Z.; Axnanda, S.; Chang, R.; Lundgren, E.; Grönbeck, H.
2013-11-01
X-ray photoelectron spectroscopy and density functional theory calculations are used to investigate NO adsorption at low (100 K) and room temperature (RT) over preoxidized Ag(111). At 100 K, the data indicates presence of NO and N2O2, with little or no nitrite/nitrate formation. This is consistent with the calculated surface core level shifts and the pronounced barrier for nitrite formation. At RT, the recorded spectra indicate a complex interconversion between adsorbed species with an initial formation of a p(4 × 4) nitrate overlayer. With increasing NO pressure, the experimental results are best rationalized by partial nitrate decomposition into nitrites and subsequent NO physisorption, which leads to the formation of N2O3-like species.
NASA Astrophysics Data System (ADS)
Coetzee, A.; Kisters, A. F. M.
2017-04-01
This paper describes the spatial and temporal relationships between Karoo-age (ca. 180 Ma) dolerite dykes and a regional-scale saucer-sill complex from the Secunda (coal mine) Complex in the northeastern parts of the Karoo Basin of South Africa. Unlike parallel dyke swarms of regional extensional settings, mafic dykes commonly show curved geometries and highly variable orientations, short strike extents and complex cross-cutting and intersecting relationships. Importantly, the dyke networks originate from the upper contacts of the first-order dolerite sill-saucer structure and are not the feeders of the saucer complex. Cross-cutting relationships indicate the largely contemporaneous formation of dykes and the inner sill and inclined sheets of the underlying saucer. Systematic dykes form a distinct boxwork-type pattern of two high-angle, interconnected dyke sets. The formation and orientation of this dyke set is interpreted to be related to the stretching of roof strata above elongated magma lobes that facilitated the propagation of the inner sill, similar to the "cracked lid" model described for large saucer complexes in Antarctica. Dyke patterns generally reflect the saucer emplacement process and the associated deformation of wall rocks rather than far-field regional stresses.
Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake.
Yildiz, Ozkan; Kalthoff, Christoph; Raunser, Stefan; Kühlbrandt, Werner
2007-01-24
A binary complex of the ammonia channel Amt1 from Methanococcus jannaschii and its cognate P(II) signalling protein GlnK1 has been produced and characterized. Complex formation is prevented specifically by the effector molecules Mg-ATP and 2-ketoglutarate. Single-particle electron microscopy of the complex shows that GlnK1 binds on the cytoplasmic side of Amt1. Three high-resolution X-ray structures of GlnK1 indicate that the functionally important T-loop has an extended, flexible conformation in the absence of Mg-ATP, but assumes a compact, tightly folded conformation upon Mg-ATP binding, which in turn creates a 2-ketoglutarate-binding site. We propose a regulatory mechanism by which nitrogen uptake is controlled by the binding of both effector molecules to GlnK1. At normal effector levels, a 2-ketoglutarate molecule binding at the apex of the compact T-loop would prevent complex formation, ensuring uninhibited ammonia uptake. At low levels of Mg-ATP, the extended loops would seal the ammonia channels in the complex. Binding of both effector molecules to P(II) signalling proteins may thus represent an effective feedback mechanism for regulating ammonium uptake through the membrane.
Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter
2009-06-26
The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.
Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A.; Nagata, Kazuhiro; Bächinger, Hans Peter
2009-01-01
The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the α chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1·CRTAP·CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1·CRTAP·CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1·CRTAP·CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone. PMID:19419969
NASA Astrophysics Data System (ADS)
Loh, C. W.
1980-03-01
A method was developed for determining equilibrium constants, heat of reaction, and change in free energy and entropy during a 1:1 complex formation in solutions. The measurements were carried out on ternary systems containing two interacting solutes in an inert solvent. The procedures was applied to the investigation of hydrogen bond complex formations in two mixtures systems, phenol and pyridine in carbon tetrachloride, and 4, 5, 6, 7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) and alkyl acetate in styrene. The first mixture system was studied in order to compare the results with those obtained by other methods. Results for the second mixture system indicated strong association between molecules of TTFB and alkyl acetate and suggested that the blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles was due to competition for a limited number of adsorption sites on the membrane surface.
Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1
Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar
2012-01-01
Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.
2011-08-01
A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA) 2] and [(o-TOL)(CA) 2] have been prepared. The 13C NMR, 1H NMR, 1H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH 2 groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic.
Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A
2011-08-01
A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA)(2)] and [(o-TOL)(CA)(2)] have been prepared. The (13)C NMR, (1)H NMR, (1)H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH(2) groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic. Copyright © 2011 Elsevier B.V. All rights reserved.
Cusick, M E
1992-12-29
A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.
Fahmy, K
1998-01-01
Fourier transform infrared difference spectroscopy combined with the attenuated total reflection technique allows the monitoring of the association of transducin with bovine photoreceptor membranes in the dark. Illumination causes infrared absorption changes linked to formation of the light-activated rhodopsin-transducin complex. In addition to the spectral changes normally associated with meta II formation, prominent absorption increases occur at 1735 cm-1, 1640 cm-1, 1550 cm-1, and 1517 cm-1. The D2O sensitivity of the broad carbonyl stretching band around 1735 cm-1 indicates that a carboxylic acid group becomes protonated upon formation of the activated complex. Reconstitution of rhodopsin into phosphatidylcholine vesicles has little influence on the spectral properties of the rhodopsin-transducin complex, whereas pH affects the intensity of the carbonyl stretching band. AC-terminal peptide comprising amino acids 340-350 of the transducin alpha-subunit reproduces the frequencies and isotope sensitivities of several of the transducin-induced bands between 1500 and 1800 cm-1, whereas an N-terminal peptide (aa 8-23) does not. Therefore, the transducin-induced absorption changes can be ascribed mainly to an interaction between the transducin-alpha C-terminus and rhodopsin. The 1735 cm-1 vibration is also seen in the complex with C-terminal peptides devoid of free carboxylic acid groups, indicating that the corresponding carbonyl group is located on rhodopsin. PMID:9726932
NASA Technical Reports Server (NTRS)
Broeze, R. J.; Pope, D. H.
1978-01-01
The inhibition of translation which is observed after shifting Escherichia coli to low temperature was investigated. 70 S ribosomes were isolated from E. coli 8 hours after a shift to 5 C synthesized protein in the absence of added mRNA (i.e., endogenous protein synthesis by 70 S monosomes) at a rate which was three times greater than the rate of endogenous protein synthesis by 70 S ribosomes which were isolated at the time of the shift to 5 C. Calculations based on the rates of endogenous protein synthesis and polyphenylalanine synthesis indicate that 70 S monosomes comprise only 0.1% of the total E. coli 70 S ribosome population after 8 hours at 5 c. Experiments designed to test initiation complex formation on ApUpG or formaldehyde treated MS-2 viral RNA demonstrated that, although the rate of formation of 30 S initiation complexes was not inhibited, the rate of formation of active 70 S initiation complexes, able to react with puromycin, was inhibited to a great extent at 5 C. A model depicting the effects of low temperature on the E. coli translation system is proposed.
Lu, Meng-Yao; Lin, Ting-Hao; Chiang, Po-Hung; Kuo, Pei-Hsin; Wang, Ning; Wu, Wen-Hsin; Lin, Kai-Hsin; Wu, Tzu-Hua
2017-04-01
β-Thalassemia major patients with higher total drug levels [deferasirox (DEFR) plus its iron complex] do not yield better serum ferritin (SF) control. This study aimed to determine the concentrations of DEFR and its iron complex (Fe-[DEFR]2) in thalassemia patients to predict the chelation efficacy in terms of SF and cardiac T2* values. Patients' steady-state drug levels at trough (Ctrough) and 2 hours postdose (C2h) were determined. Because iron deposition may cause changes in the hepatic metabolism of amino acids, the concentrations of 40 amino acids in plasma were also assayed at 2 hours postdose. A total of 28 patients either dosing daily or twice daily were recruited. After a 1-month DEFR maintenance therapy, 38.8% and 30% of patients from groups of once-daily and twice-daily, respectively, had a plasma DEFR-iron complex formation ratio higher than 0.05 [High Chelation Ratio, (HCR)]. After a 6-month follow-up, those patients who had a HCR (n = 10) at C2h showed more favorable median changes in SF and cardiac T2* values (-388.0, +10.1) than those with a low DEFR-iron complex formation ratio (Low Chelation Ratio; n = 18; +10.5; +4.5) compared with the baseline. The levels of plasma L-arginine, L-alanine, L-glycine, L-norleucine, and L-serine were significantly lower in patients with the low Chelation Ratio condition than the levels in HCR patients. This therapeutic drug monitoring study revealed that a DEFR-iron complex formation ratio at C2h might be an applicable indicator of the efficacy of long-term DEFR iron chelation therapy. A better iron-control response to DEFR was observed in the patients with HCRs. The trends for the ratio might have value in dose-setting and need to be validated in a larger cohort.
Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence
NASA Astrophysics Data System (ADS)
Brendan Murphy, J.; Damian Nance, R.
2003-10-01
In recent years, two end-member models for the formation of supercontinents have emerged. In the classical Wilson cycle, oceanic crust generated during supercontinent breakup (the interior ocean) is consumed during subsequent amalgamation so that the supercontinent turns “inside in” (introversion). Alternatively, following supercontinent breakup, the exterior margins of the dispersing continental fragments collide during reassembly so that the supercontinent turns “outside in” (extroversion). These end-member models can be distinguished by comparing the Sm-Nd crust-formation ages of accreted mafic complexes (e.g., ophiolites) in the collisional orogens formed during supercontinent assembly with the breakup age of the previous supercontinent. For supercontinents generated by introversion, these crust-formation ages postdate rifting of the previous supercontinent. For supercontinents generated by extroversion, the oceanic lithosphere consumed during reassembly predates breakup of the previous supercontinent, so that crust-formation ages of accreted mafic complexes are older than the age of rifting. In the Paleozoic Appalachian-Caledonide-Variscan orogen, a key collisional orogen in the assembly of Pangea, crust-formation ages of accretionary mafic complexes postdate the formation of the Iapetus Ocean (i.e., are younger than ca. 0.6 Ga), suggesting supercontinent reassembly by introversion. By contrast, the Neoproterozoic East African and Brasiliano orogens, which formed during the amalgamation of Gondwana, are characterized by mafic complexes with crust-formation ages (ca. 0.75 1.2 Ga) that predate the ca. 750 Ma breakup of Rodinia. Hence, these complexes must have formed from lithosphere in the exterior ocean that surrounded Rodinia, implying that this ocean was consumed during the amalgamation of Gondwana. These data indicate that Pangea and Gondwana were formed by introversion and extroversion, respectively, implying that supercontinents can be assembled by fundamentally distinct geodynamic processes.
Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars
NASA Astrophysics Data System (ADS)
López-Sepulcre, A.; Taquet, V.; Ceccarelli, C.; Neri, R.; Kahane, C.; Charnley, S. B.
2015-12-01
We present arcsecond-resolution observations, obtained with the IRAM Plateau de Bure interferometer, of multiple complex organic molecules in two hot corino protostars: IRAS 2A and IRAS 4A, in the NGC 1333 star-forming region. The distribution of the line emission is very compact, indicating the presence of COMs is mostly concentrated in the inner hot corino regions. A comparison of the COMs abundances with astrochemical models favours a gas-phase formation route for CH3OCH3, and a grain formation of C2H5OH, C2H5CN, and HCOCH2OH. The high abundances of methyl formate (HCOOCH3) remain underpredicted by an order of magnitude.
Anaerobic Formate and Hydrogen Metabolism.
Pinske, Constanze; Sawers, R Gary
2016-10-01
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Zhang, Na; Yang, Li; Luo, Sha; Wang, Xutong; Wang, Wei; Cheng, Yuxin; Tian, Hainan; Zheng, Kaijie; Cai, Ling; Wang, Shucai
2018-04-13
Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.
A molecular view of the role of chirality in charge-driven polypeptide complexation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, K. Q.; Perry, S. L.; Leon, L.
Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality alongmore » the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable beta-sheets between molecules of opposite charge, and experiments indicate that beta-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the beta-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of beta-rich domains and amorphous regions.« less
Vibrational spectroscopic study of nickel (II) formate, Ni(HCO 2) 2, and its aqueous solution
NASA Astrophysics Data System (ADS)
Edwards, H. G. M.; Knowles, A.
1992-04-01
A vibrational spectroscopic study of nickel (II) formate and its aqueous solution has been made. The vibrations characteristic of a formato—nickel complex have been assigned and it is concluded that the species Ni(HCO 2) +(HCO 2) - exists in the solid state, with monodentate ligand-to-metal bonding. The Raman spectrum of an aqueous solution of nickel (II) formate indicates that complete dissociation of the formato—nickel (II) species occurs to formate ions and nickel (II) hexa-aquo ions. Comparisons are made with other nickel (II) carboxylates.
NASA Technical Reports Server (NTRS)
Collins, Jack R.; Loew, Gilda H.; Luke, Brian T.; White, David H.
1988-01-01
Molecular orbital calculations are used to study amino acid activation by anhydride formation in neutral phosphates and in tetrahedral silicate and aluminate sites on clay edges. The results agree with previous ab initio studies of Luke et al. (1984) on the reactant species. Relative heats of formation of the anhydrides indicate the extent of anhydride formation to be the greatest for Al and the least for phosphate, which is the same order as the stability of hydrolysis.
Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.
Yang, Xinzheng
2015-08-25
Inspired by the active site structure of monoiron hydrogenase, a series of iron complexes are built using experimentally ready-made acylmethylpyridinol and aliphatic PNP pincer ligands. Density functional theory calculations indicate that the newly designed iron complexes are very promising to catalyze the formation of formic acid from H2 and CO2.
ERIC Educational Resources Information Center
Rusman, Ellen; Dirkx, Kim
2017-01-01
Many schools use analytic rubrics to (formatively) assess complex, generic or transversal (21st century) skills, such as collaborating and presenting. In rubrics, performance indicators on different levels of mastering a skill (e.g., novice, practiced, advanced, talented) are described. However, the dimensions used to describe the different…
Hyphal formation of Candida albicans is controlled by electron transfer system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Toshihiko; Ogasawara, Ayako; Mikami, Takeshi
2006-09-15
Most Candida albicans cells cultured in RPMI1640 medium at 37 deg. C grow in hyphal form in aerobic conditions, but they grow in yeast form in anaerobic conditions. The hyphal growth of C. albicans was inhibited in glucose-deficient conditions. Malonic acid, an inhibitor of succinate dehydrogenase, enhanced the yeast proliferation of C. albicans, indicating that the hyphal-formation signal was derived from the glycolysis system and the signal was transmitted to the electron transfer system via the citric acid cycle. Thenoyl trifluoro acetone (TTFA), an inhibitor of the signal transmission between complex II and Co Q, significantly inhibited the hyphal growthmore » of C. albicans. Antimycin, KCN, and oligomycin, inhibitors of complex III, IV, and V, respectively, did not inhibit the hyphal growth of C. albicans. The production of mRNAs for the hyphal formation signal was completely inhibited in anaerobic conditions. These results indicate that the electron transfer system functions upstream of the RAS1 signal pathway and activates the expression of the hyphal formation signal. Since the electron transfer system is inactivated in anaerobic conditions, C. albicans grew in yeast form in this condition.« less
Impurity-defect complexes in non-implanted aluminum
NASA Astrophysics Data System (ADS)
Pedersen, F. T.; Grann, H.; Weyer, G.
1986-02-01
The formation of impurity-defect complexes in ion-implanted aluminum has been studied in the temperature interval 100 400K. Radioactive119In isotopes have been implanted. Mössbauer spectra have been measured for the 24 keV γ-radiation emitted after the decay to119Sn. The spectra could be analysed satisfactorily with two lines, one of which is known to be due to substitutional Sn. A second line, which has a higher isomer shift and lower Debye temperature, is tentatively assigned to vacancy-associated Sn, formed by trapping of thermally mobile (multi-)vacancies. Comparison to similar DPAC experiments suggests that cubic Sn-V4 complexes are formed. Some indication (˜15%) for an athermal formation of impurity defects below 175K is obtained.
Predicting Complex Organic Molecule Emission from TW Hya
NASA Astrophysics Data System (ADS)
Vissapragada, Shreyas; Walsh, Catherine
2017-01-01
The Atacama Large Millimeter/submillimeter Array (ALMA) has significantly increased our ability to observe the rich chemical inventory of star and planet formation. ALMA has recently been used to detect CH3OH (methanol) and CH3CN (methyl cyanide) in protoplanetary disks; these molecules may be vital indicators of the complex organic ice reservoir in the comet-forming zone. We have constructed a physiochemical model of TW Hya, a well-studied protoplanetary disk, to explore the different formation mechanisms of complex ices. By running our model through a radiative transfer code and convolving with beam sizes appropriate for ALMA, we have obtained synthetic observations of methanol and methyl cyanide. Here, we compare and comment on these synthetic observations, and provide astrochemical justification for their spatial distributions.
Soils as relative-age dating tools
Markewich, Helaine Walsh; Pavich, Milan J.; Wysocki, Douglas A.
2017-01-01
Soils develop at the earth's surface via multiple processes that act through time. Precluding burial or disturbance, soil genetic horizons form progressively and reflect the balance among formation processes, surface age, and original substrate composition. Soil morphology provides a key link between process and time (soil age), enabling soils to serve as both relative and numerical dating tools for geomorphic studies and landscape evolution. Five major factors define the contemporary state of all soils: climate, organisms, topography, parent material, and time. Soils developed on similar landforms and parent materials within a given landscape comprise what we term a soil/landform/substrate complex. Soils on such complexes that differ in development as a function of time represent a soil chronosequence. In a soil chronosequence, time constitutes the only independent formation factor; the other factors act through time. Time dictates the variations in soil development or properties (field or laboratory measured) on a soil/landform/substrate complex. Using a dataset within the chronosequence model, we can also formulate various soil development indices based upon one or a combination of soil properties, either for individual soil horizons or for an entire profile. When we evaluate soil data or soil indices mathematically, the resulting equation creates a chronofunction. Chronofunctions help quantify processes and mechanisms involved in soil development, and relate them mathematically to time. These rigorous kinds of comparisons among and within soil/landform complexes constitute an important tool for relative-age dating. After determining one or more absolute ages for a soil/landform complex, we can calculate quantitative soil formation, and or landform-development rates. Multiple dates for several complexes allow rate calculations for soil/landform-chronosequence development and soil-chronofunction calibration.
NASA Astrophysics Data System (ADS)
Reimink, Jesse R.; Chacko, Thomas; Carlson, Richard W.; Shirey, Steven B.; Liu, Jingao; Stern, Richard A.; Bauer, Ann M.; Pearson, D. Graham; Heaman, Larry M.
2018-07-01
The timing and mechanisms of continental crust formation represent major outstanding questions in the Earth sciences. Extinct-nuclide radioactive systems offer the potential to evaluate the temporal relations of a variety of differentiation processes on the early Earth, including crust formation. Here, we investigate the whole-rock 182W/184W and 142Nd/144Nd ratios and zircon Δ17O values of a suite of well-studied and lithologically-homogeneous meta-igneous rocks from the Acasta Gneiss Complex, Northwest Territories, Canada, including the oldest-known zircon-bearing rocks on Earth. In the context of previously published geochemical data and petrogenetic models, the new 142Nd/144Nd data indicate that formation of the Hadean-Eoarchean Acasta crust was ultimately derived from variable sources, both in age and composition. Although 4.02 Ga crust was extracted from a nearly bulk-Earth source, heterogeneous μ142Nd signatures indicate that Eoarchean rocks of the Acasta Gneiss Complex were formed by partial melting of hydrated, Hadean-age mafic crust at depths shallower than the garnet stability field. By ∼3.6 Ga, granodioritic-granitic rocks were formed by partial melting of Archean hydrated mafic crust that was melted at greater depth, well into the garnet stability field. Our 182W results indicate that the sources to the Acasta Gneiss Complex had homogeneous, high-μ182W on the order of +10 ppm-a signature ubiquitous in other Eoarchean terranes. No significant deviation from the terrestrial mass fractionation line was found in the triple oxygen isotope (16O-17O-18O) compositions of Acasta zircons, confirming homogeneous oxygen isotope compositions in Earth's mantle by 4.02 Ga.
Mukai, Kazuo; Kohno, Yutaro; Ouchi, Aya; Nagaoka, Shin-ichi
2012-08-02
The measurements of the UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl (α-, β-, γ-, and δ-Toc(•)) radicals were performed by reacting aroxyl (ArO(•)) radical with α-, β-, γ-, and δ-tocopherol (α-, β-, γ-, and δ-TocH), respectively, in acetonitrile solution including three kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), and Mg(ClO(4))(2)) (MX or MX(2)), using stopped-flow spectrophotometry. The maximum wavelengths (λ(max)) of the absorption spectra of the α-, β-, γ-, and δ-Toc(•) located at 425-428 nm without metal salts increased with increasing concentrations of metal salts (0-0.500 M) in acetonitrile and approached some constant values, suggesting (Toc(•)···M(+) (or M(2+))) complex formations. Similarly, the values of the apparent molar extinction coefficient (ε(max)) increased drastically with increasing concentrations of metal salts in acetonitrile and approached some constant values. The result suggests that the formations of Toc(•) dimers were suppressed by the metal ion complex formations of Toc(•) radicals. The stability constants (K) were determined for Li(+), Na(+), and Mg(2+) complexes of α-, β-, γ-, and δ-Toc(•). The K values increased in the order of NaClO(4) < LiClO(4) < Mg(ClO(4))(2), being independent of the kinds of Toc(•) radicals. Furthermore, the K values increased in the order of δ- < γ- < β- < α-Toc(•) radicals for each metal salt. The alkali and alkaline earth metal salts having a smaller ionic radius of the cation and a larger charge of the cation gave a larger shift of the λ(max) value, a larger ε(max) value, and a larger K value. The result of the DFT molecular orbital calculations indicated that the α-, β-, γ-, and δ-Toc(•) radicals were stabilized by the (1:1) complex formation with metal cations (Li(+), Na(+), and Mg(2+)). Stabilization energy (E(S)) due to the complex formation increased in the order of Na(+) < Li(+) < Mg(2+) complexes, being independent of the kinds of Toc(•) radicals. The calculated result also indicated that the metal cations coordinate to the O atom at the sixth position of α-, β-, γ-, and δ-Toc(•) radicals.
SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes.
Wang, Jingjing; Hou, Chuanming; Huang, Jianqin; Wang, Zhengjia; Xu, Yingwu
2015-03-01
To properly regulate plant flowering time and construct floral pattern, MADS-domain containing transcription factors must form multimers including homo- and hetero-dimers. They are also active in forming hetero-higher-order complexes with three to five different molecules. However, it is not well known if a MADS-box protein can also form homo-higher-order complex. In this study a biochemical approach is utilized to provide insight into the complex formation for an SVP-like MADS-box protein cloned from hickory. The results indicated that the protein is a heterogeneous higher-order complex with the peak population containing over 20 monomers. Y2H verified the protein to form homo-complex in yeast cells. Western blot of the hickory floral bud sample revealed that the protein exists in higher-order polymers in native. Deletion assays indicated that the flexible C-terminal residues are mainly responsible for the higher-order polymer formation and the heterogeneity. Current results provide direct biochemical evidences for an active MADS-box protein to be a high order complex, much higher than a quartermeric polymer. Analysis suggests that a MADS-box subset may be able to self-assemble into large complexes, and thereby differentiate one subfamily from the other in a higher-order structural manner. Present result is a valuable supplement to the action of mechanism for MADS-box proteins in plant development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Es'kov, A K
2013-01-01
Species composition of epiphytic communities within different formations of Phú Quôc Island (Southern Vietnam) is studied. The dependence of species composition and structural complexity of epiphytic communities on formation quality is demonstrated. Representatives of different families differ notably in their sensitivity to disturbances. Most vulnerable are Orchidaceae which represent the dominant group in epiphytic community of rain forest and which drop out almost completely under anthropogenic impacts. In less disturbed forests, epiphyte species diversity increases mainly at the expense of "lower" synusias and directly depends on the formation layering. Diminishing of layering numbers leads to dropping out of species belonging to "lower" synusias. Among epiphytes, the indicators of disturbed communities can be detected, namely species of ruderal strategy (explerents). In primal rain forest, they are absent or barely noticeable. An index is proposed for estimation of epiphytic communitiy complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm –1 for Pb(II) and ca. 1580 cm –1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; ...
2016-09-07
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
NASA Technical Reports Server (NTRS)
Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep
2002-01-01
Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.
Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)-morin complex
NASA Astrophysics Data System (ADS)
Panhwar, Qadeer Khan; Memon, Shahabuddin; Bhanger, M. I.
2010-04-01
Complex formation between copper (II) sulfate and morin (3,5,7,2',4'-pentahydroxyflavone) have been studied in methanol. Structure of the complex was determined through various analytical techniques including UV-vis, IR, 1H NMR, thermal, gravimetric and elemental analyses. The stoichiometric ratio for the reaction between the flavonoid and the metal ion in methanol has been determined by Job's method and elemental analysis for metal content of complex by titration with EDTA, which confirm that morin forms a 1:1 metal:ligand complex. 1H NMR study reveals that, 3OH and 4CO groups of morin take part in complexation with a copper ion. Individual stress was given to the site of central ion and composition of the complex. Antioxidant activity of the complex was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, which showed that the antioxidant activity of complexed morin has higher value as compared to the free morin. Moreover, it was observed that the metal complex is sufficiently stable as well as the data indicates the spontaneous formation of complex (-Δ G) that is exothermic in nature (-Δ H) and entropically unfavourable (-Δ S).
Jian, Chongshu; Xu, Fengli; Hou, Tingting; Sun, Tao; Li, Jinghang; Cheng, Heping; Wang, Xianhua
2017-08-01
Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Barman, Siti; Barman, Biraj Kumar; Roy, Mahendra Nath
2018-03-01
The supramolecular interaction of metoclopramide hydrochloride (MP) with α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) has been inspected by ultraviolet-visible (UV-vis) light, infra-red (IR) light, fluorescence and 1H NMR spectroscopy. The formation of an inclusion complex greatly affects the physical-chemical properties of the guest molecules, such as solubility, chemical reactivity and the spectroscopic and electrochemical properties. Thus the changes in the spectral properties and physico-chemical properties confirm the inclusion complex formation. Surface tension, conductivity studies and Job's plot indicate a 1: 1 stoichiometry of the MP:CD host-guest inclusion complexes. The binding/association constants have been evaluated by both UV-Vis and fluorescence spectroscopic study indicating a higher degree of encapsulation for β-cyclodextrin (β-CD). Furthermore, the negative value of thermodynamic parameter (ΔG°) of the host-guest system suggests that the inclusion process proceeded spontaneously at 298.15 K. Based on the NMR data, the plausible mode of interaction of MP:α-CD and MP:β-CD complexes were proposed, which suggested that lipophilic aromatic ring of the MP entered into the cavity of CDs from the wider side, with the amide (sbnd CONH) and methoxy (-OMe) residues inside the CD cavity.
NASA Astrophysics Data System (ADS)
Angelucci, Diego E.; Anesin, Daniela; López Martínez, Mariano; Haber Uriarte, María; Rodríguez Estrella, Tomás; Walker, Michael J.
2013-11-01
Cueva Negra del Estrecho del Río Quípar (Caravaca de la Cruz, Murcia, Spain), hereinafter Cueva Negra, is a key-site for understanding the early peopling of Europe. Since 1990, systematic excavation has revealed an intriguing assemblage of lithic and faunal remains, and hominin teeth. It was deposited 0.99-0.78 Ma according to palaeomagnetic and biostratigraphical data; pollen data indicate warm moist conditions. Recently, possible evidence of thermal alteration was detected in a deep part of the deposit. We report here on our revision of the Cueva Negra stratigraphy, and offer information on site formation processes, based on new field observations and preliminary data from soil micromorphology. The Cueva Negra succession comprises three main stratigraphical complexes. Complex 1 is late Holocene. Complexes 2 and 3 are Pleistocene and are formed mainly of alluvial sediment, with subordinate inputs from the cave walls. Complexes 2 and 3 were accumulated almost without interruption, being separated by an erosive surface truncating a thin alluvial soil developed at the top of Complex 3. Our initial micromorphological findings indicate that anthropic inputs are mostly in derived positions, very likely having undergone inward displacement from the mouth of the rock-shelter.
NASA Astrophysics Data System (ADS)
Ulagendran, V.; Balu, P.; Kannappan, V.; Kumar, R.; Jayakumar, S.
2017-08-01
The charge transfer (CT) interaction between two fused heterocyclic compounds with basic pyrrole group as donors, viz., indole (IND) and carbazole (CAR), and iodine (acceptor) in DMSO medium is investigated by ultrasonic and UV-visible spectral methods at 303 K. The formation of CT complex in these systems is established from the trend in acoustical and excess thermo acoustical properties with molar concentration. The frequency acoustic spectra (FAS) is also carried out on these two systems for two fixed concentrations 0.002 M and 0.02 M, and in the frequency range 1 MHz-10 MHz to justify the frequency chosen for ultrasonic study. The absorption coefficient values in solution are computed and discussed. The formation constants of these complexes are determined using Kannappan equation in ultrasonic method. The formation of 1:1 complexes between iodine and IND, CAR was established by the theory of Benesi - Hildebrand in the UV-visible spectroscopic method. The stability constants of the CT complexes determined by spectroscopic and ultrasonic methods show a similar trend. These values also indicate that the presence of fused aromatic ring influences significantly when compared with K values of similar CT complexes of parent five membered heterocyclic compound (pyrrole) reported by us earlier.
NASA Astrophysics Data System (ADS)
Miyan, Lal; Zulkarnain; Ahmad, Afaq
2017-04-01
The molecular interaction between 1, 2-dimethylimidazole (DMI) and 3,5-dinitrobenzoic acid (DNBA) has been investigated in methanol at room temperature. The stoichiometry of the synthesized CT complex was found to be 1:1 using the straight line method of Benesi-Hildebrand equation. The structure of the resulting CT complex was isolating and characterized using X-ray crystallography, FTIR and 1H NMR spectroscopic techniques. The thermal composition and stability of the CT complex were analyzed using thermogravimetric and differential thermal analysis (TGA and DTA). UV-visible spectrophotometric technique was used to the determine the various important physical parameters such as formation constant (KCT), molar extinction coefficient (εCT), energy of interaction (ECT), ionization potential (ID), resonance energy (RN), free energy (ΔG°), oscillator strength (ƒ) and transition dipole moment (μN). The effect of polarity of the solvent and concentration of acceptor on these parameters have been investigated. The results indicate that charge transfer complex (CTC) is more stable in less polar solvent due to the high value of the formation constant. A polymeric network through hydrogen bonding interaction between neighboring moieties was observed. This has also been attributed to the formation of 1:1 type CT complex.
NASA Technical Reports Server (NTRS)
Gupta, A.; Loew, G. H.; Lawless, J.
1983-01-01
A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.
NASA Astrophysics Data System (ADS)
Shettima, Bukar; Kyari, Aji Maina; Aji, Mallam Musa; Adams, Fatimoh Dupe
2018-07-01
Lithofacies analyses of the upper part of the Chad Formation (Bama Ridge Complex) in the Bornu Sub-basin of the Chad Basin indicated four facies associations; fluvial, deltaic, shoreface and lacustrine sequences. The fluvial sequences are composed of fining upward cycles with successive occurrence of planar crossbedded sandstone facies displaying unimodal paleocurrent system and rare mudstone facies typical of braided river system. The deltaic succession consists of both fining and coarsening upwards cycles with the former depicting fluvial setting of an upper delta plain while the later suggestive of mouth-bar sequences. The setting displays a polymodal current system of fluvial, waves, storms and tides that were primarily induced by complex interactions of seiches and lunar tides. Similar current systems devoid of fluvial patterns were reflected in the coarsening upward packages of the shoreface sequences. Lacustrine succession composed of thick bioturbated mudstone facies generally defines the base of these coarsening upward profiles, giving a fluvio-lacustrine geomorphic relief where complex interaction developed the deltaic and shoreface facies along its shorelines. Clay mineral fractions of the formation are dominantly kaolinitic, indicating a predominantly humid tropical-subtropical climatic condition during their deposition. This climatic regime falls within the African humid period of the early-mid Holocene that led to the third lacustrine transgression of the Lake Mega-Chad, whereas the subordinate smectite mineralization points to aridification that characterizes most of the post humid period to recent.
Thermal behavior of metal carboxylates—II. Lead formate
NASA Astrophysics Data System (ADS)
Baraldi, Pietro
Experimental data obtained by i.r. emission spectrometry indicate that the thermal behavior of lead formate is complex. By heating in air, after a phase transition at 115°C, decomposition takes place which may lead directly to metal and oxide or to carbonate, to a basic carbonate and finally to oxide. Under vacuum the same transformations occur at higher temperatures and lead to metal.
ERIC Educational Resources Information Center
FRIEDMAN, STANLEY R.
MANY STUDIES HAVE INDICATED THE PRESENCE OF A SLUMP OR INVERSION IN THE PROBLEM-SOLVING EFFICIENCY OF CHILDREN AT THE FOURTH GRADE LEVEL. IT HAS BEEN SUGGESTED THAT THIS MAY BE DUE TO THE INTERFERING EFFECT OF THE FORMATION OF COMPLEX HYPOTHESES BY THE CHILDREN. SINCE A TENDENCY TO RESPOND RAPIDLY WOULD PRESUMABLY INHIBIT THE FORMATION OF COMPLEX…
NASA Technical Reports Server (NTRS)
Palmer, Michael T.; Abbott, Kathy H.
1994-01-01
This study identifies improved methods to present system parameter information for detecting abnormal conditions and to identify system status. Two workstation experiments were conducted. The first experiment determined if including expected-value-range information in traditional parameter display formats affected subject performance. The second experiment determined if using a nontraditional parameter display format, which presented relative deviation from expected value, was better than traditional formats with expected-value ranges included. The inclusion of expected-value-range information onto traditional parameter formats was found to have essentially no effect. However, subjective results indicated support for including this information. The nontraditional column deviation parameter display format resulted in significantly fewer errors compared with traditional formats with expected-value-ranges included. In addition, error rates for the column deviation parameter display format remained stable as the scenario complexity increased, whereas error rates for the traditional parameter display formats with expected-value ranges increased. Subjective results also indicated that the subjects preferred this new format and thought that their performance was better with it. The column deviation parameter display format is recommended for display applications that require rapid recognition of out-of-tolerance conditions, especially for a large number of parameters.
Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.
Levy, Dan; Vazquez, Mariel; Cornforth, Michael; Loucas, Bradford; Sachs, Rainer K; Arsuaga, Javier
2004-01-01
Chromosome aberrations are large-scale illegitimate rearrangements of the genome. They are indicative of DNA damage and informative about damage processing pathways. Despite extensive investigations over many years, the mechanisms underlying aberration formation remain controversial. New experimental assays such as multiplex fluorescent in situ hybridyzation (mFISH) allow combinatorial "painting" of chromosomes and are promising for elucidating aberration formation mechanisms. Recently observed mFISH aberration patterns are so complex that computer and graph-theoretical methods are needed for their full analysis. An important part of the analysis is decomposing a chromosome rearrangement process into "cycles." A cycle of order n, characterized formally by the cyclic graph with 2n vertices, indicates that n chromatin breaks take part in a single irreducible reaction. We here describe algorithms for computing cycle structures from experimentally observed or computer-simulated mFISH aberration patterns. We show that analyzing cycles quantitatively can distinguish between different aberration formation mechanisms. In particular, we show that homology-based mechanisms do not generate the large number of complex aberrations, involving higher-order cycles, observed in irradiated human lymphocytes.
Peng, Cong; Chai, Liyuan; Tang, Chongjian; Min, Xiaobo; Song, Yuxia; Duan, Chengshan; Yu, Cheng
2017-01-01
Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process. Copyright © 2016. Published by Elsevier B.V.
Ciobanasu, Corina; Faivre, Bruno; Le Clainche, Christophe
2014-01-01
The force generated by the actomyosin cytoskeleton controls focal adhesion dynamics during cell migration. This process is thought to involve the mechanical unfolding of talin to expose cryptic vinculin-binding sites. However, the ability of the actomyosin cytoskeleton to directly control the formation of a talin–vinculin complex and the resulting activity of the complex are not known. Here we develop a microscopy assay with pure proteins in which the self-assembly of actomyosin cables controls the association of vinculin to a talin-micropatterned surface in a reversible manner. Quantifications indicate that talin refolding is limited by vinculin dissociation and modulated by the actomyosin network stability. Finally, we show that the activation of vinculin by stretched talin induces a positive feedback that reinforces the actin–talin–vinculin association. This in vitro reconstitution reveals the mechanism by which a key molecular switch senses and controls the connection between adhesion complexes and the actomyosin cytoskeleton. PMID:24452080
Preparation of microcapsules by complex coacervation of gum Arabic and chitosan.
Butstraen, Chloé; Salaün, Fabien
2014-01-01
Gum Arabic-chitosan microcapsules containing a commercially available blend of triglycerides (Miglyol 812 N) as core phase were synthesized by complex coacervation. This study was conducted to clarify the influence of different parameters on the encapsulation process, i.e. during the emulsion formation steps and during the shell formation, using conductometry, zeta potential, surface and interface tension measurement and Fourier-transform infrared spectroscopy. By carefully analyzing the influencing factors including phase volume ratio, stirring rate and time, pH, reaction time, biopolymer ratio and crosslinking effect, the optimum synthetic conditions were found out. For the emulsion step, the optimum phase volume ratio chosen was 0.10 and an emulsion time of 15 min at 11,000 rpm was selected. The results also indicated that the optimum formation of these complexes appears at a pH value of 3.6 and a weight ratio of chitosan to gum Arabic mixtures of 0.25. Copyright © 2013 Elsevier Ltd. All rights reserved.
Infrared absorption study of neutron-transmutation-doped germanium
NASA Technical Reports Server (NTRS)
Park, I. S.; Haller, E. E.
1988-01-01
Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.
NASA Astrophysics Data System (ADS)
Ganesh, K.; Balraj, C.; Satheshkumar, A.; Elango, K. P.
2012-06-01
UV-vis, 1H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and to characterize the reaction products. The interaction of DDQ with trimethoprim (TMP) and albenadazole (ALB) were found to proceed through the formation of donor-acceptor complex, containing DDQ radical anion and its conversion to the product. Fluorescence quenching studies indicated that the interaction between the donors and the acceptor are spontaneous and the interaction of TMP-DDQ (binding constant = 2.9 × 105) is found to be stronger than that the ALB-DDQ (binding constant = 3 × 103) system. Also, the binding constant increased with an increase in polarity of the medium indicating the involvement of radical anion as intermediate.
Spectroscopic studies of nanoparticle-sensitised photorefractive polymers
NASA Astrophysics Data System (ADS)
Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul
2005-09-01
We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly( N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs.
The Cobalt cyclo‐P4 Sandwich Complex and Its Role in the Formation of Polyphosphorus Compounds
Dielmann, Fabian; Timoshkin, Alexey; Piesch, Martin; Balázs, Gábor
2017-01-01
Abstract A synthetic approach to the sandwich complex [Cp′′′Co(η4‐P4)] (2) containing a cyclo‐P4 ligand as an end‐deck was developed. Complex 2 is the missing homologue in the series of first‐row cyclo‐Pn sandwich complexes, and shows a unique tendency to dimerize in solution to form two isomeric P8 complexes [(Cp′′′Co)2(μ,η4:η2:η1‐P8)] (3 and 4). Reactivity studies indicate that 2 and 3 react with further [Cp′′′Co] fragments to give [(Cp′′′Co)2(μ,η2:η2‐P2)2] (5) and [(Cp′′′Co)3P8] (6), respectively. Furthermore, complexes 2, 3, and 4 thermally decompose forming 5, 6, and the P12 complex [(Cp′′′Co)3P12] (7). DFT calculations on the P4 activation process suggest a η3‐P4 Co complex as the key intermediate in the synthesis of 2 as well as in the formation of larger polyphosphorus complexes via a unique oligomerization pathway. PMID:28078794
Lee, Hye-Young; Jeong, Young-Il; Choi, Ki-Choon
2011-01-01
p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. The authors suggest that these microparticles are ideal candidates for a vehicle for decreasing side effects of hair dye.
ERIC Educational Resources Information Center
Prasad, Rajendra; Prasad, Surendra
2009-01-01
The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanzler, Charlotte R.; Lian, Peng; Trainer, Emma Leverich
Alkylated mercury species (monomethylmercury, MeHg, and dimethylmercury, DMeHg) exhibit significant bioaccumulation, and pose significant risks to ecosystems and human health. Although decades of research have been devoted to understanding MeHg formation and degradation, little is known about the DMeHg formation in aquatic systems. Here, we combine complementary experimental and computational approaches to examine MeHg speciation and DMeHg formation in sulfidic aqueous solutions, with an emphasis on the formation and decomposition of the binuclear bis(methylmercuric(II)) sulfide complex (CH3Hg)2S. Experimental data indicate that the reaction 2CH3Hg+ + HS- = (CH3Hg)2S has a log K = 26.0. Thus, the binuclear (CH3Hg)2S complex ismore » likely to be the dominant MeHg species under high MeHg concentrations typically used in experimental investigations of MeHg degradation by sulfate-reducing bacteria (SRB). Our finding of a significant abiotic removal mechanism for MeHg in sulfidic solutions through the formation of relatively insoluble (CH3Hg)2S suggests careful reexamination of reported “oxidative demethylation” of MeHg by SRB and perhaps other obligate anaerobes. We provide evidence for slow decomposition of (CH3Hg)2S to DMeHg and HgS, with a first-order rate constant k = 1.5 0.4 x 10-6 h-1. Quantum chemical calculations suggest that the reaction proceeds by a novel mechanism involving rearrangement of the (CH3Hg)2S complex facilitated by strong Hg-Hg interactions that activate a methyl group for intramolecular transfer. Predictions of DMeHg formation rates under a variety of field and laboratory conditions indicate that this pathway for DMeHg formation will be significant in laboratory experiments utilizing high MeHg concentrations, favoring (CH3Hg)2S formation. In natural systems with relatively high MeHg/[H2S]T ratios (the oxic/anoxic interface, for example), DMeHg production may be observed, and warrants further investigation.Experimental and computational evidence show that dimethylmercury is produced from decomposition of bis(methylmercury(ii)) sulfide.« less
NASA Astrophysics Data System (ADS)
Zhang, Yongbin; Chao, Jianbin; Zhao, Shuhui; Xu, Penghao; Wang, Hongfang; Guo, Zhiqiang; Liu, Diansheng
2014-11-01
The inclusion behaviors of 4-Sulfonatocalix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitrophenyl)piperazine (NPP) were investigated by UV spectroscopy and fluorescence spectroscopy at different pH values (pH = 3.05, 6.50, 8.40). The UV absorption and fluorescence intensity of NPP remarkably increased in presence of SCXn revealing formation of the inclusion complexes between NPP and SCXn. Moreover, the formation constants (K) of inclusion complexes were also determined by the non-linear fitting method, and the obtained data showed that the formation constants decreased gradually with the increasing of the pH value. When the pH value was 3.05, the formation constant of NPP with SCX8 reached a maximum of 1.7 × 107 L mol-1. The stoichiometric ratio was verified to be 1:1 by the continuous variation method. Meanwhile FT-IR and DSC analysis also indicated that NPP could form the inclusion complex with SCXn. In order to explore the inclusion mechanism of NPP with SCXn, 1H NMR and molecular modeling studies were carried out and experimental results showed that the part of benzene ring of NPP penetrated into the hydrophobic cavity of SCXn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ligare, Marshall R.; Johnson, Grant E.; Laskin, Julia
Early stages of the reduction and nucleation of solution-phase gold clusters are largely unknown. This is due, in part, to the high reaction rates and the complexity of the cluster synthesis process. Through the addition of a diphosphine ligand, 1-4,Bis(diphenylphosphino)butane (L4) to the gold precursor, chloro(triphenylphosphine) gold(I) (Au(PPh3)Cl), in methanol organometallic complexes of the type, [Au(L4)x(L4O)y(PPh3)z]+, are formed. These complexes lower the rate of reduction so that the reaction can be directly monitored from 1 min to over an hour using on-line electrospray ionization mass spectrometry (ESI-MS). Our results indicate that the formation of Au8(L4)42+, Au9(L4)4H2+ and Au10(L4)52+ cationic clustersmore » occurs through different reaction pathways that may be kinetically controlled either through the reducing agent concentration or the extent of oxidation of L4. Through comparison of selected ion chronograms our results indicate that Au2(L4)2H+ may be an intermediate in the formation of Au8(L4)42+and Au10(L4)52+ while a variety of chlorinated clusters are involved in the formation of Au9(L4)4H2+. Additionally, high-resolution mass spectrometry was employed to identify 53 gold containing species produced under highly oxidative conditions. New intermediate species are identified which help understand how different gold cluster nuclearities can be stabilized during the growth process.« less
NASA Astrophysics Data System (ADS)
Roy, Swarup; Saxena, Shailendra K.; Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh
2017-07-01
The binding ability of viologen herbicide with bovine serum albumin (BSA) has been investigated to understand viologen associated hazards by investigating ethyl viologen's (EV) binding using various spectroscopies and in-silico molecular docking approaches. Apparent association constant (1.3 × 104 L/mol), calculated using UV-Vis spectra indicating a moderate complex formation between BSA and EV. A static mode of fluorescence quenching has been observed as evident from inverse temperature dependence of Stern-Volmer quenching constant which also confirms an EV-BSA complex formation. Emission and time resolved fluorescence studies reveal that the emission quenching of BSA with EV is initiated by static quenching mechanism. A moderately strong binding affinity between EV and BSA has been observed (binding constant value of 7.58 × 104 L/Mol) using fluorescence quenching titration, obtained at 298 K. Quantitative measurements of thermodynamic parameters like enthalpy and entropy changes clearly indicates hydrophobic force responsible for EV-BSA complex formation. The binding distance between EV and BSA was found to be 4.48 nm are involved in non-radiative energy transfer process. Furthermore, from the circular dichroism spectra it was observed that addition of EV is also found to change the secondary structure of BSA which leads to decrease in α-helix. Above mentioned results are found to be in consonance with molecular docking simulations and supports the EV-BSA binding.
Volumetric analysis of formation of the complex of G-quadruplex DNA with hemin using high pressure.
Takahashi, Shuntaro; Bhowmik, Sudipta; Sugimoto, Naoki
2017-01-01
DNA guanine-quadruplexes (G-quadruplexes) complexed with the Fe-containing porphyrin, hemin (iron(III)-protoporphyrin IX), can catalyze oxidation reactions. This so-called DNAzyme has been widely used in the field of DNA nanotechnology. To improve DNAzyme properties, we sought to elucidate the interaction mechanism between G-quadruplex DNA and hemin. Here, we performed volumetric analyses of formation of the complex between an oligonucleotide with the sequence of human telomeric DNA (h-telo) and hemin. The G-quadruplex DNA alone and the G-quadruplex DNA-hemin complex were destabilized with increasing pressure in Na + buffer. The pressure required to destabilize the h-telo-hemin complex was less in K + -containing buffer than in buffer with Na + , which indicates that there was a smaller volumetric change upon h-telo formation in K + buffer than in Na + buffer. The calculated change in h-telo-hemin binding volume (∆V b ) in the Na + buffer was 2.5mLmol -1 , whereas it was -41.7 in mLmol -1 the K + buffer. The DNAzyme activity in the K + buffer was higher than that in the Na + buffer at atmospheric pressure. Interestingly, the pressure effect on the destabilization of the h-telo-hemin complex in the presence of poly(ethylene glycol)200 (PEG200) was repressed compared to that in the absence of PEG200. These results suggest that differences in volumetric parameters reflect different mechanisms of interaction between hemin and h-telo due to differences in both the fit of hemin into the h-telo structure and hydration. Thus, the pressure-based thermodynamic analysis provided important information about complex formation and could be a useful index to improve function of DNAzymes. Copyright © 2016 Elsevier Inc. All rights reserved.
Roberts, Kenneth M.; Pavon, Jorge Alex; Fitzpatrick, Paul F.
2013-01-01
Phenylalanine hydroxylase (PheH) catalyzes the key step in the catabolism of dietary phenylalanine, its hydroxylation to tyrosine using tetrahydrobiopterin (BH4) and O2. A complete kinetic mechanism for PheH was determined by global analysis of single turnover data in the reaction of PheHΔ117, a truncated form of the enzyme lacking the N-terminal regulatory domain. Formation of the productive PheHΔ117-BH4-phenylalanine complex begins with the rapid binding of BH4 (Kd = 65 µM). Subsequent addition of phenylalanine to the binary complex to form the productive ternary complex (Kd = 130 µM) is approximately ten-fold slower. Both substrates can also bind to the free enzyme to form inhibitory binary complexes. O2 rapidly binds to the productive ternary complex; this is followed by formation of an unidentified intermediate, detectable as a decrease in absorbance at 340 nm, with a rate constant of 140 s−1. Formation of the 4a-hydroxypterin and Fe(IV)O intermediates is ten-fold slower and is followed by the rapid hydroxylation of the amino acid. Product release is the rate-determining step and largely determines kcat. Similar reactions using 6-methyltetrahydropterin indicate a preference for the physiological pterin during hydroxylation. PMID:23327364
Hayes, Thomas R; Bottorff, Shalina C; Slocumb, Winston S; Barnes, Charles L; Clark, Aurora E; Benny, Paul D
2017-01-24
In the last two decades, a number of chelate strategies have been proposed for the fac-[M I (CO) 3 ] + (M = Re, 99m Tc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2 + 1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2 + 1 complexes with Re and 99m Tc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2 + 1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99m Tc studies, anionic bidentate ligands had significantly higher formation yields of the 2 + 1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands.
Hayes, Thomas R.; Bottorff, Shalina C.; Slocumb, Winston S.; Barnes, Charles L.; Clark, Aurora E.; Benny, Paul D.
2017-01-01
In the last two decades, a number of chelate strategies have been proposed for the fac-[MI(CO)3]+ (M = Re, 99mTc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2+1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2+1 complexes with Re and 99mTc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2+1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99mTc studies, anionic bidentate ligands had significantly higher formation yields of the 2+1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands. PMID:28045466
Regulation of SMN Protein Stability▿ †
Burnett, Barrington G.; Muñoz, Eric; Tandon, Animesh; Kwon, Deborah Y.; Sumner, Charlotte J.; Fischbeck, Kenneth H.
2009-01-01
Spinal muscular atrophy (SMA) is caused by mutations of the survival of motor neuron (SMN1) gene and deficiency of full-length SMN protein (FL-SMN). All SMA patients retain one or more copies of the SMN2 gene, but the principal protein product of SMN2 lacks exon 7 (SMNΔ7) and is unable to compensate for a deficiency of FL-SMN. SMN is known to oligomerize and form a multimeric protein complex; however, the mechanisms regulating stability and degradation of FL-SMN and SMNΔ7 proteins have been largely unexplored. Using pulse-chase analysis, we characterized SMN protein turnover and confirmed that SMN was ubiquitinated and degraded by the ubiquitin proteasome system (UPS). The SMNΔ7 protein had a twofold shorter half-life than FL-SMN in cells despite similar intrinsic rates of turnover by the UPS in a cell-free assay. Mutations that inhibited SMN oligomerization and complex formation reduced the FL-SMN half-life. Furthermore, recruitment of SMN into large macromolecular complexes as well as increased association with several Gemin proteins was regulated in part by protein kinase A. Together, our data indicate that SMN protein stability is modulated by complex formation. Promotion of the SMN complex formation may be an important novel therapeutic strategy for SMA. PMID:19103745
Wang, Xinge; Luo, Zhigang; Xiao, Zhigang
2014-01-30
β-Cyclodextrin (β-CD), which is widely used to increase the stability, solubility, and bioavailability of guests, can form host-guest inclusion complexes with a wide variety of organic molecules. In this study the β-CD/soybean lecithin inclusion complex was prepared. The effect of reaction parameters such as reaction temperature, reaction time and the molar ratio of β-CD/soybean lecithin on inclusion ratio were studied. The inclusion ratio of the product prepared under the optimal conditions of β-CD/soybean lecithin molar ratio 2:1, reaction temperature 60°C reaction time 2h was 40.2%. The results of UV-vis, DSC, XRD and FT-IR spectrum indicated the formation of inclusion complex. The thermal stability experiment indicated that the thermal stability of soybean lecithin in inclusion complex was significantly improved compared with free soybean lecithin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Griffin, Brittany L.; Chasovskikh, Sergey; Dritschilo, Anatoly
2014-01-01
ABSTRACT The circular genome and antigenome RNAs of hepatitis delta virus (HDV) form characteristic unbranched, quasi-double-stranded RNA secondary structures in which short double-stranded helical segments are interspersed with internal loops and bulges. The ribonucleoprotein complexes (RNPs) formed by these RNAs with the virus-encoded protein hepatitis delta antigen (HDAg) perform essential roles in the viral life cycle, including viral replication and virion formation. Little is understood about the formation and structure of these complexes and how they function in these key processes. Here, the specific RNA features required for HDAg binding and the topology of the complexes formed were investigated. Selective 2′OH acylation analyzed by primer extension (SHAPE) applied to free and HDAg-bound HDV RNAs indicated that the characteristic secondary structure of the RNA is preserved when bound to HDAg. Notably, the analysis indicated that predicted unpaired positions in the RNA remained dynamic in the RNP. Analysis of the in vitro binding activity of RNAs in which internal loops and bulges were mutated and of synthetically designed RNAs demonstrated that the distinctive secondary structure, not the primary RNA sequence, is the major determinant of HDAg RNA binding specificity. Atomic force microscopy analysis of RNPs formed in vitro revealed complexes in which the HDV RNA is substantially condensed by bending or wrapping. Our results support a model in which the internal loops and bulges in HDV RNA contribute flexibility to the quasi-double-stranded structure that allows RNA bending and condensing by HDAg. IMPORTANCE RNA-protein complexes (RNPs) formed by the hepatitis delta virus RNAs and protein, HDAg, perform critical roles in virus replication. Neither the structures of these RNPs nor the RNA features required to form them have been characterized. HDV RNA is unusual in that it forms an unbranched quasi-double-stranded structure in which short base-paired segments are interspersed with internal loops and bulges. We analyzed the role of the HDV RNA sequence and secondary structure in the formation of a minimal RNP and visualized the structure of this RNP using atomic force microscopy. Our results indicate that HDAg does not recognize the primary sequence of the RNA; rather, the principle contribution of unpaired bases in HDV RNA to HDAg binding is to allow flexibility in the unbranched quasi-double-stranded RNA structure. Visualization of RNPs by atomic force microscopy indicated that the RNA is significantly bent or condensed in the complex. PMID:24741096
Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon
NASA Astrophysics Data System (ADS)
Harper, Gregory D.; Wright, James E.
1984-12-01
The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.
[Identification of C(2)M interacting proteins by yeast two-hybrid screening].
Yue, Shan-shan; Xia, Lai-xin
2015-11-01
The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex.
Pham, John W; Sontheimer, Erik J
2005-11-25
Complexes in the Drosophila RNA-induced silencing complex (RISC) assembly pathway can be resolved using native gel electrophoresis, revealing an initiator called R1, an intermediate called R2, and an effector called R3 (now referred to as holo-RISC). Here we show that R1 forms when the Dicer-2/R2D2 heterodimer binds short interfering RNA (siRNA) duplexes. The heterodimer alone can initiate RISC assembly, indicating that other factors are dispensable for initiation. During assembly, R2 requires Argonaute 2 to convert into holo-RISC. This requirement is reminiscent of the RISC-loading complex, which also requires Argonaute 2 for assembly into RISC. We have compared R2 to the RISC-loading complex and show that the two complexes are similar in their sensitivities to ATP and to chemical modifications on siRNA duplexes, indicating that they are likely to be identical. We have examined the requirements for RISC formation and show that the siRNA 5'-termini are repeatedly monitored during RISC assembly, first by the Dcr-2/R2D2 heterodimer and again after R2 formation, before siRNA unwinding. The 2'-position of the 5'-terminal nucleotide also affects RISC assembly, because an siRNA strand bearing a 2'-deoxyribose at this position can inhibit the cognate strand from entering holo-RISC; in contrast, the 2'-deoxyribose-modified strand has enhanced activity in the RNA interference pathway.
Hydrogen-bond formation between isoindolo[2,1-a]indol-6-one and aliphatic alcohols in n-hexane.
Demeter, Attila; Bérces, Tibor
2005-03-17
The spectroscopic, kinetic, and equilibrium properties of isoindolo[2,1-a]indol-6-one (I) were studied in n-hexane in the presence and absence of alcohols (X). Hydrogen-bonded-complex formation was found to occur between the alcohol and the ground state as well as the excited state of the I molecule. The spectra of I and its singly complexed derivative (IX) are similar; however, that of IX is red shifted. The extent of red shift increases with the hydrogen-bonding ability of the alcohol. Equilibrium constant measurements were made to determine the hydrogen-bond basicity (beta(2)(H)) for I and the singlet excited (1)I. The beta(2)(H) value for (1)I is found to be about twice that of the ground-state I. Time-resolved fluorescence decay measurements indicate that the reaction of singlet excited I with fluorinated alcohols is diffusion controlled, while the rate of complexation with nonfluorinated (weaker hydrogen bonding) aliphatic alcohols depends on the Gibbs energy change in the complexation reaction. The quantitative correlation between the rate coefficient of complexation of (1)I with alcohols and the Gibbs energy change in the complexation process allowed us to estimate the rate coefficient for the complexation of the ground-state I with alcohols. The formation of the singlet excited hydrogen-bonded complex is irreversible; (1)IX disappears in a first order and an alcohol induced second order reaction. The first order decay is predominantly due to internal conversion to the ground state, the rate of which depends on the ionization energy of the complexing alcohol.
Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji
2011-01-01
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835
Bottorff, Shalina C; Kasten, Benjamin B; Stojakovic, Jelena; Moore, Adam L; MacGillivray, Leonard R; Benny, Paul D
2014-02-17
Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to Cu(I)-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate and chelate, then click) were examined to determine the feasibility of isoxazole ring formation with either alkyne-functionalized tridentate chelates or their respective fac-[M(I)(CO)3](+) complexes with a model nitrile oxide generator. Macroscale experiments, alkyne-functionalized chelates, or Re complexes indicate facile formation of the isoxazole ring. (99m)Tc experiments demonstrate efficient radiolabeling with click, then chelate; however, the chelate, then click approach led to faster product formation, but lower yields compared to the Re analogues.
NASA Astrophysics Data System (ADS)
Pandeeswaran, M.; Elango, K. P.
2010-05-01
Spectroscopic studies revealed that the interaction of cimetidine drug with electron acceptors iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted through the initial formation of ionic intermediate to charge transfer (CT) complex. The CT-complexes of the interactions have been characterized using UV-vis, 1H NMR, FT-IR and GC-MS techniques. The formation of triiodide ion, I 3-, is further confirmed by the observation of the characteristic bands in the far IR spectrum for non-linear I 3- ion with C s symmetry at 156 and 131 cm -1 assigned to νas(I-I) and νs(I-I) of the I-I bond and at 73 cm -1 due to bending δ(I 3-). The rate of formation of the CT-complexes has been measured and discussed as a function of relative permittivity of solvent and temperature. The influence of relative permittivity of the medium on the rate indicated that the intermediate is more polar than the reactants and this observation was further supported by spectral studies. Based on the spectroscopic results plausible mechanisms for the interaction of the drug with the chosen acceptors were proposed and discussed and the point of attachment of the multifunctional cimetidine drug with these acceptors during the formation of CT-complex has been established.
Stone, S R; Morrison, J F
1983-06-29
Binding theory has been developed for the reaction of an ionizing enzyme with an ionizing ligand. Consideration has been given to the most general scheme in which all possible reactions and interconversions occur as well as to schemes in which certain interactions do not take place. Equations have been derived in terms of the variation of the apparent dissociation constant (Kiapp) as a function of pH. These equations indicate that plots of pKiapp against pH can be wave-, half-bell- or bell-shaped according to the reactions involved. A wave is obtained whenever there is formation of the enzyme-ligand complexes, ionized enzyme . ionized ligand and protonated enzyme . protonated ligand. The additional formation of singly protonated enzyme-ligand complexes does not affect the wave form of the plot, but can influence the shape of the overall curve. The formation of either ionized enzyme . ionized ligand or protonated enzyme . protonated ligand, with or without singly protonated enzyme-ligand species, gives rise to a half-bell-shaped plot. If only singly protonated enzyme-ligand complexes are formed the plots are bell-shaped, but it is not possible to deduce the ionic forms of the reactants that participate in complex formation. Depending on the reaction pathways, true values for the ionization and dissociation constants may or may not be determined.
Bacsi, Attila; Woodberry, Mitchell; Widger, William; Papaconstantinou, John; Mitra, Sankar; Peterson, Johnny W.; Boldogh, Istvan
2011-01-01
3-Nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain induces cellular energy deficit and oxidative stress-related neurotoxicity. In the present study, we identified the site of reactive oxygen species production in mitochondria. 3-NPA increased O2•− generation in mitochondria respiring on the complex I substrates pyruvate + malate, an effect fully inhibited by rotenone. Antimycin A increased O2•− production in the presence of complex I and/or II substrates. Addition of 3-NPA markedly increased antimycin A-induced O2•− production by mitochondria incubated with complex I substrates, but 3-NPA inhibited O2•− formation driven with the complex II substrate succinate. At 0.6 μM, myxothiazol inhibits complex III, but only partially decreases complex I activity, and allowed 3-NPA-induced O2•− formation; however, at 40 μM myxothiazol (which completely inhibits both complexes I and III) eliminated O2•− production from mitochondria respiring via complex I substrates. These results indicate that in the presence of 3-NPA, mitochondria generate O2•− from a site between the ubiquinol pool and the 3-NPA block in the respiratory complex II. PMID:17011837
Dokudovskaya, Svetlana; Waharte, Francois; Schlessinger, Avner; Pieper, Ursula; Devos, Damien P.; Cristea, Ileana M.; Williams, Rosemary; Salamero, Jean; Chait, Brian T.; Sali, Andrej; Field, Mark C.; Rout, Michael P.; Dargemont, Catherine
2011-01-01
The presence of multiple membrane-bound intracellular compartments is a major feature of eukaryotic cells. Many of the proteins required for formation and maintenance of these compartments share an evolutionary history. Here, we identify the SEA (Seh1-associated) protein complex in yeast that contains the nucleoporin Seh1 and Sec13, the latter subunit of both the nuclear pore complex and the COPII coating complex. The SEA complex also contains Npr2 and Npr3 proteins (upstream regulators of TORC1 kinase) and four previously uncharacterized proteins (Sea1–Sea4). Combined computational and biochemical approaches indicate that the SEA complex proteins possess structural characteristics similar to the membrane coating complexes COPI, COPII, the nuclear pore complex, and, in particular, the related Vps class C vesicle tethering complexes HOPS and CORVET. The SEA complex dynamically associates with the vacuole in vivo. Genetic assays indicate a role for the SEA complex in intracellular trafficking, amino acid biogenesis, and response to nitrogen starvation. These data demonstrate that the SEA complex is an additional member of a family of membrane coating and vesicle tethering assemblies, extending the repertoire of protocoatomer-related complexes. PMID:21454883
NASA Technical Reports Server (NTRS)
Dressler, B. O.; Weiser, T.; Brockmeyer, P.
1996-01-01
The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that they are genetically related. Our chemical results allow interpretation of the entire igneous complex as a differentiated impact melt. However, they are also consistent with the granophyre alone being the impact melt and the nofite and quartz gabbro beneath it representing an impact-triggered magmatic body. This interpretation is preferred, as it is consistent with a number of field observations. A re-evaluation and extension of structural field studies and of geochemical data, as well as a systematic study of the contact relationships of the various igneous phases of the igneous complex, are needed to establish a Sudbury impact model consistent with all data and observations
Slade, Liam; Chalker, Julia; Kuksal, Nidhi; Young, Adrian; Gardiner, Danielle; Mailloux, Ryan J
2017-08-01
Pyruvate dehydrogenase (PDHC) and α-ketoglutarate dehydrogenase complex (KGDHC) are important sources of reactive oxygen species (ROS). In addition, it has been found that mitochondria can also serve as sinks for cellular hydrogen peroxide (H 2 O 2 ). However, the ROS forming and quenching capacity of liver mitochondria has never been thoroughly examined. Here, we show that mouse liver mitochondria use catalase, glutathione (GSH), and peroxiredoxin (PRX) systems to quench ROS. Incubation of mitochondria with catalase inhibitor 3-amino-1,2,4-triazole (triazole) induced a significant increase in pyruvate or α-ketoglutarate driven O 2 - /H 2 O 2 formation. 1-Choro-2,4-dinitrobenzene (CDNB), which depletes glutathione (GSH), elicited a similar effect. Auranofin (AF), a thioredoxin reductase-2 (TR2) inhibitor which disables the PRX system, did not significantly change O 2 - /H 2 O 2 formation. By contrast catalase, GSH, and PRX were all required to scavenging extramitochondrial H 2 O 2 . In this study, the ROS forming potential of PDHC, KGDHC, Complex I, and Complex III was also profiled. Titration of mitochondria with 3-methyl-2-oxovaleric acid (KMV), a specific inhibitor for O 2 - /H 2 O 2 production by KGDHC, induced a ~86% and ~84% decrease in ROS production during α-ketoglutarate and pyruvate oxidation. Titration of myxothiazol, a Complex III inhibitor, decreased O 2 - /H 2 O 2 formation by ~45%. Rotenone also lowered ROS production in mitochondria metabolizing pyruvate or α-ketoglutarate indicating that Complex I does not contribute to ROS production during forward electron transfer from NADH. Taken together, our results indicate that KGDHC and Complex III are high capacity sites for O 2 - /H 2 O 2 production in mouse liver mitochondria. We also confirm that catalase plays a role in quenching either exogenous or intramitochondrial H 2 O 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Mangolim, Camila Sampaio; Moriwaki, Cristiane; Nogueira, Ana Claudia; Sato, Francielle; Baesso, Mauro Luciano; Neto, Antônio Medina; Matioli, Graciette
2014-06-15
Curcumin was complexed with β-CD using co-precipitation, freeze-drying and solvent evaporation methods. Co-precipitation enabled complex formation, as indicated by the FT-IR and FT-Raman techniques via the shifts in the peaks that were assigned to the aromatic rings of curcumin. In addition, photoacoustic spectroscopy and X-ray diffraction, with the disappearance of the band related to aromatic rings, by Gaussian fitting, and modifications in the spectral lines, respectively, also suggested complex formation. The possible complexation had an efficiency of 74% and increased the solubility of the pure colourant 31-fold. Curcumin-β-CD complex exhibited a sunlight stability 18% higher than the pure colourant. This material was stable to pH variations and storage at -15 and 4°C. With an isothermal heating at 100 and 150°C for 2h, the material exhibited a colour retention of approximately 99%. The application of curcumin-β-CD complex in vanilla ice creams intensified the colour of the products and produced a great sensorial acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yoshioka, T; Uematsu, T
1998-07-01
The formation of N-hydroxy-N-arylacylamides from nitroso aromatic compounds and 2-oxo acids was investigated using rat liver subcellular fractions. Activities were found in both mitochondria and cytosol, except for activities for phenylpyruvate and glyoxylate; the former did not produce N-hydroxy-N-phenylphenylacetamide and the latter nonenzymatically produced N-hydroxy-N-phenylformamide with nitrosobenzene (NOB). The cytosolic activity of N-hydroxy-N-phenylglycolamide formation was indicated to be due to transketolase, which utilized hydroxypyruvate as a glycolic aldehyde donor to NOB. With mitochondria, 2-oxo acids (including hydroxypyruvate) served as substrates for the biotransformation of NOB to the corresponding N-hydroxy-N-phenylacylamides. The substrate preference was 2-oxobutyrate > pyruvate > 2-oxoisovalerate > 2-oxoisocaproate > 2-oxovalerate > 2-oxo-3-methylvalerate, judging from Vmax/half-saturating concentration for mitochondria values. The half-saturating concentrations for NOB were nearly constant. The mitochondrial activity was due to pyruvate dehydrogenase complex and branched-chain 2-oxo acid dehydrogenase complex (BCDHC). By using partially purified BCDHC, pyruvate and 2-oxobutyrate were found to be common substrates for both of the enzymes, and 2-oxoisovalerate was shown to be the most effective substrate for BCDHC. Analysis by the Taft equation indicated that the polar effects, rather than the steric effects, of the alkyl groups of 2-oxo acids are important for BCDHC-catalyzed formation of N-hydroxy-N-phenylacylamides. A positive Hammett constant obtained for the formation of N-hydroxy-N-arylisobutyramides indicates that an electron-withdrawing substituent makes the nitroso compounds susceptible to BCDHC-catalyzed biotransformation.
Zhdanova, N N; Vasilevskaia, A I; Artyshkova, L V; Gavriliuk, V I; Lashko, T N; Sadovnikov, Iu S
1991-01-01
Complexes of soil micromycetes in the Chernobyl 30-km zone of the Ukrainian Polesye were studied for 1986-1989 with regard for such ecological parameters as the level of radiation contamination, a particular observation site, depth of soil horizon and season. As a result of the study correlation pleiads of soil micromycete complexes have been revealed with their structure and fungal genera characteristic of such complexes determined. The overwhelming majority of correlation pleiads of fungal complexes are attributed to complex-organized ones and this indicated high radioresistance of mycobiota in the studied, soils. Melanine-containing genera of fungi rank among the first in formation of correlation pleiads of soil micromycete complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubin, Elizabeth A.; Fay, Allison; Xu, Catherine
RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impedemore » transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.« less
Knoll, A H; Swett, K; Mark, J
1991-01-01
Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Swett, K.; Mark, J.
1991-01-01
Carbonates and rare shales of the ca 700-800 Ma old Draken Conglomerate Formation, northeastern Spitsbergen, preserve a record of environmental variation within a Neoproterozoic tidal flat/lagoon complex. Forty-two microfossil taxa have been recognized in Draken rocks, and of these, 39 can be characterized in terms of their paleoenvironmental distributions along a gradient from the supratidal zone to permanently submerged lagoons. Supratidal to subtidal trends include: increasing microbenthic diversity, increasing abundance and diversity of included allochthonous (presumably planktonic) elements, decreasing sheath thickness of mat-building organisms (with significant taphonomic consequences), and an increasing sediment/fossil ratio in fossiliferous rocks. Five principal and several minor biofacies can be distinguished. The paleoecological resolution obtainable in the Draken Conglomerate Formation rivals that achieved for most Phanerozoic fossil deposits. It documents the complexity and diversity of Proterozoic coastal ecosystems and indicates that both environment and taphonomy need to be taken into explicit consideration in attempts to understand evolutionary trends in early fossil record. Three species, Coniunctiophycus majorinum, Myxococcoides distola, and M. chlorelloidea, are described as new; Siphonophycus robustum, Siphonophycus septatum, and Gorgonisphaeridium maximum are proposed as new combinations.
Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro
2017-01-01
A non-toxigenic mutant of the toxigenic serotype C Clostridium botulinum strain Stockholm (C-St), C-N71, does not produce the botulinum neurotoxin (BoNT). However, the original strain C-St produces botulinum toxin complex, in which BoNT is associated with non-toxic non-hemagglutinin (NTNHA) and three hemagglutinin proteins (HA-70, HA-33, and HA-17). Therefore, in this study, we aimed to elucidate the effects of bont gene knockout on the formation of the "toxin complex." Nucleotide sequence analysis revealed that a premature stop codon was introduced in the bont gene, whereas other genes were not affected by this mutation. Moreover, we successfully purified the "toxin complex" produced by C-N71. The "toxin complex" was identified as a mixture of NTNHA/HA-70/HA-17/HA-33 complexes with intact NTNHA or C-terminally truncated NTNHA, without BoNT. These results indicated that knockout of the bont gene does not affect the formation of the "toxin complex." Since the botulinum toxin complex has been shown to play an important role in oral toxin transport in the human and animal body, a non-neurotoxic "toxin complex" of C-N71 may be valuable for the development of an oral drug delivery system.
NASA Astrophysics Data System (ADS)
Gnanasekar, Sharon Priya; Goubet, Manuel; Arunan, Elangannan; Georges, Robert; Soulard, Pascale; Asselin, Pierre; Huet, T. R.; Pirali, Olivier
2015-06-01
The H2O-CH3F complex could have two geometries, one with a hydrogen bond and one with the newly proposed carbon bond. While in general carbon bonds are weaker than hydrogen bonds, this complex appears to have comparable energies for the two structures. Infrared (IR) and microwave (MW) spectroscopic measurements using, respectively, the Jet-AILES apparatus and the FTMW spectrometer at the PhLAM laboratory, have been carried out to determine the structure of this complex. The IR spectrum shows the formation of the CH3F- H2O hydrogen bonded complex and small red-shifts in OH frequency most probably due to (CH3F)m-(H2O)n clusters. Noticeably, addition of CH_3F in the mixture promotes the formation of small water clusters. Preliminary MW spectroscopic measurements indicate the formation of the hydrogen bonded complex. So far, we have no experimental evidence for the carbon bonded structure. However, calculations of the Ar-CH3F complex show three energetically equivalent structures: a T-shape, a "fluorine" bond and a carbon bond. The MW spectrum of the (Ar)n-CH3F complexes is currently under analysis. Mani, D; Arunan, E. Phys. Chem. Chem. Phys. 2013, 15, 14377. Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebene, B; Alikhani, M. E; Georges, R; Moudens, A; Goubet, M; Huet, T.R; Pirali, O; Roy, P. J. Phys. Chem. A. 2011, 115, 2523 Kassi, S; Petitprez, D; Wlodarczak, G. J. Mol. Struct. 2000, 517-518, 375
NASA Astrophysics Data System (ADS)
Kozakov, I. K.; Kuznetsov, A. B.; Erdenegargal, Ch.; Salnikova, E. B.; Anisimova, I. V.; Plotkina, Ju. V.; Fedoseenko, A. M.
2017-09-01
The formation stages of high-grade metamorphic complexes and the related granitoids of the Dzabkhan terrane basement are considered. The age data (U-Pb method, TIMS) of zircons from the trondhjemite block of the eastern part of the Dzabkhan terrane, which is directly overlain by the dolomite sequence of the Tsagaan Oloom Formation, are given. Trondhjemites yield the U-Pb zircon age of 862 ± 3 Ma. In their structural position, they are assigned to typical postmetamorphic formations that determine the formation and cratonization of rocks of the host block. The geochronological study of trondhjemites gives grounds to distinguish fragments of the continental crust in the Dzabkhan terrane basement, the formation of which occurred at different periods of time: ˜860 and ˜790 Ma. Geological-geochronological and Sm‒Nd isotope-geochemical studies indicate that the Dzabkhan terrane basement is not a single block of the Early Precambrian continental crust, but a composite terrane, comprising Neoproterozoic ensialic and island-arc structural and compositional complexes. Correlation of Sr isotopic characteristics with the 87Sr/86Sr variation curve in the Neoproterozoic and Cambrian seawater shows that carbonate deposits accumulated at the eastern margin of the Dzabkhan terrane near the end of the Neoproterozoic, 700-550 Ma, and in the central part of the terrane in the Early Cambrian, 540-530 Ma.
NASA Astrophysics Data System (ADS)
Teleb, Said M.; Gaballa, Akmal S.; Elmosallamy, M. A. F.; Nour, El-Metwally
2005-09-01
The interaction of the mixed oxygen-nitrogen cyclic base, N, N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (DD18C6) with π-acceptors such as picric acid (HPA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) has been studied spectrophotometrically in chloroform at 25 °C. The results obtained indicate the formation of 1:4 charge-transfer complexes with the general formula (DD18C6)(acceptor) 4. The electronic and infrared spectra of charge-transfer complexes along with the 1H NMR spectra were recorded and discussed. Based on the data obtained, the complexes were formulated as [(DD18C6H 2)(HPA) 2](PA) 2 and [(DD18C6H 2)(DDQ) 2](DDQH) 2. A general mechanism explaining the formation of the DDQ complex has been suggested.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.
2011-01-01
Charge-transfer reactions between sulfadoxine (SDOX) as a donor with iodine (I 2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), p-chloranil (CHL) and picric acid (PA) have been studied in solid and solution forms. The stoichiometry of all complexes was found to be 1:1 by molar ratio method between donor and acceptor at a CT-band absorption bands. The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength (ƒ), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complexes were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used. IR, 1H NMR and UV-Vis spectroscopic techniques, Elemental analyses (CHN) and TG-DTG investigation were used to characterize the four sulfadoxine charge-transfer complexes.
Mohammed, Noorullah Naqvi; Pandey, Pankaj; Khan, Nayaab S; Elokely, Khaled M; Liu, Haining; Doerksen, Robert J; Repka, Michael A
2016-08-01
Clotrimazole (CT) is a poorly soluble antifungal drug that is most commonly employed as a topical treatment in the management of vaginal candidiasis. The present work focuses on a formulation approach to enhance the solubility of CT using cyclodextrin (CD) complexation. A CT-CD complex was prepared by a co-precipitation method. Various characterization techniques such as differential scanning calorimetry, infrared (IR) and X-ray spectroscopy, scanning electron microscopy and nuclear magnetic resonance (NMR) spectroscopy were performed to evaluate the complex formation and to understand the interactions between CT and CD. Computational molecular modeling was performed using the Schrödinger suite and Gaussian 09 program to understand structural conformations of the complex. The phase solubility curve followed an AL-type curve, indicating formation of a 1:1 complex. Molecular docking studies supported the data obtained through NMR and IR studies. Enthalpy changes confirmed that complexation was an exothermic and enthalpically favorable phenomenon. The CT-CD complexes were formulated in a gel and evaluated for release and antifungal activity. The in vitro release studies performed using gels demonstrated a sustained release of CT from the CT-CD complex with the complex exhibiting improved release relative to the un-complexed CT. Complexed CT-CD exhibited better fungistatic activity toward different Candida species than un-complexed CT.
NASA Astrophysics Data System (ADS)
Satriani, W. H.; Redjeki, S.; Kartinah, N. T.
2017-08-01
Increased neuroplasticity induced by complex aerobic physical exercise is associated with improved cognitive function in adult mice. Increased cognitive function is assumed to be based on increased synapse formation. One of the regions of the brain that is important in cognitive function is the hippocampus, which plays a role in memory formation. Post synaptic density-95 (PSD-95) is an adhesion protein of the post-synaptic density scaffolding that is essential to synaptic stabilization. As we age, the PSD-95 molecule matures the synapses needed for the formation of the basic circuitry of the nervous system in the brain. However, during the growth period, synapse elimination is higher than its formation. This study aims to determine whether complex aerobic exercise can improve cognitive function and PSD-95 levels in the hippocampus of juvenile mice during their growth stage. The mice performed complex aerobic exercise starting at five weeks of age and continuing for seven weeks with a gradual increase of 8 m/min. At eight weeks it was increased to 10 m/min. The exercise was done for five days of each week. The subjects of the study were tested for cognition one week before being sacrificed (at 12 weeks). The PSD-95 in the hippocampus was measured with ELISA. The results showed that there was a significant difference in cognitive function, where p < 0.05, between the group that was given complex aerobic exercise and a control group that did not. However, the PSD-95 levels did not differ significantly between the two groups. The results of this study indicate that early complex aerobic exercise can improve cognitive ability in adulthood but does not increase the levels of PSD-95 in adults.
Mujika, Jon I; Dalla Torre, Gabriele; Lopez, Xabier
2018-06-13
The pro-oxidant ability of aluminum is behind many of the potential toxic effects of this exogenous element in the human organism. Although the overall process is still far from being understood at the molecular level, the well known ability of aluminum to promote the Fenton reaction is mediated through the formation of stable aluminum-superoxide radical complexes. However, the properties of metal complexes are highly influenced by the speciation of the metal. In this paper, we investigate the effect that speciation could have on the pro-oxidant activity of aluminum. We choose citrate as a test case, because it is the main low-molecular-mass chelator of aluminum in blood serum, forming very stable aluminum-citrate complexes. The influence of citrate in the interaction of aluminum with the superoxide radical is investigated, determining how the formation of aluminum-citrate complexes affects the promotion of the Fenton reaction. The results indicate that citrate increases the stability of the aluminum-superoxide complexes through the formation of ternary compounds, and that the Fenton reaction is even more favorable when aluminum is chelated to citrate. Nevertheless, our results demonstrate that overall, citrate may prevent the pro-oxidant activity of aluminum: on one hand, in an excess of citrate, the formation of 1 : 2 aluminum-citrate complexes is expected. On the other hand, the chelation of iron by citrate makes the reduction of iron thermodynamically unfavorable. In summary, the results suggest that citrate can have both a promotion and protective role, depending on subtle factors, such as initial concentration, non-equilibrium behavior and the exchange rate of ligands in the first shell of the metals.
Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.
Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong
2017-08-29
The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.
Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis
Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong
2017-01-01
The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed. PMID:28850088
Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.
2010-01-01
Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468
NASA Astrophysics Data System (ADS)
Hossan, Aisha S. M.; Abou-Melha, Hanaa M.; Refat, Moamen S.
2011-08-01
Electron donor acceptor complexes (EDA) of the 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) as a rich donor were spectrophotometrically discussed and synthesized in solid form according the interactions with different nine of usual π-acceptors like 2,3,5,6-tetrachlorocyclohexa-2,5-diene-1,4-dione (p-chloranil; p-CHL), tetrachloro-1,2-benzoquinone (o-chloranil; o-CHL), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetracyanoquinodimethane (TCNQ), 2,6-dichloroquinone-4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid; CLA), N-bromosuccinimide (NBS), 2,4,6-trinitrophenol (picric acid; PA). Spectroscopic and physical data such as formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G°), oscillator strength ( f), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( Ip) were estimated in chloroform or methanol at 25 °C. Based on the elemental analysis and photometric titrations the CT-complexes were formed indicated the formation of 1:1 charge-transfer complexes for the o-CHL, TCNQ, DCQ, DBQ and NBS acceptors but 1:3 ratio for p-CHL, DDQ, CLA and PA, respectively. The charge-transfer interactions were interpretative according to the formation of dative ion pairs [18C6 rad +, A rad -], where A is acceptor. All of the resulting charge transfer complexes were isolated in amorphous form and the complexes formations on IR and 1H NMR spectra were discussed.
Glycinin-gum arabic complex formation: Turbidity measurement and charge neutralization analysis.
Dong, Die; Hua, Yufei
2016-11-01
The interaction between glycinin and anionic polysaccharides has gained considerable attention recently because of its scientific impact on the stability of acid soymilk systems. In this study, the formation of glycinin/gum arabic complexes driven by electrostatic interactions was investigated. Turbidity titrations at different glycinin/gum arabic ratios were conducted and critical pH values (pH φ1 ) where insoluble complexes began forming were determined firstly. The corresponding pH φ1 values at glycinin/gum arabic ratios of 1:4, 1:2, 1:1, 2:1, 4:1 and 8:1 were 2.85, 3.25, 3.70, 4.40, 4.85 and 5.35, respectively. Afterwards, electromobilities for glycinin and gum arabic at the pH values between 4.1 and 2.6 were measured, and charge densities (ZN) for glycinin and gum arabic were calculated based on the soft particle analysis theory. Further analysis indicated that the product of glycinin/gum arabic ratio (ρ) and ZN ratio of glycinin/gum arabic was approximate 1 at any pH φ1 values. It was revealed that charge neutralization was achieved when glycinin/gum arabic insoluble complexes began forming. NaCl displayed multiple effects on glycinin/gum arabic complex formation according to turbidity and compositional analysis. The present study could provide basic guidance in acid soymilk designing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arntz, Arnoud; ten Haaf, José
2012-11-01
This experiment investigated social cognition in borderline personality disorder (BPD). We tested whether BPD-patients' evaluations of others were characterized by splitting, dichotomous thinking, or negativity; and whether they showed less complex understanding of others. Participants discussed a problem with three alleged mental health worker trainees, performing three interpersonal roles (rejecting, accepting and neutral). Participants evaluated trainees in a structured response format and in a semi-structured interview. BPD-patients (n = 18) were compared to Cluster-C personality disorder patients (n = 18) and nonpatients (n = 18). From visual analog scales with opposite trait descriptions (structured response format) negativity, dichotomous thinking, and splitting scores were derived. The interviews were scored by an independent rater on affect tone, differentiation, and complexity of attributions. BPD-patients showed, in all conditions, and in both response formats, more dichotomous thinking than control groups. Evidence for splitting as specific BPD-characteristic was not convincing, and more negativity in BPD was only found with the rejecting role and structured responses. The interview-based evaluations by BPD-patients could not be discriminated from nonpatients in cognitive complexity. Results indicate that dichotomous thinking, and not so much splitting, negativity, or less complexity, is central in the interpretation of others by BPD-patients. Treatment might address dichotomous thinking to reduce BPD-patients' interpersonal problems. Copyright © 2012 Elsevier Ltd. All rights reserved.
MacDonnell, M F
1984-01-01
The midline ridge formation (MRF) of the trigeminal complex in 127 cartilaginous fish of 15 species was examined by scanning electron microscopy or light microscopy. Five distinct species variations of the MRF in sharks are described. The formation has not yet been observed to be present in skates and rays, but its presence in the subclass Holocephali, the sister group to the Elasmobranchii, indicates that this proposed circumventricular organ is an ancient brain characteristic of this line of vertebrates, perhaps predating the emergence of the class Chondrichthyii. The different types of MRF are compared to a current phyletic organization of the elasmobranchs and the possible functional significance of the formation is discussed briefly.
The Inhibition of Escherichia coli Biofilm Formation by Gallium Nitrate-Modified Titanium.
Zhu, Yuanyuan; Qiu, Yan; Chen, Ruiqi; Liao, Lianming
2015-08-01
Periprosthetic infections are notoriously difficult to treat due to biofilm formation. Previously, we reported that gallium-EDTA attached to PVC (polyvinyl chloride) surface could prevent bacterial colonization. Herein we examined the effect of this gallium-EDTA complex on Escherichia coli biofilm formation on titanium. It was clearly demonstrated that gallium nitrate significantly inhibited the growth and auto-aggregation of Escherichia coli. Furthermore, titanium with gallium-EDTA coating resisted bacterial colonization as indicated by crystal violet staining. When the chips were immersed in human serum and incubated at 37 °C, they demonstrated significant antimicrobial activity after more than 28 days of incubation. These findings indicate that gallium-EDTA coating of implants can result in a surface that can resist bacterial colonization. This technology holds great promise for the prevention and treatment of periprosthetic infections.
Adam-Vizi, Vera
2005-01-01
Overwhelming evidence has accumulated indicating that oxidative stress is a crucial factor in the pathogenesis of neurodegenerative diseases. The major site of production of superoxide, the primary reactive oxygen species (ROS), is considered to be the respiratory chain in the mitochondria, but the exact mechanism and the precise location of the physiologically relevant ROS generation within the respiratory chain have not been disclosed as yet. Studies performed with isolated mitochondria have located ROS generation on complex I and complex III, respectively, depending on the substrates or inhibitors used to fuel or inhibit respiration. A more "physiological" approach is to address ROS generation of in situ mitochondria, which are present in their normal cytosolic environment. Hydrogen peroxide formation in mitochondria in situ in isolated nerve terminals is enhanced when complex I, complex III, or complex IV is inhibited. However, to induce a significant increase in ROS production, complex III and complex IV have to be inhibited by >70%, which raises doubts as to the physiological importance of ROS generation by these complexes. In contrast, complex I inhibition to a small degree is sufficient to enhance ROS generation, indicating that inhibition of complex I by approximately 25-30% observed in postmortem samples of substantia nigra from patients suffering from Parkinson's disease could be important in inducing oxidative stress. Recently, it has been described that a key Krebs cycle enzyme, alpha-ketoglutarate dehydrogenase (alpha-KGDH), is also able to produce ROS. ROS formation by alpha-KGDH is regulated by the NADH/NAD+ ratio, suggesting that this enzyme could substantially contribute to generation of oxidative stress due to inhibition of complex I. As alpha-KGDH is not only a generator but also a target of ROS, it is proposed that alpha-KGDH is a key factor in a vicious cycle by which oxidative stress is induced and promoted in nerve terminals.
Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy
2013-01-01
An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363
Townsend, Alexandra J; Saccon, Francesco; Giovagnetti, Vasco; Wilson, Sam; Ungerer, Petra; Ruban, Alexander V
2018-03-13
Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679 nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Kolobukhina, L V; L'vov, D K; Butenko, A M; Kuznetsov, A A; Galkina, I V
1989-10-01
To study the role of viruses of the California encephalitis virus complex (the family Bunyaviridae) in infectious pathology, 187 fever patients admitted to the Clinical Infectious Hospital in May-September 1986 were examined. In 10 of these patients the neutralization test revealed the presence of diagnostically significant changes in neutralizing antibodies (neutralization indices), which was indicative of the role played by Tahyna virus or other related viruses belonging to the California encephalitis virus complex in the etiology of the diseases. The analysis of the clinical picture showed that in all patients the disease took an acute course in its initial stage, starting with shivering and characterized by high fever, headache, pronounced toxicosis, the possibility of the formation of intracerebral hypertension and pneumonia.
NASA Astrophysics Data System (ADS)
Gao, Min; Lu, Liqian; Wang, Xiaoyue; Lin, Houke; Zhou, Qingsong
2017-11-01
For sustain the release rate and prolong half-life of breviscapine in vivo, the breviscapine-loaded halloysite nanotubes complex was prepared. The breviscapine was encapsulated into halloysite nanotubes (HNTs) using a vacuum process. The complex were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy(FT-IR). The formation of breviscapine-loaded HNTs complex was proved by the test results of SEM, DSC, TEM and IR analysise. The results confirmed that breviscapine was successfully loaded in the halloysite nanotubes. Additionally, the in vitro drug release of breviscapine from breviscapine-loaded HNTs complex was investigated, the result indicated this complex has apparent sustained-release effect.
Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O
2013-05-01
Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karmakar, Animesh; Singh, Bula
2017-05-01
1-(2-Pyridylazo)-2-napthol (hereafter 1Q) is widely used as a chelating ligand applied in chelatometric, spectrophotometric analysis of metal ions. It appeared from the literature survey that no inclusion complex of 1Q was reported with nitroaromatics. The formation of charge-transfer complex gives an opportunity to improve the physico-chemical properties of different donors. So the complex of 1Q with 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), picric acid (PA), and 3,5-dinitrosalicylic acid (3,5-DNSA) was described in this work in methanol medium. The ground and excited state binding constants and other spectroscopic data have been determined using UV-vis and fluorescence spectroscopic studies. All the complexes have been synthesized and characterized using FT-IR, 1H NMR, and elemental analysis. Spectroscopic data reveal that 1Q joins by a N+sbnd Hsbnd O- type hydrogen bond with nitroaromatics. Job's plot of the continuous variation of absorbance indicates that stoichiometry of CT-complex was 1:1. Thermal stability of the synthesized complex has determined by TGA-DTA analysis. Energy-minimization DFT calculation further supported the formation of the H-bonded charge-transfer adduct.
Sun, Na; Cui, Pengbo; Li, Dongmei; Jin, Ziqi; Zhang, Shuyu; Lin, Songyi
2017-09-20
A novel peptide from egg white, Asp-His-Thr-Lys-Glu (DHTKE), contains specific amino acids associated with iron binding. The present study aims to better understand the molecular basis of interactions between the DHTKE peptide and iron ions. The ultraviolet-visible and fluorescence spectra indicate an interaction between the DHTKE peptide and iron ions, which leads to the formation of a DHTKE-iron complex. Notably, Asp, Glu, His, and Lys in the DHTKE peptide play crucial roles in the formation of the DHTKE-iron complex, and the iron-binding site of the DHTKE peptide corresponds primarily to the amide and carboxyl groups. The DHTKE peptide can bind iron ions in a 1 : 2 ratio with a binding constant of 1.312 × 10 5 M -1 . Moreover, the DHTKE-iron complex belongs to thermodynamically stable nanoparticles that are present in the crystalline structure, which might be attributed to peptide folding induced by iron binding. Meanwhile, the DHTKE-iron complex exhibits a relatively high iron-releasing percentage and exerts excellent solubility in the human gastrointestinal tract in vitro. This suggests a potential application of peptides containing Asp, Glu, His, or Lys residues as potential iron supplements.
NASA Astrophysics Data System (ADS)
Albrecht, Remy; Gourry, Jean Christophe; Simonnot, Marie-Odile; Leyval, Corinne
2011-11-01
Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.
NASA Astrophysics Data System (ADS)
Rivilla, V. M.; Beltrán, M. T.; Martín-Pintado, J.; Fontani, F.; Caselli, P.; Cesaroni, R.
2017-03-01
Context. In recent years, the detection of organic molecules with increasing complexity and potential biological relevance is opening the possibility to understand the formation of the building blocks of life in the interstellar medium. One of the families of molecules of substantial astrobiological interest are the esters. The simplest ester, methyl formate (CH3OCHO), is rather abundant in star-forming regions. The next step in the chemical complexity of esters is ethyl formate, C2H5OCHO. Despite the increase in sensitivity of current telescopes, the detection of complex molecules with more than ten atoms such as C2H5OCHO is still a challenge. Only two detections of this species have been reported so far, which strongly limits our understanding of how complex molecules are formed in the interstellar medium. New detections towards additional sources with a wide range of physical conditions are crucial to differentiate between competing chemical models based on dust grain surface and gas-phase chemistry. Aims: We have searched for ethyl formate towards the W51 e2 hot molecular core, one of the most chemically rich sources in the Galaxy and one of the most promising regions to study prebiotic chemistry, especially after the recent discovery of the P-O bond, key in the formation of DNA. Methods: We have analyzed a spectral line survey towards the W51 e2 hot molecular core, which covers 44 GHz in the 1, 2 and 3 mm bands, carried out with the IRAM 30 m telescope. Results: We report the detection of the trans and gauche conformers of ethyl formate. A local thermodynamic equilibrium analysis indicates that the excitation temperature is 78 ± 10 K and that the two conformers have similar source-averaged column densities of (2.0 ± 0.3) × 10-16 cm-2 and an abundance of 10-8. We compare for the first time the observed molecular abundances of ethyl formate with different competing chemical models based on grain surface and gas-phase chemistry. Conclusions: We propose that grain-surface chemistry may have a dominant role in the formation of ethyl formate (and other complex organic molecules) in hot molecular cores, rather than reactions in the gas phase. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
Our Galactic Neighbor Hosts Complex Organic Molecules
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-03-01
For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected small amounts of methanol, the parentmolecule of the two newly-discovered compounds. By revealing the spectral signatures of dimethyl ether and methyl formate, Sewio and collaboratorsfurther prove thatorganic chemistry is hard at work in hot cores in the LMC.This discovery is momentous because dwarf galaxies like theLMC tend to have a lower abundance of the heavy elements that make up complex organic molecules most importantly, oxygen, carbon, and nitrogen. Beyond lacking the raw materials necessary to create complex molecules, the gas of low-metallicity galaxies does a poorer job preventing the penetration of high-energy photons. The impinging photons warm dust grains, resulting in a lower probability of forming and maintaining complex organic molecules. Despite this, organic molecules appear to beable todevelop and persist which has exciting implications for organic chemistry in low-metallicity environments.ALMA observation of emission by methyl formate in a hot core in the LMC.[Adapted from Sewio et al. 2018]A Lens into the PastIn the early universe, before the budding galaxies have had time to upcycle their abundant hydrogen into heavier elements, organic chemistry is thought to proceed slowly or not at all. The discovery of complex organic molecules in a nearby low-metallicity galaxy upends this theory and propels us toward a better understanding of the organic chemistry in the early universe.CitationMarta Sewio et al 2018ApJL853L19. doi:10.3847/2041-8213/aaa079
Hu, Jun; Tan, Xiaoli; Ren, Xuemei; Wang, Xiangke
2012-09-21
The influence of humic acid (HA) on Ni(II) sorption to Ca-montmorillonite was examined by using a combination of batch sorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The sorption of Ni(II) on HA-montmorillonite hybrids is strongly dependent on pH and temperature. At low pH, the sorption of Ni(II) is mainly dominated by Ni-HA-montmorillonite and outer-sphere surface complexation. The EXAFS results indicate that the first coordination shell of Ni(II) consists of ∼6 O atoms at the interatomic distances of ∼2.04 Å in an octahedral structure. At high pH, binary Ni-montmorillonite surface complexation is the dominant sorption mechanism. EXAFS analysis indicates the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5, while a Ni-Al layered double hydroxide (LDH) phase at the Ca-montmorillonite surface formed with pH 8.5. At pH 10.0, the dissolved HA-Ni(II) complexation inhibits the precipitation of Ni hydroxide, and Ni-Al LDH phase forms. The rise of temperature increases the sorption capacity of Ni(II), and promotes Ni-Al LDH phase formation and the growth of crystallites. The results are important to evaluate the physicochemical behavior of Ni(II) in the natural environment.
Formate-induced inhibition of the water-oxidizing complex of photosystem II studied by EPR.
Feyziev, Y M; Yoneda, D; Yoshii, T; Katsuta, N; Kawamori, A; Watanabe, Y
2000-04-04
The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.
Biomimetic fabrication of materials: the minimalist approach
NASA Astrophysics Data System (ADS)
Lahiri, Joydeep; Xu, Guofeng; Lee, Tu; Dabbs, Daniel M.; Yao, Nan; Aksay, Ilhan A.; Groves, John T.
1996-02-01
The interfacial chemistry between inorganic ceramics and defined organic surfaces is the focus of intense investigation. Partially compressed Langmuir-Blodgett monolayers of anionic porphyrins have been used as modified nucleation sites for calcium carbonate. The porphyrin monolayer has an ordered array of carboxylates, and hence the system serves as a minimalist template for the modeling of complex biogenic acidic glycoproteins for biomineralization. The initial results suggest the formation of calcite with morphologically distinct calcitic rhombs with truncated, 3-edged corners and intricately articulated facial cavities. Stearic acid monolayers yield distinctly different calcite crystals, indicative that the geometrically defined carboxylate array is probably important. Phosphatidylcholine vesicles have been used as a tool for the formation of membrane encapsulated iron-oxides. Gramicindin A ion channels have been embedded in vesicles to kinetically alter the formation and growth of iron oxides, starting with intravesicular ferrous chloride. The results indicate that the presence of ion channels lead to the formation of magnetite vis-a-vis maghemite formation in vesicles lacking the ion channels. The use of ion channels has important implications in probable signal transduction processes during biomineralization pathways.
Formation of methyl formate in comets by irradiation of methanol-bearing ices
NASA Astrophysics Data System (ADS)
Modica, P.; Palumbo, M. E.; Strazzulla, G.
2012-12-01
Methyl formate is a complex organic molecule considered potentially relevant as precursor of biologically active molecules. It has been observed in several astrophysical environments, such as hot cores, hot corinos, and comets. The processes that drive the formation of molecules in cometary ices are poorly understood. In particular it is not yet clear if molecules are directly accreted from the pre-solar nebula to form comets or are formed after accretion. The present work analyzes the possible role of cosmic ion irradiation and radioactive decay in methyl formate formation in methanol-bearing ices. The results indicate that cosmic ion irradiation can account for about 12% of the methyl formate observed in comet Hale-Bopp, while radioactive decay can account for about 6% of this amount. The need of new data coming from earth based and space observational projects as well as from laboratory experiments is outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilden, P.A.; Treadway, J.L.; Morrison, B.D.
1989-12-12
Examination of {sup 125}I-IGF-1 affinity cross-linking and {beta}-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptors into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 receptor complex from the partially purified {alpha}{beta} heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified {alpha}{beta} heterodimers into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulatemore » the protein kinase activity of the purified {alpha}{beta} heterodimeric insulin receptor complex. Incubation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter {sup 125}I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the {alpha}{beta} heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptor complexes into a disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor {alpha}{beta} heterodimers into the {alpha}{sub 2}{beta}{sub 2} heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation.« less
Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study.
Melchior, Andrea; Peralta, Elena; Valiente, Manuel; Tavagnacco, Claudio; Endrizzi, Francesco; Tolazzi, Marilena
2013-05-07
Thermodynamic parameters of complex formation between d(10) metal ions, such as Zn(2+), Cd(2+), Hg(2+) and Ag(+), and the macrocyclic thioether 1,4,7-trithiacyclononane ([9]AneS3) or the monodentate diethylsulfide (Et(2)S), in acetonitrile (AN) at 298.15 K, were studied by a systematic methodology including potentiometry, calorimetry and polarography. [9]AneS3 is able to form complexes with all the target cations, Et(2)S only reacts with Hg(2+) and Ag(+). Mononuclear ML(j) (j = 1, 2) complexes are formed with all the metal ions investigated, where the affinity order is Hg(2+) > Ag(+) > Cd(2+) ≈ Zn(2+) when L = [9]AneS3 and Hg(2+) > Ag(+) when L = Et(2)S. Enthalpy and entropy values are generally negative, as a consequence of both metal ion interactions with neutral ligands, the reagents' loss of degrees of freedom and the release of solvating molecules. DFT calculations on the complexes formed with [9]AneS3 in vacuum and in AN are also carried out, to correlate experimental and theoretical thermodynamic values and to highlight the interplay between the direct metal-thioether interaction and the solvation effects. Trends obtained for the stability constants and enthalpies of the 1 : 1 and 1 : 2 complexes in solvent well reproduce the experimental ones for all the divalent metal ion complexes with [9]AneS3 and indicate the release of 3 AN molecules in the formation of each consecutive octahedral complex. In addition, calculated and experimental values for Ag(+) complex formation in solution suggest that in AgL(2) species [9]AneS3 ligands are not both tridentate.
Shibata, Yuri; Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Gohda, Jin; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro; Inoue, Jun-Ichiro
2017-01-01
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.
Tokunaga, Fuminori; Goto, Eiji; Komatsu, Ginga; Saeki, Yasushi; Tanaka, Keiji; Takahashi, Hirotaka; Sawasaki, Tatsuya; Inoue, Satoshi; Oshiumi, Hiroyuki; Seya, Tsukasa; Nakano, Hiroyasu; Tanaka, Yuetsu; Iwai, Kazuhiro
2017-01-01
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation. PMID:28103322
NASA Astrophysics Data System (ADS)
Bischoff, Addi; Wurm, Gerhard; Chaussidon, Marc; Horstmann, Marian; Metzler, Knut; Weyrauch, Mona; Weinauer, Julia
2017-05-01
In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine-rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O-poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral-chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer-sized, and super-dense chondrule-forming regions with extremely high solid-to-gas mass ratios of 1000 or more.
NASA Astrophysics Data System (ADS)
Rogachev, Andrey Yu.; Mironov, Andrey V.; Nemukhin, Alexander V.
2007-04-01
The new unusual heterobimetallic complex [La(hfa) 3Cu(acac) 2(H 2O)] ( I) was obtained in the reaction La(hfa) 3·2H 2O with Cu(acac) 2 in CHCl 3. This is the first example of such type of heterobimetallic complexes based on the Cu(acac) 2 species. According to the X-ray single crystal analysis, complex I crystallizes in the monoclinic space group P2 1/c, with a = 12.516(3) Å, b = 17.757(4) Å, c = 17.446(4) Å, β = 93.90(3)° and Z = 4. The structure consists of isolated heterobinuclear molecules with the coordination number of La being 9. The molecules are further assembled into dimers via hydrogen bonds. The theoretical modeling of the structure and the properties of parent monometallic complexes Ln(hfa) 3 (Ln = La, Y) and Cu(acac) 2 is described. The comparative theoretical study of lanthanide complexes indicates relations in formation of a heterobimetallic complex to the Lewis acidity of original monometallic complexes. In particular, the Lewis acidity and charge of the central metal ion in Ln(hfa) 3 are the key parameters accounting for the formation of [Ln(hfa) 3Cu(acac) 2].
Blasco, Salvador; Cano, Joan; Clares, M Paz; García-Granda, Santiago; Doménech, Antonio; Jiménez, Hermas R; Verdejo, Begoña; Lloret, Francesc; García-España, Enrique
2012-11-05
The crystal structure of a binuclear Mn(III) complex of a scorpiand-like ligand (L) displays an unsupported single oxo bridging ligand with a Mn(III)-O-Mn(III) angle of 174.7°. Magnetic susceptibility measurements indicate strong antiferromagnetic coupling between the two metal centers. DFT calculations have been carried out to understand the magnetic behavior and to analyze the nature of the observed Jahn-Teller distortion. Paramagnetic (1)H NMR has been applied to rationalize the formation and magnetic features of the complexes formed in solution.
Interaction of an Fe derivative of TMAP (Fe(TMAP)OAc) with DNA in comparison with free-base TMAP.
Ghaderi, Masoumeh; Bathaie, S Zahra; Saboury, Ali-Akbar; Sharghi, Hashem; Tangestaninejad, Shahram
2007-07-01
We investigated the interaction of meso-tetrakis (N-para-methylanilium) porphyrin (TMAP) in its free base and Fe(II) form (Fe(TMAP)OAc) as a new derivative, with high molecular weight DNA at different ionic strengths, using various spectroscopic methods and microcalorimetry. The data obtained by spectrophotometery, circular dichroism (CD), fluorescence quenching and resonance light scattering (RLS) have demonstrated that TMAP association with DNA is via outside binding with self-stacking manner, which is accompanied with the "end-on" type complex formation in low ionic strength. However, in the case of Fe(TMAP)OAc, predominant mode of interaction is groove binding and after increasing in DNA concentration, unstable stacking-type aggregates are formed. In addition, isothermal titration calorimetric measurements have indicated the exothermic process of porphyrins binding to DNA, but the exothermisity in metal derivative of porphyrin is less than the free base. It confirmed the formation of a more organized aggregate of TMAP on DNA surface. Interactions of both porphyrins with DNA show high sensitivity to ionic strength. By addition of salt, the downfield CD signal of TMAP aggregates is shifted to a higher wavelength, which indicates some changes in the aggregates position. In the case of Fe(TMAP)OAc, addition of salt leads to changes in the mode of binding from groove binding to outside binding with self-stacking, which is accompanied with major changes in CD spectra, possibly indicating the formation of "face-on" type complex.
Influence of Structure, Charge, and Concentration on the Pectin-Calcium-Surfactant Complexes.
Joshi, Nidhi; Rawat, Kamla; Bohidar, H B
2016-05-12
Polymer-surfactant complex formation of pectin with different types of surfactants, cationic (cetyltrimethylammonium bromide, CTAB and dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS), and neutral (Triton X-100, TX-100), was investigated at room temperature in the presence and absence of cross-linker calcium chloride using light scattering, zeta potential, rheology, and UV-vis spectroscopic measurements where the surfactant concentration was maintained below their critical micellar concentration (CMC). Results indicated that the interaction of cationic surfactant with pectin in the presence and absence of calcium chloride was much stronger compared to anionic and neutral surfactants. The neutral surfactant showed identifiable interaction despite the absence of any charged headgroup, while anionic surfactant showed feeble or very weak interaction with the polymer. The pectin-CTAB or DTAB complex formation was attributed to associative electrostatic and hydrophobic interactions. On comparison between the cationic surfactants, it was found that CTAB interacts strongly with pectin because of its long hydrocarbon chain. The morphology of complexes formed exhibited random coil structures while at higher concentration of surfactant, rod-like or extended random coil structures were noticed. Thus, functional characteristics of the complex could be tuned by varying the type of surfactant (charge and structure) and its concentration. The differential network rigidity (pectin-CTAB versus pectin-DTAB gels) obtained from rheology measurements showed that addition of a very small amount of surfactant (concentration ≪ CMC) was required for enhancing network strength, while the presence of a large amount of surfactant resulted in the formation of fragile gels. No gel formation occurred when the surfactant concentration was close to their CMC values. Considering the importance of pectin in food and pharmaceutical industry, this study is relevant.
Liu, Jun; Wang, Qiao-Chu; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen
2012-01-01
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.
Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W.; Lorenson, T.D.; Greene, H. Gary
2007-01-01
Authigenic carbonates from five continental margin locations, the Eel River Basin, Monterey Bay, Santa Barbara Basin, the Sea of Okhotsk, and the North Sea, exhibit a wide range of mineralogical and stable isotopic compositions. These precipitates include aragonite, low- and high-Mg calcite, and dolomite. The carbon isotopic composition of carbonates varies widely, ranging from -60??? to +26???, indicating complex carbon sources that include 13C-depleted microbial and thermogenic methane and residual, 13C-enriched, bicarbonate. A similarly large variability of ??18O values (-5.5??? to +8.9???) demonstrates the geochemical complexity of these sites, with some samples pointing toward an 18O-enriched oxygen source possibly related to advection of 18O-enriched formation water or to the decomposition of gas hydrate. Samples depleted in 18O are consistent with formation deeper in the sediment or mixing of pore fluids with meteoric water during carbonate precipitation. A wide range of isotopic and mineralogical variation in authigenic carbonate composition within individual study areas but common trends across multiple geographic areas suggest that these parameters alone are not indicative for certain tectonic or geochemical settings. Rather, the observed variations probably reflect local controls on the flux of carbon and other reduced ions, such as faults, fluid conduits, the presence or absence of gas hydrate in the sediment, and the temporal evolution of the local carbon reservoir. Areas with seafloor carbonates that indicate formation at greater depth below the sediment-water interface must have undergone uplift and erosion in the past or are still being uplifted. Consequently, the occurrence of carbonate slabs on the seafloor in areas of active hydrocarbon seepage is commonly an indicator of exhumation following carbonate precipitation in the shallow subsurface. Therefore, careful petrographic and geochemical analyses are critical components necessary for the correct interpretation of processes related to hydrocarbon seepage in continental margin environments and elsewhere. ?? 2007 Elsevier Ltd. All rights reserved.
Host-guest complex formation in cyclotrikis-(1-->6).
Cescutti, P; Utille, J P; Rizzo, R
2000-11-17
The possibility that cyclotrikis-(1-->6)-[alpha-D-glucopyranosyl-(1-->4)-beta-D-glucopyranosyl] (CGM6) forms inclusion complexes, like cycloamyloses (cyclodextrins), was investigated by means of electrospray mass spectrometry and fluorescence spectroscopy. The complexing ability of both 1-anilinonaphthalene-8-sulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS), which were already used with cyclodextrins, was investigated. The former showed very little or no tendency to be complexed by CGM6, while the latter produced detectable adducts with CGM6. Fixed 90 degree angle light scattering experiments supported the findings obtained by molecular modelling calculations, which indicated a polar character for the CGM6 internal cavity. CGM6-TNS complexes were probably formed throughout interaction of the polar regions of the two molecules.
Formation of E-cyanomethamine in a nitrile rich environment
NASA Astrophysics Data System (ADS)
Shivani; Misra, Alka; Tandon, Poonam
2017-01-01
Recently a new molecule, cyanomethamine, has been detected towards Sagittarius B2(N) (Sgr B2(N)). Studying the formation mechanisms of complex interstellar molecules is difficult. Hence, a theoretical quantum chemical approach for analyzing the reaction mechanism describing the formation of interstellar cyanomethamine through detected interstellar molecules and radicals (NCCN+H) is discussed in the present work. Calculations are performed by using quantum chemical techniques, such as Density Functional Theory (DFT) and Møller-Plesset perturbation (MP2) theory with a 6-311G(d,p) basis set, both in the gas phase and in icy grains. The proposed reaction path (NCCN+H+H) has exothermicity with no barrier which indicates the possibility of cyanomethamine formation in the interstellar medium.
Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G
2016-03-07
This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.
Hung, Kuang-Chen; Lin, Meng-Liang; Hsu, Shih-Wei; Lee, Chuan-Chun; Huang, Ren-Yu; Wu, Tian-Shung; Chen, Shih-Shun
2018-06-15
Targeting cell cycle regulators has been a suggested mechanism for therapeutic cancer strategies. We report here that the bichalcone analog TSWU-CD4 induces S phase arrest of human cancer cells by inhibiting the formation of cyclin A-phospho (p)-cyclin-dependent kinase 2 (CDK2, threonine [Thr] 39) complexes, independent of mutant p53 expression. Ectopic expression of CDK2 (T39E), which mimics phosphorylation of the Thr 39 residue of CDK2, partially rescues the cells from TSWU-CD4-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TSWU-CD4-triggered S phase arrest. Decreased histone deacetylase 3 (HDAC3) expression after TSWU-CD4 treatment was demonstrated, and TSWU-CD4 induced S phase arrest and inhibitory effects on cyclin A expression and CDK2 Thr 39 phosphorylation, while cyclin A-p-CDK2 (Thr 39) complex formation was suppressed by ectopic wild-type HDAC3 expression. The co-transfection of CDK2 (T39E) along with HDAC3 completely restored cyclin A expression, Thr 39-phosphorylated CDK2, cyclin A-p-CDK2 (Thr 39) complex formation, and the S phase population to normal levels. Protein kinase B (Akt) inactivation was required for TSWU-CD4-induced S phase cell cycle arrest, because constitutively active Akt1 blocks the induction of S phase arrest and the suppression of cyclin A and HDAC3 expression, CDK2 Thr 39 phosphorylation, and cyclin A-p-CDK2 (Thr 39) complex formation by TSWU-CD4. Taken together, our results indicate that TSWU-CD4 induces S phase arrest by inhibiting Akt-mediated HDAC3 expression and CDK2 Thr 39 phosphorylation to suppress the formation of cyclin A-p-CDK2 (Thr 39) complexes. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing
2015-11-01
Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.
ATP can be dispensable for prespliceosome formation in yeast
Perriman, Rhonda; Ares, Manuel
2000-01-01
The first ATP-dependent step in pre-mRNA splicing involves the stable binding of U2 snRNP to form the prespliceosome. We show that a prespliceosome-like complex forms in the absence of ATP in yeast extracts lacking the U2 suppressor protein CUS2. These complexes display the same pre-mRNA and U snRNA requirements as authentic prespliceosomes and can be chased through the splicing pathway, indicating that they are a functional intermediate in the spliceosome assembly pathway. ATP-independent prespliceosome-like complexes are also observed in extracts containing a mutant U2 snRNA. Loss of CUS2 does not bypass the role of PRP5, an RNA helicase family member required for ATP-dependent prespliceosome formation. Genetic interactions between CUS2 and a heat-sensitive prp5 allele parallel those observed between CUS2 and U2, and suggest that CUS2 mediates functional interactions between U2 RNA and PRP5. We propose that CUS2 enforces ATP dependence during formation of the prespliceosome by brokering an interaction between PRP5 and the U2 snRNP that depends on correct U2 RNA structure. PMID:10640279
Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A
2017-01-01
RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI: http://dx.doi.org/10.7554/eLife.22520.001 PMID:28067618
Analytic network process model for sustainable lean and green manufacturing performance indicator
NASA Astrophysics Data System (ADS)
Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik
2014-09-01
Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.
Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad
2017-08-01
Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inhibition of cathelicidin activity by bacterial exopolysaccharides.
Foschiatti, Michela; Cescutti, Paola; Tossi, Alessandro; Rizzo, Roberto
2009-06-01
The interaction of bacterial exopolysaccharides, produced by opportunistic lung pathogens, with antimicrobial peptides of the innate primate immune system was investigated. The exopolysaccharides were produced by Pseudomonas aeruginosa, Inquilinus limosus and clinical isolates of the Burkholderia cepacia complex, bacteria that are all involved in lung infections of cystic fibrosis patients. The effects of the biological activities of three orthologous cathelicidins from Homo sapiens sapiens, Pongo pygmaeus (orangutan) and Presbitys obscurus (dusky leaf monkey) were examined. Inhibition of the antimicrobial activity of peptides was assessed using minimum inhibitory concentration assays on a reference Escherichia coli strain in the presence and absence of exopolysaccharides, whereas complex formation between peptides and exopolysaccharides was investigated by means of circular dichroism, fluorescence spectroscopy and atomic force microscopy. Biological assays revealed that the higher the negative charge of exopolysaccharides the stronger was their inhibiting effect. Spectroscopic studies indicated the formation of molecular complexes of varying stability between peptides and exopolysaccharides, explaining the inhibition. Atomic force microscopy provided a direct visualization of the molecular complexes. A model is proposed where peptides with an alpha-helical conformation interact with exopolysaccharides through electrostatic and other non-covalent interactions.
NASA Astrophysics Data System (ADS)
Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Woods, Ryan
2018-04-01
The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an association of intra-oceanic tholeiitic basalts and gabbros known as the Obatogamau Formation. The Obatogamau Formation constitutes the lower part of the Roy Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20-40%) and chloritization (10-40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led to the mobilization of many elements (e.g., LILE and transition metals) and to significant disturbance of the Rb-Sr and U-Pb isotope systems, resulting in 1935 ± 150 and 3326 ± 270 Ma errorchron ages, respectively. The Sm-Nd isotope system was less disturbed, yielding an errorchron age of 2624 ± 160 Ma. On many binary major and trace element diagrams, the least altered anorthosites and leucogabbros, and the gabbros and mafic dykes of the Doré Lake Complex plot in separate fields, signifying the presence of two distinct magma types in the complex. The gabbros and mafic dykes in the Doré Lake Complex share the geochemical characteristics of tholeiitic basalts and gabbros in the Obatogamau Formation, suggesting a possible genetic link between the two rock associations. Initial ɛNd (+2.6 to +5.0) and δ18O (+6.1 to +7.9‰) values for the Doré Lake Complex and gabbros of the Obatogamau Formation (ɛNd = +2.8 to +4.0; δ18O = +7.3 to 8.0‰) are consistent with depleted mantle sources. All rock types in the Doré Lake Complex and the Roy Group share the trace element characteristics of modern arc magmas, suggesting a suprasubduction zone setting for these two lithological associations. On the basis of regional geology and geochemical data, we suggest that the Doré Lake Complex and the Obatogamau Formation represent a dismembered fragment of a suture zone, like many Phanerozoic ophiolites, resulting from closure of a back-arc basin between 2703 and 2690 Ma.
Pinske, Constanze
2018-01-01
Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described. Together, these data indicate that FDH-H activity measured with the redox dye benzyl viologen is the sum of the FDH-H protein interacting with three independent small subunits and suggest that FDH-H can associate with different redox-protein complexes in the anaerobic cell to supply electrons from formate oxidation.
Aigner, Z; Berkesi, O; Farkas, G; Szabó-Révész, P
2012-01-05
The steps of formation of an inclusion complex produced by the co-grinding of gemfibrozil and dimethyl-β-cyclodextrin were investigated by differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD) and Fourier transform infrared (FTIR) spectroscopy with curve-fitting analysis. The endothermic peak at 59.25°C reflecting the melting of gemfibrozil progressively disappeared from the DSC curves of the products on increase of the duration of co-grinding. The crystallinity of the samples too gradually decreased, and after 35min of co-grinding the product was totally amorphous. Up to this co-grinding time, XRPD and FTIR investigations indicated a linear correlation between the cyclodextrin complexation and the co-grinding time. After co-grinding for 30min, the ratio of complex formation did not increase. These studies demonstrated that co-grinding is a suitable method for the complexation of gemfibrozil with dimethyl-β-cyclodextrin. XRPD analysis revealed the amorphous state of the gemfibrozil-dimethyl-β-cyclodextrin product. FTIR spectroscopy with curve-fitting analysis may be useful as a semiquantitative analytical method for discriminating the molecular and amorphous states of gemfibrozil. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shityakov, Sergey; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Roewer, Norbert; Förster, Carola; Broscheit, Jens
2017-04-01
In this study, we investigated curcumin (CUR) solubility profiles and hydration/desolvation effects of this substance formulated with γ-cyclodextrin (γ-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) excipients. The CUR/HP-γ-CD complex was found to be more stable in solution with the highest apparent stability constant for CUR/HP-γ-CD (Kc = 1.58*104 M-1) as the more soluble form in distilled water. The in silico calculations, including molecular docking, Monte Carlo (MC), and molecular dynamics (MD) simulations, indicated that water molecules play an important role in host-guest complexation mediating the CUR binding to cyclodextrins via hydrogen bond formations. The CUR hydration/desolvation effects contributed to the complex formation by elevating the CUR binding affinity to both CDs. The CUR/HP-γ-CD complex after the CUR hydration was determined with a minimal Gibbs free energy of binding (ΔGbind = -9.93 kcal*mol-1) due to the major hydrophobic (vdW) forces. Overall, the results of this study can aid a development of cyclodextrin-based drug delivery vectors, signifying the importance of water molecules during the formulation processes.
Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc
2014-11-26
The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Human SepSecS-tRNASec Complex Reveals the Mechanism of Selenocysteine Formation
Palioura, Sotiria; Sherrer, R. Lynn; Steitz, Thomas A.; Söll, Dieter; Simonović, Miljan
2010-01-01
Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNASec in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate–dependent mechanism of Sec-tRNASec formation. Two tRNASec molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13–base pair acceptor-TΨC arm (where Ψ indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme’s active site that allows a phosphoserine covalently attached to tRNASec, but not free phosphoserine, to be oriented properly for the reaction to occur. PMID:19608919
Basallote, Manuel G; Martínez, Manuel; Vázquez, Marta
2014-07-28
In view of the relevance of the reactivity of inert tetraamine Co(III) complexes having two substitutionally active cis positions capable of interact with biologically relevant ligands, the study of the reaction of cis-[Co(cyclen)(H2O)2](3+) and [Co(tren)(H2O)2](3+) with chlorides, inorganic phosphate and 5'-CMP (5'-cytidinemonophosphate) has been pursued at physiological pH. The results indicate that, in addition to the actuation of the expected labilising conjugate-base mechanism, the formation of mono and inert bis hydroxo-bridged species is relevant for understanding their speciation and reactivity. The reactivity pattern observed also indicates the key role played by the "innocent" buffers frequently used in most in vitro studies, which can make the results unreliable in many cases. The differences between the reactivity of inorganic and biologically relevant phosphates has also been found to be remarkable, with outer-sphere hydrogen bonding interactions being a dominant factor for the process. While for the inorganic phosphate substitution process the formation of μ-η(2)-OPO2O represents the termination of the reactivity monitored, for 5'-CMP only the formation of η(1)-OPO3 species is observed, which evolve with time to the final dead-end bis hydroxo-bridged complexes. The promoted hydrolysis of the 5'-CMP phosphate has not been observed in any of the processes studied.
Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides
NASA Astrophysics Data System (ADS)
Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla
2012-12-01
Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.
Lewandowska-Andralojc, Anna; Baine, Teera; Zhao, Xuan; ...
2015-04-22
The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. In addition, while the basic mechanism of proton reduction promoted by cobalt species is well understood, the reactivity of certain reaction intermediates, such as Co I and Co III–H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH₂)] n+ (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH₂)] n+ wheremore » L is the pentadentate DPA-Bpy ligand or [ Co(OH₂)] n+ as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by DFT calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a Co II species results in weakening the Co–O bond. The further reduction to a Co I species leads to the loss of the aqua ligand and the formation of [ CoI–VS)]⁺ (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [Co I(κ⁴-L)(OH₂)]⁺ species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the Co I species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [ CoIII–H]⁺. We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [Co I(κ⁴-L)(OH₂)]⁺ in addition to the significant structural reorganization of the metal complex and surrounding solvent resulting in a high free energy of activation.« less
Teixeira, Bruna N; Ozdemir, Necla; Hill, Laura E; Gomes, Carmen L
2013-12-01
Previous studies have reported antimicrobial and antioxidant activity of black pepper oleoresin which is associated to its phenolic compounds and piperine. The ability of cyclodextrins to form an inclusion complex with a guest molecule could improve black pepper oleoresin application, bioavailability, and stability in foods. Hydroxypropyl beta-cyclodextrin (HPBCD) inclusion complex with black pepper olereosin were synthesized using the kneading method and characterized for its physico-chemical properties and its antioxidant and antimicrobial activities. Inclusion complex size was 103.9 ± 7.6 nm and indicated to be a polydisperse system. The entrapment efficiency was 78.3 ± 3.6%, which suggests that other constituents in black pepper oleoresin have higher affinities for HPBCD than piperine (major compound in black pepper oleoresin). Thermograms showed the disappearance of oxidation peaks of black pepper oleoresin, proving complex formation with HPBCD. Phase solubility results indicated 1:1 stoichiometric inclusion complex formation and an increase of black pepper oleoresin aqueous solubility with HPBCD concentration. Nano-encapsulation with HPBCD did not affect (P > 0.05) total phenolic content; however, it enhanced (P < 0.05) black pepper oleoresin antioxidant activity. Black pepper oleoresin and its inclusion complex were analyzed for their antimicrobial activity against Escherichia coli K12 and Salmonella enterica serovar Typhimurium LT2. Both free and encapsulated black pepper oleoresin effectively inhibited bacterial growth within the concentration range tested. Black pepper oleoresin encapsulated in HPBCD was able to inhibit Salmonella at lower (P < 0.05) concentrations than its corresponding free extract. Therefore, black pepper oleoresin-HPBCD nanocapsules could have important applications in the food industry as antimicrobial and antioxidant system. © 2013 Institute of Food Technologists®
Larin, A.M.; Amelin, Yu. V.; Neymark, L.A.; Krymsky, R. Sh
1997-01-01
The Ulkan volcano-plutonic complex, a part of a 750 km Bilyakchian-Ulkan anorogenic belt, is located in the eastern part of the Archean-Paleoproterozoic Aldan shield. The tectonic position and geochemistry indicate that the Ulkan Complex is a typical A-type or intraplate magmatic association. The felsic volcanics of the Uian Group and granitoids of the North Uchur Massif, the major igneous components of the Ulkan Complex, have U-Pb zircon and monazite ages between 1721±1 Ma and 1703±18 Ma. Together with the spatially associated 1736±6 Ma Dzhugdzhur anorthosite massif, the Ulkan Complex forms a typical Proterozoic anorthosite-granite-volcanic association with the minimum duration of formation of 12 m.y. Initial εNd values between 0 and 1.1, similar for the Uian felsic volcanics, early granitoid phases of the North Uchur Massif and high-grade metamorphic basement rocks, indicate, along with geochemical data, that the crustal source of the Ulkan parental magmas may be similar to the basement rocks. The higher εNd(T) values of -0.3 to +1.9 in the later North Uchur granitoids and associated ore-bearing metasomatites, and relatively low time-integrated Rb/Sr, U/Pb, and Th/U estimated for their sources, may demonstrate involvement of variable amounts of a depleted mantle-derived component in the generation of later phases of the North Uchur Massif. The preferred model of formation of magmas parental to the Ulkan Complex involves thermal interaction of an uprising mantle diapir with Paleoproterozoic lower crust, which was accompanied by chemical interaction between a fluid derived from the diapir, with the lower crustal rocks.
NASA Astrophysics Data System (ADS)
Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Favre, C.; Blake, G. A.; Herbst, E.; Anderson, D. E.; Hassel, G. E.
2015-06-01
We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH3CN, C2H3CN, C2H5CN, and NH2CHO systematically trace hotter gas than the oxygen bearing organics CH3OH, C2H5OH, CH3OCH3, and CH3OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (Tkin ∼ 300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales ≳105 years, with several species being underpredicted by less than 3σ. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules that also contain oxygen (i.e., SO, SO2, and OCS) tend to probe the hottest gas toward Orion KL, indicating the formation pathways for these species are most efficient at high temperatures. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Young stellar population and star formation history ofW4 HII region/Cluster Complex
NASA Astrophysics Data System (ADS)
Panwar, Neelam
2018-04-01
The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.
Acharya, Amitabha; Ramanujam, Balaji; Mitra, Atanu; Rao, Chebrolu P
2010-07-27
This paper deals with the self-assembly of the 1:1 complex of two different amphiphiles, namely, a glucosyl-salicyl-imino conjugate (L) and phenylalanine (Phe), forming nanofibers over a period of time through pi...pi interactions. Significant enhancement observed in the fluorescence intensity of L at approximately 423 nm band and the significant decrease observed in the absorbance of the approximately 215 nm band are some characteristics of this self-assembly. Matrix-assisted laser desorption ionization/time of flight titration carried out at different time intervals supports the formation of higher aggregates. Atomic force microscopy (AFM), transmission electron microscopy, and scanning electron miscroscopy results showed the formation of nanofibers for the solutions of L with phenylalanine. In dynamic light scattering measurements, the distribution of the particles extends to a higher diameter range over time, indicating a slow kinetic process of assembly. Similar spectral and microscopy studies carried out with the control molecules support the role of the amino acid moiety over the simple -COOH moiety as well as the side chain phenyl moiety in association with the amino acid, in the formation of these fibers. All these observations support the presence of pi...pi interactions between the initially formed 1:1 complexes leading to the fiber formation. The aggregation of 1:1 complexes leading to fibers followed by the formation of bundles has been modeled by molecular mechanics studies. Thus the fiber formation with L is limited to phenylalanine and not to any other naturally occurring amino acid and hence a polymer composed of two different biocompatible amphiphiles. AFM studies carried out between the fiber forming mixture and proteins resulted in the observation that only BSA selectively adheres to the fiber among the three alpha-helical and two beta-sheet proteins studied and hence may be of use in some medical applications.
Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry
Gabel, Scott A.; London, Robert E.
2010-01-01
Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate-ester recognition sites on proteins might exhibit significant affinity for non-enzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A•3′-deoxycytidine-2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate•RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cCMP at pH 7, indicating considerably stronger binding. However, the value is 1000-fold larger than the reported dissociation constant of the RNase A complex with uridine-vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters support enzyme catalysis. PMID:17957392
Lobo-Lapidus, Rodrigo J; Gates, Bruce C
2010-11-02
Supported rhenium complexes were prepared from CH(3)Re(CO)(5) and dealuminated HY zeolite or NaY zeolite, each with a Si/Al atomic ratio of 30. The samples were characterized with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. EXAFS data characterizing the sample formed by the reaction of CH(3)Re(CO)(5) with dealuminated HY zeolite show that the rhenium complexes were bonded to the zeolite frame, incorporating, on average, three carbonyl ligands per Re atom (as shown by Re-C and multiple-scattering Re-O EXAFS contributions). The IR spectra, consistent with this result, show that the supported rhenium carbonyls were bonded near aluminum sites of the zeolite, as shown by the decrease in intensity of the IR bands characterizing the acidic silanol groups resulting from the reaction of the rhenium carbonyl with the zeolite. This supported metal complex was characterized by narrow peaks in the ν(CO) region of the IR spectrum, indicating highly uniform species. In contrast, the species formed from CH(3)Re(CO)(5) on NaY zeolite lost fewer carbonyl ligands than those formed on HY zeolite and were significantly less uniform, as indicated by the greater breadth of the ν(CO) bands in the IR spectra. The results show the importance of zeolite H(+) sites for the formation of uniform supported rhenium carbonyls from CH(3)Re(CO)(5); the formation of such uniform complexes did not occur on the NaY zeolite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boggs, S. Jr.; Livermore, D.; Seitz, M.G.
Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empiricallymore » determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.« less
Formation mechanism and biological activity of novel thiolated human-like collagen iron complex.
Zhu, Chenhui; Liu, Lingyun; Deng, Jianjun; Ma, Xiaoxuan; Hui, Junfeng; Fan, Daidi
2016-03-01
To develop an iron supplement that is effectively absorbed and utilized, thiolated human-like collagen was created to improve the iron binding capacity of human-like collagen. A thiolated human-like collagen-iron complex was prepared in a phosphate buffer, and one mole of thiolated human-like collagen-iron possessed approximately 28.83 moles of iron. The characteristics of thiolated human-like collagen-iron were investigated by ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and differential scanning calorimetry. The results showed that the thiolated human-like collagen-iron complex retained the secondary structure of human-like collagen and had greater thermodynamic stability than human-like collagen, although interactions between iron ions and human-like collagen occurred during the formation of the complex. In addition, to evaluate the bioavailability of thiolated human-like collagen-iron, an in vitro Caco-2 cell model and an in vivo iron deficiency anemia mouse model were employed. The data demonstrated that the thiolated human-like collagen-iron complex exhibited greater bioavailability and was more easily utilized than FeSO4, ferric ammonium citrate, or ferrous glycinate. These results indicated that the thiolated human-like collagen-iron complex is a potential iron supplement in the biomedical field. © The Author(s) 2016.
Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao
2016-01-01
A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349
Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao
2016-11-07
A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.
Heat capacity changes in carbohydrates and protein-carbohydrate complexes.
Chavelas, Eneas A; García-Hernández, Enrique
2009-05-13
Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.
Waychunas, G.A.; Fuller, C.C.; Davis, J.A.
2002-01-01
"Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further, and a second type of precipitate forms. This has a structure based on a brucite layer topology, with mainly octahedral Zn coordination. Amorphous zinc hydroxide samples prepared for comparison had a closely similar local structure. Analysis of the Fe K-edge EXAFS is consistent with surface complexation reactions and surface precipitation at high Zn loadings with little or no Fe-Zn solid solution formation. The formation of Zn-containing precipitates at solution conditions two or more orders of magnitude below their solubility limit is compared with other sorption and spectroscopic studies that describe similar behavior. Copyright ?? 2002 Elsevier Science Ltd.
Cosgrove, J W; Brown, I R
1984-05-01
An initiating cell-free protein synthesis system derived from brain was utilized to demonstrate that the intravenous injection of D-lysergic acid diethylamide (LSD) to rabbits resulted in a lesion at the initiation stage of brain protein synthesis. Three inhibitors of initiation, edeine, poly(I), and aurintricarboxylic acid were used to demonstrate a reduction in initiation-dependent amino acid incorporation in the brain cell-free system. One hour after LSD injection, there was also a measurable decrease in the formation of 40S and 80S initiation complexes in vitro, using either [35S]methionine or [35S]Met-tRNAf. Analysis of the methionine pool size after LSD administration indicated there was no change in methionine levels. Analysis of the formation of initiation complexes in the brain cell-free protein synthesis system prepared 6 h after LSD administration indicated that there was a return to control levels at this time. The effects of LSD on steps in the initiation process are thus reversible.
Fischer, Martina; Jehmlich, Nico; Rose, Laura; Koch, Sophia; Laue, Michael; Renard, Bernhard Y.; Schmidt, Frank; Heuer, Dagmar
2015-01-01
Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells’ antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection. PMID:26042774
Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan
2015-04-01
The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®
Chakraborty, Madhurima; Paul, Somnath; Mitra, Ishani; Bardhan, Munmun; Bose, Mridul; Saha, Abhijit; Ganguly, Tapan
2018-01-01
The nature of interactions between heme protein human hemoglobin (HHb) and gold nanoparticles of two different morphologies that is GNP (spherical) and GNS (star-shaped) have been investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, resonance light scattering (RLS), time resolved fluorescence, FT-IR, and circular dichroism (CD) techniques under physiological condition of pH ~7 at ambient and different temperatures. Analysis of the steady state fluorescence quenching of HHb in aqueous solution in the presence of GNP and GNS suggests that the nature of the quenching is of static type. The static nature of the quenching is also confirmed from time resolved data. The static type of quenching also indicates the possibility of formation of ground state complex for both HHb-GNP and HHb-GNS systems. From the measurements of Stern-Volmer (SV) constants K SV and binding constants, K A and number of binding sites it appears that HHb forms stronger binding with GNP relative to GNS. Analysis of the thermodynamic parameters indicates that the formation of HHb-GNP and HHb-GNS complexes are spontaneous molecular interaction processes (∆G<0). In both cases hydrogen bonding and van der Waals interactions play a dominant role (∆H<0, ∆S<0). Synchronous fluorescence spectroscopy further reveals that the ground state complex formations of HHb-GNP and HHb-GNS preferably occur by binding with the amino acid tyrosine through hydrogen bonding interactions. Moreover the α-helicity contents of the proteins as obtained from the circular dichroism (CD) spectra appears to be marginally reduced by increasing concentrations of GNP and GNS and the α-helical structures of HHb retain its identity as native secondary structure in spite of complex formations with GNP or GNS. These findings demonstrate the efficiency of biomedical applications of GNP and GNS nanoparticles as well as in elucidating their mechanisms of action as drugs or drug delivery systems in human. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dimalanta, C. B.; Salapare, R. C.; Faustino-Eslava, D. V.; Ramos, N. T.; Queaño, K. L.; Yumul, G. P.; Yang, T. F.
2015-05-01
The Zambales Ophiolite Complex in Luzon, Philippines is made up of two blocks with differing geochemical signatures and ages - the Middle Jurassic to Early Cretaceous Acoje Block-San Antonio Massif that is of island arc tholeiite composition and the Eocene Coto Block-Cabangan Massif which is of transitional mid-ocean ridge basalt-island arc tholeiite affinity. These ophiolitic bodies are overlain by Miocene to Pliocene sedimentary units whose petrochemistry are reported here for the first time. Varying degrees of influences from ophiolitic detritus and from arc volcanic materials, as shown by petrography and indicator elements including Cr, Co and Ni, are observed in these sedimentary formations from north to south and from the oldest to the youngest. The Early to Middle Miocene Cabaluan Formation, whose outcrops are found to overlie only the Acoje Block, registers a more dominant ophiolitic signature as compared to the Late Miocene to Pliocene Santa Cruz Formation. The Santa Cruz Formation is generally characterized by fewer ophiolitic clasts and higher amounts of felsic components. Additionally, within this formation itself, a pronounced compositional change is observed relative to its spatial distribution. From the south to the north, an increase in ophiolitic components and a relative decrease in felsic signature is noted in units of the Santa Cruz Formation. It is therefore inferred that changes in the petrochemistry of rocks from the older Cabaluan to the younger Santa Cruz sedimentary formations record a decline in the influx of ophiolitic detritus or, conversely, the introduction of more diverse sediment sources as the deposition progressed. Detrital zircon U-Pb ages from the Santa Cruz Formation, with peaks at 46.73 ± 0.94 and 5.78 ± 0.13 Ma, reflects this change in provenance from the unroofing of an Early Eocene oceanic crust to fresh contributions from an active volcanic arc during the Late Miocene. The contrast in compositions of the southern and northern Santa Cruz Formation also indicates a closer proximity of the southern units to the source of these non-ophiolitic sources, which most likely corresponds to the Pliocene volcanoes of the West Luzon Arc.
Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A
2017-07-01
Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical nutrients on growth, lysis, spore formation, BoNT and TC production, and stability of BoNTs of C. botulinum We show that for C. botulinum ATCC 3502 cultured in a complex medium, a high level of arginine repressed BoNT expression by ca. 1,000-fold and also strongly reduced sporulation. Arginine stimulated growth and compensated for a lack of glucose. BoNT and toxin complex proteins were partially inactivated in a complex medium lacking glucose. This work should aid in optimizing BoNT production for pharmaceutical uses, and furthermore, an understanding of the nutritional regulation of growth and BoNT formation may provide insights into growth and BoNT formation in foods and clinical samples and into the enigmatic function of BoNTs in nature. Copyright © 2017 American Society for Microbiology.
Watanabe, K; Mie, T; Ichihara, A; Oikawa, H; Honma, M
2000-12-08
Macrophomate synthase from the fungus Macrophoma commelinae IFO 9570 is a Mg(II)-dependent dimeric enzyme that catalyzes an extraordinary, complex five-step chemical transformation from 2-pyrone and oxalacetate to benzoate involving decarboxylation, C-C bond formation, and dehydration. The catalytic mechanism of the whole pathway was investigated in three separate chemical steps. In the first decarboxylation step, the enzyme loses oxalacetate decarboxylation activity upon incubation with EDTA. Activity is fully restored by addition of Mg(II) and is not restored with other divalent metal cations. The dissociation constant of 0.93 x 10(-)(7) for Mg(II) and atomic absorption analysis established a 1:1 stoichiometric complex. Inhibition of pyruvate formation with 2-pyrone revealed that the actual product in the first step is a pyruvate enolate, which undergoes C-C bond formation in the presence of 2-pyrone. Incubation of substrate analogs provided aberrant adducts that were produced via C-C bond formation and rearrangement. This strongly indicates that the second step is two C-C bond formations, affording a bicyclic intermediate. Based on the stereospecificity, involvement of a Diels-Alder reaction at the second step is proposed. Incubation of the stereospecifically deuterium-labeled malate with 2-pyrones in the presence of malate dehydrogenase provided information for the stereochemical course of the reaction catalyzed by macrophomate synthase, indicating that the first decarboxylation provides pyruvate (Z)-[3-(2)H]enolate and that dehydration at the final step occurs with anti-elimination accompanied by concomitant decarboxylation. Examination of kinetic parameters in the individual steps suggests that the third step is the rate-determining step of the overall transformation.
HIERARCHICAL STRUCTURE FORMATION AND MODES OF STAR FORMATION IN HICKSON COMPACT GROUP 31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, S. C.; Durrell, P. R.; Elmegreen, D. M.
2010-02-15
The handful of low-mass, late-type galaxies that comprise Hickson Compact Group 31 (HCG 31) is in the midst of complex, ongoing gravitational interactions, evocative of the process of hierarchical structure formation at higher redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we characterize the large population of < 10 Myr old star clusters (SCs) that suffuse the system. From the colors and luminosities of the young SCs, we find that the galaxies in HCG 31 follow the same universal scaling relations as actively star-forming galaxies in the local universe despite the unusual compact group environment. Furthermore, the specific frequency ofmore » the globular cluster system is consistent with the low end of galaxies of comparable masses locally. This, combined with the large mass of neutral hydrogen and tight constraints on the amount of intragroup light, indicate that the group is undergoing its first epoch of interaction-induced star formation. In both the main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are sensitive to the magnitude of disk turbulence, have both sizes and masses more characteristic of z = 1-2 galaxies. After subtracting the light from compact sources, we find no evidence for an underlying old stellar population in F-it appears to be a truly new structure. The low-velocity dispersion of the system components, available reservoir of H I, and current star formation rate of {approx}10 M {sub sun} yr{sup -1} indicate that HCG 31 is likely to both exhaust its cold gas supply and merge within {approx}1 Gyr. We conclude that the end product will be an isolated, X-ray-faint, low-mass elliptical.« less
Lawrence, Mark A. W.; Celestine, Michael J.; Artis, Edward T.; Joseph, Lorne S.; Esquivel, Deisy L.; Ledbetter, Abram J.; Cropek, Donald M.; Jarrett, William L.; Bayse, Craig A.; Brewer, Matthew I.; Holder, Alvin A.
2018-01-01
[Co(dmgBF2)2(H2O)2] 1 (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO 2 (where py = pyridine) in acetone. The formulation of complex 2 was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex 1. A spectrophotometric titration involving complex 1 and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(II) centre diminished the peak current at the Epc value of the CoI/0 redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical 59Co NMR spectroscopic data for the formation of Co(I) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(I) metal centre is more favourable than coordination to a cobalt(II) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes 1 and 2 in various solvents demonstrated the dramatic effects of the axial ligand and the solvent on the turnover number of the respective catalyst. PMID:27244471
Substitutional and interstitial oxygen in wurtzite GaN
NASA Astrophysics Data System (ADS)
Wright, A. F.
2005-11-01
Density-functional theory was used to compute energy-minimum configurations and formation energies of substitutional and interstitial oxygen (O) in wurtzite GaN. The results indicate that O substituted at a N site (ON) acts as a single donor with the ionized state (ON+1) being the most stable O state in p-type GaN. In n-type GaN, interstitial O (OI) is predicted to be a double acceptor and O substituted at a Ga site (OGa) is predicted to be a triple acceptor. The formation energies of these two species are comparable to that of ON in n-type GaN and, as such, they should form and compensate the ON donors. The extent of compensation was estimated for both Ga-rich and N-rich conditions with a total O concentration of 1017cm-3. Ga-rich conditions yielded negligible compensation and an ON concentration in excess of 9.9×1016cm-3. N-rich conditions yielded a 25% lower ON concentration, due to the increased stability of OI and OGa relative to ON, and moderate compensation. These findings are consistent with experimental results indicating that O acts as a donor in GaN(O). Complexes of ON with the Mg acceptor and OI with the Si donor were examined. Binding energies for charge-conserving reactions were ⩾0.5eV, indicating that these complexes can exist in equilibrium at room temperature. Complexes of ON with the Ga vacancy in n-type GaN were also examined and their binding energies were 1.2 and 1.4eV, indicating that appreciable concentrations can exist in equilibrium even at elevated temperatures.
Lagutina, Irina; Zakhartchenko, Valeri; Fulka, Helena; Colleoni, Silvia; Wolf, Eckhard; Fulka, Josef; Lazzari, Giovanna; Galli, Cesare
2011-04-01
The most successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos has been achieved in closely related species. The analyses of embryonic gene activity in iSCNT embryos of different species combinations have revealed the existence of significant aberrations in expression of housekeeping genes and genes dependent on the major embryonic genome activation (EGA). However, there are many studies with successful blastocyst (BL) development of iSCNT embryos derived from donor cells and oocytes of animal species with distant taxonomical relations (inter-family/inter-class) that should indicate proper EGA at least in terms of RNA polymerase I activation, nucleoli formation, and activation of genes engaged in morula and BL formation. We investigated the ability of bovine, porcine, and rabbit oocytes to activate embryonic nucleoli formation in the nuclei of somatic cells of different mammalian species. In iSCNT embryos, nucleoli precursor bodies originate from the oocyte, while most proteins engaged in the formation of mature nucleoli should be transcribed from genes de novo in the donor nucleus at the time of EGA. Thus, the success of nucleoli formation depends on species compatibility of many components of this complex process. We demonstrate that the time and cell stage of nucleoli formation are under the control of recipient ooplasm. Oocytes of the studied species possess different abilities to support nucleoli formation. Formation of nucleoli, which is a complex but small part of the whole process of EGA, is essential but not absolutely sufficient for the development of iSCNT embryos to the morula and BL stages.
Simulating the formation of carbon-rich molecules on an idealized graphitic surface
NASA Astrophysics Data System (ADS)
Marshall, David W.; Sadeghpour, H. R.
2016-01-01
There is accumulating evidence for the presence of complex molecules, including carbon-bearing and organic molecules, in the interstellar medium. Much of this evidence comes to us from studies of chemical composition, photo- and mass spectroscopy in cometary, meteoritic and asteroid samples, indicating a need to better understand the surface chemistry of astrophysical objects. There is also considerable interest in the origins of life-forming and life-sustaining molecules on the Earth. Here, we perform reactive molecular dynamics simulations to probe the formation of carbon-rich molecules and clusters on carbonaceous surfaces resembling dust grains and meteoroids. Our results show that large chains form on graphitic surfaces at low temperatures (100-500 K) and smaller fullerene-like molecules form at higher temperatures (2000-3000 K). The formation is faster on the surface than in the gas at low temperatures but slower at high temperatures as surface interactions prevent small clusters from coagulation. We find that for efficient formation of molecular complexity, mobility about the surface is important and helps to build larger carbon chains on the surface than in the gas phase at low temperatures. Finally, we show that the temperature of the surface strongly determines what kind of structures forms and that low turbulent environments are needed for efficient formation.
Wells, J.G.; Drellack, S.L.
1983-01-01
The H-10 borehole complex, a group of three closely spaced boreholes, is located 3 1/2 miles southeast of the proposed Waste Isolation Pilot Plant site in west-central Lea County, New Mexico. The geological data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. Each borehole was designated to penetrate a distinct water-bearing zone: H-10a (total depth 1 ,318 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation of Permian age; H-10b (total depth 1 ,398 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; and H-10c (total depth 1,538 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-10c are surficial alluvium and eolian sand of Holocene age (0-5 feet); the Mescalero caliche (5-9 feet) and the Gatuna Formation (9-90 feet) of Pleistocene age; formation in the Dockum Group (Chinle Formation, 90-482 feet and Santa Rosa Sandstone, 482-658 feet) of Late Triassic age; and the Dewey Lake Red Beds (658-1,204 feet), the Rustler Formation (1,204-1,501 feet), and part of the Salado Formation (1,501-1,538 feet), all of Permian age. The sections of the Rustler and Salado Formations penetrated by borehole H-10c are complete and contain little or no evidence of dissolution of halite and associated rocks, indicating that the eastward-moving dissolution on top of the Salado, found just to the west of the WIPP site, has not reached the H-10 site. (USGS)
NASA Astrophysics Data System (ADS)
Kirillova, Ariadna; Prytkova, Oksana O.
2018-03-01
The article is devoted to the features of the formation of the organizational and economic model of the construction of a socio-commercial multifunctional complex for high-rise construction. Authors have given examples of high-altitude multifunctional complexes in Moscow, analyzed the advantages and disadvantages in the implementation of multifunctional complexes, stressed the need for a holistic strategic approach, allowing to take into account the prospects for the development of the city and the creation of a comfortable living environment. Based on the analysis of multifunctional complexes features, a matrix of SWOT analysis was compiled. For the development of cities and improving the quality of life of the population, it is proposed to implement a new type of multifunctional complexes of a joint social and commercial direction, including, along with the implementation of office areas - schools, polyclinics, various sports facilities and cultural and leisure centers (theatrical, dance, studio, etc.). The approach proposed in the article for developing the model is based on a comparative evaluation of the multifunctional complex project of a social and commercial direction implemented at the expense of public-private partnership in the form of a concession agreement and a commercial multifunctional complex being built at the expense of the investor. It has been proved by calculations that the obtained indicators satisfy the conditions of expediency of the proposed organizational-economic model and the project of the social and commercial multifunctional complex is effective.
Mutual influence between triel bond and cation-π interactions: an ab initio study
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Mousavian, Parisasadat
2017-12-01
Using ab initio calculations, the cooperative and solvent effects on cation-π and B...N interactions are studied in some model ternary complexes, where these interactions coexist. The nature of the interactions and the mechanism of cooperativity are investigated by means of quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) index and natural bond orbital analysis. The results indicate that all cation-π and B...N binding distances in the ternary complexes are shorter than those of corresponding binary systems. The QTAIM analysis reveals that ternary complexes have higher electron density at their bond critical points relative to the corresponding binary complexes. In addition, according to the QTAIM analysis, the formation of cation-π interaction increases covalency of B...N bonds. The NCI analysis indicates that the cooperative effects in the ternary complexes make a shift in the location of the spike associated with each interaction, which can be regarded as an evidence for the reinforcement of both cation-π and B...N interactions in these systems. Solvent effects on the cooperativity of cation-π and B...N interactions are also investigated.
NASA Astrophysics Data System (ADS)
Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.
2013-04-01
The study of toxic and carcinogenic substances in foods represents one of the most demanding areas in food safety, due to their repercussions for public health. One potentially toxic compound for humans is ethyl carbamate (EC). EC is a multi-site genotoxic carcinogen of widespread occurrence in fermented foods and alcoholic beverages. Structural and thermal stability of charge-transfer complexes formed between EC as a donor with quinol (QL), picric acid (PA), chloranilic acid (CLA), p-chloranil (p-CHL) and 1,3-dinitrobenzene (DNB) as acceptors were reported. Elemental analysis (CHN), electronic absorption spectra, photometric titration, IR, and 1H NMR spectra show that the interaction between EC and acceptors was stabilized by hydrogen bonding, via a 1:1 stoichiometry. Thermogravimetric (TG) analysis indicates that the formation of molecular CT complexes was stable, exothermic and spontaneous. Finally, the CT complexes were screened for their antibacterial and antifungal activities. The results indicated that the [(EC)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs.
Martineau, Céline N.; Beckerich, Jean-Marie; Kabani, Mehdi
2007-01-01
The yeast Saccharomyces cerevisiae has been used as a model for fungal biofilm formation due to its ability to adhere to plastic surfaces and to form mats on low-density agar petri plates. Mats are complex multicellular structures composed of a network of cables that form a central hub from which emanate multiple radial spokes. This reproducible and elaborate pattern is indicative of a highly regulated developmental program that depends on specific transcriptional programming, environmental cues, and possibly cell–cell communication systems. While biofilm formation and sliding motility were shown to be strictly dependent on the cell-surface adhesin Flo11p, little is known about the cellular machinery that controls mat formation. Here we show that Hsp70 molecular chaperones play key roles in this process with the assistance of the nucleotide exchange factors Fes1p and Sse1p and the Hsp40 family member Ydj1p. The disruption of these cofactors completely abolished mat formation. Furthermore, complex interactions among SSA genes were observed: mat formation depended mostly on SSA1 while minor defects were observed upon loss of SSA2; additional mutations in SSA3 or SSA4 further enhanced these phenotypes. Importantly, these mutations did not compromise invasive growth or Flo11p expression, suggesting that Flo11p-independent pathways are necessary to form mats. PMID:17947402
Anderson, Donald D; Woeller, Collynn F; Chiang, En-Pei; Shane, Barry; Stover, Patrick J
2012-03-02
The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks.
Emanuele, Enzo; Spencer, James M; Braun, Martin
2014-03-01
The exposure to ultraviolet radiation (UVR) is a major risk factor for skin aging and the development of non-melanoma skin cancer (NMSC). Although traditional sunscreens remain the mainstay for the prevention of UVR-induced skin damage, they cannot ensure a complete protection against the whole spectrum of molecular lesions associated with UVR exposure. The formation of helix-distorting photoproducts such as cyclobutane pyrimidine dimers (CPD), as well as oxidative damage to DNA bases, including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8OHdG) are among the key DNA lesions associated with photoaging and tumorigenesis. Besides DNA lesions, UVR-induced formation of free radicals can result in protein carbonylation (PC), a major form of irreversible protein damage that inactivates their biological function. This study compares a complex novel topical product (TPF50) consisting of three actives, ie, 1) traditional physical sunscreens (SPF 50), 2) a liposome-encapsulated DNA repair enzymes complex (photolyase, endonuclease, and 8-oxoguanine glycosylase [OGG1]), and 3) a potent antioxidant complex (carnosine, arazine, ergothionine) to existing products. Specifically, we assessed the ability of TFP50 vs those of DNA repair and antioxidant and growth factor topical products used with SPF 50 sunscreens in preventing CPD, 8OHdG, and PC formation in human skin biopsies after experimental irradiations. In head-to-head comparison studies, TPF50 showed the best efficacy in reducing all of the three molecular markers. The results indicated that the three TPF50 components had a synergistic effect in reducing CPD and PC, but not 8OHdG. Taken together, our results indicate that TPF50 improves the genomic and proteomic integrity of skin cells after repeated exposure to UVR, ultimately reducing the risk of skin aging and NMSC.
Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling
2018-06-14
Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.
NASA Astrophysics Data System (ADS)
Nugraha, A. M. S.; Widiarti, R.; Kusumah, E. P.
2017-12-01
This study describes a deep-water slump facies shale of the Early Miocene Jatiluhur/Cibulakan Formation to understand its potential as a source rock in an active tectonic region, the onshore West Java. The formation is equivalent with the Gumai Formation, which has been well-known as another prolific source rock besides the Oligocene Talang Akar Formation in North West Java Basin, Indonesia. The equivalent shale formation is expected to have same potential source rock towards the onshore of Central Java. The shale samples were taken onshore, 150 km away from the basin. The shale must be rich of organic matter, have good quality of kerogen, and thermally matured to be categorized as a potential source rock. Investigations from petrography, X-Ray diffractions (XRD), and backscattered electron show heterogeneous mineralogy in the shales. The mineralogy consists of clay minerals, minor quartz, muscovite, calcite, chlorite, clinopyroxene, and other weathered minerals. This composition makes the shale more brittle. Scanning Electron Microscope (SEM) analysis indicate secondary porosities and microstructures. Total Organic Carbon (TOC) shows 0.8-1.1 wt%, compared to the basinal shale 1.5-8 wt%. The shale properties from this outcropped formation indicate a good potential source rock that can be found in the subsurface area with better quality and maturity.
NASA Astrophysics Data System (ADS)
Sun, Yunfei; Liu, Chunling; Yang, Lili; Wei, Maobin; Lv, Shiquan; Sui, Yingrui; Cao, Jian; Chen, Gang; Yang, Jinghai
2018-06-01
ZnO NRAs are grown on ITO substrates by a simple chemical method. CdS QDs were deposited on ZnO NRAs by SILAR. N719 was synthesized by dipping method. J-V analysis indicates that by inserting a layer of CdS QDs, the conversion efficiency of DSSCs was improved obviously. The device with CdS QDs shows the higher conversion efficiency due to the three reasons: (1) CdS QDs enhanced adsorption spectra of DSSCs in the visible region; (2) CdS QDs block the formation of Zn2+/dye complex, it is beneficial for electros transport from dye to ZnO photoanode. It is the key to obtain higher conversion efficiency; (3) FRET dynamics exists by the introduction of CdS QDs.
Lloyd, Julie C.; Raines, Christine A.
2011-01-01
In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein–protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the ‘non-regulatory’ A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed. PMID:21498632
Howard, Thomas P; Lloyd, Julie C; Raines, Christine A
2011-07-01
In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein-protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the 'non-regulatory' A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed.
NASA Astrophysics Data System (ADS)
Banjare, Manoj Kumar; Behera, Kamalakanta; Satnami, Manmohan L.; Pandey, Siddharth; Ghosh, Kallol K.
2017-12-01
Host-guest complexation between ionic liquid (IL) 1-butyl-3-methylimidazolium octylsulphate [Bmim][OS] and cyclodextrins (α- and β- CDs) have been studied. Surface tension, conductivity measurements revealed the formation of 1:1 (M) stoichiometry for inclusion complexes (ICs) and further confirmed by UV-Visible and FT-IR results. The nature of the complexes has been established using interfacial and thermodynamic parameters. The aggregation number, Stern-Volmer constants, association constants were obtained from fluorescence quenching and Benesi-Hildebrand methods. The critical micelle concentration (cmc) and association constants of [Bmim][OS] are higher for β-CD as compared to α-CD. FT-IR spectra indicated that CDs and [Bmim][OS] could from ICs with stoichiometry 1:1 (M).
NASA Astrophysics Data System (ADS)
Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.
2018-01-01
Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.
Chang, S C; Sommer, R D; Rheingold, A L; Goldberg, D P
2001-11-21
The synthesis and crystallographic characterization of a new (N2S)zinc-alkyl complex and (N2S)zinc-formate complex is described; the bonding mode of the formate complex has implications for the mechanism of action of the enzyme peptide deformylase.
Liu, Jun; Wang, Qiao-Chu; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen
2012-01-01
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division. PMID:23272233
Origination of asexual plantlets in three species of Crassulaceae.
Guo, Jiansheng; Liu, Hailiang; He, Yangyang; Cui, Xianghuan; Du, Xiling; Zhu, Jian
2015-03-01
During asexual plant reproduction, cells from different organs can be reprogrammed to produce new individuals, a process that requires the coordination of cell cycle reactivation with the acquisition of other cellular morphological characteristics. However, the factors that influence the variety of asexual reproduction have not yet been determined. Here, we report on plantlet formation in Kalanchoe daigremontiana, Graptopetalum paraguayense, and Crassula portulacea (Crassulaceae) and analyse the effect of initiating cells on asexual reproduction in these three species. Additionally, the roles of WUSCHEL (WUS) and CUP-SHAPED COTYLEDON 1 (CUC1) in the asexual reproduction of these species were analysed through qRT-PCR. Our results indicated that pre-existing stem cell-like cells at the sites of asexual reproduction were responsible for the formation of plantlets. These cells were arrested in different phases of the cell cycle and showed different cell morphological characteristics and cell counts. The accumulation of auxin and cytokinin at the sites of asexual plantlet formation indicated their important functions, particularly for cell cycle reactivation. These differences may influence the pattern and complexity of asexual reproduction in these Crassulaceae species. Additionally, the dynamic expression levels of CUC1 and WUS may indicate that CUC1 functions in the formation of callus and shoot meristems; whereas, WUS was only associated with shoot induction.
NASA Astrophysics Data System (ADS)
Ali, Mohammad Farhan; Kaushik, Abhinav; Kapil, Charu; Gupta, Dinesh; Jairajpuri, Mohamad Aman
2017-02-01
Neuroserpin (NS) mediated inhibition of tissue-type plasminogen activator (tPA) is important for brain development, synapse formation and memory. Aberrations in helix F and β-sheet A movement during inhibition can directly lead to epilepsy or dementia. Conserved W154 residue in a hydrophobic patch between helix F and β-sheet A is ideally placed to control their movement during inhibition. Molecular Dynamics (MD) simulation on wild type (WT) NS and its two variants (W154A and W154P) demonstrated partial deformation in helix F and conformational differences in strands 1A and 2A only in W154P. A fluorescence and Circular Dichroism (CD) analysis with purified W154 variants revealed a significant red-shift and an increase in α-helical content in W154P as compared to W154A and WT NS. Kinetics of tPA inhibition showed a decline in association rates (ka) for W154A as compared to WT NS with indication of complex formation. Appearance of cleaved without complex formation in W154P indicates that the variant acts as substrate due to conformational misfolding around helix F. Both the variants however showed increased rate of aggregation as compared to WT NS. The hydrophobic patch identified in this study may have importance in helix F dynamics of NS.
Kansara, Seema G.; Sukhodolets, Maxim V.
2011-01-01
In this work, using multiple, dissimilar physico-chemical techniques, we demonstrate that the Escherichia coli RNA polymerase core enzyme obtained through a classic purification procedure forms stable (α2ββ'ω)2 complexes in the presence or absence of short DNA probes. Multiple control experiments indicate that this self-association is unlikely to be mediated by RNA polymerase-associated non-protein molecules. We show that the formation of (α2ββ'ω)2 complexes is subject to regulation by known RNA polymerase interactors, such as the auxiliary SWI/SNF subunit of RNA polymerase RapA, as well as NusA and σ70. We also demonstrate that the separation of the core RNA polymerase and RNA polymerase holoenzyme species during Mono Q chromatography is likely due to oligomerization of the core enzyme. We have analyzed the oligomeric state of the polymerase in the presence or absence of DNA, an aspect that was missing from previous studies. Importantly, our work demonstrates that RNA polymerase oligomerization is compatible with DNA binding. Through in vitro transcription and in vivo experiments (utilizing a RapAR599/Q602 mutant lacking transcription-stimulatory function), we demonstrate that the formation of tandem (α2ββ'ω)2–DNA complexes is likely functionally significant and beneficial for the transcriptional activity of the polymerase. Taken together, our findings suggest a novel structural aspect of the E. coli elongation complex. We hypothesize that transcription by tandem RNA polymerase complexes initiated at hypothetical bidirectional “origins of transcription” may explain recurring switches of the direction of transcription in bacterial genomes. PMID:21533049
In vivo characterization of the Drosophila mRNA 3′ end processing core cleavage complex
Michalski, Daniel; Steiniger, Mindy
2015-01-01
A core cleavage complex (CCC) consisting of CPSF73, CPSF100, and Symplekin is required for cotranscriptional 3′ end processing of all metazoan pre-mRNAs, yet little is known about the in vivo molecular interactions within this complex. The CCC is a component of two distinct complexes, the cleavage/polyadenylation complex and the complex that processes nonpolyadenylated histone pre-mRNAs. RNAi-depletion of CCC factors in Drosophila culture cells causes reduction of CCC processing activity on histone mRNAs, resulting in read through transcription. In contrast, RNAi-depletion of factors only required for histone mRNA processing allows use of downstream cryptic polyadenylation signals to produce polyadenylated histone mRNAs. We used Dmel-2 tissue culture cells stably expressing tagged CCC components to determine that amino acids 272–1080 of Symplekin and the C-terminal approximately 200 amino acids of both CPSF73 and CPSF100 are required for efficient CCC formation in vivo. Additional experiments reveal that the C-terminal 241 amino acids of CPSF100 are sufficient for histone mRNA processing indicating that the first 524 amino acids of CPSF100 are dispensable for both CCC formation and histone mRNA 3′ end processing. CCCs containing deletions of Symplekin lacking the first 271 amino acids resulted in dramatic increased use of downstream polyadenylation sites for histone mRNA 3′ end processing similar to RNAi-depletion of histone-specific 3′ end processing factors FLASH, SLBP, and U7 snRNA. We propose a model in which CCC formation is mediated by CPSF73, CPSF100, and Symplekin C-termini, and the N-terminal region of Symplekin facilitates cotranscriptional 3′ end processing of histone mRNAs. PMID:26081560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.
2008-11-17
Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsiblemore » for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species. Examples of recent gene duplication events in signaling as well as dioxygenase clusters are present, indicating selective gene family expansion as a relatively recent event in D. aromatica's evolutionary history. Gene families that constitute metabolic cycles presumed to create D. aromatica's environmental 'foot-print' indicate a high level of diversification between its predicted capabilities and those of its close relatives, A. aromaticum str EbN1 and Azoarcus BH72.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Sandeep, E-mail: sipusukhn@gmail.com; Sharma, Amrish; Mudahar, Isha, E-mail: isha@pbi.ac.in
First principle calculations based on density functional theory were performed to calculate the structural and electronic properties of C{sub 20}-N{sub m}@C{sub n} dimer complexes. The calculated binding energies of the complexes formed are comparable to C{sub 60} dimer which ensures their stability. The bond lengths of these dimer complexes were found to be nearly same as pure complexes C{sub 20}-C{sub n}. Further, nitrogen (N) atoms were encapsulated inside the secondary cage (C{sub n}) of dimer complexes and the number of N atoms depends on diameter of the cage. The HOMO-LUMO gaps of new proposed complexes indicate the increase in gapmore » as compared to pure complexes. Mulliken charge analysis of these complexes has been studied which shows the significant charge transfer from the N atoms to the secondary cage of these complexes. The study propose the formation of the new dimer complexes which are stable and are able to encapsulate atoms which are otherwise reactive in free space.« less
NASA Astrophysics Data System (ADS)
Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.
2016-04-01
The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is likely ubiquitous, indicating continental crust growth by both lateral accumulation and vertical basaltic injection.
Gertow, Karin; Cedervall, Jessica; Jamil, Seema; Ali, Rouknuddin; Imreh, Marta P; Gulyas, Miklos; Sandstedt, Bengt; Ahrlund-Richter, Lars
2011-01-01
Xenografting is widely used for assessing in vivo pluripotency of human stem cell populations. Here, we report on early to late events in the development of mature experimental teratoma from a well-characterized human embryonic stem cell (HESC) line, HS181. The results show an embryonic process, increasingly chaotic. Active proliferation of the stem cell derived cellular progeny was detected already at day 5, and characterized by the appearance of multiple sites of engraftment, with structures of single or pseudostratified columnar epithelium surrounding small cavities. The striking histological resemblance to developing embryonic ectoderm, and the formation of epiblast-like structures was supported by the expression of the markers OCT4, NANOG, SSEA-4 and KLF4, but a lack of REX1. The early neural marker NESTIN was uniformly expressed, while markers linked to gastrulation, such as BMP-4, NODAL or BRACHYURY were not detected. Thus, observations on day 5 indicated differentiation comparable to the most early transient cell populations in human post implantation development. Confirming and expanding on previous findings from HS181 xenografts, these early events were followed by an increasingly chaotic development, incorporated in the formation of a benign teratoma with complex embryonic components. In the mature HS181 teratomas not all types of organs/tissues were detected, indicating a restricted differentiation, and a lack of adequate spatial developmental cues during the further teratoma formation. Uniquely, a kinetic alignment of rare complex structures was made to human embryos at diagnosed gestation stages, showing minor kinetic deviations between HS181 teratoma and the human counterpart.
Molecular Association and Monolayer Formation of Soluble Phthalocyanine Compounds.
1983-04-20
stable Langmuir - Blodgett monolayer to film pressures of 20 mN/m ant force-area curves indicate a dense packing of phthalocyanine units with molecular areas...8217which is monomeric and Cu, Ni, Pd and PtpdX4 wMyi,chjform larger complexes ranging from 2.7 to 4.1 molecular units. EachU.MCx*4 forms a stable Langmuir ... Blodgett monolayer to film pressures of 20 mN/in and force-area curves indicate a dense packing of phthalocyanine urits with molecul-ar areas
Reaction mechanism of molybdoenzyme formate dehydrogenase.
Leopoldini, Monica; Chiodo, Sandro G; Toscano, Marirosa; Russo, Nino
2008-01-01
Formate dehydrogenase is a molybdoenzyme of the anaerobic formate hydrogen lyase complex of the Escherichia coli microorganism that catalyzes the oxidation of formate to carbon dioxide. The two proposed mechanisms of reaction, which differ in the occurrence of a direct coordination or not of a SeCys residue to the molybdenum metal during catalysis were analyzed at the density functional level in both vacuum and protein environments. Some DF functionals, in addition to the very popular B3LYP one, were employed to compute barrier heights. Results revealed the role played by the SeCys residue in performing the abstraction of the proton from the formate substrate. The computation of the energetic profiles for both mechanisms indicated that the reaction barriers are higher when the selenium is directly coordinated to the metal, whereas less energy is required when SeCys is not a ligand at the molybdenum site.
NASA Astrophysics Data System (ADS)
Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.
2007-06-01
The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization
ERIC Educational Resources Information Center
Patel, Urvi J.; Hellige, Joseph B.
2007-01-01
Previous studies indicate that the benefits of dividing an information processing load across both cerebral hemispheres outweigh the costs of interhemispheric transfer as tasks become more difficult or cognitively complex. This is demonstrated as better performance when two stimuli to be compared are presented one to each visual field and…
Molecular determinants of orexin receptor-arrestin-ubiquitin complex formation.
Jaeger, Werner C; Seeber, Ruth M; Eidne, Karin A; Pfleger, Kevin D G
2014-01-01
The orexin system regulates a multitude of key physiological processes, particularly involving maintenance of metabolic homeostasis. Consequently, there is considerable potential for pharmaceutical development for the treatment of disorders from narcolepsy to metabolic syndrome. It acts through the hormonal activity of two endogenous peptides, orexin A binding to orexin receptors 1 and 2 (OX₁ and OX₂) with similar affinity, and orexin B binding to OX₂ with higher affinity than OX₁ receptors. We have previously revealed data differentiating orexin receptor subtypes with respect to their relative stability in forming orexin receptor-arrestin-ubiquitin complexes measured by BRET. Recycling and cellular signalling distinctions were also observed. Here, we have investigated, using BRET, the molecular determinants involved in providing OX₂ receptors with greater β-arrestin-ubiquitin complex stability. The contribution of the C-terminal tail of the OX receptors was investigated by bulk substitution and site-specific mutagenesis using BRET and inositol phosphate assays. Replacement of the OX₁ receptor C-terminus with that of the OX₂ receptor did not result in the expected gain of function, indicating a role for intracellular domain configuration in addition to primary structure. Furthermore, two out of the three putative serine/threonine clusters in the C-terminus were found to be involved in OX₂ receptor-β-arrestin-ubiquitin complex formation. This study provides fundamental insights into the molecular elements that influence receptor-arrestin-ubiquitin complex formation. Understanding how and why the orexin receptors can be functionally differentiated brings us closer to exploiting these receptors as drug targets. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
The interaction of insulin with phospholipids
Perry, M. C.; Tampion, W.; Lucy, J. A.
1971-01-01
1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholine
NASA Astrophysics Data System (ADS)
Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang
2018-01-01
Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.
Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang
2018-01-01
Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The ore-bearing adakitic intrusions in the KPCB and the adakitic Jiamate Complex intrusions were both probably generated from the same basaltic parental magmas through fractional crystallization. In addition, characteristics of the layered, magnetite-bearing, oxidized, basaltic Jiamate Complex intrusive rocks indicate that they are likely to be the parental arc magmas for the nearby porphyry Cu deposits. This conclusion is based on new interpretations of the regional and local geology, on interpretation of new geochemical analysis, new stable isotope analysis, new geothermobarometry, and new zircon age dating as well as other techniques and interpretations.
Initial characterization of the FlgE hook high molecular weight complex of Borrelia burgdorferi.
Miller, Kelly A; Motaleb, Md A; Liu, Jun; Hu, Bo; Caimano, Melissa J; Miller, Michael R; Charon, Nyles W
2014-01-01
The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility.
Initial Characterization of the FlgE Hook High Molecular Weight Complex of Borrelia burgdorferi
Miller, Kelly A.; Motaleb, Md. A.; Liu, Jun; Hu, Bo; Caimano, Melissa J.; Miller, Michael R.; Charon, Nyles W.
2014-01-01
The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility. PMID:24859001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobo-Lapidus, Rodrigo J.; Gates, Bruce C.
2010-12-07
Supported rhenium complexes were prepared from CH{sub 3}Re(CO){sub 5} and dealuminated HY zeolite or NaY zeolite, each with a Si/Al atomic ratio of 30. The samples were characterized with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. EXAFS data characterizing the sample formed by the reaction of CH{sub 3}Re(CO){sub 5} with dealuminated HY zeolite show that the rhenium complexes were bonded to the zeolite frame, incorporating, on average, three carbonyl ligands per Re atom (as shown by Re-C and multiple-scattering Re-O EXAFS contributions). The IR spectra, consistent with this result, show that the supported rhenium carbonyls were bondedmore » near aluminum sites of the zeolite, as shown by the decrease in intensity of the IR bands characterizing the acidic silanol groups resulting from the reaction of the rhenium carbonyl with the zeolite. This supported metal complex was characterized by narrow peaks in the {nu}{sub CO} region of the IR spectrum, indicating highly uniform species. In contrast, the species formed from CH{sub 3}Re(CO){sub 5} on NaY zeolite lost fewer carbonyl ligands than those formed on HY zeolite and were significantly less uniform, as indicated by the greater breadth of the {nu}{sub CO} bands in the IR spectra. The results show the importance of zeolite H{sup +} sites for the formation of uniform supported rhenium carbonyls from CH{sub 3}Re(CO){sub 5}; the formation of such uniform complexes did not occur on the NaY zeolite.« less
The Contrasting Effects of Alum-Treated Chicken Manures and KH2PO4 on Phosphorus Behavior in Soils.
Huang, Lidong; Yang, Junming; Xu, Yuting; Lei, Jiayan; Luo, Xiaoshan; Cade-Menun, Barbara J
2018-03-01
Alum [KAl(SO)⋅12HO] is often added to chicken manure to limit P solubility after land application. This is generally ascribed to the formation of Al-PO complexes. However, Al-PO complex formation could be affected by the matrix of chicken manure, which varies with animal diet. Alum was added to KHPO (as a reference material) and two manures from typical chicken farms in China, one from an intensive farm (CMIF) and another from free-ranging chickens (CMFR). These were subsequently incubated with soils for 100 d to investigate P transformations. Alum reduced water-soluble colorimetrically reactive phosphorus (RP) from soils amended with manure more effectively than in soils amended with KHPO. Alum addition lowered Mehlich-3 RP in soils with CMFR but had no influence on Mehlich-3 RP in CMIF- or KHPO-amended soils. A comparison of P in digested Mehlich-3 extracts with RP in undigested samples showed significantly increased P in digests of alum-treated CMFR only. Fractionation data indicated that alum treatment increased P in the NHF-RP (Al-P) fraction only in soils with KHPO, but not in soils with manure treatments. Furthermore, NaOH-extracted nonreactive P was markedly higher in soil with alum-treated CMFR relative to normal CMFR. The CMFR manure was assumed to contain higher concentrations of organic P because these chickens were fed grains only. These results suggest that the formation of alum-organic P complexes may reduce P solubility. By comparing alum-treated KHPO and manures, it appears that organic matter in manure could interfere with the formation of Al-PO complexes. Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and AgriFood Canada.
NASA Astrophysics Data System (ADS)
Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José
2016-05-01
This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.
Solubility enhancement of a bisnaphthalimide tumoricidal agent, DMP 840, through complexation.
Raghavan, K S; Nemeth, G A; Gray, D B; Hussain, M A
1996-10-01
The purpose of this research was to enhance the aqueous solubility of DMP 840 by complexation with water-soluble and nontoxic agents, and to understand the nature of the interactions involved in complex formation using nuclear magnetic resonance (1H-NMR). The solubility of DMP 840 in water, saline, acetate buffers, and cosolvent mixtures was determined by high-performance liquid chromatography, and the effect of nicotinamide and pyridoxine concentrations on the solubility of DMP 840 was examined by the phase solubility method. 1H-NMR spectra were acquired in deuterated acetate buffer at 400 MHz on a Varian Unity-400 spectrometer. The aqueous solubility of DMP 840 was sensitive to the presence of chloride and acetate anions in solution, and did not improve in the presence of cosolvents. The use of the nontoxic and water-soluble complex-forming agents nicotinamide and pyridoxine, however, resulted in a linear increase in the aqueous solubility of DMP 840 with both ligands. The solubilization appears to be due to formation of 1:1 complexes between DMP 840 and the bioorganic ligands. The complexation constants were 15.57 M-1 for the DMP 840:nicotinamide complex and 13.36 M-1 for the DMP 840:pyridoxine complex. The NMR results indicate that the interaction is a result of vertical or plane-to-plane stacking and the complexation constants were in agreement with that obtained by phase solubility. The results suggest that the aqueous solubility of a poorly water soluble drug substance such as DMP 840 can be significantly enhanced by its complexation with water-soluble and nontoxic agents.
Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions
NASA Astrophysics Data System (ADS)
Fedoseev, G.; Chuang, K.-J.; Ioppolo, S.; Qasim, D.; van Dishoeck, E. F.; Linnartz, H.
2017-06-01
Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, I.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical-radical and radical-molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.
NASA Astrophysics Data System (ADS)
Zhang, Nanshan
Triphenyl phosphate (TPP) is widely used as a phosphorus flame retardant. It is also one component of a commercial flame retardant mixture known as Firemaster 550. TPP is likely to be released into the environment due to its high volatility and has been detected at a concentration as high as 47,000 ng/m3 in air. Recent studies have also indicated that FRs like TPP could contribute to obesity and osteoporosis in humans. Cyclodextrins (CDs) are enzymatic degradation products of starch and consist of several (alpha-1,4)-linked alpha-Dglucopyranose units. CDs own a hydrophilic outside and a hydrophobic inner cavity, which enables the formation of non-covalently bonded cyclodextrin inclusion complexes (CD-ICs) with a vast array of molecules. We hypothesize that the formation of inclusion complexes between TPP and cyclodextrins will reduce its exposure yet also retain flame retarding properties of TPP, since the formation of FR-CD-ICs is expected to eliminate unnecessary loss of FRs, especially volatile FR compounds like TPP, and release them only during a fire when they are actually needed. After creating the TPP-beta-CD-IC, we applied it to polyethylene terephthalate (PET) films by a hot press technique. Flame tests indicated TPP-beta-CD-IC exhibited flame resistant performance matching that of neat TPP, even though much less TPP was contained in its beta-CD-IC. Incorporation of FRs and other chemical additives into textile substrates in the form of their crystalline CD-ICs is a promising way to reduce the exposure of hazardous chemicals to humans and to our environment while not impacting their efficacy. Two other parent CDs (alpha-CD and gamma-CD) were applied and their abilities to form ICs with guest TPP were studied. Results from a series of characterization methods, including FTIR, DSC, TGA, XRD and NMR indicated the successful synthesis of TPP-gamma-CD-IC via two routes. However, alpha-CD appears unable to form an IC with TPP, which is likely attributable to a size mismatch between them. A novel analytical chemistry technique - tandem mass spectrometry (ESI-Q-TOF) was used to study the inclusion complexes of TPP and CDs. Successful formation of TPP-beta-/gamma-CD-IC was further proved by ESI mass spec in the positive mode. Experimental results demonstrated that 1:1 inclusion complex ions of the guest FR and the host CDs were detected. Experimentally alpha-CD cannot form an IC with TPP and this was further confirmed by tandem mass spec. Mass spectrometry provides a fast and accurate method to investigate cyclodextrin inclusion complexes and verify the formation of ICs. Computational methods were applied to help understand the energetically favorable geometry of TPP and beta-/gamma-CD in their IC form. Semi-empirical theoretical methods (PM3 and PM6) were used to find the global minima of TPP-CD geometry and density functional theory calculations at a B3LYP/6-31G(d) level were employed for elaborate geometry optimization. Solvent effect was also considered using the polarized continuum model (IEF-PCM). Analysis of the results indicated that after optimization, IC geometries provided by PM6 had stronger interactions and were more energetically favorable than the ones calculated by PM3. DFT calculations are more accurate than PM3/PM6 and enabled more interactions between the host and the guest than two semi-empirical approaches. DFT calculations also proved that initial structures prepared by PM6 were more favorable in H-bonding profiles and key energy parameters. For TPP-beta-CD system in vacuum and water, Model A owned a lower total and complexation energy while a stronger interaction between them was present in Model B. In TPP-gamma-CD system, Model B was preferred than Model A in both vacuum and water. This was potentially attributed to more H-bonds formed between TPP and gamma-CD in Model B and its ability to retain most of the internal linkages among primary hydroxyl groups.
Liu, Pengfei; Wang, Rui; Kang, Xuemin; Cui, Bo; Yu, Bin
2018-06-01
To investigate the effect of ultrasonic treatment on the properties of sweet potato starch and sweet potato starch-based films, the complexing index, thermograms and diffractograms of the sweet potato starch-lauric acid composite were tested, and light transmission, microstructure, and mechanical and moisture barrier properties of the films were measured. The results indicated that the low power density ultrasound was beneficial to the formation of an inclusion complex. In thermograms, the gelatinization enthalpies of the ultrasonically treated starches were lower than those of the untreated sample. With the ultrasonic amplitude increased from 40% to 70%, the melting enthalpy (ΔH) of the inclusion complex gradually decreased. X-ray diffraction revealed that the diffraction intensity of the untreated samples was weaker than that of the ultrasonically treated samples. When the ultrasonic amplitude was above 40%, the diffraction intensity and relative crystallinity of inclusion complex gradually decreased. The scanning electronic microscope showed that the surface of the composite films became smooth after being treated by ultrasonication. Ultrasonication led to a reduction in film surface roughness under atomic force microscopy analysis. The films with ultrasonic treatment exhibited higher light transmission, lower elongation at break, higher tensile strength and better moisture barrier property than those without ultrasonic treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves
2015-01-01
Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation. PMID:25918725
Olsson, Ola; Olsson, Pål Axel; Hammer, Edith C
2014-08-01
The regulation of the structural composition and complexity of the mycelium of arbuscular mycorrhizal (AM) fungi is not well understood due to their obligate biotrophic nature. The aim of this study was to investigate the structure of extraradical mycelium at high and low availability of carbon (C) to the roots and phosphorus (P) to the fungus. We used monoxenic cultures of the AM fungus Rhizophagus irregularis (formerly Glomus intraradices) with transformed carrot roots as the host in a cultivation system including a root-free compartment into which the extraradical mycelium could grow. We found that high C availability increased hyphal length and spore production and anastomosis formation within individual mycelia. High P availability increased the formation of branched absorbing structures and reduced spore production and the overall length of runner hyphae. The complexity of the mycelium, as indicated by its fractal dimensions, increased with both high C and P availability. The results indicate that low P availability induces a growth pattern that reflects foraging for both P and C. Low C availability to AM roots could still support the explorative development of the mycelium when P availability was low. These findings help us to better understand the development of AM fungi in ecosystems with high P input and/or when plants are subjected to shading, grazing or any management practice that reduces the photosynthetic ability of the plant.
Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves
2015-01-01
Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.
NASA Technical Reports Server (NTRS)
Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.
1979-01-01
Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...
2017-10-22
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Thiol surface complexation on growing CdS clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swayambunathan, V.; Hayes, D.; Schmidt, K.H.
1990-05-09
The growth of small CdS colloidal particles has been initiated by pulse radiolytic release of sulfide from thiol (3-mercapto-1,2-propanediol, RSH) in the presence of Cd{sup 2+} ions. The kinetics and stoichiometry of the ensuring reactions were followed by conductivity, absorption spectroscopy, and light-scattering techniques. The final CdS product has been identified by electron diffraction. The formation of Cd-thiolate complexes at the surface of the particles is indicated by conductivity and by energy dispersive analysis of X-ray (EDAX) results. The rate of formation of CdS clusters is strongly pH dependent due to the pH effect on the stability of Dd{sup 2+}/HS{supmore » {minus}} complexes. At low pHs (4.0-5.3) the growth mechanism is proposed to be primarily a cluster-molecule process. At this pH range Cd{sup 2+} ions at the CdS particle surface complex with thiolate ions stronger than in the bulk of the solution. The size control of the particles by thiols is proposed to result from a competition of thiolate ions with HS{sup {minus}} ions for cadmium ions at the surface of the growing particles.« less
Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang
2014-04-18
Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition ofmore » cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.« less
9-Triptycenecarboxylate-Bridged Diiron(II) Complexes
Friedle, Simone; Kodanko, Jeremy J.; Fornace, Kyrstin L.; Lippard, Stephen J.
2008-01-01
The synthesis and characterization of diiron(II) complexes supported by 9-triptycenecarboxylate ligands (-O2CTrp) is described. The interlocking nature of the triptycenecarboxylates facilitates formation of quadruply bridged diiron(II) complexes of the type [Fe2(μ-O2CTrp)4(L)2] (L = THF, pyridine or imidazole derivative) with a paddlewheel geometry. A systematic lengthening of the Fe-Fe distance occurs with the increase in steric bulk of the neutral donor L, resulting in values of up to 3 Å without disassembly of the paddlewheel structure. Reactions with an excess of water do not lead to decomposition of the diiron(II) core, indicating that these quadruply bridged complexes are of exceptional stability. The red-colored complexes [Fe2(μ-O2CTrp)4(4-AcPy)2] (10) and [Fe2(μ-O2CTrp)4(4-CNPy)2] (11) exhibit solvent-dependent thermochromism in coordinating solvents that was studied by variable temperature UV-vis spectroscopy. Reaction of [Fe2(μ-O2CTrp)4(THF)2] with N,N,N’,N’-tetramethylethylenediamine (TMEDA), tetra-n-butyl ammonium thiocyanate, or excess 2-methylimidazole resulted in the formation of mononuclear complexes [Fe(O2CTrp)2(TMEDA)] (13), (n-Bu4N)2[Fe(O2CTrp)2(SCN)2] (14), and [Fe(O2CTrp)2(2-MeIm)2] (15) having an O4/N2 coordination sphere composition. PMID:19915653
NASA Astrophysics Data System (ADS)
Suliman, FakhrEldin O.; Elbashir, Abdalla A.
2012-07-01
Using capillary electrophoresis baclofen (BF) enantiomers were separated only in the presence of β-cyclodextrin (βCD) as a chiral selector when added to the background electrolyte. Proton nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) techniques were used to determine the structure of the BF-βCD inclusion complexes. From the MS data BF was found to form a 1:1 complex with α- and βCD, while the NMR data suggest location of the aromatic ring of BF into the cyclodextrin cavity. A molecular modeling study, using the semiempirical PM6 calculations was used to investigate the mechanism of enantiodifferentiation of BF with cyclodextrins. Optimization of the structures of the complexes by PM6 method indicated that separation is obtained in the presence of β-CD due to a large binding energy difference (ΔΔE) of 46.8 kJ mol-1 between S-BF-βCD and R-BF-βCD complexes. In the case of αCD complexes ΔΔE was 1.3 kJ mol-1 indicating poor resolution between the two enantiomers. Furthermore, molecular dynamic simulations show that the formation of more stable S-BF-βCD complex compared to R-BF-β-CD complex is primarily due to differences in intermolecular hydrogen bonding.
Looy, Cindy V; Hotton, Carol L
2014-12-01
The Pennsylvanian lowlands of western Pangea are best known for their diverse wetland floras of arborescent and herbaceous ferns, and arborescent horsetails and clubmosses. In apparent juxtaposition, a very different kind of flora, dominated by a xerophilous assemblage of conifers, taeniopterids and peltasperms, is occasionally glimpsed. Once believed to represent upland or extrabasinal floras from well-drained portions of the landscape, these dryland floras more recently have been interpreted as lowland assemblages growing during drier phases of glacial/interglacial cycles. Whether Pennsylvanian dryland and wetland floras were separated spatially or temporally remains an unsettled question, due in large part to taphonomic bias toward preservation of wetland plants. Previous paleobotanical and sedimentological analysis of the Markley Formation of latest Pennsylvanian (Gzhelian) age, from north central Texas, U.S.A, indicates close correlation between lithofacies and distinct dryland and wetland megaflora assemblages. Here we present a detailed analysis one of those localities, a section unusual in containing abundant palynomorphs, from the lower Markley Formation. Paleobotanical, palynological and lithological data from a section thought to represent a single interglacial/glacial phase are integrated and analyzed to create a complex picture of an evolving landscape. Megafloral data from throughout the Markley Formation show that conifer-dominated dryland floras occur exclusively in highly leached kaolinite beds, likely eroded from underlying soils, whereas a mosaic of wetland floras occupy histosols, ultisols, and fluvial overbank deposits. Palynological data largely conform to this pattern but reveal a more complex picture. An assemblage of mixed wetland and dryland palynofloral taxa is interpolated between a dryland assemblage and an overlying histosol containing wetland taxa. In this section, as well as elsewhere in the Markley Formation, kaolinite and overlying organic beds appear to have formed as a single genetic unit, with the kaolinite forming an impermeable aquiclude upon which a poorly drained wetland subsequently formed. Within a single inferred glacial/interglacial cycle, lithological data indicate significant fluctuations in water availability tracked by changes in palynofloral and megafloral taxa. Palynology reveals that elements of the dryland floras appear at low abundance even within wetland deposits. The combined data indicate a complex pattern of succession and suggest a mosaic of dryland and wetland plant communities in the Late Pennsylvanian. Our data alone cannot show whether dryland and wetland assemblages succeed one another temporally, or coexisted on the landscape. However, the combined evidence suggests relatively close spatial proximity within a fragmenting and increasingly arid environment.
Looy, Cindy V.; Hotton, Carol L.
2014-01-01
The Pennsylvanian lowlands of western Pangea are best known for their diverse wetland floras of arborescent and herbaceous ferns, and arborescent horsetails and clubmosses. In apparent juxtaposition, a very different kind of flora, dominated by a xerophilous assemblage of conifers, taeniopterids and peltasperms, is occasionally glimpsed. Once believed to represent upland or extrabasinal floras from well-drained portions of the landscape, these dryland floras more recently have been interpreted as lowland assemblages growing during drier phases of glacial/interglacial cycles. Whether Pennsylvanian dryland and wetland floras were separated spatially or temporally remains an unsettled question, due in large part to taphonomic bias toward preservation of wetland plants. Previous paleobotanical and sedimentological analysis of the Markley Formation of latest Pennsylvanian (Gzhelian) age, from north central Texas, U.S.A, indicates close correlation between lithofacies and distinct dryland and wetland megaflora assemblages. Here we present a detailed analysis one of those localities, a section unusual in containing abundant palynomorphs, from the lower Markley Formation. Paleobotanical, palynological and lithological data from a section thought to represent a single interglacial/glacial phase are integrated and analyzed to create a complex picture of an evolving landscape. Megafloral data from throughout the Markley Formation show that conifer-dominated dryland floras occur exclusively in highly leached kaolinite beds, likely eroded from underlying soils, whereas a mosaic of wetland floras occupy histosols, ultisols, and fluvial overbank deposits. Palynological data largely conform to this pattern but reveal a more complex picture. An assemblage of mixed wetland and dryland palynofloral taxa is interpolated between a dryland assemblage and an overlying histosol containing wetland taxa. In this section, as well as elsewhere in the Markley Formation, kaolinite and overlying organic beds appear to have formed as a single genetic unit, with the kaolinite forming an impermeable aquiclude upon which a poorly drained wetland subsequently formed. Within a single inferred glacial/interglacial cycle, lithological data indicate significant fluctuations in water availability tracked by changes in palynofloral and megafloral taxa. Palynology reveals that elements of the dryland floras appear at low abundance even within wetland deposits. The combined data indicate a complex pattern of succession and suggest a mosaic of dryland and wetland plant communities in the Late Pennsylvanian. Our data alone cannot show whether dryland and wetland assemblages succeed one another temporally, or coexisted on the landscape. However, the combined evidence suggests relatively close spatial proximity within a fragmenting and increasingly arid environment. PMID:26028779
NASA Astrophysics Data System (ADS)
Censier, Claude; Lang, Jacques
1999-08-01
The depositional environment, provenance and processes of emplacement of the detrital material of the Mesozoic Carnot Formation are defined, by bedding and sedimentological analysis of its main facies, and are reconstructed within the palaeogeographic framework of Central Africa. The clastic material was laid down between probably the Albian and the end of the Cretaceous, in a NNW-oriented braided stream fluvial system that drained into the Doba Trough (Chad) and probably also into the Touboro Basin (Cameroon). The material was derived from weathering of the underlying Devonian-Carboniferous Mambéré Glacial Formation and of the Precambrian schist-quartzite complex located to the south of the Carnot Formation. These results provide useful indications as to the provenance of diamonds mined in the southwest Central African Republic.
Ooshio, Takako; Kobayashi, Reiko; Ikeda, Wataru; Miyata, Muneaki; Fukumoto, Yuri; Matsuzawa, Naomi; Ogita, Hisakazu; Takai, Yoshimi
2010-02-12
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with beta- and alpha-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-DeltaPR1-2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells.
Ooshio, Takako; Kobayashi, Reiko; Ikeda, Wataru; Miyata, Muneaki; Fukumoto, Yuri; Matsuzawa, Naomi; Ogita, Hisakazu; Takai, Yoshimi
2010-01-01
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with β- and α-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-ΔPR1–2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells. PMID:20008323
Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes.
Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J
2010-12-01
The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.
Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle.
Blair, Catherine P; Abrahamson, Warren G; Jackman, John A; Tyrrell, Lynn
2005-02-01
Host-race formation remains controversial as a source of herbivorous insect diversity, and examples of host races are still fairly scarce. In this study, analysis of five enzyme loci in the ostensibly generalist tumbling flower beetle Mordellistena convicta (Coleoptera: Mordellidae) revealed hidden host-plant and plant-organ related genetic differentiation. Mordellistena convicta turned out to be a complex of cryptomorphic species, each with fewer hosts than the nominal species. These cryptic species, in turn, were divided into taxa that showed host-race characteristics: samples from different host plants and organs exhibited (1) genetic indications of partial reproductive isolation, (2) differences in size and emergence timing that suggested divergent host-related selection, and (3) among-host selective differences in mortality from parasitoids. Host-race formation in M. convicta, which has a somewhat different life history from the well-studied host races, enlarges the group of insects considered likely to undergo this process. The widespread sympatry of the M. convicta species complex, along with its spectrum of host-correlated genetic differentiation, suggests that these host specialist taxa developed in sympatry.
Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn.
Matsuda, Keisuke; Gotoh, Hiroki; Tajika, Yuki; Sushida, Takamichi; Aonuma, Hitoshi; Niimi, Teruyuki; Akiyama, Masakazu; Inoue, Yasuhiro; Kondo, Shigeru
2017-10-24
The external organs of holometabolous insects are generated through two consecutive processes: the development of imaginal primordia and their subsequent transformation into the adult structures. During the latter process, many different phenomena at the cellular level (e.g. cell shape changes, cell migration, folding and unfolding of epithelial sheets) contribute to the drastic changes observed in size and shape. Because of this complexity, the logic behind the formation of the 3D structure of adult external organs remains largely unknown. In this report, we investigated the metamorphosis of the horn in the Japanese rhinoceros beetle Trypoxylus dichotomus. The horn primordia is essentially a 2D epithelial cell sheet with dense furrows. We experimentally unfolded these furrows using three different methods and found that the furrow pattern solely determines the 3D horn structure, indicating that horn formation in beetles occurs by two distinct processes: formation of the furrows and subsequently unfolding them. We postulate that this developmental simplicity offers an inherent advantage to understanding the principles that guide 3D morphogenesis in insects.
Schubert, Axel; Stenstam, Anna; Beenken, Wichard J. D.; Herek, Jennifer L.; Cogdell, Richard; Pullerits, Tõnu; Sundström, Villy
2004-01-01
Controlled ensemble formation of protein-surfactant systems provides a fundamental concept for the realization of nanoscale devices with self-organizing capability. In this context, spectroscopic monitoring of pigment-containing proteins yields detailed structural information. Here we have studied the association behavior of the bacterial light-harvesting protein LH2 from Rhodobacter spheroides in an n,n-dimethyldodecylamine-n-oxide/water environment. Time-resolved studies of the excitation annihilation yielded information about aggregate sizes and packing of the protein complexes therein. The results are compared to transmission electron microscopy images of instantaneously frozen samples. Our data indicate the manifestation of different phases, which are discussed with respect to the thermodynamic equilibrium in ternary protein-surfactant-water systems. Accordingly, by varying the concentration the formation of different types of aggregates can be controlled. Conditions for the appearance of isolated LH2 complexes are defined. PMID:15041674
The excavation stage of basin formation - A qualitative model
NASA Technical Reports Server (NTRS)
Croft, S. K.
1981-01-01
One of the most complex problems in planetary geology and geophysics is the determination of the nature of the impact cratering processes at scales of tens to thousands of kilometers that produce the complex morphological structures of multiring basins. The cratering process is frequently considered to be divided into three stages, including a short high-pressure stage of initial contact between the projectile and the planetary crust, a longer excavation or cratering flow stage culminating in the formation of a transient crater, and a still longer modification stage during which the transient crater is modified into the observed final geologic form. The transient crater may be considered as the initial boundary condition of the modification stage. In the present investigation, the nature of the transient crater is indicated by the cratering flow field determined from numerical simulations of the excavation stage. Attention is given to empirical and theoretical scaling.
Effect of fat type in baked bread on amylose-lipid complex formation and glycaemic response.
Lau, Evelyn; Zhou, Weibiao; Henry, Christiani Jeyakumar
2016-06-01
The formation of amylose-lipid complexes (ALC) had been associated with reduced starch digestibility. A few studies have directly characterised the extent of ALC formation with glycaemic response. The objectives of this study were to investigate the effect of using fats with varying degree of saturation and chain length on ALC formation as well as glycaemic and insulinaemic responses after consumption of bread. Healthy men consumed five test breads in a random order: control bread without any added fats (CTR) and breads baked with butter (BTR), coconut oil (COC), grapeseed oil (GRP) or olive oil (OLV). There was a significant difference in glycaemic response between the different test breads (P=0·002), primarily due to COC having a lower response than CTR (P=0·016), but no significant differences between fat types were observed. Insulinaemic response was not altered by the addition of fats/oils. Although BTR was more insulinotropic than GRP (P<0·05), postprandial β-cell function did not differ significantly. The complexing index (CI), a measure of ALC formation, was significantly higher for COC and OLV compared with BTR and GRP (P<0·05). CI was significantly negatively correlated with incremental AUC (IAUC) of change in blood glucose concentrations over time (IAUCglucose) (r -0·365, P=0·001). Linear regression analysis showed that CI explained 13·3 % of the variance and was a significant predictor of IAUCglucose (β=-1·265, P=0·001), but IAUCinsulin did not predict IAUCglucose. Our study indicated that a simple way to modulate glycaemic response in bread could lie in the choice of fats/oils, with coconut oil showing the greatest attenuation of glycaemic response.
Chang, Hao-Hueng; Wang, Yin-Lin; Chiang, Yu-Chih; Chen, Yen-Liang; Chuang, Yu-Horng; Tsai, Shang-Jye; Heish, Kuo-Huang; Lin, Feng-Huei; Lin, Chun-Pin
2014-01-01
A novel chitosan-γPGA polyelectrolyte complex hydrogel (C-PGA) has been developed and proven to be an effective dressing for wound healing. The purpose of this study was to evaluate if C-PGA could promote new bone formation in the alveolar socket following tooth extraction. An animal model was proposed using radiography and histomorphology simultaneously to analyze the symmetrical sections of Wistar rats. The upper incisors of Wistar rats were extracted and the extraction sockets were randomly treated with gelatin sponge, neat chitosan, C-PGA, or received no treatment. The extraction sockets of selected rats from each group were evaluated at 1, 2, 4, or 6 wk post-extraction. The results of radiography and histopathology indicated that the extraction sockets treated with C-PGA exhibited lamellar bone formation (6.5%) as early as 2 wk after the extraction was performed. Moreover, the degree of new bone formation was significantly higher (P < 0.05) in the extraction sockets treated with C-PGA at 6 wk post-extraction than that in the other study groups. In this study, we demonstrated that the proposed animal model involving symmetrical sections and simultaneous radiography and histomorphology evaluation is feasible. We also conclude that the novel C-PGA has great potential for new bone formation in the alveolar socket following tooth extraction. PMID:24658174
Drosophila Chitinase 2 is expressed in chitin producing organs for cuticle formation.
Pesch, Yanina-Yasmin; Riedel, Dietmar; Behr, Matthias
2017-01-01
The architecture of the outer body wall cuticle is fundamental to protect arthropods against invading pathogens and numerous other harmful stresses. Such robust cuticles are formed by parallel running chitin microfibrils. Molting and also local wounding leads to dynamic assembly and disassembly of the chitin-matrix throughout development. However, the underlying molecular mechanisms that organize proper chitin-matrix formation are poorly known. Recently we identified a key region for cuticle thickening at the apical cell surface, the cuticle assembly zone, where Obstructor-A (Obst-A) coordinates the formation of the chitin-matrix. Obst-A binds chitin and the deacetylase Serpentine (Serp) in a core complex, which is required for chitin-matrix maturation and preservation. Here we present evidence that Chitinase 2 (Cht2) could be essential for this molecular machinery. We show that Cht2 is expressed in the chitin-matrix of epidermis, trachea, and the digestive system. There, Cht2 is enriched at the apical cell surface and the dense chitin-matrix. We further show that in Cht2 knockdown larvae the assembly zone is rudimentary, preventing normal cuticle formation and pore canal organization. As sequence similarities of Cht2 and the core complex proteins indicate evolutionarily conserved molecular mechanisms, our findings suggest that Cht2 is involved in chitin formation also in other insects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Complexation in two-component chlortetracycline-melanin solutions
NASA Astrophysics Data System (ADS)
Lapina, V. A.; Pershukevich, P. P.; Dontsov, A. E.; Bel'Kov, M. V.
2008-01-01
The spectra and kinetics of fluorescence of two-component solutions of the chlortetracycline (CHTC)-DOPA-melanin (melanin or ME) system in water have been investigated. The data obtained have been compared to similar data for solutions of CHTC-melanosome from bull eye (MB), which contains natural melanin, in K-phosphate buffer at pH 7.4. The overall results indicate the occurrence of complexation between molecules of CHTC and ME as they are being excited. The studies of complexation in the solution of CHTC-MB in the buffer are complicated by the formation of a CHTC-buffer complex. The effect of optical radiation in the range 330-750 nm on the CHTC-ME complex shows selectivity: the greatest change in the spectrum occurs when the wavelength of the exciting radiation coincides with the long-wavelength band maximum of the fluorescence excitation spectrum of the CHTC-ME complex in aqueous solution. In this range, CHTC and especially ME show high photochemical stability. The nature of the radiation effect on the studied compounds in the hard UV range (λ < 330 nm) differs greatly from that in the range 330-750 nm. It is apparently accompanied by significant photochemical transmutations of all system components. By comparing the characteristics of the CHTC-ME systems with those of the related drug doxycycline (DC-ME), the conclusion has been made that the chlorine atom plays a vital role in formation of the short-wavelength band in the fluorescence spectrum of the CHTC-ME complex.
Kuniyasu, Akihiko; Kaneko, Kazuyoshi; Kawahara, Kohichi; Nakayama, Hitoshi
2003-09-25
Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.
Atorvastatin affects negatively respiratory function of isolated endothelial mitochondria.
Broniarek, Izabela; Jarmuszkiewicz, Wieslawa
2018-01-01
The purpose of this research was to elucidate the direct effects of two popular blood cholesterol-lowering drugs used to treat cardiovascular diseases, atorvastatin and pravastatin, on respiratory function, membrane potential, and reactive oxygen species formation in mitochondria isolated from human umbilical vein endothelial cells (EA.hy926 cell line). Hydrophilic pravastatin did not significantly affect endothelial mitochondria function. In contrast, hydrophobic calcium-containing atorvastatin induced a loss of outer mitochondrial membrane integrity, an increase in hydrogen peroxide formation, and reductions in maximal (phosphorylating or uncoupled) respiratory rate, membrane potential and oxidative phosphorylation efficiency. The atorvastatin-induced changes indicate an impairment of mitochondrial function at the level of ATP synthesis and at the level of the respiratory chain, likely at complex I and complex III. The atorvastatin action on endothelial mitochondria was highly dependent on calcium ions and led to a disturbance in mitochondrial calcium homeostasis. Uptake of calcium ions included in atorvastatin molecule induced mitochondrial uncoupling that enhanced the inhibition of the mitochondrial respiratory chain by atorvastatin. Our results indicate that hydrophobic calcium-containing atorvastatin, widely used as anti-atherosclerotic agent, has a direct negative action on isolated endothelial mitochondria. Copyright © 2017. Published by Elsevier Inc.
Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.
Yan, Wei; Hu, Shan; Jing, Chuanyong
2012-04-15
Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Cs
How do Kakortokites form? Additional evidence from the Ilimaussaq Complex, S. Greenland
NASA Astrophysics Data System (ADS)
Hunt, E. J.; Finch, A. A.; Donaldson, C. H.
2012-04-01
The Ilímaussaq Complex, South Greenland, contains some of the most evolved igneous rocks in the world and is widely considered to represent one of the largest deposits of rare-earth elements, Ta, Nb and Zr. Our work is focused on the kakortokite layered series at the base of the complex. The layered series is composed of 29 repetitive 3-layer units (named -11 to +17, Bohse et al. 1971), successively enriched in arfvedsonite, eudialyte and nepheline. Despite a large body of work on the development of the kakortokite series, no consensus on the process/processes that produced the layering has been forthcoming. We present the preliminary findings of a combined petrographical, quantitative textural and geochemical analysis on the kakortokite series, initially focused on layer 0. Although many of the hypotheses for the formation of these rocks invoke a pressure change, the enrichment of the series in volatile constituents (CH4 and H; Konnerup-Madsen, 2001) has led many authors to suggest crystallisation occurred in a closed system, with processes of gravitational settling formed the layering. Crystal size distribution (CSD) analysis, performed on hand-digitised photomicrographs, provides insight into processes of crystal nucleation and growth. The results indicate that simple cumulate settling is untenable for layer 0. Instead the plot gradients indicate that the arfvedsonite in the black kakortokite crystallised in situ above a sharp boundary to the white kakortokite. The CSD plots for the alkali feldspars indicate secondary nucleation occurred, with the small crystal size fraction forming in situ. The feldspar phenocrysts also exhibit embayment textures indicating partial resorption. These graphs are consistent with a model whereby an influx of hotter magma results in the partial thermal erosion of the underlying white kakortokite, followed by in situ crystallisation of arfvedsonite above the melt infiltration boundary, followed by in situ crystallisation of eudialyte. Then nepheline and alkali feldspar crystallised through multiple modes of nucleation, developing the characteristic layering. Geochemical trends described by Pfaff et al. (2008) support an open system replenishment model during the formation of layer 0, and potentially also layers +4 and +8. To further this work we intend to apply this combined approach to investigate the formation of individual layers, scaling these processes into a model for the development of the Ilímaussaq complex. Bohse et al. (1971). Rapport Grønlands Geologiske Undergesølgelse, 36, 43 pp. Konnerup-Madsen (2001). Geology Greenland Surv. Bull., 190, 159-166. Pfaff et al. (2008). Lithos, 106, 280-296.
NASA Astrophysics Data System (ADS)
Bankole, Samson I.; Schrank, Eckart; Osterloff, Peter L.
2014-07-01
A diverse assemblage of palynomorphs dominated by terrestrially derived pollen and spores is reported from three wells penetrating the Miocene Agbada Formation. The pteridophyte and bryophyte spores which form the background assemblages in the three wells are good indicators of humid tropical climates which might have prevailed in the Niger Delta during the Miocene. The abundance and variations of climate-sensitive taxa including mangrove affiliated pollen and spore types Acrostichumsporites, Psilatricolporites crassus, Zonocostites ramonae and Graminidites annulatus representing the savannah vegetation cover indicate a complex interplay between periods of wetter and drier climates. Marine-derived dinoflagellate cysts and foraminiferal test linings are significantly present in the three wells. Taxa indicating freshwater contributions including Botryococcus spp., Chomotriletes minor, Ovoidites parvus and Pediastrum spp. are also represented numerically across the three wells. The presence of age diagnostic palynomorphs such as Crassoretitriletes vanraadshooveni, Retibrevitricolporites obodoensis, Tuberculodinium vancampoae, Zonocostites ramonae and Tuberculodinium vancampoae recovered in the three sections studied suggest a Miocene age for the investigated Agbada Formation. The proposed age is supported by the ranges of key palynomorphs in contemporaneous basins in Africa, northern South America and other parts of the World.
Bagramyan, K; Trchounian, A
2003-11-01
Formate hydrogen lyase from Escherichia coli is a membrane-bound complex that oxidizes formic acid to carbon dioxide and molecular hydrogen. Under anaerobic growth conditions and fermentation of sugars (glucose), it exists in two forms. One form is constituted by formate dehydrogenase H and hydrogenase 3, and the other one is the same formate dehydrogenase and hydrogenase 4; the presence of small protein subunits, carriers of electrons, is also probable. Other proteins may also be involved in formation of the enzyme complex, which requires the presence of metal (nickel-cobalt). Its formation also depends on the external pH and the presence of formate. Activity of both forms requires F(0)F(1)-ATPase; this explains dependence of the complex functioning on proton-motive force. It is also possible that the formate hydrogen lyase complex will exhibit its own proton-translocating function.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.
2014-12-01
The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3ṡnH2O where n = 6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM).
The anaerobic digestion process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivard, C.J.; Boone, D.R.
1996-01-01
The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited rangemore » of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.« less
EPR spin probe and spin label studies of some low molecular and polymer micelles
NASA Astrophysics Data System (ADS)
Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.
1998-12-01
The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.
Kosturko, L D; Daub, E; Murialdo, H
1989-01-01
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure. Images PMID:2521383
Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web
NASA Astrophysics Data System (ADS)
Tojeiro, Rita; Eardley, Elizabeth; Peacock, John A.; Norberg, Peder; Alpaslan, Mehmet; Driver, Simon P.; Henriques, Bruno; Hopkins, Andrew M.; Kafle, Prajwal R.; Robotham, Aaron S. G.; Thomas, Peter; Tonini, Chiara; Wild, Vivienne
2017-09-01
We present evidence for halo assembly bias as a function of geometric environment (GE). By classifying Galaxy and Mass Assembly (GAMA) galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with GE is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of GE. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star formation rate (SFR) and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous SFR is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star formation and chemical enrichment histories, which approximately mimic GAMA's typical signal-to-noise ratio and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.
Huidrom, Bimola; Singh, N Rajmuhon
2014-01-24
The 4f-4f absorption spectra of the simultaneous heterobimetallic complexation of trivalent neodymium ion with l-tryptophan and divalent zinc ion in aquated DMF (50%, v/v) at pH 6.0 was recorded at the time interval of 1h. From the observed absorption spectra, the values of intensity parameters such as oscillator strength (P) and Judd-Ofelt intensity (Tλ) parameters, kinetics and thermodynamics parameters were evaluated. The rate constant increases with an increase in the temperature along with the oscillator strengths and Judd-Ofelt intensity parameters. The positive values of the change in the standard enthalpy (ΔH°) and entropy (ΔS°) indicate that the complexation is endothermic. The negative values of the change in the standard free energy (ΔG°) in the range from 293.15 K to 308.15 K, indicate that the reaction occurs spontaneously and hence the formation of heterobimetallic complex in the solution is favored kinetically and thermodynamically. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huidrom, Bimola; Rajmuhon Singh, N.
2014-01-01
The 4f-4f absorption spectra of the simultaneous heterobimetallic complexation of trivalent neodymium ion with L-tryptophan and divalent zinc ion in aquated DMF (50%, v/v) at pH 6.0 was recorded at the time interval of 1 h. From the observed absorption spectra, the values of intensity parameters such as oscillator strength (P) and Judd-Ofelt intensity (Tλ) parameters, kinetics and thermodynamics parameters were evaluated. The rate constant increases with an increase in the temperature along with the oscillator strengths and Judd-Ofelt intensity parameters. The positive values of the change in the standard enthalpy (ΔH°) and entropy (ΔS°) indicate that the complexation is endothermic. The negative values of the change in the standard free energy (ΔG°) in the range from 293.15 K to 308.15 K, indicate that the reaction occurs spontaneously and hence the formation of heterobimetallic complex in the solution is favored kinetically and thermodynamically.
Jung, Goeh; Remmert, Kirsten; Wu, Xufeng; Volosky, Joanne M.; III, John A. Hammer
2001-01-01
Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the α and β subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH2-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end–directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans, Drosophila, mouse, and man, be named CARMIL proteins, for capping protein, Arp2/3, and myosin I linker. PMID:11425877
The gold nuggets of the lower Pliocene Alhambra Formation (Betic Cordillera, Southern Spain)
NASA Astrophysics Data System (ADS)
Somma, Roberta; Bonvegna, Piero; Sanchez-Navas, Antonio
2017-04-01
The present research was devoted to the geochemical and textural characterization of gold nuggets extracted from auriferous siliciclastic deposits of the lower Pliocene continental Alhambra Formation (Betic Cordillera, Southern Spain). This Formation is mainly composed of metamorphic lithoclasts deriving both by the erosion of the Mulhacen Unit of the Nevado-Filabride Complex and the reworking of the upper Tortonian marine Dudar-Pinos Genil Formation, on its turn previously formed by erosion of the Veleta Unit of the Nevado-Filabride Complex. Particularly, the studied gold nuggets were separated from 1m3 of auriferous conglomerates sampled along the right side of the Genil River, in the abandoned Lancha de Cenes Mine, exploited since Roman time for gold mining. The recovered gold nuggets were 24 for a total weight of 0.125 g/m3. Textural analysis of gold nuggets was made by means mechanical sieving and visual comparison of roundness and form. They are sand-sized rounded to sub-rounded grains with spheroidal and cubic form. Surface analyses of the nuggets by SEM-EDS indicated that external portions show textures more porous than in the nuggets nuclei. Chemical analyses by EMPA indicated that they are constituted by pure gold with Ag and Hg as trace elements. The gold mine capacity of the studied auriferous deposits is at least of 0.125 g/m3 (lower than 0.5 g/m3; minimum value to be gold mine economically exploitable). Notwithstanding this value, the auriferous conglomerates of the Alhambra Formation reveal to be interesting under a gold mine exploitation point of view because of the gold high pureness degree. Finally, under a geological point of view, considering that the Alhambra Formation is mainly composed of lower Pliocene alluvial fan conglomerates and sandstones formed during the uplift of the Sierra Nevada, the selected gold nuggets are secondary deposits originally derived from primary deposits related to hydrothermal gold-bearing quartz veins included in the Nevado-Filabride schists. Being gold nuggets grains of a continental deposit, an eluvial origin is not excluded on the basis of the surface features but roundness and form, data indicating that nuggets were transported, suggest that eluvial nuggets underwent also a limited alluvial process.
Cristofari, G; Gabus, C; Ficheux, D; Bona, M; Le Grice, S F; Darlix, J L
1999-12-17
Human immunodeficiency virus (HIV) and the distantly related yeast Ty3 retrotransposon encode reverse transcriptase (RT) and a nucleic acid-binding protein designated nucleocapsid protein (NCp) with either one or two zinc fingers, required for HIV-1 replication and Ty3 transposition, respectively. In vitro binding of HIV-1 NCp7 to viral 5' RNA and primer tRNA(3)(Lys) catalyzes formation of nucleoprotein complexes resembling the virion nucleocapsid. Nucleocapsid complex formation functions in viral RNA dimerization and tRNA annealing to the primer binding site (PBS). RT is recruited in these nucleoprotein complexes and synthesizes minus-strand cDNA initiated at the PBS. Recent results on yeast Ty3 have shown that the homologous NCp9 promotes annealing of primer tRNA(i)(Met) to a 5'-3' bipartite PBS, allowing RNA:tRNA dimer formation and initiation of cDNA synthesis at the 5' PBS (). To compare specific cDNA synthesis in a retrotransposon and HIV-1, we have established a Ty3 model system comprising Ty3 RNA with the 5'-3' PBS, primer tRNA(i)(Met), NCp9, and for the first time, highly purified Ty3 RT. Here we report that Ty3 RT is as active as retroviral HIV-1 or murine leukemia virus RT using a synthetic template-primer system. Moreover, and in contrast to what was found with retroviral RTs, retrotransposon Ty3 RT was unable to direct cDNA synthesis by self-priming. We also show that Ty3 nucleoprotein complexes were formed in vitro and that the N terminus of NCp9, but not the zinc finger, is required for complex formation, tRNA annealing to the PBS, RNA dimerization, and primer tRNA-directed cDNA synthesis by Ty3 RT. These results indicate that NCp9 chaperones bona fide cDNA synthesis by RT in the yeast Ty3 retrotransposon, as illustrated for NCp7 in HIV-1, reinforcing the notion that Ty3 NCp9 is an ancestor of HIV-1 NCp7.
C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells.
Li, Wei; Xu, Ling; Che, Xiaofang; Li, Haizhou; Zhang, Ye; Song, Na; Wen, Ti; Hou, Kezuo; Yang, Yi; Zhou, Lu; Xin, Xing; Xu, Lu; Zeng, Xue; Shi, Sha; Liu, Yunpeng; Qu, Xiujuan; Teng, Yuee
2018-05-02
Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex.
Effect of Natural Organic Matter on Plutonium Sorption to Goethite
Conroy, Nathan A.; Zavarin, Mavrik; Kersting, Annie B.; ...
2016-11-21
For this research, the effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mg C·L –1 and 50 mg C·L –1 natural organic matter (NOM), 10 –9–10 –10 M 238Pu, and 0.1 g·L –1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increasedmore » Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. In conclusion, the results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.« less
NASA Astrophysics Data System (ADS)
Skold, M. E.; Thyne, G. D.; McCray, J. E.; Drexler, J. W.
2005-12-01
One of the major challenges in remediating soil and ground water is the presence of mixed organic and inorganic contaminants. Due to their very different behavior, research has to a large extent focused on remediation of either organic or inorganic contaminants rather than mixed waste. Cyclodextrins (CDs) are a group of non-toxic sugar based molecules that do not sorb to soil particles and do not experience pore size exclusion. Thus, they have good hydraulic properties. CDs enhance the solubility of organic compounds by forming inclusion complexes between organic contaminants and the non-polar cavity at the center of the CD. By substituting functional groups to the cyclodextrin molecule it can form complexes with heavy metals. Previous studies have shown that carboxymethyl-beta-cyclodextrin (CMCD) can simultaneously complex organic and inorganic contaminants. The aim of this study is to compare how strongly CMCD complexes several common heavy metals, radioactive elements and a common divalent cation. Results from batch experiments show that CMCD has the ability to complex a wide array of heavy metals and radioactive elements. The solubility of metal oxalates and metal oxides clearly increased in the presence of CMCD. Logarithmic conditional formation constants ranged from 3.5 to 6 for heavy metals and from 3 to 6 for radioactive elements. Calcium, which may compete for binding sites, has a logarithmic conditional formation constant of 3.1. Batch experiments performed at 10 and 25 degrees C showed little temperature effect on conditional formation constants. Results from batch experiments were compared to results from column experiments where Pb was sorbed onto hydrous ferric oxide coated sand and subsequently removed by a CMCD solution. The results indicate that CMCD is a potential flushing agent for remediation of mixed waste sites.
Lomozik, Lechoslaw; Jastrzab, Renata
2003-01-15
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.
Effect of Natural Organic Matter on Plutonium Sorption to Goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Nathan A.; Zavarin, Mavrik; Kersting, Annie B.
For this research, the effect of citric acid (CA), desferrioxamine B (DFOB), fulvic acid (FA), and humic acid (HA) on plutonium (Pu) sorption to goethite was studied as a function of organic carbon concentration and pH using batch sorption experiments at 5 mg C·L –1 and 50 mg C·L –1 natural organic matter (NOM), 10 –9–10 –10 M 238Pu, and 0.1 g·L –1 goethite concentrations, at pH 3, 5, 7, and 9. Low sorption of ligands coupled with strong Pu complexation decreased Pu sorption at pH 5 and 7, relative to a ligand-free system. Conversely, CA, FA, and HA increasedmore » Pu sorption to goethite at pH 3, suggesting ternary complex formation or, in the case of humic acid, incorporation into HA aggregates. Mechanisms for ternary complex formation were characterized by Fourier transform infrared spectroscopy in the absence of Pu. CA and FA demonstrated clear surface interactions at pH 3, HA appeared unchanged suggesting HA aggregates had formed, and no DFOB interactions were observed. Plutonium sorption decreased in the presence of DFOB (relative to a ligand free system) at all pH values examined. Thus, DFOB does not appear to facilitate formation of ternary Pu-DFOB-goethite complexes. At pH 9, Pu sorption in the presence of all NOM increased relative to pH 5 and 7; speciation models attributed this to Pu(IV) hydrolysis competing with ligand complexation, increasing sorption. In conclusion, the results indicate that in simple Pu-NOM-goethite ternary batch systems, NOM will decrease Pu sorption to goethite at all but particularly low pH conditions.« less
Nwadike, Chinwendu; Williamson, Leon E; Gallagher, Laura E; Guan, Jun-Lin; Chan, Edmond Y W
2018-05-15
Autophagy maintains metabolism in response to starvation, but each nutrient is sensed distinctly. Amino acid deficiency suppresses mechanistic target of rapamycin complex 1 (MTORC1), while glucose deficiency promotes AMP-activated protein kinase (AMPK). The MTORC1 and AMPK signaling pathways converge onto the ULK1/2 autophagy initiation complex. Here, we show that amino acid starvation promoted formation of ULK1- and sequestosome 1/p62-positive early autophagosomes. Autophagosome initiation was controlled by MTORC1 sensing glutamine, leucine, and arginine levels together. In contrast, glucose starvation promoted AMPK activity, phosphorylation of ULK1 Ser555, and LC3-II accumulation, but with dynamics consistent with a block in autophagy flux. We studied the flux pathway and found that starvation of amino acid but not of glucose activated lysosomal acidification, which occurred independently of autophagy and ULK1. In addition to lack of activation, glucose starvation inhibited the ability of amino acid starvation to activate both autophagosome formation and the lysosome. Activation of AMPK and phosphorylation of ULK1 were determined to specifically inhibit autophagosome formation. AMPK activation also was sufficient to prevent lysosome acidification. These results indicate concerted but distinct AMPK-dependent mechanisms to suppress early and late phases of autophagy. Copyright © 2018 Nwadike et al.
Capturing cooperative interactions with the PSI-MI format
Van Roey, Kim; Orchard, Sandra; Kerrien, Samuel; Dumousseau, Marine; Ricard-Blum, Sylvie; Hermjakob, Henning; Gibson, Toby J.
2013-01-01
The complex biological processes that control cellular function are mediated by intricate networks of molecular interactions. Accumulating evidence indicates that these interactions are often interdependent, thus acting cooperatively. Cooperative interactions are prevalent in and indispensible for reliable and robust control of cell regulation, as they underlie the conditional decision-making capability of large regulatory complexes. Despite an increased focus on experimental elucidation of the molecular details of cooperative binding events, as evidenced by their growing occurrence in literature, they are currently lacking from the main bioinformatics resources. One of the contributing factors to this deficiency is the lack of a computer-readable standard representation and exchange format for cooperative interaction data. To tackle this shortcoming, we added functionality to the widely used PSI-MI interchange format for molecular interaction data by defining new controlled vocabulary terms that allow annotation of different aspects of cooperativity without making structural changes to the underlying XML schema. As a result, we are able to capture cooperative interaction data in a structured format that is backward compatible with PSI-MI–based data and applications. This will facilitate the storage, exchange and analysis of cooperative interaction data, which in turn will advance experimental research on this fundamental principle in biology. Database URL: http://psi-mi-cooperativeinteractions.embl.de/ PMID:24067240
NASA Astrophysics Data System (ADS)
Shoieba, Monera Adam; Sum, Chow Weng; Abidin, Nor Syazwani Zainal; Bhattachary, Swapan Kumar
2018-06-01
The heterogeneity and complexity of shale gas has become clear as the development of unconventional resources have improved. The Blue Nile Basin, is one of the many Mesozoic rift basins in Sudan associated with the Central African Rift System (CARS). It is located in the eastern part of the Republic of Sudan and has been the major focus for shale gas exploration due to the hydrocarbon found in the basin. But so far no success of discovery has been achieved because the shale gas potentiality of the study area is still unknown. The objective of this study is to assess the type of kerogen and maturity of the shale samples from the Blue Nile Formation within the Blue Nile Basin. This was done by employing organic geochemical methods such as pyrolysis gas chromatography (Py-GC) and petrographic analysis such as vitrinite reflectance (Ro%). Ten representative shale samples from TW-1 well in the Blue Nile Formation have been used to assess the quality of the source rock. Pyrolysis GC analysis indicate that all the selected shale samples contain Type II kerogen that produces oil and gas. The Blue Nile Formation possesses vitrinite reflectance (Ro%) of 0.60-0.65%, indicating that the shale samples are mature in the oil window.
Wells, J.G.; Drellack, S.L.
1982-01-01
The H-8 complex, a group of three closely-spaced boreholes, is located 9 miles south of the proposed Waste Isolation Pilot Plant site in southeastern Eddy County, New Mexico. The holes were drilled during July, August, and September of 1979 to obtain geologic and hydrologic data to better define the regional ground-water-flow system. The geologic data presented in this report are part of a site-characterization study for the possible disposal of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. The geologic data include detailed descriptions of cores, cuttings, and geophysical logs. Each borehole was designed to penetrate a distinct water-bearing zone: H-8a (total depth 505 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation of Permian Age; H-8b (total depth 624 feet) was completed just belows the Culebra Dolomite Member of the Rustler Formation; and H-8c (total depth 808 feet) was completed just below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-8c are surficial alluvium and eolian sand of Holocene age (0-4 feet); the Mescalero caliche (4-10 feet) and Gatuna Formation (10-153 feet) , both of Pleistocene age; and the Dewey Lake Red Beds (153-399 feet), the Rustler Formation (399-733 feet), and part of the Salado Formation penetrated by borehole H-8c is composed of residue from dissolution of halite and associated rocks, and the hydration of anhydrite to gypsum, indicating that the eastward-moving dissolution front on top of the Salado, found just to the west of the WIPP site, has reached the H-8 site. (USGS)
Wilson, Zakiya S; Stanley, George G; Vicic, David A
2010-06-21
The M-H-M bonding in the dinuclear complexes Ni(2)(mu-H)(mu-P(2))(2)X(2) (P(2) = R(2)PCH(2)PR(2), R = iPr, Cy; X = Cl, Br) has been investigated. These dinickel A-frames were studied via density functional theory (DFT) calculations to analyze the factors that influence linear and bent M-H-M bonding. The DFT calculations indicate that the bent geometry is favored electronically, with ligand steric effects driving the formation of the linear M-H-M structures.
NASA Technical Reports Server (NTRS)
Fox, S. W.; Nakashima, T.
1980-01-01
New data indicate that lysine-rich proteinoids have the ability to catalyze the synthesis of peptide bonds from a variety of amino acids and ATP. This capacity is evident in aqueous solution, in suspension of phase-separated complexes of lysine-rich proteinoid with acidic proteinoids, and in suspension of phase-separated particles composed of lysine-rich proteinoids with polynucleotides. Since the proteinoid complexes can contain other catalytic activities, including ability to catalyze internucleotide bond formation, it is inferred that the first protocells on earth already had a number of biological types of activity.
Carvalho, Suzana Gonçalves; Siqueira, Larissa Ataíde; Zanini, Marcos Santos; Dos Santos Matos, Ana Paula; Quaresma, Carla Holandino; da Silva, Luisa Mota; de Andrade, Sérgio Faloni; Severi, Juliana Aparecida; Villanova, Janaina Cecília Oliveira
2018-06-15
Recently, there have been numerous cases of leishmaniasis reported in different Brazilian states. The use of furazolidone (FZD) to treat leishmaniasis has been previously described; however, the drug is associated with adverse effects such as anorexia, weight loss, incoordination, and fatigue in dogs. Thus, in the present study, we prepared and evaluated inclusion complexes between FZD and β-cyclodextrin (β-CD) to guarantee increased drug solubility and reduce the toxicity associated with high doses. The FZD:β-CD complexes were prepared by two different techniques (kneading and lyophilization) prior to incorporation in an oral pharmaceutical dosage form. Formation of the complexes was confirmed using appropriate physicochemical methods. Antileishmanial activity against L. amazonensis was tested in vitro via a microplate assay using resazurin dye and cytotoxicity was determined using the fibroblast L929 lineage. Solubility studies showed the formation of complexes with complexation efficiencies lower than 100%. Physicochemical analysis revealed that FZD was inserted into the β-CD cavity after complexation by both methods. Biological in vitro evaluations demonstrated that free FZD and the FZD:β-CD complexes presented significant leishmanicidal activity against L. amazonensis with IC 50 values of 6.16 μg/mL and 1.83 μg/mL for the complexes prepared by kneading and lyophilization, respectively. The data showed that these complexes reduced the survival of promastigotes and presented no toxicity for tested cells. Our results indicate that the new compounds could be a cost-effective alternative for use in the pharmacotherapy of leishmaniasis in dogs infected with L. amazonensis. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, K.H.; /Ohio State U.; Niebuhr, M.
2009-04-30
We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDamore » 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.« less
Melanosome metabolism in the retinal pigmented epithelium of the opossum.
Herman, K G; Steinberg, R H
1982-01-01
Melanosomal metabolism, including both formation and degradation of melanosomes, was studied in the retinal pigmented epithelium (RPE) of the adult opossum. The majority of the observations were made on a transitional zone between the tapetal and non-tapetal RPE, the region where melanosome metabolism was at its highest level. Formation of melanosomes, demonstrated ultrastructurally by the presence of stage-II and -III premelanosomes, was also examined autoradiographically following the incorporation of the melanin precursor, dihydroxyphenylalanine. The autoradiographic evidence indicated that many newly formed melanosomes were rapidly incorporated into complexes. Ultrastructural observations suggested that melanosome complexes were formed by at least two methods, via the fusion of melanosomes with phagosomes derived from outer segments of photoreceptors, or by the sequestration of melanosomes by cisternae. A central finding of this study, supported by both ultrastructural and histochemical data, is that there are specialized cellular regions that vary in melanosomal formation and lysosomal activity. Stage-II premelanosomes were observed only in the basal parts of the RPE cells, whereas stage-III and -IV melanosomes were found primarily in the apical RPE. Both ultrastructural and cytochemical observations indicated that degradation of melanosomes occurs only in the basal RPE. These findings are interpreted in terms of the expression of both tapetal and nontapetal characteristics in transitional cells. Finally, this study illustrates the role of lysosomal enzymes in shaping the pattern of pigmentation, and shows that the association of lysosomal activity with melanosomes depends on the functional state of the melanosome.
Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.
Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J
2016-07-05
The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.
Satheshkumar, Angupillai; Elango, Kuppanagounder P
2014-09-15
The spectral techniques such as UV-Vis, (1)H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3×10(8) L mol(-1). Based on the Forster's theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol(-1), which is comparable to our experimental free energy of binding (-49 kJ mol(-1)) obtained from fluorescence study. Copyright © 2014 Elsevier B.V. All rights reserved.
Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphael; Gebelin, Aude; Chamberlain, C. Page
2015-01-01
Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (−90‰ to −154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ −154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ −125‰), where 40Ar/39Ar geochronological data indicate Miocene (18–15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan; ...
2015-06-17
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoyu; Wang, Xianling; Hu, Qingnan
In Arabidopsis, anthocyanin biosynthesis is controlled by a MYB-bHLH-WD40 (MBW) transcriptional activator complex. The MBW complex activates the transcription of late biosynthesis genes in the flavonoid pathway, leading to the production of anthocyanins. A similar MBW complex regulates epidermal cell fate by activating the transcription of GLABRA2 (GL2), a homeodomain transcription factor required for trichome formation in shoots and non-hair cell formation in roots. Here we provide experimental evidence to show that GL2 also plays a role in regulating anthocyanin biosynthesis in Arabidopsis. From an activation-tagged mutagenized population of Arabidopsis plants, we isolated a dominant, gain-of-function mutant with reduced anthocyanins.more » Molecular cloning revealed that this phenotype is caused by an elevated expression of GL2, thus the mutant was named gl2-1D. Consistent with the view that GL2 acts as a negative regulator of anthocyanin biosynthesis, gl2-1D seedlings accumulated less whereas gl2-3 seedlings accumulated more anthocyanins in response to sucrose. Gene expression analysis indicated that expression of late, but not early, biosynthesis genes in the flavonoid pathway was dramatically reduced in gl2-1D but elevated in gl2-3 mutants. Further analysis showed that expression of some MBW component genes involved in the regulation of late biosynthesis genes was reduced in gl2-1D but elevated in gl2-3 mutants, and chromatin immunoprecipitation results indicated that some MBW component genes are targets of GL2. We also showed that GL2 functions as a transcriptional repressor. Altogether, these results indicate that GL2 negatively regulates anthocyanin biosynthesis in Arabidopsis by directly repressing the expression of some MBW component genes.« less
NASA Astrophysics Data System (ADS)
Satheshkumar, Angupillai; Elango, Kuppanagounder P.
2014-09-01
The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.
NASA Astrophysics Data System (ADS)
Vlasenko, Valery G.; Vasilchenko, Igor S.; Pirog, Irina V.; Shestakova, Tatiana E.; Uraev, Ali I.; Burlov, Anatolii S.; Garnovskii, Alexander D.
2007-02-01
Binuclear copper complexes are known to be models for metalloenzymes containing copper active sites, and some of them are of considerable interest due to their magnetic and charge transfer properties. The reactions of the complex formation of bibasic tridentate heterocyclic imines with copper acetate leads to two types of chelates with mono deprotonated ligands and with totally deprotonated ligands. Cu K-edge EXAFS has been applied to determine the local structure around the metal center in copper(II) azomethine complexes with five tridentate ligands: 1-(salycilideneimino)- or 1-(2-tosylaminobenzilideneimino)-2-amino(oxo, thio)benzimidazoles. It has been found that some of the chelates studied are bridged binuclear copper complexes, and others are mononuclear complexes. The copper-copper interatomic distances in the bridged binuclear copper complexes were found to be 2.85-3.01 Å. Variable temperature magnetic susceptibility data indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former is dominating at low temperatures and the latter at high temperatures.
NASA Astrophysics Data System (ADS)
Rathi, Parveen; Singh, D. P.
2015-11-01
The macrocyclic complexes of pharmaceutical importance with trivalent transition metals have been synthesized by [1 + 1] condensation of succinyldihydrazide and thiophenedicarboxaldehyde, via template method, resulting in the formation of the complex [MLX] X2; where L is (C10H10N4O2S), a macrocyclic ligand, M = Cr (III) and Fe (III) and X = Cl-, CH3COO- or NO3- . These complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, ultraviolet, infrared, far infrared, electron spin resonance, mass spectral studies and powder x-ray diffraction analysis. On the basis of all these studies, mononuclear complexes having 1:2 electrolytic nature with a five coordinated square pyramidal geometry have been proposed. Powder diffraction XRD indicates the presence of triclinic crystal system with p bravais lattice for the representative complex. All the metal complexes have also been explored for their in vitro antimicrobial and antioxidant activities.
El-Sherif, Ahmed A; Shoukry, Mohamed M
2007-03-01
The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.
Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedoseev, G.; Chuang, K.-J.; Qasim, D.
Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, i.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules,more » a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH{sub 2}CH(OH)CH{sub 2}OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical–radical and radical–molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH{sub 2}CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.« less
Molecular interactions in gelatin/chitosan composite films.
Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui
2017-11-15
Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Magalhães, W. F.; Alcântara, A. F. C.; Windmöller, D.; Machado, J. C.
2012-06-01
Positronium formation in triphenylphosphine oxide (TPPO), triphenylmethanol (TPM), and systems [TPPO(1-X)ṡTPMX] has been studied. The low probability of positronium formation in complex [TPPO0.5ṡTPM0.5] was attributed to strong hydrogen bond and sixfold phenyl embrace interactions. These strong interactions in complex reduce the possibility of the n- and π-electrons to interact with positrons on the spur and consequently, the probability of positronium formation is lower. The τ3 parameter and free volume (correlated to τ3) were also sensitive to the formation of hydrogen bonds and sixfold phenyl embrace interactions within the complex. For physical mixture the positron annihilation parameters remained unchanged throughout the composition range.
Jomova, Klaudia; Lawson, Michael; Drostinova, Lenka; Lauro, Peter; Poprac, Patrik; Brezova, Vlasta; Michalik, Martin; Lukes, Vladimir; Valko, Marian
2017-12-01
The radical scavenging and metal chelating properties of flavonoids indicate that they may play a protective role in diseases with perturbed metal homeostasis such as Alzheimer's disease. In this work we investigated the effect of the coordination of quercetin to copper(II) in view of the formation of ROS in Cu-catalyzed Fenton reaction. ABTS and DPPH assays confirmed that the copper(II)-quercetin complex exhibits a stronger radical scavenging activity than does quercetin alone. EPR spin trapping experiments have shown that chelation of quercetin to copper significantly suppressed the formation of hydroxyl radicals in the Cu(II)-Fenton reaction. DNA damage experiments revealed a protective effect for quercetin, but only at higher stoichiometric ratios of quercetin relative to copper. DNA protective effect of quercetin against ROS attack was described by two mechanisms. The first mechanism lies in suppressed formation of ROS due to the decreased catalytic action of copper in the Fenton reaction, as a consequence of its chelation and direct scavenging of ROS by free quercetin. Since the Cu-quercetin complex intercalates into DNA, the second mechanism was attributed to a suppressed intercalating ability of the Cu-quercetin complex due to the mildly intercalating free quercetin into DNA, thus creating a protective wall against stronger intercalators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alimohammadi, Mona; Pichardo-Almarza, Cesar; Agu, Obiekezie; Díaz-Zuccarini, Vanessa
2017-01-01
Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population. PMID:28427316
Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Huifang; Xu, David C.; Wang, Yifeng
Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and selectivity. As a result, the new correlation can also enhance our ability for predicting the speciation, mobility, and toxicity of heavy metals in the earth environments and biological systems.« less
Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands
Xu, Huifang; Xu, David C.; Wang, Yifeng
2017-10-26
Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and selectivity. As a result, the new correlation can also enhance our ability for predicting the speciation, mobility, and toxicity of heavy metals in the earth environments and biological systems.« less
Suo, Hongyi; Zhao, Tong; Wang, Yiqing; Ban, Qing; Sun, Wen-Hua
2017-04-13
A series of N -(2,2-dimethyl-1-(quinolin-2-yl)propylidene) arylamines was sophisticatedly synthesized and reacted with nickel(II) bromine for the formation of the corresponding nickel complexes. All the organic compounds were characterized by IR, NMR spectra and elemental analysis, while all the nickel complexes were characterized by IR spectra and elemental analysis. On activation with ethylaluminium sesquichloride (EASC) and modified methylaluminoxane (MMAO), all nickel precatalysts exhibited good activities toward ethylene oligomerization, indicating the positive efficiency of gem-dimethyl substitutents; in which major hexenes were obtained with MMAO. The catalytic parameters were verified, and the steric and electronic influences of substituents with ligands were observed, with a slight change of activities under different ethylene pressures.
Munari, Francesca; Bortot, Andrea; Zanzoni, Serena; D'Onofrio, Mariapina; Fushman, David; Assfalg, Michael
2017-04-01
Despite significant advancements in our understanding of ubiquitin-mediated signaling, the influence of the intracellular environment on the formation of transient ubiquitin-partner complexes remains poorly explored. In our work, we introduce macromolecular crowding as a first level of complexity toward the imitation of a cellular environment in the study of such interactions. Using NMR spectroscopy, we find that the stereospecific complex of ubiquitin and the ubiquitin-associated domain (UBA) is minimally perturbed by the crowding agent Ficoll. However, in addition to the primary canonical recognition patch on ubiquitin, secondary patches are identified, indicating that in cell-mimicking crowded solution, UBA contacts ubiquitin at multiple sites. © 2017 Federation of European Biochemical Societies.
Hydrocarbons in recent sediment of the Monterey Bay National Marine Sanctuary
Kvenvolden, K.A.; Hostettler, F.D.; Rosenbauer, R.W.; Lorenson, T.D.; Castle, W.T.; Sugarman, S.
2002-01-01
A complex mixture of hydrocarbons is present in the recent sediment of the Monterey Bay National Marine Sanctuary. Eighteen samples from the continental shelf between San Francisco and Monterey contain aliphatic and aromatic hydrocarbons showing biological contributions from both marine and terrigenous sources, with the terrigenous indicators more pronounced near Monterey. Of particular interest, however, is a low-level background of petroleum-related compounds, including 28,30-bisnorhopane and 18??+??(H)-oleanane, which are characteristic of many crude oils from the Monterey Formation of California. Thus, the sediments are overprinted by a regional chemical signature which may be derived from eroded Monterey Formation rocks and from onshore and offshore seeps releasing petroleum from Monterey Formation source rocks. ?? 2002 Elsevier Science B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damuth, J.E.; Flood, R.D.; Kowsmann, R.O.
1988-08-01
Imaging of the Amazon deep-sea fan with long-range side-scan sonar (GLORIA) has, for the first time, revealed the anatomy, trends, and growth pattern of distributary channels on this fan. Only one channel-levee system was active at any given time and extended from the Amazon Submarine Canyon downslope onto the lower fan (> 4,200 m). Formation of new channel-levee systems occurred when a currently active channel-levee system was cut off and abandoned through avulsion, and a new channel-levee system was established nearby. Through time, successive channel-levee formation and abandonment built two broad levee complexes consisting of groups of overlapping, coalescing segmentsmore » of channel-levee systems across the present fan surface. These, plus older, now buried levee complexes, indicate that fan growth is radially outward and downslope through development of successive levee complexes. The most striking characteristic of the distributary channels is their intricate, often recurving, meanders with sinuosities of up to 2.5. Cutoffs and abandoned meander loops indicate that the channels migrate laterally through time. Channel bifurcation results predominantly from avulsion when flows breach a channel levee, thereby abandoning the present channel and establishing a new channel-levee segment nearby. No clear evidence of channel branching (i.e., division of a single channel into two active segments) or braiding was observed. 22 figs.« less
Liang, Xing; Su, Yibing; Yang, Ying; Qin, Wenwu
2012-02-15
The PbZn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g(-1) in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6M H(2)SO(4)). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS). Copyright © 2011 Elsevier B.V. All rights reserved.
The Policy Formation Process: A Conceptual Framework for Analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Fuchs, E. F.
1972-01-01
A conceptual framework for analysis which is intended to assist both the policy analyst and the policy researcher in their empirical investigations into policy phenomena is developed. It is meant to facilitate understanding of the policy formation process by focusing attention on the basic forces shaping the main features of policy formation as a dynamic social-political-organizational process. The primary contribution of the framework lies in its capability to suggest useful ways of looking at policy formation reality. It provides the analyst and the researcher with a group of indicators which suggest where to look and what to look for when attempting to analyze and understand the mix of forces which energize, maintain, and direct the operation of strategic level policy systems. The framework also highlights interconnections, linkage, and relational patterns between and among important variables. The framework offers an integrated set of conceptual tools which facilitate understanding of and research on the complex and dynamic set of variables which interact in any major strategic level policy formation process.
Kaiyawet, Nopporn; Lonsdale, Richard; Rungrotmongkol, Thanyada; Mulholland, Adrian J; Hannongbua, Supot
2015-02-10
Thymidylate synthase (TS) is a promising cancer target, due to its crucial function in thymine synthesis. It performs the reductive methylation of 2'-deoxyuridine-5'-phosphate (dUMP) to thymidine-5'-phosphate (dTMP), using N-5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) as a cofactor. After the formation of the dUMP/mTHF/TS noncovalent complex, and subsequent conformational activation, this complex has been proposed to react via nucleophilic attack (Michael addition) by Cys146, followed by methylene-bridge formation to generate the ternary covalent intermediate. Herein, QM/MM (B3LYP-D/6-31+G(d)-CHARMM27) methods are used to model the formation of the ternary covalent intermediate. A two-dimensional potential energy surface reveals that the methylene-bridged intermediate is formed via a concerted mechanism, as indicated by a single transition state on the minimum energy pathway and the absence of a stable enolate intermediate. A range of different QM methods (B3LYP, MP2 and SCS-MP2, and different basis sets) are tested for the calculation of the activation energy barrier for the formation of the methylene-bridged intermediate. We test convergence of the QM/MM results with respect to size of the QM region. Inclusion of Arg166, which interacts with the nucleophilic thiolate, in the QM region is important for reliable results; the MM model apparently does not reproduce energies for distortion of the guanidinium side chain correctly. The spin component scaled-Møller-Plessett perturbation theory (SCS-MP2) approach was shown to be in best agreement (within 1.1 kcal/mol) while the results obtained with MP2 and B3LYP also yielded acceptable values (deviating by less than 3 kcal/mol) compared with the barrier derived from experiment. Our results indicate that using a dispersion-corrected DFT method, or a QM method with an accurate treatment of electron correlation, increases the agreement between the calculated and experimental activation energy barriers, compared with the semiempirical AM1 method. These calculations provide important insight into the reaction mechanism of TS and may be useful in the design of new TS inhibitors.
Köhler, Karen; Duchardt-Ferner, Elke; Lechner, Marcus; Damm, Katrin; Hoch, Philipp G; Salas, Margarita; Hartmann, Roland K
2015-10-01
Bacterial 6S RNAs competitively inhibit binding of RNA polymerase (RNAP) holoenzymes to DNA promoters, thereby globally regulating transcription. RNAP uses 6S RNA itself as a template to synthesize short transcripts, termed pRNAs (product RNAs). Longer pRNAs (approx. ≥ 10 nt) rearrange the 6S RNA structure and thereby disrupt the 6S RNA:RNAP complex, which enables the enzyme to resume transcription at DNA promoters. We studied 6S RNA of the hyperthermophilic bacterium Aquifex aeolicus, representing the thermodynamically most stable 6S RNA known so far. Applying structure probing and NMR, we show that the RNA adopts the canonical rod-shaped 6S RNA architecture with little structure formation in the central bulge (CB) even at moderate temperatures (≤37 °C). 6S RNA:pRNA complex formation triggers an internal structure rearrangement of 6S RNA, i.e. formation of a so-called central bulge collapse (CBC) helix. The persistence of several characteristic NMR imino proton resonances upon pRNA annealing demonstrates that defined helical segments on both sides of the CB are retained in the pRNA-bound state, thus representing a basic framework of the RNA's architecture. RNA-seq analyses revealed pRNA synthesis from 6S RNA in A. aeolicus, identifying 9 to ∼17-mers as the major length species. A. aeolicus 6S RNA can also serve as a template for in vitro pRNA synthesis by RNAP from the mesophile Bacillus subtilis. Binding of a synthetic pRNA to A. aeolicus 6S RNA blocks formation of 6S RNA:RNAP complexes. Our findings indicate that A. aeolicus 6S RNA function in its hyperthermophilic host is mechanistically identical to that of other bacterial 6S RNAs. The use of artificial pRNA variants, designed to disrupt helix P2 from the 3'-CB instead of the 5'-CB but preventing formation of the CBC helix, indicated that the mechanism of pRNA-induced RNAP release has been evolutionarily optimized for transcriptional pRNA initiation in the 5'-CB. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
WAVE2 signaling mediates invasion of polarized epithelial cells by Salmonella typhimurium.
Shi, Jing; Scita, Giorgio; Casanova, James E
2005-08-19
The bacterial pathogen Salmonella penetrates the intestinal epithelium by inducing its own phagocytosis into epithelial cells. The dramatic reorganization of the actin cytoskeleton required for internalization is driven by bacterial manipulation of host signaling pathways, including activation of the Rho family GTPase Rac1 and subsequent activation of the Arp2/3 complex. However, the mechanisms linking these two events remain poorly understood. Rac1 is thought to promote activation of the Arp2/3 complex through its interaction with suppressor of cAMP receptor/WASP family verprolin-homologous (SCAR/WAVE) family proteins, but this interaction is apparently indirect. Two different Rac1 effectors have been shown to bind WAVE2: IRSp53, the SH3 domain of which binds the WAVE2 proline-rich domain, and PIR121/Sra-1, which forms a pentameric complex containing WAVE, Abi1, Nap1, and HSPC300. However, the extent to which each of these complexes contributes to Arp2/3 complex activation in the context of Salmonella infection is unclear. Here, we show that WAVE2 is necessary for efficient invasion of epithelial cells by Salmonella typhimurium. We found that although Salmonella infection strongly promotes the formation of an IRSp53/WAVE2 complex, IRSp53 is not necessary for bacterial internalization. In contrast, disruption of the PIR121/Nap1/Abi1/WAVE2/HSPC300 complex potently inhibits bacterial uptake. These results indicate that WAVE2 is an important component in signaling pathways leading to Salmonella invasion. Although infection leads to the formation of an IRSp53/WAVE2 complex, it is the association of WAVE2 with the Abi1/Nap1/PIR121/HSPC300 complex that regulates bacterial internalization.
NASA Astrophysics Data System (ADS)
Maboko, M. A. H.
1997-02-01
Solid-solution equilibria for gamet-clinopyroxene pairs in the early Pan-African Wami River granulite complex of central coastal Tanzania indicate metamorphic recrystallization at a temperature of about 700°C and a pressure of 8-9 kb, corresponding to metamorphism at a depth of 30-40 km. This suggests that granulite formation was preceded by an anomalous regional crustal thickening, similar to the crustal doubling that accompanies Phanerozoic continent-continent collisions of the Himalaya type. The analogy prompts the interpretation of the Wami River granulite complex, and possibly the rest of the granulite complexes in the Mozambique Belt, as slices of the underthrusted plate, which were accreted to the present day African plate following a continent-continent collision during early Pan-African time.
Composition and chemistry of Titan's thermosphere and ionosphere.
Vuitton, V; Yelle, R V; Lavvas, P
2009-02-28
Titan has long been known to harbour the richest atmospheric chemistry in the Solar System. Until recently, it had been believed that complex hydrocarbons and nitriles were produced through neutral chemistry that would eventually lead to the formation of micrometre sized organic aerosols. However, recent measurements by the Cassini spacecraft are drastically changing our understanding of Titan's chemistry. The Ion and Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) revealed an extraordinary complex ionospheric composition. INMS detected roughly 50 positive ions with m/z<100 and a density higher than 0.1cm-3. CAPS provided evidence for heavy (up to 350amu) positively and negatively charged (up to 4000amu) ions. These observations all indicate that Titan's ionospheric chemistry is incredibly complex and that molecular growth starts in the upper atmosphere rather than at lower altitude. Here, we review the recent progress made on ionospheric chemistry. The presence of heavy neutrals in the upper atmosphere has been inferred as a direct consequence of the presence of complex positive ions. Benzene (C6H6) is created by ion chemistry at high altitudes and its main photolysis product, the phenyl radical (C6H5), is at the origin of the formation of aromatic species at lower altitude.
Yang, Xing; Yang, Fan; Wu, Rui-Zhi; Yan, Chao-Xian; Zhou, Da-Gang; Zhou, Pan-Pan; Yao, Xiaojun
2017-09-01
Carbon monoxide can interact with two dihalogen molecules XY (X, Y=Cl, Br) in the form of X(Y)⋯COX(Y)⋯CO⋯X(Y)X(Y) trimeric complex, and their nature and characteristics were investigated at MP2/aug-cc-pVDZ level without and with counterpoise method, together with single point calculations at CCSD(T)/aug-cc-pVDZ level. The optimized geometries, stretching modes and interaction energies of a series of X(Y)⋯COX(Y)⋯CO⋯X(Y)X(Y) trimeric complexes were obtained and discussed. The cooperativity in these complexes was evaluated. EDA analyses reveal that the electrostatic interaction is the dominant net driving force in each trimer, but the contributions of other interactions like exchange, dispersion and polarization interactions are also important. QTAIM and NCI analyses confirm the existence of attractive halogen-bonding interactions. Additionally, EDDMF analysis was employed for the component dimers of these trimers, which indicates that the formation of halogen-bonding interactions is closely related to the charge shift and the rearrangement of electronic density in the formation of these complexes. The results would provide valuable insight into for these linear halogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.
Fact or artifact: the representativeness of ESI-MS for complex natural organic mixtures.
Novotny, Nicole R; Capley, Erin N; Stenson, Alexandra C
2014-04-01
Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI-MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed-multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI-MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over-interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non-covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision-induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.
Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V
2003-04-01
Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.
Zinc oxide nanoflowers make new blood vessels
NASA Astrophysics Data System (ADS)
Barui, Ayan Kumar; Veeriah, Vimal; Mukherjee, Sudip; Manna, Joydeb; Patel, Ajay Kumar; Patra, Sujata; Pal, Krishnendu; Murali, Shruthi; Rana, Rohit K.; Chatterjee, Suvro; Patra, Chitta Ranjan
2012-11-01
It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role.It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role. Electronic supplementary information (ESI) available: See DOI: 10.1039/c2nr32369a
Drellack, S.L.; Wells, J.G.
1982-01-01
The H-9 complex, a group of three closely spaced boreholes, is located 5.5 miles south of the proposed Waste Isolation Pilot Plant (WIPP) site in east-central Eddy County, New Mexico. The holes were drilled during July, August, and September 1979 to obtain geologic and hydrologic data to better define the regional ground-water-flow system. The geologic data presented in this report are part of a site-characterization study for the possible storage of defense-associated radioactive wastes within salt beds of the Salado Formation of Permian age. The geologic data include detailed descriptions of cores, cuttings, and geophysical logs. Each borehole was designed to penetrate a distinct water-bearing zone: H-9a (total depth 559 feet) was completed just below the Magenta Dolomite Member of the Rustler Formation; H-9b (total depth 708 feet) was completed just below the Culebra Dolomite Member of the Rustler Formation; H-9c (total depth 816 feet) was completed below the Rustler Formation-Salado Formation contact. The geologic units penetrated in borehole H-9c are eolian sand of Holocene age (0-5 feet); the Gatuna Formation of Pleistocene age; (5-25 feet); and the Dewey Lake Red Beds (25-455 feet), the Rustler Formation (455.791 feet), and part of the Salado Formation (791-816 feet), all of Permian age. Three sections (494-501 feet, 615-625 feet, 692-712 feet) in the Rustler Formation penetrated by borehole H-9c are composed of remnant anhydrite (locally altered to gypsum) and clay and silt residue from the dissolution of much thicker seams of argillaceous and silty halite. This indicates that the eastward-moving dissolution within the Rustler Formation, found just to the west of the WIPP site, is present at the H-9 site. (USGS)
Sisson, V.B.; Ave Lallemant, H.G.; Ostos, M.; Blythe, A.E.; Snee, L.W.; Copeland, Peter; Wright, J.E.; Donelick, R.A.; Guth, L.R.
2005-01-01
The margin of northern Venezuela is a complex zone representing the orogenic events from basement formation to subsequent subduction and exhumation during transpressional collision. This boundary zone has six east-west-trending belts that each record a different segment of its development. This geologic complexity requires radiometric ages to unravel, and we herein provide 48 new ages including U-Pb (4), Rb-Sr (2), 40Ar/39Ar (24), zircon and apatite fission-track (17), and 14C (1) ages to constrain the evolution of three of these belts. These three belts are the Cordillera de la Costa, Caucagua-El Tinaco, and Serran??a del Interior belts. In the Cordillera de la Costa belt, U-Pb geochronologic data indicate portions of the basement igneous and metaigneous rocks formed in the Cambro-Ordovician (513-471 Ma). New 40Ar/39Ar data from Margarita Island indicate that some of the subduction complex was rapidly cooled and exhumed, whereas other portions indicate slower cooling. This contrasts with new 40Ar/39Ar data from the Puerto Cabello. ?? 2005 Geological Society of America.
Audiovisual Presentations on a Handheld PC are Preferred As an Educational Tool by NICU Parents.
Alur, P; Cirelli, J; Goodstein, M; Bell, T; Liss, J
2010-01-01
Health literacy is critical for understanding complex medical problems and necessary for the well being of the patient. Printed educational materials (PM) have limitations in explaining the dynamics of a disease process. Multimedia formats may be useful for enhancing the educational process. To evaluate whether a printed format or animation with commentary on a handheld personal computer (PC) is preferred as an educational tool by parents of a baby in the NICU. PARENTS EVALUATED TWO FORMATS: A 1-page illustrated document from the American Heart Association explaining patent ductus arteriosus (PDA) and animation with commentary on a handheld PC that explained the physiology of PDA in 1 minute. The reading grade level of the PM was 8.6 versus 18.6 for the audio portion of the animated presentation. Parents viewed each format and completed a four-item questionnaire. Parents rated both formats and indicated their preference as printed, animation, or both. Forty-six parents participated in the survey. Parents preferred animation over PM (50% vs. 17.4%. p = 0.02); 39.1% expressed that the animation was excellent; whereas 4.3% expressed that the PM was excellent (p<0.001). The order of presentation of formats, sex, age, and educational level of parents did not influence the method preferred (p>0.05). Parents preferred animation on a small screen handheld PC despite a much higher language level. Because handheld PCs are portable and inexpensive, they can be used effectively at the bedside with low-cost animation to enhance understanding of complex disease conditions.
Audiovisual Presentations on a Handheld PC are Preferred As an Educational Tool by NICU Parents
Alur, P.; Cirelli, J.; Goodstein, M.; Bell, T.; Liss, J.
2010-01-01
Background Health literacy is critical for understanding complex medical problems and necessary for the well being of the patient. Printed educational materials (PM) have limitations in explaining the dynamics of a disease process. Multimedia formats may be useful for enhancing the educational process. Objective To evaluate whether a printed format or animation with commentary on a handheld personal computer (PC) is preferred as an educational tool by parents of a baby in the NICU. Methods Parents evaluated two formats: A 1-page illustrated document from the American Heart Association explaining patent ductus arteriosus (PDA) and animation with commentary on a handheld PC that explained the physiology of PDA in 1 minute. The reading grade level of the PM was 8.6 versus 18.6 for the audio portion of the animated presentation. Parents viewed each format and completed a four-item questionnaire. Parents rated both formats and indicated their preference as printed, animation, or both. Results Forty-six parents participated in the survey. Parents preferred animation over PM (50% vs. 17.4%. p = 0.02); 39.1% expressed that the animation was excellent; whereas 4.3% expressed that the PM was excellent (p<0.001). The order of presentation of formats, sex, age, and educational level of parents did not influence the method preferred (p>0.05). Conclusion Parents preferred animation on a small screen handheld PC despite a much higher language level. Because handheld PCs are portable and inexpensive, they can be used effectively at the bedside with low-cost animation to enhance understanding of complex disease conditions. PMID:23616833
Petrophysics and hydrocarbon potential of Paleozoic rocks in Kuwait
NASA Astrophysics Data System (ADS)
Abdullah, Fowzia; Shaaban, Fouad; Khalaf, Fikry; Bahaman, Fatma; Akbar, Bibi; Al-Khamiss, Awatif
2017-10-01
Well logs from nine deep exploratory and development wells in Kuwaiti oil fields have been used to study petrophysical characteristics and their effect on the reservoir quality of the subsurface Paleozoic Khuff and Unayzah formations. Petrophysical log data have been calibrated with core analysis available at some intervals. The study indicates a complex lithological facies of the Khuff Formation that is composed mainly of dolomite and anhydrite interbeds with dispersed argillaceous materials and few limestone intercalations. This facies greatly lowered the formation matrix porosity and permeability index. The porosity is fully saturated with water, which is reflected by the low resistivity logs responses, except at some intervals where few hydrocarbon shows are recorded. The impermeable anhydrites, massive (low-permeability) carbonate rock and shale at the lower part of the formation combine to form intraformational seals for the clastic reservoirs of the underlying Unayzah Formation. By contrast, the log interpretation revealed clastic lithological nature of the Unayzah Formation with cycles of conglomerate, sandstone, siltstone, mudstone and shales. The recorded argillaceous materials are mainly of disseminated habit, which control, for some extent, the matrix porosity, that ranges from 2% to 15% with water saturation ranges from 65% to 100%. Cementation, dissolution, compaction and clay mineral authigenesis are the most significant diagenetic processes affecting the reservoir quality. Calibration with the available core analysis at some intervals of the formation indicates that the siliciclastic sequence is a fluvial with more than one climatic cycle changes from humid, semi-arid to arid condition and displays the impact of both physical and chemical diagenesis. In general, the study revealed that the Unyazah Formation has a better reservoir quality than the Khuff Formation and possible gas bearing zones.
Weems, Robert E.; Lucas, Spencer G.
2015-01-01
Collections of Upper Triassic (Norian) conchostracans from the upper Cumnock and lower Sanford formations (North Carolina), Bull Run Formation (Virginia), Gettysburg Formation (Pennsylvania), Passaic Formation (New Jersey), Blomidon Formation (Nova Scotia), and Redonda Formation (New Mexico) have significantly expanded our knowledge of the Norian conchostracan faunas in these units. These collections show that the temporal and spatial distribution of Norian conchostracans in North America is more complex and more environmentally controlled than previously thought. The new collections require a revision and simplification of the published conchostracan zonation for this interval. The revised zonation, based almost entirely on evolution within the lineage of the conchostracan genus Shipingia, consists of five zones: the Shipingia weemsi-Euestheria buravasi zone (Lacian), the Shipingia mcdonaldi zone (lower Alaunian), the Shipingia hebaozhaiensis zone (upper Alaunian), the Shipingia olseni zone (lower and middle Sevatian), and the Shipingia gerbachmanni zone (upper Sevatian). A new species of Norian conchostracan, Wannerestheria kozuri, is described from the Groveton Member of the Bull Run Formation (Virginia). Two new members (Plum Run and Fairfield members) are named in the Gettysburg Formation (Gettysburg Basin, Maryland and Pennsylvania). The distribution of upper Carnian and Norian strata in the Fundy, Newark, Gettysburg, and Culpeper basins indicates that there was a significant, previously undetected tectonic reorganization within these basins that occurred around the Carnian-Norian boundary. The presence of an upper Norian-lower Rhaetian unconformity within the Newark Supergroup is reaffirmed. A re-evaluation of the conchostracan record from the Redonda Formation of the Chinle Group in New Mexico indicates that the four conchostracan-bearing lacustrine beds in this unit are part of only a single, consistently recognizable conchostracan zone, which we here designate as the Shipingia gerbachmanni zone.
Keppie, J. Duncan; Sandberg, Charles A.; Miller, B.V.; Sanchez-Zavala, J. L.; Nance, R.D.; Poole, Forrest G.
2004-01-01
Limestones in the highly deformed Tecomate Formation, uppermost unit of the Acatla??n Complex, are latest Pennsylvanian-earliest Middle Permian in age rather than Devonian, the latter based on less diagnostic fossils. Conodont collections from two marble horizons now constrain its age to range from latest Pennsylvanian to latest Early Permian or early Middle Permian. The older collection contains Gondolella sp., Neostreptognathodus sp., and Streptognathodus sp., suggesting an oldest age limit close to the Pennsylvanian-Permian time boundary. The other collection contains Sweet-ognathus subsymmetricus, a short-lived species ranging only from Kungurian (latest Leonardian) to Wordian (earliest Guadelupian: 272 ?? 4 to 264 ?? 2 Ma). A fusilinid, Parafusulina c.f. P. antimonioensis Dunbar, in a third Tecomate marble horizon is probably Wordian (early Guadelupian, early Middle Permian). Furthermore, granite pebbles in a Tecomate conglomerate have yielded ???320-264 Ma U-Pb SHRIMP ages probably derived from the ???288 Ma, arc-related Totoltepec pluton. Collectively, these data suggest a correlation with two nearby units: (1) the Missourian-Leonardian carbonate horizons separated by a Wolfcampian(?) conglomerate in the upper part of the less deformed San Salvador Patlanoaya Formation; and (2) the clastic, Westphalian-Leonardian Matzitzi Formation. This requires that deformation in the Tecomate Formation be of Early-Middle Permian age rather than Devonian. These three formations are re-interpreted as periarc deposits with deformation related to oblique subduction. The revised dating of the Tecomate Formation is consistent with new data, which indicates that the unconformity between the Tecomate and the Piaxtla Group is mid-Carboniferous and corresponds to a tectonothermal event. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.
Application of ion exchange resin in floating drug delivery system.
Upadhye, Abhijeet A; Ambike, Anshuman A; Mahadik, Kakasaheb R; Paradkar, Anant
2008-10-01
The purpose of this study was to explore the application of low-density ion exchange resin (IER) Tulsion(R) 344, for floating drug delivery system (FDDS), and study the effect of its particle size on rate of complexation, water uptake, drug release, and in situ complex formation. Batch method was used for the preparation of complexes, which were characterized by physical methods. Tablet containing resin with high degree of crosslinking showed buoyancy lag time (BLT) of 5-8 min. Decreasing the particle size of resin showed decrease in water uptake and drug release, with no significant effect on the rate of complexation and in situ complex formation for both preformed complexes (PCs) and physical mixtures (PMs). Thus, low-density and high degree of crosslinking of resin and water uptake may be the governing factor for controlling the initial release of tablet containing PMs but not in situ complex formation. However, further sustained release may be due to in situ complex formation.
NASA Astrophysics Data System (ADS)
Saha, Avijit; Mukherjee, Asok K.
2004-07-01
The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K 3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures.
Neupane, Umesh; Rai, R N
2017-11-01
The phase diagram representing solid-liquid equilibrium of entire range of composition and thermodynamic studies of two binary organic systems of 4-dimethylaminobenzaldehyde (DMAB) with two NLO active compounds, p-aminoacetanilide (PAA) and p-nitroaniline (PNA), have been studied by solid state synthetic route. Both systems are independently forming a new entity called intermolecular complex (IMC) and two eutectics on either side of intermolecular complexes. The various thermodynamic parameters such as heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions of IMCs and eutectics were calculated using the heat of fusion values. The TGA and DTA studies were performed to understand the physico-chemical, thermal behavior and unique identity of newly synthesized organic complexes, 4-(dimethylamino)benzylidene-4-acetamideaniline (DMABPAA) and 4-(dimethylamino)benzylidene-4-nitroaniline (DMABPNA), and their respective enthalpy of fusion values were found to be 30.01 and 37.26 kJ mol - 1 . The higher melting point of both the novel complexes than their parent's compounds reveal the strong molecular interaction between parent components to yield the complex. The FTIR spectral analysis predicts the disappearance of aldehyde peaks of DMAB and NH 2 peaks of PAA and PNA while the appearance of entirely new peaks than that of parent's compounds are the supportive for the formation of new molecular entities. These findings are further supported by FTNMR spectrum studies by observation of disappearance of proton peak of aldehyde of DMAB and amine peaks of PAA and PNA rather formation of new imine proton peak or peaks were observed. The appearance of new peaks in Powder XRD of complexes than those of parent components is further indicative for the formation of complexes. The absorption spectrum of DMABPAA and DMABPNA showed intra-molecular charge-transfer (ICT) excited state absorption at 258 and 241 nm, respectively. Both the IMCs, DMABPAA and DMABPNA, show strong fluorescence with quantum yield 0.66 and 0.93, respectively, in methanol solution.
Yee, Lindsay D; Craven, Jill S; Loza, Christine L; Schilling, Katherine A; Ng, Nga Lee; Canagaratna, Manjula R; Ziemann, Paul J; Flagan, Richard C; Seinfeld, John H
2012-06-21
The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.
Bacterial formate hydrogenlyase complex.
McDowall, Jennifer S; Murphy, Bonnie J; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A; Sargent, Frank
2014-09-23
Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.
Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K
2013-01-01
Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.
NASA Astrophysics Data System (ADS)
Fan, Rui-Qing; Wang, Li-Yuan; Wang, Ping; Chen, Hong; Sun, Cun-fa; Yang, Yu-Lin; Su, Qing
2012-12-01
Three metal-organic complexes Cd(HBIDC)(phen)2·4H2O (1), [Cd(BIC)(phen)]n (2) and {[Eu(HBIDC)(H2BIDC)(H2O)]·H2O}n (3) (H3BIDC=benzimidazole-5,6-dicarboxylic acid, H2BIC=benzimidazole-6-carboxylic acid, phen=1,10-phenanthroline) have been synthesized under hydro(solvo)thermal conditions and structurally characterized by elemental analysis, IR spectrum, and single-crystal X-ray diffraction. With similar reaction conditions, reactions of the same ligand with different metal cations selected from different blocks (d-block and f-block) result in different coordination modes of carboxylate groups and final frameworks of complexes 1 and 3. The decarboxylation was observed in complex 2 and resulted in the formation of BIC2- ligand. Complexes 1-3 have intense fluorescent emissions at room temperature in dimethylsulfoxide (DMSO) solution and in the solid-state, which indicate they are potential fluorescence materials. The quantum yields and fluorescence lifetimes of these three complexes were systematically studied.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Khan, Ishaat M; Ahmad, Afaq; Ullah, M F
2011-04-04
A proton-transfer (charge transfer) complex formed on the reaction between 2,6-diaminopyridine (donor) and picric acid (acceptor) was synthesized and characterized by FTIR, (1)H NMR, thermal and elemental analysis. The crystal structure determined by single-crystal X-ray diffraction indicates that cation and anion are joined together by strong N(+)-H- -O(-) type hydrogen bonds. The hydrogen-bonded charge transfer (HBCT) complex was screened for its pharmacology such as antimicrobial activity against various fungal and bacterial strains and Calf thymus DNA-binding. The results showed that HBCT complex (100μg/ml) exhibited good antibacterial antifungal activity as that of standard antibiotics Tetracycline and Nystatin. A molecular frame work through H-bonding interactions between neighboring moieties is found to be responsible for high melting point of resulting complex. This has been attributed to the formation of 1:1 HBCT complex. Copyright © 2011 Elsevier B.V. All rights reserved.
Studies of the Permian Phosphoria Formation and related rocks, Great Basin-Rocky Mountain region
Wardlaw, Bruce R.
1979-01-01
PART A: The transgression of the Permian Retort Phosphatic Shale Member of the Phosphoria Formation is dated by the occurrence of diagnostic brachiopods. The complex pattern of this transgression reflects the paleogeography and indicates two initial basins of deposition: one in southwestern Montana and one in southeastern Idaho. PART B: A new formation is proposed for middle Permian rocks of a transitional facies positioned laterally between the Rex Chert Member of the Phosphoria Formation in northeastern Utah and southeastern Idaho and the Plympton Formation in northeastern Nevada and northwestern Utah. PART C: The relationships of the Permian Park City Group to the Phosphoria and Park City Formations are clarified by the stratigraphy of four sections in northwestern Utah, northeastern Nevada, and southern Idaho. PART D: Five biostratigraphic zones based on the distribution of brachiopods and conodonts are proposed for the Park City Group. They are: the Peniculauris ivesi-Neostreptognathodus prayi Zone, the Peniculauris bassi-Neostreptognathodus sulcoplicatus Zone, the Peniculauris bassi-Neostreptognathodus sp. C Zone, the Thamnosia depressa Zone, and the Yakovlevia. multistriata-Neogondolella bitteri Zone. They range in age from Leonardian to Wordian.
Barik, Atanu; Mishra, Beena; Kunwar, Amit; Kadam, Ramakant M; Shen, Liang; Dutta, Sabari; Padhye, Subhash; Satpati, Ashis K; Zhang, Hong-Yu; Indira Priyadarsini, K
2007-04-01
Two stoichiometrically different copper(II) complexes of curcumin (stoichiometry, 1:1 and 1:2 for copper:curcumin), were examined for their superoxide dismutase (SOD) activity, free radical-scavenging ability and antioxidant potential. Both the complexes are soluble in lipids and DMSO. The formation constants of the complexes were determined by voltammetry. EPR spectra of the complexes in DMSO at 77K showed that the 1:2 Cu(II)-curcumin complex is square planar and the 1:1 Cu(II)-curcumin complex is distorted orthorhombic. Cu(II)-curcumin complex (1:1) with larger distortion from square planar structure shows higher SOD activity. These complexes inhibit gamma-radiation induced lipid peroxidation in liposomes and react with DPPH acting as free radical scavengers. One-electron oxidation of the two complexes by radiolytically generated azide radicals in Tx-100 micellar solutions produced phenoxyl radicals, indicating that the phenolic moiety of curcumin in the complexes participates in free radical reactions. Depending on the structure, these two complexes possess different SOD activities, free radical neutralizing abilities and antioxidant potentials. In addition, quantum chemical calculations with density functional theory have been performed to support the experimental observations.
The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence
2014-01-01
Background The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. Findings This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. Conclusions In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle. PMID:25379053
The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence.
Uzunova, Sonya Dimitrova; Zarkov, Alexander Stefanov; Ivanova, Anna Marianova; Stoynov, Stoyno Stefanov; Nedelcheva-Veleva, Marina Nedelcheva
2014-01-01
The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.
Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E
2009-02-25
Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods.
The application of ANN for zone identification in a complex reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, A.C.; Molnar, D.; Aminian, K.
1995-12-31
Reservoir characterization plays a critical role in appraising the economic success of reservoir management and development methods. Nearly all reservoirs show some degree of heterogeneity, which invariably impacts production. As a result, the production performance of a complex reservoir cannot be realistically predicted without accurate reservoir description. Characterization of a heterogeneous reservoir is a complex problem. The difficulty stems from the fact that sufficient data to accurately predict the distribution of the formation attributes are not usually available. Generally the geophysical logs are available from a considerable number of wells in the reservoir. Therefore, a methodology for reservoir description andmore » characterization utilizing only well logs data represents a significant technical as well as economic advantage. One of the key issues in the description and characterization of heterogeneous formations is the distribution of various zones and their properties. In this study, several artificial neural networks (ANN) were successfully designed and developed for zone identification in a heterogeneous formation from geophysical well logs. Granny Creek Field in West Virginia has been selected as the study area in this paper. This field has produced oil from Big Injun Formation since the early 1900`s. The water flooding operations were initiated in the 1970`s and are currently still in progress. Well log data on a substantial number of wells in this reservoir were available and were collected. Core analysis results were also available from a few wells. The log data from 3 wells along with the various zone definitions were utilized to train the networks for zone recognition. The data from 2 other wells with previously determined zones, based on the core and log data, were then utilized to verify the developed networks predictions. The results indicated that ANN can be a useful tool for accurately identifying the zones in complex reservoirs.« less
NASA Astrophysics Data System (ADS)
Queaño, Karlo L.; Dimalanta, Carla B.; Yumul, Graciano P.; Marquez, Edanjarlo J.; Faustino-Eslava, Decibel V.; Suzuki, Shigeyuki; Ishida, Keisuke
2017-07-01
The Zambales Ophiolite Complex (ZOC) on the island of Luzon, Philippines is one of the most well-studied crust-mantle sequences in the region. Several massifs comprise the ZOC, one of which is the Coto Block overlain by clastic sedimentary units previously dated as Eocene. Geochronologic studies from diabase, granodiorites and other late-stage magmatic products similarly yielded the same age. Succeeding tectonic models have therefore all been grounded on the assumption that the entire ZOC is Eocene. Recent investigations, however, revealed the presence of chert blocks within the Early to Middle Miocene clastic formation overlying the Acoje Block in the northern part of the ophiolite complex. Radiolarians extracted from the cherts yielded a stratigraphic range that suggests a Late Jurassic to Early Cretaceous age. The recognition of a much older age than previously reported of the ZOC warrants a re-examination of its actual distribution and genesis. Correlating with other similarly-aged ophiolites, we suggest defining a western Mesozoic ophiolite belt, largely extending from the west-central portion of the archipelago to the northeastern tip of Luzon island. Tentatively, we attribute the Mesozoic ophiolitic and associated rocks in western Luzon to an arc-continent collision involving the Philippine Mobile Belt and the Palawan Microcontinental Block. In addition, differences in the clastic compositions of the Cenozoic sedimentary formations provide material not only for deciphering the ZOC's unroofing history but also for constraining the timing of province linkage. The intermittent appearance of lithic fragments and detrital minerals from the ophiolite in the units of the Middle Miocene Candelaria Limestone and the Late Miocene to Early Pliocene Sta. Cruz Formation indicates significant but geographically variable contributions from the ophiolite complex. In the northern Zambales Range, the Sta. Cruz Formation caps the Coto Block and the Acoje Block of the ZOC, providing a minimum age for their amalgamation.
NASA Astrophysics Data System (ADS)
El-Bialy, Mohammed Z.; Ali, Kamal A.; Abu El-Enen, Mahrous M.; Ahmed, Ahmed H.
2015-12-01
The Malhaq and Um Zariq formations occupy the northern part of the Neoproterozoic Kid metamorphic complex of SE Sinai, NE Arabian-Nubian Shield. This study presents new mineral chemistry data and LA-ICP-MS analyses of the trace element concentrations on zircons separated from metapelites from these formations. The detrital zircons of Um Zariq Formation are more enriched in ΣREE, whereas Malhaq Formation zircons are markedly HREE-enriched with strongly fractionated HREE patterns. The quite differences in the overall slope and size of the Eu and Ce anomalies between REE patterns of the two zircon suites provide a robust indication of different sources. The Ti-in-zircon thermometer has revealed that the zircons separated from Malhaq Formation were crystallized within the 916-1018 °C range, while those from Um Zariq Formation exhibit higher range of crystallization temperatures (1084-1154 °C). The detrital zircons of Malhaq Formation were derived mainly from mafic source rocks (basalt and dolerite), whereas Um Zariq Formation zircons have varied and more evolved parent rocks. Most of the investigated zircons from both formations are concluded to be unaltered magmatic that were lately crystallized from a high LREE/HREE melt. All the studied detrital zircon grains show typical trace elements features of crustal-derived zircons. All of the Um Zariq Formation and most of Malhaq Formation detrital zircons are geochemically discriminated as continental zircons. Both formation metapelites record similar, overlapping peak metamorphic temperatures (537-602 °C and 550-579 °C, respectively), and pressures (3.83-4.93 kbar and 3.69-4.07 kbar, respectively). The geothermal gradient, at the peak metamorphic conditions, was quite high (37-41 °C/km) corresponding to metamorphism at burial depth of 14-16 km. The peak regional metamorphism of Um Zariq and Malhaq formations is concluded to be generated during extensional regime and thinning of the lithosphere in an island arc setting with heat flow from the underlying arc granitoids.
Aranda, Esther Escribano; Matias, Tiago Araújo; Araki, Koiti; Vieira, Adriana Pires; de Mattos, Elaine Andrade; Colepicolo, Pio; Luz, Carolina Portela; Marques, Fábio Luiz Navarro; da Costa Ferreira, Ana Maria
2016-12-01
Herein, the design and syntheses of two new mononuclear oxindolimine-copper(II) (1 and 2) and corresponding heterobinuclear oxindolimine Cu(II)Pt(II) complexes (3 and 4), are described. All the isolated complexes were characterized by spectroscopic techniques (UV/Vis, IR, EPR), in addition to elemental analysis and mass spectrometry. Cyclic voltammetry (CV) measurements showed that in all cases, one-electron quasi-reversible waves were observed, and ascribed to the formation of corresponding copper(I) complexes. Additionally, waves related to oxindolimine ligand reduction was verified, and confirmed using analogous oxindolimine-Zn(II) complexes. The Pt(IV/II) reduction, and corresponding oxidation, for complexes 3 and 4 occurred at very close values to those observed for cisplatin. By complementary fluorescence studies, it was shown that glutathione (GSH) cannot reduce any of these complexes, under the experimental conditions (room temperature, phosphate buffer 50mM, pH7.4), using an excess of 20-fold [GSH]. All these complexes showed characteristic EPR spectral profile, with parameters values g ǁ >g ⊥ suggesting an axially distorted environment around the copper(II) center. Interactions with calf thymus-DNA, monitored by circular dichroism (CD), indicated different effects modulated by the ligands. Finally, the cytotoxicity of each complex was tested toward different tumor cells, in comparison to cisplatin, and low values of IC 50 in the range 0.6 to 4.0μM were obtained, after 24 or 48h incubation at 37°C. The obtained results indicate that such complexes can be promising alternative antitumor agents. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipschultz, C.A.; Gantt, E.
1981-01-01
Functional in vitro association and dissociation of a phycobiliprotein complex, isolated from phycobilisomes of the red alga Porphyridium sordidum, were studied. The complex contained large bangiophyceaen phycoerythrin and cyanophytan phycocyanin in an equimolar ratio and had absorption maxima at 625, 567, and 550 nm and a shoulder at 495 nm. Emission at 655 nm (with excitation at 545 nm) from phycocyanin indicated functional coupling. The complex was stable over a wide buffer concentration range, and, notably, it was maximally stable in low phosphate, <0.01 M, unlike the phycobilisomes, which dissociate at this concentration. Its molecular weight was estimated to bemore » ca. 510 000, and by electron microscopy it was seen to consist of two units of similar size. The complex in 0.1 M phosphate was separated on a sucrose gradient into a homogeneous phycoerythrin band and a spectrally heterogeneous phycocyanin band. In vitro association of phycoerythrin and phycocyanin resulted in a complex with the same absorbance, emission, sedimentation, and molar pigment ratio as those of the native complex. The spectrally heterogeneous phycocyanin fractions from the dissociation gradient varied in the degree of association with phycoerythrin. Phycocyanin fractions absorbing from 622 to 633 nm exhibited high associability (>70%), whereas those with maxima at 617-620 nm had low associability (<30%). The presence of a 30 000 molecular weight polypeptide accompanied high associability, where it was ca. 2-fold more prominent. It is suggested that this polypeptide is involved in complex formation and could serve either in the stabilization of the conformational state of cyanophytan phycocyanin or as a direct linker between phycobiliproteins.« less
Origin of sulfur for elemental sulfur concentration in salt dome cap rocks, Gulf Coast Basin, USA
NASA Astrophysics Data System (ADS)
Hill, J. M.; Kyle, R.; Loyd, S. J.
2017-12-01
Calcite cap rocks of the Boling and Main Pass salt domes contain large elemental sulfur accumulations. Isotopic and petrographic data indicate complex histories of cap rock paragenesis for both domes. Whereas paragenetic complexity is in part due to the open nature of these hydrodynamic systems, a comprehensive understanding of elemental sulfur sources and concentration mechanisms is lacking. Large ranges in traditional sulfur isotope compositions (δ34S) among oxidized and reduced sulfur-bearing phases has led some to infer that microbial sulfate reduction and/or influx of sulfide-rich formation waters occurred during calcite cap rock formation. Ultimately, traditional sulfur isotope analyses alone cannot distinguish among local microbial or exogenous sulfur sources. Recently, multiple sulfur isotope (32S, 33S, 34S, 36S) studies reveal small, but measurable differences in mass-dependent behavior of microbial and abiogenic processes. To distinguish between the proposed sulfur sources, multiple-sulfur-isotope analyses have been performed on native sulfur from the Boling and Main Pass cap rocks. Similarities or deviations from equilibrium relationships indicate which pathways were responsible for native sulfur precipitation. Pathway determination provides insight into Gulf Coast cap rock development and potentially highlights the conditions that led to anomalous sulfur enrichment in Boling and Main Pass Domes.
Tokunaga, Taisuke; Yatabe, Takeshi; Matsumoto, Takahiro; Ando, Tatsuya; Yoon, Ki-Seok; Ogo, Seiji
2017-01-01
We report the mechanistic investigation of catalytic H 2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.
Ott, Ingo; Koch, Thao; Shorafa, Hashem; Bai, Zhenlin; Poeckel, Daniel; Steinhilber, Dieter; Gust, Ronald
2005-06-21
Propargylhexacarbonyldicobalt complexes with fructopyranose ligands were prepared and investigated for cytotoxicity in the MCF-7 human breast cancer cell line. The antiproliferative effects depended on the presence of isopropylidene protecting groups in the carbohydrate ligand and correlated with the cellular concentration of the complexes. IC(50) values of > 20 microM demonstrated that the fructose derivatives were only moderately active compared to the references auranofin and the aspirin (ASS) derivative [2-acetoxy(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS). In continuation of our studies on the mode of action of cobalt-alkyne complexes we studied the influence of the compounds on the formation of 12-HHT (COX-1 product) and 12-HETE (12-LOX product) by human platelets as an indication of the interference in the eicosanoid metabolism, which is discussed as a target system of cytostatics. Co-ASS was an efficient COX-1 inhibitor without LOX inhibitory activity and auranofin inhibited both COX-1 and 12-LOX eicosanoid production. The missing activity of the fructopyranose complexes at the 12-LOX and the only moderate effects at COX-1 indicate that COX/LOX inhibition may be in part responsible for the pharmacological effects of auranofin and Co-ASS but not for those of the fructopyranose complexes.
Dykstra, Andrew B.; Sweeney, Matt D.; Leary, Julie A.
2013-01-01
Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions. PMID:24970196
Dykstra, Andrew B; Sweeney, Matt D; Leary, Julie A
2013-11-06
Understanding chemokine interactions with glycosaminoglycans (GAG) is critical as these interactions have been linked to a number of inflammatory medical conditions, such as arthritis and asthma. To better characterize in vivo protein function, comprehensive knowledge of multimeric species, formed by chemokines under native conditions, is necessary. Herein is the first report of a tetrameric assembly of the human chemokine CCL11, which was shown bound to the GAG Arixtra™. Isothermal titration calorimetry data indicated that CCL11 interacts with Arixtra, and ion mobility mass spectrometry (IM-MS) was used to identify ions corresponding to the CCL11 tetrameric species bound to Arixtra. Collisional cross sections (CCS) of the CCL11 tetramer-Arixtra noncovalent complex were compared to theoretical CCS values calculated using a preliminary structure of the complex deduced using X-ray crystallography. Experimental CCS values were in agreement with theoretical values, strengthening the IM-MS evidence for the formation of the noncovalent complex. Tandem mass spectrometry data of the complex indicated that the tetramer-GAG complex dissociates into a monomer and a trimer-GAG species, suggesting that two CC-like dimers are bridged by Arixtra. As development of chemokine inhibitors is of utmost importance to treatment of medical inflammatory conditions, these results provide vital insights into chemokine-GAG interactions.
Electron localization in a mixed-valence diniobium benzene complex
Gianetti, Thomas L.; Nocton, Grégory; Minasian, Stefan G.; ...
2014-11-11
Reaction of the neutral diniobium benzene complex {[Nb(BDI)N tBu] 2(μ-C 6H 6)} (BDI = N,N'-diisopropylbenzene-β-diketiminate) with Ag[B(C 6F 5) 4] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)N tBu] 2(μ-C 6H 6)}{B(C 6F 5) 4}. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L 3,2-edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment ofmore » a diniobium complex, in which one Nb atom carries a single unpaired electron that is not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the δ-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.« less
De Paula, Elgte Elmin B; De Sousa, Frederico B; Da Silva, Júlio César C; Fernandes, Flaviana R; Melo, Maria Norma; Frézard, Frédéric; Grazul, Richard M; Sinisterra, Rubén D; Machado, Flávia C
2012-12-15
Pentamidine isethionate (PNT) is an antiprotozoal active in many cases of leishmaniasis, despite the present limitations including high toxicity and parenteral administration. In the present work, a PNT encapsulation strategy into β-cyclodextrin cavity at 1:1 and 2:1 (βCD:PNT) molar ratios was used in order to improve the drug's physical and chemical properties. Combining thermodynamic and structural approaches such as isothermal titration calorimetry (ITC), electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance ((1)H NMR, and ROESY) the inclusion process and the thermodynamics parameters were identified. ITC and ESI-MS experimental data suggest the simultaneous formation of different supramolecular complexes in solution. Moreover, NMR data are in accordance with these results, suggesting a deep inclusion of PNT into the βCD cavity, through correlations observed in 2D ROESY contour maps. The systems were also characterized by FTIR, TG/DTA and SEM. These techniques indicate the formation of inclusion complex in the solid state. In vivo PNT activity was evaluated orally in mice. The inclusion complex showed a significant reduction of parasite load compared to free PNT. Copyright © 2012 Elsevier B.V. All rights reserved.
Preparation and evaluation of periodontal films based on polyelectrolyte complex formation.
Kassem, Abeer Ahmed; Ismail, Fatma Ahmed; Naggar, Viviane Fahim; Aboulmagd, Elsayed
2015-05-01
Local intra-pocket drug delivery devices can provide an effective concentration of the antimicrobial agent at the site of action with avoidance of undesirable side effects. This study explored the application of chitosan-alginate and chitosan-pectin polyelectrolyte complex (PEC) films as drug release regulators for tetracycline HCl (Tc) to treat periodontal pockets. Periodontal films with 1:1 Tc:PEC ratio were prepared using 1:1 chitosan (Ch) to sodium alginate (A) or 1:3 Ch to pectin (P). The scanning electron microscope showed acceptable film appearance and differential scanning calorimetry analysis confirmed complex formation. The in vitro release studies for both films showed a burst drug release, followed by prolonged release for 70 h. A prolonged antibacterial activity of both films against Staphylococcus aureus ATCC 6538 was observed over a period of 21 days. Aging studies indicated that the five months storage period in freezer did not significantly influence the drug release profile or the antibacterial activity of both films. Clinical evaluation showed a significant reduction in pocket depth (p < 0.0001) to their normal values (≤3 mm). PEC films could be exploited as a prolonged drug release devices for treatment of periodontal pockets.
Gomes, Marcelo Pedrosa; Juneau, Philippe
2016-11-01
We investigated the physiological responses of Lemna minor plants exposed to glyphosate. The deleterious effects of this herbicide on photosynthesis, respiration, and pigment concentrations were related to glyphosate-induced oxidative stress through hydrogen peroxide (H 2 O 2 ) accumulation. By using photosynthetic and respiratory electron transport chain (ETC) inhibitors we located the primary site of reactive oxygen species (ROS) production in plants exposed to 500 mg glyphosate l -1 . Inhibition of mitochondrial ETC Complex I by rotenone reduced H 2 O 2 concentrations in glyphosate-treated plants. Complex III activity was very sensitive to glyphosate which appears to act much like antimycin A (an inhibitor of mitochondrial ETC Complex III) by shunting electrons from semiquinone to oxygen, with resulting ROS formation. Confocal evaluations for ROS localization showed that ROS are initially produced outside of the chloroplasts upon initial glyphosate exposure. Our results indicate that in addition to interfering with the shikimate pathway, glyphosate can induce oxidative stress in plants through H 2 O 2 formation by targeting the mitochondrial ETC, which would explain its observed effects on non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu
2016-07-19
The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.
A Mussel-Derived One-Component Adhesive Coacervate
Wei, Wei; Tan, Yerpeng; Rodriguez, N. Martinez; Yu, Jing; Israelachvili, Jacob N.; Waite, J. Herbert
2013-01-01
Marine organisms process and deliver many of their underwater coatings and adhesives as complex fluids. In marine mussels, one such fluid, secreted during the formation of adhesive plaques, consists of a concentrated colloidal suspension of a mussel foot protein (mfp) known as Mfp-3S. Results of this study suggest that Mfp-3S becomes a complex fluid by a liquid-liquid phase separation from equilibrium solution at a pH and ionic strength reminiscent of conditions created by the mussel foot during plaque formation. The pH dependence of phase separation and its sensitivity indicate that inter/intra-molecular electrostatic interactions are partially responsible for driving the phase separation. Hydrophobic interactions between the nonpolar Mfp-3S proteins provide another important driving force for coacervation. As complex coacervation typically results from charge-charge interactions between polyanions and polycations, Mfp-3S is thus unique in being the only known protein that coacervates with itself. The Mfp-3S coacervate was shown to have an effective interfacial energy of ≤ 1 mJ/m2 which explains its tendency to spread over or engulf most surfaces. Of particular interest to biomedical applications is the extremely high adsorption capacity of coacervated Mfp-3S on hydroxyapatite. PMID:24060881
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianetti, Thomas L.; Nocton, Grégory; Minasian, Stefan G.
Reaction of the neutral diniobium benzene complex {[Nb(BDI)N tBu] 2(μ-C 6H 6)} (BDI = N,N'-diisopropylbenzene-β-diketiminate) with Ag[B(C 6F 5) 4] results in a single electron oxidation to produce a cationic diniobium arene complex, {[Nb(BDI)N tBu] 2(μ-C 6H 6)}{B(C 6F 5) 4}. Investigation of the solid state and solution phase structure using single-crystal X-ray diffraction, cyclic voltammetry, magnetic susceptibility, and multinuclear NMR spectroscopy indicates that the oxidation results in an asymmetric molecule with two chemically inequivalent Nb atoms. Further characterization using density functional theory (DFT) calculations, UV-visible, Nb L 3,2-edge X-ray absorption near-edge structure (XANES), and EPR spectroscopies supports assignment ofmore » a diniobium complex, in which one Nb atom carries a single unpaired electron that is not largely delocalized on the second Nb atom. During the oxidative transformation, one electron is removed from the δ-bonding HOMO, which causes a destabilization of the molecule and formation of an asymmetric product. Subsequent reactivity studies indicate that the oxidized product allows access to metal-based chemistry with substrates that did not exhibit reactivity with the starting neutral complex.« less
NASA Astrophysics Data System (ADS)
Seleem, H. S.; El-Inany, G. A.; Mousa, M.; Hanafy, F. I.
2009-11-01
The electronic absorption spectra of a hydrazone: 2-[2-(4-methylquinolin-2-yl)hydrazono]-1,2-diphenylethanone (BHQ) derived from 2-hydrazino-4-methylquinoline and 1,2-diphenylethan-1,2-dione (benzil) have been studied in various solvents of different polarities. The dependence of the band shift Δ ύ on the solvent parameters viz.D, Z, ET, DN, AN, α, β and π* was discussed. Also, the effect of pH on the free hydrazone and its Co(II), Ni(II) and Cu(II) complexes was studied spectrophotometrically in 75% (v/v) dioxane-water in order to determine the dissociation and stability constants. The stoichiometry of the formed complexes was determined by three different methods: Job's, mole ratio and slope ratio which indicate the formation of 1:2, M:L complexes for Co(II) and Cu(II) and 1:1, Ni(II):L. Beer's law is valid in the range 0.32-7.04 μg/mL depending on the type of the metal ion. The use of BHQ as an indicator via a spectrophotometric titration of Cu(II) and Ni(II) with EDTA was efficient.
Banham, Steve G.; Gupta, Sanjeev; Rubin, David M.; Watkins, Jessica A.; Sumner, Dawn Y.; Edgett, Kenneth S.; Grotzinger, John P.; Lewis, Kevin W.; Edgar, Lauren; Stack, Kathryn M.; Barnes, Robert; Bell, Jame F. III; Day, Mackenzie D.; Ewing, Ryan C.; Lapotre, Mathieu G.A.; Stein, Nathan T.; Rivera-Hernandez, Frances; Vasavada, Ashwin R.
2018-01-01
Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the northern flank of Aeolis Mons, Gale crater, the Mars Science Laboratory rover Curiosity encountered a decametre‐thick sandstone succession, named the Stimson formation, unconformably overlying lacustrine deposits of the Murray formation. The sandstone contains sand grains characterized by high roundness and sphericity, and cross‐bedding on the order of 1 m in thickness, separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops. The cross‐beds are composed of uniform thickness cross‐laminations interpreted as wind‐ripple strata. Cross‐sets are separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops that are interpreted as dune migration surfaces. Grain characteristics and presence of wind‐ripple strata indicate deposition of the Stimson formation by aeolian processes. The absence of features characteristic of damp or wet aeolian sediment accumulation indicate deposition in a dry aeolian system. Reconstruction of the palaeogeomorphology suggests that the Stimson dune field was composed largely of simple sinuous crescentic dunes with a height of ca10 m, and wavelengths of ca 150 m, with local development of complex dunes. Analysis of cross‐strata dip‐azimuths indicates that the general dune migration direction and hence net sediment transport was towards the north‐east. The juxtaposition of a dry aeolian system unconformably above the lacustrine Murray formation represents starkly contrasting palaeoenvironmental and palaeoclimatic conditions. Stratigraphic relationships indicate that this transition records a significant break in time, with the Stimson formation being deposited after the Murray formation and stratigraphically higher Mount Sharp group rocks had been buried, lithified and subsequently eroded.
What is an Oceanic Core Complex?
NASA Astrophysics Data System (ADS)
Schroeder, T.; Cheadle, M. J.
2007-12-01
The Mid-Atlantic Ridge (MAR) 75km north and south of the 15-20 Fracture Zone (FZ) has produced upper oceanic lithosphere composed dominantly of mantle peridotite with gabbro intrusions. In the absence of diapirism, mantle peridotite can only be exposed on the seafloor by extensional faulting, thus the sea floor geology and bathymetry provide widespread evidence for extensive low-angle faulting. However, only 3% of the seafloor in this region has the domal morphology characteristic of features that have been termed oceanic core complexes; suggesting that other processes, in addition to low-angle faulting, are responsible for the generation of domal core complexes. Most low-angle faults near the 15-20 FZ form gently dipping (10-15°), 10-15km-wide dip slopes on the flanks of 2000m relief bathymetric ridges that are up to 15-40km long (parallel to the MAR). Core recovered from ODP Leg 209 drill holes in these ridges is dominantly peridotite with small (<50m thick) gabbro intrusions. The peridotite is cut by a very high density of brittle faults dipping at both steep and gentle angles. Several holes also contain long-lived shear zones/faults in their upper reaches in which strain was localized at granulite facies, indicated by mylonitic olivine and cpx, and remained active during cooling to sub-greenschist grade, indicated by cross-cutting of progressively lower-grade syn-deformation mineral assemblages. These observations suggest that seafloor spreading is largely accommodated here by slip on low-angle faults, and that these faults are correctly termed detachment faults. Holes drilled into a domal oceanic core complex north of the 15-20 FZ during Leg 209 (ODP Site 1275) recovered dominantly gabbro and not mantle peridotite. This hole is cut by significantly fewer brittle and ductile faults than the peridotite drilled at the non-core-complex detachment fault sites. The detachment fault in the upper reaches (50m) of Site 1275 was localized at temperatures near feldspar's ductile-to-brittle transition, indicated by cataclasis with minor crystal plastic flow in plagioclase, and a lack of pervasive pure-ductile deformation. Amphibole-plagioclase thermometry in the fault yields equilibrium temperatures from 600-650°C, compared to equilibrium temperatures of 750-850°C for the gabbro outside the fault. The presence of talc- chlorite schists and cataclasites cutting the higher-temperature deformation textures indicate fault activity down- temperature from amphibolite through greenschist facies. This core-complex-bounding fault contrasts with the fault that bounds the Atlantis Bank Core Complex on the Southwest Indian Ridge (SWIR). There, the fault is 100m thick and strain was initially localized at granulite grade (>800°C) (Mehl & Hirth, 2007); significantly hotter than the Site 1275 fault. Therefore, the formation of core-complex morphology does not seem to depend on the initial faulting conditions. Both oceanic core complexes that have been drilled besides Site 1275, Atlantis Massif at 30°N (IODP Hole 1309D) on the MAR and Atlantis Bank on the SWIR (ODP Hole 735B), are also comprised dominantly of gabbro. This suggests that magma supply may be an essential requirement for core complex formation and raises the question whether all domal oceanic core complexes are cored by gabbro? We also ask whether the term 'oceanic core complex' should be restricted to these domal features and not applied to detachment-bound, non- domal, peridotite-cored ridges; or if these should be considered two sub-classes of oceanic core complexes.
Wall, Richard J; Roques, Magali; Katris, Nicholas J; Koreny, Ludek; Stanway, Rebecca R; Brady, Declan; Waller, Ross F; Tewari, Rita
2016-06-24
The SAS6-like (SAS6L) protein, a truncated paralogue of the ubiquitous basal body/centriole protein SAS6, has been characterised recently as a flagellum protein in trypanosomatids, but associated with the conoid in apicomplexan Toxoplasma. The conoid has been suggested to derive from flagella parts, but is thought to have been lost from some apicomplexans including the malaria-causing genus Plasmodium. Presence of SAS6L in Plasmodium, therefore, suggested a possible role in flagella assembly in male gametes, the only flagellated stage. Here, we have studied the expression and role of SAS6L throughout the Plasmodium life cycle using the rodent malaria model P. berghei. Contrary to a hypothesised role in flagella, SAS6L was absent during gamete flagellum formation. Instead, SAS6L was restricted to the apical complex in ookinetes and sporozoites, the extracellular invasive stages that develop within the mosquito vector. In these stages SAS6L forms an apical ring, as we show is also the case in Toxoplasma tachyzoites. The SAS6L ring was not apparent in blood-stage invasive merozoites, indicating that the apical complex is differentiated between the different invasive forms. Overall this study indicates that a conoid-associated apical complex protein and ring structure is persistent in Plasmodium in a stage-specific manner.
Increased depth-diameter ratios in the Medusae Fossae Formation deposits of Mars
NASA Technical Reports Server (NTRS)
Barlow, N. G.
1993-01-01
Depth to diameter ratios for fresh impact craters on Mars are commonly cited as approximately 0.2 for simple craters and 0.1 for complex craters. Recent computation of depth-diameter ratios in the Amazonis-Memnonia region of Mars indicates that craters within the Medusae Fossae Formation deposits found in this region display greater depth-diameter ratios than expected for both simple and complex craters. Photoclinometric and shadow length techniques have been used to obtain depths of craters within the Amazonis-Memnonia region. The 37 craters in the 2 to 29 km diameter range and displaying fresh impact morphologies were identified in the area of study. This region includes the Amazonian aged upper and middle members of the Medusae Fossae Formation and Noachian aged cratered and hilly units. The Medusae Fossae Formation is characterized by extensive, flat to gently undulating deposits of controversial origin. These deposits appear to vary from friable to indurated. Early analysis of crater degradation in the Medusae Fossae region suggested that simple craters excavated to greater depths than expected based on the general depth-diameter relationships derived for Mars. However, too few craters were available in the initial analysis to estimate the actual depth-diameter ratios within this region. Although the analysis is continuing, we are now beginning to see a convergence towards specific values for the depth-diameter ratio depending on geologic unit.
NASA Astrophysics Data System (ADS)
Sun, Ning-Chen; de Grijs, Richard; Subramanian, Smitha; Cioni, Maria-Rosa L.; Rubele, Stefano; Bekki, Kenji; Ivanov, Valentin D.; Piatti, Andrés E.; Ripepi, Vincenzo
2017-02-01
We study the hierarchical stellar structures in a ˜1.5 deg2 area covering the 30 Doradus-N158-N159-N160 star-forming complex with the VISTA Survey of Magellanic Clouds. Based on the young upper main-sequence stars, we find that the surface densities cover a wide range of values, from log({{Σ }}\\cdot pc2) ≲ -2.0 to log({{Σ }}\\cdot pc2) ≳ 0.0. Their distributions are highly non-uniform, showing groups that frequently have subgroups inside. The sizes of the stellar groups do not exhibit characteristic values, and range continuously from several parsecs to more than 100 pc the cumulative size distribution can be well described by a single power law, with the power-law index indicating a projected fractal dimension D2 = 1.6 ± 0.3. We suggest that the phenomena revealed here support a scenario of hierarchical star formation. Comparisons with other star-forming regions and galaxies are also discussed.
Yokoi, Hiroki; Sakamaki, Daisuke; Seki, Shu
2017-01-01
A directly connected azabuckybowl dimer was synthesized via a palladium-catalysed C–H/C–Br coupling. The electron-donating nature of the pyrrolic nitrogen atoms of the azabuckybowl enabled a strong complexation with pristine C60. In the presence of two equivalents of C60, the azabuckybowl dimer formed crystals with a 1 : 2 stoichiometry. Conversely, in diluted solution, complexes with a 1 : 1 stoichiometry of the dimer and C60 were detected predominantly, and these precipitated upon increasing the concentration of C60. Scanning electron microscopy images of the precipitate showed fibre-like aggregates, indicating the formation of supramolecular assemblies with 1D chain structures. A variable-temperature 1H NMR analysis revealed that the precipitate consists of the dimer and C60 in a 1 : 1 ratio. PMID:29629149
Beier, Andreas; Schwarz, Thomas C; Kurzbach, Dennis; Platzer, Gerald; Tribuzio, Francesca; Konrat, Robert
2018-05-05
Molecular recognition of and by intrinsically disordered proteins (IDPs) is an intriguing and still largely elusive phenomenon. Typically, protein recognition involving IDPs requires either folding upon binding or, alternatively, the formation of "fuzzy complexes." Here we show via correlation analyses of paramagnetic relaxation enhancement data unprecedented and striking alterations of the concerted fluctuations within the conformational ensemble of IDPs upon ligand binding. We study the binding of α-synuclein to calmodulin, a ubiquitous calcium-binding protein, and the binding of the extracellular matrix IDP osteopontin to heparin, a mimic of the extracellular matrix ligand hyaluronic acid. In both cases, binding leads to reduction of correlated long-range motions in these two IDPs and thus indicates a loosening of structural compaction upon binding. Most importantly, however, the simultaneous presence of correlated and anti-correlated fluctuations in IDPs suggests the prevalence of "energetic frustration" and provides an explanation for the puzzling observation of disordered allostery in IDPs. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Su, Yonghua; Qiao, Shizhang; Yang, Huagui; Yang, Chen; Jin, Yonggang; Stahr, Frances; Sheng, Jiayu; Cheng, Lina; Ling, Changquan; Qing Lu, Gao
2010-02-01
1D hierarchical composite mesostructures of titanate and silica were synthesized via an interfacial surfactant templating approach. Such mesostructures have complex core-shell architectures consisting of single-crystalline H2Ti3O7 nanobelts inside the ordered mesoporous SiO2 shell, which are nontoxic and highly biocompatible. The overall diameter of as-prepared 1D hierarchical composite mesostructures is only approx. 34.2 nm with a length over 500 nm on average. A model to explain the formation mechanism of these mesostructures has been proposed; the negatively charged surface of H2Ti3O7 nanobelts controls the formation of the octadecyltrimethylammonium bromide (C18TAB) bilayer, which in turn regulates the cooperative self-assembly of silica and C18TAB complex micelles on the interface to produce a mesoporous silica shell. More importantly, the application of synthesized mesostructured nanocables as anticancer drug reservoirs has also been explored, which indicates that the membranes containing these mesoporous nanocables have a great potential to be used as transdermal drug delivery systems.
Preparation and properties of chrome-free colored Ti/Zr based conversion coating on aluminum alloy
NASA Astrophysics Data System (ADS)
Yi, AiHua; Li, WenFang; Du, Jun; Mu, SongLin
2012-06-01
A golden conversion coating on the surface of aluminum alloy was prepared by adding tannic acid and coating-forming accelerator in the treatment solution containing titanium and zirconium ions. The growth process, main component and corrosion resistance of the conversion coating were characterized by EDS, SEM, XRD, XPS, FIIR and electrochemical workstation. The results showed that the main components of the conversion coating were Na3AlF6 and the conversion coating owns a double-layer structure. The outer layer consists of metal-organic complex and the inner layer is mainly made up of Na3AlF6. The mechanism of the formation of the golden conversion coating can be deemed as nucleation, growth of Na3AlF6 crystal and formation of metal-organic complex. In potentiodynamic polarization test, the corrosion current density decreases to 0.283 μA cm-2 from 5.894 μA cm-2, which indicates an obvious improvement of corrosion resistance.
NASA Astrophysics Data System (ADS)
Bestemianova, K. V.; Grinev, O. M.
2017-12-01
Zmeinogorsky ore district is located in the northwest part of Ore Altai megatrough, which has long-lasting history of its development and complicated geological structure. Within the ore district, which is the northwest part of the devonian Zmeinogorsk-Bystrushinsky trough, ore mineralization is associated with the system of northwest border faults and cross branch faults. There were four main stages and five phases of minerogenesis. The first stage is the stage of oregenesis beginning and quartz-chlorite-sericite wall-rock alteration rocks formation. Ore deposition and intense tectonics took place during the second stage. The third stage is the most longstanding and productive ore formation stage. There are five distinct minerogenesis phases within this stage. The fourth stage expressed in erosion development and supergene alteration of already formed ore bodies with oxidation zone formation. Main ore minerals are pyrite, chalcopyrite, sphalerite and galena. Minor minerals are tetrahedrite, bornite, tennantite and chalcocite. Precious metals minerals are acanthite, gold, electrum, gold and silver amalgams. Barren minerals are barite, quartz, calcite, gypsum. According to obtained data average isotopic composition of third stage sulphides is: pyrite -0,2‰, chalcopyrite 0‰, galena +0,5‰, sphalerite -1,2‰ for the first complex; chalcopyrite -1,9‰, galena -3,4‰, sphalerite -2,3‰, tetrahedrite -3,7‰ for the second complex; tennantite -12,8‰, bornite -8,9‰ for the third complex. Sulfur isotopic compoisiton variations indicate source inhomogeneity. Thus, there was dominant source change from mantle one in the beginning to crustal one in the end. Main oregenesis stages took place in the range of temperatures between 170 and 210°С and in the mineral-forming solutions salinity range between 3 and 10 wt % NaCl equiv.
Zickler, D; de Lares, L; Moreau, P J; Leblon, G
1985-01-01
The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. - The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.
Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji
2016-01-01
ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication compartment is not understood. We screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis, followed by screening with small interfering RNA. We identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. PREB is induced by HCV infection and recruited into the replication complex by interaction with NS4B. Recruited PREB promotes HCV RNA replication by participating in the formation of the membranous HCV replication compartment. To our knowledge, the effect of NS4B-binding protein on the formation of the membranous HCV replication compartment is newly described in this report. Our findings are expected to provide new insights into HCV host cofactors. PMID:26739056
Ikuta, Naoko; Sugiyama, Hironori; Shimosegawa, Hiroshi; Nakane, Rie; Ishida, Yoshiyuki; Uekaji, Yukiko; Nakata, Daisuke; Pallauf, Kathrin; Rimbach, Gerald; Terao, Keiji; Matsugo, Seiichi
2013-01-01
R(+)-alpha lipoic acid (RALA) is one of the cofactors for mitochondrial enzymes and, therefore, plays a central role in energy metabolism. RALA is unstable when exposed to low pH or heat, and therefore, it is difficult to use enantiopure RALA as a pharma- and nutra-ceutical. In this study, we have aimed to stabilize RALA through complex formation with cyclodextrins (CDs). α-CD, β-CD and γ-CD were used for the formation of these RALA-CD complexes. We confirmed the complex formation using differential scanning calorimetry and showed by using HPLC analysis that complexed RALA is more stable than free RALA when subjected to humidity and high temperature or acidic pH conditions. Scanning electron microscopy studies showed that the particle size and shape differed depending on the cyclodextrin used for complexation. Further, the complexes of CD and RALA showed a different particle size distribution pattern compared with that of CD itself or that of the physical mixture of RALA and CD. PMID:23434662
Trimethylaluminum and borane complexes of primary amines.
Németh, Balázs; Guégan, Jean-Paul; Veszprémi, Tamás; Guillemin, Jean-Claude
2013-01-07
Trimethylaluminum (TMA) complexes of methyl-, n-propyl-, cyclopropyl-, allyl-, and propargylamine were synthesized and their experimental properties and theoretical characteristics were compared with the respective amine-borane analogues. The amine ligand of an amine-TMA Lewis acid-base complex can be easily changed by another amine through a 2:1 amine-TMA intermediate in pentane at room temperature. The exchange of the same ligands in the case of amine-boranes requires remarkably more time in line with the calculated relative energy of the respective transition state. The (1)H and (13)C NMR experiments examining the addition of one or more equivalent of amine to the respective Lewis acid-base complex conclude in the fast exchange of the amine ligand in the NMR time scale only in the cases of amine-TMA complexes, which could also be caused by similar 2:1 complexes. However, in gas phase, only 1:1 amine-TMA complexes are present as evidenced by ultraviolet photoelectron spectroscopy (UPS). The observed UP spectra, which are the first recorded photoelectron spectra of primary amine-TMA compounds, indicate that the stabilization effect of the lone electron pair of nitrogen atom in amines during the borane complexation is stronger than that of the TMA complexation. In line with this observation, the destabilization of the σ(Al-C) orbitals is lower than that of σ(B-H) orbitals during the formation of amine-TMA and amine-borane complexes, respectively. As showed by theoretical calculations, the CH(4) elimination of the studied amine-TMA complexes is exothermic, indicating the possibility of using these compounds in metal organic chemical vapor deposition techniques (MOCVD). On the other hand, our experimental conditions avoid this methane elimination and constitutes the first procedure employing distillation to isolate primary amine-TMA complexes.
NASA Astrophysics Data System (ADS)
Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.
2015-08-01
The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.
Chemical Effect on Wellbore Instability of Nahr Umr Shale
Nie, Zhen
2013-01-01
Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable. PMID:24282391
Chemical effect on wellbore instability of Nahr Umr Shale.
Yu, Baohua; Yan, Chuanliang; Nie, Zhen
2013-01-01
Wellbore instability is one of the major problems that hamper the drilling speed in Halfaya Oilfield. Comprehensive analysis of geological and engineering data indicates that Halfaya Oilfield features fractured shale in the Nahr Umr Formation. Complex accidents such as wellbore collapse and sticking emerged frequently in this formation. Tests and theoretical analysis revealed that wellbore instability in the Halfaya Oilfield was influenced by chemical effect of fractured shale and the formation water with high ionic concentration. The influence of three types of drilling fluids on the rock mechanical properties of Nahr Umr Shale is tested, and time-dependent collapse pressure is calculated. Finally, we put forward engineering countermeasures for safety drilling in Halfaya Oilfield and point out that increasing the ionic concentration and improving the sealing capacity of the drilling fluid are the way to keep the wellbore stable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heathman, Colt R.; Grimes, Travis S.; Jansone-Popova, Santa
The novel metal ion complexant N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid (DTTA-BuA) uses an amide functionalization to increase the total ligand acidity and attain efficient 4f/5f differentiation in low pH conditions. The amide, when located on the diethylenetriamine platform containing four acetate pendant arms maintains the octadentate coordination sphere for all investigated trivalent f-elements. This compact coordination environment inhibits the protonation of LnL- complexes, as indicated by lower K 111 constants relative to the corresponding protonation site of the free ligand. For actinide ions, the enhanced stability of AnL- lowers the K 111 for americium and curium beyond the aptitude of potentiometric detection. Densitymore » functional theory computations indicate the difference in the back-donation ability of Am 3+ and Eu 3+ f-orbitals is mainly responsible for stronger proton affinity of EuL- compared to AmL-. The measured stability constants for the formation of AmL- and CmL- complexes are consistently higher, relative to ML- complexes with lanthanides of similar charge density. When compared with the conventional aminopolycarboxylate diethylenetriamine pentaacetic acid (DTPA), the modified DTTA-BuA complexant features higher ligand acidity and the important An 3+/Ln 3+ differentiation when deployed on a liquid–liquid distribution platform.« less
Zhang, Genyi; Maladen, Michelle; Campanella, Osvaldo H; Hamaker, Bruce R
2010-08-25
The self-assembly of a ternary complex, which is formed through heating and cooling of a mixture of amylose (1.0 mg/mL), whey protein isolate (50 μg/mL), and free fatty acids (FFAs, 250 μg/mL) was investigated. High-performance size-exclusion chromatography-multi-angle laser light scattering (HPSEC-MALLS) analysis showed that the complex is a water-soluble supramolecule (Mw = 6-7 × 10(6)), with a radius of gyration of 20-100 nm, indicating a nanoscale complex. Experimental results using 1-monostearyl-rac-glycerol (MSG) or cetyl alcohol that is similar to FFA in structure (except the headgroup) indicate that FFAs are the bridge between thermodynamically incompatible amylose and protein molecules and their functional carboxyl group is essential to the formation of the complex. Additionally, the effects of pH and salt treatments suggest that electrostatic interactions between negatively charged carboxyl groups of FFAs and polyionic protein are the foundation for the self-assembly of the complex. The fact that FFA is one important component in the self-assembled complex with an estimated molar ratio of 6:1:192 (amylose/protein/FFA, ∼4-5% FFA) demonstrates that it might be used as a nanocarrier for the controlled release of lipophilic functional materials to maintain their stability, bioactivity, and more importantly water solubility.
NASA Astrophysics Data System (ADS)
Zullo, Claudia Cristina
Water supply demands of a growing population in the Coastal Plain of Delaware make detailed understanding of aquifers increasingly important. Previous studies indicate that the stratigraphy of the non-marine Potomac Formation, which includes the most important confined aquifers in the area, is complex and lithologically heterogeneous, making sands difficult to correlate. This study aimed to delineate the stratigraphic architecture of these sediments with a focus on the sand bodies that provide significant volumes of groundwater to northern Delaware. This project utilized an unconventional seismic system, a land streamer system, for collecting near-surface, high-resolution seismic reflection data on unpaved and paved public roadways. To calibrate the 20 km of seismic data to lithologies, a corehole and wireline geophysical logs were obtained. Six lithofacies (paleosols, lake, frequently flooded lake/abandoned channel, splay/levee, splay channel, fluvial channel) and their respective geophysical log patterns were identified and then correlated with the seismic data to relate seismic facies to these environments. Using seismic attribute analysis, seismic facies that correspond to four of the lithofacies were identified: fluvial channel seismic facies, paleosol seismic facies, splay/levee seismic facies, and a frequently flooded lake/abandoned channel and splay/levee combined seismic facies. Correlations for eleven horizons identified in the seismic sections and cross sections show local changes in thickness and erosional relief. The analysis of seismic facies sections provides a two-dimensional basis for detailed understanding of the stratigraphy of the Potomac Formation, and suggests an anastomosing fluvial style with poorly connected winding channel sands encased in fine-grained overbank sediments that produced a complex, labyrinth-style heterogeneity. The results indicate that the 2D lateral connectivity of the sand bodies of the Potomac Formation is limited to short distances, contrary to correlations in previous studies that have indicated connection of sands at distances of at least 3 km. The results highlight the importance of integrating multiple sources of geologic information for the interpretation of the stratigraphic architecture of non-marine sediments, and the value of roadway-based land-streamer seismic data for the interpretation of near-surface (less than 300-m-depth) aquifer sand characteristics in developed areas.
Engert, Silvia; Burtscher, Ingo; Liao, W Perry; Dulev, Stanimir; Schotta, Gunnar; Lickert, Heiko
2013-08-01
Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.
Schneider, B; Sigalat, C; Amano, T; Zimmermann, J L
2000-12-19
The conformation of di- and triphosphate nucleosides in the active site of ATPsynthase (H(+)-ATPase) from thermophilic Bacillus PS3 (TF1) and their interaction with Mg(2+)/Mn(2+) cations have been investigated using EPR, ESEEM, and HYSCORE spectroscopies. For a ternary complex formed by a stoichiometric mixture of TF1, Mn(2+), and ADP, the ESEEM and HYSCORE data reveal a (31)P hyperfine interaction with Mn(2+) (|A((31)P)| approximately 5.20 MHz), significantly larger than that measured for the complex formed by Mn(2+) and ADP in solution (|A((31)P)| approximately 4.50 MHz). The Q-band EPR spectrum of the Mn.TF1.ADP complex indicates that the Mn(2+) binds in a slightly distorted environment with |D| approximately 180 x 10(-4) cm(-1) and |E| approximately 50 x 10(-4) cm(-1). The increased hyperfine coupling with (31)P in the presence of TF1 reflects the specific interaction between the central Mn(2+) and the ADP beta-phosphate, illustrating the role of the enzyme active site in positioning the phosphate chain of the substrate for efficient catalysis. Results with the ternary Mn.TF1.ATP and Mn.TF1.AMP-PNP complexes are interpreted in a similar way with two hyperfine couplings being resolved for each complex (|A((31)P(beta))| approximately 4.60 MHz and |A((31)P(gamma))| approximately 5.90 MHz with ATP, and |A((31)P(beta))| approximately 4.20 MHz and |A((31)P(gamma))| approximately 5.40 MHz with AMP-PNP). In these complexes, the increased hyperfine coupling with (31)P(gamma) compared with (31)P(beta) reflects the smaller Mn.P distance with the gamma-phosphate compared with the beta-phosphate as found in the crystal structure of the analogous enzyme from mitochondria [3.53 vs 3.70 A (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628)] and the different binding modes of the two phosphate groups. The ESEEM and HYSCORE data of a complex formed with Mn(2+), ATP, and the isolated beta subunit show that the (31)P hyperfine coupling is close to that measured in the absence of the protein, indicating a poorly structured nucleotide site in the isolated beta subunit in the presence of ATP. The inhibition data obtained for TF1 incubated in the presence of Mg(2+), ADP, Al(NO(3))(3), and NaF indicate the formation of the inhibited complex with the transition state analogue namely Mg.TF1.ADP.AlF(x) with the equilibrium dissociation constant K(D) = 350 microM and rate constant k = 0.02 min(-1). The ESEEM and HYSCORE data obtained for an inhibited TF1 sample, Mn.TF1.ADP.AlF(x), confirm the formation of the transition state analogue with distinct spectroscopic footprints that can be assigned to Mn.(19)F and Mn.(27)Al hyperfine interactions. The (31)P(beta) hyperfine coupling that is measured in the inhibited complex with the transition state analogue (|A((31)P(beta))| approximately 5.10 MHz) is intermediate between those measured in the presence of ADP and ATP and suggests an increase in the bond between Mn and the P(beta) from ADP upon formation of the transition state.
NASA Astrophysics Data System (ADS)
Barman, Biraj Kumar; Rajbanshi, Biplab; Yasmin, Ananya; Roy, Mahendra Nath
2018-05-01
The formation of the host-guest inclusion complexes of ionic liquids namely [BMIm]Cl and [HMIm]Cl with α-CD and β-CD were studied by means of physicochemical and spectroscopic methods. Conductivity and surface tension study were in good agreement with the 1H NMR and FT-IR studies which confirm the formation of the inclusion complexes. The Density and viscosity study also supported the formation of the ICs. Further the stoichiometry was determined 1:1 for each case and the association constants and thermodynamic parameters derived supported the most feasible formation of the [BMIm]Cl- β-CD inclusion complex.
Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles
Fiorucci, Sébastien; Zacharias, Martin
2010-01-01
Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756
Costa, M; Wiklendt, L; Simpson, P; Spencer, N J; Brookes, S J; Dinning, P G
2015-10-01
The neuromechanical processes involved in the formation and propulsion of fecal pellets remain incompletely understood. We analyzed motor patterns in isolated segments of the guinea-pig proximal and distal colon, using video imaging, during oral infusion of liquid, viscous material, or solid pellets. Colonic migrating motor complexes (CMMCs) in the proximal colon divided liquid or natural semisolid contents into elongated shallow boluses. At the colonic flexure these boluses were formed into shorter, pellet-shaped boluses. In the non-distended distal colon, spontaneous CMMCs produced small dilations. Both high- and low-viscosity infusions evoked a distinct motor pattern that produced pellet-shaped boluses. These were propelled at speeds proportional to their surface area. Solid pellets were propelled at a speed that increased with diameter, to a maximum that matched the diameter of natural pellets. Pellet speed was reduced by increasing resistive load. Tetrodotoxin blocked all propulsion. Hexamethonium blocked normal motor patterns, leaving irregular propagating contractions, indicating the existence of neural pathways that did not require nicotinic transmission. Colonic migrating motor complexes are responsible for the slow propulsion of the soft fecal content in the proximal colon, while the formation of pellets at the colonic flexure involves a content-dependent mechanism in combination with content-independent spontaneous CMMCs. Bolus size and consistency affects propulsion speed suggesting that propulsion is not a simple reflex but rather a more complex process involving an adaptable neuromechanical loop. © 2015 John Wiley & Sons Ltd.
Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes
Pan, Zhao-Jun; Chen, You-Yi; Du, Jian-Syun; Chen, Yun-Yu; Chung, Mei-Chu; Tsai, Wen-Chieh; Wang, Chun-Neng; Chen, Hong-Hwa
2014-01-01
The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein–protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes. PMID:24571782
Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
Inobe, Tomonao; Nukina, Nobuyuki
2016-07-01
Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Synthesis of palm-based polyurethane-LiClO{sub 4} via prepolymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sien, Jason Wong Chee; School of Biosciences, Taylor’s University, Subang Jaya; Badri, Khairiah Haji
2015-09-25
Palm-based polyurethane (pPU) with varying lithium salt (LiClO{sub 4}) content was synthesized. Higher loading percentage of LiClO{sub 4} in the pPU led to the inhibition of prepolymerization process from taking place. Hydrogen bonded C=O was detected in the FTIR spectrum indicating the hydrogen bonding between the urethane bonds. Ordered complexed C=O was observed in the FTIR spectrum confirming the complex formation between urethane bond and Li{sup +} ion. DSC thermogram showed the increase in the LiClO{sub 4} content could increase the glass transition temperature. SEM micrographs exhibited that more bubbles were formed when the LiClO{sub 4} increased from 10 tomore » 30wt% indicating the reaction between free isocyanate groups with moisture presence in the salt due to the hygroscopic properties of LiClO{sub 4}.« less
Lu, Xiaowei; Berge, Nicole D
2014-08-01
As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Multi-wavelength Study of Star Formation Activity in the S235 Complex
NASA Astrophysics Data System (ADS)
Dewangan, L. K.; Ojha, D. K.; Luna, A.; Anandarao, B. G.; Ninan, J. P.; Mallick, K. K.; Mayya, Y. D.
2016-03-01
We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having AV > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated 12CO and 13CO intensity maps and by Bolocam 1.1 mm continuum emission. The position-velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H II region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH3 data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.
Párniczky, Andrea; Hegyi, Eszter; Tóth, Anna Zsófia; Szücs, Ákos; Szentesi, Andrea; Vincze, Áron; Izbéki, Ferenc; Németh, Balázs Csaba; Hegyi, Péter; Sahin-Tóth, Miklós
2016-12-20
Human chymotrypsin-like elastases 3A and 3B (CELA3A and CELA3B) are the products of gene duplication and share 92% identity in their primary structure. CELA3B forms stable complexes with procarboxypeptidases A1 and A2 whereas CELA3A binds poorly due to the evolutionary substitution of Ala241 with Gly in exon 7. Since position 241 is polymorphic both in CELA3A (p.G241A) and CELA3B (p.A241G), genetic analysis can directly assess whether individual variability in complex formation might alter risk for chronic pancreatitis. Here we sequenced exon 7 of CELA3A and CELA3B in a cohort of 225 subjects with chronic pancreatitis (120 alcoholic and 105 non-alcoholic) and 300 controls of Hungarian origin. Allele frequencies were 2.5% for CELA3A p.G241A and 1.5% for CELA3B p.A241G in controls, and no significant difference was observed in patients. Additionally, we identified six synonymous variants, two missense variants, a gene conversion event and ten variants in the flanking intronic regions. Variant c.643-7G>T in CELA3B showed an association with alcoholic chronic pancreatitis with a small protective effect (OR = 0.59, 95% CI = 0.39-0.89, p = 0.01). Functional analysis of missense variants revealed no major defects in secretion or activity. We conclude that variants affecting amino-acid position 241 in CELA3A and CELA3B are not associated with chronic pancreatitis, indicating that changes in complex formation between proelastases and procarboxypeptidases do not alter pancreatitis risk.
Maurer, Jürgen; Haselbach, Stephanie; Klein, Oliver; Baykut, Doan; Vogel, Vitali; Mäntele, Werner
2011-02-02
Heparin, a linear glycosaminoglycan, is used in different forms in anticoagulation treatment. Protamine, a highly positive charged peptide containing about 32 amino acids, acts as an antagonist for heparin to restore normal blood coagulation. The complex formation of protamine with heparin was analyzed by a combination of analytical ultracentrifugation and light scattering. Titration of heparin with protamine in blood plasma preparations results in a drastic increase of turbidity, indicating the formation of nanoscale particles. A similar increase of turbidity was observed in physiological saline solution with or without human serum albumin (HSA). Particle size analysis by analytical ultracentrifugation revealed a particle radius of approximately 30 nm for unfractionated heparin and of approximately 60 nm for low molecular weight heparin upon complexation with excess protamine, in agreement with atomic force microscopy data. In the absence of HSA, larger and more heterogeneous particles were observed. The particles obtained were found to be stable for hours. The particle formation kinetics was analyzed by light scattering at different scattering angles and was found to be complete within several minutes. The time course of particle formation suggests a condensation reaction, with sigmoidal traces for low heparin concentrations and quasi-first-order reaction for high heparin concentrations. Under all conditions, the final scattering intensity reached after several minutes was found to be proportional to the amount of heparin in the blood plasma or buffer solution, provided that excess protamine was available and no multiple scattering occurred. On the basis of a direct relation between particle concentration and the heparin concentration present before protaminization, a light scattering assay was developed which permits the quantitative analysis of the heparin concentration in blood plasma and which could complement or even replace the activated clotting time test, which is currently the most commonly used method for blood coagulation management.
Neary, Michelle C; Parkin, Gerard
2015-03-01
The cyclopentadienyl molybdenum hydride compounds, Cp R Mo(PMe 3 ) 3- x (CO) x H (Cp R = Cp, Cp*; x = 0, 1, 2 or 3), are catalysts for the dehydrogenation of formic acid, with the most active catalysts having the composition Cp R Mo(PMe 3 ) 2 (CO)H. The mechanism of the catalytic cycle is proposed to involve (i) protonation of the molybdenum hydride complex, (ii) elimination of H 2 and coordination of formate, and (iii) decarboxylation of the formate ligand to regenerate the hydride species. NMR spectroscopy indicates that the nature of the resting state depends on the composition of the catalyst. For example, (i) the resting states for the CpMo(CO) 3 H and CpMo(PMe 3 )(CO) 2 H systems are the hydride complexes themselves, (ii) the resting state for the CpMo(PMe 3 ) 3 H system is the protonated species [CpMo(PMe 3 ) 3 H 2 ] + , and (iii) the resting state for the CpMo(PMe 3 ) 2 (CO)H system is the formate complex, CpMo(PMe 3 ) 2 (CO)(κ 1 -O 2 CH), in the presence of a high concentration of formic acid, but CpMo(PMe 3 ) 2 (CO)H when the concentration of acid is low. While CO 2 and H 2 are the principal products of the catalytic reaction induced by Cp R Mo(PMe 3 ) 3- x (CO) x H, methanol and methyl formate are also observed. The generation of methanol is a consequence of disproportionation of formic acid, while methyl formate is a product of subsequent esterification. The disproportionation of formic acid is a manifestation of a transfer hydrogenation reaction, which may also be applied to the reduction of aldehydes and ketones. Thus, CpMo(CO) 3 H also catalyzes the reduction of a variety of ketones and aldehydes to alcohols by formic acid, via a mechanism that involves ionic hydrogenation.
NASA Astrophysics Data System (ADS)
Bowden, Bryan; Fraser, Geoff; Davidson, Garry J.; Meffre, Sebastien; Skirrow, Roger; Bull, Stuart; Thompson, Jay
2017-08-01
The Mesoproterozoic Prominent Hill iron-oxide copper-gold deposit lies on the fault-bound southern edge of the Mt Woods Domain, Gawler Craton, South Australia. Chalcocite-bornite-chalcopyrite ores occur in a hematitic breccia complex that has similarities to the Olympic Dam deposit, but were emplaced in a shallow water clastic-carbonate package overlying a thick andesite-dacite pile. The sequence has been overturned against the major, steep, east-west, Hangingwall Fault, beyond which lies the clastic to potentially evaporitic Blue Duck Metasediments. Immediately north of the deposit, these metasediments have been intruded by dacite porphyry and granitoid and metasomatised to form magnetite-calc-silicate skarn ± pyrite-chalcopyrite. The hematitic breccia complex is strongly sericitised and silicified, has a large sericite ± chlorite halo, and was intruded by dykes during and after sericitisation. This paper evaluates the age of sericite formation in the mineralised breccias and provides constraints on the timing of granitoid intrusion and skarn formation in the terrain adjoining the mineralisation. The breccia complex contains fragments of granitoid and porphyry that are found here to be part of the Gawler Range Volcanics/Hiltaba Suite magmatic event at 1600-1570 Ma. This indicates that some breccia formation post-dated granitoid intrusion. Monazite and apatite in Fe-P-REE-albite metasomatised granitoid, paragenetically linked with magnetite skarn formation north of the Hangingwall Fault, grew soon after granitoid intrusion, although the apatite experienced U-Pb-LREE loss during later fluid-mineral interaction; this accounts for its calculated age of 1544 ± 39 Ma. To the south of the fault, within the breccia, 40Ar-39Ar ages yield a minimum age of sericitisation (+Cu+Fe+REE) of dykes and volcanics of ˜1575 Ma, firmly placing Prominent Hill ore formation as part of the Gawler Range Volcanics/Hiltaba Suite magmatic event within the Olympic Cu-Au province of the Gawler Craton.
How salt lakes affect atmospheric new particle formation: A case study in Western Australia.
Kamilli, K A; Ofner, J; Krause, T; Sattler, T; Schmitt-Kopplin, P; Eitenberger, E; Friedbacher, G; Lendl, B; Lohninger, H; Schöler, H F; Held, A
2016-12-15
New particle formation was studied above salt lakes in-situ using a mobile aerosol chamber set up above the salt crust and organic-enriched layers of seven different salt lakes in Western Australia. This unique setup made it possible to explore the influence of salt lake emissions on atmospheric new particle formation, and to identify interactions of aqueous-phase and gas-phase chemistry. New particle formation was typically observed at enhanced air temperatures and enhanced solar irradiance. Volatile organic compounds were released from the salt lake surfaces, probably from a soil layer enriched in organic compounds from decomposed leaf litter, and accumulated in the chamber air. After oxidation of these organic precursor gases, the reaction products contributed to new particle formation with observed growth rates from 2.7 to 25.4nmh -1 . The presence of ferrous and ferric iron and a drop of pH values in the salt lake water just before new particle formation events indicated that organic compounds were also oxidized in the aqueous phase, affecting the new particle formation process in the atmosphere. The contribution of aqueous-phase chemistry to new particle formation is assumed, as a mixture of hundreds of oxidized organic compounds was characterized with several analytical techniques. This chemically diverse composition of the organic aerosol fraction contained sulfur- and nitrogen-containing organic compounds, and halogenated organic compounds. Coarse mode particles were analyzed using electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Ultra-high resolution mass spectrometry was applied to analyze filter samples. A targeted mass spectral analysis revealed the formation of organosulfates from monoterpene precursors and two known tracers for secondary organic aerosol formation from atmospheric oxidation of 1,8-cineole, which indicates that a complex interplay of aqueous-phase and gas-phase oxidation of monoterpenes contributes to new particle formation in the investigated salt lake environment. Copyright © 2016. Published by Elsevier B.V.
Sherman, D A; Pasion, S G; Forsburg, S L
1998-07-01
The members of the MCM protein family are essential eukaryotic DNA replication factors that form a six-member protein complex. In this study, we use antibodies to four MCM proteins to investigate the structure of and requirements for the formation of fission yeast MCM complexes in vivo, with particular regard to Cdc19p (MCM2). Gel filtration analysis shows that the MCM protein complexes are unstable and can be broken down to subcomplexes. Using coimmunoprecipitation, we find that Mis5p (MCM6) and Cdc21p (MCM4) are tightly associated with one another in a core complex with which Cdc19p loosely associates. Assembly of Cdc19p with the core depends upon Cdc21p. Interestingly, there is no obvious change in Cdc19p-containing MCM complexes through the cell cycle. Using a panel of Cdc19p mutants, we find that multiple domains of Cdc19p are required for MCM binding. These studies indicate that MCM complexes in fission yeast have distinct substructures, which may be relevant for function.
Sherman, Daniel A.; Pasion, Sally G.; Forsburg, Susan L.
1998-01-01
The members of the MCM protein family are essential eukaryotic DNA replication factors that form a six-member protein complex. In this study, we use antibodies to four MCM proteins to investigate the structure of and requirements for the formation of fission yeast MCM complexes in vivo, with particular regard to Cdc19p (MCM2). Gel filtration analysis shows that the MCM protein complexes are unstable and can be broken down to subcomplexes. Using coimmunoprecipitation, we find that Mis5p (MCM6) and Cdc21p (MCM4) are tightly associated with one another in a core complex with which Cdc19p loosely associates. Assembly of Cdc19p with the core depends upon Cdc21p. Interestingly, there is no obvious change in Cdc19p-containing MCM complexes through the cell cycle. Using a panel of Cdc19p mutants, we find that multiple domains of Cdc19p are required for MCM binding. These studies indicate that MCM complexes in fission yeast have distinct substructures, which may be relevant for function. PMID:9658174
Complexes between methyltestosterone and β-cyclodextrin for application in aquaculture production.
Carvalho, Lucas Bragança de; Burusco, Kepa Koldo; Jaime, Carlos; Venâncio, Tiago; Carvalho, Aline Ferreira Souza de; Murgas, Luis David Solis; Pinto, Luciana de Matos Alves
2018-01-01
The inclusion complexes between 17-α-methyltestosterone (MT) and β-cyclodextrin (bCD) were prepared and characterized in dissolution and solid phase. The complex promoted a sixfold increment in solubility of the hormone. It has a limited solubility and stoichiometry of 2:1 (bCD:MT) determined by DSC, NMR and solubility experiments, the association constant Ka=2846Lmol -1 and complex fraction of 76% (assessed by DOSY-NMR, in (1:3) DMSO/D 2 O). The association constant obtained in water by the solubility isotherms is 7540Lmol -1 . 2D-ROESY experiments indicate the intermolecular orientation (complete inclusion of the hormone in the cavity). Simulations by molecular dynamics agreed with the formation of the inclusion complex 2:1. Release tests showed the slower release for the complexes, with 50% for lyophilization and 56% for malaxation. These results clearly demonstrate the complexation of MT in bCD, which formulations are promising for further applications involving this steroid in aquaculture, both for sexual reversal and in technologies of hormone in water sequestration. Copyright © 2017 Elsevier Ltd. All rights reserved.
A model of the complex between human {beta}-microseminoprotein and CRISP-3 based on NMR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasriani, Houman; Fernlund, Per; Udby, Lene
2009-01-09
{beta}-Microseminoprotein (MSP), a 10 kDa seminal plasma protein, forms a tight complex with cysteine-rich secretory protein 3 (CRISP-3) from granulocytes. The 3D structure of human MSP has been determined but there is as yet no 3D structure for CRISP-3. We have now studied the complex between human MSP and CRISP-3 with multidimensional NMR. {sup 15}N-HSQC spectra show substantial differences between free and complexed hMSP. Using several 3D-NMR spectra of triply labeled hMSP in complex with a recombinant N-terminal domain of CRISP-3, most of the backbone of hMSP could be assigned. The data show that only one side of hMSP, comprisingmore » {beta}-strands 1, 4, 5, and 8 are affected by the complex formation, indicating that {beta}-strands 1 and 8 form the main binding surface. Based on this we present a tentative structure for the hMSP-CRISP-3 complex using the known crystal structure of triflin as a model of CRISP-3.« less
Keyamura, Kenji; Fujikawa, Norie; Ishida, Takuma; Ozaki, Shogo; Su’etsugu, Masayuki; Fujimitsu, Kazuyuki; Kagawa, Wataru; Yokoyama, Shigeyuki; Kurumizaka, Hitoshi; Katayama, Tsutomu
2007-01-01
Escherichia coli DiaA is a DnaA-binding protein that is required for the timely initiation of chromosomal replication during the cell cycle. In this study, we determined the crystal structure of DiaA at 1.8 Å resolution. DiaA forms a homotetramer consisting of a symmetrical pair of homodimers. Mutational analysis revealed that the DnaA-binding activity and formation of homotetramers are required for the stimulation of initiation by DiaA. DiaA tetramers can bind multiple DnaA molecules simultaneously. DiaA stimulated the assembly of multiple DnaA molecules on oriC, conformational changes in ATP–DnaA-specific initiation complexes, and unwinding of oriC duplex DNA. The mutant DiaA proteins are defective in these stimulations. DiaA associated also with ADP–DnaA, and stimulated the assembly of inactive ADP–DnaA–oriC complexes. Specific residues in the putative phosphosugar-binding motif of DiaA were required for the stimulation of initiation and formation of ATP–DnaA-specific–oriC complexes. Our data indicate that DiaA regulates initiation by a novel mechanism, in which DiaA tetramers most likely bind to multiple DnaA molecules and stimulate the assembly of specific ATP–DnaA–oriC complexes. These results suggest an essential role for DiaA in the promotion of replication initiation in a cell cycle coordinated manner. PMID:17699754
Bräsen, Christopher; Hensel, Reinhard; Lupas, Andrei N.; Brinkmann, Henner; Siebers, Bettina
2013-01-01
The role of the disaccharide trehalose, its biosynthesis pathways and their regulation in Archaea are still ambiguous. In Thermoproteus tenax a fused trehalose-6-phosphate synthase/phosphatase (TPSP), consisting of an N-terminal trehalose-6-phosphate synthase (TPS) and a C-terminal trehalose-6-phosphate phosphatase (TPP) domain, was identified. The tpsp gene is organized in an operon with a putative glycosyltransferase (GT) and a putative mechanosensitive channel (MSC). The T. tenax TPSP exhibits high phosphatase activity, but requires activation by the co-expressed GT for bifunctional synthase-phosphatase activity. The GT mediated activation of TPS activity relies on the fusion of both, TPS and TPP domain, in the TPSP enzyme. Activation is mediated by complex-formation in vivo as indicated by yeast two-hybrid and crude extract analysis. In combination with first evidence for MSC activity the results suggest a sophisticated stress response involving TPSP, GT and MSC in T. tenax and probably in other Thermoproteales species. The monophyletic prokaryotic TPSP proteins likely originated via a single fusion event in the Bacteroidetes with subsequent horizontal gene transfers to other Bacteria and Archaea. Furthermore, evidence for the origin of eukaryotic TPSP fusions via HGT from prokaryotes and therefore a monophyletic origin of eukaryotic and prokaryotic fused TPSPs is presented. This is the first report of a prokaryotic, archaeal trehalose synthase complex exhibiting a much more simple composition than the eukaryotic complex described in yeast. Thus, complex formation and a complex-associated regulatory potential might represent a more general feature of trehalose synthesizing proteins. PMID:23626675
Nicotianamine forms complexes with Zn(II) in vivo.
Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan
2010-01-01
The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.
NASA Astrophysics Data System (ADS)
Our studies of reactions of metal carbonyl cations and anions have shown that metal carbonyl cations can catalyze CO exchange reactions on metal carbonyl anions. This result provides further evidence for a mechanism involving attack of the metal carbonyl anion on a carbon of the metal carbonyl cation in CO(exp 2+) transfer reactions. Reaction of metal carbonyl anions with metal carbonyl halides is a common approach to formation of metal-metal bonds. We have begun to use kinetic data and product analysis to understand the formation of homobimetallic versus heterobimetallic products in such reactions. Initial data indicate a nucleophilic attack, possibly through a ring-slippage mechanism.
NASA Astrophysics Data System (ADS)
Rafsanjani, Ahmad; Bertoldi, Katia
2017-02-01
We investigate the mechanical response of thin sheets perforated with a square array of mutually orthogonal cuts, which leaves a network of squares connected by small ligaments. Our combined analytical, experimental and numerical results indicate that under uniaxial tension the ligaments buckle out of plane, inducing the formation of 3D patterns whose morphology is controlled by the load direction. We also find that by largely stretching the buckled perforated sheets, plastic strains develop in the ligaments. This gives rise to the formation of kirigami sheets comprising periodic distribution of cuts and permanent folds. As such, the proposed buckling-induced pop-up strategy points to a simple route for manufacturing complex morphable structures out of flat perforated sheets.
Plundrich, Gudrun T; Wadepohl, Hubert; Clot, Eric; Gade, Lutz H
2016-06-27
The cyclometalated monobenzyl complexes [(Cbzdiphos(R) -CH)ZrBnX] 1 (iPr) Cl and 1 (Ph) I reacted with dihydrogen (10 bar) to yield the η(6) -toluene complexes [(Cbzdiphos(R) )Zr(η(6) -tol)X] 2 (iPr) Cl and 2 (Ph) I (cbzdiphos=1,8-bis(phosphino)-3,6-di-tert-butyl-9H-carbazole). The arene complexes were also found to be directly accessible from the triiodide [(Cbzdiphos(Ph) )ZrI3 ] through an in situ reaction with a dibenzylmagnesium reagent and subsequent hydrogenolysis, as exemplified for the η(6) -mesitylene complex [(Cbzdiphos(Ph) )Zr(η(6) -mes)I] (3 (Ph) I). The tolyl-ring in 2 (iPr) Cl adopts a puckered arrangement (fold angle 23.3°) indicating significant arene-1,4-diido character. Deuterium labeling experiments were consistent with an intramolecular reaction sequence after the initial hydrogenolysis of a Zr-C bond by a σ-bond metathesis. A DFT study of the reaction sequence indicates that hydrogenolysis by σ-bond metathesis first occurs at the cyclometalated ancillary ligand giving a hydrido-benzyl intermediate, which subsequently reductively eliminates toluene that then coordinates to the Zr atom as the reduced arene ligand. Complex 2 (Ph) I was reacted with 2,6-diisopropylphenyl isocyanide giving the deep blue, diamagnetic Zr(II) -diisocyanide complex [(Cbzdiphos(Ph) )Zr(CNDipp)2 I] (4 (Ph) I). DFT modeling of 4 (Ph) I demonstrated that the HOMO of the complex is primarily located as a "lone pair on zirconium", with some degree of back-bonding into the C≡N π* bond, and the complex is thus most appropriately described as a zirconium(II) species. Reaction of 2 (Ph) I with trimethylsilylazide (N3 TMS) and 2 (iPr) Cl with 1-azidoadamantane (N3 Ad) resulted in the formation of the imido complexes [(Cbzdiphos(R) )Zr=NR'(X)] 5 (iPr) Cl-NAd and 5 (Ph) I-NTMS, respectively. Reaction of 2 (iPr) Cl with azobenzene led to N-N bond scission giving 6 (iPr) Cl, in which one of the NPh-fragments is coupled with the carbazole nitrogen to form a central η(2) -bonded hydrazide(-1), whereas the other NPh-fragment binds to zirconium acting as an imido-ligand. Finally, addition of pyridine to 2 (iPr) Cl yielded the dark purple complex [(Cbzdiphos(iPr) )Zr(bpy)Cl] (7 (iPr) Cl) through a combination of CH-activation and C-C-coupling. The structural data and UV/Vis spectroscopic properties of 7 (iPr) Cl indicate that the bpy (bipyridine) may be regarded as a (dianionic) diamido-type ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.
Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim
2017-09-01
The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.
Dai, Yuejie; Zhen, Jing; Zhang, Xiuli; Zhong, Yonghui; Liu, Shaodan; Sun, Ziyue; Guo, Yue; Wu, Qingli
2015-09-01
The complex structure of human aromatase (CYP19) and the open form of ΔTGEE mutant NADPH-cytochrome P450 reductase (mCPR) was constructed using template-based protein alignment method. Dynamic simulation of formed complex was performed on NAMD 2.9, in which CHARMm all 27_prot_lipid_na force field and an explicit TIP3P water solvent model were applied. The result showed mCPR in its open conformation could steadily combine with aromatase from the proximal face. Data analysis indicates hydrogen bonds and four salt bridges on the binding surface enhance the interaction between the two protein molecules. Amino acid, Lys108 plays a key role in aromatase activity through the formation of a salt bridge with Asp147 and two hydrogen bonds with Asp147 and Gln150 in mCPR. The optimal pathway for the first electron transfer from CPR to aromatase was revealed and calculated using HARLEM software. The rates for solvent mediated and non-solvent mediated electron transfer from FMNH2 to heme were determined as 1.04×10(6)s(-)(1) and 4.86×10(5)s(-)(1) respectively, which indicates the solvent water can facilitate the electron transfer from FMNH2 to heme. This study presents a novel strategy for the study of the protein-protein interactions based on the template-based protein alignment, which may help new aromtase development targeting the electron transfer between mCPR and aromatase. Copyright © 2015 Elsevier Inc. All rights reserved.
On the binding of indeno[1,2-c]isoquinolines in the DNA-topoisomerase I cleavage complex.
Xiao, Xiangshu; Antony, Smitha; Pommier, Yves; Cushman, Mark
2005-05-05
An ab initio quantum mechanics calculation is reported which predicts the orientation of indenoisoquinoline 4 in the ternary cleavage complex formed from DNA and topoisomerase I (top1). The results of this calculation are consistent with the hypothetical structures previously proposed for the indenoisoquinoline-DNA-top1 ternary complexes based on molecular modeling, the crystal structure of a recently reported ternary complex, and the biological results obtained with a pair of diaminoalkyl-substituted indenoisoquinoline enantiomers. The results of these studies indicate that the pi-pi stacking interactions between the indenoisoquinolines and the neighboring DNA base pairs play a major role in determining binding orientation. The calculation of the electrostatic potential surface maps of the indenoisoquinolines and the adjacent DNA base pairs shows electrostatic complementarity in the observed binding orientation, leading to the conclusion that electrostatic attraction between the intercalators and the base pairs in the cleavage complex plays a major stabilizing role. On the other hand, the calculation of LUMO and HOMO energies of indenoisoquinoline 13b and neighboring DNA base pairs in conjunction with NBO analysis indicates that charge transfer complex formation plays a relatively minor role in stabilizing the ternary complexes derived from indenoisoquinolines, DNA, and top1. The results of these studies are important in understanding the existing structure-activity relationships for the indenoisoquinolines as top1 inhibitors and as anticancer agents, and they will be important in the future design of indenoisoquinoline-based top1 inhibitors.
Wendland, M F; Stevens, T H; Buttlaire, D H; Everett, G W; Himes, R H
1983-02-15
Using nuclear magnetic resonance techniques, we have measured the internuclear distances separating the nucleotide-bound metal from the carbon and hydrogen nuclei of formate as well as the carbon of methylammonium cation when bound to formyltetrahydrofolate synthetase. Measurements were made of the paramagnetic effect on the spin-lattice relaxation rates (1/T1) of 13C and 1H nuclei arising from the replacement of Mg2+ with Mn2+, which binds to the enzyme in the form of a metal-nucleotide complex. Distances from Mn2+ to the formate carbon and proton were found to be 6.3 and 7.4 A, respectively, in the E . ATP . Mn2+ . formate complex and 6.0 and 7.1 A, respectively, in the E . ADP . Mn2+ . formate complex. When tetrahydrofolate was added to the latter complex, the exchange of formate was greatly reduced and became rate limiting for relaxation. These results are consistent with substantial conformational effects produced by the binding of the cofactor. The distance from Mn2+ to the methylammonium carbon in the E . ADP . Mn2+ . CH3NH+3, E . ADP . Mn2+ . formate . CH3NH3+, and E . ADP . Mn2+ . tetrahydrofolate . CH3NH3+ complexes was estimated to be in the range of 7.4-12 A. However, in the E . ADP . Mn2+ formate . tetrahydrofolate . CH3NH3+ complex, the data suggest that exchange of cation contributes significantly to relaxation. These results, combined with other known features of the enzyme, suggest that there may be a monovalent cation site within the active site of the enzyme.
NASA Astrophysics Data System (ADS)
Awwadi, Firas F.; Hodali, Hamdallah A.
2018-02-01
Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.
Yamashita, Satoshi; Yamaguchi, Haruhiko; Waki, Toshiyuki; Aoki, Yuichi; Mizuno, Makie; Yanbe, Fumihiro; Ishii, Tomoki; Funaki, Ayuta; Tozawa, Yuzuru; Miyagi-Inoue, Yukino; Fushihara, Kazuhisa; Nakayama, Toru; Takahashi, Seiji
2016-01-01
Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the cis-prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently. We show that HRT1, a cPT from Heveabrasiliensis, exhibits distinct RTase activity in vitro only when it is introduced on detergent-washed HeveaRPs (WRPs) by a cell-free translation-coupled system. Using this system, a heterologous cPT from Lactucasativa also exhibited RTase activity, indicating proper introduction of cPT on RP is the key to reconstitute active RTase. RP proteomics and interaction network analyses revealed the formation of the protein complex consisting of HRT1, rubber elongation factor (REF) and HRT1-REF BRIDGING PROTEIN. The RTase activity enhancement observed for the complex assembled on WRPs indicates the HRT1-containing complex functions as the NR biosynthetic machinery. DOI: http://dx.doi.org/10.7554/eLife.19022.001 PMID:27790974
Fluorescence in complexes based on quinolines-derivatives: a search for better fluorescent probes.
Mecca, Carolina Z P; Fonseca, Fernando L A; Bagatin, Izilda A
2016-11-05
Quinoline-derived fluorescent complexes were designed; synthesized by the reaction of 5-nitro-8-hydroxyquinoline and 5-chloro-8-hydroxyquinoline with Al(3+), Mg(2+), Zn(2+), and Cd(2+) salts (1-8); and characterized. The (1)H NMR spectra of complexes 1 and 5, containing Al(3+), were consistent with an octahedral structure having approximate D3 symmetry, and the results supported the favored facial isomer (fac). Data for complexes 2-4 and 6-8 supported the formation of tetrahedral structures. Intense luminescence was detected for complexes 5-8, even with the naked eye, as indicated by quantum yield values of 0.087, 0.094, 0.051, and 0.021, respectively. Furthermore, in contrast to 5-nitro-8-hydroxyquinoline, the 5-chloro-8-hydroxyquinoline ligand exhibited bands at different energies depending on the coordinated metal, which supported its potential application in ionic and biological probes, as well as in cell imaging. Copyright © 2016 Elsevier B.V. All rights reserved.
Khalil, M M; Ali, S A; Ramadan, R M
2001-04-01
Reaction of Ru3(CO)12, with 2-(2'-pyridyl)benzimidazole (HPBI) resulted in the formation of Ru(CO)3(HPBI) (I) complex. In presence of pyridine or dipyridine, the two derivatives [Ru(CO)3(HPBI)].Py (II) and [Ru(CO)3(HPBI)].dpy (III) were isolated. The corresponding reactions of Os3(CO)12 yielded only one single product; Os(CO)2(HPBI)2 (IV). Spectroscopic studies of these complexes revealed intramolecular metal to ligand CT interactions. Reactions of RuCl3 with HPBI gave three distinct products; [Ru(HPBI)2Cl2]Cl (V), [Ru(HPBI)(dipy)Cl2]C1 (VI) and [Ru(PBI)2(py)2]Cl (VII). The UV-vis studies indicated the presence of intramolecular ligand to metal CT interactions. Electrochemical investigation of the complexes showed some irreversible, reversible and quasi-reversible redox reactions due to tautomeric interconversions through electron transfer.
NASA Astrophysics Data System (ADS)
Ganesh, K.; El-Mossalamy, E. H.; Satheshkumar, A.; Balraj, C.; Elango, K. P.
2013-12-01
Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ1-4). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH = 7). The interaction of MQ1-4 with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.
Ancient palace complex (300–100 BC) discovered in the Valley of Oaxaca, Mexico
Redmond, Elsa M.; Spencer, Charles S.
2017-01-01
Recently completed excavations at the site of El Palenque in Mexico’s Valley of Oaxaca have recovered the well-preserved remains of a palace complex dated by associated radiocarbon samples and ceramics to the Late Formative period or Late Monte Albán I phase (300–100 BC), the period of archaic state emergence in the region. The El Palenque palace exhibits certain architectural and organizational features similar to the royal palaces of much later Mesoamerican states described by Colonial-period sources. The excavation data document a multifunctional palace complex covering a maximum estimated area of 2,790 m2 on the north side of the site’s plaza and consisting of both governmental and residential components. The data indicate that the palace complex was designed and built as a single construction. The palace complex at El Palenque is the oldest multifunctional palace excavated thus far in the Valley of Oaxaca. PMID:28348218
Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J.; Drenzek, Nicholas J.; Coolen, Marco J. L.
2013-01-01
The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357
Kruse, Thomas; van de Pas, Bram A; Atteia, Ariane; Krab, Klaas; Hagen, Wilfred R; Goodwin, Lynne; Chain, Patrick; Boeren, Sjef; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M; van der Oost, John; Smidt, Hauke; Stams, Alfons J M
2015-03-01
Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
van de Pas, Bram A.; Atteia, Ariane; Krab, Klaas; Hagen, Wilfred R.; Goodwin, Lynne; Chain, Patrick; Boeren, Sjef; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M.; van der Oost, John; Smidt, Hauke
2014-01-01
Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1T consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. PMID:25512312
NASA Astrophysics Data System (ADS)
Rosolen, Vania; Bueno, Guilherme Taitson; Melfi, Adolpho José; Montes, Célia Regina; de Sousa Coelho, Carla Vanessa; Ishida, Débora Ayumi; Govone, José Silvio
2017-11-01
Extensive flat plateaus are typical landforms in the cratonic compartment of tropical regions. Paleoclimate, pediplanation, laterization, and dissection have created complex and distinct geological, geomorphological, and pedological features in these landscapes. In the Brazilian territory, the flat plateau sculpted in sandstone of Marília Formation (Neocretaceous) belonging to the Sul-Americana surface presents a very clayey and pisolitic Ferralsol (Red and Yellow Latossolo in the Brazilian soil classification). The clayey texture of soil and the pisolites have been considered as weathering products of a Cenozoic detritical formation which is believed to overlay the Marília Formation sandstones. Using data of petrography (optical microscopy and SEM), mineralogy (RXD), and macroscopic structures (description in the field of the arrangement of horizons and layers), a complete profile of Ferralsol with ferricrete and pisolites was studied. The complex succession of facies is in conformity with a sedimentary structure of Serra da Galga member (uppermost member of Marília Formation). The hardening hematite concentration appears as layered accretions in the subparallel clayey lenses of sandstone saprolite, preserving its structure. Iron contents varied according to different soil fabrics. Higher concentrations of iron are found in the massive ferricrete or in pisolites in the mottled horizon. Kaolinite is a dominant clay mineral and shows two micro-organizations: (1) massive fabric intrinsic to the sedimentary rock, and (2) reworked in pisolites and illuviated features. The pisolites are relicts of ferricrete in the soft bioturbated topsoil. The continuous sequence of ferricrete from saprolite to the Ferralsol indicates that the regolith is autochthonous, developed directly from sandstones of Marília Formation, through a long and intense process of laterization.
Pinelo, Laura F; Kugel, Roger W; Ault, Bruce S
2015-10-15
The reactions of ozone with ferrocene (cp2Fe) and with n-butylferrocene (n-butyl cp2Fe) were studied using matrix isolation, UV-vis spectroscopy, and theoretical calculations. The codeposition of cp2Fe with O3 and of n-butyl cp2Fe with O3 into an argon matrix led to the production of 1:1 charge-transfer complexes with absorptions at 765 and 815 nm, respectively. These absorptions contribute to the green matrix color observed upon initial deposition. The charge-transfer complexes underwent photochemical reactions upon irradiation with red light (λ ≥ 600 nm). Theoretical UV-vis spectra of the charge-transfer complexes and photochemical products were calculated using TD-DFT at the B3LYP/6-311G++(d,2p) level of theory. The calculated UV-vis spectra were in good agreement with the experimental results. MO analysis of these long-wavelength transitions showed them to be n→ π* on the ozone subunit in the complex and indicated that the formation of the charge-transfer complex between ozone and cp2Fe or n-butyl cp2Fe affects how readily the π* orbital on O3 is populated when red light (λ ≥ 600 nm) is absorbed. 1:1 complexes of cp2Fe and n-butyl cp2Fe with O2 were also observed experimentally and calculated theoretically. These results support and enhance previous infrared studies of the mechanism of photooxidation of ferrocene by ozone, a reaction that has considerable significance for the formation of iron oxide thin films for a range of applications.
A Simple Explanation of Complexation
ERIC Educational Resources Information Center
Elliott, J. Richard
2010-01-01
The topics of solution thermodynamics, activity coefficients, and complex formation are introduced through computational exercises and sample applications. The presentation is designed to be accessible to freshmen in a chemical engineering computations course. The MOSCED model is simplified to explain complex formation in terms of hydrogen…
Sweet-sensitive protein from bovine taste buds: isolation and assay.
Dastoli, F R; Price, S
1966-11-18
Using refractometry and ultraviolet-difference spectroscopy to indicate interaction between proteins and coinpounds of low molecular weight, we found a protein fraction in bovine tongue extracts that coinplexes sugars and saccharin. The strengths of the coinzplexes parallel the degrees of sweetness of the compounds, and the effects of pH upon formation of complexes parallel the effects of pH upon sensitivity of taste buds to sweet compounds in vivo.
Hagbani, Turki Al; Nazzal, Sami
2017-03-30
One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.
A non-ideal MHD model for structure formation
NASA Astrophysics Data System (ADS)
Karmakar, Pralay Kumar; Sarma, Pankaj
2018-02-01
The evolutionary initiation dynamics of triggered planetary structure formation is indeed a complex process yet to be well understood. We herein develop a theoretical classical model to see the gravitational fragmentation kinetics of the viscoelastic non-ideal magneto-hydro-dynamic (MHD) fabric. The inhomogeneous planetary disk is primarily composed of heavier dust grains (strongly correlated) together with relatively lighter electrons, ions and neutrals (weakly correlated) in a mean-fluidic approximation. A normal harmonic mode analysis results in a quadratic dispersion relation of a unique shape. It is demonstrated that the growth rate of the MHD fluctuations (magnetosonic) contributing to the planet formation rate, apart from the wave vector and its projection orientation, has a pure explicit dependency on the viscoelastic parameters. The analysis specifically shows that the effective generalized viscosity (χ) , viscoelastic relaxation time (τm) , and K-orientation (θ) play as destabilizing agencies against the non-local gravitational disk collapse. The relevancy is briefly indicated in the real astronomical context of bounded planetary structure formation and evolution.
A mouse model of mitochondrial complex III dysfunction induced by myxothiazol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davoudi, Mina; Kallijärvi, Jukka; Marjavaara, Sanna
2014-04-18
Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIIImore » inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
1Harry Reid Center for Environmental Studies, Nuclear Science and Technology Division, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4006; Gong, Cynthia-May S; Poineau, Frederic
2008-02-26
Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the x-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry with the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a the d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but may be augmented bymore » products of reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex (1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent; titration studies indicate a single species from pH 4.5 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The formation of 1 may strongly impact the fate of technetium in the nuclear fuel cycle.« less
Structure and reactivity of ferrihydrite-soil organic carbon-calcium ternary complexes
NASA Astrophysics Data System (ADS)
Yang, Y.; Adhikari, D.; Sowers, T.; Stuckey, J.; Poulson, S.; Sparks, D. L.
2017-12-01
Complete understanding about the interactions between soil organic carbon (SOC) and minerals is important for predicting the stability of SOC and its response to climate change. Recent studies have shown the importance of calcium (Ca)-bearing minerals and iron (Fe) oxide in associating with and stabilizing SOC. In this study, we have investigated the formation and reactivity of ferrihydrite-SOC-Ca ternary complexes. During the co-precipitation of ferrihydrite with SOC in the presence of Ca2+, 60% of SOC can be co-precipitated with ferrihydrite at a C/Fe (molar ratio) of up to 10, whereas the Ca/Fe ratio was saturated at 0.2. Increasing amount of Ca2+ did not affect the co-precipitation of SOC with ferrihydrite or the lability of ferrihydrite-bound SOC. In addition, microbial reduction of ferrihydrite and reductive release of ferrihydrite-bound SOC were not influenced by the presence of Ca, but the pathway for Fe mineral transformation during the reduction was affected by Ca. In the meantime, Fe reduction selectively released carboxylic-enriched SOC. As a comparison, the presence of SOC increased the incorporation of Ca into the structure of ferrihydrite. Our results indicate the formation of ferrihydrite-SOC-Ca complexes, with organic carbon bridging the ferrihydrite and Ca. Such ternary complexes potentially play an important role in regulating the interactions between SOC and mineral phases in soil.
Woen, David H; Chen, Guo P; Ziller, Joseph W; Boyle, Timothy J; Furche, Filipp; Evans, William J
2017-02-13
The first crystallographically characterizable complex of Sc 2+ , [Sc(NR 2 ) 3 ] - (R=SiMe 3 ), has been obtained by LnA 3 /M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR 2 ) 3 with K in the presence of 2.2.2-cryptand (crypt) and 18-crown-6 (18-c-6) and with Cs in the presence of crypt. Dark maroon [K(crypt)] + , [K(18-c-6)] + , and [Cs(crypt)] + salts of the [Sc(NR 2 ) 3 ] - anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight-line EPR spectra arising from the I=7/2 45 Sc nucleus. The Sc(NR 2 ) 3 reduction differs from Ln(NR 2 ) 3 reactions (Ln=Y and lanthanides) in that it occurs under N 2 without formation of isolable reduced dinitrogen species. [K(18-c-6)][Sc(NR 2 ) 3 ] reacts with CO 2 to produce an oxalate complex, {K 2 (18-c-6) 3 }{[(R 2 N) 3 Sc] 2 (μ-C 2 O 4 -κ 1 O:κ 1 O'')}, and a CO 2 - radical anion complex, [(R 2 N) 3 Sc(μ-OCO-κ 1 O:κ 1 O')K(18-c-6)] n . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Herrmann, Andrea; Tillmann, Britta A M; Schürmann, Janine; Bölker, Michael; Tudzynski, Paul
2014-04-01
Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.
McCall, R.; Sidoran, K. J.; Magda, D.; Mitchell, N. A.; Bielawski, C. W.; Lynch, V. M.; Sessler, J. L.
2016-01-01
Ferrocene containing N-heterocyclic carbene (NHC) ligated gold(i) complexes of the type [Au(NHC)2]+ were prepared and found to be capable of regulating the formation of reactive oxygen species (ROS) via multiple mechanisms. Single crystal X-ray analysis of bis(1-(ferrocenylmethyl)-3-mesitylimidazol-2-ylidene)-gold(i) chloride (5) and bis(1,3-di(ferrocenylmethyl)imidazol-2-ylidene)-gold(i) chloride (6) revealed a quasi-linear geometry around the gold(i) centers (i.e., the C–Au–C bond angle were measured to be ∼177° and all the Au–Ccarbene bonds distances were in the range of 2.00 (7)–2.03 (1) Å). A series of cell studies indicated that cell proliferation inhibition and ROS generation were directly proportional to the amount of ferrocene contained within the [Au(NHC)2]+ complexes (IC50 of 6 < 5 < bis(1-benzyl-3-mesitylimidazol-2-ylidene)-gold(i) chloride (4)). Complexes 4–6 were also confirmed to inhibit thioredoxin reductase as inferred from lipoate reduction assays and increased chelatable intracellular zinc concentrations. RNA microarray gene expression assays revealed that 6 induces endoplasmic reticulum stress response pathways as a result of ROS increase. PMID:26918111
Wang, Shaoyi; Zhang, Zhiyuan; Xia, Lunguo; Zhao, Jun; Sun, Xiaojuan; Zhang, Xiuli; Ye, Dongxia; Uludağ, Hasan; Jiang, Xinquan
2010-01-01
The objective of this study is to systematically evaluate the effects of a tissue-engineered bone complex for maxillary sinus augmentation in a canine model. Twelve sinus floor augmentation surgeries in 6 animals were performed bilaterally and randomly repaired with the following 3 groups of grafts: group A consisted of tissue-engineered osteoblasts/beta-TCP complex (n=4); group B consisted of beta-TCP alone (n=4); group C consisted of autogenous bone obtained from iliac crest as a positive control (n=4). All dogs had uneventful healings following the surgery. Sequential polychrome fluorescent labeling, maxillofacial CT, microhardness tests, as well as histological and histomorphometric analyses indicated that the tissue-engineered osteoblasts/beta-TCP complex dramatically promoted bone formation and mineralization and maximally maintained the height and volume of elevated maxillary sinus. By comparison, both control groups of beta-TCP or autologous iliac bone showed considerable resorption and replacement by fibrous or fatty tissue. We thus conclude that beta-TCP alone could barely maintain the height and volume of the elevated sinus floor, and that the transplantation of autogenous osteoblasts on beta-TCP could promote earlier bone formation and mineralization, maximally maintain height, volume and increase the compressive strength of augmented maxillary sinus. This tissue engineered bone complex might be a better alternative to autologous bone for the clinical edentulous maxillary sinus augmentation. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Electrocatalytic Oxidation of Formate by [Ni(P R 2N R' 2) 2(CH 3CN)] 2+ Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
2011-08-17
[Ni(P R 2N R' 2) 2(CH 3CN)] 2+ complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P R 2N R' 2)(P R" 2N R' 2)(CH 3CN)] 2+ with R = Cy, R' = Ph, R" = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO 2, protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ~0.04 M (34 equiv). At concentrationsmore » above ~0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s –1 at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η 1-OC(O)CH 3 binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO 2 liberation. Finally, the pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe) 2] 2+ (depe = 1,2-bis(diethylphosphino)ethane) complex.« less
Electrocatalytic oxidation of formate by [Ni(P(R)2N(R')2)2(CH3CN)]2+ complexes.
Galan, Brandon R; Schöffel, Julia; Linehan, John C; Seu, Candace; Appel, Aaron M; Roberts, John A S; Helm, Monte L; Kilgore, Uriah J; Yang, Jenny Y; DuBois, Daniel L; Kubiak, Clifford P
2011-08-17
[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R''(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R'' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ∼0.04 M (34 equiv). At concentrations above ∼0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.
Thermodynamics of complexation in an aqueous solution of Tb(III) nitrate at 298 K
NASA Astrophysics Data System (ADS)
Lobacheva, O. L.; Berlinskii, I. V.; Dzhevaga, N. V.
2017-01-01
The pH of the formation of hydroxo complexes and hydrates in an aqueous solution of terbium Tb(III) is determined using combined means of potentiometric and conductometric titration. The stability constants of the hydroxo complexes, the products of hydroxide solubility, and the Gibbs energy of terbium hydroxo complex formation are calculated.
ERIC Educational Resources Information Center
Ibanez, Jorge G.; And Others
1988-01-01
Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bally, John; Ginsburg, Adam; Probst, Ron
We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionizationmore » front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.« less
Controlled assembly of artificial protein-protein complexes via DNA duplex formation.
Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J
2015-03-18
DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.
NASA Astrophysics Data System (ADS)
Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.
2018-04-01
We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.
NASA Astrophysics Data System (ADS)
Moniatte, M.; Lesieur, C.; Vecsey-Semjen, B.; Buckley, J. T.; Pattus, F.; van der Goot, F. G.; van Dorsselaer, A.
1997-12-01
This study explores the potential of MALDI-TOF MS for the mass measurement of large non-covalent protein complexes. The following non-covalent complexes have been investigated: aerolysin from Aeromonas hydrophila (335 kDa) and [alpha]-haemolysin from Staphylococcus aureus (233 kDa) which are both cytolytic toxins, three enzymes known to be homotetramers in solution: bovine liver catalase (235 kDa), rabbit muscle pyruvate kinase (232 kDa), yeast alcohol dehydrogenase (147 kDa) and finally a lectin, concanavalin A (102 kDa). Three different matrix preparations were systematically tested under various conditions: ferulic acid dissolved in THF, 2,6-dihydroxyacetophenone in 20 mM aqueous ammonium citrate and a two-step sample preparation with sinapinic acid. It was possible to find a suitable combination of matrix and preparation type which allowed the molecularity of all complexes tested to be deduced from the MALDI mass spectrum. Trimeric and tetrameric intermediates accumulating during the formation of the active heptameric aerolysin complex were also identified, this allowing a formation mechanism to be proposed. The observation of large specific non-covalent complexes has been found to be dependent on the choice of matrix, the type of sample preparation used, the solvent evaporation speed, the pH of the resulting matrix-sample mixture and the number of shots acquired on a given area. From this set of experiments, some useful guidelines for the observation of large complexes by MALDI could therefore be deduced. Fast evaporation of the solvent is particularly necessary in the case of pH sensitive complexes. An ESMS study on the same non-covalent complexes indicated that, rather surprisingly, reliable results could be obtained by MALDI-TOF MS on several very large complexes (above 200 kDa) for which ESMS yielded no clear spectra.
DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation.
Nakama, Mina; Kawakami, Kei; Kajitani, Takuya; Urano, Takeshi; Murakami, Yota
2012-03-01
Certain noncoding RNAs (ncRNAs) implicated in the regulation of chromatin structure associate with chromatin. During the formation of RNAi-directed heterochromatin in fission yeast, ncRNAs transcribed from heterochromatin are thought to recruit the RNAi machinery to chromatin for the formation of heterochromatin; however, the molecular details of this association are not clear. Here, using RNA immunoprecipitation assay, we showed that the heterochromatic ncRNA was associated with chromatin via the formation of a DNA-RNA hybrid and bound to the RNA-induced transcriptional silencing (RITS) complex. The presence of DNA-RNA hybrid in the cell was also confirmed by immunofluorescence analysis using anti-DNA-RNA hybrid antibody. Over-expression and depletion of RNase H in vivo decreased and increased the amount of DNA-RNA hybrid formed, respectively, and both disturbed heterochromatin. Moreover, DNA-RNA hybrid was formed on, and over-expression of RNase H inhibited the formation of, artificial heterochromatin induced by tethering of RITS to mRNA. These results indicate that heterochromatic ncRNAs are retained on chromatin via the formation of DNA-RNA hybrids and provide a platform for the RNAi-directed heterochromatin assembly and suggest that DNA-RNA hybrid formation plays a role in chromatic ncRNA function. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
Si-Metasomatism During Serpentinization of Jurassic Ultramafic Sea-floor: a Comparative Study
NASA Astrophysics Data System (ADS)
Vogel, M.; Frueh-Green, G. L.; Boschi, C.; Schwarzenbach, E. M.
2014-12-01
The Bracco-Levanto ophiolitic complex (northwestern Italy) represents one of the largest and better-exposed ophiolitic successions in the Northern Apennines. It is considered to be a fragment of heterogeneous Jurassic lithosphere that records tectono-magmatic and alteration histories similar to those documented along the Mid-Atlantic Ridge (MAR), such as at the 15°20'N area and the Atlantis Massif at 30°N. Structural and petrological studies on these rocks provide constraints on metamorphic/deformation processes during formation and hydrothermal alteration of the Jurassic oceanic lithosphere. We present a petrological and geochemical study of serpentinization processes and fluid-rock interaction in the Bracco-Levanto ophiolitic complex and compare these to published data from modern oceanic hydrothermal systems, such as the Lost City hydrothermal field hosted in serpentinites on the Atlantis Massif. Major element and mineral compositional data allow us to distinguish a multiphase history of alteration characterized by: (1) widespread Si-metasomatism during progressive serpentinization, and (2) multiple phases of veining and carbonate precipitation associated with circulation of seawater in the shallow ultramafic-dominated portions of the Jurassic seafloor, resulting in the formation of ophicalcites. In detail, regional variations in Si, Mg and Al content are observed in zones of ophicalcite formation, indicating metasomatic reactions and Si-Al transport during long-lived fluid-rock interaction and channelling of hydrothermal fluids. Rare earth element and isotopic analysis indicate that the Si-rich fluids are derived from alteration of pyroxenes to talc and tremolite in ultramafic rocks at depth. Comparison with serpentinites from the Atlantis Massif and 15°20'N indicates a similar degree of Si-enrichment in the modern seafloor and suggests that Si-metasomatism may be a fundamental process associated with serpentinization at slow-spreading ridge environments. However, in contrast to metasomatic processes at the MAR, we find no geochemical evidence for a gabbroic source of the fluids, and thus, processes leading to Si-rich fluids can be variable in these environments.
Methanol Formation via Oxygen Insertion Chemistry in Ices
NASA Astrophysics Data System (ADS)
Bergner, Jennifer B.; Öberg, Karin I.; Rajappan, Mahesh
2017-08-01
We present experimental constraints on the insertion of oxygen atoms into methane to form methanol in astrophysical ice analogs. In gas-phase and theoretical studies this process has previously been demonstrated to have a very low or nonexistent energy barrier, but the energetics and mechanisms have not yet been characterized in the solid state. We use a deuterium UV lamp filtered by a sapphire window to selectively dissociate O2 within a mixture of O2:CH4 and observe efficient production of CH3OH via O(1D) insertion. CH3OH growth curves are fit with a kinetic model, and we observe no temperature dependence of the reaction rate constant at temperatures below the oxygen desorption temperature of 25 K. Through an analysis of side products we determine the branching ratio of ice-phase oxygen insertion into CH4: ˜65% of insertions lead to CH3OH, with the remainder leading instead to H2CO formation. There is no evidence for CH3 or OH radical formation, indicating that the fragmentation is not an important channel and that insertions typically lead to increased chemical complexity. CH3OH formation from O2 and CH4 diluted in a CO-dominated ice similarly shows no temperature dependence, consistent with expectations that insertion proceeds with a small or nonexistent barrier. Oxygen insertion chemistry in ices should therefore be efficient under low-temperature ISM-like conditions and could provide an important channel to complex organic molecule formation on grain surfaces in cold interstellar regions such as cloud cores and protoplanetary disk midplanes.
Fuller, C.C.; Bargar, J.R.; Davis, J.A.
2003-01-01
Uranium binding to bone charcoal and bone meal apatite materials was investigated using U LIII-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations ??? 5500 ??g U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 A?? was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U-P distance at 3.5-3.6 A?? was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations ??? 5500 ??g U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12 300 ??g U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U-contaminated sites.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.
A GAS-PHASE FORMATION ROUTE TO INTERSTELLAR TRANS-METHYL FORMATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Callie A.; Wehres, Nadine; Yang Zhibo
2012-07-20
The abundance of methyl formate in the interstellar medium has previously been underpredicted by chemical models. Additionally, grain surface chemistry cannot account for the relative abundance of the cis- and trans-conformers of methyl formate, and the trans-conformer is not even formed at detectable abundance on these surfaces. This highlights the importance of studying formation pathways to methyl formate in the gas phase. The rate constant and branching fractions are reported for the gas-phase reaction between protonated methanol and formic acid to form protonated trans-methyl formate and water as well as adduct ion: Rate constants were experimentally determined using a flowingmore » afterglow-selected ion flow tube apparatus at 300 K and a pressure of 530 mTorr helium. The results indicate a moderate overall rate constant of (3.19 {+-} 0.39) Multiplication-Sign 10{sup -10} cm{sup 3} s{sup -1} ({+-} 1{sigma}) and an average branching fraction of 0.05 {+-} 0.04 for protonated trans-methyl formate and 0.95 {+-} 0.04 for the adduct ion. These experimental results are reinforced by ab initio calculations at the MP2(full)/aug-cc-pVTZ level of theory to examine the reaction coordinate and complement previous density functional theory calculations. This study underscores the need for continued observational studies of trans-methyl formate and for the exploration of other gas-phase formation routes to complex organic molecules.« less
Formative feedback and scaffolding for developing complex problem solving and modelling outcomes
NASA Astrophysics Data System (ADS)
Frank, Brian; Simper, Natalie; Kaupp, James
2018-07-01
This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.
The Permian–Triassic transition in Colorado
Hagadorn, James S.; Whitely, Karen R.; Lahey, Bonita L.; Henderson, Charles M.; Holm-Denoma, Christopher S.
2016-01-01
The Lykins Formation and its equivalents in Colorado are a stratigraphically poorly constrained suite of redbeds and intercalated stromatolitic carbonates, which is hypothesized to span the Permian-Triassic boundary. Herein we present a preliminary detrital zircon geochronology, new fossil occurrences, and δ13C chemostratigraphy for exposures along the Front Range and in southeastern Colorado, to refine understanding of the unit's age and depositional history.Detrital zircons from the uppermost Lykins Formation and an overlying eolianite consist of a complex and highly diverse primary and multi-cycle grain population transported from Laurentian and Gondwanan terranes, potentially both by wind and water. Youngest concordant zircons do not rule out deposition of the uppermost Lykins Formation during a portion of Early Triassic time. Conodonts from the lower Lykins Formation require Middle Permian (Guadalupian) deposition. Conodont alteration indices of 1 indicate the unit has a shallow burial history and is amenable to paleomagnetic inquiry. Conodonts, together with other vertebrate, invertebrate, microfossil, and trace fossils, suggest a very shallow to emergent marine origin for the unit's most substantial carbonates, and hint at a marine origin for the unit's intercalated gypsum-anhydrite members. Chemostratigraphy corroborates field evidence of emergence and karst development capping certain units, like the Forelle Limestone Member of the Lykins Formation, where potential sequence boundaries appear to be punctuated by a short-lived meteoric signature.Results presented here are a progress report of ongoing work in these successions. This field trip consists of a brief tour through exposures of the Lykins Formation, in which we will examine well-known localities as well as view new ones for which we seek insights.
NASA Astrophysics Data System (ADS)
Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.
2012-06-01
The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.
NASA Astrophysics Data System (ADS)
Calcutt, Hannah
2015-04-01
Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.
Kari, Otto K; Rojalin, Tatu; Salmaso, Stefano; Barattin, Michela; Jarva, Hanna; Meri, Seppo; Yliperttula, Marjo; Viitala, Tapani; Urtti, Arto
2017-04-01
When nanocarriers are administered into the blood circulation, a complex biomolecular layer known as the "protein corona" associates with their surface. Although the drivers of corona formation are not known, it is widely accepted that this layer mediates biological interactions of the nanocarrier with its surroundings. Label-free optical methods can be used to study protein corona formation without interfering with its dynamics. We demonstrate the proof-of-concept for a multi-parametric surface plasmon resonance (MP-SPR) technique in monitoring the formation of a protein corona on surface-immobilized liposomes subjected to flowing 100 % human serum. We observed the formation of formulation-dependent "hard" and "soft" coronas with distinct refractive indices, layer thicknesses, and surface mass densities. MP-SPR was also employed to determine the affinity (K D ) of a complement system molecule (C3b) with cationic liposomes with and without polyethylene glycol. Tendency to create a thick corona correlated with a higher affinity of opsonin C3b for the surface. The label-free platform provides a fast and robust preclinical tool for tuning nanocarrier surface architecture and composition to control protein corona formation.
Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato
Kumari, Alka; Ray, Kamalika; Sadhna, Sadhna; Pandey, Arun Kumar; Sreelakshmi, Yellamaraju; Sharma, Rameshwar
2017-01-01
Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones. PMID:28481937
Agodoa, L Y; Gauthier, V J; Mannik, M
1985-02-01
The administration of cationized antibodies, specific to human serum albumin, into the renal artery of rats caused transient presence of IgG in glomeruli by immunofluorescence microscopy. Intravenous infusion of appropriate doses of antigen after the injection of cationized antibodies resulted in immune deposit formation in glomeruli that persisted through 96 hr. By electron microscopy, these deposits were located in the subepithelial area. The injection of large doses of antigen produced immune deposits which were present in glomeruli for only a few hours, presumably due to formation of only small-latticed immune complexes. The presented data indicate that cationic antibodies bound to the fixed negative charges of the glomerular basement membrane can interact with circulating antigen to form immune deposits in glomeruli. This mechanism may be important because anionic antigens have been shown to induce the synthesis of cationic antibodies.
Li, Zhen; Li, Zhigang; Yang, Lingling; Xie, Yuanzhe; Shi, Jie; Wang, Ruiyong; Chang, Junbiao
2015-03-01
In this paper, the interactions of pepsin with CYD (cytidine) or nucleoside analogs, including FNC (2'-deoxy-2'-β-fluoro-4'-azidocytidine) and CMP (cytidine monophosphate), were investigated by fluorescence, UV-visible absorption and synchronous fluorescence spectroscopy under mimic physiological conditions. The results indicated that FNC (CYD/CMP) caused the fluorescence quenching by the formation of complex. The binding constants and thermo-dynamic parameters at three different temperatures were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize the complex. The F atom in FNC might weaken the binding of nucleoside analog to pepsin. Results showed that CYD was the strongest quencher and bound to pepsin with higher affinity.
Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde
NASA Astrophysics Data System (ADS)
Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry
2016-09-01
Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.