Sample records for complex fracture patterns

  1. Multi-scale Fracture Patterns Associated with a Complex Anticline Structure: Insights from Field Outcrop Analogues of the Jebel Hafit Pericline, Al Ain-UAE

    NASA Astrophysics Data System (ADS)

    Kokkalas, S.; Jones, R. R.; Long, J. J.; Zampos, M.; Wilkinson, M. W.; Gilment, S.

    2017-12-01

    The formation of folds and their associated fracture patterns plays an important role in controlling the migration and concentration of fluids within the upper crust. Prediction of fracture patterns from various fold shapes and kinematics still remains poorly understood in terms of spatial and temporal distribution of fracture sets. Thus, a more detailed field-based multi scale approach is required to better constrain 3D models of fold-fracture relationships, which are critical for reservoir characterization studies. In order to generate reservoir-scale fracture models representative fracture properties across a wider range of scales are needed. For this reason we applied modern geospatial technologies, including terrestrial LiDAR, photogrammetry and satellite images in the asymmetric, east verging, four-way closure Jebel Hafit anticline, in the eastern part of the United Arab Emirates. The excellent surface outcrops allowed the rapid acquisition of extensive areas of fracture data from both limbs and fold hinge area of the anticline, even from large areas of steep exposure that are practically inaccessible on foot. The digital outcrops provide longer 1D transects, and 2D or 3D surface datasets and give more robust data, particularly for fracture heights, lengths, spacing, clustering, termination and connectivity. The fracture patterns across the folded structure are more complex than those predicted from conceptual models and geomechanical fracture modeling. Mechanical layering, pre-existing structures and sedimentation during fold growth seem to exert a critical influence in the development of fracture systems within Jebel Hafit anticline and directly affect fracture orientations, spacing/intensity, segmentation and connectivity. Seismic and borehole data provide additional constraints on the sub-surface fold geometry and existence of large-scale thrusting in the core of the anticline. The complexity of the relationship between fold geometry and fracture intensity is presented and the implications for prediction of fracture networks in naturally fractured reservoirs are discussed.

  2. Spatial arrangement of faults and opening-mode fractures

    NASA Astrophysics Data System (ADS)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in the subsurface through coupled spatial, size, and pattern analysis.

  3. Changing pattern and etiology of maxillofacial fractures during the civil uprising in Western Libya

    PubMed Central

    Elarabi, Mohammed S.

    2018-01-01

    Background The purpose of the present study was to evaluate changing pattern in characteristics of maxillofacial fractures and concomitant injuries in Western Libya During revolution and to assess the association between mechanism of injury and fracture patterns. Material and Methods A retrospective review of medical records and radiographs of 187 patients treated for maxillofacial fractures from January 2010 to December 2012 was performed, there were 326 fractures in 187 patients. Results The male: female ratio was 6:1. Most fractures occurred in patients aged 11 to 40 years, and few injuries occurred in patients aged > 50 years. Most fractures occurred from motor vehicle accidents, and other most frequent causes included assault, gunshot, and fall injuries. Most maxillofacial fractures involved the mandible, zygomatic complex, or maxilla. Most mandibular fractures occurred at the parasymphysis, angle, or condyle. Associated injuries most frequently involved the head, chest, and extremities. Most patients were treated with open reduction (132 patients [71%]), and 26 patients (14%) were treated nonoperatively. There were 21 complications (11%). Conclusions In summary, motor vehicle accidents were the most frequent cause of maxillofacial fracture in western Libya, possibly because of the lack of seat belt legislation. Interpersonal violence was a less frequent cause of maxillofacial fracture, possibly because of the religious restriction on alcohol consumption. Key words:Tauma, mandible, zygomatic complex, maxilla, treatment, complications. PMID:29476683

  4. Fractual interrelationships in field and seismic data. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-07

    Fractals provide a description of physical patterns over a range of scales in both time and space. Studies presented herein examine the fractal characteristics of various geological variables such as deformed bed-lengths, fold relief, seismic reflection arrival time variations, drainage and topographic patterns, and fracture systems. The studies are also extended to consider the possibility that the fractal characteristics of these variables are interrelated. Fractal interrelationships observed in these studies provide a method for relating variations in the fractal characteristics of seismic reflection events from reservoir intervals to the fractal characteristics of reservoir fracture systems, faults, and fold distributions. Themore » work is motivated by current exploration and development interests to detect fractured reservoirs and to accurately predict flow rates and flow patterns within the fractured reservoir. Accurate prediction requires an understanding of several reservoir properties including the fractal geometry of the reservoir fracture network. Results of these studies provide a method to remotely assess the fractal characteristics of a fractured reservoir, and help guide field development activities. The most significant outgrowth of this research is that the fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Production from fractured reservoirs is the result of complex structural and stratigraphic controls; hence, the import of fractal characterization to the assessment of fractured reservoirs lies in its potential to quantitatively define interrelationships between subtle structural variation and production. The potential uses are illustrated using seismic data from the Granny Creek oil field in the Appalachian Plateau.« less

  5. Tectonic context of the penetrative fracture system origin in the Early Paleozoic shale complex (Baltic Basin, Poland/Sweden).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Gluszynski, Andrzej; Bobek, Kinga; Dyrka, Ireneusz

    2017-04-01

    Characterization of natural fracture and fault pattern play significant role for reservoir stimulation design and evaluation of its results. Having structural observations limited to immediate borehole surrounding it is a common need to build up a fracture model of reservoir in a range of stimulation reservoir volume or even beyond. To do this we need both a 3D seismic model and a consistent concept of the regional tectonic evolution. We present the result of integrated tectonic study in several deep boreholes target the Lower Paleozoic shale complex of Baltic Basin (BB), combined with analysis of 3D seismic survey and outcrop screening in Scania (Swedish part of the BB). During deposition of shale complex in the Ordovician and Silurian the research area was located 200-300 km away from the continental margin of Baltica involved in the Caledonian collision with the Eastern Avalonia. This distance allowed the shale complex to avoid significant tectonic deformation. Regional seismic cross section reveals the general pattern of the BB infill characteristic for the foreland basin underwent post-collisional isostatic rebound. Due to stress changes in collisional context the shale complex was cross-cut by steep, mostly inverse faults trending NW-SE and NE-SW. The fault zones oriented NW-SE are associated with an array of en echelon faults characteristic for strike-slip displacement. In our interpretation, these faults of Silurian (Wenlock) age create pattern of the regional pop-up structure, which is simultaneously involved in the plate flexure extension. Seismic attributes (e.g. curvature or ant tracking) highlight lineaments which mostly mimic the faults orientation. However, attributes show also some artefacts that come from regular array of seismic sources and receivers, which mimic the orthogonal joint system. Structural observations on borehole core lead us to conclusion that regular, orthogonal fracture system developed after maximum burial of the complex, triggered by mechanism of natural hydraulic fracturing due to hydrocarbon generation. These fractures create veins filled with calcite that growth was controlled by mechanical layering and the TOC content of the shale complex. The main joint fracture pattern is stable across at least 300 hundred kilometers, from the Polish to Swedish portion of Baltic Basin. Therefore a major tectonic event is expected to govern its origin. The Late Carboniferous thin-skinned compression exerted at the edge of the East European Craton, is preferred tectonic fracture triggering factor. This age of jointing is confirmed by the strike of principal joint set characteristic for Variscan compression. In addition, principal joint system is sensitive (=younger) to a presence of the Caledonian-age faults in Pomerania but insensitive (=older) to the Mesozoic faults in Scania. Above genetic considerations should be taken into account while building the self-consistent discrete fracture network of faults and fractures for the purpose of shale reservoir stimulation.

  6. Modeling propellant-based stimulation of a borehole with peridynamics

    DOE PAGES

    Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L.

    2017-02-27

    A non-local formulation of classical continuum mechanics theory known as peridynamics is used to study fracture initiation and growth from a wellbore penetrating the subsurface within the context of propellant-based stimulation. The principal objectives of this work are to analyze the influence of loading conditions on the resulting fracture pattern, to investigate the effect of in-situ stress anisotropy on fracture propagation, and to assess the suitability of peridynamics for modeling complex fracture formation. In peridynamics, the momentum equation from the classical theory of solid mechanics is replaced by a non-local analogue, which results in an integrodifferential conservation equation. A continuummore » material is discretized with a set of material points that interact with all other points within a specified distance. Interactions between points are governed by bonds that can deform and break depending on loading conditions. The accumulated breakage of bonds gives rise to a picture of complex growth of fractures that is seen as a key advantage in the peridynamic representation of discontinuities. It is shown that the loading rate significantly influences the number and ex- tent of fractures initiated from a borehole. Results show that low loading rates produce fewer but longer fractures, whereas high loading rates produce numerous shorter fractures around the borehole. The numerical method is able to predict fracture growth patterns over a wide range of loading and stress conditions. Our results also show that fracture growth is attenuated with increasing in-situ confining stress, and, in the case of confining stress anisotropy, fracture extensions are largest in the direction perpendicular to the minimum compressive stress. Since the results are in broad qualitative agreement with experimental and numerical studies found in the literature, suggesting that peridynamics can be a powerful tool in the study of complex fracture network formation.« less

  7. Modeling propellant-based stimulation of a borehole with peridynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L.

    A non-local formulation of classical continuum mechanics theory known as peridynamics is used to study fracture initiation and growth from a wellbore penetrating the subsurface within the context of propellant-based stimulation. The principal objectives of this work are to analyze the influence of loading conditions on the resulting fracture pattern, to investigate the effect of in-situ stress anisotropy on fracture propagation, and to assess the suitability of peridynamics for modeling complex fracture formation. In peridynamics, the momentum equation from the classical theory of solid mechanics is replaced by a non-local analogue, which results in an integrodifferential conservation equation. A continuummore » material is discretized with a set of material points that interact with all other points within a specified distance. Interactions between points are governed by bonds that can deform and break depending on loading conditions. The accumulated breakage of bonds gives rise to a picture of complex growth of fractures that is seen as a key advantage in the peridynamic representation of discontinuities. It is shown that the loading rate significantly influences the number and ex- tent of fractures initiated from a borehole. Results show that low loading rates produce fewer but longer fractures, whereas high loading rates produce numerous shorter fractures around the borehole. The numerical method is able to predict fracture growth patterns over a wide range of loading and stress conditions. Our results also show that fracture growth is attenuated with increasing in-situ confining stress, and, in the case of confining stress anisotropy, fracture extensions are largest in the direction perpendicular to the minimum compressive stress. Since the results are in broad qualitative agreement with experimental and numerical studies found in the literature, suggesting that peridynamics can be a powerful tool in the study of complex fracture network formation.« less

  8. Dietary patterns associated with fall-related fracture in elderly Japanese: a population based prospective study.

    PubMed

    Monma, Yasutake; Niu, Kaijun; Iwasaki, Koh; Tomita, Naoki; Nakaya, Naoki; Hozawa, Atsushi; Kuriyama, Shinichi; Takayama, Shin; Seki, Takashi; Takeda, Takashi; Yaegashi, Nobuo; Ebihara, Satoru; Arai, Hiroyuki; Nagatomi, Ryoichi; Tsuji, Ichiro

    2010-06-01

    Diet is considered an important factor for bone health, but is composed of a wide variety of foods containing complex combinations of nutrients. Therefore we investigated the relationship between dietary patterns and fall-related fractures in the elderly. We designed a population-based prospective survey of 1178 elderly people in Japan in 2002. Dietary intake was assessed with a 75-item food frequency questionnaire (FFQ), from which dietary patterns were created by factor analysis from 27 food groups. The frequency of fall-related fracture was investigated based on insurance claim records from 2002 until 2006. The relationship between the incidence of fall-related fracture and modifiable factors, including dietary patterns, were examined. The Cox proportional hazards regression model was used to examine the relationships between dietary patterns and incidence of fall-related fracture with adjustment for age, gender, Body Mass Index (BMI) and energy intake. Among 877 participants who agreed to a 4 year follow-up, 28 suffered from a fall-related fracture. Three dietary patterns were identified: mainly vegetable, mainly meat and mainly traditional Japanese. The moderately confirmed (see statistical methods) groups with a Meat pattern showed a reduced risk of fall-related fracture (Hazard ratio = 0.36, 95% CI = 0.13 - 0.94) after adjustment for age, gender, BMI and energy intake. The Vegetable pattern showed a significant risk increase (Hazard ratio = 2.67, 95% CI = 1.03 - 6.90) after adjustment for age, gender and BMI. The Traditional Japanese pattern had no relationship to the risk of fall-related fracture. The results of this study have the potential to reduce fall-related fracture risk in elderly Japanese. The results should be interpreted in light of the overall low meat intake of the Japanese population.

  9. Laboratory investigation of shale rock to identify fracture propagation in vertical direction to bedding

    NASA Astrophysics Data System (ADS)

    Peng, Tan; Yan, Jin; Bing, Hou; Yingcao, Zhou; Ruxin, Zhang; Zhi, Chang; Meng, Fan

    2018-06-01

    Affected by beddings and natural fractures, fracture geometry in the vertical plane is complex in shale formation, which differs from a simple fracture in homogeneous sandstone reservoirs. However, the propagation mechanism of a hydraulic fracture in the vertical plane has not been well understood. In this paper, a true tri-axial pressure machine was deployed for shale horizontal well fracturing simulation experiments of shale outcrops. The effects of multiple factors on hydraulic fracture vertical propagation were studied. The results revealed that hydraulic fracture initiation and propagation displayed four basic patterns in the vertical plane of laminated shale formation. A hydraulic fracture would cross the beddings under the high vertical stress difference between a vertical stress and horizontal minimum stress of 12 MPa, while a hydraulic fracture propagates along the beddings under a low vertical stress difference of 3 MPa. Four kinds of fracture geometry, including a single main fracture, a nonplanar fracture, a complex fracture, and a complex fracture network, were observed due to the combined effects of flow rate and viscosity. Due to the influence of binding strength (or cementing strength) on the fracture communication effects between a hydraulic fracture and the beddings, the opening region of the beddings takes the shape of an ellipse.

  10. Surgery for scapula process fractures

    PubMed Central

    Anavian, Jack; Wijdicks, Coen A; Schroder, Lisa K; Vang, Sandy

    2009-01-01

    Background Generally, scapula process fractures (coracoid and acromion) have been treated nonoperatively with favorable outcome, with the exception of widely displaced fractures. Very little has been published, however, regarding the operative management of such fractures and the literature that is available involves very few patients. Our hypothesis was that operative treatment of displaced acromion and coracoid fractures is a safe and effective treatment that yields favorable surgical results. Methods We reviewed 26 consecutive patients (27 fractures) treated between 1998 and 2007. Operative indications for these process fractures included either a painful nonunion, a concomitant ipsilateral operative scapula fracture, ≥ 1 cm of displacement on X-ray, or a multiple disruption of the superior shoulder suspensory complex. All patients were followed until they were asymptomatic, displayed radiographic fracture union, and had recovered full motion with no pain. Patients and results 21 males and 5 females, mean age 36 (18–67) years, were included in the study. 18 patients had more than one indication for surgery. Of the 27 fractures, there were 13 acromion fractures and 14 coracoid fractures. 1 patient was treated for both a coracoid and an acromion fracture. Fracture patterns for the acromion included 6 acromion base fractures and 7 fractures distal to the base. Coracoid fracture patterns included 11 coracoid base fractures and 3 fractures distal to the base. Mean follow-up was 11 (2–42) months. All fractures united and all patients had recovered full motion with no pain at the time of final follow-up. 3 patients underwent removal of hardware due to irritation from hardware components that were too prominent. There were no other complications. Interpretation While most acromion and coracoid fractures can be treated nonoperatively with satisfactory results, operative management may be indicated for displaced fractures and double lesions of the superior shoulder suspensory complex. PMID:19857183

  11. 3D Numerical Modeling of the Propagation of Hydraulic Fracture at Its Intersection with Natural (Pre-existing) Fracture

    NASA Astrophysics Data System (ADS)

    Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram

    2017-02-01

    A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.

  12. Managing Complications of Calcaneus Fractures.

    PubMed

    Clare, Michael P; Crawford, William S

    2017-03-01

    Calcaneus fractures remain among the most complicated fractures for orthopedic surgeons to manage because of the complexity of various fracture patterns, the limited surrounding soft tissue envelope, and the prolonged rehabilitation issues impacting function after successful treatment. Despite this, appropriate management of complications associated with calcaneus fractures is critical for the complete care of this injury, whether treated operatively or nonoperatively. The authors present the common complications encountered with fractures of the calcaneus and management thereof. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Hydraulic fracture propagation modeling and data-based fracture identification

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.

  14. Batman-cracks. Observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.; Busschen, A. Ten; Ernst, L. J.

    1991-05-01

    To ensure mechanical strength of fiber reinforced plastics (FRP), good adhesion between fibers and the matrix is considered to be an essential requirement. An efficient test of fiber-matrix interface characterization is the fragmentation test which provides information about the interface slip mechanism. This test consists of the longitudinal loading of a single fiber which is embedded in a matrix specimen. At critical loads the fiber experiences fragmentation. This fragmentation will terminate depending upon the shear-slip strength of the fiber-matrix adhesion, which is inversely proportional to average fragment lengths. Depending upon interface strength characteristics either bond or slip matrix fracture can occur at the onset of fiber fracture. Certain particular features of matrix fracture are observed at the locations of fiber fracture in situations where there is sufficient interface bond strength. These refer to the development of fractures with a complex surface topography. The experimental procedure involved in the fragmentation tests is discussed and the boundary element technique to examine the development of multiple matrix fractures at the fiber fracture locations is examined. The mechanics of matrix fracture is examined. When bond integrity is maintained, a fiber fracture results in a matrix fracture. The matrix fracture topography in a fragmentation test is complex; however, simplified conoidal fracture patterns can be used to investigate the crack extension phenomena. Via a mixed-mode fracture criterion, the generation of a conoidal fracture pattern in the matrix is investigated. The numerical results compare favorably with observed experimental data derived from tests conducted on fragmentation test specimens consisting of a single glass fiber which is embedded in a polyester matrix.

  15. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Healy, David; Bond, Clare E.; Butler, Robert W. H.

    2018-03-01

    Understanding fracture network variation is fundamental in characterising fractured reservoirs. Simple relationships between fractures, stress and strain are commonly assumed in fold-thrust structures, inferring relatively homogeneous fracture patterns. In reality fractures are more complex, commonly appearing as heterogeneous networks at outcrop. We use the Achnashellach Culmination (NW Scotland) as an outcrop analogue to a folded tight sandstone reservoir in a thrust belt. We present fracture data is collected from four fold-thrust structures to determine how fracture connectivity, orientation, permeability anisotropy and fill vary at different structural positions. We use a 3D model of the field area, constructed using field observations and bedding data, and geomechanically restored using Move software, to determine how factors such as fold curvature and strain influence fracture variation. Fracture patterns in the Torridon Group are consistent and predictable in high strain forelimbs, however in low strain backlimbs fracture patterns are inconsistent. Heterogeneities in fracture connectivity and orientation in low strain regions do not correspond to fluctuations in strain or fold curvature. We infer that where strain is low, other factors such as lithology have a greater control on fracture formation. Despite unpredictable fracture attributes in low strain regions, fractured reservoir quality would be highest here because fractures in high strain forelimbs are infilled with quartz. Heterogeneities in fracture attribute data on fold backlimbs mean that fractured reservoir quality and reservoir potential is difficult to predict.

  16. Topological patterns of mesh textures in serpentinites

    NASA Astrophysics Data System (ADS)

    Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.

    2017-12-01

    Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.

  17. Contaminant transport in fractured rocks with significant matrix permeability, using natural fracture geometries

    NASA Astrophysics Data System (ADS)

    Odling, Noelle E.; Roden, Julie E.

    1997-09-01

    Some results from numerical models of flow and contaminant transport in fractured permeable rocks, where fractures are more conductive than rock matrix, are described. The 2D flow field in the fractured and permeable rock matrix is calculated using a finite difference, 'conductance mesh' method, and the contaminant transport is simulated by particle tracking methods using an advection-biased, random walk technique. The model is applied to simulated and naturally occurring fracture patterns. The simulated pattern is an en echelon array of unconnected fractures, as an example of a common, naturally occurring fracture geometry. Two natural fracture patterns are used: one of unconnected, sub-parallel fractures and one with oblique fracture sets which is well connected. Commonly occurring matrix permeability and fracture aperture values are chosen. The simulations show that the presence of fractures creates complex and heterogeneous flow fields and contaminant distribution in the permeable rock matrix. The modelling results have shown that some effects are non-intuitive and therefore difficult to foresee without the help of a model. With respect to contaminant transport rates and plume heterogeneity, it was found that fracture connectivity (crucial when the matrix is impermeable) can play a secondary role to fracture orientation and density. Connected fracture systems can produce smooth break-through curves of contaminants summed over, for example, a bore-hole length, whereas in detail the contaminant plume is spatially highly heterogeneous. Close to a constant-pressure boundary (e.g. an extraction bore-hole), flow and contaminants can be channelled by fractures. Thus observations at a bore-hole may suggest that contaminants are largely confined to the fracture system, when, in fact, significant contamination resides in the matrix.

  18. Management of pediatric mandibular fracture: a case series.

    PubMed

    Agarwal, Ravi M; Yeluri, Ramakrishna; Singh, Chanchal; Chaudhry, Kalpna; Munshi, Autar K

    2014-09-01

    A pediatric mandibular fracture can cause a child severe pain and the parent or caregiver extreme worry. While the pattern of fractures and associated injuries in children is similar to adults, the incidence is low. Due to a number of factors, including the anatomical complexity of the developing mandible in a child, management of such fractures differs from that of adults and can greatly challenge the pediatric dentist. Various treatment modalities of managing mandibular fracture are available, such as closed/open cap splint with circummandibular wiring, arch-bar fixation, and cementation of the cap splint. This article reviews 19 cases in the management of pediatric facial fracture using varied treatment methods.

  19. Deep Vadose Zone Flow and Transport Behavior at T-Tunnel Complex, Rainier Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Parashar, R.; Reeves, D. M.

    2010-12-01

    Rainier Mesa, a tuffaceous plateau on the Nevada National Security Site, has been the location of numerous subsurface nuclear tests conducted in a series of tunnel complexes located approximately 450 m below the top of the mesa and 500 m above the regional groundwater flow system. The tunnels were constructed near the middle of an 800 m Tertiary sequence of faulted, low-permeability welded and non-welded bedded, vitric, and zeolitized tuff units. Water levels from wells in the vicinity of the T-tunnel complex indicate the presence of a perched saturation zone located approximately 100 m above the T-tunnel complex. This upper zone of saturation extends downward through most of the Tertiary sequence. The groundwater table is located at an elevation of 1300 m within a thrust sheet of Paleozoic carbonates, corresponding to the lower carbonate aquifer hydrostratigraphic unit (LCA3). The LCA3 is considered to be hydraulically connected to the Death Valley regional flow system. The objective of this project is to simulate complex downward patterns of fluid flow and radionuclide transport from the T-tunnel complex through the matrix and fault networks of the Tertiary tuff units to the water table. We developed an improved fracture characterization and mapping methodology consisting of displacement-length scaling relationships, simulation of realistic fault networks based on site-specific data, and the development of novel fracture network upscaling techniques that preserves fracture network flow and transport properties on coarse continuum grid. Development of upscaling method for fracture continua is based on the concepts of discrete fracture network modeling approach which performs better at honoring network connectivity and anisotropy of sparse networks in comparison to other established methods such as a tensor approach. Extensive flow simulations in the dual-continuum framework demonstrate that the characteristics of fault networks strongly influences the saturation profile and formation of perched zones, although they may not conduct a large amount of flow when compared to the matrix continua. The simulated results are found to be very sensitive to distribution of fracture aperture, density of the network, and spatial pattern of fracture clustering. The faults provide rapid pathways for radionuclide transport and the conceptual modeling of diffusional mass transfer between matrix and fracture continua plays a vital role in prediction of the overall behavior of the breakthrough curve.

  20. [Conventional X-Rays of Ankle Joint Fractures in Older Patients are Not Always Predictive].

    PubMed

    Jubel, A; Faymonville, C; Andermahr, J; Boxberg, S; Schiffer, G

    2017-02-01

    Background: Ankle fractures are extremely common in the elderly, with an incidence of up to 39 fractures per 100,000 persons per year. We found a discrepancy between intraoperative findings and preoperative X-ray findings. It was suggested that many relevant lesions of the ankle joint in the elderly cannot be detected with plain X-rays. Methods: Complete data sets and preoperative X-rays of 84 patients aged above 60 years with ankle fractures were analysed retrospectively. There were 59 women and 25 men, with a mean age of 69.9 years. Operation reports and preoperative X-rays were analysed with respect to four relevant lesions: multifragmentary fracture pattern of the lateral malleolus, involvement of the medial malleolus, posterior malleolar fractures and bony avulsion of anterior syndesmosis. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy and prevalence were calculated. Results: The prevalence of specific ankle lesions in the analyzed cohort was 24 % for the multifragmentary fracture pattern of the lateral malleolus, 38 % for fractures of the medial malleolus, 25 % for posterior malleolar fractures and 22.6 % for bony avulsions of the anterior syndesmosis. Multifragmentary fracture patterns of the lateral malleolus (sensitivity 0 %) and bony avulsions of the anterior syndesmosis (sensitivity 5 %) could not be detected in plain X-rays of the ankle joint at all. Fractures of the medial malleolus and involvement of the dorsal tibial facet were detected with a sensitivity of 96.8 % and 76.2 %, respectively, and specificity of 100 % in both cases. Conclusions: This study confirms that complex fracture patterns, such as multifragmentary involvement of the lateral malleolus, additional fracture of the medial malleolus, involvement of the dorsal tibial facet or bony avulsion of the anterior syndesmosis are common in ankle fractures of the elderly. Therefore, CT scans should be routinely considered for primary diagnosis, in addition to plain X-rays. Georg Thieme Verlag KG Stuttgart · New York.

  1. Patterns of triangular fibrocartilage complex (TFCC) injury associated with severely dorsally displaced extra-articular distal radius fractures.

    PubMed

    Scheer, Johan H; Adolfsson, Lars E

    2012-06-01

    The aim of the study was to examine triangular fibrocartilage (TFCC) injury patterns associated with unstable, extra-articular dorsally displaced distal radius fractures. Twenty adult patients with an Arbeitsgemeinschaft für Osteosynthesefragen (AO), type A2 or A3, distal radius fracture with an initial dorsal angulation greater than 20° were included. Nine had a tip fracture (distal to the base) of the ulnar styloid and 11 had no such fracture. They were all openly explored from an ulnopalmar approach and TFCC injuries were documented. Eleven patients also underwent arthroscopy and intra-articular pathology was recorded. All patients had TFCC lesions of varying severity, having an extensor carpi ulnaris subsheath avulsion in common. Eighteen out of 20 also displayed deep foveal radioulnar ligament lesions, with decreasingly dorsal fibres remaining. The extent of this foveal injury could not be appreciated by radiocarpal arthroscopy. Severe displacement of an extra-articular radius fracture suggests an ulnar-sided ligament injury to the TFCC. The observed lesions concur with findings in a previous cadaver study. The lesions follow a distinct pattern affecting both radioulnar as well as ulnocarpal stabilisers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of air bags and restraining devices on the pattern of facial fractures in motor vehicle crashes.

    PubMed

    Simoni, Payman; Ostendorf, Robert; Cox, Artemus J

    2003-01-01

    To examine the relationship between the use of restraining devices and the incidence of specific facial fractures in motor vehicle crashes. Retrospective analysis of patients with facial fractures following a motor vehicle crash. University of Alabama at Birmingham Hospital level I trauma center from 1996 to 2000. Of 3731 patients involved in motor vehicle crashes, a total of 497 patients were found to have facial fractures as determined by International Classification of Diseases, Ninth Revision (ICD-9) codes. Facial fractures were categorized as mandibular, orbital, zygomaticomaxillary complex (ZMC), and nasal. Use of seat belts alone was more effective in decreasing the chance of facial fractures in this population (from 17% to 8%) compared with the use of air bags alone (17% to 11%). The use of seat belts and air bags together decreased the incidence of facial fractures from 17% to 5%. Use of restraining devices in vehicles significantly reduces the chance of incurring facial fractures in a severe motor vehicle crash. However, use of air bags and seat belts does not change the pattern of facial fractures greatly except for ZMC fractures. Air bags are least effective in preventing ZMC fractures. Improving the mechanics of restraining devices might be needed to minimize facial fractures.

  3. Complex association between body weight and fracture risk in postmenopausal women.

    PubMed

    Mpalaris, V; Anagnostis, P; Goulis, D G; Iakovou, I

    2015-03-01

    Osteoporosis is a common disease, characterized by low bone mass with micro-architectural disruption and skeletal fragility, resulting in an increased risk of fracture. A substantial number of studies has examined the possible relationship between body weight, bone mineral density and fracture risk in post-menopausal women, with the majority of them concluding that low body weight correlates with increased risk of fracture, especially hip fracture. Controversies about the potential protective effect of obesity on osteoporosis and consequent fracture risk still exist. Several recent studies question the concept that obesity exerts a protective effect against fractures, suggesting that it stands as a risk factor for fractures at specific skeletal sites, such as upper arm. The association between body weight and fracture risk is complex, differs across skeletal sites and body mass index, and is modified by the interaction between body weight and bone mineral density. Some potential explanations that link obesity with increased fracture risk may be the pattern of falls and impaired mobility in obese individuals, comorbidities, such as asthma, diabetes and early menopause, as well as, increased parathyroid hormone and reduced 25-hydroxy-vitamin D concentrations. © 2015 World Obesity.

  4. Fatal falls involving stairs: an anthropological analysis of skeletal trauma.

    PubMed

    Rowbotham, Samantha K; Blau, Soren; Hislop-Jambrich, Jacqueline; Francis, Victoria

    2018-06-01

    The skeletal blunt force trauma resulting from fatal falls involving stairs is complex. There are countless ways an individual may fall when stairs are involved, and thus a variety of ways the skeleton may fracture. Therefore anecdotally, it may be said that there is no specific skeletal trauma characteristic of this fall type. In order to scientifically investigate this anecdotal understanding, this study provides a detailed investigation of the skeletal fracture patterns and morphologies resulting from fatal falls involving stairs. Skeletal trauma was analyzed using the full-body postmortem computed tomography scans of 57 individuals who died from a fall involving stairs. Trauma was examined in the context of the variables that potentially influence how an individual falls (i.e. sex, age, body mass index, number of stairs involved, psychoactive drugs, pre-existing conditions, landing surface and manner of the fall) using logistic regression. Skeletal trauma primarily occurred in the axial skeleton. An analysis of fracture patterns showed the cranial base was less likely to fracture in younger individuals and the cervical vertebrae were more likely to fracture in falls that involved more than half a flight of stairs. A total of 56 fracture morphologies were identified. Of these, diastatic fractures were less likely to occur in older individuals. Findings indicate that there are skeletal fracture patterns and morphologies characteristic of a fatal fall involving stairs.

  5. Detection of Fracture Patterns Within the Southern Portion of a Residential Complex (Tepozanes), Los Reyes-La Paz County (Edo. de Mexico)

    NASA Astrophysics Data System (ADS)

    Chavez, R. E.; Arango, C.; Tejero, A.; Cifuentes, G.; Hernandez, E.

    2008-12-01

    Most of the urban zone within the Valley of Mexico is built on top of the sediments of the ancient lakes of Chalco, Xochimilco, Mexico, Texcoco, Xaltocan and Zumpango. The sediments that cover this great valley are mainly composed by highly saturated clay-sandy materials; which offer a weak resistance to the constructions built on top. In addition, the increasing need of water supply for the population living in the valley (~22 million inhabitants) has weakened the main groundwater aquifers. This has lead to a differentiated subsidence and collapse of buildings, habitation units and roads. These effects put in a serious risk the inhabitants and the infrastructure of the city. As an example, we present a case of an area located in a densely populated zone, within a low-income residential complex denominated Tepozanes. This is located in the Los Reyes-La Paz County (Mexico State), towards the southeastern portion of the Valley of Mexico. The area is geologically limited by the Chimalhuacan Hill to the N, by the Santa Catarina volcanic range to the S. The previously mentioned effects are evident in the constructions of some buildings, where an exposed fracture is found in the NE-SW direction. This feature is affecting the structure of one of them in the residential complex, where the fracture runs underneath. A geophysical study was proposed to characterize the subsoil and to define the fracturing patterns in the zone. The electrical resistivity tomography (ETR) method employing the capacitive and galvanic modes was used to define the fracturing patters and the position at depth of the saturated layers, which might affect the Residential buildings. As a complement, GPR (Ground Penetrating Radar) profiles were carried out on the same profiles to correlate the information obtained from the ETR capacitive method which has a better resolution in the shallower zone. The computed results show that the buildings foundations were set on top of a high resistivity layer (~1000 Ohm-m), with variable thickness (5 m to 20 m). This layer depicts important discontinuities that can be associated to fractures. Low resistivity sediments lie on top of the resistive horizon. This feature corresponds to saturated sediments (clays and sands) that due to the water flow tend to form areas with low mechanical resistance and vey high compressibility, producing subsidence, following the fracture pattern in the resistive layer. The GPR study defined the presence of small fractures to depths ranging between 1 m and 3 m, which can be correlated with the information provided by the capacitive method. A subsidence map was produced for the studied zone. The fracture pattern is found in the SW-NE direction, affecting the residential complex at the surrounding. Three exploratory wells were drilled within the studied area. The stratigraphy obtained correlated well with the electrical models.

  6. Fracture line morphology of complex proximal humeral fractures.

    PubMed

    Hasan, Afsana P; Phadnis, Joideep; Jaarsma, Ruurd L; Bain, Gregory I

    2017-10-01

    The aim of this study was to assess proximal humeral fracture patterns using 3-dimensional computed tomography images and relate them to the normal osseous landmarks and soft-tissue attachments. Forty-eight 3-dimensional computed tomography scans of proximal humeral fractures were retrospectively collected, and the fractures were transcribed onto proximal humeral templates. We analyzed the common location and orientation of the fracture lines, with a focus on fractures of the articular surface, tuberosities, metaphysis, and proximal diaphysis. These fractures were compared with the attachments of the rotator cuff and glenohumeral capsule. Fifty-two percent of the fractures involved the articular surface. No fractures passed through the bicipital groove, and fractures were more commonly found on the posterior lesser tuberosity and on the anterior greater tuberosity, coinciding with the intervals between the rotator cuff tendon insertions. Intracapsular fractures of the calcar were more common (68%) than extracapsular fractures (32%). On the anterolateral aspect of the proximal humerus, fractures radiated from the articular margin, vertically down through the tuberosity zone between the rotator cuff footprints, meeting horizontally oriented fractures in the metaphyseal zone. On the posterior aspect, vertical fractures from the tuberosity zone continued downward to the metaphyseal zone adjacent to the infraspinatus and teres minor footprints. Fractures of the proximal humerus follow characteristic patterns. Fractures frequently split the greater tuberosity and are closely related to the intervals of the rotator cuff attachments. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  7. Slow Recovery of Weight Bearing After Stabilization of Long-Bone Fractures Using Elastic Stable Intramedullary Nails in Children

    PubMed Central

    Lardelli, Patrizia; Frech-Dörfler, Martina; Holland-Cunz, Stefan; Mayr, Johannes

    2016-01-01

    Abstract Stabilization of diaphyseal long-bone fractures using elastic stable intramedullary nails (ESIN) in children promises early mobilization and rapid resumption of full weight bearing. We evaluated the duration of postoperative functional rehabilitation after ESIN, measured by the time from stabilization until first partial weight bearing, full weight bearing, and resumption of school sports. Fifty children with unstable, displaced fractures of the femur or lower leg treated with ESIN between 2002 and 2012 were included in this retrospective analysis. We classified fractures according to the pediatric comprehensive classification of fractures (PCCF). Thirty-five children sustained a femur fracture, and 15 children had a fracture of the lower leg or tibia. The surgeons in charge applied an additional plaster cast in 7 of 15 children who suffered a lower leg fracture. The postoperative time interval until full weight bearing in the group of children who had suffered transverse or short oblique femur fractures was significantly shorter (median: 4.4 weeks; range: 0.1–9.1 weeks) than that in the group who had sustained more complex fracture patterns (median: 6.8 weeks; range: 2.9–13.9 weeks; P = 0.04). Similarly, transverse and short oblique lower leg and tibia fractures required less time until full weight bearing (median: 4.1 weeks; range 2.7–6.0 weeks) than complex lower leg fractures (median: 6.1 weeks; range: 1.3–12.9 weeks; P = 0.04). ESIN proved fairly effective in restoring full weight bearing in transverse or short oblique fractures of the lower extremities but was less effective in complex fractures. PMID:26986106

  8. Slow Recovery of Weight Bearing After Stabilization of Long-Bone Fractures Using Elastic Stable Intramedullary Nails in Children.

    PubMed

    Lardelli, Patrizia; Frech-Dörfler, Martina; Holland-Cunz, Stefan; Mayr, Johannes

    2016-03-01

    Stabilization of diaphyseal long-bone fractures using elastic stable intramedullary nails (ESIN) in children promises early mobilization and rapid resumption of full weight bearing. We evaluated the duration of postoperative functional rehabilitation after ESIN, measured by the time from stabilization until first partial weight bearing, full weight bearing, and resumption of school sports. Fifty children with unstable, displaced fractures of the femur or lower leg treated with ESIN between 2002 and 2012 were included in this retrospective analysis. We classified fractures according to the pediatric comprehensive classification of fractures (PCCF). Thirty-five children sustained a femur fracture, and 15 children had a fracture of the lower leg or tibia. The surgeons in charge applied an additional plaster cast in 7 of 15 children who suffered a lower leg fracture. The postoperative time interval until full weight bearing in the group of children who had suffered transverse or short oblique femur fractures was significantly shorter (median: 4.4 weeks; range: 0.1-9.1 weeks) than that in the group who had sustained more complex fracture patterns (median: 6.8 weeks; range: 2.9-13.9 weeks; P = 0.04). Similarly, transverse and short oblique lower leg and tibia fractures required less time until full weight bearing (median: 4.1 weeks; range 2.7-6.0 weeks) than complex lower leg fractures (median: 6.1 weeks; range: 1.3-12.9 weeks; P = 0.04). ESIN proved fairly effective in restoring full weight bearing in transverse or short oblique fractures of the lower extremities but was less effective in complex fractures.

  9. Fracture patterns in the maxillofacial region: a four-year retrospective study

    PubMed Central

    2015-01-01

    Objectives The facial bones are the most noticeable area in the human body, and facial injuries can cause significant functional, aesthetic, and psychological complications. Continuous study of the patterns of facial bone fractures and changes in trends is helpful in the prevention and treatment of maxillofacial fractures. The purpose of the current clinico-statistical study is to investigate the pattern of facial fractures over a 4-year period. Materials and Methods A retrospective analysis of 1,824 fracture sites was carried out in 1,284 patients admitted to SMG-SNU Boramae Medical Center for facial bone fracture from January 2010 to December 2013. We evaluated the distributions of age/gender/season, fracture site, cause of injury, duration from injury to treatment, hospitalization period, and postoperative complications. Results The ratio of men to women was 3.2:1. Most fractures occurred in individuals aged between teens to 40s and were most prevalent at the middle and end of the month. Fractures occurred in the nasal bone (65.0%), orbital wall (29.2%), maxillary wall (15.3%), zygomatic arch (13.2%), zygomaticomaxillary complex (9.8%), mandibular symphysis (6.5%), mandibular angle (5.9%), mandibular condyle (4.9%), and mandibular body (1.9%). The most common etiologies were fall (32.5%) and assault (26.0%). The average duration of injury to treatment was 6 days, and the average hospitalization period was 5 days. Eighteen postoperative complications were observed in 17 patients, mainly infection and malocclusion in the mandible. Conclusion This study reflects the tendency for trauma in the Seoul metropolitan region because it analyzes all facial fracture patients who visited our hospital regardless of the specific department. Distinctively, in this study, midfacial fractures had a much higher incidence than mandible fractures. PMID:26734557

  10. Pattern of maxillofacial fractures in severe multiple trauma patients: a 7-year prospective study.

    PubMed

    Alves, La-Salete; Aragão, Irene; Sousa, Maria-José Carneiro; Gomes, Ernestina

    2014-01-01

    The incidence of facial trauma is high. This study has the primary objective of documenting and cataloging maxillofacial fractures in polytrauma patients. From a total of 1229 multiple trauma cases treated at the Emergency Room of the Santo Antonio Hospital - Oporto Hospital Center, Portugal, between August 2001 and December 2007, 251 patients had facial wounds and 209 had maxillofacial fractures. Aged ranged form 13 to 86 years. The applied selective method was based on the presence of facial wound with Abbreviated Injury Scale ≥1. Men had a higher incidence of maxillofacial fractures among multiple trauma patients (86.6%) and road traffic accidents were the primary cause of injuries (69.38%). Nasoorbitoethmoid complex was the most affected region (67.46%) followed by the maxilla (57.42%). The pattern and presentation of maxillofacial fractures had been studied in many parts of the world with varying results. Severe multiple trauma patients had different patterns of maxillofacial injuries. The number of maxillofacial trauma is on the rise worldwide as well as the incidence of associated sequelae. Maxillofacial fractures on multiple trauma patients were more frequent among males and in road traffic crashes. Knowing such data is elementary. The society should have a key role in the awareness of individuals and in prevention of road traffic accidents.

  11. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    USGS Publications Warehouse

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns. ?? 2006 Elsevier B.V. All rights reserved.

  12. A scoping review of biomechanical testing for proximal humerus fracture implants.

    PubMed

    Cruickshank, David; Lefaivre, Kelly A; Johal, Herman; MacIntyre, Norma J; Sprague, Sheila A; Scott, Taryn; Guy, Pierre; Cripton, Peter A; McKee, Michael; Bhandari, Mohit; Slobogean, Gerard P

    2015-07-30

    Fixation failure is a relatively common sequela of surgical management of proximal humerus fractures (PHF). The purpose of this study is to understand the current state of the literature with regard to the biomechanical testing of proximal humerus fracture implants. A scoping review of the proximal humerus fracture literature was performed, and studies testing the mechanical properties of a PHF treatment were included in this review. Descriptive statistics were used to summarize the characteristics and methods of the included studies. 1,051 proximal humerus fracture studies were reviewed; 67 studies met our inclusion criteria. The most common specimen used was cadaver bone (87%), followed by sawbones (7%) and animal bones (4%). A two-part fracture pattern was tested most frequently (68%), followed by three-part (23%), and four-part (8%). Implants tested included locking plates (52%), intramedullary devices (25%), and non-locking plates (25%). Hemi-arthroplasty was tested in 5 studies (7%), with no studies using reverse total shoulder arthroplasty (RTSA) implants. Torque was the most common mode of force applied (51%), followed by axial loading (45%), and cantilever bending (34%). Substantial testing diversity was observed across all studies. The biomechanical literature was found to be both diverse and heterogeneous. More complex fracture patterns and RTSA implants have not been adequately tested. These gaps in the current literature will need to be addressed to ensure that future biomechanical research is clinically relevant and capable of improving the outcomes of challenging proximal humerus fracture patterns.

  13. Repair of Acute Superficial Deltoid Complex Avulsion During Ankle Fracture Fixation in National Football League Players.

    PubMed

    Hsu, Andrew R; Lareau, Craig R; Anderson, Robert B

    2015-11-01

    Infolding and retraction of an avulsed deltoid complex after ankle fracture can be a source of persistent increased medial clear space, malreduction, and postoperative pain and medial instability. The purpose of this descriptive case series was to analyze the preliminary outcomes of acute superficial deltoid complex avulsion repair during ankle fracture fixation in a cohort of National Football League (NFL) players. We found that there is often complete avulsion of the superficial deltoid complex off the proximal aspect of the medial malleolus during high-energy ankle fractures in athletes. Between 2004 and 2014, the cases of 14 NFL players who underwent ankle fracture fixation with open deltoid complex repair were reviewed. Patients with chronic deltoid ligament injuries or ankle fractures more than 2 months old were excluded. Average age for all patients was 25 years and body mass index 34.4. Player positions included 1 wide receiver, 1 tight end, 1 safety, 1 running back, 1 linebacker, and 9 offensive linemen. Average time from injury to surgery was 7.5 days. Surgical treatment for all patients consisted of ankle arthroscopy and debridement, followed by fibula fixation with plate and screws, syndesmotic fixation with suture-button devices, and open deltoid complex repair with suture anchors. Patient demographics were recorded with position played, time from injury to surgery, games played before and after surgery, ability to return to play, and postoperative complications. Return to play was defined as the ability to successfully participate in at least 1 full regular-season NFL game after surgery. All NFL players were able to return to running and cutting maneuvers by 6 months after surgery. There were no significant differences in playing experience before surgery versus after surgery. Average playing experience before surgery was 3.3 seasons, 39 games played, and 22 games started. Average playing experience after surgery was 1.6 seasons, 16 games played, and 15 games started. Return to play was 86% for all players. There were no intraoperative or postoperative complications noted, and no players had clinical evidence of medial pain or instability at final follow-up with radiographic maintenance of anatomic mortise alignment. Superficial deltoid complex avulsion during high-energy ankle fractures in athletes is a distinct injury pattern that should be recognized and may benefit from primary open repair. The majority of NFL players treated surgically for this injury pattern are able to return to play after surgery with no reported complications or persistent medial ankle pain or instability. Level IV, retrospective case series. © The Author(s) 2015.

  14. [Arthroscopically Assisted Minimally Invasive Fixation of a Type D2c Scapular Fracture].

    PubMed

    Kornherr, Patrick; Konerding, Christiane; Kovacevic, Mark; Wenda, Klaus

    2018-06-12

    Fractures of the scapula are rare and have an incidence of 1% of all fractures. Publications highlight glenoid rim fractures. Classification by Ideberg and Euler and Rüdi are accepted. Euler and Rüdi describe three extra-articular and two intra-articular fracture patterns. The indications for surgery are displaced glenoid fractures, scapula tilt of more than 40° and injuries to the superior shoulder suspensory complex. We describe a case of a 22 year old man, who while cycling collided with a moving car due to wet roads. After his admission to hospital as a polytraumatised patient, the trauma CT-Scan showed haemothorax with several associated rip fractures, displaced humeral shaft fracture and fractures of the acromion and glenoid, classified as type D2c according to Euler and Rüdi. Following damage control principles, drainage of the haemothorax was already performed in the ER and surgical treatment of the displaced humeral shaft fracture was performed on the day of admission. No peripheral neurological deficits were evident. After pulmonary stabilisation, surgery was performed 6 days later on the glenoid and acromion fracture, which in conjunction may be regarded as an injury to the superior shoulder suspensory complex. We performed an arthroscopically-assisted screw fixation of the glenoid fracture (type D2c according to Euler and Rüdi) and an ORIF procedure at the acromion. Postoperative rehabilitation was performed with passive abduction and elevation up to 90° for the first two weeks and active abduction an elevation up to 90° for weeks 3 to 6. Full ROM was allowed at week 7. Articular fractures of the glenoid are rare and mainly seen as rim fractures. The indications for surgery are displaced articular fractures and injury to the superior shoulder suspensory complex. As demonstrated by this article, type D2c fractures according to Euler and Rüdi can be treated effectively as an arthroscopically-assisted screw fixation procedure. Georg Thieme Verlag KG Stuttgart · New York.

  15. Fault and fracture patterns around a strike-slip influenced salt wall

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Weinberger, R.; Marco, S.; Levi, T.

    2018-01-01

    The trends of faults and fractures in overburden next to a salt diapir are generally considered to be either parallel to the salt margin to form concentric patterns, or at right angles to the salt contact to create an overall radial distribution around the diapir. However, these simple diapir-related patterns may become more complex if regional tectonics influences the siting and growth of a diapir. Using the Sedom salt wall in the Dead Sea Fault system as our case study, we examine the influence of regional strike-slip faulting on fracture patterns around a salt diapir. This type of influence is important in general as the distribution and orientation of fractures on all scales may influence permeability and hence control fluid and hydrocarbon flow. Fractures adjacent to the N-S trending salt wall contain fibrous gypsum veins and injected clastic dykes, attesting to high fluid pressures adjacent to the diapir. Next to the western flank of the salt wall, broad (∼1000 m) zones of upturn or 'drape folds' are associated with NW-SE striking conjugate extensional fractures within the overburden. Within 300 m of the salt contact, fracture patterns in map view display a progressive ∼30°-35° clockwise rotation with more NNW-SSE strikes immediately adjacent to the salt wall. While some extensional faults display growth geometries, indicating that they were syn-depositional and initiated prior to tilting of beds associated with drape folding, other fractures display increasing dips towards the salt, suggesting that they have formed during upturn of bedding near the diapir. These observations collectively suggest that many fractures developed to accommodate rotation of beds during drape folding. Extensional fractures in the overburden define a mean strike that is ∼45° anticlockwise (counter-clockwise) of the N-S trending salt wall, and are therefore consistent with sinistral transtension along the N-S trending Sedom Fault that underlies the salt wall. Our outcrop analysis reveals fracture geometries that are related to both tilting of beds during drape folding, and regional strike-slip tectonics. The presence of faults and fractures that interact with drape folds suggests that deformation in overburden next to salt cannot be simply pigeon-holed into 'end-member' scenarios of purely brittle faulting or viscous flow.

  16. Modeling OPC complexity for design for manufacturability

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong

    2005-11-01

    Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data from OPC and mask data preparation runs, we build models of FC as function of OPC tolerances and layout parameters.

  17. Nonlinear Fluid Migration Patterns in Fractured Reservoirs due to Stress-Pressure Coupling induced Changes in Reservoir Permeabilities

    NASA Astrophysics Data System (ADS)

    Annewandter, R.; Geiger, S.; Main, I. G.

    2011-12-01

    Sustainable storage of carbon dioxide (CO2) requires a thorough understanding of injection induced pressure build-up and its effects on the storage formation's integrity, since it determines the cap rock's sealing properties as well as the total storable amount of carbon dioxide. Fractures are abundant in the subsurface and difficult to detect due to their subseismic characteristic. If present in the cap during injection, they can be primary pathways for CO2 leakage. The North Sea is considered as Europe's most important carbon dioxide storage area. However, almost all of the potential storage formations have been exposed to post-glacial lithospheric flexure, possibly causing the generation of new fracture networks in the overburden whilst rebounding. Drawing upon, fast carbon dioxide uprise can be facilitated due to opening of fractures caused by changes in the stress field over time. The overall effective permeability, and hence possible leakage rates, of a fractured storage formation is highly sensitive to the fracture aperture which itself depends on the far field and in situ stress field. For this reason, our in-house general purpose reservoir simulator Complex System Modeling Platform (CSMP++) has been expanded, which is particularly designed to simulate multiphase flow on fractured porous media. It combines finite element (FE) and finite volume (FV) methods on mixed-dimensional hybrid-element meshes. The unstructured FE-FV based scheme allows us to model complex geological structures, such as fractures, at great detail. The simulator uses a compositional model for NaCl-H2O-CO2-systems for compressible fluids for computing thermophysical properties as a function of formation pressure and temperature. A fixed stress-split sequential procedure is being used to calculate coupled fluid flow and geomechanics. Numerical proof of concept studies will be presented showing the impact of fracture opening and closure on fluid migration patterns due to coupled stress-pressure induced changes in effective permeabilities.

  18. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle.

    PubMed

    Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen

    2013-06-01

    The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Lineament and polygon patterns on Europa

    NASA Technical Reports Server (NTRS)

    Pieri, D. C.

    1981-01-01

    A classification scheme is presented for the lineaments and associated polygonal patterns observed on the surface of Europa, and the frequency distribution of the polygons is discussed in terms of the stress-relief fracturing of the surface. The lineaments are divided on the basis of albedo, morphology, orientation and characteristic geometry into eight groups based on Voyager 2 images taken at a best resolution of 4 km. The lineaments in turn define a system of polygons varying in size from small reticulate patterns the limit of resolution to 1,000,000 sq km individuals. Preliminary analysis of polygon side frequency distributions reveals a class of polygons with statistics similar to those found in complex terrestrial terrains, particularly in areas of well-oriented stresses, a class with similar statistics around the antijovian point, and a class with a distribution similar to those seen in terrestrial tensional fracture patterns. Speculations concerning the processes giving rise to the lineament patterns are presented.

  20. A new approach to fracture modelling in reservoirs using deterministic, genetic and statistical models of fracture growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawnsley, K.; Swaby, P.

    1996-08-01

    It is increasingly acknowledged that in order to understand and forecast the behavior of fracture influenced reservoirs we must attempt to reproduce the fracture system geometry and use this as a basis for fluid flow calculation. This article aims to present a recently developed fracture modelling prototype designed specifically for use in hydrocarbon reservoir environments. The prototype {open_quotes}FRAME{close_quotes} (FRActure Modelling Environment) aims to provide a tool which will allow the generation of realistic 3D fracture systems within a reservoir model, constrained to the known geology of the reservoir by both mechanical and statistical considerations, and which can be used asmore » a basis for fluid flow calculation. Two newly developed modelling techniques are used. The first is an interactive tool which allows complex fault surfaces and their associated deformations to be reproduced. The second is a {open_quotes}genetic{close_quotes} model which grows fracture patterns from seeds using conceptual models of fracture development. The user defines the mechanical input and can retrieve all the statistics of the growing fractures to allow comparison to assumed statistical distributions for the reservoir fractures. Input parameters include growth rate, fracture interaction characteristics, orientation maps and density maps. More traditional statistical stochastic fracture models are also incorporated. FRAME is designed to allow the geologist to input hard or soft data including seismically defined surfaces, well fractures, outcrop models, analogue or numerical mechanical models or geological {open_quotes}feeling{close_quotes}. The geologist is not restricted to {open_quotes}a priori{close_quotes} models of fracture patterns that may not correspond to the data.« less

  1. Biomechanical investigation of naso-orbitoethmoid trauma by finite element analysis.

    PubMed

    Huempfner-Hierl, Heike; Schaller, Andreas; Hemprich, Alexander; Hierl, Thomas

    2014-11-01

    Naso-orbitoethmoid fractures account for 5% of all facial fractures. We used data derived from a white 34-year-old man to make a transient dynamic finite element model, which consisted of about 740 000 elements, to simulate fist-like impacts to this anatomically complex area. Finite element analysis showed a pattern of von Mises stresses beyond the yield criterion of bone that corresponded with fractures commonly seen clinically. Finite element models can be used to simulate injuries to the human skull, and provide information about the pathogenesis of different types of fracture. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Gas-Driven Fracturing of Saturated Granular Media

    NASA Astrophysics Data System (ADS)

    Campbell, James M.; Ozturk, Deren; Sandnes, Bjørnar

    2017-12-01

    Multiphase flows in deformable porous materials are important in numerous geological and geotechnical applications; however, the complex flow behavior makes subsurface transport processes difficult to control—or even characterize. Here, we study gas-driven (pneumatic) fracturing of a wet unconsolidated granular packing confined in a Hele-Shaw cell, and we present an in-depth analysis of both pore-scale phenomena and large-scale pattern formation. The process is governed by a complex interplay among pressure, capillary, frictional, and viscous forces. At low gas-injection rates, fractures grow in a stick-slip fashion and branch out to form a simply connected network. We observe the emergence of a characteristic length scale—the separation distance between fracture branches—creating an apparent uniform spatial fracture density. We conclude that the well-defined separation distance is the result of local compaction fronts surrounding fractures and keeping them apart. A scaling argument is presented that predicts fracture density as a function of granular friction, grain size, and capillary interactions. We study the influence of the gas-injection rate and find that the system undergoes a fluidization transition above a critical injection rate, resulting in directional growth of the fractures, and a fracture density that increases with an increasing rate. A dimensionless fluidization number F is defined as the ratio of viscous to frictional forces, and our experiments reveal a frictional regime for F <1 characterized by stick-slip, rate-independent growth, with a transition to a viscous regime (F >1 ) characterized by continuous growth in several fracture branches simultaneously.

  3. A Computational/Experimental Platform for Investigating Three-Dimensional Puzzle Solving of Comminuted Articular Fractures

    PubMed Central

    Thomas, Thaddeus P.; Anderson, Donald D.; Willis, Andrew R.; Liu, Pengcheng; Frank, Matthew C.; Marsh, J. Lawrence; Brown, Thomas D.

    2011-01-01

    Reconstructing highly comminuted articular fractures poses a difficult surgical challenge, akin to solving a complicated three-dimensional (3D) puzzle. Pre-operative planning using CT is critically important, given the desirability of less invasive surgical approaches. The goal of this work is to advance 3D puzzle solving methods toward use as a pre-operative tool for reconstructing these complex fractures. Methodology for generating typical fragmentation/dispersal patterns was developed. Five identical replicas of human distal tibia anatomy, were machined from blocks of high-density polyetherurethane foam (bone fragmentation surrogate), and were fractured using an instrumented drop tower. Pre- and post-fracture geometries were obtained using laser scans and CT. A semi-automatic virtual reconstruction computer program aligned fragment native (non-fracture) surfaces to a pre-fracture template. The tibias were precisely reconstructed with alignment accuracies ranging from 0.03-0.4mm. This novel technology has potential to significantly enhance surgical techniques for reconstructing comminuted intra-articular fractures, as illustrated for a representative clinical case. PMID:20924863

  4. FracPaQ: a MATLAB™ Toolbox for the Quantification of Fracture Patterns

    NASA Astrophysics Data System (ADS)

    Healy, D.; Rizzo, R. E.; Cornwell, D. G.; Timms, N.; Farrell, N. J.; Watkins, H.; Gomez-Rivas, E.; Smith, M.

    2016-12-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying the fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The method presented is inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. Planned future releases will incorporate multi-scale analyses based on a wavelet method to look for scale transitions, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern.

  5. Fractal Interrelationships in Field and Seismic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.H.; Dominic, Jovita; Halverson, Joel

    1997-10-01

    Size scaling interrelationships are evaluated in this study using a fractal model. Fractal models of several geologic variables are examined and include fracture patterns, reflection travel times, structural relief, drainage, topographic relief and active fault patterns. The fractal properties of structural relief inferred from seismic data and structural cross sections provide a quantitative means to characterize and compare complex structural patterns. Studies were conducted using seismic data from the Granny Creek oil field in the Appalachian Plateau. Previous studies of the field reveal that subtle detached structures present on the limb of a larger structure are associated with enhanced productionmore » from the field. Vertical increases of fractal dimension across the zone of detachment provide a measure of the extent to which detachment has occurred. The increases of fractal dimension are greatest in the more productive areas of the field. A result with equally important ramifications is that fracture systems do not appear to be intrinsically fractal as is often suggested in the literature. While examples of nearly identical patterns can be found at different scales supporting the idea of self-similarity, these examples are often taken from different areas and from different lithologies. Examination of fracture systems at different scales in the Valley and Ridge Province suggest that their distribution become increasingly sparse with scale reduction, and therefore are dissimilar or non-fractal. Box counting data in all cases failed to yield a fractal regime. The results obtained from this analysis bring into question the general applicability of reservoir simulations employing fractal models of fracture distribution. The same conclusions were obtained from the analysis of 1D fracture patterns such as those that might appear in a horizontal well.« less

  6. Pattern of Cortical Fracture following Corticotomy for Distraction Osteogenesis.

    PubMed

    Luvan, M; Kanthan, S R; Roshan, G; Saw, A

    2015-11-01

    Corticotomy is an essential procedure for deformity correction and there are many techniques described. However there is no proper classification of the fracture pattern resulting from corticotomies to enable any studies to be conducted. We performed a retrospective study of corticotomy fracture patterns in 44 patients (34 tibias and 10 femurs) performed for various indications. We identified four distinct fracture patterns, Type I through IV classification based on the fracture propagation following percutaneous corticotomy. Type I transverse fracture, Type II transverse fracture with a winglet, Type III presence of butterfly fragment and Type IV fracture propagation to a fixation point. No significant correlation was noted between the fracture pattern and the underlying pathology or region of corticotomy.

  7. [Surgical approaches to tibial plateau fractures].

    PubMed

    Krause, Matthias; Müller, Gunnar; Frosch, Karl-Heinz

    2018-06-06

    Intra-articular tibial plateau fractures can present a surgical challenge due to complex injury patterns and compromised soft tissue. The treatment goal is to spare the soft tissue and an anatomical reconstruction of the tibial articular surface. Depending on the course of the fracture, a fracture-specific access strategy is recommended to provide correct positioning of the plate osteosynthesis. While the anterolateral approach is used in the majority of lateral tibial plateau fractures, only one third of the joint surface is visible; however, posterolateral fragments require an individual approach, e. g. posterolateral or posteromedial. If necessary, osteotomy of the femoral epicondyles can improve joint access for reduction control. Injuries to the posterior columns should be anatomically reconstructed and biomechanically correctly addressed via posterior approaches. Bony posterior cruciate ligament tears can be refixed via a minimally invasive posteromedial approach.

  8. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  9. My Experience as a Foot and Ankle Trauma Surgeon in Montreal, Canada: What's Not in the Books.

    PubMed

    Leduc, Stéphane; Nault, Marie-Lyne; Rouleau, Dominique M; Hebert-Davies, Jonah

    2016-06-01

    Foot and ankle fractures are sometimes seen as routine and easy to treat. However, many fractures vary from typical patterns and require more complex management. Obtaining good outcomes in these situations can be challenging. Often, the difference between average and good results has to do with preoperative planning and good surgical technique. This article outlines numerous techniques and tricks that are not always mentioned in classic textbooks. It focuses on ankle, talus, calcaneus, and midfoot fractures, and discusses numerous techniques and aids to avoid potential problems that may be encountered intraoperatively. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Fracture-permeability behavior of shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, J. William; Lei, Zhou; Rougier, Esteban

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  11. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; ...

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  12. FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern expressed as a 2nd rank crack tensor.

  13. A linearized microstructural model for hydraulic conductivity evolution due to brittle damage: application to Hydraulic Fracturing treatments

    NASA Astrophysics Data System (ADS)

    Caramiello, G.; Montanino, A.; Della Vecchia, G., Sr.; Pandolfi, A., Sr.

    2017-12-01

    Among the features of geological structures, fractures and discontinuities play a dominant role, due to their significant influence on both the hydraulic and the mechanical behavior of the rock mass. Despite the current availability of fault and fracture mappings, the understanding of the influence of faults on fluid flow is nowadays not satisfactory, in particular when hydro-mechanical coupling is significant. In engineering technology fracture processes are often exploited. Hydraulic fracturing is one of the most important example. Hydraulic fracturing is a process characterized by the inception and propagation of fractures as a consequence of a hydraulic driven solicitation and it is used to improve the production and optimize well stimulation in low permeability reservoirs. Due to the coupling of several different phenomena (hydro-thermo-chemical coupling) there is not a reliable complete mathematical model able to simulate in a proper way the process. To design hydraulic fracturing treatments, it is necessary to predict the growth of fracture geometry as a function of treatment parameters. In this contribution we present a recently developed model of brittle damage of confined rock masses, with particular emphasis on the influence of mechanical damage on the evolution of porosity and permeability. The model is based on an explicit micromechanical construction of connected patterns of parallel equi-spaced cracks. A relevant feature of the model is that the fracture patterns are not arbitrary, but their inception, orientation and spacing follow from energetic consideration. The model, based on the Terzaghi effective stress concepts, has been then implemented into a coupled hydro-mechanical finite element code, where the linear momentum and the fluid mass balance equations are numerically solved via a staggered approach. The coupled code is used to simulate fracturing processes induced by an increase in pore pressure. The examples show the capability of the model in reproducing three-dimensional multiscale complex fracture patterns and permeability enhancement in the damaged porous medium. The numerical code, has been used to verify the influence of the distance between the different perforation slots as well of the wellbore-deviation from the minimum stress axis on the propagation of multiple.

  14. Hydraulic Fracturing Mineback Experiment in Complex Media

    NASA Astrophysics Data System (ADS)

    Green, S. J.; McLennan, J. D.

    2012-12-01

    Hydraulic fracturing (or "fracking") for the recovery of gas and liquids from tight shale formations has gained much attention. This operation which involves horizontal well drilling and massive hydraulic fracturing has been developed over the last decade to produce fluids from extremely low permeability mudstone and siltstone rocks with high organic content. Nearly thirteen thousand wells and about one hundred and fifty thousand stages within the wells were fractured in the US in 2011. This operation has proven to be successful, causing hundreds of billions of dollars to be invested and has produced an abundance of natural gas and is making billions of barrels of hydrocarbon liquids available for the US. But, even with this commercial success, relatively little is clearly known about the complexity--or lack of complexity--of the hydraulic fracture, the extent that the newly created surface area contacts the high Reservoir Quality rock, nor the connectivity and conductivity of the hydraulic fractures created. To better understand this phenomena in order to improve efficiency, a large-scale mine-back experiment is progressing. The mine-back experiment is a full-scale hydraulic fracture carried out in a well-characterized environment, with comprehensive instrumentation deployed to measure fracture growth. A tight shale mudstone rock geologic setting is selected, near the edge of a formation where one to two thousand feet difference in elevation occurs. From the top of the formation, drilling, well logging, and hydraulic fracture pumping will occur. From the bottom of the formation a horizontal tunnel will be mined using conventional mining techniques into the rock formation towards the drilled well. Certain instrumentation will be located within this tunnel for observations during the hydraulic fracturing. After the hydraulic fracturing, the tunnel will be extended toward the well, with careful mapping of the created hydraulic fracture. Fracturing fluid will be traceable, as will injected proppant, in order to demarcate in-situ fracture paths and fluid and proppant progression. This underground experiment is referred to as a "mine-back experiment". Several mine-back experiments have been conducted in the past, and have demonstrated complex, diffuse fracture systems in coals and bundled fracture systems in some sandstones. No mine-back experiment has been conducted in the tight shales; but, economics and environmental considerations dictate that more definitive measurements will be extremely helpful to establish fracture growth patterns and to validate monitoring methods such as micro-seismic measurements. This presentation discusses the mine-back experiment and presents details of geologic setting, hydraulic fracturing, and the excavation required before and after the hydraulic fracture. The mine-back experiment will provide ground-truth assessment of hydraulic fracturing, geologic forecasting, micro-seismicity, and other information.

  15. Pattern of Cortical Fracture following Corticotomy for Distraction Osteogenesis

    PubMed Central

    Luvan, M; Roshan, G; Saw, A

    2015-01-01

    Corticotomy is an essential procedure for deformity correction and there are many techniques described. However there is no proper classification of the fracture pattern resulting from corticotomies to enable any studies to be conducted. We performed a retrospective study of corticotomy fracture patterns in 44 patients (34 tibias and 10 femurs) performed for various indications. We identified four distinct fracture patterns, Type I through IV classification based on the fracture propagation following percutaneous corticotomy. Type I transverse fracture, Type II transverse fracture with a winglet, Type III presence of butterfly fragment and Type IV fracture propagation to a fixation point. No significant correlation was noted between the fracture pattern and the underlying pathology or region of corticotomy. PMID:28611907

  16. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  17. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  18. Tectonic analysis of folds in the Colorado plateau of Arizona

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1975-01-01

    Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.

  19. Partial proximal tibia fractures

    PubMed Central

    Raschke, Michael J.; Kittl, Christoph; Domnick, Christoph

    2017-01-01

    Partial tibial plateau fractures may occur as a consequence of either valgus or varus trauma combined with a rotational and axial compression component. High-energy trauma may result in a more complex and multi-fragmented fracture pattern, which occurs predominantly in young people. Conversely, a low-energy mechanism may lead to a pure depression fracture in the older population with weaker bone density. Pre-operative classification of these fractures, by Müller AO, Schatzker or novel CT-based methods, helps to understand the fracture pattern and choose the surgical approach and treatment strategy in accordance with estimated bone mineral density and the individual history of each patient. Non-operative treatment may be considered for non-displaced intra-articular fractures of the lateral tibial condyle. Intra-articular joint displacement ⩾ 2 mm, open fractures or fractures of the medial condyle should be reduced and fixed operatively. Autologous, allogenic and synthetic bone substitutes can be used to fill bone defects. A variety of minimally invasive approaches, temporary osteotomies and novel techniques (e.g. arthroscopically assisted reduction or ‘jail-type’ screw osteosynthesis) offer a range of choices for the individual and are potentially less invasive treatments. Rehabilitation protocols should be carefully planned according to the degree of stability achieved by internal fixation, bone mineral density and other patient-specific factors (age, compliance, mobility). To avoid stiffness, early functional mobilisation plays a major role in rehabilitation. In the elderly, low-energy trauma and impression fractures are indicators for the further screening and treatment of osteoporosis. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160067. Originally published online at www.efortopenreviews.org PMID:28630761

  20. Tectonic lineations and frictional faulting on a relatively simple body (Ariel)

    NASA Astrophysics Data System (ADS)

    Nyffenegger, Paul; Davis, Dan M.; Consolmagno, Guy J.

    1997-09-01

    Anderson's model of faulting and the Mohr-Coulomb failure criterion can predict the orientations of faults generated in laboratory triaxial compression experiments, but do a much poorer job of explaining the orientations of outcrop- and map-scale faults on Earth. This failure may be due to the structural complexity of the Earth's lithosphere, the failure of laboratory experiments to predict accurately the strength of natural faults, or some fundamental flaw in the model. A simpler environment, such as the lithosphere of an icy satellite, allows us to test whether this model can succeed in less complex settings. A mathematical method is developed to analyze patterns in fracture orientations that can be applied to fractures in the lithospheres of icy satellites. In a initial test of the method, more than 300 lineations on Uranus' satellite Ariel are examined. A nonrandom pattern of lineations is looked for, and the source of the stresses that caused those features and the strength of the material in which they occur are constrained. It is impossible to observe directly the slip on these fractures. However, their orientations are clearly nonrandom and appear to be consistent with Andersonian strike-slip faulting in a relatively weak frictional lithosphere during one or more episodes of tidal flexing.

  1. An elasto-plastic fracture mechanics based model for assessment of hydride embrittlement in zircaloy cladding tubes

    NASA Astrophysics Data System (ADS)

    Nilsson, Karl-Fredrik; Jakšić, Nikola; Vokál, Vratko

    2010-01-01

    This paper describes a finite element based fracture mechanics model to assess how hydrides affect the integrity of zircaloy cladding tubes. The hydrides are assumed to fracture at a low load whereas the propagation of the fractured hydrides in the matrix material and failure of the tube is controlled by non-linear fracture mechanics and plastic collapse of the ligaments between the hydrides. The paper quantifies the relative importance of hydride geometrical parameters such as size, orientation and location of individual hydrides and interaction between adjacent hydrides. The paper also presents analyses for some different and representative multi-hydride configurations. The model is adaptable to general and complex crack configurations and can therefore be used to assess realistic hydride configurations. The mechanism of cladding failure is by plastic collapse of ligaments between interacting fractured hydrides. The results show that the integrity can be drastically reduced when several radial hydrides form continuous patterns.

  2. Fault and fracture patterns in low porosity chalk and their potential influence on sub-surface fluid flow-A case study from Flamborough Head, UK

    NASA Astrophysics Data System (ADS)

    Sagi, D. A.; De Paola, N.; McCaffrey, K. J. W.; Holdsworth, R. E.

    2016-10-01

    To better understand fault zone architecture and fluid flow in mesoscale fault zones, we studied normal faults in chalks with displacements up to 20 m, at two representative localities in Flamborough Head (UK). At the first locality, chalk contains cm-thick, interlayered marl horizons, whereas at the second locality marl horizons were largely absent. Cm-scale displacement faults at both localities display ramp-flat geometries. Mesoscale fault patterns in the marl-free chalk, including a larger displacement fault (20 m) containing multiple fault strands, show widespread evidence of hydraulically-brecciated rocks, whereas clays smears along fault planes, and injected into open fractures, and a simpler fault zone architecture is observed where marl horizons are present. Hydraulic brecciation and veins observed in the marl-free chalk units suggest that mesoscale fault patterns acted as localized fault conduit allowing for widespread fluid flow. On the other hand, mesoscale fault patterns developed in highly fractured chalk, which contains interlayered marl horizons can act as localized barriers to fluid flow, due to the sealing effect of clays smears along fault planes and introduced into open fractures in the damage zone. To support our field observations, quantitative analyses carried out on the large faults suggest a simple fault zone in the chalk with marl units with fracture density/connectivity decreasing towards the protolith. Where marls are absent, density is high throughout the fault zone, while connectivity is high only in domains nearest the fault core. We suggest that fluid flow in fractured chalk is especially influenced by the presence of marls. When present, it can smear onto fault planes, forming localised barriers. Fluid flow along relatively large displacement faults is additionally controlled by the complexity of the fault zone, especially the size/geometry of weakly and intensely connected damage zone domains.

  3. Determination of Fracture Patterns in Glass and Glassy Polymers.

    PubMed

    Baca, Allison C; Thornton, John I; Tulleners, Frederic A

    2016-01-01

    The study of fractures of glass, glassy-type materials, and plastic has long been of interest to the forensic community. The focus of this interest has been the use of glass and polymer fractures to associate items of evidence under the assumption that each fracture is different. Generally, it is well-accepted that deviations exist; however, the emphasis has been on classifying and predicting fracture rather than determining that each fracture is different. This study documented the controlled fracture patterns of 60 glass panes, 60 glass bottles, and 60 plastic tail light lens covers using both dynamic impact and static pressure methods under closely controlled conditions. Each pattern was intercompared, and based on the limited specimens tested in this study, the results illustrate that the fracture patterns are different. Further repetitive studies, under controlled conditions, will be needed to provide more statistical significance to the theory that each fracture forms a nonreproducible fracture pattern. © 2015 American Academy of Forensic Sciences.

  4. Classification of Porcine Cranial Fracture Patterns Using a Fracture Printing Interface,.

    PubMed

    Wei, Feng; Bucak, Serhat Selçuk; Vollner, Jennifer M; Fenton, Todd W; Jain, Anil K; Haut, Roger C

    2017-01-01

    Distinguishing between accidental and abusive head trauma in children can be difficult, as there is a lack of baseline data for pediatric cranial fracture patterns. A porcine head model has recently been developed and utilized in a series of studies to investigate the effects of impact energy level, surface type, and constraint condition on cranial fracture patterns. In the current study, an automated pattern recognition method, or a fracture printing interface (FPI), was developed to classify cranial fracture patterns that were associated with different impact scenarios documented in previous experiments. The FPI accurately predicted the energy level when the impact surface type was rigid. Additionally, the FPI was exceedingly successful in determining fractures caused by skulls being dropped with a high-level energy (97% accuracy). The FPI, currently developed on the porcine data, may in the future be transformed to the task of cranial fracture pattern classification for human infant skulls. © 2016 American Academy of Forensic Sciences.

  5. Real-World Rib Fracture Patterns in Frontal Crashes in Different Restraint Conditions.

    PubMed

    Lee, Ellen L; Craig, Matthew; Scarboro, Mark

    2015-01-01

    The purpose of this study was to use the detailed medical injury information in the Crash Injury Research and Engineering Network (CIREN) to evaluate patterns of rib fractures in real-world crash occupants in both belted and unbelted restraint conditions. Fracture patterns binned into rib regional levels were examined to determine normative trends associated with belt use and other possible contributing factors. Front row adult occupants with Abbreviated Injury Scale (AIS) 3+ rib fractures, in frontal crashes with a deployed frontal airbag, were selected from the CIREN database. The circumferential location of each rib fracture (with respect to the sternum) was documented using a previously published method (Ritchie et al. 2006) and digital computed tomography scans. Fracture patterns for different crash and occupant parameters (restraint use, involved physical component, occupant kinematics, crash principal direction of force, and occupant age) were compared qualitatively and quantitatively. There were 158 belted and 44 unbelted occupants included in this study. For belted occupants, fractures were mainly located near the path of the shoulder belt, with the majority of fractures occurring on the inboard (with respect to the vehicle) side of the thorax. For unbelted occupants, fractures were approximately symmetric and distributed across both sides of the thorax. There were negligible differences in fracture patterns between occupants with frontal (0°) and near side (330° to 350° for drivers; 10° to 30° for passengers) crash principal directions of force but substantial differences between groups when occupant kinematics (and contacts within the vehicle) were considered. Age also affected fracture pattern, with fractures tending to occur more anteriorly in older occupants and more laterally in younger occupants (both belted and unbelted). Results of this study confirmed with real-world data that rib fracture patterns in unbelted occupants were more distributed and symmetric across the thorax compared to belted occupants in crashes with a deployed frontal airbag. Other factors, such as occupant kinematics and occupant age, also produced differing patterns of fractures. Normative data on rib fracture patterns in real-world occupants can contribute to understanding injury mechanisms and the role of different causation factors, which can ultimately help prevent fractures and improve vehicle safety.

  6. Charon Complexity

    NASA Image and Video Library

    2015-09-10

    This image of Pluto's largest moon Charon, taken by NASA's New Horizons spacecraft 10 hours before its closest approach to Pluto on July 14, 2015 from a distance of 290,000 miles (470,000 kilometers), is a recently downlinked, much higher quality version of a Charon image released on July 15. Charon, which is 750 miles (1,200 kilometers) in diameter, displays a surprisingly complex geological history, including tectonic fracturing; relatively smooth, fractured plains in the lower right; several enigmatic mountains surrounded by sunken terrain features on the right side; and heavily cratered regions in the center and upper left portion of the disk. There are also complex reflectivity patterns on Charon's surface, including bright and dark crater rays, and the conspicuous dark north polar region at the top of the image. The smallest visible features are 2.9 miles 4.6 kilometers) in size. http://photojournal.jpl.nasa.gov/catalog/PIA19932

  7. Le Fort Fractures: A Collective Review

    PubMed Central

    Phillips, Bradley J.; Turco, Lauren M.

    2017-01-01

    Le Fort fractures constitute a pattern of complex facial injury that occurs secondary to blunt facial trauma.  The most common mechanisms of injury for these fractures, which are frequently associated with drug and alcohol use, include motor vehicle collisions, assault, and falls. A thorough search of the world’s literature following PRISMA guidelines was conducted through PubMed and EBSCO databases. Search terms included “Le Fort fracture”, “facial”, “craniofacial”, and “intracranial.”  Articles were selected based on relevance and examined regarding etiology, epidemiology, diagnosis, treatment, complications, and outcomes in adults. The analyzed studies were published between 1980 and 2016. Initial data search yielded 186 results. The search was narrowed to exclude articles lacking in specificity for Le Fort fractures.  Fifty-one articles were selected, the majority of which were large case studies, and collectively reported that Le Fort fractures are most commonly due to high-velocity MVC and that the severity of fracture type sustained occurred with increasing frequency.  It was also found that there is a general lack of published Level I, Level II, and Level III studies regarding Le Fort fracture management, surgical management, and outcomes. The limitation of this study, similar to all PRISMA-guided review articles, is the dependence on previously published research and availability of references as outlined in our methodology. While mortality rates for Le Fort fractures are low, these complex injuries seldom occur in isolation and are associated with other severe injuries to the head and neck. Quick and accurate diagnosis of Le Fort fractures and associated injuries is crucial to the successful management of blunt head trauma. PMID:29177168

  8. Dietary patterns explaining differences in bone mineral density and hip structure in the elderly: the Rotterdam Study.

    PubMed

    de Jonge, Ester Al; Kiefte-de Jong, Jessica C; Hofman, Albert; Uitterlinden, André G; Kieboom, Brenda Ct; Voortman, Trudy; Franco, Oscar H; Rivadeneira, Fernando

    2017-01-01

    Evidence on the association between dietary patterns, measures of hip bone geometry, and subsequent fracture risk are scarce. The objective of this study was to evaluate whether dietary patterns that explain most variation in bone mineral density (BMD) and hip bone geometry are associated with fracture risk. We included 4028 subjects aged ≥55 y from the Rotterdam study. Intake of 28 food groups was assessed with the use of food-frequency questionnaires. BMD, bone width, section modulus (SM; reflecting bending strength) and cortical buckling ratio (BR; reflecting bone instability) were measured with the use of dual-energy X-ray absorptiometry. BMD and geometry-specific dietary patterns were identified with the use of reduced rank regression. Fracture data were reported by general practitioners (median follow-up 14.8 y). We identified 4 dietary patterns. Of the 4, we named 2 patterns "fruit, vegetables, and dairy" and "sweets, animal fat, and low meat," respectively. These 2 patterns were used for further analysis. Independently of confounders, adherence to the fruit, vegetables, and dairy pattern was associated with high BMD, high SM, low BR, and low risk of fractures [HR (95% CI) for osteoporotic fractures: 0.90 (0.83, 0.96); for hip fractures: 0.85 (0.81, 0.89) per z score of dietary pattern adherence]. Adherence to the sweets, animal fat, and low meat pattern was associated with high bone width, high SM, high BR, and high risk of fractures [HR (95% CI) for osteoporotic fractures: 1.08 (1.00, 1.06); for hip fractures: 1.06 (1.02, 1.12) per z score]. The fruit, vegetables, and dairy pattern might be associated with lower fracture risk because of high BMD, high bending strength, and more stable bones. The sweets, animal fat, and low meat pattern might be associated with higher fracture risk because of widened, unstable bones, independently of BMD. Dietary recommendations associated with bone geometry in addition to BMD might influence risk of fractures. © 2017 American Society for Nutrition.

  9. Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

    USGS Publications Warehouse

    Niu, Yi; Castro, M. Clara; Hall, Chris M.; Gingerich, Stephen B.; Scholl, Martha A.; Warrier, Rohit B.

    2017-01-01

    Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

  10. Characterization of fracture aperture for groundwater flow and transport

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.

    2007-12-01

    This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.

  11. Pelvic crescent fractures: variations in injury mechanism and radiographic pattern.

    PubMed

    Gehlert, Rick J; Xing, Zhiqing; DeCoster, Thomas A

    2014-01-01

    Pelvic crescent fracture, also known as sacroiliac fracture-dislocation, is traditionally considered as a lateral compression injury and a vertically stable injury. Thirty consecutive cases were analyzed and it was found that 63% of cases were caused by lateral compression (LC), 27% by anteroposterior compression (APC), and 10% by vertical shear (VS). APC and VS injuries cause significant displacement of the anterior iliac fragment, but 21% of LC injury cases showed minimal displacement and were treated successfully with nonoperative treatment. Different injury mechanisms also produce different types of pelvic instability. More important, different injury mechanisms produce distinct radiographic fracture patterns regarding the obliquity of the fracture line and fracture surface. These differences in the fracture pattern will influence the decision of internal fixation options. Therefore, treatment of pelvic crescent fractures should be based on individual analysis of injury mechanism and radiographic fracture pattern.

  12. Editorial: Spatial arrangement of faults and opening-mode fractures

    NASA Astrophysics Data System (ADS)

    Laubach, Stephen E.; Lamarche, Juliette; Gauthier, Bertand D. M.; Dunne, William M.

    2018-03-01

    This issue of the Journal of Structural Geology titled Spatial arrangement of faults and opening-mode fractures explores a fundamental characteristic of fault and fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings.

  13. Reactive solute transport in an asymmetrical fracture-rock matrix system

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance which refers to the zero diffusion between the fracture and the rock matrix during the water flushing phase is closely associated with dispersive process in the fracture.

  14. Correlation between Condylar Fracture Pattern after Parasymphyseal Impact and Condyle Morphological Features: A Retrospective Analysis of 107 Chinese Patients.

    PubMed

    Han, Lu; Long, Ting; Tang, Wei; Liu, Lei; Jing, Wei; Tian, Wei-Dong; Long, Jie

    2017-02-20

    The treatment of the condylar fractures is difficult. Factors that result in the fractures are complex. The objective of this morphometric study was to investigate the relationship between condylar fracture patterns and condylar morphological characteristics. We conducted a retrospective analysis of 107 patients admitted to the West China Hospital of Stomatology for bilateral condylar fractures caused by parasymphyseal impact. The patients were divided into five groups according to the type of condylar fracture. Ten parameters were evaluated on three-dimensional (3D) reconstruction mandible models through the Mimics 16.0 (Materialize Leuven, Belgium) anthropometry toolkit. Each parameter of the 3D models was analyzed using multivariate analysis. Multinomial logistic regression analyses were used to examine the relationships between the five groups. The results showed that the differences of condylar head width (M1), condylar neck width (M3), the ratio of condylar head width to condylar anteroposterior diameter (M1/M2), the ratio of condylar head width to condylar neck width (M1/M3), the ratio of condylar height to ramus height (M8/M7), and mandibular angle (M10) were statistically significant (p < 0.05). Type A condylar head fractures were positively associated with M1 (compared to Type B: OR =1.627, 95% CI: 1.123, 2.359; compared to Type C: OR = 1.705, 95% CI: 1.170, 2.484) and M1/M2 (compared to Type B: OR =1.034, 95% CI: 0.879, 2.484). Type B condylar head fractures were negatively associated with M10 (compared to Type C: OR = 0.909, 95% CI: 0.821, 1.007). Condylar neck fractures were negatively associated with M3 (compared to condylar head: OR = 0.382, CI: 0.203, 0.720 ; compared to condylar base: OR = 0.436, 95% CI: 0.218, 0.874), and positively associated with M1/M3 (compared to condylar head: OR = 1.229, 95% CI: 1.063, 1.420 compared to condylar base: OR = 1.223, 95% CI: 1.034, 1.447). Condylar base fractures were positively associated with M10 (OR = 1.095, 95% CI: 1.008, 1.189) and negatively associated with M8/M7 (OR = 0.855, 95% CI: 0.763, 0.959) as compared with condylar head fractures. Condylar fracture pattern is associated with the anatomical features of the condyles when a fracture occurs from parasymphyseal impact.

  15. Correlation between Condylar Fracture Pattern after Parasymphyseal Impact and Condyle Morphological Features: A Retrospective Analysis of 107 Chinese Patients

    PubMed Central

    Han, Lu; Long, Ting; Tang, Wei; Liu, Lei; Jing, Wei; Tian, Wei-Dong; Long, Jie

    2017-01-01

    Background: The treatment of the condylar fractures is difficult. Factors that result in the fractures are complex. The objective of this morphometric study was to investigate the relationship between condylar fracture patterns and condylar morphological characteristics. Methods: We conducted a retrospective analysis of 107 patients admitted to the West China Hospital of Stomatology for bilateral condylar fractures caused by parasymphyseal impact. The patients were divided into five groups according to the type of condylar fracture. Ten parameters were evaluated on three-dimensional (3D) reconstruction mandible models through the Mimics 16.0 (Materialize Leuven, Belgium) anthropometry toolkit. Each parameter of the 3D models was analyzed using multivariate analysis. Multinomial logistic regression analyses were used to examine the relationships between the five groups. Results: The results showed that the differences of condylar head width (M1), condylar neck width (M3), the ratio of condylar head width to condylar anteroposterior diameter (M1/M2), the ratio of condylar head width to condylar neck width (M1/M3), the ratio of condylar height to ramus height (M8/M7), and mandibular angle (M10) were statistically significant (p < 0.05). Type A condylar head fractures were positively associated with M1 (compared to Type B: OR =1.627, 95% CI: 1.123, 2.359; compared to Type C: OR = 1.705, 95% CI: 1.170, 2.484) and M1/M2 (compared to Type B: OR =1.034, 95% CI: 0.879, 2.484). Type B condylar head fractures were negatively associated with M10 (compared to Type C: OR = 0.909, 95% CI: 0.821, 1.007). Condylar neck fractures were negatively associated with M3 (compared to condylar head: OR = 0.382, CI: 0.203, 0.720; compared to condylar base: OR = 0.436, 95% CI: 0.218, 0.874), and positively associated with M1/M3 (compared to condylar head: OR = 1.229, 95% CI: 1.063, 1.420 compared to condylar base: OR = 1.223, 95% CI: 1.034, 1.447). Condylar base fractures were positively associated with M10 (OR = 1.095, 95% CI: 1.008, 1.189) and negatively associated with M8/M7 (OR = 0.855, 95% CI: 0.763, 0.959) as compared with condylar head fractures. Conclusions: Condylar fracture pattern is associated with the anatomical features of the condyles when a fracture occurs from parasymphyseal impact. PMID:28218215

  16. Characterization of Sheet Fracture Patterns in Polygonal-Jointed Lavas at Kokostick Butte, OR, and Mazama Ridge, WA: Investigation and Interpretation of Their Formation and Significance

    NASA Astrophysics Data System (ADS)

    Lodge, R. W.; Lescinsky, D. T.

    2006-12-01

    Polygonal joints in lava flows ("columns") are commonly equant leading to a model of formation associated with cooling in an isotropic stress field. This model, however, does not explain rectangular columns, sheet-like fractures, fractures with crosscutting relationships, and fractures with orientations other than perpendicular to the cooling surface. These fracture patterns are often observed at glaciated volcanoes. The presence of preferential fracture orientations suggests an applied stress component likely due to environmental conditions such as the presence of glaciers or flow dynamics such as down-slope settling or flow margin inflation. During this study we investigated the formation and significance of these non-equant fracture patterns to propose a model for their formation. These `abnormal' fracture patterns have not been discussed in the literature and may be important to better understanding the cooling conditions of such lava flows. To test these possibilities we studied Kokostick Butte dacite flow, OR (near South Sister), and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these flows have well developed sheet-like fractures and display evidence of ice-contact during eruption and emplacement. Sheet fractures are long and continuous fractures that have perpendicular connecting fractures forming rectangular columns. The sheet-like fractures are largely parallel to each other on the exposure surface and the connecting fractures vary locally from primary fractures (associated with cooling toward flow interior) to secondary fractures (associated with cooling by water infiltration). Detailed measurements of fracture orientations and spacing were collected at Kokostick Butte and Mazama Ridge to examine the relationship between the sheet fractures and flow geometry. Preliminary results support this relationship and suggest these patterns likely form due to shear associated with small amounts of flow advance by the rapidly cooling lava. Laboratory studies have been undertaken to complement the field observations and measurements. Starch- water experiments have been proven a useful analogue for lava column formation. Various experimental setups involving different mixture thicknesses and compression of the mixture were utilized to simulate the stresses acting during ponding of lava against glacial ice and to produce different fracture morphologies and patterns. Initial results show that compression of the starch slurry results in non-equant fracture patterns with some sheet-like fracturing present.

  17. Radiographic Outcomes of Dorsal Distraction Distal Radius Plating for Fractures With Dorsal Marginal Impaction.

    PubMed

    Huish, Eric G; Coury, John G; Ibrahim, Mohamed A; Trzeciak, Marc A

    2017-04-01

    The purpose of this study is to compare radiographic outcomes of patients treated with dorsal spanning plates with previously reported normal values of radiographic distal radius anatomy and compare the results with prior publications for both external fixation and internal fixation with volar locked plates. Patients with complex distal radius fractures including dorsal marginal impaction pattern necessitating dorsal distraction plating at the discretion of the senior authors (M.A.T. and M.A.I.) from May 30, 2013, to December 29, 2015, were identified and included in the study. Retrospective chart and radiograph review was performed on 19 patients, 11 male and 8 female, with mean age of 47.83 years (22-82). No patients were excluded from the study. All fractures united prior to plate removal. The average time the plate was in place was 80.5 days (49-129). Follow-up radiographs showed average radial inclination of 20.5° (13.2°-25.5°), radial height of 10.7 mm (7.5-14 mm), ulnar variance of -0.3 mm (-2.1 to 3.1 mm), and volar tilt of 7.9° (-3° to 15°). One patient had intra-articular step-off greater than 2 mm. Dorsal distraction plating of complex distal radius fractures yields good radiographic results with minimal complications. In cases of complex distal radius fractures including dorsal marginal impaction where volar plating is not considered adequate, a dorsal distraction plate should be considered as an alternative to external fixation due to reduced risk for infection and better control of volar tilt.

  18. Garden City Vein Complex, Gale Crater, Mars: Implications for Late Diagenetic Fluid Flow

    NASA Astrophysics Data System (ADS)

    Kronyak, R. E.; Kah, L. C.; Blaney, D. L.; Sumner, D. Y.; Fisk, M. R.; Rapin, W.; Nachon, M.; Mangold, N.; Grotzinger, J. P.; Wiens, R. C.

    2015-12-01

    Calcium sulfate filled fractures are observed in nearly all stratigraphic units encountered by the Mars Science Laboratory (MSL) Curiosity rover. The mm-scale of veins, however, provides little evidence for emplacement style. From sols 924-949, Curiosity observed a vein rich outcrop called Garden City, which shows variation in both thickness and complexity of veins. Extensive Mastcam and MAHLI imaging was conducted across the outcrop to provide textural detail that can be related to emplacement mechanisms. Additionally, Curiosity collected geochemical data on 17 ChemCam targets and 7 APXS targets, shedding light on the composition and variety of potential vein fluids. The Garden City vein system records (1) the presence of distinct dark-toned and light-toned (calcium sulfate) mineralization, and (2) the presence of laminated, epitaxial, and brecciated fabrics that suggest multiple emplacement modes. Dark-toned mineralization is observed as erosionally resistant ridges predominantly along fracture walls. Although erosional resistance may reflect the permeability of host rock to fracture-borne fluids, at Garden City, laminated textures suggest that at least some mineralization may have occurred as fracture-fill. Light-toned mineralization often bisects dark-toned material, indicating re-use of fluid pathways. Light-toned veinlets permeate fracture walls, and the largest veins entrain host rock and dark-toned material within calcium sulfate matrix. Such brecciation indicates high forces associated with fluid expulsion. Elsewhere, linear patterns occur broadly perpendicular to fracture walls, and are interpreted to represent epitaxial crystal growth, suggesting lower flow rates and fluid flow pressures within the fracture system. Together these observations indicate multiple episodes of fluid flow in the Gale Crater system.

  19. Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

    NASA Astrophysics Data System (ADS)

    Tian, Zhiwei; Wang, Junye

    2017-08-01

    Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.

  20. Periarticular Fractures of the Knee in Polytrauma Patients

    PubMed Central

    Bertrand, M.L.; Andrés-Cano, P.; Pascual-López, F.J.

    2015-01-01

    Periarticular fractures around the knee are a challenge for the orthopaedic surgeon. When these fractures are presented in the context of a multiple trauma patient, they are even more difficult to manage because the treatment approach depends not only on the fracture itself, but also on the patient’s general condition. These fractures, caused by high-energy trauma, present complex fracture patterns with severe comminution and major loss of articular congruity, and are often associated with vascular and nerve complications, particularly in the proximal tibia, due to its anatomical features with poor myocutaneous coverage. They are almost always accompanied by soft tissue injury. The management of polytrauma patients requires a multidisciplinary team and accurate systemic stabilization of the patient before undertaking orthopaedic treatment. These fractures are usually addressed sequentially, either according to the general condition of the patient or to the local characteristics of the lesions. In recent decades, various fixation methods have been proposed, but there is still no consensus as to the ideal method for stabilizing these fractures. In this paper, we describe the general characteristics of these fractures, the stabilization methods traditionally used and those that have been developed in recent years, and discuss the treatment sequences proposed as most suitable for the management of these injuries. PMID:26312118

  1. Fatal carotid dissection after blunt head trauma.

    PubMed

    Tartara, F; Regolo, P; Servadei, F; Versari, P P; Giovanelli, M

    2000-06-01

    Occurrence of internal carotid artery injuries associated with skull base fracture has been reported. A. report a case of fatal intracranial carotid dissection related to petrous fracture involving the carotid canal. Identification of carotid lesions may be difficult and generally related to appearance of unexpected neurological deficit. Skull base fractures may be considered an indirect sign for detection of vascular injury. Patterns of the fracture are of paramount importance; routine CT scan may fail to detect basilar fractures and high definition fine-cut CT scan should be executed to carefully identify and evaluate fractures. Temporal and sphenoid bone fractures are common in head trauma and involvement of the course of the carotid artery is frequent. The involvement of the intracranial carotid artery course represents a direct risk factor for lesions of the petrous, lacerum and cavernous segments of the carotid artery. Early diagnosis of post-traumatic vascular injury may lead to prognosis improvement because of effectiveness of heparin anticoagulant therapy. Then vascular screening is recommendable in cases with complex fractures of the skull base and particularly fracturing along the course of the carotid artery. Magnetic resonance angiography may be considered the first line diagnostic tools for vascular screening. Angiography may be reserved for patients with a proven lesion or rapid neurological deterioration taking into account the possibility of interventional treatment.

  2. Maxillofacial fractures among Sudanese children at Khartoum Dental Teaching Hospital.

    PubMed

    Almahdi, Hatim M; Higzi, Mohammed A

    2016-02-23

    Maxillofacial fractures in children are less frequent compared to adults but result in special complications affecting the growth, function and esthetics. The study aimed at assessing the characteristics and the pattern of facial fractures among children seen at Khartoum Teaching Dental Hospital (KTDH). The study included 390 patients presenting with maxillofacial trauma at KTDH during a year period (2010-2011). A total of 390 patients, diagnosed with facial fractures, were seen at KTDH; 14.1% (55) were children below 16 years of age with the mean age of 10 years (SD ± 3.9). The ratio of males to females was 2.2:1. Most fractures were due to road traffic accidents (RTA) 56.4%, followed by daily living activities 21.8% and assault 16.4%. The most prevalent anatomic sites of fractures were mandible 77%; combination fractures i.e. more than one site 32.7% and zygomatic-complex (13.5%). Concomitant injuries were found in 9.1%. Almost half of the patients were managed conservatively 49.1%, closed reduction 34.5% and surgical open reduction 16.4%. The findings of this study indicated that pediatric facial fractures constitute 14.1% of the total number of facial fractures. RTA was the main cause, which should be considered in legislative and preventive strategies.

  3. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    PubMed

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (P<0.004). There was an increase in the longitudinal ankle joint contact force when they landed with forefoot (P=0.003). However, there was no significant difference in both peak tibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Interpretation of hip fracture patterns using areal bone mineral density in the proximal femur.

    PubMed

    Hey, Hwee Weng Dennis; Sng, Weizhong Jonathan; Lim, Joel Louis Zongwei; Tan, Chuen Seng; Gan, Alfred Tau Liang; Ng, Jun Han Charles; Kagda, Fareed H Y

    2015-12-01

    Bone mineral density scans are currently interpreted based on an average score of the entire proximal femur. Improvements in technology now allow us to measure bone density in specific regions of the proximal femur. The study attempts to explain the pathophysiology of neck of femur (NOF) and intertrochanteric/basi-cervical (IT) fractures by correlating areal BMD (aBMD) scores with fracture patterns, and explore possible predictors for these fracture patterns. This is a single institution retrospective study on all patients who underwent hip surgeries from June 2010 to August 2012. A total of 106 patients (44 IT/basi-cervical, 62 NOF fractures) were studied. The data retrieved include patient characteristics and aBMD scores measured at different regions of the contralateral hip within 1 month of the injury. Demographic and clinical characteristic differences between IT and NOF fractures were analyzed using Fisher's Exact test and two-sample t test. Relationship between aBMD scores and fracture patterns was assessed using multivariable regression modeling. After adjusted multivariable analysis, T-Troc and T-inter scores were significantly lower in intertrochanteric/basi-cervical fractures compared to neck of femur fractures (P = 0.022 and P = 0.026, respectively). Both intertrochanteric/basi-cervical fractures (mean T.Tot -1.99) and neck of femur fractures (mean T.Tot -1.64) were not found to be associated with a mean T.tot less than -2.5. However, the mean aBMD scores were consistently less than -2.5 for both intertrochanteric/basi-cervical fractures and neck of femur fractures. Gender and calcium intake at the time of injury were associated with specific hip fracture patterns (P = 0.002 and P = 0.011, respectively). Hip fracture patterns following low energy trauma may be influenced by the pattern of reduced bone density in different areas of the hip. Intertrochanteric/basi-cervical fractures were associated with significantly lower T-Troc and T-Inter scores compared to neck of femur fractures, suggesting that the fracture traversed through the areas with the lowest bone density in the proximal femur. In the absence of reduced T.Troc and T.Inter, neck of femur fractures occurred more commonly. T-Total scores may underestimate the severity of osteoporosis/osteopenia and measuring T-score at the neck of femur may better reflect the severity of osteoporosis and likelihood of a fragility fracture.

  5. Biological Perspectives of Delayed Fracture Healing

    PubMed Central

    Hankenson, KD; Zmmerman, G; Marcucio, R

    2015-01-01

    Fracture healing is a complex biological process that requires interaction among a series of different cell types. Maintaining the appropriate temporal progression and spatial pattern is essential to achieve robust healing. We can temporally assess the biological phases via gene expression, protein analysis, histologically, or non-invasively using biomarkers as well as imaging techniques. However, determining what leads to normal verses abnormal healing is more challenging. Since the ultimate outcome of the process of fracture healing is to restore the original functions of bone, assessment of fracture healing should include not only monitoring the restoration of structure and mechanical function, but also an evaluation of the restoration of normal bone biology. Currently very few non-invasive measures of the biology of healing exist; however, recent studies that have correlated non-invasive measures with fracture healing outcome in humans have shown that serum TGFbeta1 levels appear to be an indicator of healing vs non-healing. In the future, developing additional serum measures to assess biological healing will improve the reliability and permit us to assess stages of fracture healing. Additionally, new functional imaging technologies could prove useful for better understanding both normal fracture healing and predicting dysfunctional healing in human patients. PMID:24857030

  6. Quantifying opening-mode fracture spatial organization in horizontal wellbore image logs, core and outcrop: Application to Upper Cretaceous Frontier Formation tight gas sandstones, USA

    NASA Astrophysics Data System (ADS)

    Li, J. Z.; Laubach, S. E.; Gale, J. F. W.; Marrett, R. A.

    2018-03-01

    The Upper Cretaceous Frontier Formation is a naturally fractured gas-producing sandstone in Wyoming. Regionally, random and statistically more clustered than random patterns exist in the same upper to lower shoreface depositional facies. East-west- and north-south-striking regional fractures sampled using image logs and cores from three horizontal wells exhibit clustered patterns, whereas data collected from east-west-striking fractures in outcrop have patterns that are indistinguishable from random. Image log data analyzed with the correlation count method shows clusters ∼35 m wide and spaced ∼50 to 90 m apart as well as clusters up to 12 m wide with periodic inter-cluster spacings. A hierarchy of cluster sizes exists; organization within clusters is likely fractal. These rocks have markedly different structural and burial histories, so regional differences in degree of clustering are unsurprising. Clustered patterns correspond to fractures having core quartz deposition contemporaneous with fracture opening, circumstances that some models suggest might affect spacing patterns by interfering with fracture growth. Our results show that quantifying and identifying patterns as statistically more or less clustered than random delineates differences in fracture patterns that are not otherwise apparent but that may influence gas and water production, and therefore may be economically important.

  7. How surface functional groups influence fracturation in nanofluids droplets dry-outs

    NASA Astrophysics Data System (ADS)

    Brutin, David; Carle, Florian

    2012-11-01

    We report an experimental investigation of the drying of a deposited droplets of nanofluids with different surface functional groups. For identical nano-particles diameter, material and concentration, identical drying conditions, the substrate and the functional groups at the nano-particles surface are changed. Both flow motion, adhesion, gelation and fracturation occur during the evaporation of this complex matter leading to different final typical patterns. The differences in between the patterns are explained based on the surface chemical potential. Crack shapes and wavelengths are globally proportional to the electrical charges carried at the nano- particles surface which is a new parameter to implement in existing predicting models. Presently only the colloid concentration and softness and the deposit thickness are used (Allain and Limat, 1995). The authors gratefully acknowledge the help and the fruitful discussions raised with J.B. Lang.

  8. The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF).

    PubMed

    Joeris, Alexander; Lutz, Nicolas; Blumenthal, Andrea; Slongo, Theddy; Audigé, Laurent

    2017-04-01

    Background and purpose - To achieve a common understanding when dealing with long bone fractures in children, the AO Pediatric Comprehensive Classification of Long Bone Fractures (AO PCCF) was introduced in 2007. As part of its final validation, we present the most relevant fracture patterns in the upper extremities of a representative population of children classified according to the PCCF. Patients and methods - We included children and adolescents (0-17 years old) diagnosed with 1 or more long bone fractures between January 2009 and December 2011 at the university hospitals in Bern and Lausanne (Switzerland). Patient charts were retrospectively reviewed and fractures were classified from standard radiographs. Results - Of 2,292 upper extremity fractures in 2,203 children and adolescents, 26% involved the humerus and 74% involved the forearm. In the humerus, 61%, and in the forearm, 80% of single distal fractures involved the metaphysis. In adolescents, single humerus fractures were more often epiphyseal and diaphyseal fractures, and among adolescents radius fractures were more often epiphyseal fractures than in other age groups. 47% of combined forearm fractures were distal metaphyseal fractures. Only 0.7% of fractures could not be classified within 1 of the child-specific fracture patterns. Of the single epiphyseal fractures, 49% were Salter-Harris type-II (SH II) fractures; of these, 94% occurred in schoolchildren and adolescents. Of the metaphyseal fractures, 58% showed an incomplete fracture pattern. 89% of incomplete fractures affected the distal radius. Of the diaphyseal fractures, 32% were greenstick fractures. 24 Monteggia fractures occurred in pre-school children and schoolchildren, and 2 occurred in adolescents. Interpretation - The pattern of pediatric fractures in the upper extremity can be comprehensively described according to the PCCF. Prospective clinical studies are needed to determine its clinical relevance for treatment decisions and prognostication of outcome.

  9. The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF)

    PubMed Central

    Joeris, Alexander; Lutz, Nicolas; Blumenthal, Andrea; Slongo, Theddy; Audigé, Laurent

    2017-01-01

    Background and purpose To achieve a common understanding when dealing with long bone fractures in children, the AO Pediatric Comprehensive Classification of Long Bone Fractures (AO PCCF) was introduced in 2007. As part of its final validation, we present the most relevant fracture patterns in the upper extremities of a representative population of children classified according to the PCCF. Patients and methods We included children and adolescents (0–17 years old) diagnosed with 1 or more long bone fractures between January 2009 and December 2011 at the university hospitals in Bern and Lausanne (Switzerland). Patient charts were retrospectively reviewed and fractures were classified from standard radiographs. Results Of 2,292 upper extremity fractures in 2,203 children and adolescents, 26% involved the humerus and 74% involved the forearm. In the humerus, 61%, and in the forearm, 80% of single distal fractures involved the metaphysis. In adolescents, single humerus fractures were more often epiphyseal and diaphyseal fractures, and among adolescents radius fractures were more often epiphyseal fractures than in other age groups. 47% of combined forearm fractures were distal metaphyseal fractures. Only 0.7% of fractures could not be classified within 1 of the child-specific fracture patterns. Of the single epiphyseal fractures, 49% were Salter-Harris type-II (SH II) fractures; of these, 94% occurred in schoolchildren and adolescents. Of the metaphyseal fractures, 58% showed an incomplete fracture pattern. 89% of incomplete fractures affected the distal radius. Of the diaphyseal fractures, 32% were greenstick fractures. 24 Monteggia fractures occurred in pre-school children and schoolchildren, and 2 occurred in adolescents. Interpretation The pattern of pediatric fractures in the upper extremity can be comprehensively described according to the PCCF. Prospective clinical studies are needed to determine its clinical relevance for treatment decisions and prognostication of outcome. PMID:27882802

  10. The effect of range and ammunition type on fracture patterns in porcine postcranial flat bones.

    PubMed

    Fragkouli, Kleio; Al Hakeem, Eyad; Bulut, Ozgur; Simmons, Tal

    2018-01-01

    Pig half-carcasses were shot in scapulae, ribs and mandibles with either 0.243 hunting rifle using high velocity expanding ammunition (N = 30) or AK47 using full metal jacketed (FMJ) ammunition (N = 12) from a range of either 5 or 20 m. Fracture patterns related to distance of fire and ammunition type were compared on de-fleshed, macerated, and reconstructed bones. For expanding ammunition, location of fracture on ribs affected the resulting pattern. Scapulae shot from 5 m presented a comminuted pattern different from those shot from 20 m. Mandibles shot from 20 m showed a characteristic radiating pattern at entrance with the opposite ramus un-fractured; those shot from 5 m exhibited fractures to both rami. Using decision tree analysis provided accuracies of 93.8% for scapulae and 87.5% for mandibles. For FMJ, no distance dependent fracture differences were apparent in any bone. Decision tree analysis facilitated the interpretation of fracture patterns caused by projectile trauma. Copyright © 2017. Published by Elsevier Ltd.

  11. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    PubMed Central

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-01-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349

  12. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks.

    PubMed

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-11-07

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.

  13. Patterns of fracture and tidal stresses due to nonsynchronous rotation - Implications for fracturing on Europa

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Parmentier, E. M.

    1985-01-01

    This study considers the global patterns of fracture that would result from nonsynchronous rotation of a tidally distorted planetary body. The incremental horizontal stresses in a thin elastic or viscous shell due to a small displacement of the axis of maximum tidal elongation are derived, and the resulting stress distributions are applied to interpret the observed pattern of fracture lineaments on Europa. The observed pattern of lineaments can be explained by nonsynchronous rotation if these features formed by tension fracturing and dike emplacement. Tension fracturing can occur for a small displacement of the tidal axis, so that the resulting lineaments may be consistent with other evidence suggesting a young age for the surface.

  14. FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto E.; Cornwell, David G.; Farrell, Natalie J. C.; Watkins, Hannah; Timms, Nick E.; Gomez-Rivas, Enrique; Smith, Michael

    2017-02-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, and spatial distributions often exhibit some kind of order. In detail, relationships may exist among the different fracture attributes, e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture attributes and patterns. This paper describes FracPaQ, a new open source, cross-platform toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on previously published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales, rock types and tectonic settings. The implemented methods presented are inherently scale independent, and a key task where applicable is analysing and integrating quantitative fracture pattern data from micro-to macro-scales. The toolbox was developed in MATLAB™ and the source code is publicly available on GitHub™ and the Mathworks™ FileExchange. The code runs on any computer with MATLAB installed, including PCs with Microsoft Windows, Apple Macs with Mac OS X, and machines running different flavours of Linux. The application, source code and sample input files are available in open repositories in the hope that other developers and researchers will optimise and extend the functionality for the benefit of the wider community.

  15. Fracture complexity of pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-11-01

    Significant volume of literatures are already available in the published domain reporting the mechanical and fracture behaviour of different pressure vessel steels under various testing conditions and other potential circumstances. There have been limited researches available in the open domain to correlate the tensile properties of these steels with their corresponding fracture features at various testing temperatures, which are primarily aimed at in the current investigation. A comprehensive literature review has been performed to realise this fact critically. There has been high probability that fracture features are the signature of the entire deformation history which was operated in the material. In order to understand this hypothesis, many tensile experiments are carried out at a constant strain rate by systematic variation in temperature of a reactor pressure vessel steel. The initial inclusion content and their distribution pattern are kept unaltered for all the specimens before tests, and temperatures are varied methodically to vary the nucleation sites of micro-voids (i.e. carbides, phase interfaces, etc.) which result in change of ductile fracture features. Conventional metallographic technique has been employed to characterise the microstructures at various temperatures. Fractographic characterisation of all broken tensile specimens is done to measure the two-dimensional fracture features (i.e. dimple geometry, extent of tearing ridge pattern and dimple number density) under secondary mode of imaging in scanning electron microscope. Quantitative fractography and image processing have been extensively employed to measure the two-dimensional fractographic features. An excellent correlation has been drawn between the ductile fractographic features, microstructures and corresponding tensile properties of the material as a function of test temperature. This study brings to the fore that from the systematic fractographic features, it is possible to determine reasonably the mechanical and fracture properties of a material, when the microstructure is known.

  16. Along fault friction and fluid pressure effects on the spatial distribution of fault-related fractures

    NASA Astrophysics Data System (ADS)

    Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa

    2018-03-01

    Whatever the processes involved in the natural fracture development in the subsurface, fracture patterns are often affected by the local stress field during propagation. This homogeneous or heterogeneous local stress field can be of mechanical and/or tectonic origin. In this contribution, we focus on the fracture-pattern development where active faults perturb the stress field, and are affected by fluid pressure and sliding friction along the faults. We analyse and geomechanically model two fractured outcrops in UK (Nash Point) and in France (Les Matelles). We demonstrate that the observed local radial joint pattern is best explained by local fluid pressure along the faults and that observed fracture pattern can only be reproduced when fault friction is very low (μ < 0.2). Additionally, in the case of sub-vertical faults, we emphasize that the far field horizontal stress ratio does not affect stress trajectories, or fracture patterns, unless fault normal displacement (dilation or contraction) is relatively large.

  17. Secular trends in hip fractures worldwide: opposing trends East versus West.

    PubMed

    Ballane, Ghada; Cauley, Jane A; Luckey, Marjorie M; Fuleihan, Ghada El-Hajj

    2014-08-01

    Despite wide variations in hip rates fractures worldwide, reasons for such differences are not clear. Furthermore, secular trends in the age-specific hip fracture rates are changing the world map of this devastating disease, with the highest rise projected to occur in developing countries. The aim of our investigation is to systematically characterize secular trends in hip fractures worldwide, examine new data for various ethnic groups in the United States, evidence for divergent temporal patterns, and investigate potential contributing factors for the observed change in their epidemiology. All studies retrieved through a complex Medline Ovid search between 1966 and 2013 were examined. For each selected study, we calculated the percent annual change in age-standardized hip fracture rates de-novo. Although occurring at different time points, trend breaks in hip fracture incidence occurred in most Western countries and Oceania. After a steep rise in age-adjusted rates in these regions, a decrease became evident sometimes between the mid-seventies and nineties, depending on the country. Conversely, the data is scarce in Asia and South America, with evidence for a continuous rise in hip fracture rates, with the exception of Hong-Kong and Taiwan that seem to follow Western trends. The etiologies of these secular patterns in both the developed and the developing countries have not been fully elucidated, but the impact of urbanization is at least one plausible explanation. Data presented here show close parallels between rising rates of urbanization and hip fractures across disparate geographic locations and cultures. Once the proportion of the urban population stabilized, hip fracture rates also stabilize or begin to decrease perhaps due to the influence of other factors such as birth cohort effects, changes in bone mineral density and BMI, osteoporosis medication use and/or lifestyle interventions such as smoking cessation, improvement in nutritional status and fall prevention. © 2014 American Society for Bone and Mineral Research.

  18. Correlation of AO and Lauge-Hansen classification systems for ankle fractures to the mechanism of injury.

    PubMed

    Rodriguez, Edward K; Kwon, John Y; Herder, Lindsay M; Appleton, Paul T

    2013-11-01

    Our aim was to assess whether the Lauge-Hansen (LH) and the Muller AO classification systems for ankle fractures radiographically correlate with in vivo injuries based on observed mechanism of injury. Videos of potential study candidates were reviewed on YouTube.com. Individuals were recruited for participation if the video could be classified by injury mechanism with a high likelihood of sustaining an ankle fracture. Corresponding injury radiographs were obtained. Injury mechanism was classified using the LH system as supination/external rotation (SER), supination/adduction (SAD), pronation/external rotation (PER), or pronation/abduction (PAB). Corresponding radiographs were classified by the LH system and the AO system. Thirty injury videos with their corresponding radiographs were collected. Of the video clips reviewed, 16 had SAD mechanisms and 14 had PER mechanisms. There were 26 ankle fractures, 3 nonfractures, and 1 subtalar dislocation. Twelve fractures with SAD mechanisms had corresponding SAD fracture patterns. Five PER mechanisms had PER fracture patterns. Eight PER mechanisms had SER fracture patterns and 1 had SAD fracture pattern. When the AO classification was used, all 12 SAD type injuries had a 44A type fracture, whereas the 14 PER injuries resulted in nine 44B fractures, two 44C fractures, and three 43A fractures. When injury video clips of ankle fractures were matched to their corresponding radiographs, the LH system was 65% (17/26) consistent in predicting fracture patterns from the deforming injury mechanism. When the AO classification system was used, consistency was 81% (21/26). The AO classification, despite its development as a purely radiographic system, correlated with in vivo injuries, as based on observed mechanism of injury, more closely than did the LH system. Level IV, case series.

  19. How Do Le Fort-Type Fractures Present in a Pediatric Cohort?

    PubMed

    Macmillan, Alexandra; Lopez, Joseph; Luck, J D; Faateh, Muhammad; Manson, Paul; Dorafshar, Amir H

    2018-05-01

    Le Fort-type fractures are very rare in children, and there is a paucity of literature presenting their frequency and characteristics. The purpose of this study was to determine the etiology, frequency, and fracture patterns of children with severe facial trauma associated with pterygoid plate fractures in a pediatric cohort. We performed a retrospective cohort study of all children aged younger than 16 years with pterygoid plate and facial fractures who presented to our institute between 1990 and 2010. Patient charts and radiologic records were reviewed for demographic and fracture characteristics. Patients were categorized into 2 groups as per facial fracture pattern: non-Le Fort-type fractures (group A) and Le Fort-type fractures (group B). Other variables including dentition age, frontal sinus development, mechanism of injury, injury severity, and concomitant injuries were recorded. Univariate methods were used to compare groups. We identified 24 children; 25% were girls, and 20.8% were of nonwhite race. Most presented with Le Fort-type fracture patterns (group B, 66.7%). Age was significantly different between group A and group B (mean, 5.9 years and 9.9 years, respectively; P = .009). No significant differences in Injury Severity Score, rate of operative repair, and length of stay were found between groups. Most children with severe facial fractures and pterygoid plate fractures presented with Le Fort-type fracture patterns in our cohort. The mean age of children with Le Fort-type fractures was greater than in those with non-Le Fort-type patterns. However, Le Fort-type fractures did occur in younger children with deciduous and mixed dentition. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Fractures of the cervical spine

    PubMed Central

    Marcon, Raphael Martus; Cristante, Alexandre Fogaça; Teixeira, William Jacobsen; Narasaki, Douglas Kenji; Oliveira, Reginaldo Perilo; de Barros Filho, Tarcísio Eloy Pessoa

    2013-01-01

    OBJECTIVES: The aim of this study was to review the literature on cervical spine fractures. METHODS: The literature on the diagnosis, classification, and treatment of lower and upper cervical fractures and dislocations was reviewed. RESULTS: Fractures of the cervical spine may be present in polytraumatized patients and should be suspected in patients complaining of neck pain. These fractures are more common in men approximately 30 years of age and are most often caused by automobile accidents. The cervical spine is divided into the upper cervical spine (occiput-C2) and the lower cervical spine (C3-C7), according to anatomical differences. Fractures in the upper cervical spine include fractures of the occipital condyle and the atlas, atlanto-axial dislocations, fractures of the odontoid process, and hangman's fractures in the C2 segment. These fractures are characterized based on specific classifications. In the lower cervical spine, fractures follow the same pattern as in other segments of the spine; currently, the most widely used classification is the SLIC (Subaxial Injury Classification), which predicts the prognosis of an injury based on morphology, the integrity of the disc-ligamentous complex, and the patient's neurological status. It is important to correctly classify the fracture to ensure appropriate treatment. Nerve or spinal cord injuries, pseudarthrosis or malunion, and postoperative infection are the main complications of cervical spine fractures. CONCLUSIONS: Fractures of the cervical spine are potentially serious and devastating if not properly treated. Achieving the correct diagnosis and classification of a lesion is the first step toward identifying the most appropriate treatment, which can be either surgical or conservative. PMID:24270959

  1. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    NASA Astrophysics Data System (ADS)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  2. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.

    PubMed

    Zhang, Zhaobin; Li, Xiao

    2016-08-23

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  3. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    PubMed Central

    Zhang, Zhaobin; Li, Xiao

    2016-01-01

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network. PMID:28773834

  4. Hip fracture types in men and women change differently with age

    PubMed Central

    2010-01-01

    Background Hip fractures are expensive and a frequent cause of morbidity and mortality in the elderly. In most studies hip fractures have been viewed as a unitary fracture but recently the two main types of fracture (intertrochanteric and subcapital) have been viewed as two fractures with a different etiology and requiring a different approach to prevention. The relative proportion of intertrochanteric fractures increases with age in women. In previous studies no particular pattern in men has been noted. In this study, we explored changes in the relative proportion of the two fracture types with age in the two genders. Methods Patients of 50 years and older, with a diagnosis of hip fracture, discharged from two local acute care hospitals over a 5 year period (n = 2150) were analyzed as a function of age and gender to explore the relative proportions of intertrochanteric and subcapital fractures, and the change in relative proportion in the two genders with age. Results Overall, for the genders combined, the proportion of intertrochanteric fractures increases with age (p = .007). In women this increase is significant (p < .001), but in men the opposite pattern is observed, with the proportion of intertrochanteric fractures falling significantly with age (p = .025). Conclusions The pattern of hip fractures is different in men and women with aging. It is likely that the pattern difference reflects differences in type and rate of bone loss in the genders, but it is conjectured that the changing rate and pattern of falling with increasing age may also be important. The two main hip fracture types should be considered distinct and different and be studied separately in studies of cause and prevention. PMID:20214771

  5. The Role of Interface Shape on the Impact Characteristics and Cranial Fracture Patterns Using the Immature Porcine Head Model,.

    PubMed

    Vaughan, Patrick E; Vogelsberg, Caitlin C M; Vollner, Jennifer M; Fenton, Todd W; Haut, Roger C

    2016-09-01

    The forensic literature suggests that when adolescents fall onto edged and pointed surfaces, depressed fractures can occur at low energy levels. This study documents impact biomechanics and fracture characteristics of infant porcine skulls dropped onto flat, curved, edged, and focal surfaces. Results showed that the energy needed for fracture initiation was nearly four times higher against a flat surface than against the other surfaces. While characteristic measures of fracture such as number and length of fractures did not vary with impact surface shape, the fracture patterns did depend on impact surface shape. While experimental impacts against the flat surface produced linear fractures initiating at sutural boundaries peripheral to the point of impact (POI), more focal impacts produced depressed fractures initiating at the POI. The study supported case-based forensic literature suggesting cranial fracture patterns depend on impact surface shape and that fracture initiation energy is lower for more focal impacts. © 2016 American Academy of Forensic Sciences.

  6. Females report higher postoperative pain scores than males after ankle surgery.

    PubMed

    Storesund, Anette; Krukhaug, Yngvar; Olsen, Marit Vassbotten; Rygh, Lars Jørgen; Nilsen, Roy M; Norekvål, Tone M

    2016-07-01

    The majority of patients experience moderate-to-intense pain following ankle surgery. Early, adequate treatment of postoperative pain is desirable for optimal pain relief, which in turn may facilitate optimal pulmonary function, normal respiration pattern, rehabilitation and prevention of a chronic pain condition. In this retrospective study, we aimed to identify possible predictors of moderate-to-intense postoperative pain while in the Post Anaesthesia Care Unit (PACU) in patients operated for ankle fractures. Social demographics and clinical characteristics from admission throughout the stay in the PACU were collected from the hospital patient record system in retrospect. Pain was assessed using a Visual Analogue Scale (VAS) or a verbal Numeric Rating Scale (vNRS). A VAS/vNRS score 4-6 was classified as moderate and 7-10 as intense pain. Other factors which were investigated were time from ankle fracture to surgery, anaesthetic procedure, pre-, per- and postoperative medical treatment, radiological classification, complexity of fracture, operative technique, and time using tourniquet procedure. Data from 336 patients who underwent surgery to repair an ankle fracture between January 2009 and December 2010 were analysed. None of the following variables had a statistically significant effect on pain; age, weight, smoking, timeframe from fracture to operation, type of anaesthesia, opioids given peroperatively, complexity of the fracture, operation technique or tourniquet inflation procedure. Female sex predicted moderate-to-intense postoperative pain in the PACU with odds ratio 2.31 (95% confidence interval 1.39-3.86), P=0.001. As far as we know, this is the first study to show a sex difference in reporting pain in the first hours after surgery for ankle fracture. Female patients operated for ankle fracture report higher pain-intensity-score than male patients while in the PACU. Our findings suggest that treatment strategies to prevent high peaks of pain should particularly target women operated for an ankle fracture. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Distal Fibula Fractures in National Football League Athletes.

    PubMed

    Werner, Brian C; Mack, Christina; Franke, Kristina; Barnes, Ronnie P; Warren, Russell F; Rodeo, Scott A

    2017-09-01

    Despite the frequency of distal fibula fractures in elite athletes and the significant potential impact on the athletes' season and future careers, little data exist characterizing the epidemiology of these injuries or, more importantly, return to competition. To (1) evaluate the incidence of acute distal fibula fractures in National Football League (NFL) athletes, including isolated distal fibula and combined ankle fracture patterns; (2) analyze distal fibula fracture rates in NFL athletes by position, type of play, and contact type; (3) determine the rates of distal fibula fracture surgery in NFL athletes; and (4) report the days missed due to distal fibula fractures in NFL athletes. Descriptive epidemiology study. A retrospective review of distal fibula fractures reported to the NFL from 2000 to 2014 was performed using the NFL Injury Surveillance System. All distal fibula fractures were included, along with isolated and combined fracture patterns. Stress fractures and proximal fibula fractures were excluded. Epidemiological data and rates of surgery were determined. Return to sport was calculated and stratified by injury pattern and management. Overall, 237 distal fibula fractures in NFL athletes from 2000 to 2014 were included; 197 (83%) were isolated distal fibula fractures. A mean of 16 distal fibula fractures occurred each year (median, 16 per year). Fractures occurred most frequently on running (38%) and passing (24%) plays, but the frequency was next highest on kickoffs (16%), despite the relative infrequency of kickoffs during the average game compared with other play types. Surgery was reported for more than half of all distal fibula fractures (n = 128, 54%). Overall, patients who underwent surgery missed significantly more days (mean, 123.8 days) than players who did not undergo surgery (mean, 75.3 days) ( P < .001). Players with isolated distal fibula fractures had significantly fewer days missed (mean, 93.6 days) compared with those with combined patterns (mean, 132.3 days) ( P = .0004). Fibula fractures affect a number of NFL athletes and result in significant time missed from competition. Further research is required to determine the optimal management of fibula fractures in NFL athletes. In this study, time to return to play depended on both the fracture pattern and whether surgery was required and ranged from 72 to 145 days.

  8. Profile and procedures for fractures among 1323 fracture patients from the 2010 Yushu earthquake, China.

    PubMed

    Kang, Peng; Tang, Bihan; Liu, Yuan; Liu, Xu; Shen, Yan; Liu, Zhipeng; Yang, Hongyang; Zhang, Lulu

    2016-11-01

    The injuries caused by earthquakes are often complex and of various patterns. Our study included all fracture inpatients from the Yushu earthquake (1323 in total), to learn more about the incidence and distribution of fractures during earthquakes. A retrospective study of the clinical characteristics of hospitalized fracture patients after the 2010 Yushu earthquake was conducted from December 20 to 25, 2010.We reviewed medical records of hospitalized patients who had been evacuated from the Yushu earthquake area between April 14 and June 15, 2010, from 57 hospitals, and also reviewed more than 100 documents assembled from daily medical rescue and disease prevention reports submitted by the frontline rescue organizations. In total, 78.0% of fracture patients were admitted to the hospital within 3 days after the earthquake. There were 1323 patients who presented with 1539 fractures. The most common fracture occurred in the lower limbs, followed by spinal, pelvic, and shoulder-upper limb fractures. The end of the thoracic vertebra and the lumbar vertebra were the high-risk sites for vertebral fractures. A total of 38 patients became paraplegic. A 2-level spatial clustering was detected among the 193 patients presenting with 2 fractures. Analysis profiles of the injuries and clinical features of patients with earthquake-related fractures will positively impact rescue efforts and the treatment of fracture injuries caused by possible future natural disasters. We should assemble orthopedic-related medications and surgical equipment, and allocate them promptly after a major earthquake. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF).

    PubMed

    Joeris, Alexander; Lutz, Nicolas; Blumenthal, Andrea; Slongo, Theddy; Audigé, Laurent

    2017-04-01

    Background and purpose - To achieve a common understanding when dealing with long bone fractures in children, the AO Pediatric Comprehensive Classification of Long Bone Fractures (AO PCCF) was introduced in 2007. As part of its final validation, we present the most relevant fracture patterns in the lower extremities of a representative population of children classified according to the PCCF. Patients and methods - We included patients up to the age of 17 who were diagnosed with 1 or more long bone fractures between January 2009 and December 2011 at either of 2 tertiary care university hospitals in Switzerland. Patient charts were retrospectively reviewed. Results - More lower extremity fractures occurred in boys (62%, n = 341). Of 548 fractured long bones in the lower extremity, 25% involved the femur and 75% the lower leg. The older the patients, the more combined fractures of the tibia and fibula were sustained (adolescents: 50%, 61 of 123). Salter-Harris (SH) fracture patterns represented 66% of single epiphyseal fractures (83 of 126). Overall, 74 of the 83 SH patterns occurred in the distal epiphysis. Of all the metaphyseal fractures, 74 of 79 were classified as incomplete or complete. Complete oblique spiral fractures accounted for 57% of diaphyseal fractures (120 of 211). Of all fractures, 7% (40 of 548) were classified in the category "other", including 29 fractures that were identified as toddler's fractures. 5 combined lower leg fractures were reported in the proximal metaphysis, 40 in the diaphysis, 26 in the distal metaphysis, and 8 in the distal epiphysis. Interpretation - The PCCF allows classification of lower extremity fracture patterns in the clinical setting. Re-introduction of a specific code for toddler's fractures in the PCCF should be considered.

  10. The AO Pediatric Comprehensive Classification of Long Bone Fractures (PCCF)

    PubMed Central

    Joeris, Alexander; Lutz, Nicolas; Blumenthal, Andrea; Slongo, Theddy; Audigé, Laurent

    2017-01-01

    Background and purpose To achieve a common understanding when dealing with long bone fractures in children, the AO Pediatric Comprehensive Classification of Long Bone Fractures (AO PCCF) was introduced in 2007. As part of its final validation, we present the most relevant fracture patterns in the lower extremities of a representative population of children classified according to the PCCF. Patients and methods We included patients up to the age of 17 who were diagnosed with 1 or more long bone fractures between January 2009 and December 2011 at either of 2 tertiary care university hospitals in Switzerland. Patient charts were retrospectively reviewed. Results More lower extremity fractures occurred in boys (62%, n = 341). Of 548 fractured long bones in the lower extremity, 25% involved the femur and 75% the lower leg. The older the patients, the more combined fractures of the tibia and fibula were sustained (adolescents: 50%, 61 of 123). Salter-Harris (SH) fracture patterns represented 66% of single epiphyseal fractures (83 of 126). Overall, 74 of the 83 SH patterns occurred in the distal epiphysis. Of all the metaphyseal fractures, 74 of 79 were classified as incomplete or complete. Complete oblique spiral fractures accounted for 57% of diaphyseal fractures (120 of 211). Of all fractures, 7% (40 of 548) were classified in the category "other", including 29 fractures that were identified as toddler’s fractures. 5 combined lower leg fractures were reported in the proximal metaphysis, 40 in the diaphysis, 26 in the distal metaphysis, and 8 in the distal epiphysis. Interpretation The PCCF allows classification of lower extremity fracture patterns in the clinical setting. Re-introduction of a specific code for toddler’s fractures in the PCCF should be considered. PMID:27882811

  11. ARC-1979-A79-7092

    NASA Image and Video Library

    1979-07-09

    Range : 241,000km (150,600 mi.). This black and white image of Europa, smallest of Jupiter's four Galilean satellites, was acquired by Voyager 2. Europa, the brightest of the Galiliean satellites, has a density slightly less than Io, suggesting it has a substantial quantity of water. Scientists previously speculated that the water must have cooled from the interior and formed a mantle of ice perhaps 100 km thick. The complex patterns on its surface suggest that the icy surface was fractured, and that the cracks filled with dark material from below. Very few impact craters are visible on the surface, suggesting that active processes on the surface are still modifying Europa. The tectonic pattern seen on its surface differs drastically from the fault systems seen on Ganymede where pieces of the crust have moved relative to each other. On Europa, the crust evidently fractures but the pieces remain in roughly their original position.

  12. [Intramedullary stabilisation of displaced midshaft clavicular fractures: does the fracture pattern (simple vs. complex) influence the anatomic and functional result].

    PubMed

    Langenhan, R; Reimers, N; Probst, A

    2014-12-01

    Displaced midshaft clavicular fractures are often treated operatively. The most common way of treatment is plating. Elastic stable intramedullary nailing (ESIN) is an alternative, but seldom used. Studies showed comparable or even better results for intramedullary nailing than for plating in simple 2- or 3-fragment midshaft fractures. The indication of ESIN for multifragmentary clavicular fractures is discussed critically in the literature because of reduced primary stability and danger of secondary shortening. Until now only few studies report functional results after fracture healing depending on the fracture type. To the best of our knowledge there is no study showing significantly worse functional scores for ESIN in complex displaced midshaft fractures. The objective of this study was to examine anatomic and functional results of simple (2 or 3 fragments, OTA type 15B1 and 15B2) and complex (multifragmentary, OTA type 15B3) displaced midshaft clavicula fractures after internal fixation. Between 2009 and 2012, 40 patients (female/male 10/30; mean age 33 [16-60] years) with closed displaced midshaft clavicular fractures were treated by open reduction and ESIN (Titanium Elastic Nail [TEN], Synthes, Umkirch, Germany). Thirty-seven patients were retrospectively analysed after a mean of 27 (12-43) months. Twenty patients (group A) had simple fractures (OTA type 15B1 and 15B2), 17 patients (group B) had complex fractures (OTA type 15B3). All shoulder joints were postoperatively treated functionally for six weeks without weight limited to 90° abduction/flexion. Both groups were comparable in gender, age, body mass index, months until metal removal, number of physiotherapy sessions and time until follow-up examination. Joint function (neutral zero method) and strength (standing patient with arm in 90° abduction, holding 1-12 kg for 5 sec) in both shoulders were documented. The distance between the centre of the jugulum and the lateral acromial border was measured for both sides. The DASH, Constant-Murley, Oxford shoulder and clavicular scores (Jubel) were calculated. Patients documented contentedness of outcome by VAS between 0 (absolute discontented) and 10 (very contented). Complications were recorded. Operatively treated displaced midshaft clavicular fractures. in comparison to the healthy side in group A had an average shortening of 5 (0-20) mm and in group B of 10 (3-25) mm, with a statistical significance between both groups. Patients of both groups were very contented with the results (VAS group A: 9.6; B: 9.5). DASH score (group A: 28; B: 3.1), Constant-Murley score (group A: 95.0; B: 93.8), Oxford shoulder score (group A: 46.2; B: 45.9) and the clavicula score (Jubel) (group A: 1.2; B: 2.1) were comparable between both groups without significance. In 4 patients (11%) complications occurred. Once (group B) an infection was seen, three times (group B) the ESIN had to be shortened on the medial side because of telescoping. Open ESIN of simple and complex displaced midshaft clavicular fractures leads after an average of 27 months to good or even excellent results. Healing of the clavicle in a modestly shortened position does not impair the patient. Georg Thieme Verlag KG Stuttgart · New York.

  13. Spinopelvic dissociation: multidetector computed tomographic evaluation of fracture patterns and associated injuries at a single level 1 trauma center.

    PubMed

    Gupta, Pushpender; Barnwell, Jonathan C; Lenchik, Leon; Wuertzer, Scott D; Miller, Anna N

    2016-06-01

    The objective of the present study is to evaluate multidetector computed tomographic (MDCT) fracture patterns and associated injuries in patients with spinopelvic dissociation (SPD). Our institutional trauma registry database was reviewed from Jan. 1, 2006, to Sept. 30, 2012, specifically evaluating patients with sacral fractures. MDCT scans of patients with sacral fractures were reviewed to determine the presence of SPD. SPD cases were characterized into the following fracture patterns: U-shaped, Y-shaped, T-shaped, H-shaped, and burst. The following MDCT features were recorded: level of the horizontal fracture, location of vertical fracture, kyphosis between major fracture fragments, displacement of fracture fragment, narrowing of central spinal canal, narrowing of neural foramina, and extension into sacroiliac joints. Quantitative evaluation of the sacral fractures was performed in accordance with the consensus statement by the Spine Trauma Study Group. Medical records were reviewed to determine associated pelvic and non-pelvic fractures, bladder and bowel injuries, nerve injuries, and type of surgical intervention. Twenty-one patients had SPD, of whom 13 were men and eight were women. Mean age was 41.8 years (range 18.8 to 87.7). Five fractures (24 %) were U-shaped, six (29 %) H-shaped, four (19 %) Y-shaped, and six (29 %) burst. Nine patients (43 %) had central canal narrowing, and 19 (90 %) had neural foramina narrowing. Eleven patients (52 %) had kyphotic angulation between major fracture fragments, and seven patients (33 %) had either anterior (24 %) or posterior (10 %) displacement of the proximal fracture fragment. Fourteen patients (67 %) had associated pelvic fractures, and 20 (95 %) had associated non-pelvic fractures. Two patients (10 %) had associated urethral injuries, and one (5 %) had an associated colon injury. Seven patients (33 %) had associated nerve injuries. Six patients (29 %) had surgical fixation while 15 (71 %) were managed non-operatively. On trauma MDCT examinations, patients with SPD have characteristic fracture patterns. It is important to differentiate SPD from other pelvic ring injuries due to high rate of associated injuries. Although all SPD injuries are unstable and need fixation, the decision for operative management in an individual patient depends on the systemic injury pattern, specific fracture pattern, and the ability to attain stable screw fixation.

  14. Treatment of Thoracolumbar Fracture

    PubMed Central

    Kim, Byung-Guk; Shin, Dong-Eun

    2015-01-01

    The most common fractures of the spine are associated with the thoracolumbar junction. The goals of treatment of thoracolumbar fracture are leading to early mobilization and rehabilitation by restoring mechanical stability of fracture and inducing neurologic recovery, thereby enabling patients to return to the workplace. However, it is still debatable about the treatment methods. Neurologic injury should be identified by thorough physical examination for motor and sensory nerve system in order to determine the appropriate treatment. The mechanical stability of fracture also should be evaluated by plain radiographs and computed tomography. In some cases, magnetic resonance imaging is required to evaluate soft tissue injury involving neurologic structure or posterior ligament complex. Based on these physical examinations and imaging studies, fracture stability is evaluated and it is determined whether to use the conservative or operative treatment. The development of instruments have led to more interests on the operative treatment which saves mobile segments without fusion and on instrumentation through minimal invasive approach in recent years. It is still controversial for the use of these treatments because there have not been verified evidences yet. However, the morbidity of patients can be decreased and good clinical and radiologic outcomes can be achieved if the recent operative treatments are used carefully considering the fracture pattern and the injury severity. PMID:25705347

  15. Microfluidic Investigation of Oil Mobilization in Shale Fracture Networks at Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Investigations of pore-scale fluid flow and transport phenomena using engineered micromodels has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. One drawback to these studies is the use of engineered materials that do not faithfully represent the rock properties (e.g., porosity, wettability, roughness, etc.) encountered in subsurface formations. In this work, we describe a unique high pressure (up to 1500 psi) and temperature (up to 80 °C) microfluidics experimental system in which we investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in hydraulically fractured shale. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase huff-and-puff experiments involving N2 and n-Decane, as well as three-phase displacement experiments involving supercritical CO2, brine, and n-Decane.

  16. Ipsilateral intact fibula as a predictor of tibial plafond fracture pattern and severity.

    PubMed

    Luk, Pamela C; Charlton, Timothy P; Lee, Jackson; Thordarson, David B

    2013-10-01

    The objective of this study was to determine whether there is a difference in fracture pattern and severity of comminution between tibial plafond fractures with and without associated fibular fractures using computed tomography (CT). We hypothesized that the presence of an intact fibula was predictive of increased tibial plafond fracture severity. This was a case control, radiographic review performed at a single level I university trauma center. Between November 2007 and July 2011, 104 patients with 107 operatively treated tibial pilon fractures and preoperative CT scans were identified: 70 patients with 71 tibial plafond fractures had associated fibular fractures, and 34 patients with 36 tibial plafond fractures had intact fibulas. Four criteria were compared between the 2 groups: AO/OTA classification of distal tibia fractures, Topliss coronal and sagittal fracture pattern classification, plafond region of greatest comminution, and degree of proximal extension of fracture line. The intact fibula group had greater percentages of AO/OTA classification B2 type (5.5 vs 0, P = .046) and B3 type (52.8 vs 28.2, P = .013). Conversely, the percentage of AO/OTA classification C3 type was greater in the fractured fibula group (53.5 vs 30.6, P = .025). Evaluation using the Topliss sagittal and coronal classifications revealed no difference between the 2 groups (P = .226). Central and lateral regions of the plafond were the most common areas of comminution in fractured fibula pilons (32% and 31%, respectively). The lateral region of the plafond was the most common area of comminution in intact fibula pilon fractures (42%). There was no statistically significant difference (P = .71) in degree of proximal extension of fracture line between the 2 groups. Tibial plafond fractures with intact fibulas were more commonly associated with AO/OTA classification B-type patterns, whereas those with fractured fibulas were more commonly associated with C-type patterns. An intact fibula may be predictive of less comminution of the plafond. The lateral and central regions of the plafond were the most common areas of comminution in tibial plafond fractures, regardless of fibular status. Level III, case control study.

  17. A Discrete Fracture Network Model with Stress-Driven Nucleation and Growth

    NASA Astrophysics Data System (ADS)

    Lavoine, E.; Darcel, C.; Munier, R.; Davy, P.

    2017-12-01

    The realism of Discrete Fracture Network (DFN) models, beyond the bulk statistical properties, relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. The realism can be improved by injecting prior information in DFN from a better knowledge of the geological fracturing processes. We first develop a model using simple kinematic rules for mimicking the growth of fractures from nucleation to arrest, in order to evaluate the consequences of the DFN structure on the network connectivity and flow properties. The model generates fracture networks with power-law scaling distributions and a percentage of T-intersections that are consistent with field observations. Nevertheless, a larger complexity relying on the spatial variability of natural fractures positions cannot be explained by the random nucleation process. We propose to introduce a stress-driven nucleation in the timewise process of this kinematic model to study the correlations between nucleation, growth and existing fracture patterns. The method uses the stress field generated by existing fractures and remote stress as an input for a Monte-Carlo sampling of nuclei centers at each time step. Networks so generated are found to have correlations over a large range of scales, with a correlation dimension that varies with time and with the function that relates the nucleation probability to stress. A sensibility analysis of input parameters has been performed in 3D to quantify the influence of fractures and remote stress field orientations.

  18. Patterns of Fracture and Tidal Stresses Due to Nonsynchronous Rotation: Implications for Fracturing on Europa

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Helfenstein, P.

    1985-01-01

    Global lineaments on Europa were interpreted as fractures in an icy crust. A variety of lineament types were identified, which appear to form a systematic pattern on the surface. For a synchronously rotating body, the patterns of fractures observed could be produced by a combination of stresses due to orbital recession, orbital eccentricity, and internal contraction. However, it was recently suggested that the forced eccentricity of Europa's orbit may result in nonsynchronous rotation. The hypothesis that fractures in a thin icy crust may have formed in response to stresses resulting from nonsynchronous rotation is studied.

  19. Audio-based, unsupervised machine learning reveals cyclic changes in earthquake mechanisms in the Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Paté, A.; Paisley, J.; Waldhauser, F.; Repetto, D.; Boschi, L.

    2017-12-01

    The earthquake process reflects complex interactions of stress, fracture and frictional properties. New machine learning methods reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Our methods are based closely on those developed for music information retrieval and voice recognition, using the spectrogram instead of the waveform directly. Unsupervised learning involves identification of patterns based on differences among signals without any additional information provided to the algorithm. Clustering of 46,000 earthquakes of $0.3

  20. Patterns of Maxillofacial Fractures in Uttar Pradesh, India

    PubMed Central

    Agarwal, Padmanidhi; Mehrotra, Divya; Agarwal, Rajul; Kumar, Sumit; Pandey, Rahul

    2016-01-01

    This study aimed to obtain dependable epidemiologic data of the variation in cause and characteristics of maxillofacial fractures by identifying, describing, and quantifying trauma. This retrospective study was conducted in the state of Uttar Pradesh, India, over 1 year, based on a systematic computer-assisted database search from March 2015 to March 2016 for maxillofacial fractures. The demographics, etiology, geographic distribution, date of injury, site and number of fractures, and type of intervention were recorded for each. The study population consisted of 1,000 patients with 1,543 fractures. The male:female ratio was 8:1. A peak incidence of fractures was seen in the third decade (mean age: 30.3) with maximum patients younger than 40 years (80.8%). The incidence of fractures was highest in spring (42.9%). Road traffic accidents were the most common cause of trauma (64.4%) and mainly involved two wheelers (60.2%). Single-site fractures were most common. Mostly zygomatic (45.1%) and mandibular fractures (44.4%) were encountered, accounting for approximately 90% of all fractures. The main site of mandibular fractures was the body (34.4%); 46.2% of fractures underwent open reduction and internal fixation (ORIF) while 53.8% were treated by closed methods. The study provides important data to contrive future plans for injury prevention. The trend of most traffic-related injuries continues with the increasing traffic on roads. Zygomatic complex and mandibular fractures remain the most frequent. The major populations at risk are young men and those driving two wheelers. The use of helmets could achieve a large reduction in maxillofacial fractures. Awareness for preventive measures and safety guidelines should be propagated and legislation on traffic rules strictly reinforced. PMID:28210408

  1. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice.

    PubMed

    Mori, Yu; Adams, Douglas; Hagiwara, Yusuke; Yoshida, Ryu; Kamimura, Masayuki; Itoi, Eiji; Rowe, David W

    2016-11-01

    Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3-green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.

  2. Numerical modeling of the fracture process in a three-unit all-ceramic fixed partial denture.

    PubMed

    Kou, Wen; Kou, Shaoquan; Liu, Hongyuan; Sjögren, Göran

    2007-08-01

    The main objectives were to examine the fracture mechanism and process of a ceramic fixed partial denture (FPD) framework under simulated mechanical loading using a recently developed numerical modeling code, the R-T(2D) code, and also to evaluate the suitability of R-T(2D) code as a tool for this purpose. Using the recently developed R-T(2D) code the fracture mechanism and process of a 3U yttria-tetragonal zirconia polycrystal ceramic (Y-TZP) FPD framework was simulated under static loading. In addition, the fracture pattern obtained using the numerical simulation was compared with the fracture pattern obtained in a previous laboratory test. The result revealed that the framework fracture pattern obtained using the numerical simulation agreed with that observed in a previous laboratory test. Quasi-photoelastic stress fringe pattern and acoustic emission showed that the fracture mechanism was tensile failure and that the crack started at the lower boundary of the framework. The fracture process could be followed both in step-by-step and step-in-step. Based on the findings in the current study, the R-T(2D) code seems suitable for use as a complement to other tests and clinical observations in studying stress distribution, fracture mechanism and fracture processes in ceramic FPD frameworks.

  3. Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: Implications for flow emplacement and cooling histories

    NASA Astrophysics Data System (ADS)

    Lodge, Robert W. D.; Lescinsky, David T.

    2009-09-01

    Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as marginal inflation. In addition to this, horizontally propagating cooling fractures will be directly influenced by viscous strain caused by the settling of the flow. This would cause preferential opening of fractures horizontally, resulting in vertically oriented fractures. It is important to note that the proposed model for the formation of linear fractures is dependent on contact with and confinement by glacial ice. The influence of flow or movement on cooling fracture patterns has not been extensively discussed in previous modeling of cooling fractures. Rapid cooling of lava by the interaction with water and ice will increase the ability to the capture and preserve perturbations in the stress regime.

  4. Rigid fixation of facial fractures in children.

    PubMed

    Koltai, P J; Rabkin, D; Hoehn, J

    1995-01-01

    This article presents a retrospective analysis of a selective use of rigid fixation among 62 children with facial fractures, treated at a Level I trauma center over a 5-year period (1986-1991). There were 21 mandible fractures, 11 orbital fractures, 11 zygomaticomalar complex fractures, 7 nasal fractures, 5 maxillary fractures, 3 pan-facial fractures, 2 nasal-orbital-ethmoidal complex fractures, and 2 frontal sinus fractures. Only 18 children had rigid fixation of their injuries. Complications of Le Fort upper facial fractures repaired with rigid fixation involved perioperative sinusitis; one case required oral antibiotics, the other ethmoidectomy and maxillary antrostomy. One child with a Le Fort fracture had delayed exposure of a zygomaticomalar buttress plate, which required surgical removal. Permanent enophthalmos occurred in two children with Le Fort fractures. The authors conclude that traditional conservative management is appropriate in most cases. However, in children aged 13 and older with mandible fractures and children with complex mid- and upper facial fractures, a judicious use of rigid fixation has advantages over the traditional techniques.

  5. Empirical analysis of electromagnetic profiles for groundwater prospecting in rural areas of Ibadan, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Ehinola, O. A.; Opoola, A. O.

    2005-05-01

    The Slingram electromagnetic (EM) survey using a coil separation of 60 and 100 meters was carried out in 10 villages in Akinyele area of Ibadan, southwestern Nigeria to aid in the development of groundwater. Five main rock types including an undifferentiated gneiss complex (Su), biotite-garnet schist/gneiss (Bs), quartzite and quartz schist (Q), migmatised undifferentiated biotite/hornblende gneiss (M) and pegmatite/quartz vein (P) underlie the study area. A total of 31 EM profiles was made to accurately locate prospective borehole sites in the field. Four main groups with different behavioural pattern were categorized from the EM profiles. Group 1 is characterized by high density of positive (HDP) or high density of negative (HDN) real and imaginary curves, Group 2 by parallel real and imaginary curves intersecting with negligible amplitude (PNA), Group 3 by frequent intersection of high density of negative minima (FHN) real and imaginary curves, and Group 4 by separate and approximately parallel (SAP) real and imaginary curves. Qualitative pictures of the overburden thickness and the extent of fracturing have been proposed from these behavioural patterns. A comparison of the borehole yield with the overburden thickness and the level of fracturing show that borehole yield depends more on the fracture density than on the overburden thickness. Asymmetry of the anomaly was also found useful in the determination of the inclination of the conductor/fracture.

  6. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  7. Complex and open fractures: a straightforward approach to management in the cat.

    PubMed

    Corr, Sandra

    2012-01-01

    Cats often present with traumatic injuries of the limbs, including complex and open fractures, frequently as a result of road traffic accidents. On initial assessment, complex and open fractures may appear to require expertise beyond the experience of the general practitioner and, in some cases, referral to a specialist may be indicated or amputation should be considered. Many cases, however, can be managed using straightforward principles. This review describes a logical and practical approach to treating such injuries. It discusses general principles of fracture management, highlights the treatment of open fractures, and describes the use of external skeletal fixation for stabilisation of both open and complex fractures. Most fractures can be stabilised using equipment and expertise available in general practice if the basic principles of fracture fixation are understood and rigorously applied. Many textbooks and journal articles have been published on the management of fractures in companion animals, presenting case studies, case series and original biomechanical research. The simple strategy for managing complex injuries that is provided in this review is based on the published literature and the author's clinical experience.

  8. Specimen-specific modeling of hip fracture pattern and repair.

    PubMed

    Ali, Azhar A; Cristofolini, Luca; Schileo, Enrico; Hu, Haixiang; Taddei, Fulvia; Kim, Raymond H; Rullkoetter, Paul J; Laz, Peter J

    2014-01-22

    Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants. © 2013 Published by Elsevier Ltd.

  9. Modeling folding related multi-scale deformation of sedimentary rock using ALSM and fracture characterization at Raplee Ridge, UT

    NASA Astrophysics Data System (ADS)

    Mynatt, I.; Hilley, G. E.; Pollard, D. D.

    2006-12-01

    Understanding and predicting the characteristics of folding induced fracturing is an important and intriguing structural problem. Folded sequences of sedimentary rock at depth are common traps for hydrocarbons and water and fractures can strongly effect (both positively and negatively) this trapping capability. For these reasons fold-fracture relationships are well studied, but due to the complex interactions between the remote tectonic stress, rheologic properties, underlying fault geometry and slip, and pre-existing fractures, fracture characteristics can vary greatly from fold to fold. Additionally, examination of the relationships between fundamental characteristics such as fold geometry and fracture density are difficult even in thoroughly studied producing fields as measurements of fold shape are hampered by the low resolution of seismic surveying and measurements of fractures are limited to sparse well-bore locations. Due to the complexity of the system, the limitations of available data and small number of detailed case studies, prediction of fracture characteristics, e.g. the distribution of fracture density, are often difficult to make for a particular fold. We suggest a combination of mechanical and numerical modeling and analysis combined with detailed field mapping can lead to important insights into fold-fracture relationships. We develop methods to quantify both fold geometry and fracture characteristics, and summarize their relationships for an exhumed analogue reservoir case study. The field area is Raplee Monocline, a Laramide aged, N-S oriented, ~14-km long fold exposed in the Monument Upwarp of south-eastern Utah and part of the larger Colorado Plateau geologic province. The investigation involves three distinct parts: 1) Field based characterization and mapping of the fractures on and near the fold; 2) Development of accurate models of the fold geometry using high resolution data including ~3.5x107 x, y, z topographic points collected using Airborne Laser Swath Mapping (ALSM); and 3) Analysis of the fold shape and fracture patterns using the concepts of differential geometry and fracture mechanics. Field documentation of fracture characteristics enables the classification of distinct pre- and syn- folding fracture sets and the development of conceptual models of multiple stages of fracture evolution. Numerical algorithms, visual methods and field mapping techniques are used to extract the geometry of specific stratigraphic bedding surfaces and interpolate fold geometry between topographic exposures, thereby creating models of the fold geometry at several stratigraphic levels. Geometric characteristics of the fold models, such as magnitudes and directions of maximum and minimum normal curvature and fold limb dip, are compared to the observed fracture characteristics to identify the following relationships: 1) Initiation of folding related fractures at ten degrees of limb dip and increasing fracture density with increasing dip and 2) No correlation between absolute maximum fold curvature and fracture density.

  10. Peripheral Faulting of Eden Patera: Potential Evidence in Support of a New Volcanic Construct on Mars

    NASA Astrophysics Data System (ADS)

    Harlow, J.

    2016-12-01

    Arabia Terra's (AT) pock-marked topography in the expansive upland region of Mars Northern Hemisphere has been assumed to be the result of impact crater bombardment. However, examination of several craters by researchers revealed morphologies inconsistent with neighboring craters of similar size and age. These 'craters' share features with terrestrial super-eruption calderas, and are considered a new volcanic construct on Mars called `plains-style' caldera complexes. Eden Patera (EP), located on the northern boundary of AT is a reference type for these calderas. EP lacks well-preserved impact crater morphologies, including a decreasing depth to diameter ratio. Conversely, Eden shares geomorphological attributes with terrestrial caldera complexes such as Valles Caldera (New Mexico): arcuate caldera walls, concentric fracturing/faulting, flat-topped benches, irregular geometric circumferences, etc. This study focuses on peripheral fractures surrounding EP to provide further evidence of calderas within the AT region. Scaled balloon experiments mimicking terrestrial caldera analogs have showcased fracturing/faulting patterns and relationships of caldera systems. These experiments show: 1) radial fracturing (perpendicular to caldera rim) upon inflation, 2) concentric faulting (parallel to sub-parallel to caldera rim) during evacuation, and 3) intersecting radial and concentric peripheral faulting from resurgence. Utilizing Mars Reconnaissance Orbiter Context Camera (CTX) imagery, peripheral fracturing is analyzed using GIS to study variations in peripheral fracture geometries relative to the caldera rim. Visually, concentric fractures dominate within 20 km, radial fractures prevail between 20 and 50 km, followed by gradation into randomly oriented and highly angular intersections in the fretted terrain region. Rose diagrams of orientation relative to north expose uniformly oriented mean regional stresses, but do not illuminate localized caldera stresses. Further examination of orientation relative to caldera rim reveals expected orientations of ±30° on rose diagrams, taking into account the geometric nature of concentric faulting. These results establish a quantitative geometric system to differentiate localized from regional faulting surrounding Eden Patera.

  11. What happens between pure hydraulic and buckling mechanisms of blowout fractures?

    PubMed

    Nagasao, Tomohisa; Miyamoto, Junpei; Shimizu, Yusuke; Jiang, Hua; Nakajima, Tatsuo

    2010-06-01

    The present study aims to evaluate how the ratio of the hydraulic and buckling mechanisms affects blowout fracture patterns, when these two mechanisms work simultaneously. Three-dimensional computer-aided-design (CAD)models were generated simulating ten skulls. To simulate impact, 1.2J was applied on the orbital region of these models in four patterns. Pattern 1: All the energy works to cause the hydraulic effect. Pattern 2: Two-thirds of the energy works to cause the hydraulic effect; one-third of the energy works to cause the buckling effect. Pattern 3: One-third of the energy works to cause the hydraulic effect; two-thirds of the energy works to cause the buckling effect. Pattern 4: The entire energy quantum works to cause the buckling effect. Using the finite element method, the regions where fractures were theoretically expected to occur were calculated and were compared between the four patterns. More fracture damage occurred for Pattern 1 than Pattern 2, and for Pattern 3 than for Pattern 4. The hydraulic and buckling mechanisms interact with one another. When these two mechanisms are combined, the orbital walls tend to develop serious fractures. Copyright (c) 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Minimally invasive plating osteosynthesis for mid-distal third humeral shaft fractures.

    PubMed

    Lian, Kejian; Wang, Lei; Lin, Dasheng; Chen, Zhiwen

    2013-08-01

    Mid-distal third humeral shaft fractures can be effectively treated with minimally invasive plating osteosynthesis and intramedullary nailing (IMN). However, these 2 treatments have not been adequately compared. Forty-seven patients (47 fractures) with mid-distal third humeral shaft fractures were randomly allocated to undergo either minimally invasive plating osteosynthesis (n=24) or IMN (n=23). The 2 groups were similar in terms of fracture patterns, fracture location, age, and associated injuries. Intraoperative measurements included blood loss and operative time. Clinical outcome measurements included fracture healing, radial nerve recovery, and elbow and shoulder discomfort. Radiographic measurements included fracture alignment, time to healing, delayed union, and nonunion. Functional outcome was satisfactory in both groups. Mean American Shoulder and Elbow Surgeons score and Mayo score were both better for the minimally invasive plating osteosynthesis group than for the IMN group (98.2 vs 97.6, respectively, and 93.5 vs 94.1, respectively; P<.001). Operative time was shorter and less intraoperative blood loss occurred in the minimally invasive plating osteosynthesis group than in the IMN group. Average time to union was similar in both groups. Primary union was achieved in 23 of 24 patients in the minimally invasive plating osteosynthesis group and in 22 of 23 in the IMN group. Minimally invasive plating osteosynthesis may have outcomes comparable with IMN for the management of mid-distal third humeral shaft fractures. Minimally invasive plating osteosynthesis is more suitable for complex fractures, especially for radial protection and motion recovery of adjacent joints, compared with IMN for simple fractures. Copyright 2013, SLACK Incorporated.

  13. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  14. A study of sports-related orbital fractures in Singapore.

    PubMed

    Lock, Jing Zhan; Hegde, Raghuraj; Young, Stephanie; Lim, Thiam Chye; Amrith, Shantha; Sundar, Gangadhara

    2017-10-01

    With an increased popularity of sport and active living worldwide, our study aims to explore the incidence and features of sports-related orbital fractures in Singapore. 1421 computer tomography (CT) imaging scans of the face and orbits done at the National University Hospital over a 24-month period from January 2013 and December 2014 were reviewed retrospectively for orbital fractures. We identified 483 orbital fractures of which sports injury was the fourth most common etiology (n = 65; 13.5%) after road traffic accident (n = 131; 27.1%), geriatric fall (n = 81; 16.8%) and workplace injury (n = 67; 13.9%). The three most common sport in orbital fractures were soccer (n = 20; 30.8%), bicycling (n = 11; 16.9%) and jogging (n = 8; 12.3%). The three most common fracture patterns were zygomatico-maxillary complex fractures (n = 24; 36.9%), isolated one wall blowout fractures (n = 19; 29.2%) and naso-orbito-ethmoid fractures (n = 7; 10.8%). Sports-related orbital fractures were associated with a low mean age of patients (45.9 years, range, 14-79 years), a higher proportion of males (n = 58; 89.2%) than that from geriatric falls (n = 37, 45.6%) (P < 0.01), a higher likelihood of unilaterality (n = 62; 95.4%) than that from traffic accidents (n = 99; 75.6%) (P < 0.01) and a lower likelihood of pan-facial involvement (n = 4; 6.15%) than that from traffic accident (n = 60; 45.8%) (P < 0.01). Sports-related orbital fractures are the fourth most common cause of orbital fractures. Though commonly seen in young male adults, in view of the aging population and people exercising more regularly, education of safety measures among sports users is paramount to preventing sports-related orbital fractures.

  15. Facial Fracture Management in Northwest Nigeria

    PubMed Central

    Taiwo, Abdurrazaq Olanrewaju; Soyele, Olujide Oladele; Godwin, Ndubuizi Ugochukwu; Ibikunle, Adebayo Aremu

    2013-01-01

    Background: Facial fracture is gradually become a public health problem in our community due to the attendant morbidity and mortality. Hence, the aim of this study was to determine the pattern of facial fracture in Dental and Maxillofacial Surgery Department of Usmanu Danfodiyo University Teaching Hospital. This cross-sectional study was undertaken to provide information regarding gender, age, etiology, and diagnosis of patients with maxillofacial fractures. Materials and Methods: A 1-year review of patients diagnosed and treated for facial fractures in Usmanu Danfodiyo University Teaching Hospital between January 2011 and December 2011. The diagnosis was based on radiographic data and clinical examination. The main analysis outcome measures were etiology, age, gender, site, and treatment. Data were organized and presented by means of descriptive statistics and Pearson's Chi-square test. The level of significance adopted was 5%. Results: A total of 40 patients were treated in this period. Over 95% were male, 81% were caused by road traffic crash (RTC) and 86.4% were in the 21-30 years group. Most patients (52%) had mandibular fractures, and the most common site was the body. Most patients with midfacial fractures had fractures of the zygomaticomaxillary region (36%), while fractures of the parasymphyseal region were more common in the mandible 156 (31%). The most common treatment for jaw fractures was mandibulomaxillary fixation (MMF). Stable zygomatic complex fractures were reduced (elevated) intraorally, and unstable ones were supported by antral packs. Conclusions: This study highlights facial fractures secondary to RTC as a serious public health problem in our environment. Preventive strategies remain the cheapest way to reduce direct and indirect costs of the sequelae of RTC. It also bring to the fore the necessity to shift to open reduction and internal fixation (ORIF) of fractures. PMID:24741422

  16. Mandibular fracture patterns consistent with posterior maxillary fractures involving the posterior maxillary sinus, pterygoid plate or both: CT characteristics.

    PubMed

    Imai, T; Sukegawa, S; Kanno, T; Fujita, G; Yamamoto, N; Furuki, Y; Michizawa, M

    2014-01-01

    The aim of this study was to determine the incidence of posterior maxillary fractures involving the posterior maxillary sinus wall, pterygoid plate or both, unrelated to major midface fractures in patients with mandibular fractures, and to characterize associated fractures. A CT study was performed in patients with mandibular fractures to identify posterior maxillary fractures. Patients aged under 16 years, those with mandibular fractures involving only dentoalveolar components and those with concurrent major midfacial fractures were excluded. 13 (6.7%) of 194 patients with mandibular fractures also had posterior maxillary fractures (case group). The injury pattern correlated with the external force directed to the lateral side of the mandible (p < 0.001), alcohol consumption (p = 0.049), the presence of multifocal fractures (p = 0.002) and the fracture regions in the symphysis/parasymphysis (p = 0.001) and the angle/ramus (p = 0.001). No significant difference between the case and non-case groups was seen for age, sex or cause of trauma. Non-displaced fractures in the ipsilateral posterior mandible occurred with significant frequency (p = 0.001) when the posterior maxillary fractures involved only the sinus. Mandibular fractures accompanied by posterior maxillary fractures are not rare. The finding of a unilateral posterior maxillary fracture on CT may aid the efficient radiological examination of the mandible based on possible patterns of associated fractures, as follows: in the ipsilateral posterior region as a direct fracture when the impact is a medially directed force, and in the symphysis/parasymphysis or contralateral condylar neck as an indirect fracture.

  17. Proximal humeral fractures: the role of calcium sulphate augmentation and extended deltoid splitting approach in internal fixation using locking plates.

    PubMed

    Somasundaram, K; Huber, C P; Babu, V; Zadeh, H

    2013-04-01

    The aim of our study is to analyse the results of our surgical technique for the treatment of proximal humeral fractures and fracture dislocations using locking plates in conjunction with calcium sulphate bone-substitute augmentation and tuberosity repair using high-strength sutures. We used the extended deltoid-splitting approach for fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Optimal surgical management of proximal humeral fractures remains controversial. Locking plates have become a popular method of fixation. However, failure of fixation may occur if they are used as the sole method of fixation in comminuted fractures, especially in osteopenic bone. We retrospectively analysed 22 proximal humeral fractures in 21 patients; 10 were male and 11 female with an average age of 64.6 years (range 37-77). Average follow-up was 24 months. Eleven of these fractures were exposed by the extended deltoid-splitting approach. Fractures were classified according to Neer and Hertel systems. Preoperative radiographs and computed tomography (CT) scans in three- and four-part fractures were done to assess the displacement and medial calcar length for predicting the humeral head vascularity. According to the Neer classification, there were five two-part, six three-part, five four-part fractures and six fracture-dislocations (two anterior and four posterior). Results were assessed clinically with disabilities of the arm, shoulder and hand (DASH) scores, modified Constant and Murley scores and serial postoperative radiographs. The mean DASH score was 16.18 and the modified Constant and Murley score was 64.04 at the last follow-up. Eighteen out of twenty-two cases achieved good clinical outcome. All the fractures united with no evidence of infection, failure of fixation, malunion, tuberosity failure, avascular necrosis or adverse reaction to calcium sulphate bone substitute. There was no evidence of axillary nerve injury. Four patients had a longer recovery period due to stiffness, associated wrist fracture and elbow dislocation. The CaSO4 bone substitute was replaced by normal appearing trabecular bone texture at an average of 6 months in all patients. In our experience, we have found the use of locking plates, calcium sulphate bone substitute and tuberosity repair with high-strength sutures to be a safe and reliable method of internal fixation for complex proximal humeral fractures and fracture-dislocations. Furthermore, we have also found the use of the extended deltoid-splitting approach to be safe and to provide excellent exposure facilitating accurate reduction for fixation of the fracture patterns involving displacement of both lesser and greater tuberosities and for fracture-dislocations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    We present preliminary hypocenter determinations for 52 earthquakes recorded by a large multiinstitutional network of ocean bottom seismometers and ocean bottom hydrophones in the Orozco Fracture Zone in the eastern Pacific during late February to mid-March 1979. The network was deployed as part of the Rivera Ocean Seismic Experiment, also known as Project ROSE. The Orozco Fracture Zone is Physiographically complex, and the pattern of microearthquake hypocenters at least partly reflects this complexity. All of the well-located epicenters lie within the active transform fault segment of the fracture zone. About half of the recorded earthquakes were aligned along a narrowmore » trough that extends eastward from the northern rise crest intersection in the approximate direction of the Cocos-Pacific relative plate motion; these events appear to be characterized by strike-slip faulting. The second major group of activity occurred in the central portion of the transform fault; the microearthquakes in this group do not display a preferred alignment parallel to the direction of spreading, and several are not obviously associated with distinct topographic features. Hypocentral depth was well resolved for many of the earthquakes reported here. Nominal depths range from 0 to 17 km below the seafloor.« less

  19. On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver

    NASA Astrophysics Data System (ADS)

    Mosby, Matthew; Matouš, Karel

    2015-12-01

    Three-dimensional simulations capable of resolving the large range of spatial scales, from the failure-zone thickness up to the size of the representative unit cell, in damage mechanics problems of particle reinforced adhesives are presented. We show that resolving this wide range of scales in complex three-dimensional heterogeneous morphologies is essential in order to apprehend fracture characteristics, such as strength, fracture toughness and shape of the softening profile. Moreover, we show that computations that resolve essential physical length scales capture the particle size-effect in fracture toughness, for example. In the vein of image-based computational materials science, we construct statistically optimal unit cells containing hundreds to thousands of particles. We show that these statistically representative unit cells are capable of capturing the first- and second-order probability functions of a given data-source with better accuracy than traditional inclusion packing techniques. In order to accomplish these large computations, we use a parallel multiscale cohesive formulation and extend it to finite strains including damage mechanics. The high-performance parallel computational framework is executed on up to 1024 processing cores. A mesh convergence and a representative unit cell study are performed. Quantifying the complex damage patterns in simulations consisting of tens of millions of computational cells and millions of highly nonlinear equations requires data-mining the parallel simulations, and we propose two damage metrics to quantify the damage patterns. A detailed study of volume fraction and filler size on the macroscopic traction-separation response of heterogeneous adhesives is presented.

  20. Acidization of shales with calcite cemented fractures

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between wormholes is the strongest when coating thickness is a few times larger than the initial aperture of the fracture. This leads to formation of favorable complex networks of wormholes which provide adequate transport of reactive fluids to fracture surfaces and - at the same time - are capable of supporting fracture surfaces. As a conclusion, acidization of the reactivated fractures with hydrochloric acid seems to be an attractive treatment to apply at fracking stage or later on as EGR. The results contribute to the discussion on the use of acidization to enhance the gas production in the shale reservoirs. This communication stresses the importance of the dissolution of calcite cement in natural fractures in shale formations, which are initially sealed and become reactivated during fracking. While this research is based on the analysis of fractures in the Pomeranian shale basin its results are general enough to be applicable to different formations worldwide.

  1. Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests

    NASA Astrophysics Data System (ADS)

    Na, SeonHong; Sun, WaiChing; Ingraham, Mathew D.; Yoon, Hongkyu

    2017-08-01

    For assessing energy-related activities in the subsurface, it is important to investigate the impact of the spatial variability and anisotropy on the geomechanical behavior of shale. The Brazilian test, an indirect tensile-splitting method, is performed in this work, and the evolution of strain field is obtained using digital image correlation. Experimental results show the significant impact of local heterogeneity and lamination on the crack pattern characteristics. For numerical simulations, a phase field method is used to simulate the brittle fracture behavior under various Brazilian test conditions. In this study, shale is assumed to consist of two constituents including the stiff and soft layers to which the same toughness but different elastic moduli are assigned. Microstructural heterogeneity is simplified to represent mesoscale (e.g., millimeter scale) features such as layer orientation, thickness, volume fraction, and defects. The effect of these structural attributes on the onset, propagation, and coalescence of cracks is explored. The simulation results show that spatial heterogeneity and material anisotropy highly affect crack patterns and effective fracture toughness, and the elastic contrast of two constituents significantly alters the effective toughness. However, the complex crack patterns observed in the experiments cannot completely be accounted for by either an isotropic or transversely isotropic effective medium approach. This implies that cracks developed in the layered system may coalesce in complicated ways depending on the local heterogeneity, and the interaction mechanisms between the cracks using two-constituent systems may explain the wide range of effective toughness of shale reported in the literature.

  2. Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, SeonHong; Sun, WaiChing; Ingraham, Mathew D.

    For assessing energy-related activities in the subsurface, it is important to investigate the impact of the spatial variability and anisotropy on the geomechanical behavior of shale. The Brazilian test, an indirect tensile-splitting method, is performed in this work, and the evolution of strain field is obtained using digital image correlation. Experimental results show the significant impact of local heterogeneity and lamination on the crack pattern characteristics. For numerical simulations, a phase field method is used to simulate the brittle fracture behavior under various Brazilian test conditions. In this study, shale is assumed to consist of two constituents including the stiffmore » and soft layers to which the same toughness but different elastic moduli are assigned. Microstructural heterogeneity is simplified to represent mesoscale (e.g., millimeter scale) features such as layer orientation, thickness, volume fraction, and defects. The effect of these structural attributes on the onset, propagation, and coalescence of cracks is explored. The simulation results show that spatial heterogeneity and material anisotropy highly affect crack patterns and effective fracture toughness, and the elastic contrast of two constituents significantly alters the effective toughness. However, the complex crack patterns observed in the experiments cannot completely be accounted for by either an isotropic or transversely isotropic effective medium approach. In conclusion, this implies that cracks developed in the layered system may coalesce in complicated ways depending on the local heterogeneity, and the interaction mechanisms between the cracks using two-constituent systems may explain the wide range of effective toughness of shale reported in the literature.« less

  3. Effects of spatial heterogeneity and material anisotropy on the fracture pattern and macroscopic effective toughness of Mancos Shale in Brazilian tests

    DOE PAGES

    Na, SeonHong; Sun, WaiChing; Ingraham, Mathew D.; ...

    2017-07-31

    For assessing energy-related activities in the subsurface, it is important to investigate the impact of the spatial variability and anisotropy on the geomechanical behavior of shale. The Brazilian test, an indirect tensile-splitting method, is performed in this work, and the evolution of strain field is obtained using digital image correlation. Experimental results show the significant impact of local heterogeneity and lamination on the crack pattern characteristics. For numerical simulations, a phase field method is used to simulate the brittle fracture behavior under various Brazilian test conditions. In this study, shale is assumed to consist of two constituents including the stiffmore » and soft layers to which the same toughness but different elastic moduli are assigned. Microstructural heterogeneity is simplified to represent mesoscale (e.g., millimeter scale) features such as layer orientation, thickness, volume fraction, and defects. The effect of these structural attributes on the onset, propagation, and coalescence of cracks is explored. The simulation results show that spatial heterogeneity and material anisotropy highly affect crack patterns and effective fracture toughness, and the elastic contrast of two constituents significantly alters the effective toughness. However, the complex crack patterns observed in the experiments cannot completely be accounted for by either an isotropic or transversely isotropic effective medium approach. In conclusion, this implies that cracks developed in the layered system may coalesce in complicated ways depending on the local heterogeneity, and the interaction mechanisms between the cracks using two-constituent systems may explain the wide range of effective toughness of shale reported in the literature.« less

  4. Percutaneous locking plates for fractures of the distal tibia: our experience and a review of the literature.

    PubMed

    Ahmad, Mudussar Abrar; Sivaraman, Alagappan; Zia, Ahmed; Rai, Amarjit; Patel, Amratlal D

    2012-02-01

    Distal tibial metaphyseal fractures pose many complexities. This study assessed the outcomes of distal tibial fractures treated with medial locking plates. Eighteen patients were selected based on the fracture pattern and classified using the AO classification and stabilized with an AO medial tibial locking plate. Time to fracture union, complications, and outcomes were assessed with the American Orthopedic Foot and Ankle Society Ankle score at 12 months. Sixteen of the 18 patients achieved fracture union, with 1 patient lost to follow-up. Twelve fractures united within 24 weeks, with an average union time of 23.1 weeks. Three delayed unions, two at 28 weeks and one at 56 weeks. The average time to union was 32 weeks in the smokers and 15.3 weeks in the nonsmokers. Five of the 18 patients (27%) developed complications. One superficial wound infection, and one chronic wound infection, resulting in nonunion at 56 weeks, requiring revision. Two patients required plate removal, one after sustaining an open fracture at the proximal end of the plate 6 months after surgery (postfracture union)and the other for painful hardware. One patient had implant failure of three proximal diaphyseal locking screws at the screwhead/neck junction, but successful fracture union. The average American Orthopedic Foot and Ankle Society ankle score was 88.8 overall, and 92.1 in fractures that united within 24 weeks. Distal tibial locking plates have high fracture union rates, minimum soft tissue complications, and good functional outcomes. The literature shows similar fracture union and complication rates in locking and nonlocking plates. Copyright © 2012 by Lippincott Williams & Wilkins

  5. Lidar-based fracture characterization: An outcrop-scale study of the Woodford Shale, McAlister Shale Pit, Oklahoma

    NASA Astrophysics Data System (ADS)

    Hanzel, Jason

    The use of lidar (light detection and ranging), a remote sensing tool based on principles of laser optometry, in mapping complex, multi-scale fracture networks had not been rigorously tested prior to this study despite its foreseeable utility in interpreting rock fabric with imprints of complex tectonic evolution. This thesis demonstrates lidar-based characterization of the Woodford Shale where intense fracturing could be due to both tectonism and mineralogy. The study area is the McAlister Shale Pit in south-central Oklahoma where both the upper and middle sections of the Woodford Shale are exposed and can be lidar-mapped. Lidar results are validated using hand-measured strike and dips of fracture planes, thin sections and mineral chemistry of selected samples using X-ray diffraction (XRD). Complexity of the fracture patterns as well as inaccessibility of multiple locations within the shale pit makes hand-measurement prone to errors and biases; lidar provides an opportunity for less biased and more efficient field mapping. Fracture mapping with lidar is a multi-step process. The lidar data are converted from point clouds into a mesh through triangulation. User-defined parameters such as size and orientation of the individual triangular elements are then used to group similar elements into surfaces. The strike and dip attribute of the simulated surfaces are visualized in an equal area lower hemisphere projection stereonet. Three fracture sets were identified in the upper and middle sections with common orientation but substantially different spatial density. Measured surface attributes and spatial density relations from lidar were validated using their hand-measured counterparts. Thin section analysis suggests that high fracture density in the upper Woodford measured by both the lidar and the hand-measured data could be due to high quartz. A significant finding of this study is the reciprocal relation between lidar intensity and gamma-ray (GR), which is generally used to infer outcrop mineralogy. XRD analysis of representative samples along the common profiles show that both GR and lidar intensity were influenced by the same minerals in essentially opposite ways. Results strongly suggest that the lidar cannot only remotely map the geomorphology, but also the relative mineralogical variations to the first order of approximation.

  6. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  7. The correlation of initial radiographic characteristics of distal radius fractures and injuries of the triangular fibrocartilage complex.

    PubMed

    Kasapinova, K; Kamiloski, V

    2016-06-01

    Our purpose was to determine the correlation of initial radiographic parameters of a distal radius fracture with an injury of the triangular fibrocartilage complex. In a prospective study, 85 patients with surgically treated distal radius fractures were included. Wrist arthroscopy was used to identify and classify triangular fibrocartilage complex lesions. The initial radial length and angulation, dorsal angulation, ulnar variance and distal radioulnar distance were measured. Wrist arthroscopy identified a triangular fibrocartilage complex lesion in 45 patients. Statistical analysis did not identify a correlation with any single radiographic parameter of the distal radius fractures with the associated triangular fibrocartilage complex injuries. The initial radiograph of a distal radius fracture does not predict a triangular fibrocartilage complex injury. III. © The Author(s) 2016.

  8. [Analysis of a three-dimensional finite element model of atlas and axis complex fracture].

    PubMed

    Tang, X M; Liu, C; Huang, K; Zhu, G T; Sun, H L; Dai, J; Tian, J W

    2018-05-22

    Objective: To explored the clinical application of the three-dimensional finite element model of atlantoaxial complex fracture. Methods: A three-dimensional finite element model of cervical spine (FEM/intact) was established by software of Abaqus6.12.On the basis of this model, a three-dimensional finite element model of four types of atlantoaxial complex fracture was established: C(1) fracture (Jefferson)+ C(2) fracture (type Ⅱfracture), Jefferson+ C(2) fracture(type Ⅲfracture), Jefferson+ C(2) fracture(Hangman), Jefferson+ stable C(2) fracture (FEM/fracture). The range of motion under flexion, extension, lateral bending and axial rotation were measured and compared with the model of cervical spine. Results: The three-dimensional finite element model of four types of atlantoaxial complex fracture had the same similarity and profile.The range of motion (ROM) of different segments had different changes.Compared with those in the normal model, the ROM of C(0/1) and C(1/2) in C(1) combined Ⅱ odontoid fracture model in flexion/extension, lateral bending and rotation increased by 57.45%, 29.34%, 48.09% and 95.49%, 88.52%, 36.71%, respectively.The ROM of C(0/1) and C(1/2) in C(1) combined Ⅲodontoid fracture model in flexion/extension, lateral bending and rotation increased by 47.01%, 27.30%, 45.31% and 90.38%, 27.30%, 30.0%.The ROM of C(0/1) and C(1/2) in C(1) combined Hangman fracture model in flexion/extension, lateral bending and rotation increased by 32.68%, 79.34%, 77.62% and 60.53%, 81.20%, 21.48%, respectively.The ROM of C(0/1) and C(1/2) in C(1) combined axis fracture model in flexion/extension, lateral bending and rotation increased by 15.00%, 29.30%, 8.47% and 37.87%, 75.57%, 8.30%, respectively. Conclusions: The three-dimensional finite element model can be used to simulate the biomechanics of atlantoaxial complex fracture.The ROM of atlantoaxial complex fracture is larger than nomal model, which indicates that surgical treatment should be performed.

  9. Mandibular fractures in children: analysis of 61 cases and review of the literature.

    PubMed

    Glazer, Michael; Joshua, Ben Zion; Woldenberg, Yitzhak; Bodner, Lipa

    2011-01-01

    The purpose was to evaluate the incidence, etiology, site and patterns, management and treatment methods, and outcome of pediatric patients with mandibular fractures. Pediatric patients (1.5-16 years old) with mandibular fractures, treated at the Soroka University Medical Center were included in the study. Age, gender, etiology, site and type of fracture, associated injuries, mode of treatment, outcome, complications, and follow up were evaluated. The cases were divided into 3 age groups: Group A: 1.5-5 years, Group B: 6-11 years, and Group C: 12-16 years. Sixty one patients were included in the study. The male to female ratio was 2:1. Motor vehicle accident was the most common cause. Associated trauma was more common in young children. The condyle was involved in 54% of the fractures. Closed reduction and intermaxillary fixation was the most common treatment used. Complications were rare. Management of mandibular fracture in the pediatric age group is a challenge. The anatomical complexity of the developing mandible and teeth strongly suggest the use of surgical techniques that are different from those routinely used in adults. The conservative approach is recommended. Whenever possible closed reduction should be the treatment of choice. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. [Fracture strength of elastic and conventional fibre-reinforced composite intraradicular posts--an in vitro pilot study].

    PubMed

    Fráter, Mark; Forster, András; Jantyik, Ádám; Braunitzer, Gábor; Nagy, Katalin

    2015-12-01

    The purpose of this in vitro investigation was to evaluate the reinforcing effect of different fibre-reinforced composite (FRC) posts and insertion techniques in premolar teeth when using minimal invasive post space preparation. Thirty two extracted and endodontically treated premolar teeth were used and divided into four groups (n = 8) depending on the post used (Group 1-4). 1: one single conventional post, 2: one main conventional and one collateral post, 3: one flexible post, 4: one main flexible and one collateral post. After cementation and core build-up the specimens were submitted to static fracture toughness test. Fracture thresholds and fracture patterns were recorded and evaluated. The multi-post techniques (group 2 and 4) showed statistically higher fracture resistance compared to group one. Regarding fracture patterns there was no statistically significant difference between the tested groups. The application of multiple posts seems to be beneficial regarding fracture resistance independent from the used FRC post. Fracture pattern was not influenced by the elasticity of the post.

  11. Analysis of Vertebral Bone Strength, Fracture Pattern, and Fracture Location: A Validation Study Using a Computed Tomography-Based Nonlinear Finite Element Analysis

    PubMed Central

    Imai, Kazuhiro

    2015-01-01

    Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476

  12. The Role of Interface on the Impact Characteristics and Cranial Fracture Patterns Using the Immature Porcine Head Model.

    PubMed

    Deland, Trevor S; Niespodziewanski, Emily; Fenton, Todd W; Haut, Roger C

    2016-01-01

    The role of impact interface characteristics on the biomechanics and patterns of cranial fracture has not been investigated in detail, and especially for the pediatric head. In this study, infant porcine skulls aged 2-19 days were dropped with an energy to cause fracturing onto four surfaces varying in stiffness from a rigid plate to one covered with plush carpeting. Results showed that heads dropped onto the rigid surface produced more extensive cranial fracturing than onto carpeted surfaces. Contact forces generated at fracture initiation and the overall maximum contact forces were generally lower for the rigid than carpeted impacts. While the degree of cranial fracturing from impacts onto the heavy carpeted surface was comparable to that of lower-energy rigid surface impacts, there were fewer diastatic fractures. This suggests that characteristics of the cranial fracture patterns may be used to differentiate energy level from impact interface in pediatric forensic cases. © 2015 American Academy of Forensic Sciences.

  13. Mandibular fracture patterns consistent with posterior maxillary fractures involving the posterior maxillary sinus, pterygoid plate or both: CT characteristics

    PubMed Central

    Sukegawa, S; Kanno, T; Fujita, G; Yamamoto, N; Furuki, Y; Michizawa, M

    2014-01-01

    Objectives: The aim of this study was to determine the incidence of posterior maxillary fractures involving the posterior maxillary sinus wall, pterygoid plate or both, unrelated to major midface fractures in patients with mandibular fractures, and to characterize associated fractures. Methods: A CT study was performed in patients with mandibular fractures to identify posterior maxillary fractures. Patients aged under 16 years, those with mandibular fractures involving only dentoalveolar components and those with concurrent major midfacial fractures were excluded. Results: 13 (6.7%) of 194 patients with mandibular fractures also had posterior maxillary fractures (case group). The injury pattern correlated with the external force directed to the lateral side of the mandible (p < 0.001), alcohol consumption (p = 0.049), the presence of multifocal fractures (p = 0.002) and the fracture regions in the symphysis/parasymphysis (p = 0.001) and the angle/ramus (p = 0.001). No significant difference between the case and non-case groups was seen for age, sex or cause of trauma. Non-displaced fractures in the ipsilateral posterior mandible occurred with significant frequency (p = 0.001) when the posterior maxillary fractures involved only the sinus. Conclusions: Mandibular fractures accompanied by posterior maxillary fractures are not rare. The finding of a unilateral posterior maxillary fracture on CT may aid the efficient radiological examination of the mandible based on possible patterns of associated fractures, as follows: in the ipsilateral posterior region as a direct fracture when the impact is a medially directed force, and in the symphysis/parasymphysis or contralateral condylar neck as an indirect fracture. PMID:24336313

  14. [A new method of osteosynthesis in proximal humeral fractures: a new internal fixation device. Apropos of 17 cases followed over more than 2 years].

    PubMed

    Doursounian, L; Grimberg, J; Cazeau, C; Touzard, R C

    1996-01-01

    The authors describe a new internal fixation device, and report on 17 proximal humeral fractures managed with this technique. The fracture patterns, using Neer's classification were: 9 displaced three-part fractures, 4 displaced four-part fractures and 4 interior fracture dislocations (mean age of the patients: 70 years). The device is a two-part titanium device. The humeral component has a long vertical stem cemented in the humeral shaft; and a short proximal portion set at an angle of 135 degrees on the stem, with a neck and a Morse taper cone. The other part is a crown-shaped stapple, whose base is a perforated disk with a central Morse taper socket. The rim of the crown has five prongs which, together with the central socket, are impacted in the cancellous bone of the humeral head. The taper of the humeral component is inserted into the central socket of the stapple to provide fracture fixation. Tuberosities are reattached to the shaft with non absorbable sutures. Mean follow-up was 29 months. The global ratings were as follows: 4 excellent results, 6 good results, 4 fair results, 3 poor results. Mean active forward flexion: 100 degrees, and mean active external rotation 22 degrees. After exclusion of the 4 fracture-dislocations, the global rating became: 4 excellent results, 5 good results, 3 fair results, 1 poor result. Mean active forward flexion: 110 degrees and mean active external rotation: 31.5 degrees. There were no case of avascular necrosis in 13 patients. Complications requiring surgery occurred in one case: an upper protrusion of the stapple which required replacement of the stapple by a prosthetic humeral head. Other complications included: 2 asymptomatic partial protrusions of the stapple, 2 complete and two partial avascular necrosis in fracture-dislocations. Except for the fracture-dislocations our device confers several major benefits. The humeral head is preserved. Typical problems associated with joint replacement (dislocations, loosening, glenoid degeneration) are avoided. Humeral head conservation enhances healing of the tuberosities. Fixation could always be obtained, regardless of the complexity of the fracture pattern. An hemiarthroplasty (e.g. in case of avascular necrosis) is possible by the modular design of the device.

  15. Biomechanical Studies on Patterns of Cranial Bone Fracture Using the Immature Porcine Model.

    PubMed

    Haut, Roger C; Wei, Feng

    2017-02-01

    This review was prepared for the American Society of Mechanical Engineers Lissner Medal. It specifically discusses research performed in the Orthopaedic Biomechanics Laboratories on pediatric cranial bone mechanics and patterns of fracture in collaboration with the Forensic Anthropology Laboratory at Michigan State University. Cranial fractures are often an important element seen by forensic anthropologists during the investigation of pediatric trauma cases litigated in courts. While forensic anthropologists and forensic biomechanists are often called on to testify in these cases, there is little basic science developed in support of their testimony. The following is a review of studies conducted in the above laboratories and supported by the National Institute of Justice to begin an understanding of the mechanics and patterns of pediatric cranial bone fracture. With the lack of human pediatric specimens, the studies utilize an immature porcine model. Because much case evidence involves cranial bone fracture, the studies described below focus on determining input loading based on the resultant bone fracture pattern. The studies involve impact to the parietal bone, the most often fractured cranial bone, and begin with experiments on entrapped heads, progressing to those involving free-falling heads. The studies involve head drops onto different types and shapes of interfaces with variations of impact energy. The studies show linear fractures initiating from sutural boundaries, away from the impact site, for flat surface impacts, in contrast to depressed fractures for more focal impacts. The results have been incorporated into a "Fracture Printing Interface (FPI)," using machine learning and pattern recognition algorithms. The interface has been used to help interpret mechanisms of injury in pediatric death cases collected from medical examiner offices. The ultimate aim of this program of study is to develop a "Human Fracture Printing Interface" that can be used by forensic investigators in determining mechanisms of pediatric cranial bone fracture.

  16. The influence of impact direction and axial loading on the bone fracture pattern.

    PubMed

    Cohen, Haim; Kugel, Chen; May, Hila; Medlej, Bahaa; Stein, Dan; Slon, Viviane; Brosh, Tamar; Hershkovitz, Israel

    2017-08-01

    The effect of the direction of the impact and the presence of axial loading on fracture patterns have not yet been established in experimental 3-point bending studies. To reveal the association between the direction of the force and the fracture pattern, with and without axial loading. A Dynatup Model POE 2000 (Instron Co.) low energy pendulum impact machine was utilized to apply impact loading on fresh pig femoral bones (n=50). The bone clamp shaft was adjusted to position the bone for three-point bending with and without additional bone compression. Four different directions of the force were applied: anterior, posterior, lateral, and medial. The impacted aspect can be distinguished from the non-impacted aspects based on the fracture pattern alone (the most fractured one); the impact point can be identified on bare bones (the area from which all oblique lines radiate and/or the presence of a chip fragment). None of our experiments (with and without compression) yielded a "true" butterfly fracture, but instead, oblique radiating lines emerged from the point of impact (also known as "false" butterfly). Impacts on the lateral and anterior aspects of the bones produce more and longer fracture lines than impacts on the contralateral side; bones subjected to an impact with axial loading are significantly more comminuted and fragmented. Under axial loading, the number of fracture lines is independent of the impact direction. Our study presents an experimental model for fracture analysis and shows that the impact direction and the presence of axial loading during impact significantly affect the fracture pattern obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preferential pathways in complex fracture systems and their influence on large scale transport

    NASA Astrophysics Data System (ADS)

    Willmann, M.; Mañé, R.; Tyukhova, A.

    2017-12-01

    Many subsurface applications in complex fracture systems require large-scale predictions. Precise predictions are difficult because of the existence of preferential pathways at different scales. The intrinsic complexity of fracture systems increases within fractured sedimentary formations, because also the coupling of fractures and matrix has to be taken into account. This interplay of fracture system and the sedimentary matrix is strongly controlled by the actual fracture aperture of an individual fracture. And an effective aperture cannot be easily be determined because of the preferential pathways along the fracture plane. We investigate the influence of these preferential pathways on large scale solute transport and upscale the aperture. By explicitly modeling flow and particle tracking in individual fractures, we develop a new effective transport aperture, which is weighted by the aperture along the preferential paths, a Lagrangian aperture. We show that this new aperture is consistently larger than existing definitions of effective flow and transport apertures. Finally, we apply our results to a fractured sedimentary formation in Northern Switzerland.

  18. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  19. [Treatment of enophthalmos after severe malar-maxillary complex fracture with titanium mesh and high density polyethylene (Medpor)].

    PubMed

    Zhao, Yan-feng; Lu, Ping; Zhou, Xiao-nan; Qu, Chang-feng

    2010-03-01

    To study the surgical management of enophthalmos after severe malar maxillary complex fracture. The X-ray and CT examination were performed before operation to diagnose the orbital fracture and intraorbital tissue displacement. The fractured orbital rim was repositioned intraoperatively, followed by implantation of shaped titanium mesh to rebuild the orbital floor. The Medpor was inserted above the titanium mesh to correct the enophthalmos. From Sept. 2007 to Jan. 2009, 6 cases of enophthalmos after severe malar-maxillary complex fracture were treated. The enophthalmos was corrected or improved obviously in all the patients. The enophthalmos after severe malar-maxillary complex fracture can be corrected or obviously improved. Shaped titanium mesh can be used to rebuild the orbital floor with the Medpor to reconstruct the intraorbital tissue volume.

  20. Self-Organizing Fluid Convection Patterns in an en Echelon Fault Array

    NASA Astrophysics Data System (ADS)

    Patterson, James W.; Driesner, Thomas; Matthai, Stephan K.

    2018-05-01

    We present three-dimensional numerical simulations of natural convection in buried, vertical en echelon faults in impermeable host rock. Despite the fractures being hydraulically disconnected, convection within each fracture alters the temperature field in the surrounding host rock, altering convection in neighboring fractures. This leads to self-organization of coherent patterns of upward/downward flow and heating/cooling of the host rock spanning the entire fault array. This "synchronization" effect occurs when fracture spacing is less than the width of convection cells within the fractures, which is controlled by fracture transmissivity (permeability times thickness) and heterogeneity. Narrow fracture spacing and synchronization enhance convective fluid flow within fractures and cause convection to initiate earlier, even lowering the critical transmissivity necessary for convection initiation. Heat flow through the en echelon region, however, is enhanced only in low-transmissivity fractures, while heat flow in high-permeability fractures is reduced due to thermal interference between fractures.

  1. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    NASA Astrophysics Data System (ADS)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better geologic understanding of the stratigraphic heterogeneity and material property attributes of shale can have a direct effect on the engineering design of wellbores and stimulation treatments.

  2. How reactive fluids alter fracture walls and affect shale-matrix accessibility

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Deng, H.; Peters, C. A.

    2014-12-01

    Predictions of mass transfer across fracture boundaries and fluid flow in fracture networks provide fundamental inputs into risk and life cycle assessments of geologic energy technologies including oil and gas extraction, geothermal energy systems and geologic CO2 storage. However, major knowledge gaps exist due to the lack of experimental observations of how reactive fluids alter the pore structures and accessible surface area within fracture boundaries that control the mass transfer of organics, metals and salts, and influence fluid flow within the fracture. To investigate the fracture and rock matrix properties governing fracture boundary alteration, we developed a new flow-through cell that enables time-dependent 2D x-ray imaging of mineral dissolution and/or precipitation at a fracture surface. The parallel plate design provides an idealized fracture geometry to investigate the relationship between flow rate, reaction rate, and mineral spatial heterogeneity and variation. In the flow-cell, a carbonate-rich sample of Eagle Ford shale was reacted with acidified brine. The extent and rate of mineral dissolution were correlated with calcite abundance relative to less soluble silicate minerals. Three-dimensional x-ray tomography of the reacted fracture wall shows how calcite dissolution left behind a porous network of silicate minerals. And while this silicate network essentially preserved the location of the initial fracture wall, the pore network structures within the fracture boundary were dramatically altered, such that the accessible surface area of matrix components increased significantly. In a second set of experiments with a limestone specimen, however, the extent of dissolution and retreat of the fracture wall was not strictly correlated with the occurrence of calcite. Instead, the pattern and extent of dissolution suggested secondary causes such as calcite morphology, the presence of argillaceous minerals and other diagenetic features. Our experiments show that while calcite dissolution is the primary geochemical driver of fracture wall alterations, hydrodynamic properties and matrix accessibility within fracture boundaries evolve based on a complex relationship between mineral spatial heterogeneity and variation, fluid chemistry and flow rate.

  3. The clinical presentation and management of zygomatic complex fractures in a Nigeria Teaching Hospital.

    PubMed

    Anyanechi, C E; Charles, E A; Saheeb, B D; Birch, D S

    2012-01-01

    Fractures of the zygomatic complex occur worldwide and are a component part of injuries that can be sustained in the maxillofacial region. The objective was to analyze the clinical presentation and management ofzygomatic complex fractures. This was a prospective study carried out over a period of five years at the University of Calabar Teaching Hospital, Nigeria. Data documented were patients' age, gender, time of presentation, cause and type of fracture, associated head and maxillofacial injuries, clinical features, types of plain radiographs, treatment methods, duration of follow-up and complications. Majority of the patients (n = 81, 63.3%) were in their third and fourth decades of life while the male to female ratio was 20.3:1. Road traffic accident (n = 111, 86.7%) was the most common cause of fracture. Fractures of the zygomatic complex alone (n = 105, 82.0%) were more common than isolated fractures of the arch (n = 13, 10.2%) and combined fractures of the zygomatic complex and arch (n = 10, 7.8%). While multi-disciplinary approach to treatment is important, majority of the fractures were treated by simple elevation and transosseous wire osteosynthesis. Delay in presentation, associated injuries and non-availability of mini-plating technique contributed to the development of complications.

  4. Empirical analysis of electromagnetic profiles for groundwater prospecting in rural areas of Ibadan, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Ehinola, O. A.; Opoola, A. O.; Adesokan, H. A.

    2006-04-01

    The Slingram electromagnetic (EM) survey using a coil separation of 60 and 100 m was carried out in ten villages in the Akinyele area of Ibadan, southwestern Nigeria to aid in the development of groundwater. Five main rock types including an undifferentiated gneiss complex (Su), biotite-garnet schist/gneiss (Bs), quartzite and quartz schist (Q), migmatized undifferentiated biotite/hornblende gneiss (M) and pegmatite/quartz vein (P) underlie the study area. A total of 31 EM profiles was made to accurately locate prospective borehole sites in the field. Four main groups with different behavioural patterns were categorized from the EM profiles. Group 1 is characterized by a high density of positive (HDP) or a high density of negative (HDN) real and imaginary curves, Group 2 by parallel real and imaginary curves intersecting with negligible amplitude (PNA), Group 3 by frequent intersection of a high density of negative minima (FHN) real and imaginary curves, and Group 4 by separate and approximately parallel (SAP) real and imaginary curves. Qualitative pictures of the overburden thickness and the extent of fracturing have been proposed from these behavioural patterns. A comparison of the borehole yield with the overburden thickness and the level of fracturing shows that the borehole yield depends more on the fracture density than on the overburden thickness. The asymmetry of the anomaly was also found to be useful in the determination of the inclination of the conductor/fracture.

  5. Three-phase fracturing in granular material

    NASA Astrophysics Data System (ADS)

    Campbell, James; Sandnes, Bjornar

    2015-04-01

    There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.

  6. The influence of local bone quality on fracture pattern in proximal humerus fractures.

    PubMed

    Mazzucchelli, Ruben A; Jenny, Katharina; Zdravkovic, Vilijam; Erhardt, Johannes B; Jost, Bernhard; Spross, Christian

    2018-02-01

    Bone mineral density and fracture morphology are widely discussed and relevant factors when considering the different treatment options for proximal humerus fractures. It was the aim of this study to investigate the influence of local bone quality on fracture patterns of the Neer classification as well as on fracture impaction angle in these injuries. All acute, isolated and non-pathological proximal humerus fractures admitted to our emergency department were included. The fractures were classified according to Neer and the humeral head impaction angle was measured. Local bone quality was assessed using the Deltoid Tuberosity Index (DTI). The distribution between DTI and fracture pattern was analysed. 191 proximal humerus fractures were included (61 men, mean age 59 years; 130 women, mean age 69.5). 77 fractures (40%) were classified as one-part, 72 (38%) were two-part, 24 (13%) were three- and four-part and 18 (9%) were fracture dislocations. 30 fractures (16%) were varus impacted, whereas 45 fractures (24%) were classified as valgus impacted. The mean DTI was 1.48. Valgus impaction significantly correlated with good bone quality (DTI ≥ 1.4; p = 0.047) whereas no such statistical significance was found for the Neer fracture types. We found that valgus impaction significantly depended on good bone quality. However, neither varus impaction nor any of the Neer fracture types correlated with bone quality. We conclude that the better bone quality of valgus impacted fractures may be a reason for their historically benign amenability to ORIF. On the other hand, good local bone quality does not prevent fracture comminution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pattern and treatment of facial trauma in pediatric and adolescent patients.

    PubMed

    Muñante-Cárdenas, Jose Luis; Olate, Sergio; Asprino, Luciana; de Albergaria Barbosa, Jose Ricardo; de Moraes, Márcio; Moreira, Roger W F

    2011-07-01

    Pediatric maxillofacial trauma is a challenge for surgeons. There are no completely defined protocols, and sometimes, the initial management could be complex. The aim of this research was to perform a retrospective study to analyze the pattern and treatment of maxillofacial fractures in pediatric and adolescent patients. We reviewed the clinical records of 2986 patients treated at the Oral and Maxillofacial Surgery Division of Piracicaba Dental School between 1999 and 2008. Seven hundred fifty-seven patients were younger than 18 years and were divided into 3 groups according to age; the age and sex of the patients, etiology, fractures and associated injury, treatment, and complications were evaluated. Five hundred thirty boys (70.01%) and 227 girls (29.99%) were treated for injuries with major prevalence in adolescents. The most common injury causes were bicycle accidents (29.06%) and falls (28.40%). The mandible was the most fractured bone (44.8%); associated injuries were lacerations of the soft tissue and dental trauma. Surgical treatment was performed in 75 cases (30%) with minor complications (10% of surgical patients). We conclude that maxillofacial trauma in child is associated to fall and bicycle accidents; the mandible is more affected than other maxillofacial structures, and frequently, nonsurgical treatment is performed.

  8. USASOC Injury Prevention/Performance Optimization Musculoskeletal Screening Initiative

    DTIC Science & Technology

    2012-11-01

    gluteus medius) Poor gait pattern/ Overpronation Tibial Stress Fracture Overloading the bone due to excessive running...Excessively tight iliotibial band Hip musculature weakness (e.g. gluteus medius) Poor gait pattern/ Overpronation Tibial Stress Fracture ...Anatomic Location Specific Injuries Probable Causes All lower extremity is at risk for injury during this exercise Foot fractures Improper

  9. An Epidemiological Study on Pattern and Incidence of Mandibular Fractures

    PubMed Central

    Natu, Subodh S.; Pradhan, Harsha; Gupta, Hemant; Alam, Sarwar; Gupta, Sumit; Pradhan, R.; Mohammad, Shadab; Kohli, Munish; Sinha, Vijai P.; Shankar, Ravi; Agarwal, Anshita

    2012-01-01

    Mandible is the second most common facial fracture. There has been a significant increase in the number of cases in recent years with the advent of fast moving automobiles. Mandibular fractures constitute a substantial proportion of maxillofacial trauma cases in Lucknow. This study was undertaken to study mandibular fractures clinicoradiologically with an aim to calculate incidence and study pattern and the commonest site of fractures in population in and around Lucknow. Patient presenting with history of trauma at various centers of maxillofacial surgery in and around Lucknow were included in this study. Detailed case history was recorded followed by thorough clinical examination, and radiological interpretation was done for establishing the diagnosis and the data obtained was analyzed statistically. Out of 66 patients with mandibular fractures, highest percentage was found in 21–30 years of age with male predominance. Road traffic accidents were the most common cause of fracture with parasymphysis being commonest site. Commonest combination was parasymphysis with subcondyle. There was no gender bias in etiology with number of fracture sites. The incidence and causes of mandibular fracture reflect trauma patterns within the community and can provide a guide to the design of programs geared toward prevention and treatment. PMID:23227327

  10. Ankle fractures have features of an osteoporotic fracture.

    PubMed

    Lee, K M; Chung, C Y; Kwon, S S; Won, S H; Lee, S Y; Chung, M K; Park, M S

    2013-11-01

    We report the bone attenuation of ankle joint measured on computed tomography (CT) and the cause of injury in patients with ankle fractures. The results showed age- and gender-dependent low bone attenuation and low-energy trauma in elderly females, which suggest the osteoporotic features of ankle fractures. This study was performed to investigate the osteoporotic features of ankle fracture in terms of bone attenuation and cause of injury. One hundred ninety-four patients (mean age 51.0 years, standard deviation 15.8 years; 98 males and 96 females) with ankle fracture were included. All patients underwent CT examination, and causes of injury (high/low-energy trauma) were recorded. Mean bone attenuations of the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis were measured on CT images. Patients were divided into younger age (<50 years) and older age (≥50 years) groups, and mean bone attenuation and causes of injury were compared between the two groups in each gender. Proportion of low-energy trauma was higher in the older age group than in the younger age group, but the difference was only significant in female gender (p = 0.011). The older age group showed significantly lower bone attenuation in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis than the younger age group in both genders. The older age group showed more complex pattern of fractures than the younger age group. With increasing age, bone attenuations tended to decrease and the difference of bone attenuation between the genders tended to increase in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis. Ankle fracture had features of osteoporotic fracture that is characterized by age- and gender-dependent low bone attenuation. Ankle fracture should not be excluded from the clinical and research interest as well as from the benefit of osteoporosis management.

  11. Stress history and fracture pattern in fault-related folds based on limit analysis: application to the Sub-Andean thrust belt of Bolivia

    NASA Astrophysics Data System (ADS)

    Barbe, Charlotte; Leroy, Yves; Ben Miloud, Camille

    2017-04-01

    A methodology is proposed to construct the stress history of a complex fault-related fold in which the deformation mechanisms are essentially frictional. To illustrate the approach, fours steps of the deformation of an initially horizontally layered sand/silicone laboratory experiment (Driehaus et al., J. of Struc. Geol., 65, 2014) are analysed with the kinematic approach of limit analysis (LA). The stress, conjugate to the virtual velocity gradient in the sense of mechanicam power, is a proxy for the true statically admmissible stress field which prevailed over the structure. The material properties, friction angles and cohesion, including their time evolution are selected such that the deformation pattern predicted by the LA is consistent with the two main thrusting events, the first forward and the second backward once the layers have sufficiently rotated. The fractures associated to the stress field determined at each step are convected on today configuration to define the complete pattern which should be observed. The end results are presented along virtual vertical wells and could be used within the oil industry at an early phase of exploration to prepare drealing operations.

  12. A Complex Facial Trauma Case with Multiple Mandibular Fractures and Dentoalveolar Injuries

    PubMed Central

    Zorlu, Sevgi; Cankaya, Abdulkadir Burak; Aktoren, Oya; Gencay, Koray

    2015-01-01

    The principles of management of mandibular fractures differ in children when compared to adults and depend on the specific age-related status of the growing mandible and the developing dentition. This paper presents a case report with a complex facial trauma affecting the mandibular body and condyle region and dentoalveolar complex. Clinical examination revealed soft tissue injuries, limited mouth opening, lateral deviation of the mandible, an avulsed incisor, a subluxated incisor, and a fractured crown. CBCT examination revealed a nondisplaced fracture and an oblique greenstick fracture of the mandibular body and unilateral fracture of the condyle. Closed reduction technique was chosen to manage fractures of the mandible. Favorable healing outcomes on multiple fractures of the mandible throughout the 6-year follow-up period proved the success of the conservative treatment. This case report is important since it presents a variety of pathological sequelae to trauma within one case. PMID:26339511

  13. Complications and early results after operative fixation of 68 pilon fractures of the distal tibia.

    PubMed

    Lomax, Adam; Singh, Anjani; N Jane, Madeley; C Senthil, Kumar

    2015-05-01

    In this cohort study, we present comprehensive injury specific and surgical outcome data from one of the largest reported series of pilon fractures of the distal tibia treated in a UK tertiary referral centre. A series of 68 closed pilon fractures were retrospectively reviewed from case notes, plain radiographs and computed tomography imaging. Patient demographics, injury and fracture patterns, methods and timing of fixation and clinical and radiological outcomes were assessed over a mean follow-up period of 7.7 months (1.5-30). Overall, deep infection occurred in 1.6% with superficial infection and wound breakdown occurring in 6.3% of cases. Rates of nonunion and malunion were 7.8%. Radiological posttraumatic arthritis was present in 26.6%, which was symptomatic and requiring orthopaedic management in 9.4%. Further surgery for all causes occurred in 26.6% of cases. Fixation of these complex fractures in subspecialist units can achieve overall low rates of wound complications, with definitive fixation of selected fractures within 48 h of initial presentation achieving comparable results to those fixed in a delayed fashion. However, this injury continues to have a significant overall complication rate with a high chance of developing early posttraumatic arthritis and of requiring further surgery. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Pediatric facial fractures: evolving patterns of treatment.

    PubMed

    Posnick, J C; Wells, M; Pron, G E

    1993-08-01

    This study reviews the treatment of facial trauma between October 1986 and December 1990 at a major pediatric referral center. The mechanism of injury, location and pattern of facial fractures, pattern of facial injury, soft tissue injuries, and any associated injuries to other organ systems were recorded, and fracture management and perioperative complications reviewed. The study population consisted of 137 patients who sustained 318 facial fractures. Eighty-one patients (171 fractures) were seen in the acute stage, and 56 patients (147 fractures) were seen for reconstruction of a secondary deformity. Injuries in boys were more prevalent than in girls (63% versus 37%), and the 6- to 12-year cohort made up the largest group (42%). Most fractures resulted from traffic-related accidents (50%), falls (23%), or sports-related injuries (15%). Mandibular (34%) and orbital fractures (23%) predominated; fewer midfacial fractures (7%) were sustained than would be expected in a similar adult population. Three quarters of the patients with acute fractures required operative intervention. Closed reduction techniques with maxillomandibular fixation were frequently chosen for mandibular condyle fractures and open reduction techniques (35%) for other regions of the facial skeleton. When open reduction was indicated, plate-and-screw fixation was the preferred method of stabilization (65%). The long-term effects of the injuries and the treatment given on facial growth remain undetermined. Perioperative complication rates directly related to the surgery were low.

  15. Survivorship of the native hip joint after percutaneous repair of acetabular fractures in the elderly.

    PubMed

    Gary, Joshua L; Lefaivre, Kelly A; Gerold, Frank; Hay, Michael T; Reinert, Charles M; Starr, Adam J

    2011-10-01

    Our purpose was to examine survivorship of the native hip joint in patients ages 60 and over who underwent percutaneous reduction and fixation of acetabular fractures. A retrospective review at a University Level I Trauma Center was performed. Our institutional trauma database was reviewed. Patients aged 60 or older treated with percutaneous reduction and fixation of acetabular fractures between 1994 and 2007 were selected. 79 consecutive patients with 80 fractures were identified. Rate of conversion to total hip arthroplasty were used to construct a Kaplan-Meier curve showing survivorship of the native hip joint after treatment. 75 fractures had adequate clinical follow-up with a mean of 3.9 years (range 0.5-11.9 years). Average blood loss was 69 cc and there were no postoperative infections. 19/75 (25%) were converted to total hip arthroplasty at a mean time of 1.4 years after the index procedure. Survivorship analysis demonstrated a cumulative survival of 65% at 11.9 years of follow-up. There were no conversions to arthroplasty beyond 4.7 years postoperatively. There were no statistically significant associations between conversion to arthroplasty and age, sex, closed vs. limited open reduction, and simple vs. complex fracture pattern. Percutaneous fixation is a viable treatment option for patients age 60 or greater with acetabular fractures. Rates of conversion to total hip arthroplasty are comparable to open treatment methods and if conversion is required, soft tissues are preserved for future surgery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 4: Failure analysis of 10 fractured retaining screws retrieved from three patients.

    PubMed

    Al Jabbari, Youssef S; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony M

    2008-04-01

    The aim of this study was to perform a failure analysis on fractured prosthetic retaining screws after long-term use in vivo. Additionally, the study addresses the commonly asked question regarding whether complex repeated functional occlusal forces initiate fatigue-type cracks in prosthetic retaining screws. Ten fractured prosthetic retaining screws retrieved from three patients treated with fixed detachable hybrid prostheses were subjected to a failure analysis. In patients 1 and 2, the middle three retaining screws of the prostheses were found fractured at retrieval time after they had been in service for 20 and 19 months, respectively. In patient 3, the middle three and one of the posterior retaining screws were found to be fractured at retrieval after they had been in service for 18 months. Low power stereomicroscopy and high-power scanning electron microscopy (SEM) were performed to analyze the fractured surfaces of the retaining screws examining fatigue cracks in greater detail. Typical fatigue failure characterized by ratchet mark formation was revealed by light microscopy and SEM for all examined screws. Using low magnification light microscopy, ratchet marks were visible on the fracture surfaces of only two screws. SEM examination revealed all three classical stages of fatigue failure, and it was possible to see the ratchet marks on the fracture surfaces of all specimens, indicating a fatigue zone. The final catastrophic overload fracture appeared fibrous, indicating ductile fracture. The final overload ductile fracture surfaces showed equiaxed dimples, suggesting tensile overload in all examined screws except in two specimens that showed an elongated dimple pattern indicating shear/tearing overload forces. Fracture of prosthetic retaining screws in hybrid prostheses occurs mainly through a typical fatigue mode involving mostly the middle anterior three screws. Fatigue cracks can grow in more than one prosthetic retaining screw, leading to fracture before the patient or clinician determines that any problem exists.

  17. A microfluidic investigation of gas exsolution in glass and shale fracture networks

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Harrison, A.; Currier, R.; Viswanathan, H. S.

    2016-12-01

    Microfluidic investigations of pore-scale fluid flow and transport phenomena has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real-time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. In this work, we describe a unique high pressure (up to 10.3 MPa) and temperature (up to 80 °C) microfluidics experimental system that allows us to investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in fractured rocks. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase gas (CO2 and N2) injection experiments designed to enhance oil recovery. In these experiments gas was injected into micromodels saturated with oil and allowed to soak for approximately 12 hours at elevated pressures. The pressure in the system was then decreased to atmospheric, causing the gas to expand and/or dissolve out of solution, subsequently mobilizing the oil. In addition to the experimental results, we present a relatively simple model designed to quantify the amount of oil mobilized as a function of decreasing system pressure. We will show comparisons between the experiments and model, and discuss the potential use of the model in field-scale reservoir simulations.

  18. Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einstein, Herbert; Vecchiarelli, Alessandra

    2014-05-01

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reportedmore » in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.« less

  19. Fractures on Europa - Possible response of an ice crust to tidal deformation

    NASA Technical Reports Server (NTRS)

    Helfenstein, P.; Parmentier, E. M.

    1980-01-01

    The surface of Europa contains a planetwide system of low albedo lineaments which have been interpreted as fractures in an icy crust. The pattern of fractures on the surface consists of radial and concentric fractures having the general appearance of tension cracks within a region near the antipode of the sub-Jupiter point. Outside this region, linear fractures intersect at angles near 60 deg, suggesting that they are conjugate shear fractures. The orientation of this pattern on the surface suggests that a principal axis of the deformation that produced the fractures was approximately radial to Jupiter. Fracturing may thus be consistent with an origin due to cyclical tidal deformation resulting from orbital eccentricity. Orbital eccentricity related to a relatively recent establishment of orbital resonance among the Galilean satellites may explain the presence of fractures in a relatively young, lightly cratered planetary surface.

  20. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures

    PubMed Central

    Knierim, Ellen; Hirata, Hiromi; Wolf, Nicole I.; Morales-Gonzalez, Susanne; Schottmann, Gudrun; Tanaka, Yu; Rudnik-Schöneborn, Sabine; Orgeur, Mickael; Zerres, Klaus; Vogt, Stefanie; van Riesen, Anne; Gill, Esther; Seifert, Franziska; Zwirner, Angelika; Kirschner, Janbernd; Goebel, Hans Hilmar; Hübner, Christoph; Stricker, Sigmar; Meierhofer, David; Stenzel, Werner; Schuelke, Markus

    2016-01-01

    Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system. PMID:26924529

  1. The use of biodegradable plates and screws to stabilize facial fractures.

    PubMed

    Bell, R Bryan; Kindsfater, Craig S

    2006-01-01

    The purpose of this preliminary retrospective study was to review the demographics and outcome of patients with a variety of facial fractures that were stabilized with PL bone plates and screws. The records of 295 consecutive patients with facial fractures treated by open reduction and internal fixation, performed by the author from 2001 through 2004, were retrospectively reviewed. Patients were selected to receive biodegradable fixation on the basis of mechanism of injury, the degree of bony displacement demonstrated on clinical and radiographic examination, patient age, and fracture pattern or location. Outcome measures such as infection, non-union, and mal-union were identified and subjectively assessed. Descriptive statistics were recorded and analyzed. Two hundred eighty-one patients met the criteria for inclusion in the study with follow-up of 3 weeks to 3 years. Fifty-nine (21%) patients were identified as having received biodegradable plates and screws. All patients eventually went on to satisfactory healing with favorable restoration of form and function. Complications occurred in 16 patients overall (6%). Of these, 2 patients were treated with resorbable plates and screws; 1 patient with a zygomatico-maxillary complex fracture developed a sterile abscess that presented 1 year postoperatively and responded to local measures. Another patient with a Le Fort I fracture developed an anterior open bite necessitating Le Fort I osteotomy for correction. Favorable healing can be observed through the use of biodegradable PL plates and screws to stabilize selected midface fractures in patients of all ages, as well as mandible fractures in early childhood.

  2. Incidence patterns of pediatric and adolescent orthopaedic fractures according to age groups and seasons in South Korea: a population-based study.

    PubMed

    Park, Moon Seok; Chung, Chin Youb; Choi, In Ho; Kim, Tae Won; Sung, Ki Hyuk; Lee, Seung Yeol; Lee, Sang Hyeong; Kwon, Dae Gyu; Park, Jung Woo; Kim, Tae Gyun; Choi, Young; Cho, Tae-Joon; Yoo, Won Joon; Lee, Kyoung Min

    2013-09-01

    Fractures which need urgent or emergency treatment are common in children and adolescents. This study investigated the incidence patterns of pediatric and adolescent orthopaedic fractures according to age groups and seasons in South Korea based on population data. Data on the number of pediatric and adolescent patients under the age of 18 years who utilized medical services due to fractures were retrieved from the Health Insurance Review and Assessment service in South Korea. The data included four upper extremity and two lower extremity fractures according to four age groups (0-4 years, 5-9 years, 10-14 years, and 15-18 years). Incidences of the fractures were calculated as the incidence per 10,000 per year, and patterns according to age groups and seasons were demonstrated. The annual incidence of clavicle, distal humerus, both forearm bone, distal radius, femoral shaft and tibial shaft fractures were 27.5, 34.6, 7.7, 80.1, 2.5, and 9.6 per 10,000 per year in children and adolescents, respectively. Clavicle and distal radius fractures showed significant seasonal variation for all age groups but femoral shaft fracture showed no significant seasonal variation for any of the age groups. The four upper extremity fractures tended to show greater variations than the two lower extremity fractures in the nationwide database in South Korea. The study results are believed to be helpful in the planning and assignment of medical resources for fracture management in children and adolescents.

  3. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    NASA Astrophysics Data System (ADS)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize the cumulative production and for the three wells individually. Significant reduction in the production rate in early production times is anticipated in tight reservoirs regardless of the fracturing techniques implemented. The simulations conducted using the alternating fracturing technique led to more oil production than when zipper fracturing was used for a 20-year production period. Yet, due to the decline experienced, the differences in cumulative production get smaller, and the alternating fracturing is not practically implementable while field application of zipper fracturing technique is more practical and widely used.

  4. Pattern palette for complex fluid flows

    NASA Astrophysics Data System (ADS)

    Sandnes, B.

    2012-04-01

    From landslides to oil and gas recovery to the squeeze of a toothpaste tube, flowing complex fluids are everywhere around us in nature and engineering. That is not to say, though, that they are always well understood. The dissipative interactions, through friction and inelastic collisions, often give rise to nonlinear dynamics and complexity manifested in pattern formation on large scales. The images displayed on this poster illustrate the diverse morphologies found in multiphase flows involving wet granular material: Air is injected into a generic mixture of granular material and fluid contained in a 500 µm gap between two parallel glass plates. At low injection rates, friction between the grains - glass beads averaging 100 µm in diameter - dominates the rheology, producing "stick-slip bubbles" and labyrinthine frictional fingering. A transition to various other morphologies, including "corals" and viscous fingers, emerges for increasing injection rate. At sufficiently high granular packing fractions, the material behaves like a deformable, porous solid, and the air rips through in sudden fractures.

  5. Dynamic fracture instability of tough bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Meng, J. X.; Ling, Z.; Jiang, M. Q.; Zhang, H. S.; Dai, L. H.

    2008-04-01

    We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Young's modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs.

  6. Assessment of Surrogate Fractured Rock Networks for Evidence of Complex Behavior

    NASA Astrophysics Data System (ADS)

    Wood, T. R.; McJunkin, T. R.; Podgorney, R. K.; Glass, R. J.; Starr, R. C.; Stoner, D. L.; Noah, K. S.; LaViolette, R. A.; Fairley, J.

    2001-12-01

    A complex system or complex process is -"one whose properties are not fully explained by an understanding of its component parts". Results from field experiments conducted at the Hell's Half-Acre field site (Arco, Idaho) suggest that the flow of water in an unsaturated, fractured medium exhibits characteristics of a complex process. A series of laboratory studies is underway with sufficient rigor to determine if complex behavior observed in the field is in fact a fundamental characteristic of water flow in unsaturated, fractured media. As an initial step, a series of four duplicate experiments has been performed using an array of bricks to simulate fractured, unsaturated media. The array consisted of 12 limestone blocks cut to uniform size (5cm x 7 cm x 30 cm) stacked on end 4 blocks wide and 3 blocks high with the interfaces between adjacent blocks representing 3 vertical fractures intersecting 2 horizontal fractures. Water was introduced at three point sources on the upper boundary of the model at the top of the vertical fractures. Water was applied under constant flux at a rate below the infiltration capacity of the system, thus maintaining unsaturated flow conditions. Water was collected from the lower boundary via fiberglass wicks at the bottom of each fracture. An automated system acquired and processed water inflow and outflow data and time-lapse photographic data during each of the 72-hour tests. From these experiments, we see that a few general statements can be made on the overall advance of the wetting front in the surrogate fracture networks. For instance, flow generally converged with depth to the center fracture in the bottom row of bricks. Another observation is that fracture intersections integrate the steady flow in overlying vertical fractures and allow or cause short duration high discharge pulses or "avalanches" of flow to quickly traverse the fracture network below. Smaller scale tests of single fracture and fracture intersections are underway to evaluate a wide array of unit processes that are believed to contribute to complex behavior. Examples of these smaller scale experiments include the role of fracture intersections in integrating a steady inflow to generate giant fluctuations in network discharge; the influence of microbe growth on flow; and the role of geochemistry in alterations of flow paths. Experiments are planned at the meso and field scale to document and understand the controls on self-organized behavior. Modeling is being conducted in parallel with the experiments to understand how simulations can be improved to capture the complexity of fluid flow in fractured rock vadose zones and to make better predictions of contaminant transport.

  7. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    PubMed

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Treatment of proximal ulna and olecranon fractures by dorsal plating.

    PubMed

    Kloen, Peter; Buijze, Geert A

    2009-12-01

    Anatomic reconstruction of proximal ulna and olecranon fractures allowing early mobilization and prevention of ulnohumeral arthritis. Comminuted olecranon or proximal ulna fractures (including Monteggia fractures), olecranon fractures extending distally from the coronoid process, nonunions of the proximal ulna, segmental fractures of the proximal ulna extending into the shaft, fractures of the proximal ulna associated with a coronoid fracture. Patients in poor general condition. Soft-tissue defects around the elbow preventing wound closure over the plate. Pediatric fractures with open growth plates where screws would cross the physis. Posterior approach to the elbow. Hinging the fracture site open by extension of the proximal fragment based on triceps insertion. Fracture involvement of the coronoid with a large displaced fracture fragment can generally be reduced through the fracture side. Reconstruction with temporary Kirschner wires. Fixation by placing a (precontoured) plate around the tip of the olecranon with a long intramedullary screw and orthogonal (uni)cortical screws in the shaft. Radial head pathology can be addressed - if needed - through the same incision. Internal fixation, resection or prosthetic replacement of the radial head is done based on injury pattern/stability. Functional rehabilitation using active assisted range of motion of the elbow may be started immediately out of splint. Posterior splint for 7-10 days to allow wound healing. Between 2003 and July 2008, 26 patients were treated with posterior plating of the proximal ulna and olecranon using this strategy. There were 23 acute fractures (of which one was referred for revision after suboptimal fixation a few days earlier), one nonunion that became traumatized, and two nascent malunions. A midline posterior approach allowed addressing both ulna and radial head pathology. The plate was contoured to wrap around the olecranon. All fractures healed. There were one postoperative infection, one transient ulnar neuropathy, one transient radial neuropathy, and one nonresolving ulnar/median neuropathy in a complex upper extremity injury. At follow-up after an average of 18 months, range of motion was on average 132 degrees /18 degrees of flexion/extension, and 75 degrees /70 degrees of pronation/supination. All fractures had healed at an average of 4.8 months. Ten patients had their hardware removed.

  9. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less

  10. Correlation between high resolution sequence stratigraphy and mechanical stratigraphy for enhanced fracture characteristic prediction

    NASA Astrophysics Data System (ADS)

    Al Kharusi, Laiyyan M.

    Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: (1) Mississippian strata in Sheep Mountain Anticline, Wyoming, (2) Mississippian limestones in St. Louis, Missouri, and (3) Pennsylvanian limestones intermixed with elastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight correlation to fracture spacing. Furthermore, bed thickness is found to be only one factor in determining fracture density but with increasing strain, internal bedforms and rock petrophysical heterogeneities influence fracture density patterns. This study illustrates how integrating sedimentologic and sequence stratigraphic interpretations with data on structural kinematics can lead to refined predictive understanding of fracture attributes.

  11. Maternal Dietary Patterns during Pregnancy in Relation to Offspring Forearm Fractures: Prospective Study from the Danish National Birth Cohort

    PubMed Central

    Petersen, Sesilje B.; Rasmussen, Morten A.; Olsen, Sjurdur F.; Vestergaard, Peter; Mølgaard, Christian; Halldorsson, Thorhallur I.; Strøm, Marin

    2015-01-01

    Limited evidence exists for an association between maternal diet during pregnancy and offspring bone health. In a prospective study, we examined the association between dietary patterns in mid-pregnancy and offspring forearm fractures. In total, 101,042 pregnancies were recruited to the Danish National Birth Cohort (DNBC) during 1996–2002. Maternal diet was collected by a food frequency questionnaire. Associations were analyzed between seven dietary patterns extracted by principal component analysis and offspring first occurrence of any forearm fracture diagnosis, extracted from the Danish National Patient Register, between time of birth and end of follow-up (<16 year) (n = 53,922). In multivariable Cox regression models, offspring of mothers in the fourth vs. first quintile of the Western pattern had a significant increased risk (Hazard ratio, 95% confidence interval: 1.11, 1.01–1.23) of fractures, and there was a borderline significant positive trend (p = 0.06). The other dietary patterns showed no associations and neither did supplementary analyses of macro- and micronutrients or single food groups, except for the intake of artificially sweetened soft drinks, which was positively associated with offspring forearm fractures (p = 0.02). In the large prospective DNBC high mid-pregnancy consumption of Western diet and artificially sweetened soft drinks, respectively, indicated positive associations with offspring forearm fractures, which provides interesting hypotheses for future research. PMID:25849947

  12. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    PubMed Central

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599

  13. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.

  14. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters. Permeability was measured by air permeameter. Results confirmed that there is a correspondence between the high permeability and the low magnetic susceptibility values of production zones. Importantly also were found relation of the coal envelope type between only shales coal framing or only sandstone coal framing that most likely led to different stress profiles. In addition, we briefly describe potential of other types of unconventional resources in Kazakhstan, such as shale oil, tight gas and shale gas, where this integrated approach could be useful to apply in the future.

  15. Post-traumatic complex regional pain syndrome: clinical features and epidemiology

    PubMed Central

    Ratti, Chiara; Nordio, Andrea; Resmini, Giuseppina; Murena, Luigi

    2015-01-01

    Summary Complex Regional Pain Syndrome (CRPS) is a chronic pain condition that occurs after a tissue injury (fractures, sprain, surgery) of the upper or lower extremities. A clear pathophysiological mechanism has not been established yet and different patterns are considered to play a role in the genesis of the disease. The diagnosis is made by different diagnosis criteria and a gold standard has not been established yet. Incidence of CRPS is unclear and large prospective studies on the incidence and prevalence of CRPS are scarce. The aim of this review is to give an overview on the prevalent data regarding this chronic syndrome. PMID:27134626

  16. Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes

    PubMed Central

    Bais, Manish; McLean, Jody; Sebastiani, Paola; Young, Megan; Wigner, Nathan; Smith, Temple; Kotton, Darrell N.; Einhorn, Thomas A.; Gerstenfeld, Louis C.

    2009-01-01

    Fractures are among the most common human traumas. Fracture healing represents a unique temporarily definable post-natal process in which to study the complex interactions of multiple molecular events that regulate endochondral skeletal tissue formation. Because of the regenerative nature of fracture healing, it is hypothesized that large numbers of post-natal stem cells are recruited and contribute to formation of the multiple cell lineages that contribute to this process. Bayesian modeling was used to generate the temporal profiles of the transcriptome during fracture healing. The temporal relationships between ontologies that are associated with various biologic, metabolic, and regulatory pathways were identified and related to developmental processes associated with skeletogenesis, vasculogenesis, and neurogenesis. The complement of all the expressed BMPs, Wnts, FGFs, and their receptors were related to the subsets of transcription factors that were concurrently expressed during fracture healing. We further defined during fracture healing the temporal patterns of expression for 174 of the 193 genes known to be associated with human genetic skeletal disorders. In order to identify the common regulatory features that might be present in stem cells that are recruited during fracture healing to other types of stem cells, we queried the transcriptome of fracture healing against that seen in embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs). Approximately 300 known genes that are preferentially expressed in ESCs and ∼350 of the known genes that are preferentially expressed in MSCs showed induction during fracture healing. Nanog, one of the central epigenetic regulators associated with ESC stem cell maintenance, was shown to be associated in multiple forms or bone repair as well as MSC differentiation. In summary, these data present the first temporal analysis of the transcriptome of an endochondral bone formation process that takes place during fracture healing. They show that neurogenesis as well as vasculogenesis are predominant components of skeletal tissue formation and suggest common pathways are shared between post-natal stem cells and those seen in ESCs. PMID:19415118

  17. Multiscale analysis of the fracture pattern in granite, example of Tamariu's granite, Catalunya.

    NASA Astrophysics Data System (ADS)

    Bertrand, L.; LeGarzic, E.; Géraud, Y.; Diraison, M.

    2012-04-01

    Crystalline rocks can be the host of important fluid flow and therefore they can provide a good reservoir potential. In this kind of rocks, the matrice porosity is in general low and a large part of the permeability is governed by the fracture pattern. Thus, they are the first interest of studies in order to characterize and model the fluid flows. Actual reservoirs are underground, and the only access to the fracture pattern is with boreholes and seismic lines. Those methods are investigating different scales and dimensions: seismic is in 3D at a global scale whereas boreholes are 1D at a localized scale. To make the link between the different data, it is necessary to study field analogues where such fractured rocks are outcropping. Tamariu's granite, in Catalunya, has recently been studied as a field analogue of a fractured reservoir. The previous studies have lead to define structural blocks at different scales, linked to the regional deformation. This study's aim is to characterize the internal fracturation of a single structural block with a statistical analysis. We used one dimension scan lines at the scale of a block and 2 dimensions mapping at a more precise scale until the grain scale. The data highlighted that the fracture and fault lengths have a power law relation in 8 orders of scales. So this power law is stretching between seismic and borehole scales. Therefore, the data fit with a very good trust in the power law exponent, which is very well defined. The link between the reservoir scale faults and the internal block fracturation has also been defined in term of the structures orientation. Finally, a comparison between the 1D and 2D measurement could be done. The 1D scan lines show correctly the different fractures families but samples incompletely a part the fracture pattern, whereas the 2D maps which show more the global trends of the fractures and could lose some minor trends orientations.

  18. Treatment of Pediatric Condylar Fractures: A 20-Year Experience.

    PubMed

    Ghasemzadeh, Ali; Mundinger, Gerhard S; Swanson, Edward W; Utria, Alan F; Dorafshar, Amir H

    2015-12-01

    The purpose of this study was to define patterns of injury and treatment for condylar and subcondylar fractures and evaluate short-term outcomes in the pediatric population. A retrospective chart review was performed on pediatric patients with mandibular condylar fractures who presented between 1990 and 2010. Computed tomographic imaging was reviewed for all patients to assess fracture characteristics. Mandibular fractures were codified using the Strasbourg Osteosynthesis Research Group and Lindahl classification methods. Sixty-four patients with 92 condylar fractures were identified. Of these patients, 29 had isolated condylar fracture and 35 had a condylar fracture associated with an additional mandibular arch fracture. The most common fracture patterns were diacapitular fracture in the Strasbourg Osteosynthesis Research Group system (n = 46) and vertical condylar head fracture in the Lindahl system (n = 14). Condylar fracture with additional mandibular arch fractures were treated with maxillomandibular fixation more often than patients with condylar fracture [n = 40 (74.1 percent) versus n = 14 (25.9 percent); p = 0.004]. No condylar fracture was treated in an open fashion. Forty-three patients returned for follow-up. The median follow-up period was 81 days (interquartile range, 35 to 294 days). Ten patients had complications (23.3 percent). The most common complication was malocclusion (n = 5). Nine of 10 patients with complications had condylar fracture with an additional mandibular arch fracture. Closed treatment of condylar fractures yields satisfactory results in pediatric patients. Pediatric patients with condylar fractures combined with additional arch fractures experience a higher rate of unfavorable outcomes.

  19. Association of pelvic fracture patterns, pelvic binder use and arterial angio-embolization with transfusion requirements and mortality rates; a 7-year retrospective cohort study.

    PubMed

    Agri, Fabio; Bourgeat, Mylène; Becce, Fabio; Moerenhout, Kevin; Pasquier, Mathieu; Borens, Olivier; Yersin, Bertrand; Demartines, Nicolas; Zingg, Tobias

    2017-11-09

    Pelvic fractures are severe injuries with frequently associated multi-system trauma and a high mortality rate. The value of the pelvic fracture pattern for predicting transfusion requirements and mortality is not entirely clear. To address hemorrhage from pelvic injuries, the early application of pelvic binders is now recommended and arterial angio-embolization is widely used for controlling arterial bleeding. Our aim was to assess the association of the pelvic fracture pattern according to the Tile classification system with transfusion requirements and mortality rates, and to evaluate the correlation between the use of pelvic binders and arterial angio-embolization and the mortality of patients with pelvic fractures. Single-center retrospective cohort study including all consecutive patients with a pelvic fracture from January 2008 to June 2015. All radiological fracture patterns were independently reviewed and grouped according to the Tile classification system. Data on patient demographics, use of pelvic binders and arterial angio-embolization, transfusion requirements and mortality were extracted from the institutional trauma registry and analyzed. The present study included 228 patients. Median patient age was 43.5 years and 68.9% were male. The two independent observers identified 105 Tile C (46.1%), 71 Tile B (31.1%) and 52 Tile A (22.8%) fractures, with substantial to almost perfect interobserver agreement (Kappa 0.70-0.83). Tile C fractures were associated with a higher mortality rate (p = 0.001) and higher transfusion requirements (p < 0.0001) than Tile A or B fractures. Arterial angio-embolization for pelvic bleeding (p = 0.05) and prehospital pelvic binder placement (p = 0.5) were not associated with differences in mortality rates. Tile C pelvic fractures are associated with higher transfusion requirements and a higher mortality rate than Tile A or B fractures. No association between the use of pelvic binders or arterial angio-embolization and survival was observed in this cohort of patients with pelvic fractures.

  20. Temporal distribution of alcohol related facial fractures.

    PubMed

    Lee, Kai H; Qiu, Michael; Sun, Jiandong

    2017-11-01

    This study aimed to address 2 important aspects of temporal pattern in alcohol-related facial fractures: (1) comparison of temporal pattern of alcohol-related facial fracture (alcohol group) presentation with non-alcohol-related fracture (non-alcohol group) presentation; (2) temporal pattern of patient demographic characteristics, injury characteristics, and surgical management in the alcohol group presentation. This study retrospectively examined the Victorian admitted episodes data set (VAED) for the years 2010 to 2013. VAED is a standardized set of data collected during all hospital presentations in Victoria. The study found higher incidence of alcohol-related facial fracture presentations during weekends and during the summer and spring months compared with non-alcohol-related fractures (statistically significant). Alcohol-related facial fractures are more likely to involve male patients in the 20- to 29-year age group, occur as a result of interpersonal violence, and require shorter hospital stays during weekend admissions (statistically significant). No statistically significant relationship has been observed in seasonal variation across all variables. This study found distinct characteristics in temporal distribution of alcohol-related facial fractures. These characteristics are, in particular, significant in weekend trauma admissions. Such information is important in workforce planning, resource distribution, and implementation of injury prevention programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Malleolar fractures and their ligamentous injury equivalents have similar outcomes in supination-external rotation type IV fractures of the ankle treated by anatomical internal fixation.

    PubMed

    Berkes, M B; Little, M T M; Lazaro, L E; Sculco, P K; Cymerman, R M; Daigl, M; Helfet, D L; Lorich, D G

    2012-11-01

    It has previously been suggested that among unstable ankle fractures, the presence of a malleolar fracture is associated with a worse outcome than a corresponding ligamentous injury. However, previous studies have included heterogeneous groups of injury. The purpose of this study was to determine whether any specific pattern of bony and/or ligamentous injury among a series of supination-external rotation type IV (SER IV) ankle fractures treated with anatomical fixation was associated with a worse outcome. We analysed a prospective cohort of 108 SER IV ankle fractures with a follow-up of one year. Pre-operative radiographs and MRIs were undertaken to characterise precisely the pattern of injury. Operative treatment included fixation of all malleolar fractures. Post-operative CT was used to assess reduction. The primary and secondary outcome measures were the Foot and Ankle Outcome Score (FAOS) and the range of movement of the ankle. There were no clinically relevant differences between the four possible SER IV fracture pattern groups with regard to the FAOS or range of movement. In this population of strictly defined SER IV ankle injuries, the presence of a malleolar fracture was not associated with a significantly worse clinical outcome than its ligamentous injury counterpart. Other factors inherent to the injury and treatment may play a more important role in predicting outcome.

  2. Influence of Landscape Coverage on Measuring Spatial and Length Properties of Rock Fracture Networks: Insights from Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhuo; Lei, Qinghua

    2018-01-01

    Natural fractures are ubiquitous in the Earth's crust and often deeply buried in the subsurface. Due to the difficulty in accessing to their three-dimensional structures, the study of fracture network geometry is usually achieved by sampling two-dimensional (2D) exposures at the Earth's surface through outcrop mapping or aerial photograph techniques. However, the measurement results can be considerably affected by the coverage of forests and other plant species over the exposed fracture patterns. We quantitatively study such effects using numerical simulation. We consider the scenario of nominally isotropic natural fracture systems and represent them using 2D discrete fracture network models governed by fractal and length scaling parameters. The groundcover is modelled as random patches superimposing onto the 2D fracture patterns. The effects of localisation and total coverage of landscape patches are further investigated. The fractal dimension and length exponent of the covered fracture networks are measured and compared with those of the original non-covered patterns. The results show that the measured length exponent increases with the reduced localisation and increased coverage of landscape patches, which is more evident for networks dominated by very large fractures (i.e. small underlying length exponent). However, the landscape coverage seems to have a minor impact on the fractal dimension measurement. The research findings of this paper have important implications for field survey and statistical analysis of geological systems.

  3. Niobrara Discrete Fracture Network: From Outcrop Surveys to Subsurface Reservoir Models

    NASA Astrophysics Data System (ADS)

    Grechishnikova, Alena

    Heterogeneity of an unconventional reservoir is one of the main factors affecting production. Well performance depends on the size and efficiency of the interconnected fracture "plumbing system", as influenced by multistage hydraulic fracturing. A complex, interconnected natural fracture network can significantly increase the size of stimulated reservoir volume, provide additional surface area contact and enhance permeability. In 2013 the Reservoir Characterization Project (RCP) at the Colorado School of Mines began Phase XV to study Niobrara shale reservoir management. Anadarko Petroleum Corporation and RCP jointly acquired time-lapse multicomponent seismic data in Wattenberg Field, Denver Basin. Anadarko also provided RCP with a regional 3D seismic survey and a rich well dataset. The purpose of this study is to characterize the natural fracture patterns occurring in the unconventional Niobrara reservoir and to determine the drivers that influenced fracture trends and distributions. The findings are integrated into a reservoir model though DFN (Discrete Fracture Network) for further prediction of reservoir performance using reservoir simulations. Aiming to better understand the complexity of the natural fracture system I began my fracture analysis work at an active mine site that provides a Niobrara exposure. Access to a "fresh" outcrop surface created a perfect natural laboratory. Ground-based LIDAR and photogrammetry facilitated construction of a geological model and a DFN model for the mine site. The work was carried into subsurface where the information gained served to improve reservoir characterization at a sub-seismic scale and can be used in well planning. I then embarked on a challenging yet essential task of outcrop-to-subsurface data calibration and application to RCP's Wattenberg Field study site. In this research the surface data was proven to be valid for comparative use in the subsurface. The subsurface fracture information was derived from image logs run within the horizontal wellbores and augmented with microseismic data. Limitations of these datasets included the potential to induce biased interpretations; but the data collected during the outcrop study aided in removing the bias. All four fracture sets observed at the quarry were also interpreted in the subsurface; however there was a limitation on statistical validity for one of the four sets due to a low frequency of observed occurrence potentially caused by wellbore orientation. Microseismic data was used for identification of one of the reactivated natural fracture sets. An interesting phenomenon observed in the microseismic data trends was the low frequency of event occurrence within dense populations of open natural fracture swarms suggesting that zones of higher natural fracture intensities are capable of absorbing and transmitting energy resulting in lower levels of microseismicity. Thus currently open natural fractures could be challenging to detect using microseismic. Through this study I identified a significant variability in fracture intensity at a localized scale due to lithological composition and structural features. The complex faulting styles observed at the outcrop were utilized as an analog and verified by horizontal well log data and seismic volume interpretations creating a high resolution structural model for the subsurface. A lithofacies model was developed based on the well log, core, and seismic inversion analysis. These models combined served to accurately distribute fracture intensity information within the geological model for further use in DFN. As a product of this study, a workflow was developed to aid in fracture network model creation allowing for more intelligent decisions to be made during well planning and completion optimization aiming to improve recovery. A high resolution integrated discrete fracture network model serves to advance dynamic reservoir characterization in the subsurface at a sub-seismic scale resulting in improved reservoir characterization.

  4. Complex ruptures during hydraulic fracturing of the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Viegas, G. F.; Urbancic, T.; Bosman, K.; Baig, A. M.

    2016-12-01

    Complex rupture patterns were observed on several M0+ events recorded during a hydraulic stimulation of the Marcellus shale. Although M>0 events associated with hydraulic fracturing have now been commonly recorded and may cause concern in terms of public and infrastructure safety, the vast majority of these events are smaller than M3 and are not felt at the surface. We investigate the rupture characteristics of one such multi-rupture event with 3 sub-events, by examining the failure dynamics of the overall fracture itself and of each individual sub-event, and the growth of the overall fracture from rupture initiation to arrest. This analysis is only possible due to the wide frequency range of the seismic monitoring system put in place which spanned from 0.1 Hz to 1000 Hz. The monitoring system consists of: high-frequency sensor-arrays of geophones deployed downhole close to the reservoir and thus to the rupture initiation point; and low to intermediate frequency accelerometers and geophones deployed at intermediate and shallow depths, allowing for the investigation of overall rupture characteristics. We aim to gain an understanding of the role of asperities, fracture roughness, and fluids on the different aspects of the rupture processes and of the failure mechanisms (shearing versus tensile dominance of behavior) associated with these complex events. Our results show that the overall event is characterized by the failure of multiple asperities and the distance between the 3 sub-events is less than 20 m. We observe decreasing stress drop and increasing Mw over time for the successive sub-events which suggest decreasing frictional resistance due to the presence of fluids over an increasingly large rupture surface akin to increased slip over a larger and less resistant contact area such as an asperity. The overall failure shows a dominant shearing mode mechanism whereas the sub-events failures show strong tensile components. The ruptures of the 1st and 2nd sub-events are indicative of shear-compaction of an asperity and the one of the 3rd sub-event is suggestive of a rupture riding over several surface patches. Additional analysis of other complex events will improve the characterization of the rupture processes of these larger-magnitude events and allow for the assessment of conditions under which the failures occur.

  5. Quartz c-axis orientation patterns in fracture cement as a measure of fracture opening rate and a validation tool for fracture pattern models

    DOE PAGES

    Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall

    2016-03-09

    Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less

  6. Quartz c-axis orientation patterns in fracture cement as a measure of fracture opening rate and a validation tool for fracture pattern models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukar, Estibalitz; Laubach, Stephen E.; Marrett, Randall

    Here, we evaluate a published model for crystal growth patterns in quartz cement in sandstone fractures by comparing crystal fracture-spanning predictions to quartz c-axis orientation distributions measured by electron backscatter diffraction (EBSD) of spanning quartz deposits. Samples from eight subvertical opening-mode fractures in four sandstone formations, the Jurassic– Cretaceous Nikanassin Formation, northwestern Alberta Foothills (Canada), Cretaceous Mesaverde Group (USA; Cozzette Sandstone Member of the Iles Formation), Piceance Basin, Colorado (USA), and upper Jurassic–lower Cretaceous Cotton Valley Group (Taylor sandstone) and overlying Travis Peak Formation, east Texas, have similar quartzose composition and grain size but contain fractures with different temperature historiesmore » and opening rates based on fluid inclusion assemblages and burial history. Spherical statistical analysis shows that, in agreement with model predictions, bridging crystals have a preferred orientation with c-axis orientations at a high angle to fracture walls. The second form of validation is for spanning potential that depends on the size of cut substrate grains. Using measured cut substrate grain sizes and c-axis orientations of spanning bridges, we calculated the required orientation for the smallest cut grain to span the maximum gap size and the required orientation of the crystal with the least spanning potential to form overgrowths that span across maximum measured gap sizes. We find that within a 10° error all spanning crystals conform to model predictions. Using crystals with the lowest spanning potential based on crystallographic orientation (c-axis parallel to fracture wall) and a temperature range for fracture opening measured from fluid inclusion assemblages, we calculate maximum fracture opening rates that allow crystals to span. These rates are comparable to those derived independently from fracture temperature histories based on burial history and multiple sequential fluid inclusion assemblages. Results support the R. Lander and S. Laubach model, which predicts that for quartz deposited synchronously with fracture opening, spanning potential, or likelihood of quartz deposits that are thick enough to span between fracture walls, depends on temperature history, fracture opening rate, size of opening increments, and size, mineralogy, and crystallographic orientation of substrates in the fracture wall (transected grains). Results suggest that EBSD maps, which can be more rapidly acquired than measurement of tens to hundreds of fluid inclusion assemblages, can provide a useful measure of relative opening rates within populations of quartz-filled fractures formed under sedimentary basin conditions. Such data are useful for evaluating fracture pattern development models.« less

  7. Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field.

    PubMed

    Holtzman, Benjamin K; Paté, Arthur; Paisley, John; Waldhauser, Felix; Repetto, Douglas

    2018-05-01

    The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < M L < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity.

  8. Intra-articular calcaneal fractures: effect of open reduction and internal fixation on the contact characteristics of the subtalar joint.

    PubMed

    Mulcahy, D M; McCormack, D M; Stephens, M M

    1998-12-01

    Intra-articular calcaneal fractures are associated with significant long-term morbidity, and considerable controversy exists regarding the optimum method of treating them. The contact characteristics in the intact subtalar joint were determined at known loads and for different positions of the ankle and subtalar joint, using pressure-sensitive film (Super Low; Fuji, Itochu Canada Ltd, Montreal, Quebec). We measured the contact area to joint area ratio (pressure > 5 kg force/cm2 [kgf/cm2]) which normalizes for differences in joint size and the ratio of high pressure zone (>20 kgf/cm2) as a reflection of overall increase in joint pressure. Three simulated fracture patterns were then created and stabilized with either 1 or 2 mm of articular incongruity. Eight specimens were prepared with a primary fracture line through the posterior facet, eight with a joint depression-type fracture, and six with a central joint depression fracture. A measure of 1 to 2 mm of incongruity in the posterior facet for all three fracture patterns produced significant unloading of the depressed fragment, with a redistribution of the overall pattern of pressure distribution to parts of the facet that were previously unloaded.

  9. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    PubMed Central

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-01-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131

  10. Planning acetabular fracture reduction using patient-specific multibody simulation of the hip

    NASA Astrophysics Data System (ADS)

    Oliveri, Hadrien; Boudissa, Mehdi; Tonetti, Jerome; Chabanas, Matthieu

    2017-03-01

    Acetabular fractures are a challenge in orthopedic surgery. Computer-aided solutions were proposed to segment bone fragments, simulate the fracture reduction or design the osteosynthesis fixation plates. This paper addresses the simulation part, which is usually carried out by freely moving bone fragments with six degrees of freedom to reproduce the pre-fracture state. Instead we propose a different paradigm, closer to actual surgeon's requirements: to simulate the surgical procedure itself rather than the desired result. A simple, patient-specific, biomechanical multibody model is proposed, integrating the main ligaments and muscles of the hip joint while accounting for contacts between bone fragments. Main surgical tools and actions can be simulated, such as clamps, Schanz screws or traction of the femur. Simulations are computed interactively, which enables clinicians to evaluate different strategies for an optimal surgical planning. Six retrospective cases were studied, with simple and complex fracture patterns. After interactively building the models from preoperative CT, gestures from the surgical reports were reproduced. Results of the simulations could then be compared with postoperative CT data. A qualitative study shows the model behavior is excellent and the simulated reductions fit the observed data. A more quantitative analysis is currently being completed. Two cases are particularly significant, for which the surgical reduction actually failed. Simulations show it was indeed not possible to reduce these fractures with the chosen approach. Had our simulator being used, a better planning may have avoided a second surgery to these patients.

  11. Analysis of crevasse patterns on Helheim and Kangerdlugssuaq Glaciers in Greenland

    NASA Astrophysics Data System (ADS)

    Udell, K.; Walker, C. C.; Schmidt, B. E.

    2017-12-01

    As a tidewater glacier flows through a valley, it accumulates fractures that provide qualitative information on how glacier thickness, climate forcing, and areas of compression and extension conspire within the ice. These fracture patterns remain and evolve on the glacier, and rapid changes in the pattern can be indicative of a transition in the movement of the glacier. Not only can the fractures provide qualitative information about a glacier, they can also provide quantitative information that allows for the calculation of the stress field and dynamics that the ice experiences. Helheim and Kangerdlugssuaq both terminate in the ocean, potentially providing information on the transition from solid glacier to mélange, which is an important but not well understood process. Using satellite imagery, we traced surface crevasses present along each glacier for available images between 2001-2016 using geospatial software QGIS. We also qualitatively tracked any surface melt ponds present, and monitored for large fractures or regions of the terminus that appeared to be susceptible to or currently calving. With the trace maps, we will use spatial analysis techniques to allow us to quantify the visible patterns and compare the information from year to year and glacier to glacier. Once we can quantitatively describe fracture density in different areas of the glacier, we will also be able to better describe the transition within the glacier from solid mass to highly-fractured and collapsing. Having this data for each glacier allows for comparisons to be made within regions of individual glaciers as well as between glaciers. Using this information, we can answer questions about the relationship between density and pattern of fractures to the stability of the terminus, the stresses that drive glacial fractures, and what effects climate has on glacier dynamics and calving. Preliminary observations include the increasing prevalence of melt ponds beginning in 2004 as well as the retreat of the terminus during the same period. More recently the location of the terminus has remained relatively constant. Overall, understanding the processes of glacial fracturing has implications for both better understanding climate change and analyzing ice fracturing on other planetary bodies such as Europa.

  12. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives

    PubMed Central

    Audigé, Laurent; Cornelius, Carl-Peter; Ieva, Antonio Di; Prein, Joachim

    2014-01-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal. PMID:25489387

  13. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives.

    PubMed

    Audigé, Laurent; Cornelius, Carl-Peter; Di Ieva, Antonio; Prein, Joachim

    2014-12-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal.

  14. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    NASA Astrophysics Data System (ADS)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  15. Mineback Stimulation Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    The Mineback Stimulation Research Program is a systematic study of hydraulic fracturing and the parameters which influence or control fracture geometry or behavior. Fractures are created near a tunnel complex at DOE's Nevada Test Site and are monitored, instrumented, and mined back to observe the effect of treatment, rock and reservoir properties on the fractures. An initial experiment to measure width and pressure in a hydraulic fracture was completed in FY 1983. The test showed that pressure drops along fractures are much larger than predicted, with the result that fractures are shorter, higher, and wider than present models estimate. Themore » cause of this is the complex morphology of hydraulic fractures, including a hierarchy of roughnesses, multiple stranding, and corners, such as the offsets which occur when natural fractures are intersected. A test to study flow behavior in hydraulic fractures with proppant is proposed for FY 1984. 7 figures.« less

  16. Dynamic Responses of Intact Post Mortem Human Surrogates from Inferior-to-Superior Loading at the Pelvis.

    PubMed

    Yoganandan, Narayan; Moore, Jason; Arun, Mike W J; Pintar, Frank A

    2014-11-01

    During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine. Scatter plots showing injury and non-injury data as a function of peak normalized forces, pulse characteristics, impulse and power, loading rate and sacrum and spine accelerations were evaluated as potential metrics related to pathological outcomes with the focus of examining the role of the pulse characteristics from inferior-to-superior loading of the pelvis-sacrum-lumbar spine complex. Interrelationships were explored between non-fracture and fracture outcomes, and fracture patterns with a focus on migration of injuries from the hip-only to hip and spine to spine-only regions. Observations indicate that injury to the pelvis and or spine from inferior-to-superior loading is associated with pulse and not just peak velocity. The role of the effect of mass recruitment and injury migration parallel knee-thigh-hip complex studies, suggest a wider application of the recruitment concept and the role of the pulse characteristics.

  17. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  18. Microfracture spacing distributions and the evolution of fracture patterns in sandstones

    NASA Astrophysics Data System (ADS)

    Hooker, J. N.; Laubach, S. E.; Marrett, R.

    2018-03-01

    Natural fracture patterns in sandstone were sampled using scanning electron microscope-based cathodoluminescence (SEM-CL) imaging. All fractures are opening-mode and are fully or partially sealed by quartz cement. Most sampled fractures are too small to be height-restricted by sedimentary layers. At very low strains (<∼0.001), fracture spatial distributions are indistinguishable from random, whereas at higher strains, fractures are generally statistically clustered. All 12 large (N > 100) datasets show spacings that are best fit by log-normal size distributions, compared to exponential, power law, or normal distributions. The clustering of fractures suggests that the locations of natural factures are not determined by a random process. To investigate natural fracture localization, we reconstructed the opening history of a cluster of fractures within the Huizachal Group in northeastern Mexico, using fluid inclusions from synkinematic cements and thermal-history constraints. The largest fracture, which is the only fracture in the cluster visible to the naked eye, among 101 present, opened relatively late in the sequence. This result suggests that the growth of sets of fractures is a self-organized process, in which small, initially isolated fractures grow and progressively interact, with preferential growth of a subset of fractures developing at the expense of growth of the rest. Size-dependent sealing of fractures within sets suggests that synkinematic cementation may contribute to fracture clustering.

  19. Analysis of seismic sources for different mechanisms of fracture growth for microseismic monitoring applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchkov, A. A., E-mail: DuchkovAA@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk, 630090; Stefanov, Yu. P., E-mail: stefanov@ispms.tsc.ru

    2015-10-27

    We have developed and illustrated an approach for geomechanic modeling of elastic wave generation (microsiesmic event occurrence) during incremental fracture growth. We then derived properties of effective point seismic sources (radiation patterns) approximating obtained wavefields. These results establish connection between geomechanic models of hydraulic fracturing and microseismic monitoring. Thus, the results of the moment tensor inversion of microseismic data can be related to different geomechanic scenarios of hydraulic fracture growth. In future, the results can be used for calibrating hydrofrac models. We carried out a series of numerical simulations and made some observations about wave generation during fracture growth. Inmore » particular when the growing fracture hits pre-existing crack then it generates much stronger microseismic event compared to fracture growth in homogeneous medium (radiation pattern is very close to the theoretical dipole-type source mechanism)« less

  20. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    PubMed

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. CT incidence of Morel-Lavallee lesions in patients with pelvic fractures: a 4-year experience at a level 1 trauma center.

    PubMed

    Beckmann, Nicholas M; Cai, Chunyan

    2016-12-01

    The aim of this study is to determine the incidence and location of Morel-Lavallee lesions (MLLs) on pelvic CTs performed in evaluation of pelvic fractures and determine if correlation exists between MLLs and mechanism of injury or pelvic ring injury pattern. A retrospective review was performed of pelvic CTs on 1493 consecutive patients presenting with pelvic fractures at our level 1 trauma center. MLLs occurred in 182 of 1493 patients presenting with pelvic fractures. Statistical significance in MLL incidence was found across mechanism of injuries with MLLs being seen most frequently in MCC/ATV accidents and crush injuries. A little over half of MLLs occurred over the lateral thigh with almost all other MLLs occurring over the posterior (flank or lumbar) region. MLLs were much more common in vertical shear and spinopelvic dissociation pelvic ring fracture patterns compared to lateral compression and AP compression patterns. In lateral compression injuries, MLLs most commonly occurred over the thigh. In all other pelvic ring injury patterns, MLLs were predominately posterior. MLL's are not as rare as previously believed. The lateral thigh and lumbar/flank regions should be closely inspected on pelvic trauma patients to identify MLLs, particularly in patients with a spinopelvic dissociation injury pattern.

  2. Modeling the Interaction Between Hydraulic and Natural Fractures Using Dual-Lattice Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jing; Huang, Hai; Deo, Milind

    The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing,more » arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.« less

  3. Biomechanics of metastatic disease in the vertebral column.

    PubMed

    Whyne, Cari M

    2014-06-01

    Metastatic disease in the vertebral column compromises the structural stability of the spine leading to increased risk of fracture. The complex patterns of osteolytic and osteoblastic disease within the bony spine have motivated a multimodal approach to better characterize the biomechanics of tumor-involved bone. This review presents our current understanding of the biomechanical behavior of metastatically involved vertebrae, and experimental and computational image-based approaches that have been employed to quantify structural integrity in preclinical models with translation to clinical data sets.

  4. Ankle fracture spur sign is pathognomonic for a variant ankle fracture.

    PubMed

    Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G

    2015-02-01

    The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.

  5. A geological evidence of very low frequency earthquake inferred from vitrinite thermal records across a microfault within on-land accretionary complex.

    NASA Astrophysics Data System (ADS)

    Morita, K.; Hashimoto, Y.; Hirose, T.; Hamada, Y.; Kitamura, M.

    2014-12-01

    Generation of friction heat associated with fault slip is controlled by friction, slip distance and fault thickness. Nature of fault slip can be estimated from the record of frictional heating along a fault (e.g., Fulton et al., 2012). Purpose of this study is to detect the record of frictional heating along a microfault observed in on-land accretionary complex, Shimanto Belt, SW Japan using vitrinite reflectance (Ro) and to examine the characteristics of fault slip in deeper subduction zone. The study area is located in Nonokawa formation, the Cretaceous Shimanto Belt, in Kochi Prefecture, Southwest Japan. We found a carbonaceous material concentrated layer (CMCL) in the formation. Some micro-faults cut the layer. The thickness of CMCL is about 3-4m. Ro of host rock is about 0.98-1.1% and of fault rock is over 1.2%. Kitamura et al. (2012) pointed out that fracturing energy may control the high Ro within fault zone. To avoid the effect of fracturing on Ro, we tired to detect a diffusion pattern of frictional heating in host rocks. Distribution of Ro is mapped in thin sections to make the Ro-distance pattern perpendicular to the fault plane. Within the fracture zone, abnormally high Ro (about 2.0% or above) was observed. Ro was 1.25% at the wall of fracture zone and decreases to 1.1% at about 5cm from the wall. We interpreted that the Ro-distance pattern was resulted from the thermal diffusion. Using this diffusion pattern, the characteristic fault parameters, such as friction, slip rate and rise time (Tr) was examined. We set parameters Q (= friction times slip rate). We have simulated frictional heating and Ro maturation on the basis of the method by Sweeny and Burnham (1990). Grid search was conducted to find the best fitted combination of Q and Tr at the smallest residual between simulated Ro and observed Ro. In the result, we estimated about 1500 (Pa m/s) of Q and about 130000(s) of Tr. Because the base temperature is about 185˚C based on the 1.1% of Ro, the depth of fault activity can be corresponded to about 6 km. The effective pressure is estimated about 94MPa. If we put friction coefficient as 0.4-0.6, the friction is about 37.6-56.5MPa. Therefore, slip rate is calculated to be about 27-40μm/s. This very slow slip rate is consistent with that for very low frequency earthquake (VLFe) reported by Sugioka et al. (2012).

  6. Optimizing for Large Planar Fractures in Multistage Horizontal Wells in Enhanced Geothermal Systems Using a Coupled Fluid and Geomechanics Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred

    Enhanced Geothermal Systems (EGS) could potentially use technological advancements in coupled implementation of horizontal drilling and multistage hydraulic fracturing techniques in tight oil and shale gas reservoirs along with improvements in reservoir simulation techniques to design and create EGS reservoirs. In this study, a commercial hydraulic fracture simulation package, Mangrove by Schlumberger, was used in an EGS model with largely distributed pre-existing natural fractures to model fracture propagation during the creation of a complex fracture network. The main goal of this study is to investigate optimum treatment parameters in creating multiple large, planar fractures to hydraulically connect a horizontal injectionmore » well and a horizontal production well that are 10,000 ft. deep and spaced 500 ft. apart from each other. A matrix of simulations for this study was carried out to determine the influence of reservoir and treatment parameters on preventing (or aiding) the creation of large planar fractures. The reservoir parameters investigated during the matrix simulations include the in-situ stress state and properties of the natural fracture set such as the primary and secondary fracture orientation, average fracture length, and average fracture spacing. The treatment parameters investigated during the simulations were fluid viscosity, proppant concentration, pump rate, and pump volume. A final simulation with optimized design parameters was performed. The optimized design simulation indicated that high fluid viscosity, high proppant concentration, large pump volume and pump rate tend to minimize the complexity of the created fracture network. Additionally, a reservoir with 'friendly' formation characteristics such as large stress anisotropy, natural fractures set parallel to the maximum horizontal principal stress (SHmax), and large natural fracture spacing also promote the creation of large planar fractures while minimizing fracture complexity.« less

  7. Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs

    DOE Data Explorer

    Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.

    2011-01-01

    Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in the formations to be stimulated and it is therefore critical to understand the interactions between existing fractures and newly created fractures before optimal stimulation strategies can be developed. Our study aims to improve the understanding of EGS stimulation-response relationships by developing and applying computer-based models that can effectively reflect the key mechanisms governing interactions between complex existing fracture networks and newly created hydraulic fractures. In this paper, we first briefly describe the key modules of our methodology, namely a geomechanics solver, a discrete fracture flow solver, a rock joint response model, an adaptive remeshing module, and most importantly their effective coupling. After verifying the numerical model against classical closed-form solutions, we investigate responses of reservoirs with different preexisting natural fractures to a variety of stimulation strategies. The factors investigated include: the in situ stress states (orientation of the principal stresses and the degree of stress anisotropy), pumping pressure, and stimulation sequences of multiple wells.

  8. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound.

    PubMed

    Leung, Kwok-Sui; Lee, Wing-Sze; Tsui, Hon-For; Liu, Paul Po-Lung; Cheung, Wing-Hoi

    2004-03-01

    A clinical study was conducted to investigate the effect of low-intensity pulsed ultrasound (US) stimulation (LIPUS) on the healing of complex tibial fractures. Thirty complex tibial fractures were randomly assigned to the treatment with LIPUS (n = 16) or by a dummy machine (sham-exposed: n = 14). The fractures were immobilized by either internal or external fixations according to the clinical indications. LIPUS was given 20 min/day for 90 days. Fracture healing was monitored by clinical, radiological, densitometric and biochemical assessments. The LIPUS-treated group showed statistically significantly better healing, as demonstrated by all assessments. Complications were minimal in the LIPUS group. There were two cases of delayed union, with one in each group. There were two cases of infection in the control group. The delayed-union cases were subsequently treated by LIPUS and the infection cases were treated with standard protocol. Fracture healing in these patients was again treated by LIPUS.

  9. Microscopic Pattern of Bone Fractures as an Indicator of Blast Trauma: A Pilot Study.

    PubMed

    Pechníková, Marketa; Mazzarelli, Debora; Poppa, Pasquale; Gibelli, Daniele; Scossa Baggi, Emilio; Cattaneo, Cristina

    2015-09-01

    The assessment of fractures is a key issue in forensic anthropology; however, very few studies deal with the features of fractures due to explosion in comparison with other traumatic injuries. This study focuses on fractures resulting from blast trauma and two types of blunt force trauma (manual compression and running over), applied to corpses of pigs; 163 osteons were examined within forty fractures by the transmission light microscopy. Blast lesions showed a higher percentage of fracture lines through the Haversian canal, whereas in other types of trauma, the fractures went across the inner lamellae. Significant differences between samples hit by blast energy and those runover or manually compressed were observed (p<0.05). The frequency of pattern A is significantly higher in exploded bones than in runover and compressed. Microscopic analysis of the fracture line may provide information about the type of trauma, especially for what concerns blast trauma. © 2015 American Academy of Forensic Sciences.

  10. Treatment of Pediatric Condylar Fractures: A 20-Year Experience

    PubMed Central

    Ghasemzadeh, Ali; Mundinger, Gerhard S.; Swanson, Edward W.; Utria, Alan F.; Dorafshar, Amir H.

    2016-01-01

    Background The purpose of this study was to define patterns of injury and treatment for condylar and subcondylar fractures and evaluate short-term outcomes in the pediatric population. Methods A retrospective chart review was performed on pediatric patients with mandibular condylar fractures who presented between 1990 and 2010. Computed tomographic imaging was reviewed for all patients to assess fracture characteristics. Mandibular fractures were codified using the Strasbourg Osteosynthesis Research Group and Lindahl classification methods. Results Sixty-four patients with 92 condylar fractures were identified. Of these patients, 29 had isolated condylar fracture and 35 had a condylar fracture associated with an additional mandibular arch fracture. The most common fracture patterns were diacapitular fracture in the Strasbourg Osteosynthesis Research Group system (n = 46) and vertical condylar head fracture in the Lindahl system (n = 14). Condylar fracture with additional mandibular arch fractures were treated with maxillomandibular fixation more often than patients with condylar fracture [n = 40 (74.1 percent) versus n = 14 (25.9 percent); p = 0.004]. No condylar fracture was treated in an open fashion. Forty-three patients returned for follow-up. The median follow-up period was 81 days (interquartile range, 35 to 294 days). Ten patients had complications (23.3 percent). The most common complication was malocclusion (n = 5). Nine of 10 patients with complications had condylar fracture with an additional mandibular arch fracture. Conclusions Closed treatment of condylar fractures yields satisfactory results in pediatric patients. Pediatric patients with condylar fractures combined with additional arch fractures experience a higher rate of unfavorable outcomes. PMID:26595021

  11. Epidemiological study of facial fractures at the Oral and Maxillofacial Surgery Service, Santa Casa de Misericordia Hospital Complex, Porto Alegre - RS - Brazil.

    PubMed

    Zamboni, Rodrigo Andrighetti; Wagner, João Carlos Birnfeld; Volkweis, Maurício Roth; Gerhardt, Eduardo Luis; Buchmann, Elissa Muller; Bavaresco, Caren Serra

    2017-01-01

    to investigate the incidence and etiology of face trauma with diagnosis of facial fracture treated at the Buccomaxillofacial Surgery and Traumatology Service of the Santa Casa de Misericórdia Hospital Complex in Porto Alegre. we conducted a cross-sectional, retrospective epidemiological study of 134 trauma victims with 153 facial fractures. the male gender was the most affected (86.6%) and the incidence was higher in the age group from 21 to 30 years. The main etiology was assault (38.8%), followed by motor vehicle accidents (14.2%), motorcycle accidents (13.4%), falls (9%), road accidents (6.7%), sports accidents (5.2%), work accidents (5.2%), firearm injuries (4.5%) and cycling accidents (3%). The most frequent fractures were those of the zygomatic complex (44.5%), followed by fractures of the mandible (42.5%), maxillary bone (5.2%), nasal bones (4.5%) and zygomatic arch (3.3%). the fractures of the zygomatic complex and the mandible were the ones with the highest incidence in the facial traumas, having physical assaults as their main cause.

  12. Extremity Fractures Associated With ATVs and Dirt Bikes: A 6 Year National Epidemiological Study

    PubMed Central

    Gambone, Andrew; Lombardo, Daniel Joseph; Jelsema, Timothy; Sabesan, Vani

    2015-01-01

    Objectives: All-terrain vehicle (ATV) and dirt bike use is increasing in the US and is associated with risk of traumatic injury. Extremity fractures are common injures associated with these vehicles. The purpose of this study is to compare and contrast the patterns extremity fractures associated with ATVs and dirt bikes. Our hypothesis is that these different vehicles will result in similar rates of high impact injuries, but differences in vehicle stability will result in greater proportions of upper extremity fractures associated with ATV use. Methods: The National Electronic Injury Surveillance System (NEISS) was used to acquire data for extremity fractures related to ATV (3-wheels, 4-wheels, and number of wheels undefined) and dirt bike use from 2007-2012. Locations were coded as shoulder, upper arm, elbow, lower arm, wrist, hand, upper leg, knee, lower leg, ankle, foot, and toe. The data were stratified according to age and gender for each year. Incidence rates were calculated on a per vehicle basis using previous estimates of the number of ATVs and dirt bikes in the country. Results: The database yielded an estimate of 229,362.52 extremity fractures from 2007-2012. An estimated total of 130,319.20 fractures were associated with ATVs, while 99,043.37 were associated with dirt bikes. The incidence rates of extremity fractures associated with ATV and dirt bike use were 3.87 and 6.85 per 1000 vehicle-years. Most fractures were in patients 10-19 years of age, after which the number of fractures decreased with age. The largest proportion of all fractures occurred in the shoulder (27.19%), followed by the wrist and lower leg (13.77% and 12.36%, respectively). This distribution of fractures was consistent among ATV use for all age groups except in the 0-9 year olds, where the lower arm and wrist were the most commonly fractured locations. Fracture distribution associated with dirt bike use also followed this general pattern, with the exception of 0-9 and 10-19 year olds having increased proportions of lower arm fractures. When comparing the genders, males had much larger proportions of fractures than females at all locations, except for the upper arm. When comparing the specific injury locations for different vehicle types, there were no differences in the distribution of the location of fractures among 4-wheeled or unspecified ATVs. However, 3-wheeled ATVs and dirt bikes had much larger proportion of lower leg, foot and ankle fractures compared to the other vehicle types. Conclusion: Extremity fractures are among the most common type of injury resulting from ATV and dirt bike use. Our results demonstrated a pattern of injury where the shoulder and lower arm were the most commonly injured locations. This pattern was inconsistent among females, the very young, and 3 wheeled ATVs and dirt bikes. These differences could be due to both rider related factors and vehicle design factors. Knowing commonly fractured locations, the use of additional protective equipment specific to these injuries may be beneficial. Additionally, participants should be cautioned of the increased risk of fractures associated with dirt bike use, as well as the unusual pattern of injuries of 3-wheeled ATVs implying instability of these vehicles.

  13. Fixation of zygomatic and mandibular fractures with biodegradable plates.

    PubMed

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    In this prospective study, 13 randomly selected patients underwent treatment for zygomatic-complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Descriptives, Frequencies, and Chi-square test were used. In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome.

  14. Biomechanical Concepts for Fracture Fixation

    PubMed Central

    Bottlang, Michael; Schemitsch, Christine E.; Nauth, Aaron; Routt, Milton; Egol, Kenneth; Cook, Gillian E.; Schemitsch, Emil H.

    2015-01-01

    Application of the correct fixation construct is critical for fracture healing and long-term stability; however, it is a complex issue with numerous significant factors. This review describes a number of common fracture types, and evaluates their currently available fracture fixation constructs. In the setting of complex elbow instability, stable fixation or radial head replacement with an appropriately sized implant in conjunction with ligamentous repair is required to restore stability. For unstable sacral fractures, “standard” iliosacral screw fixation is not sufficient for fractures with vertical or multiplanar instabilities. Periprosthetic femur fractures, in particular Vancouver B1 fractures, have increased stability when using 90/90 fixation versus a single locking plate. Far Cortical Locking combines the concept of dynamization with locked plating in order to achieve superior healing of a distal femur fracture. Finally, there is no ideal construct for syndesmotic fracture stabilization; however, these fractures should be fixed using a device that allows for sufficient motion in the syndesmosis. In general, orthopaedic surgeons should select a fracture fixation construct that restores stability and promotes healing at the fracture site, while reducing the potential for fixation failure. PMID:26584263

  15. Identical fracture patterns in combat vehicle blast injuries due to improvised explosive devices; a case series

    PubMed Central

    2012-01-01

    Background In November 2008, a surgical team from the Red Cross Hospital Beverwijk, the Netherlands, was deployed in Afghanistan for three months to attend in the army hospital of Kandahar. During their stay, four incidents of armored personnel carriers encountering an improvised explosive device were assessed. In each incident, two soldiers were involved, whose injuries were strikingly similar. Case presentation The described cases comprise paired thoracic vertebral fractures, radial neck fractures, calcaneal fractures and talar fractures. Moreover, the different types of blast injury are mentioned and related to the injuries described in our series. Acknowledging the different blast mechanisms is important for understanding possible injury patterns. Conclusion From this case series, as well as the existing literature on injury patterns caused by blast injuries, it seems appropriate to pay extra attention to bodily areas that were injured in other occupants of the same vehicle. Obviously, the additional surveillance for specific injuries should be complementary to the regular trauma work-up (e.g., ATLS). PMID:23051981

  16. Characterization of Joint Sets Through UAV Photogrammetry on Sedimentary Rock Sea Cliffs and Abrasion Platforms in Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsieh, P. C.; LU, A.; Yeh, C. H.; Huang, W. K.; Lin, H. H.; Lin, M. L.

    2017-12-01

    Rockfall hazards are very common in obsequent slope and oblique slope. In the coastal area of northern Taiwan, many sea cliffs are formed by obsequent slope and oblique slope. A famous case of rockfall failure happened on Aug. 31, 2013, a 150-ton rock block fell on the highway in Badouzi, Keelung, during a high intensity rainfall event which was caused by Typhoon No.15 (Kong-rey). To reduce this kind of rockfall hazard, it is important to characterize discontinuous planes in the bedrock because rock blocks are mainly divided from bedrock by two or more sets of discontinuous planes including joint planes and the bedding plane. For doing characterization of those fracture patterns of joint sets, it is necessary to do detailed field investigations. However, the survey of discontinuous planes, especially joint sets, are usually difficult and cannot get enough characterization data about joint sets. The first reason is that doing field investigations on the surface of sea cliffs is very dangerous and difficult for engineers or geologists to approach the upper part of outcrop. The second reason is the complexity of joint sets. In Badouzi area, each cliff is constituted by many different layers such as sandstone, shale, or alternations of sandstone and shale, and each layer has different fracture pattern of joint sets. In this study, we use UAV photogrammetry as a solution of these difficulties. UAV photogrammetry can produce a high-resolution digital surface model (DSM), orthophoto, and anaglyph of sea cliffs and abrasion platforms. Than we use self-developed geoprocessing toolsets to auto-trace joint planes with DSM data and produce fracture pattern of joint sets semi-automatically and systematically. Our method can provide basic information for rock mass rating on rock slope stability and rockfall hazards evaluation.

  17. Failure modes of Y-TZP abutments with external hex implant-abutment connection determined by fractographic analysis.

    PubMed

    Basílio, Mariana de Almeida; Delben, Juliana Aparecida; Cesar, Paulo Francisco; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir

    2016-07-01

    Yttria-stabilized tetragonal zirconia (Y-TZP) was introduced as ceramic implant abutments due to its excellent mechanical properties. However, the damage patterns for Y-TZP abutments are limited in the literature. Fractographic analyses can provide insights as to the failure origin and related mechanisms. The purpose of this study was to analyze fractured Y-TZP abutments to establish fractographic patterns and then possible reasons for failure. Thirty two prefabricated Y-TZP abutments on external hex implants were retrieved from a single-load-to failure test according to the ISO 14801. Fractographic analyses were conducted under polarized-light estereo and scanning electro microscopy. The predominant fracture pattern was abutment fracture at the connecting region. Classic fractographic features such as arrest lines, hackle, and twist hackle established that failure started where Y-TZP abutments were in contact with the retention screw edges. The abutment screw design and the loading point were the reasons for localized stress concentration and fracture patterns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modelling DC responses of 3D complex fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  19. Modelling DC responses of 3D complex fracture networks

    DOE PAGES

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    2018-03-01

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  20. Are recent graduates of orthopaedic training programs performing less fracture care? American Board of Orthopedic Surgeons part II: a quality improvement initiative.

    PubMed

    Koval, Kenneth J; Marsh, Larry; Anglen, Jeff; Weinstein, James; Harrast, John J

    2012-03-01

    The purpose of this study was to evaluate whether there has been a change in the amount of fracture care performed by recent graduates of orthopaedic residency programs over time. Retrospective review. American Board of Orthopaedic Surgery (ABOS) Part II database. Candidates applying for Part II of the second part of the Orthopaedic (ABOS) certification. The ABOS Part II database was searched from years 1999 to 2008 for Current Procedural Terminology codes indicating 1) "simpler fractures" that any candidate surgeon should be able to perform; 2) "complex fractures" that are often referred to surgeons with specialty training; and 3) "emergent cases" that should be done emergently by a physician. Logistic regression and chi-square tests were used to evaluate whether there has been a change in the amount of fracture care among recent graduates of orthopaedic residency programs over time. Over the 10-year period (1999-2008), a total of 95,922 cases were in the simpler fractures category; 16,523 were classified as complex fractures and 17,789 were classified as emergent cases. The overall number of cases by fracture type increased from 1999 to 2008 as did the average number of surgery cases performed by surgeons in each category over the 6-month collection period. Simpler fracture cases increased 18% (8304-9784 cases) with the average number surgically treated by surgeons performing at least one simple fracture case also increasing 18% (14.1-16.6 cases per surgeon). Complex fracture cases increased 51% (1266-1916 cases) with the average number of these cases per surgeon operating at least one complex fracture case increasing 52% (3.3-5.0 cases per surgeon). Emergent fracture cases increased 92% (1178-2264 cases) with the average number of these cases per surgeon operating at least one emergent fracture case increasing 49% (4.5-6.7 cases per surgeon). From the data presented here, candidate orthopaedic surgeons are treating fractures as least as often as young surgeons were 10 years ago.

  1. Fracture characteristics of gas hydrate-bearing sediments in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Gil Young; Narantsetseg, Buyanbat; Yoo, Dong Geun; Ryu, Byong Jae

    2015-04-01

    The LWD (Logging-While-Drilling) logging (including wireline logging) and coring (including pressure coring) were conducted during UBGH2 (Ulleung Basin Gas Hydrate) expedition. The LWD data from 13 logged sites were obtained and most of the sites showed typical log data indicating the presence of gas hydrate. In particular, prominent fractures were clearly identified on the resistivity borehole images from the seismic chimney structures. The strike and dip of each fracture in all sites was calculated and displayed on the stereographic plot and rosette diagram. Fracture orientations on the stereographic plot are more broadly distributed, indicating that the fracture pattern is not well-ordered on the rosette diagram, although the maximum horizontal stress dominates NW-SE direction at most sites. This indicates that accurate horizontal stress directions cannot be completely resolved from the fractures. Moreover, the fractures may be developed from overburden (e.g., gravitational effect) compaction associated with sediment dewatering after deposition. Thus we should consider various factors affecting formation of fractures in order to interpret the origin of fractures. Nevertheless, the results of fracture analysis can be used to interpret distribution pattern and type of gas hydrate in the Ulleung Basin. .

  2. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  3. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1987-01-01

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  4. Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics

    PubMed Central

    Yaghoobi, Amin; Chorzepa, Mi G.; Kim, S. Sonny; Durham, Stephan A.

    2017-01-01

    Concrete is a complex heterogeneous material, and thus, it is important to develop numerical modeling methods to enhance the prediction accuracy of the fracture mechanism. In this study, a two-dimensional mesoscale model is developed using a non-ordinary state-based peridynamic (NOSBPD) method. Fracture in a concrete cube specimen subjected to pure tension is studied. The presence of heterogeneous materials consisting of coarse aggregates, interfacial transition zones, air voids and cementitious matrix is characterized as particle points in a two-dimensional mesoscale model. Coarse aggregates and voids are generated using uniform probability distributions, while a statistical study is provided to comprise the effect of random distributions of constituent materials. In obtaining the steady-state response, an incremental and iterative solver is adopted for the dynamic relaxation method. Load-displacement curves and damage patterns are compared with available experimental and finite element analysis (FEA) results. Although the proposed model uses much simpler material damage models and discretization schemes, the load-displacement curves show no difference from the FEA results. Furthermore, no mesh refinement is necessary, as fracture is inherently characterized by bond breakages. Finally, a sensitivity study is conducted to understand the effect of aggregate volume fraction and porosity on the load capacity of the proposed mesoscale model. PMID:28772518

  5. Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field

    PubMed Central

    Paisley, John

    2018-01-01

    The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processes. Clustering of 46,000 earthquakes of 0.3 < ML < 1.5 from the Geysers geothermal field (CA) yields groupings that have no reservoir-scale spatial patterns but clear temporal patterns. Events with similar spectral properties repeat on annual cycles within each cluster and track changes in the water injection rates into the Geysers reservoir, indicating that changes in acoustic properties and faulting processes accompany changes in thermomechanical state. The methods open new means to identify and characterize subtle changes in seismic source properties, with applications to tectonic and geothermal seismicity. PMID:29806015

  6. Electromagnetic Measurements in an Active Oilfield Environment

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Aur, K. A.; Schramm, K. A.; Aldridge, D. F.; O'rourke, W. T.

    2016-12-01

    An important issue in oilfield development is mapping fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring has been successful in constraining fracture system geometry and dynamics, accurate interpretation of microseismic data can be confounded by factors such as complex or poorly-understood velocity distributions, reactivation of previously unknown faults and fractures, and the problem of relating flow patterns to the cloud of hypocenter locations. For the particular problem of hydrocarbon production, the question of which fractures remain sufficiently "open" to allow economical fluid extraction is critical. As a supplement to microseismic analysis, we are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a hydrocarbon or geothermal reservoir by introducing an electrically conductive contrast agent into the fracturing fluid. In the field experiment presented here, a proppant-filled fracture zone is illuminated by a large engineered antenna consisting of an insulated current-carrying cable, grounded to `Earth' near the wellhead, and grounded at the other end to the steel-cased borehole near the target. Time-lapse measurements of horizontal electric field are subsequently made on Earth's surface to map the change in subsurface conductivity due to proppant emplacement. As predicted by 3D numerical modelling, observed differences in electric field values are very small. While these numbers are above the noise floor of electric field sensors, pervasive anthropogenic EM noise and regional-scale magnetotelluric signals make extraction of the differences from the observed time series especially difficult. We present field-acquired data on ambient EM noise in an active oilfield environment and demonstrate techniques for extracting the difference signal due to proppant emplacement. These techniques include classical spectral methods along with estimation of time-domain Green's function by regularized, linear least squares methods.

  7. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    As fracture mechanics material testing evolves, the governing test standards continue to be refined to better reflect the latest understanding of the physics of the fracture processes involved. The traditional format of ASTM fracture testing standards, utilizing equations expressed directly in the text of the standard to assess the experimental result, is self-limiting in the complexity that can be reasonably captured. The use of automated analysis techniques to draw upon a rich, detailed solution database for assessing fracture mechanics tests provides a foundation for a new approach to testing standards that enables routine users to obtain highly reliable assessments of tests involving complex, non-linear fracture behavior. Herein, the case for automating the analysis of tests of surface cracks in tension in the elastic-plastic regime is utilized as an example of how such a database can be generated and implemented for use in the ASTM standards framework. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  8. Two-dimensional distribution of microbial activity and flow patterns within naturally fractured chalk.

    PubMed

    Arnon, Shai; Ronen, Zeev; Adar, Eilon; Yakirevich, Alexander; Nativ, Ronit

    2005-10-01

    The two-dimensional distribution of flow patterns and their dynamic change due to microbial activity were investigated in naturally fractured chalk cores. Long-term biodegradation experiments were conducted in two cores ( approximately 20 cm diameter, 31 and 44 cm long), intersected by a natural fracture. 2,4,6-tribromophenol (TBP) was used as a model contaminant and as the sole carbon source for aerobic microbial activity. The transmissivity of the fractures was continuously reduced due to biomass accumulation in the fracture concurrent with TBP biodegradation. From multi-tracer experiments conducted prior to and following the microbial activity, it was found that biomass accumulation causes redistribution of the preferential flow channels. Zones of slow flow near the fracture inlet were clogged, thus further diverting the flow through zones of fast flow, which were also partially clogged. Quantitative evaluation of biodegradation and bacterial counts supported the results of the multi-tracer tests, indicating that most of the bacterial activity occurs close to the inlet. The changing flow patterns, which control the nutrient supply, resulted in variations in the concentrations of the chemical constituents (TBP, bromide and oxygen), used as indicators of biodegradation.

  9. Similar Fracture Patterns in Human Nose and Gothic Cathedral.

    PubMed

    Lee, Shu Jin; Tse, Kwong Ming; Lee, Heow Pueh

    2015-10-01

    This study proposes that the bony anatomy of the human nose and masonry structure of the Gothic cathedral are geometrically similar, and have common fracture patterns. We also aim to correlate the fracture patterns observed in patients' midface structures with those seen in the Gothic cathedral using computational approach. CT scans of 33 patients with facial fractures were examined and compared with computer simulations of both the Gothic cathedral and human nose. Three similar patterns were found: (1) Cracks of the nasal arch with crumpling of the vertical buttresses akin to the damage seen during minor earthquakes; (2) lateral deviation of the central nasal arch and collapse of the vertical buttresses akin to those due to lateral forces from wind and in major earthquakes; and (3) Central arch collapse seen as a result of collapse under excessive dead weight. Interestingly, the finding of occult nasal and septal fractures in the mandible fractures with absence of direct nasal trauma highlights the possibility of transmission of forces from the foundation to the arch leading to structural failure. It was also found that the structural buttresses of the Gothic cathedral delineate the vertical buttresses in the human midface structure. These morphologic similarities between the human nose and Gothic cathedral will serve as a basis to study the biomechanics of nasal fractures. Identification of structural buttresses in a skeletal structure has important implications for reconstruction as reestablishment of structural continuity restores normal anatomy and architectural stability of the human midface structure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Influence of natural fractures on hydraulic fracture propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teufel, L.W.; Warpinski, N.R.

    Hydraulic fracturing has become a valuable technique for the stimulation of oil, gas, and geothermal reservoirs in a variety of reservoir rocks. In many applications, only short fractures are needed for economic production. In low-permeability reservoirs, however, long penetrating fractures are generally needed, and in this case, natural fractures can be the cause of many adverse effects during a fracture treatment. Natural fractures can influence the overall geometry and effectiveness of the hydraulic fracture by: (1) arresting the vertical or lateral growth, (2) reducing total fracture length via fluid leakoff, (3) limiting proppant transport and placement, and (4) enhancing themore » creation of multiple or secondary fractures rather than a single planar hydraulic fracture. The result may range from negligible to catastrophic depending on the values of the ancillary treatment and reservoir parameters, such as the treating pressure, in-situ stresses, pore pressure, orientations of the natural fractures relative to principal in-situ stresses, spacing and distribution of the natural fractures, permeability, etc. Field observations from mineback experiments at DOE's Nevada Test Site and the multiwell experiment in Colorado, laboratory tests, and analyses of these data are integrated to describe the complex fracture behavior found and to provide guidelines for predicting when this complex fracturing will occur.« less

  11. Influence of natural fractures on hydraulic fracture propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teufel, L.W.; Warpinski, N.R.

    Hydraulic fracturing has become a valuable technique for the stimulation of oil, gas, and geothermal reservoirs in a variety of reservoir rocks. In many applications, only short fractures are needed for economic production. In low-permeability reservoirs, however, long penetrating fractures are generally needed, and in this case, natural fractures can be the cause of many adverse effects during a fracture treatment. Natural fractures can influence the overall geometry and effectiveness of the hydraulic fracture by: (1) arresting the vertical or lateral growth, (2) reducing total fracture length via fluid leakoff, (3) limiting proppant transport and placement, and (4) enhancing themore » creation of multiple or secondary fractures rather than a single planar hydraulic fracture. The result may range from negligible to catastrophic depending on the values of the ancillary treatment and reservoir parameters, such as the treating pressure, in-situ stresses, pore pressure, orientations of the natural fractures relative to principle in-situ stresses, spacing and distribution of the natural fractures, permeability, etc. Field observations from mineback experiments at DOE's Nevada Test Site and the multiwell experiment in Colorado, laboratory tests, and analyses of these data are integrated to describe the complex fracture behavior found to an provide guidelines for predicting when this complex fracturing occurs.« less

  12. Optical method of caustics applied in viscoelastic fracture analysis

    NASA Astrophysics Data System (ADS)

    Gao, Guiyun; Li, Zheng; Xu, Jie

    2011-05-01

    The optical method of caustics is developed here to study the fracture of viscoelastic materials. By adopting a distribution of viscoelastic stress fields near the crack tip, the method of caustics is used to determine the viscoelastic fracture parameters from the caustic patterns near the crack tip. Two viscoelastic materials are studied. These are PMMA and ternary composites of HDPE/POE-g-MA/CaCO 3. The transmitted and reflective methods of caustics are performed separately to investigate viscoelastic fracture behaviors. The stress intensity factors (SIFs) versus time is determined by a series of shadow spot patterns combined with viscoelastic parameters evaluated by creep tests. In order to understand the viscoelastic fracture mechanisms of HDPE/POE-g-MA/CaCO 3 composites, their fracture surfaces are observed by a Scanning Electron Microscope (SEM). The results indicate that the method of caustics can be used to characterize the fracture behaviors of viscoelastic materials and further to optimize the design of polymer composites.

  13. Fixation of zygomatic and mandibular fractures with biodegradable plates

    PubMed Central

    Degala, Saikrishna; Shetty, Sujeeth; Ramya, S

    2013-01-01

    Context: In this prospective study, 13 randomly selected patients underwent treatment for zygomatic–complex fractures (2 site fractures) and mandibular fractures using 1.5 / 2 / 2.5-mm INION CPS biodegradable plates and screws. Aims: To assess the fixation of zygomatic-complex and mandibular fractures with biodegradable copolymer osteosynthesis system. Materials and Methods: In randomly selected 13 patients, zygomatic-complex and mandibular fractures were plated using resorbable plates and screws using Champy's principle. All the cases were evaluated clinically and radiologically for the type of fracture, need for the intermaxillary fixation (IMF) and its duration, duration of surgery, fixation at operation, state of reduction at operation, state of bone union after operation, anatomic reduction, paresthesia, occlusal discrepancies, soft tissue infection, immediate and late inflammatory reactions related to biodegradation process, and any need for the removal of the plates. Statistical Analysis Used: Descriptives, Frequencies, and Chi-square test were used. Results: In our study, the age group range was 5 to 55 years. Road traffic accidents accounted for the majority of patients six, (46.2%). Postoperative occlusal discrepancies were found in seven patients as mild to moderate, which resolved with IMF for 1-8 weeks. There were minimal complications seen and only as soft tissue infection. Conclusions: Use of biodegradable osteosynthesis system is a reliable alternative method for the fixation of zygomatic-complex and mandibular fractures. The biodegradable system still needs to be refined in material quality and handling to match the stability achieved with metal system. Biodegradable plates and screws is an ideal system for pediatric fractures with favorable outcome. PMID:23662255

  14. Recent developments in analysis of crack propagation and fracture of practical materials

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.; Newman, J. C., Jr.; Elber, W.; Poe, C. C., Jr.

    1978-01-01

    Present U.S. Air Force and proposed U.S. civil airworthiness regulations are based on considerations of 'damage tolerance' in aircraft structures. Airworthiness is assured by demonstrating that damage that escapes one in a sequence of periodic inspections will not grow to critical size before the next inspection. The evaluations conducted employ fracture mechanics analyses. Problems arise because the features of fracture mechanics applications related to aircraft structures are more complex than the cases of fracture mechanics which have been mainly investigated. NASA has, therefore, conducted a variety of research tasks to extend the capabilities of fracture mechanics to deal with some of these complexities. The current stage of development of these capabilities is described. Attention is given to the limitations of linear elastic fracture mechanics, a two-parameter fracture criterion, aspects of fatigue crack propagation, and crack propagation and fracture in built-up structures.

  15. Analysis of patterns and treatment strategies for mandibular condyle fractures: review of 175 condyle fractures with review of literature.

    PubMed

    Reddy, N Viveka V; Reddy, P Bhaskar; Rajan, Ritesh; Ganti, Srinivas; Jhawar, D K; Potturi, Abhinand; Pradeep

    2013-09-01

    This study aims to evaluate incidence, patterns and epidemiology of mandibular condylar fractures (MCF) to propose a treatment strategy for managing MCF and analyze the factors which influence the outcome. One hundred and seventy-five MCF's were evaluated over a four year period and their pattern was recorded in terms of displacement, level of fracture, age of incidence and dental occlusion. Of the 2,718 facial bone fractures, MCF incidence was the third most common at 18.39 %. Of 175 MCF 58.8 % were unilateral and 41.12 % were bilateral. 67 % of bilateral fractures and 43.8 % of unilateral fractures were associated with midline symphysis and contralateral parasymphysis fractures respectively. Most of the MCF was seen in the age group of above 16 years and 50 % of them were at subcondylar level (below the neck of the condyle). Majority of MCF sustained due to inter personal violence were undisplaced (72.7 %) and contrary to this majority of MCF sustained during road traffic accident were displaced. 62.9 % of total fractures required open reduction and rigid fixation and 37.1 % were managed with closed reduction. 80 % of MCF managed with closed reduction were in the age group of below 16 years. From this study it can be concluded that the treatment algorithm proposed for managing MCF is reliable and easy to adopt. We observed that absolute indication for open reduction of MCF is inability to achieve satisfactory occlusion by closed method and absolute contraindication for open reduction is condylar head fracture irrespective of the age of the patient.

  16. A Survey of Practice Patterns for Rehabilitation Post Elbow Fracture

    PubMed Central

    MacDermid, Joy C; Vincent, Joshua I; Kieffer, Leah; Kieffer, Ashley; Demaiter, Jennifer; MacIntosh, Stephanie

    2012-01-01

    Background and Purpose: Elbow fractures amount to 4.3% of all the fractures. The elbow is prone to stiffness after injury and fractures can often lead to significant functional impairment. Rehabilitation is commonly used to restore range of motion (ROM) and function. Practice patterns in elbow fracture rehabilitation have not been defined. The purpose of this study was to describe current elbow fracture rehabilitation practices; and compare those to the existing evidence base. Methods: Hand therapists (n=315) from the USA (92%) and Canada (8%) completed a web-based survey on their practice patterns and beliefs related to the acute (0-6 weeks) and functional (6-12 weeks) phases of elbow fracture rehabilitation. Results: More than 99% of respondents agreed that fracture severity, co-morbidities, time since fracture, compliance with an exercise program, psychological factors, and occupational demands are important prognostic indicators for optimal function. Strong agreement was found with the use of patient education (95%) and active ROM (86%) in the acute stage while, home exercise programs (99%), active ROM (99%), stretching (97%), strengthening (97%), functional activities (ADLs and routine tasks) (97%), passive ROM (95%), and active assisted ROM (95%) were generally used in the functional stage. The most commonly used impairment measures were goniometry (99%), Jamar dynamometry (97%), and hand held dynamometry (97%). Agreement on the use of patient-reported outcome measures was very minimal (1.3%- 35.6%). Conclusions: Exercise, education, and functional activity have high consensus as components of elbo fracture rehabilitation. Future research should focus on defining the optimal dosage and type of exercise/activity, and establish core measures to monitor outcomes of these interventions. PMID:23115603

  17. Effect of bulk-fill base material on fracture strength of root-filled teeth restored with laminate resin composite restorations.

    PubMed

    Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E

    2017-08-01

    To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Patterns of Pediatric Mandible Fractures in the United States.

    PubMed

    Owusu, James A; Bellile, Emily; Moyer, Jeffrey S; Sidman, James D

    2016-01-01

    The mandible is arguably the most frequently fractured facial bone in children. However, facial fractures are rare in children compared with adults, resulting in few large studies on patterns of pediatric facial fractures. To report the patterns, demographics, and cause of pediatric mandible fractures across the United States. A retrospective analysis was conducted of the Healthcare Cost and Utilization Project's National Emergency Department Sample from January 1 to December 31, 2012, using the International Classification of Disease, Ninth Revision, codes for mandible fractures (802.20-802.39) among patients 18 years and younger who presented to emergency departments. Demographics, fracture site, and fracture mechanism were analyzed to identify factors associated with fractures. Analysis was conducted from July 9 to July 28, 2015. There were 1984 records, representing a weighted estimate of 8848 cases of pediatric mandible fracture. The mean patient age was 14.0 years (95% CI, 13.6-14.3). The male to female ratio was 4:1 and females were comparatively younger, with a mean age of 12.5 years (95% CI, 11.8-13.1; P < .001). The most frequently fractured sites were the condyle, in 1288 patients (14.6% [95% CI, 12.6%-16.5%]), and the angle, in 1252 patients (14.1% [12.4%-15.9%]). Associated intracranial injuries occurred in 756 patients (8.5% [7.1%-10.0%]), and cervical spine fractures occurred in 393 (4.4% [3.5%-5.4%]). The fracture site and mechanism of injury varied with age and sex. For patients 12 years and younger, the most frequent fracture site was the condyle, accounting for 636 fractures (27.9% [24.2%-31.6%]), and the most frequent cause was falls, accounting for 692 fractures (30.3% [25.9%-34.8%]). In teenaged patients (13-18 years), the angle was the most frequent fracture site, accounting for 1157 fractures (17.6% [15.6%-19.6%]), and the most frequent cause was assault, accounting for 2619 fractures (39.9% [36.4%-43.3%]). For male patients, the angle was the predominant site, accounting for 1053 fractures (15.0% [13.1%-16.8%]), and the leading cause was assault, accounting for 2360 fractures (33.5% [30.2%-36.9%]). For female patients, the condyle was the most frequent site, accounting for 369 fractures (20.3% [16.0%-24.6%]), and the leading cause was falls, accounting for 422 fractures (23.2% [18.6%-28.0%]). In this study, age and sex disparities among pediatric mandible fractures were identified. Younger patients and female patients tend to have condyle fractures caused more commonly by falls while older patients and male patients tend to have angle fractures caused by assault. NA.

  19. Initiation and propagation of a PKN hydraulic fracture in permeable rock: Toughness dominated regime

    NASA Astrophysics Data System (ADS)

    Sarvaramini, E.; Garagash, D.

    2011-12-01

    The present work investigates the injection of a low-viscosity fluid into a pre-existing fracture with constrained height (PKN), as in waterflooding or supercritical CO2 injection. Contrary to conventional hydraulic fracturing, where 'cake build up' limits diffusion to a small zone, the low viscosity fluid allows for diffusion over a wider range of scales. Over large injection times the pattern becomes 2 or 3-D, necessitating a full-space diffusion modeling. In addition, the dissipation of energy associated with fracturing of rock dominates the energy needed for the low-viscosity fluid flow into the propagating crack. As a result, the fracture toughness is important in evaluating both the initiation and the ensuing propagation of these fractures. Classical PKN hydraulic fracturing model, amended to account for full-space leak-off and the toughness [Garagash, unpublished 2009], is used to evaluate the pressure history and fluid leak-off volume during the injection of low viscosity fluid into a pre-existing and initially stationary. In order to find the pressure history, the stationary crack is first subject to a step pressure increase. The response of the porous medium to the step pressure increase in terms of fluid leak-off volume provides the fundamental solution, which then can be used to find the transient pressurization using Duhamel theorem [Detournay & Cheng, IJSS 1991]. For the step pressure increase an integral equation technique is used to find the leak-off rate history. For small time the solution must converge to short time asymptote, which corresponds to 1-D diffusion pattern. However, as the diffusion length in the zone around the fracture increases the assumption of a 1-D pattern is no longer valid and the diffusion follows a 2-D pattern. The solution to the corresponding integral equation gives the leak-off rate history, which is used to find the cumulative leak-off volume. The transient pressurization solution is obtained using global conservation of fluid injected into the fracture. With increasing pressure in the fracture due to the fluid injection, the energy release rate eventually becomes equal to the toughness and fracture propagates. The evolution of the fracture length is established using the method similar to the one employed for the stationary crack.

  20. Age and sex-related differences in 431 pediatric facial fractures at a level 1 trauma center.

    PubMed

    Hoppe, Ian C; Kordahi, Anthony M; Paik, Angie M; Lee, Edward S; Granick, Mark S

    2014-10-01

    Age and sex-related changes in the pattern of fractures and concomitant injuries observed in this patient population is helpful in understanding craniofacial development and the treatment of these unique injuries. The goal of this study was to examine all facial fractures occurring in a child and adolescent population (age 18 or less) at a trauma center to determine any age or sex-related variability amongst fracture patterns and concomitant injuries. All facial fractures occurring at a trauma center were collected over a 12-year period based on International Classification of Disease, rev. 9 codes. This was delimited to include only those patients 18 years of age or younger. Age, sex, mechanism, and fracture types were collected and analyzed. During this time period, there were 3147 patients with facial fractures treated at our institution, 353 of which were in children and adolescent patients. Upon further review 68 patients were excluded due to insufficient data for analysis, leaving 285 patients for review, with a total of 431 fractures. The most common etiology of injury was assault for males and motor vehicle accidents (MVA) for females. The most common fracture was of the mandible in males and of the orbit in females. The most common etiology in younger age groups includes falls and pedestrian struck. Older age groups exhibit a higher incidence of assault-related injuries. Younger age groups showed a propensity for orbital fractures as opposed to older age groups where mandibular fractures predominated. Intracranial hemorrhage was the most common concomitant injury across most age groups. The differences noted in etiology of injury, fracture patterns, and concomitant injuries between sexes and different age groups likely reflects the differing activities that each group engages in predominantly. In addition the growing facial skeleton offers varying degrees of protection to the cranial contents as force-absorbing mechanisms develop. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Intramedullary nailing of humeral shaft fractures.

    PubMed

    Pickering, Robert M; Crenshaw, Andrew H; Zinar, Daniel M

    2002-01-01

    The development of interlocking humeral nail systems has greatly broadened the indications for nailing of humeral shaft fracture. Rotational control is better than with earlier nail systems, and most nails have an oblong distal hole that allows axial loading of the fracture site with muscle contraction. When nailing is done with closed technique, loss of the fracture hematoma and periosteal stripping are avoided. Even when open reduction is required, periosteal stripping can be kept to a minimum. Surgical wounds are smaller, even when open reduction is necessary, and when closed nailing is done, bone grafting is unnecessary. Intramedullary nails are ideal for segmental fractures, pathologic fractures, and fractures in osteopenic bone. Because the arm usually is not a weight-bearing extremity, hardware failure is rare and union rates are equivalent to those of compression plate and screw fixation. Compression plates and external fixation certainly have their place for some fracture patterns and for severe wounds that are unsuitable for intramedullary nailing. The surgeon should be well versed in all three techniques and should be able to rapidly choose among these, depending upon the fracture pattern, skin wound, associated injuries, and overall condition of the patient.

  2. Pediatric maxillofacial fractures.

    PubMed

    Spring, P M; Cote, D N

    1996-05-01

    Maxillofacial trauma in the pediatric population is a relatively infrequent occurrence. Studies have demonstrated consistently that 5% of all facial fractures occur in children. The low percentage of facial fractures in this age group has been attributed, in part, to the lack of full pneumatization of the sinuses until later in childhood. Review of the literature indicates that boys are more commonly affected than girls and that the majority of pediatric facial fractures occur in children between 6 and 12 years of age. Motor vehicle accidents, falls, and blunt trauma are responsible for the largest number of pediatric facial fractures. The most common site of facial fracture is the nose and dentoalveolan complex, followed by the mandible, orbit, and midface in most pediatric cohorts. Management of the mandible is often conservative owing to the high percentage of isolated condylar fractures in children. Open reduction and internal fixation of pediatric facial fractures is indicated in complex mandible, midface, and orbital fractures. The effect of rigid fixation on facial skeleton growth is not completely understood.

  3. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    NASA Astrophysics Data System (ADS)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical percolation theory, the latter is applicable to such networks. Under these conditions, percolation theory permit us to reduced the number of elements (90% in average) that form clusters of the 100 DFNs, preserving the so-called backbone. In this way the calibration runs in these networks changed from several hours to just a second obtaining much better results.

  4. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1987-09-22

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate. 2 figs.

  5. Mid-Term Outcomes After Open Reduction Internal Fixation of Proximal Interphalangeal Joint Dorsal Fracture-Dislocations Through a Volar, Shotgun Approach and a Review of the Literature

    PubMed Central

    Giugale, Juan Marcelo; Wang, Juntian; Kaufmann, Robert A.; Fowler, John R.

    2017-01-01

    Background: Proximal interphalangeal (PIP) fracture dislocations remain a complex injury pattern to treat. There are several treatment methods available aimed to restore stability, preserve range of motion, and reconstitute the articular surface. This study looked at the mid-term clinical and radiographic results of open reduction internal fixation through a shotgun approach of comminuted PIP fracture dislocations. Methods: A retrospective review was conducted of all PIP fracture dislocations treated through a volar, shotgun approach at a single institution over a 15-year period. Patients identified were contacted and asked to return to the office for clinical and radiographic evaluation. Patient reported outcomes were assessed with the Michigan hand questionnaire (MHQ) and visual analog scale (VAS) for pain. Results: 5 patients returned to the office for further evaluation with average follow-up of 69 months (range, 33-133 months). 3 patients were found to have post traumatic arthritis on radiographs. 1 case had recurrent instability and one case had a deep infection, both necessitating further surgical intervention. Average PIP arc of motion was found to be 79°. Average VAS score of 0 and MHQ result of 95 (out of a possible score of 100) indicating no residual pain and excellent functionality of the affected hand. Conclusion: Open reduction internal fixation of comminuted PIP fracture dislocations utilizing the volar, shotgun approach provides excellent mid-term functional results despite the high incidence of post traumatic arthritis. PMID:29151999

  6. Annual National Test and Evaluation Conference (27th) Held in Tampa, Florida on March 14-17, 2011

    DTIC Science & Technology

    2011-03-17

    Based Test & Evaluation PETALLINGFRAGMENTATION RADIAL FRACTUREBRITTLE FRACTURE DUCTILE HOLE GROWTH PLUGGING THREAT VELOCITY MATERIAL MATERIAL V50 TYPE...Less Complex Less Costly Testing More Complex More Costly PETALLINGFRAGMENTATION RADIAL FRACTUREBRITTLE FRACTURE DUCTILE HOLE GROWTH PLUGGING...Reversible injuries; medical attention required 3 Serious Fracture of skull, penetration < 2 cm Reversible injuries; hospitalization required 4 Severe

  7. An evaluation of flexible intramedullary nail fixation in femoral shaft fractures in paediatric age group.

    PubMed

    Kumar, Sanjay; Roy, Sandip Kumar; Jha, Amrish Kumar; Chatterjee, Debdutta; Banerjee, Debabrata; Garg, Anant Kumar

    2011-06-01

    Sixty-two femoral shaft fractures in 60 patients treated by elastic intramedullary nailing with mean age of the patients being 9.2 years (range 5 years to 12 years) and average follow-up of 15 months (range 7 months to 60 months) are evaluated. Twenty-eight fractures were fixed with titanium elastic nail while 34 fractures were fixed with Enders nail. There were 40 midshaft fractures, 18 proximal femoral and 4 were fractures of distal third. Fracture patterns were transverse in 35, short oblique in 14 cases and 13 were spiral fractures. Mean age of union in this series was 17 weeks (range 12 weeks to 28 weeks). Ten cases had complications, 5 had nail tip irritation, 3 varus or valgus malalignment and 2 had delayed union. In this series, we did not have any non-union, refracture, limb length discrepancy or any major infection. The result demonstrates 100% union rate irrespective of the age, weight and height of the patient. Regardless of the site of fracture and their pattern, it united every time with elastic nail fixation. We did not find and mismatch in the results of fractures stabilised with titanium elastic nail with that of elastic stainless steel nail.

  8. The value of arthroscopy in the treatment of complex ankle fractures - a protocol of a randomised controlled trial.

    PubMed

    Braunstein, Mareen; Baumbach, Sebastian F; Regauer, Markus; Böcker, Wolfgang; Polzer, Hans

    2016-05-12

    An anatomical reconstruction of the ankle congruity is the important prerequisite in the operative treatment of acute ankle fractures. Despite anatomic restoration patients regularly suffer from residual symptoms after these fractures. There is growing evidence, that a poor outcome is related to the concomitant traumatic intra-articular pathology. By supplementary ankle arthroscopy anatomic reduction can be confirmed and associated intra-articular injuries can be treated. Nevertheless, the vast majority of complex ankle fractures are managed by open reduction and internal fixation (ORIF) only. Up to now, the effectiveness of arthroscopically assisted fracture treatment (AORIF) has not been conclusively determined. Therefore, a prospective randomised study is needed to sufficiently evaluate the effect of AORIF compared to ORIF in complex ankle fractures. We perform a randomised controlled trial at Munich University Clinic enrolling patients (18-65 years) with an acute ankle fracture (AO 44 A2, A3, B2, B3, C1 - C3 according to AO classification system). Patients meeting the inclusion criteria are randomised to either intervention group (AORIF, n = 37) or comparison group (ORIF, n = 37). Exclusion criteria are fractures classified as AO type 44 A1 or B1, pilon or plafond-variant injury or open fractures. Primary outcome is the AOFAS Score (American Orthopaedic Foot and Ankle Society). Secondary outcome parameter are JSSF Score (Japanese Society of Surgery of the Foot), Olerud and Molander Score, Karlsson Score, Tegner Activity Scale, SF-12, radiographic analysis, arthroscopic findings of intra-articular lesions, functional assessments, time to return to work/sports and complications. This study protocol is accordant to the SPIRIT 2013 recommendation. Statistical analysis will be performed using SPSS 22.0 (IBM). The subjective and functional outcome of complex ankle fractures is regularly unsatisfying. As these injuries are very common it is essential to improve the postoperative results. Potentially, arthroscopically assisted fracture treatment can significantly improve the outcome by addressing the intra-articular pathologies. Given the absolute lack of studies comparing AORIF to ORIF in complex ankle fractures, this randomised controlled trail is urgently needed to evaluate the effectiveness of additional arthroscopy. ClinicalTrials.gov reference: NCT02449096 (Trial registration date: April 7th, 2015).

  9. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading.

    PubMed

    Im, So-Min; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2017-02-01

    The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture ( P <.05) and the control group ( P <.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.

  10. Pseudospread of the atlas: false sign of Jefferson fracture in young children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suss, R.A.; Zimmerman, R.D.; Leeds, N.E.

    Jefferson fractures are rare prior to teen-age. Three young children examined after trauma exhibited the characteristic spread appearance of the atlas, but fractures were excluded radiographically and clinically. A retrospective study demonstrated a similar appearance, termed pseudospread, in most children aged 3 months to 4 years, including over 90% during the second year. Pseudospread results from a discrepancy between the neural growth pattern of the atlas and the somatic pattern of the axis. An atlas spread index is defined and a normal range presented. When an atlas fracture is suggested by apparent lateral spread of the lateral atlas masses, computedmore » tomography is useful to demonstrate an intact atlas ring.« less

  11. Differences in Site-Specific Fracture Risk Among Older Women with Discordant Results for Osteoporosis at Hip and Spine: the Study of Osteoporotic Fractures

    PubMed Central

    Fink, Howard A.; Harrison, Stephanie L.; Taylor, Brent C.; Cummings, Steven R.; Schousboe, John T.; Kuskowski, Michael A.; Stone, Katie L.; Ensrud, Kristine E.

    2009-01-01

    To examine the fracture pattern in older women whose bone mineral density (BMD) T-score criteria for osteoporosis at hip and spine disagree, hip and spine BMD were measured in Study of Osteoporotic Fractures participants using dual energy x-ray absorptiometry (DXA). Hip osteoporosis was defined as T-score ≤-2.5 at femoral neck or total hip, and spine osteoporosis as T-score ≤-2.5 at lumbar spine. Incident clinical fractures were self-reported and centrally adjudicated. Incident radiographic spine fractures were defined morphometrically. Compared to women with osteoporosis at neither hip nor spine, those osteoporotic only at hip had a 3.0-fold age and weight-adjusted increased risk for hip fracture (95%CI 2.4-3.6), and smaller increases in risk of nonhip nonspine (HR=1.6), clinical spine (OR=2.2), and radiographic spine fractures (OR=1.5). Women osteoporotic only at spine had a 2.8-fold increased odds of radiographic spine fracture (95%CI 2.1-3.8), and smaller increases in risk of clinical spine (OR=1.4), nonhip nonspine (HR=1.6), and hip fractures (HR=1.2). Discordant BMD results predict different fracture patterns. DXA fracture risk estimation in these patients should be site-specific. Women osteoporotic only at spine would not have been identified from hip BMD measurement alone, and may have a sufficiently high fracture risk to warrant preventive treatment. PMID:18296090

  12. Intramedullary Fixation of Midshaft Clavicle Fractures.

    PubMed

    Fritz, Erik M; van der Meijden, Olivier A; Hussain, Zaamin B; Pogorzelski, Jonas; Millett, Peter J

    2017-08-01

    Clavicle fractures are among the most common fractures occurring in the general population, and the vast majority are localized in the midshaft portion of the bone. Management of midshaft clavicle fractures remains controversial. Although many can be managed nonoperatively, certain patient populations and fracture patterns, such as completely displaced and shortened fractures, are at risk of less optimal outcomes with nonoperative management; surgical intervention should be considered in such cases. The purpose of this article is to demonstrate our technique of midshaft clavicle fixation using minimally invasive intramedullary fixation.

  13. Ability of modern distal tibia plates to stabilize comminuted pilon fracture fragments: Is dual plate fixation necessary?

    PubMed

    Penny, Phillip; Swords, Michael; Heisler, Jason; Cien, Adam; Sands, Andrew; Cole, Peter

    2016-08-01

    The purpose of this study was to examine the screw trajectory of ten commercially available distal tibia plates and compare them to common fracture patterns seen in OTA C type pilon fractures to determine their ability to stabilize the three most common fracture fragments while buttressing anterolateral zones of comminution. We hypothesized that a single plate for the distal tibia would fail to adequately stabilize all three main fracture fragments and zones of comminution in complex pilon fractures. Ten synthetic distal tibia sawbones models were used in conjunction with ten different locking distal tibia plate designs from three manufacturers (Depuy Synthes, J&J Co, Paoli, PA; Smith & Nephew, Memphis, TN; and Stryker, Mawa, NJ). Both medial and anterolateral plates from each company were utilized and separately applied to an individual sawbone model. Three implants allowing variable angle screw placement were used. The location of the locking screws and buttress effect 1cm above the articular surface was noted for each implant using axial computed tomography (CT). The images were then compared to a recently published "pilon fracture map" using an overlay technique to establish the relationship between screw location and known common fracture lines and areas of comminution. Each of the three main fragments was considered "captured" by a screw if it was purchased by at least two screws thereby controlling rotational forces on each fragment. Three of four anterolateral plates lacked stable fixation in the medial fragment. Of the 4 anterolateral plates used, only the variable angle anterolateral plate by Depuy Synthes captured the medial fragment with two screws. All four anterolateral plates buttressed the area of highest comminution and had an average of 1.25 screws in the medial fragment and an average of 3 screws in the posterolateral fragment. All five direct medial plates had variable fixation within anterolateral and posterolateral fragments with an average of 1.8 screws in the anterolateral fragment and an average of 1.3 screws in the posterolateral fragment. The Depuy Synthes variable angle anterolateral plate allowed for fixation of the medial fragment with two screws while simultaneously buttressing the zone of highest comminution and capturing both the anterolateral and posterolateral fragments with five and three screws respectively. The variable angle anteromedial plate by Depuy Synthes captured all three main fracture fragments but it did not buttress the anterolateral zone of comminution. In OTA 43C type pilon fractures, 8 out of 10 studied commercially available implants precontoured for the distal tibia, do not adequately stabilize the three primary fracture fragments typically seen in these injuries. Anterolateral plates were superior in addressing the coronal primary fracture line across the apex of the plafond, and buttressing the zone of comminution. None of the available plates can substitute for an understanding of the fracture planes and fragments typically seen in complex intra-articular tibia fractures and the addition of a second plate is necessary for adequate stability. Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Role of the Rock on Hydraulic Fracturing of Tight Shales

    NASA Astrophysics Data System (ADS)

    Suarez-Rivera, R.; Green, S.; Stanchits, S.; Yang, Y.

    2011-12-01

    Successful economic production of oil and gas from nano-darcy-range permeability, tight shale reservoirs, is achieved via massive hydraulic fracturing. This is so despite their limited hydrocarbon in place, on per unit rock volume basis. As a reference, consider a typical average porosity of 6% and an average hydrocarbon saturation of 50% to 75%. The importance of tight shales results from their large areal extent and vertical thickness. For example, the areal extent of the Anwar field in Saudi Arabia of 3230 square miles (and 300 ft thick), while the Marcellus shale alone is over 100,000 square miles (and 70 to 150 ft thick). The low permeability of the rock matrix, the predominantly mineralized rock fabric, and the high capillary forces to both brines and hydrocarbons, restrict the mobility of pore fluids in these reservoirs. Thus, one anticipates that fluids do not move very far within tight shales. Successful production, therefore results from maximizing the surface area of contact with the reservoir by massive hydraulic fracturing from horizontal bore holes. This was the conceptual breakthrough of the previous decade and the one that triggered the emergence of gas shales, and recently oily shales, as important economic sources of energy. It is now understood that the process can be made substantially more efficient, more sustainable, and more cost effective by understanding the rock. This will be the breakthrough of this decade. Microseismic monitoring, mass balance calculations, and laboratory experiments of hydraulic fracturing on tight shales indicate the development of fracture complexity and fracture propagation that can not be explained in detail in this layered heterogeneous media. It is now clear that in tight shales the large-scale formation fabric is responsible for fracture complexity. For example, the presence and pervasiveness of mineralized fractures, bed interfaces, lithologic contacts, and other types of discontinuities, and their orientation in relation to the in-situ stresses, have a dominant role in promoting fracture branching and abrupt changes in direction. In general, the problem can be conceptualized as a competition between the effect of stresses (traditional mechanics of homogeneous media) and the effect of rock fabric (the mechanics of heterogeneous media). When the stress difference is low and the rock fabric pronounced, the rock fabric defines the direction of propagation. When the stress difference is high and the fabric is weak, the stress contrast dominates the process. In real systems, both effects compete and result in the complexity that we infer from indirect observations. In this paper we discuss the role of rock fabric on fracture complexity during hydraulic fracture propagation. We show that understanding the far field stresses is not enough to understand fracture propagation and complexity. Understanding the rock-specifically the larger-scale textural features that define the reservoir fabric-is fundamental to understand fracture complexity and fracture containment. We use laboratory experiments with acoustic emission localization to monitor fracturing and making inferences about the large-scale rock behavior. We also show that the fracture geometry, even for the same connected surface area, has significant well production and reservoir recovery implications.

  15. Age- and gender-specific epidemiology, treatment patterns, and economic burden of osteoporosis and associated fracture in Taiwan between 2009 and 2013.

    PubMed

    Wang, Chen-Yu; Fu, Shau-Huai; Yang, Rong-Sen; Shen, Li-Jiuan; Wu, Fe-Lin Lin; Hsiao, Fei-Yuan

    2017-10-25

    This nationwide study investigated the epidemiology, treatment patterns, and economic burden of osteoporosis and associated fracture in Taiwan. The treatment of osteoporosis is alarmingly suboptimal, considering the significantly increased economic burden of major osteoporotic fracture. Osteoporosis men received lesser anti-osteoporosis drugs but had higher incremental costs attributable to osteoporotic fractures. This nationwide study investigated the epidemiology, treatment patterns, and economic burden of osteoporosis and associated fracture between 2009 and 2013 in Taiwan. We used the National Health Insurance Research Database as our data source. The prevalence of diagnosed osteoporosis and major osteoporotic fractures was calculated annually from 2009 to 2013, stratified by age and gender. Osteoporosis patients who received any prescription of anti-osteoporosis drugs during each fiscal year were defined as osteoporosis patients under treatment. Healthcare utilization and associated direct medical costs were used to quantify the economic burden of osteoporosis. For patients who encountered major osteoporotic fracture, the incremental changes of direct medical costs attributable to fracture using a pre- and post-quasi-experimental design were estimated. Furthermore, we compared the annual direct medical costs of patients who encountered major osteoporotic fracture with those diagnosed osteoporosis only and with the general population. The prevalence of diagnosed osteoporosis increased with age, with the highest rate among those aged 80 and older. Overall, less than one-third of women and only 10% of men received anti-osteoporosis drugs among osteoporosis patients. The annual direct medical costs for osteoporosis patients increased steadily from 2009 to 2013. The total medical costs and incremental change of direct medical costs were higher in men than those in women. We found the treatment of osteoporosis to be alarmingly suboptimal, considering the significantly increased economic burden of major osteoporotic fracture also identified in this study. Osteoporosis men received lesser anti-osteoporosis drugs but had higher incremental costs attributable to major osteoporotic fractures.

  16. In vitro fracture resistance of molar teeth restored with a short fibre-reinforced composite material.

    PubMed

    Fráter, Márk; Forster, András; Keresztúri, Márk; Braunitzer, Gábor; Nagy, Katalin

    2014-09-01

    The purpose of this in vitro study was to evaluate the efficiency of a short fibre-reinforced composite (SFRC) material compared to conventional composites when restoring class II. MOD cavities in molar teeth with different layering techniques. One hundred and thirty mandibular third molars were divided into 5 groups (n=26). Except for the control group (intact teeth), in all other groups MOD cavities were prepared. The cavities were restored by either conventional composite with horizontal and oblique layering or by SFRC with horizontal and oblique layering. The specimens were submitted to static fracture toughness test. Fracture thresholds and fracture patterns were evaluated. In general, no statistically significant difference was found in fracture toughness between the study groups, except for horizontally layered conventional composite restorations, which turned out to be significantly weaker than controls. However, SFRC yielded noticeably higher fracture thresholds and only obliquely applied SFRC restorations exhibited favourable fracture patterns above chance level. The application of SFRC did not lead to a statistically significant improvement of the fracture toughness of molar teeth with MOD cavities. Still, SFRC applied in oblique increments measurably reduces the chance of unrestorable fractures of molar teeth with class II MOD cavities. The restoration of severely weakened molar teeth with the use of SFRC combined with composite might have advantages over conventional composites alone. It was observed from the statistical data, that the application of SFRC with an oblique layering technique yielded not significantly but better fracture thresholds and more favourable fracture patterns than any other studied material/technique combination. Thus further investigations need to be carried out, to investigate the possible positive mechanical effects of SFRC. The application of the horizontal layering technique with conventional composite materials is inferior to the oblique technique and SFRC materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [Triple fracture of the shoulder suspensory complex].

    PubMed

    Tamimi Mariño, I; Martin Rodríguez, I; Mora Villadeamigo, J

    2013-01-01

    The superior suspensory complex of the shoulder (SSCS) is a ring shaped structure composed of bones and soft tissues that play a fundamental role in the stability of the shoulder joint. Isolated injuries of the SSCS are relatively common, but injuries that affect 3 components are extremely unusual. We present a triple injury of the SSCS in a 26 year old patient with a Neer type ii clavicular fracture, a Kuhn type iii acromion fracture and an Ogawa type i coracoid fracture. An open reduction and stabilization of the clavicle was performed with 2 Kirschner nails. The acromial fracture was synthesized with 2 cannulated screws, and the coracoid fracture was treated conservatively. After 24 months of follow up the patient had an excellent functional outcome according to the Constat-Murley shoulder score and QuickDASH scoring system, and all the fractures healed correctly. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  18. The Effect of Cavity Design on Fracture Resistance and Failure Pattern in Monolithic Zirconia Partial Coverage Restorations - An In vitro Study.

    PubMed

    Harsha, Madhavareddy Sri; Praffulla, Mynampati; Babu, Mandava Ramesh; Leneena, Gudugunta; Krishna, Tejavath Sai; Divya, G

    2017-05-01

    Cavity preparations of posterior teeth have been frequently associated with decreased fracture strength of the teeth. Choosing the correct indirect restoration and the cavity design when restoring the posterior teeth i.e., premolars was difficult as it involves aesthetic, biomechanical and anatomical considerations. To evaluate the fracture resistance and failure pattern of three different cavity designs restored with monolithic zirconia. Human maxillary premolars atraumatically extracted for orthodontic reasons were chosen. A total of 40 teeth were selected and divided into four groups (n=10). Group I-Sound teeth (control with no preparation). Group II-MOD Inlay, Group III-Partial Onlay, Group IV-Complete Onlay. Restorations were fabricated with monolithic partially sintered zirconia CAD (SAGEMAX- NexxZr). All the 30 samples were cemented using Multilink Automix (Ivoclar) and subjected to fracture resistance testing using Universal Testing Machine (UTM) (Instron) with a steel ball of 3.5 mm diameter at crosshead speed of 0.5 mm/minute. Stereomicroscope was used to evaluate the modes of failure of the fractured specimen. Fracture resistance was tested using parametric one way ANOVA test, unpaired t-test and Tukey test. Fracture patterns were assessed using non-parametric Chi-square test. Group IV (Complete Onlay) presented highest fracture resistance and showed statistical significant difference. Group II (MOD Inlay) and Group III (Partial Onlay) showed significantly lower values than the Group I (Sound teeth). However, Groups I, II and III presented no significant difference from each other. Coming to the modes of failure, Group II (MOD Inlay) and Group III (Partial Onlay) presented mixed type of failures; Group IV (Complete Onlay) demonstrated 70% Type I failures. Of the three cavity designs evaluated, Complete Onlay had shown a significant increase in the fracture resistance than the Sound teeth.

  19. Linking glacial sliding and rock type via spectral roughness and spatial patterns of fractures on glaciated bedrock in the Teton Range, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Dodson, Z.; Ward, D.

    2017-12-01

    Topographic roughness is an essential control on the basal movement of temperate glaciers. Glaciers move by regelation over small-scale roughness and by enhanced ice deformation over large-scale roughness. There is a transitional wavelength of 0.1 to 1 m that has the most resistance to basal sliding. Preexisting fractures in bedrock are known to affect the rate and spatial pattern of glacial erosion. However, few studies have quantified the relationship between fractures and bed roughness at various scales or shown how these features change downvalley and on different bedrock types. Here, we present results that relate fracture pattern and micro-roughness of glaciated surfaces in the Teton Range of Wyoming. The study area includes Alaska Basin and Darby Canyon, which are adjacent valleys on the western side of the range. The valley floor of Alaska Basin is quartz monzonite, while that of Darby Canyon is dolomite. Both exhibit regional fractures, however, unlike the quartz monzonite, the dolomite has joints associated with bedding planes that dip roughly parallel to the valley floor. In satellite imagery, it is evident that the large-scale roughness in the valleys differ, with Darby Canyon having a smooth bed relative to the bumpy bed in Alaska Basin. Our aim is to quantify the small-scale roughness at cm-level resolution using Structure-from-Motion (SfM) photogrammetry. Our hypothesis is that the roughness will differ between the valleys and be related to fracture spacing within each rock type. We will test this using a Fourier spectral analysis of high-resolution DEMs made by SfM to identify the dominant wavelengths present in the previously glaciated surfaces, paired with field measurements of fracture spacing and orientation. If rock type is the main control in bed roughness, we predict that the dominant low-frequency wavelength will be similar to the spacing of major regional fractures, and the high-frequency spectral modes will be similar to the spacing of smaller local fractures. Alternatively, if the results show that the dominant wavelengths differ from the pattern of fractures or change with position downvalley in one or both of the valleys, then this implies that the glacier properties, such as flow rate and thickness, are what modulate bedrock erosion and fractures are less significant to morphology evolution.

  20. Hydro-fracture in the laboratory: matching diagnostic seismic signals to fracture networks

    NASA Astrophysics Data System (ADS)

    Gehne, S.; Benson, P. M.; Koor, N.; Dobson, K. J.; Enfield, M.; Barber, A.

    2017-12-01

    Hydraulic fracturing is a key process in both natural (e.g. dyke intrusion) and engineered environments (e.g. shale gas). To better understand this process, we present new data from simulated hydraulic fracturing in a controlled laboratory environment in order to track fracture nucleation (location) and propagation (velocity) in space and time to assess the fracture mechanics and developing fracture network. Fluid overpressure is used to generate a permeable network of micro tensile fractures in an anisotropic sandstone and a highly anisotropic shale. A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from a pre-defined zone inside the sample. Acoustic emission location is used to record and map the nucleation and development of the micro-fracture network. For both rock types, fractures progresses parallel to the bedding plane (short-transverse) if the bedding plane is aligned with the direction of σ1 requiring breakdown pressures of approximately 7 and 13MPa respectively at a confining pressure of 8MPa. The data also indicates a more ductile behaviour of the shale than expected. We use X-Ray Computed Tomography (CT) to evaluate the evolved fracture network in terms of fracture pattern and aperture. Hydraulic fracturing produces very planar fractures in the shale, with axial fractures over the entire length of the sample broadly following the bedding. In contrast, fractures in the sandstone are more diffuse, linking pore spaces as they propagate. However, secondary micro cracking, branching of the main fracture, are also observed. These new experiments suggest that fracture pattern, fracture propagation trajectories, and fracturing fluid pressures are predominantly controlled by the interaction between the anisotropic mechanical properties of the rock and the anisotropic stress environment.

  1. Etiology and patterns of pediatric mandibular fractures in Portugal: a retrospective study of 10 years.

    PubMed

    Ferreira, Pedro Costa; Amarante, José Manuel; Silva, Alvaro Catarino; Pereira, José Miguel; Cardoso, Maria Augusta; Rodrigues, Jorge Manuel

    2004-05-01

    To determine the pattern of occurrence of mandibular fractures in the pediatric population in Portugal. This retrospective study reviews the records of patients 18 years of age or younger from the 10-year period 1993 to 2002. Age, gender, anatomic site, cause of the accident, weekly and monthly variation, location and type of fractures, presence and location of associated injuries, treatment methods, and complications were reviewed. During this 10-year period, 521 patients with 681 mandibular fractures were treated. Motor-vehicle accident (MVA) was the most common (53.9% patients) cause of fracture. Almost half of the patients (48.8%) were in the oldest age group (16 to 18 years old). The condyle of the mandible was involved in 31.0% of the fractures. Maxillomandibular (MMF) fixation was used in 534 (78.4%) fractures. Overall mortality in this series was 0.6% (3 patients); mortality was caused by multiple traumas, mainly head trauma. There is a need to reinforce legislation aimed to prevent MVA and the total enforcement of existing laws to reduce maxillofacial injuries among children and adolescents.

  2. [Treatment of complex scapular body fractures by locking reconstructive plates].

    PubMed

    Zhang, Jun-wei; Hou, Jin-yong; Yang, Mao-qing

    2011-03-01

    To investigate the method and effect of treatment of complex scapular body fractures by locking reconstructive plate through modified posterior approach. From August 2005 to November 2009, 27 patients with complex scapula body fractures were treated by locking reconstruction bone plate fixation,including 19 males and 8 females with an average age of 36 years old ranging from 16 to 64 years. The time after injury was 0.5 hours to 11 days (averaged 3 days). Of all the patients, 9 cases were associated with ipsilateral clavicle fracture, 2 cases were associated with acromioclavicular joint dislocation,16 cases were associated with multiple rib fractures, 1 case were associated with humeral shaft fractures, 5 cases were associated with pleural effusion, atelectasis, lung contusion etc. After operating,shoulder functional recovery were followed up. Twenty-four patients were followed up from 2 to 35 months with an average of 19 months. According to Hardegger shoulder function,the results were excellent in 15 cases, good in 7 cases, general in 2 cases. This method had the advantage of less trauma and clear exposure, firm and reliable fixation, and early activities.

  3. Fracture labelling of boar spermatozoa for the fucose-binding-protein (FBP).

    PubMed

    Friess, A E; Toepfer-Petersen, E; Schill, W B

    1987-01-01

    Labelling of fractured boar spermatozoa with the FUC-HRP gold method for a fucose-binding-protein (FBP) gave evidence the FBP is localized in the acrosomal matrix. All fracture faces through the acrosome from the rostral end towards the equatorial segment show similar labelling pattern. This labelling is completely blocked by preincubation of the fractured tissue with focoidan.

  4. Survey of Current Practice Patterns in the Management of Frontal Sinus Fractures

    PubMed Central

    Choi, Kevin J.; Chang, Bora; Woodard, Charles R.; Powers, David B.; Marcus, Jeffrey R.; Puscas, Liana

    2017-01-01

    The management of frontal sinus fractures has evolved in the endoscopic era. The development of functional endoscopic sinus surgery (FESS) has been incorporated into management algorithms proposed by otolaryngologists, but the extent of its influence on plastic surgeons and oral and maxillofacial surgeons is heretofore unknown. A cross-sectional survey was performed to assess the practice pattern variations in frontal sinus fracture management across multiple surgical disciplines. A total of 298 surveys were reviewed. 33.5% were facial plastic surgeons with otolaryngology training, 25.8% general otolaryngologists, 25.5% plastic surgeons, and 15.1% oral and maxillofacial surgeons. 74.8% of respondents practiced in an academic setting. 61.7% felt endoscopic sinus surgery changed their management of frontal sinus fractures. 91.8% of respondents favored observation for uncomplicated, nondisplaced frontal sinus outflow tract fractures. 36.4% favored observation and 35.9% favored endoscopic sinus surgery for uncomplicated, displaced frontal sinus outflow tract fractures. For complicated, displaced frontal sinus outflow tract fractures, obliteration was more frequently favored by plastic surgeons and oral and maxillofacial surgeons than those with otolaryngology training. The utility of FESS in managing frontal sinus fractures appears to be recognized across multiple surgical disciplines. PMID:28523084

  5. Fracture network topology and characterization of structural permeability

    NASA Astrophysics Data System (ADS)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with other permeability indicators such as drilling fluid losses, and pore pressure measurements. Initial work with these techniques has led to new developments in our ability to image subsurface faults and fractures at a variety of scales from independent datasets. We establish a strong relationship between features identified using seismic attribute analysis and interpreted natural fractures. However, care must be taken to use these methods in a case-by-case basis, as controls on fracture distribution and orientation can vary significantly with both regional and local influences. These results outline and effective method by which structural permeability can be assessed with existing petroleum datasets. However, unlike the broad stress field, mapping fracture orientation and characteristics within the Australian Continent is complicated as the distribution, geometry, areal extent and connectivity of fracture networks can vary significantly.

  6. Management of comminuted proximal ulna fracture-dislocations using a multiplanar locking intramedullary nail.

    PubMed

    Edwards, Scott G; Argintar, Evan; Lamb, Joshua

    2011-06-01

    Intramedullary nails have been used for the fixation of olecranon fractures in an attempt to reduce the soft tissue irritation and resulting need for hardware removal seen with plating and tension banding. Further benefits include preservation of vascular supply, and increase stability and improved compression over some alternative techniques. Most intramedullary nails have been limited to simple olecranon fractures or osteotomies. One novel multiplanar, locking intramedullary nail, however, is indicated to stabilize all fracture patterns of the proximal ulna, including the coronoid. This particular locking nail has screws that radiate in multiple planes and form a fixed-angle lattice throughout the bone. The nail also has fixed-angle screws dedicated to the 3 parts of the coronoid: process tip, medial facet, and medial wall. This allows the nail to secure multiple fragments regardless of the fracture pattern's extent of instability. The objective of this article is to illustrate the recommended steps in reducing and stabilizing a comminuted proximal ulna fracture-dislocation using this multiplanar locking intramedullary nail.

  7. [Application of three-dimensional printing personalized acetabular wing-plate in treatment of complex acetabular fractures via lateral-rectus approach].

    PubMed

    Mai, J G; Gu, C; Lin, X Z; Li, T; Huang, W Q; Wang, H; Tan, X Y; Lin, H; Wang, Y M; Yang, Y Q; Jin, D D; Fan, S C

    2017-03-01

    Objective: To investigate reduction and fixation of complex acetabular fractures using three-dimensional (3D) printing technique and personalized acetabular wing-plate via lateral-rectus approach. Methods: From March to July 2016, 8 patients with complex acetabular fractures were surgically managed through 3D printing personalized acetabular wing-plate via lateral-rectus approach at Department of Orthopedics, the Third Affiliated Hospital of Southern Medical University. There were 4 male patients and 4 female patients, with an average age of 57 years (ranging from 31 to 76 years). According to Letournel-Judet classification, there were 2 anterior+ posterior hemitransverse fractures and 6 both-column fractures, without posterior wall fracture or contralateral pelvic fracture. The CT data files of acetabular fracture were imported into the computer and 3D printing technique was used to print the fractures models after reduction by digital orthopedic technique. The acetabular wing-plate was designed and printed with titanium. All fractures were treated via the lateral-rectus approach in a horizontal position after general anesthesia. The anterior column and the quadrilateral surface fractures were fixed by 3D printing personalized acetabular wing-plate, and the posterior column fractures were reduction and fixed by antegrade lag screws under direct vision. Results: All the 8 cases underwent the operation successfully. Postoperative X-ray and CT examination showed excellent or good reduction of anterior and posterior column, without any operation complications. Only 1 case with 75 years old was found screw loosening in the pubic bone with osteoporosis after 1 month's follow-up, who didn't accept any treatment because the patient didn't feel discomfort. According to the Matta radiological evaluation, the reduction of the acetabular fracture was rated as excellent in 3 cases, good in 4 cases and fair in 1 case. All patients were followed up for 3 to 6 months and all patients had achieved bone union. According to the modified Merle D'Aubigné and Postel scoring system, 5 cases were excellent, 2 cases were good, 1 case was fair. Conclusions: Surgical management of complex acetabular fracture via lateral-rectus approach combine with 3D printing personalized acetabular wing-plate can effectively improve reduction quality and fixation effect. It will be truly accurate, personalized and minimally invasive.

  8. Cohesive zone modelling of wafer bonding and fracture: effect of patterning and toughness variations

    NASA Astrophysics Data System (ADS)

    Kubair, D. V.; Spearing, S. M.

    2006-03-01

    Direct wafer bonding has increasingly become popular in the manufacture of microelectromechanical systems and semiconductor microelectronics components. The success of the bonding process is controlled by variables such as wafer flatness and surface preparation. In order to understand the effects of these variables, spontaneous planar crack propagation simulations were performed using the spectral scheme in conjunction with a cohesive zone model. The fracture-toughness on the bond interface is varied to simulate the effect of surface roughness (nanotopography) and patterning. Our analysis indicated that the energetics of crack propagation is sensitive to the local surface property variations. The patterned wafers are tougher (well bonded) than the unpatterned ones of the same average fracture-toughness.

  9. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  10. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    NASA Technical Reports Server (NTRS)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  11. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair. PMID:28243388

  12. Radiographic outcomes of single versus dual plate fixation of acute mid-shaft clavicle fractures.

    PubMed

    Chen, Xiaobin; Shannon, Steven F; Torchia, Michael; Schoch, Bradley

    2017-06-01

    The clavicle exhibits considerable movement in three planes making rigid fixation challenging. The addition of a second plate may be considered to improve fixation rigidity, but risks compromising the blood supply to the fracture site. The purpose of this study is to assess if extraperiosteal dual plate fixation increases the rate of non-union, reoperation, and complications at 1 year for surgically treated acute mid-shaft clavicle fractures. Between June 1998 and June 2013, surgically treated mid-shaft clavicle fractures undergoing open reduction internal fixation within 4 weeks of injury were retrospectively reviewed. Patients undergoing single plate fixation were compared to dual plate fixation. Patients were followed for a minimum of 1 year. Charts were reviewed to assess union rates, reoperation, and complications. One hundred and sixty-three clavicles (125 single plates, 34 dual plates) were evaluated. All patients (100%) in dual plating group and one hundred and fourteen (91%) in single plating group obtained bony union by 1 year (p = 0.13). Six patients (4.8%) experienced a non-union in the single plating cohort compared to the dual plating cohort who had a 100% union rate. Seven patients required reoperation in the single plate cohort due to implant failure (N = 4), infection (N = 2), and non-union (N = 1). This limited series of patients demonstrates dual plate fixation is a reliable option for acute mid-shaft clavicle fractures, with excellent union rates and low complication rates. Compared to single plate fixation, no significant differences in outcomes were identified. In the case of more complex fracture patterns, application of a second extraperiosteal plate may be utilized without compromising healing or increasing complication rates.

  13. Use of integrated analogue and numerical modelling to predict tridimensional fracture intensity in fault-related-folds.

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio

    2016-04-01

    Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.

  14. Evaluating The Relation of Trace Fracture Inclination and Sound Pressure Level and Time-of-flight QUS Parameters Using Computational Simulation

    NASA Astrophysics Data System (ADS)

    Rosa, P. T.; Fontes-Pereira, A. J.; Matusin, D. P.; von Krüger, M. A.; Pereira, W. C. A.

    Bone healing is a complex process that stars after the occurrence of a fracture to restore bone optimal conditions. The gold standards for bone status evaluation are the dual energy X-ray absorptiometry and the computerized tomography. Ultrasound-based technologies have some advantages as compared to X-ray technologies: nonionizing radiation, portability and lower cost among others. Quantitative ultrasound (QUS) has been proposed in literature as a new tool to follow up the fracture healing process. QUS relates the ultrasound propagation with the bone tissue condition (normal or pathological), so, a change in wave propagation may indicate a variation in tissue properties. The most used QUS parameters are time-of-flight (TOF) and sound pressure level (SPL) of the first arriving signal (FAS). In this work, the FAS is the well known lateral wave. The aim of this work is to evaluate the relation of the TOF and SPL of the FAS and fracture inclination trace in two stages of bone healing using computational simulations. Four fracture geometries were used: normal and oblique with 30, 45 and 60 degrees. The TOF average values were 63.23 μs, 63.14 μs, 63.03 μs 62.94 μs for normal, 30, 45 and 60 degrees respectively and average SPL values were -3.83 dB -4.32 dB, -4.78 dB, -6.19 dB for normal, 30, 45 and 60 degrees respectively. The results show an inverse pattern between the amplitude and time-of-flight. These values seem to be sensible to fracture inclination trace, and in future, can be used to characterize it.

  15. Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness

    NASA Technical Reports Server (NTRS)

    Hoogenboom, T.; Smrekar, S. E.; Anderson, F. S.; Houseman, G.

    2003-01-01

    Coronae are volcano-tectonic features on Venus which range from 60km to 2600km and are defined by their nearly circular patterns of fractures. Type 1 (regular) coronae are classified as having >50% complete fracture annuli. Previous work has examined the factors controlling the morphology, size, and fracture pattern of coronae, using lithospheric properties, loading signature and geologic characteristics. However, these studies have been limited to Type 2 (topographic) coronae (e.g. coronaes with <50% fracture annuli), and the factors controlling the formation of Type 1 coronae remain poorly understood. In this study, we apply the methodology of to survey the admittance signature for Type 1 coronae to determine the controlling parameters which govern Type 1 coronae formation.

  16. Traumatic Rib Injury: Patterns, Imaging Pitfalls, Complications, and Treatment.

    PubMed

    Talbot, Brett S; Gange, Christopher P; Chaturvedi, Apeksha; Klionsky, Nina; Hobbs, Susan K; Chaturvedi, Abhishek

    2017-01-01

    The ribs are frequently affected by blunt or penetrating injury to the thorax. In the emergency department setting, it is vital for the interpreting radiologist to not only identify the presence of rib injuries but also alert the clinician about organ-specific injury, specific traumatic patterns, and acute rib trauma complications that require emergent attention. Rib injuries can be separated into specific morphologic fracture patterns that include stress, buckle, nondisplaced, displaced, segmental, and pathologic fractures. Specific attention is also required for flail chest and for fractures due to pediatric nonaccidental trauma. Rib fractures are associated with significant morbidity and mortality, both of which increase as the number of fractured ribs increases. Key complications associated with rib fracture include pain, hemothorax, pneumothorax, extrapleural hematoma, pulmonary contusion, pulmonary laceration, acute vascular injury, and abdominal solid-organ injury. Congenital anomalies, including supernumerary or accessory ribs, vestigial anterior ribs, bifid ribs, and synostoses, are common and should not be confused with traumatic pathologic conditions. Nontraumatic mimics of traumatic rib injury, with or without fracture, include metastatic disease, primary osseous neoplasms (osteosarcoma, chondrosarcoma, Ewing sarcoma, Langerhans cell histiocytosis, and osteochondroma), fibrous dysplasia, and Paget disease. Principles of management include supportive and procedural methods of alleviating pain, treating complications, and stabilizing posttraumatic deformity. By recognizing and accurately reporting the imaging findings, the radiologist will add value to the care of patients with thoracic trauma. Online supplemental material is available for this article. © RSNA, 2017.

  17. Impact of Injury Mechanisms on Patterns and Management of Facial Fractures.

    PubMed

    Greathouse, S Travis; Adkinson, Joshua M; Garza, Ramon; Gilstrap, Jarom; Miller, Nathan F; Eid, Sherrine M; Murphy, Robert X

    2015-07-01

    Mechanisms causing facial fractures have evolved over time and may be predictive of the types of injuries sustained. The objective of this study is to examine the impact of mechanisms of injury on the type and management of facial fractures at our Level 1 Trauma Center. The authors performed an Institutional Review Board-approved review of our network's trauma registry from 2006 to 2010, documenting age, sex, mechanism, Injury Severity Score, Glasgow Coma Scale, facial fracture patterns (nasal, maxillary/malar, orbital, mandible), and reconstructions. Mechanism rates were compared using a Pearson χ2 test. The database identified 23,318 patients, including 1686 patients with facial fractures and a subset of 1505 patients sustaining 2094 fractures by motor vehicle collision (MVC), fall, or assault. Nasal fractures were the most common injuries sustained by all mechanisms. MVCs were most likely to cause nasal and malar/maxillary fractures (P < 0.01). Falls were the least likely and assaults the most likely to cause mandible fractures (P < 0.001), the most common injury leading to surgical intervention (P < 0.001). Although not statistically significant, fractures sustained in MVCs were the most likely overall to undergo surgical intervention. Age, number of fractures, and alcohol level were statistically significant variables associated with operative management. Age and number of fractures sustained were associated with operative intervention. Although there is a statistically significant correlation between mechanism of injury and type of facial fracture sustained, none of the mechanisms evaluated herein are statistically associated with surgical intervention. Clinical Question/Level of Evidence: Therapeutic, III.

  18. Phase Field Model of Hydraulic Fracturing in Poroelastic Media: Fracture Propagation, Arrest, and Branching Under Fluid Injection and Extraction

    NASA Astrophysics Data System (ADS)

    Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis

    2018-03-01

    The simulation of fluid-driven fracture propagation in a porous medium is a major computational challenge, with applications in geosciences and engineering. The two main families of modeling approaches are those models that represent fractures as explicit discontinuities and solve the moving boundary problem and those that represent fractures as thin damaged zones, solving a continuum problem throughout. The latter family includes the so-called phase field models. Continuum approaches to fracture face validation and verification challenges, in particular grid convergence, well posedness, and physical relevance in practical scenarios. Here we propose a new quasi-static phase field formulation. The approach fully couples fluid flow in the fracture with deformation and flow in the porous medium, discretizes flow in the fracture on a lower-dimension manifold, and employs the fluid flux between the fracture and the porous solid as coupling variable. We present a numerical assessment of the model by studying the propagation of a fracture in the quarter five-spot configuration. We study the interplay between injection flow rate and rock properties and elucidate fracture propagation patterns under the leak-off toughness dominated regime as a function of injection rate, initial fracture length, and poromechanical properties. For the considered injection scenario, we show that the final fracture length depends on the injection rate, and three distinct patterns are observed. We also rationalize the system response using dimensional analysis to collapse the model results. Finally, we propose some simplifications that alleviate the computational cost of the simulations without significant loss of accuracy.

  19. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia.

    PubMed

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for last one month and after imaging studies posterior longitudinal tibial stress fracture was detected on his left tibia. After six months the patient was admitted to our clinic with the same type of complaints in his right leg. All imaging modalities and blood counts were performed and as a result longitudinal posterior tibial stress fractures were detected on his right tibia. Treatment of tibial stress fracture includes rest and modified activity, followed by a graded return to activity commensurate with bony healing. We have applied the same treatment protocol and our results were acceptable but our follow up time short for this reason our study is restricted for separate stress fractures of the posterior tibia. Although the main localization of tibial stress fractures were unilateral, anterior and transverse pattern, rarely, like in our case, the unusual bilateral posterior localization and longitudinal pattern can be seen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Riding the Right Wavelet: Quantifying Scale Transitions in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Rizzo, Roberto E.; Healy, David; Farrell, Natalie J.; Heap, Michael J.

    2017-12-01

    The mechanics of brittle failure is a well-described multiscale process that involves a rapid transition from distributed microcracks to localization along a single macroscopic rupture plane. However, considerable uncertainty exists regarding both the length scale at which this transition occurs and the underlying causes that prompt this shift from a distributed to a localized assemblage of cracks or fractures. For the first time, we used an image analysis tool developed to investigate orientation changes at different scales in images of fracture patterns in faulted materials, based on a two-dimensional continuous wavelet analysis. We detected the abrupt change in the fracture pattern from distributed tensile microcracks to localized shear failure in a fracture network produced by triaxial deformation of a sandstone core plug. The presented method will contribute to our ability of unraveling the physical processes at the base of catastrophic rock failure, including the nucleation of earthquakes, landslides, and volcanic eruptions.

  1. Superhot fluids circulating close to magma intrusions: a contribution from analogue modelling

    NASA Astrophysics Data System (ADS)

    Montanari, Domenico; Agostini, Andrea; Bonini, Marco; Corti, Giacomo

    2017-04-01

    Magma overpressure at the time of the emplacement at shallow crustal levels may lead to deformation (i.e. forced folding, fracturing and faulting) in the country rock, both at local and regional scale. To get insights into this process, we reproduced and analysed in the laboratory the fracture/fault network associated with the emplacement of magma at shallow crustal levels. We used a mixture of quartz sand and K-feldspar fine sand as an analogue for the brittle crust, and polyglycerols for the magma. The models were able to reproduce complex 3D architectures of deformation resulting from magma emplacement, with different deformation patterns -invariably dominated by forced folding and associated brittle faulting/fracturing- resulting from variable parameters. These results provide useful hints into geothermal researches. Fractures and faults associated with magma emplacement are indeed expected to significantly influence the distribution and migration of superhot geothermal fluids near the edge of the magma intrusion. These structures can therefore be considered as potential targets for geothermal or mineral deposits exploration. In this perspective, the results of analogue models may provide useful geometric and conceptual constraints for field work, numerical modeling, and particularly seismic interpretation for achieving a better understanding and tuning of the integrated conceptual model concerning the circulation of supercritical fluids. The research leading to these results has received funding from the European Community's Seventh Framework Programme under grant agreement No. 608553 (Project IMAGE).

  2. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamojjala, Krishna; Lacy, Jeffrey; Chu, Henry S.

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimenmore » are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.« less

  3. Characteristic Fracture Spacing in Primary and Secondary Recovery from Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Gong, J.; Rossen, W.

    2015-12-01

    We showed previously (Gong and Rossen, 2014a,b) that, if the fracture aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is well-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery (EOR) process, the production of oil depends on the supply of injected water or EOR agent. This suggests that the characteristic fracture spacing for the dual-porosity/dual-permeability simulation of waterflood or EOR in a naturally fractured reservoir should account not for all fractures but only the relatively small portion of the fracture network carrying almost all the injected water or EOR agent. In contrast, in primary production even a relatively small fracture represents an effective path for oil to flow to a production well. Thus in primary production the effective fracture spacing should include all the fractures. This distinction means that the "shape factor" in dual-porosity/dual-permeability reservoir simulators and the repeating unit in homogenization should depend on the process involved: specifically, it should be different for primary and secondary or tertiary recovery. We test this hypothesis in a simple representation of a fractured reservoir with a non-uniform distribution of fracture flow conductivities. We compare oil production, flow patterns in matrix, and the pattern of oil recovery around fractures with and without the "unimportant" fractures present. In primary production, all fractures which are much more permeable than matrix play a significant role in production. The shape factor or repeating-unit size should reflect the entire fracture distribution. In secondary or tertiary production, the role of fractures that carry relatively little flow depends on injection rate, the ratio of flow carried by the different fractures, and the permeability of matrix. In some cases, the appropriate shape factor or repeating-unit size for waterflood or EOR should reflect only those fractures that carry most of the flow. References:Gong, and Rossen, 14th ECMOR Conf., Catania, Sicily, 2014(a). Gong, and Rossen, Intl. Discrete Fracture Network Eng. Conf., Vancouver, Canada, 2014(b).

  4. Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Wang, Moran

    2017-05-01

    Hydrofracturing is an important technique in petroleum industry to stimulate well production. Yet the mechanism of induced fracture growth is still not fully understood, which results in some unsatisfactory wells even with hydrofracturing treatments. In this work we establish a more accurate numerical framework for hydromechanical coupling, where the solid deformation and fracturing are modeled by discrete element method and the fluid flow is simulated directly by lattice Boltzmann method at pore scale. After validations, hydrofracturing is simulated with consideration on the strength heterogeneity effects on fracture geometry and microfailure mechanism. A modified topological index is proposed to quantify the complexity of fracture geometry. The results show that strength heterogeneity has a significant influence on hydrofracturing. In heterogeneous samples, the fracturing behavior is crack nucleation around the tip of fracture and connection of it to the main fracture, which is usually accompanied by shear failure. However, in homogeneous ones the fracture growth is achieved by the continuous expansion of the crack, where the tensile failure often dominates. It is the fracturing behavior that makes the fracture geometry in heterogeneous samples much more complex than that in homogeneous ones. In addition, higher pore pressure leads to more shear failure events for both heterogeneous and homogeneous samples.

  5. Current Evidence on the Association of Dietary Patterns and Bone Health: A Scoping Review123

    PubMed Central

    Movassagh, Elham Z

    2017-01-01

    Nutrition is an important modifiable factor that affects bone health. Diet is a complex mixture of nutrients and foods that correlate or interact with each other. Dietary pattern approaches take into account contributions from various aspects of diet. Findings from dietary pattern studies could complement those from single-nutrient and food studies on bone health. In this study we aimed to conduct a scoping review of the literature that assessed the impact of dietary patterns (derived with the use of both a priori and data-driven approaches) on bone outcomes, including bone mineral status, bone biomarkers, osteoporosis, and fracture risk. We retrieved 49 human studies up to June 2016 from the PubMed, Embase, and CINAHL databases. Most of these studies used a data-driven method, especially factor analysis, to derive dietary patterns. Several studies examined adherence to a variety of the a priori dietary indexes, including the Mediterranean diet score, the Healthy Eating Index (HEI), and the Alternative Healthy Eating Index (AHEI). The bone mineral density (BMD) diet score was developed to measure adherence to a dietary pattern beneficial to bone mineral density. Findings revealed a beneficial impact of higher adherence to a “healthy” dietary pattern derived using a data-driven method, the Mediterranean diet, HEI, AHEI, Dietary Diversity Score, Diet Quality Index–International, BMD Diet Score, Healthy Diet Indicator, and Korean Diet Score, on bone. In contrast, the “Western” dietary pattern and those featuring some aspects of an unhealthy diet were associated inversely with bone health. In both a priori and data-driven dietary pattern studies, a dietary pattern that emphasized the intake of fruit, vegetables, whole grains, poultry and fish, nuts and legumes, and low-fat dairy products and de-emphasized the intake of soft drinks, fried foods, meat and processed products, sweets and desserts, and refined grains showed a beneficial impact on bone health. Overall, adherence to a healthy dietary pattern consisting of the above-mentioned food groups can improve bone mineral status and decrease osteoporosis and fracture risk. PMID:28096123

  6. Rotational injury of cervical facets: CT analysis of fracture patterns with implications for management and neurologic outcome.

    PubMed

    Shanmuganathan, K; Mirvis, S E; Levine, A M

    1994-11-01

    Imaging studies of patients with rotational facet injuries of the cervical spine were retrospectively reviewed to determine the prevalence and pattern of associated fractures, to correlate injury pattern with recommended surgical stabilization, and to assess neurologic outcome. Radiographs and CT scans obtained for 40 consecutive patients with rotational facet injuries of the cervical spine during a 70-month period were retrospectively reviewed to determine injury level, presence, and orientation of facet fractures, and concurrent nonfacet injuries. Imaging findings were reviewed to assess the likelihood of instability and to determine the most appropriate stabilization requirement. Medical records were reviewed to ascertain mechanism of injury, initial neurologic deficit, and surgical findings. Among the 40 patients with cervical rotational facet injuries, 11 (27%) had pure unilateral facet dislocation or subluxation without associated fractures, and 29 (73%) had concurrent facet fractures involving the inferior facet of the rotated vertebra (n = 13), the superior facet of the subjacent vertebra (n = 9), or both (n = 7). Injury of the rotated vertebra was unilateral in 22 patients but bilateral in 18 patients. Facet fractures frequently extended into the ipsilateral lamina or articular pillar or both. An avulsion fracture from the posteroinferior aspect of the rotated vertebral body, indicating disk disruption, occurred in 10 patients (25%), and seven patients (17%) had complete isolation of an articular pillar. Facet fractures were confirmed for 27 patients who underwent surgical stabilization. Neurologic deficits developed in 29 (73%) of the 40 patients and included radiculopathy in 11 patients and cord syndromes in 18 patients. Pure dislocation without a facet fracture was more likely to lead to a cord syndrome (p = .006). Cervical rotational facet injuries are often accompanied by facet fractures and bilateral damage of the rotated vertebra. These injuries contribute to rotational instability and require specific internal fixation based on a precise delineation of all injuries. Facet dislocations without fractures have a significantly higher association with cord syndromes than do rotational facet injuries with fractures. CT, particularly with parasagittal reformations, is valuable in identifying all injuries of the rotated and subjacent vertebrae.

  7. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs

    PubMed Central

    Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM. PMID:29621295

  8. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs.

    PubMed

    Zhang, Fan; Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM.

  9. Identification of fracture zones and its application in automatic bone fracture reduction.

    PubMed

    Paulano-Godino, Félix; Jiménez-Delgado, Juan J

    2017-04-01

    The preoperative planning of bone fractures using information from CT scans increases the probability of obtaining satisfactory results, since specialists are provided with additional information before surgery. The reduction of complex bone fractures requires solving a 3D puzzle in order to place each fragment into its correct position. Computer-assisted solutions may aid in this process by identifying the number of fragments and their location, by calculating the fracture zones or even by computing the correct position of each fragment. The main goal of this paper is the development of an automatic method to calculate contact zones between fragments and thus to ease the computation of bone fracture reduction. In this paper, an automatic method to calculate the contact zone between two bone fragments is presented. In a previous step, bone fragments are segmented and labelled from CT images and a point cloud is generated for each bone fragment. The calculated contact zones enable the automatic reduction of complex fractures. To that end, an automatic method to match bone fragments in complex fractures is also presented. The proposed method has been successfully applied in the calculation of the contact zone of 4 different bones from the ankle area. The calculated fracture zones enabled the reduction of all the tested cases using the presented matching algorithm. The performed tests show that the reduction of these fractures using the proposed methods leaded to a small overlapping between fragments. The presented method makes the application of puzzle-solving strategies easier, since it does not obtain the entire fracture zone but the contact area between each pair of fragments. Therefore, it is not necessary to find correspondences between fracture zones and fragments may be aligned two by two. The developed algorithms have been successfully applied in different fracture cases in the ankle area. The small overlapping error obtained in the performed tests demonstrates the absence of visual overlapping in the figures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Minimally invasive treatment for pubic ramus fractures combined with a sacroiliac joint complex injury.

    PubMed

    Yu, Xiaowei; Tang, Mingjie; Zhou, Zubin; Peng, Xiaochun; Wu, Tianyi; Sun, Yuqiang

    2013-08-01

    Fractures of the pubic rami due to low energy trauma are common in the elderly, with an incidence of 26 per 100,000 people per year in those aged more than 60 years. The purpose of this study was to evaluate the clinical application of this minimally invasive technique in patients with pubic ramus fractures combined with a sacroiliac joint complex injury, including its feasibility, merits, and limitations. Fifteen patients with pubic ramus fractures combined with sacroiliac joint injury were treated with the minimally invasive technique from June 2008 until April 2012. The quality of fracture reduction was evaluated according to the Matta standard. Fourteen cases were excellent (93.3 %), and one case was good (6.7 %). The fracture lines were healed 12 weeks after the surgery. The 15 patients had follow-up visits between four to 50 months (mean, 22.47 months). All patients returned to their pre-injury jobs and lifestyles. One patient suffered a deep vein thrombosis during the peri-operative period. A filter was placed in the patient before the surgery and was removed six weeks later. There was no thrombus found at the follow-up visits of this patient. The minimally invasive technique in patients with pubic ramus fractures combined with a sacroiliac joint complex injury provided satisfactory efficacy.

  11. A Biomechanical Comparison of Three 1.5-mm Plate and Screw Configurations and a Single 2.0-mm Plate for Internal Fixation of a Mandibular Condylar Fracture

    PubMed Central

    Aquilina, Peter; Parr, William C.H.; Chamoli, Uphar; Wroe, Stephen; Clausen, Philip

    2014-01-01

    The most stable pattern of internal fixation for mandibular condyle fractures is an area of ongoing discussion. This study investigates the stability of three patterns of plate fixation using readily available, commercially pure titanium implants. Finite element models of a simulated mandibular condyle fracture were constructed. The completed models were heterogeneous in bone material properties, contained approximately 1.2 million elements and incorporated simulated jaw adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. No human subjects were involved in this investigation. The stability of the simulated condylar fracture reduced with the different implant configurations, and the von Mises stresses of a 1.5-mm X-shaped plate, a 1.5-mm rectangular plate, and a 1.5-mm square plate (all Synthes (Synthes GmbH, Zuchwil, Switzerland) were compared. The 1.5-mm X plate was the most stable of the three 1.5-mm profile plate configurations examined and had comparable mechanical performance to a single 2.0-mm straight four-hole plate. This study does not support the use of rectangular or square plate patterns in the open reduction and internal fixation of mandibular condyle fractures. It does provide some support for the use of a 1.5-mm X plate to reduce condylar fractures in selected clinical cases. PMID:25136411

  12. Complex tibial fractures are associated with lower social classes and predict early exit from employment and worse patient-reported QOL: a prospective observational study of 46 complex tibial fractures treated with a ring fixator.

    PubMed

    Elsoe, Rasmus; Larsen, Peter; Petruskevicius, Juozas; Kold, Søren

    2018-04-01

    The long-term outcomes following complex fractures of the tibia are reported to carry a risk of knee pain, malalignment, articular injury and post-traumatic osteoarthritis. The main objective of this study was to account for the patient-reported quality of life (QOL) 12 months after ring fixator removal in patients with a complex tibial fracture. Secondary objectives included a review of the socio-economic characteristics of the patient group and the rate of return to work in the study period. A prospective follow-up study was conducted of 60 patients with complex fractures of the tibia treated with ring external fixation. Patient-reported outcomes, radiological outcomes and socio-economic status including employment status of the patients were obtained 12 months after frame removal. Forty-six patients completed the assessment 12 months after frame removal (77%). The mean age of the patient at the time of fracture was 54.6 years (range 31-86). There were 19 males and 27 females. At 12 months after frame removal, the mean EQ5D-5L index was 0.66 (CI 0.60-0.72). The mean EQ5D-5L VAS was 69 (CI 61-76). When this was compared to the established reference population from Denmark, the study population showed a significantly worse EQ5D-5L index. The majority of patients (87%) were in the lower social classes suggesting a higher degree of social deprivation in the study population. Twenty-seven per cent of patients who were employed prior to injury had returned to employment at approximately 19 months following fracture. The onset of post-traumatic osteoarthritis was present in the knee joint in 29% of patients following a proximal intra-articular fracture, whereas osteoarthritis was present at the ankle joint in 35% of patients following a distal intra-articular fracture 12 months after frame removal. This study indicates that at 12 months after frame removal there are poorer patient-reported QOL as when compared to reference populations. Furthermore, this study suggests that complex tibial fractures are associated with lower social classes and that only 27% of patients in this sample, who prior to injury were employed, had returned to employment at approximately 19 months after the injury.

  13. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study.

    PubMed

    Rousseau, Catherine; Jean, Sonia; Gamache, Philippe; Lebel, Stéfane; Mac-Way, Fabrice; Biertho, Laurent; Michou, Laëtitia; Gagnon, Claudia

    2016-07-27

     To investigate whether bariatric surgery increases the risk of fracture.  Retrospective nested case-control study.  Patients who underwent bariatric surgery in the province of Quebec, Canada, between 2001 and 2014, selected using healthcare administrative databases.  12 676 patients who underwent bariatric surgery, age and sex matched with 38 028 obese and 126 760 non-obese controls.  Incidence and sites of fracture in patients who had undergone bariatric surgery compared with obese and non-obese controls. Fracture risk was also compared before and after surgery (index date) within each group and by type of surgery from 2006 to 2014. Multivariate conditional Poisson regression models were adjusted for fracture history, number of comorbidities, sociomaterial deprivation, and area of residence.  Before surgery, patients undergoing bariatric surgery (9169 (72.3%) women; mean age 42 (SD 11) years) were more likely to fracture (1326; 10.5%) than were obese (3065; 8.1%) or non-obese (8329; 6.6%) controls. A mean of 4.4 years after surgery, bariatric patients were more susceptible to fracture (514; 4.1%) than were obese (1013; 2.7%) and non-obese (3008; 2.4%) controls. Postoperative adjusted fracture risk was higher in the bariatric group than in the obese (relative risk 1.38, 95% confidence interval 1.23 to 1.55) and non-obese (1.44, 1.29 to 1.59) groups. Before surgery, the risk of distal lower limb fracture was higher, upper limb fracture risk was lower, and risk of clinical spine, hip, femur, or pelvic fractures was similar in the bariatric and obese groups compared with the non-obese group. After surgery, risk of distal lower limb fracture decreased (relative risk 0.66, 0.56 to 0.78), whereas risk of upper limb (1.64, 1.40 to 1.93), clinical spine (1.78, 1.08 to 2.93), pelvic, hip, or femur (2.52, 1.78 to 3.59) fractures increased. The increase in risk of fracture reached significance only for biliopancreatic diversion.  Patients undergoing bariatric surgery were more likely to have fractures than were obese or non-obese controls, and this risk remained higher after surgery. Fracture risk was site specific, changing from a pattern associated with obesity to a pattern typical of osteoporosis after surgery. Only biliopancreatic diversion was clearly associated with fracture risk; however, results for Roux-en-Y gastric bypass and sleeve gastrectomy remain inconclusive. Fracture risk assessment and management should be part of bariatric care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Office-Based Three-Dimensional Printing Workflow for Craniomaxillofacial Fracture Repair.

    PubMed

    Elegbede, Adekunle; Diaconu, Silviu C; McNichols, Colton H L; Seu, Michelle; Rasko, Yvonne M; Grant, Michael P; Nam, Arthur J

    2018-03-08

    Three-dimensional printing of patient-specific models is being used in various aspects of craniomaxillofacial reconstruction. Printing is typically outsourced to off-site vendors, with the main disadvantages being increased costs and time for production. Office-based 3-dimensional printing has been proposed as a means to reduce costs and delays, but remains largely underused because of the perception among surgeons that it is futuristic, highly technical, and prohibitively expensive. The goal of this report is to demonstrate the feasibility and ease of incorporating in-office 3-dimensional printing into the standard workflow for facial fracture repair.Patients with complex mandible fractures requiring open repair were identified. Open-source software was used to create virtual 3-dimensional skeletal models of the, initial injury pattern, and then the ideally reduced fractures based on preoperative computed tomography (CT) scan images. The virtual 3-dimensional skeletal models were then printed in our office using a commercially available 3-dimensional printer and bioplastic filament. The 3-dimensional skeletal models were used as templates to bend and shape titanium plates that were subsequently used for intraoperative fixation.Average print time was 6 hours. Excluding the 1-time cost of the 3-dimensional printer of $2500, roughly the cost of a single commercially produced model, the average material cost to print 1 model mandible was $4.30. Postoperative CT imaging demonstrated precise, predicted reduction in all patients.Office-based 3-dimensional printing of skeletal models can be routinely used in repair of facial fractures in an efficient and cost-effective manner.

  15. Prosthetic replacement for proximal humeral fractures.

    PubMed

    Kontakis, George; Tosounidis, Theodoros; Galanakis, Ioannis; Megas, Panagiotis

    2008-12-01

    The ideal management of complex proximal humeral fractures continues to be debatable. Evolution of proximal humeral fracture management, during the past decade, led to the implementation of many innovations in surgical treatment. Even though the pendulum of treatment seems to swing towards new trends such as locked plating, hemiarthroplasty remains a valid and reliable option that serves the patient's needs well. Hemiarthroplasty is indicated for complex proximal humeral fractures in elderly patients with poor bone stock and when internal fixation is difficult or unreliable. Hemiarthroplasty provides a better result when it is performed early post-injury. Stem height, retroversion and tuberosity positioning are technical aspects of utmost importance. Additionally reverse total shoulder arthroplasty is an alternative new modality that can be used as a primary solution in selected patients with proximal humeral fracture treatment. Failed hemiarthroplasty and fracture sequelae can be successfully managed with reverse total shoulder arthroplasty. Individual decision-making and tailored treatment that takes into consideration the personality of the fracture and the patient's characteristics should be used.

  16. Managing the Pediatric Facial Fracture

    PubMed Central

    Cole, Patrick; Kaufman, Yoav; Hollier, Larry H.

    2009-01-01

    Facial fracture management is often complex and demanding, particularly within the pediatric population. Although facial fractures in this group are uncommon relative to their incidence in adult counterparts, a thorough understanding of issues relevant to pediatric facial fracture management is critical to optimal long-term success. Here, we discuss several issues germane to pediatric facial fractures and review significant factors in their evaluation, diagnosis, and management. PMID:22110800

  17. Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Ouraga, Zady; Guy, Nicolas; Pouya, Amade

    2018-05-01

    In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.

  18. Brittle fracture phase-field modeling of a short-rod specimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar, Ivana; Tupek, Michael R.; Bishop, Joseph E.

    2015-09-01

    Predictive simulation capabilities for modeling fracture evolution provide further insight into quantities of interest in comparison to experimental testing. Based on the variational approach to fracture, the advent of phase-field modeling achieves the goal to robustly model fracture for brittle materials and captures complex crack topologies in three dimensions.

  19. Outcomes of Internal Fixation in a Combat Environment

    DTIC Science & Technology

    2010-01-01

    analyzed. Forty-seven patients had internal fixation performed on 50 fractures in a combat theater hospital. Hip, forearm, and ankle fractures made up the...limited number of fracture patterns associated with a significant risk of failure if definitive treatment is delayed (4). Because of the limited...Injuries Hip, forearm, and ankle fractures made up the majority of internal fixation cases with 14 (28%), 14 (28%), and 10 TABLE 1 Mechanism of

  20. Non union of an epiphyseal fibular fracture in a pediatric patient.

    PubMed

    Mirmiran, Roya; Schuberth, John M

    2006-01-01

    There are few reports on delayed or nonunion in the pediatric ankle fracture. The authors present a case of a nonunion of a mid-epiphyseal fracture of the distal fibula, described as a type 7 pediatric fracture. Both the occurrence of this injury pattern and a nonunion has not been reported in the same patient. Operative reduction of the nonunion resulted in a satisfactory outcome.

  1. Exploring older adults' patterns and perceptions of exercise after hip fracture.

    PubMed

    Gorman, Erin; Chudyk, Anna M; Hoppmann, Christiane A; Hanson, Heather M; Guy, Pierre; Sims-Gould, Joanie; Ashe, Maureen C

    2013-01-01

    To identify exercise patterns and perceived barriers, enablers, and motivators to engaging in exercise for older adults following hip fracture. Telephone interviews were conducted with older adults (aged 62-97 y) within 1 year after hip fracture. Participants were asked about basic demographic information; level of mobility before hip fracture; current level of mobility; and barriers, enablers, and motivators to participating in exercise. A total of 32 older adults successfully recovering after hip fracture completed the telephone interviews. Participants reported few problems with their mobility, and all were engaging in exercise. There were few reported barriers to exercise; the most common were health-related concerns (pain, fatigue, illness, or injury). The most frequently reported enablers were intrinsic factors (determination, seeing improvements, and making exercise part of their daily routine); in particular, the most common motivator to exercise was recovery of function to improve mobility and complete daily and leisure activities. This study highlights the responses of a group of older adults recovering well after hip fracture. Older adults engage in exercise despite the potential limitations associated with a hip fracture. Participants' responses underscore the importance of intrinsic factors and suggest avenues for future investigation.

  2. Karst-on-a-chip: microfluidic studies of dissolution of a gypsum fracture

    NASA Astrophysics Data System (ADS)

    Szymczak, Piotr; Dutka, Filip; Osselin, Florian

    2017-04-01

    Dissolution of fractured and porous media introduces a positive feedback between fluid transport and chemical reactions at mineral surfaces leading to self-focusing of the flow in pronounced wormhole-like channels [1,2]. We study the flow-induced dissolution in a simple microfluidic setup, with a gypsum block inserted in between two polycarbonate plates, which is the simplest model of a fracture [3]. This gives us a unique opportunity to observe the evolution of the dissolution patterns in-situ and in real-time. By changing the flow rate and the aperture of the fracture we can scan a relatively wide range of Peclet and Damkohler numbers, characterizing the relative magnitude of advection, diffusion and reaction in the system. Additionally, as the aperture is increased, a transition is observed between the fractal and regular dissolution patterns. For small gaps, the patterns are ramified fractals. For larger gaps, the dissolution fingers are found to have regular forms of two different kinds: either linear (for high flow rates) or parabolic (for lower flow rates). The experiments are supplemented with numerical simulations and analytical modeling which allow for a better understanding of evolving flow patterns. In particular, we find the shapes and propagation velocities of dominant fingers for different widths of the system, flow rates and reaction rates. Finally, we comment on the link between the experimentally observed patterns and the natural karst systems - both cave conduits and epikarst solution pipes. [1] Hoefner, M. L. and Fogler, H. S. Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34, 45-54, 1988 [2] P. Szymczak, A. J. C. Ladd, Wormhole formation in dissolving fractures, J. Geophys. Res., 114, B06203, 2009 [3] F. Osselin, P. Kondratiuk, A Budek, O. Cybulski, P. Garstecki, P. Szymczak Microfluidic observation of the onset of reactive infiltration instability in an analog fracture, Geophys. Res. Lett., 43, 6907-6915, 2016

  3. Biomechanical investigation of impact induced rib fractures of a porcine infant surrogate model.

    PubMed

    Blackburne, William B; Waddell, J Neil; Swain, Michael V; Alves de Sousa, Ricardo J; Kieser, Jules A

    2016-09-01

    This study investigated the structural, biomechanical and fractographic features of rib fractures in a piglet model, to test the hypothesis that fist impact, apart from thoracic squeezing, may result in lateral costal fractures as observed in abused infants. A mechanical fist with an accelerometer was constructed and fixed to a custom jig. Twenty stillborn piglets in the supine position were impacted on the thoracic cage. The resultant force versus time curves from the accelerometer data showed a number of steps indicative of rib fracture. The correlation between impact force and number of fractures was statistically significant (Pearson׳s r=0.528). Of the fractures visualized, 15 completely pierced the parietal pleura of the thoracic wall, and 5 had butterfly fracture patterning. Scanning electron microscopy showed complete bone fractures, at the zone of impact, were normal to the axis of the ribs. Incomplete vertical fractures, with bifurcation, occurred on the periphery of the contact zone. This work suggests the mechanism of rib failure during a fist impact is typical of the transverse fracture pattern in the anterolateral region associated with cases of non-accidental rib injury. The impact events investigated have a velocity of ~2-3m/s, approximately 2×10(4) times faster than previous quasi-static axial and bending tests. While squeezing the infantile may induce buckle fractures in the anterior as well as posterior region of the highly flexible bones, a fist punch impact event may result in anterolateral transverse fractures. Hence, these findings suggest that the presence of anterolateral rib fractures may result from impact rather than manual compression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Management of distal humeral coronal shear fractures

    PubMed Central

    Yari, Shahram S; Bowers, Nathan L; Craig, Miguel A; Reichel, Lee M

    2015-01-01

    Coronal shear fractures of the distal humerus are rare, complex fractures that can be technically challenging to manage. They usually result from a low-energy fall and direct compression of the distal humerus by the radial head in a hyper-extended or semi-flexed elbow or from spontaneous reduction of a posterolateral subluxation or dislocation. Due to the small number of soft tissue attachments at this site, almost all of these fractures are displaced. The incidence of distal humeral coronal shear fractures is higher among women because of the higher rate of osteoporosis in women and the difference in carrying angle between men and women. Distal humeral coronal shear fractures may occur in isolation, may be part of a complex elbow injury, or may be associated with injuries proximal or distal to the elbow. An associated lateral collateral ligament injury is seen in up to 40% and an associated radial head fracture is seen in up to 30% of these fractures. Given the complex nature of distal humeral coronal shear fractures, there is preference for operative management. Operative fixation leads to stable anatomic reduction, restores articular congruity, and allows initiation of early range-of-motion movements in the majority of cases. Several surgical exposure and fixation techniques are available to reconstruct the articular surface following distal humeral coronal shear fractures. The lateral extensile approach and fixation with countersunk headless compression screws placed in an anterior-to-posterior fashion are commonly used. We have found a two-incision approach (direct anterior and lateral) that results in less soft tissue dissection and better outcomes than the lateral extensile approach in our experience. Stiffness, pain, articular incongruity, arthritis, and ulnohumeral instability may result if reduction is non-anatomic or if fixation fails. PMID:25984515

  5. Complex proximal humeral fractures: a prospective study of 22 cases treated using the "Bilboquet" device.

    PubMed

    Doursounian, L; Kilinc, A; Cherrier, B; Nourissat, G

    2011-02-01

    Despite recent improvements in surgical devices, complex proximal humerus fractures internal fixation still encounters frequent mechanical failures. The aim of this study was to confirm that the Bilboquet device (a design mimicking the cup-and-ball game) helps solving mechanical difficulties associated with these fractures internal fixation and to present a simplified version of the original surgical procedure. This non-randomised prospective study included 22 fractures in 22 patients, mean age: 70 years. According to the Neer classification there were three-part fractures in seven cases and four-part fractures in 15 cases. Fractures were all reduced and treated by internal fixation in a simplified surgical procedure using the Bilboquet device. Mean postoperative follow-up was 34 months. The mean Constant score was 66 and the weighted Constant score was 86. Mean active forward elevation was 108° and mean active external rotation was 28°. No per- or postoperative complications occurred. Initial reduction of the tuberosity was incomplete in four cases. Union was obtained in all fractures. There was no secondary tilting of the head, and no migration or pseudarthrosis of the tuberosities. Five patients developed postoperative avascular necrosis of the humeral head. The Bilboquet staple component provides a supporting platform for the entire humeral head area. This peripheral stabilization associated with tension band wiring explains the lack of secondary displacement in these cases. Although the Bilboquet device provides a solution to the mechanical problems of complex fractures of the proximal humerus, it does not solve the problem of secondary avascular necrosis of the humeral head, which occurred in 23% of the patients in this series and in 33% of patients in the four-part fractures subgroup. IV (non-randomised prospective study). Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  6. Modeling the fracture of ice sheets on parallel computers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waisman, Haim; Bell, Robin; Keyes, David

    2010-03-01

    The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves inmore » Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.« less

  7. Biotite percussion figures in naturally deformed mylonites

    NASA Astrophysics Data System (ADS)

    Xu, Shutong; Ji, Shouyuan

    1991-05-01

    Under experimental conditions, characteristic fracture patterns can be produced on cleavage plates on mica by using a blunt tool. If stress is applied rapidly by striking the surface in a controlled way, a pattern known as the "percussion figure" is produced. When the stress is applied by steady pressure on the tool, a different but complementary pattern of fracture is formed. In sum, these induced fractures constitute the "pressure figure". The orientation of each of these two sets of fractures with respect to the optical axial plane (OAP) of mica is different and therefore diagnostic of the manner in which they are produced. These patterns are distinct from those formed as a result of exsolution of Fe-Ti oxides which are commonly visible in sections of biotite cut parallel to the basal plane (001). A description is given of percussion figures produced by natural deformation in biotites from mylonite belts cutting the Proterozoic metasediments of the Feidong Group in eastern Anhui Province and another from Yunnan Province, China. The principal fracture of the natural percussion figure evidently is parallel to the (OAP) of the biotite and the other two sets are quite distinct as well, thus identifying it really as a percussion figure. Microscopic inclusions of sphene also are located along the crystallographically controlled fracture planes of the percussion figures. The data indicate that high strain rates would be required to form these natural percussion figures and that a special history of deformation must have affected the mylonites in which they occur. It is proposed that the homogeneous deformation of the mylonite in a ductile regime was complicated by strain hardening which led to episodes of abrupt stress itself relief (stick-slip) at rates of strain high enough to induce the formation of percussion figures in the biotites.

  8. [Diagnosis and management of zygomaticomaxillary complex fractures].

    PubMed

    Xu, Bing; Zheng, Jia-wei; Shi, Jun

    2006-12-01

    The zygornaticomaxillarx complex (ZMC) plays an important role in maintaining the structure and function of the face. The prominent convex shape of the ZMC makes it particularly vulnerable to trauma, resulting in a tetrapod fracture involving all four buttresses. ZMC fracture usually leads to local depressed deformities, even dysfunction such as limited mouth opening and diplopia. This article lescribes the etiology, clinical features, surgical approaches and postoperative complications of ZMC fractures based on our own clinical experiences and literature review. It is believed that lateral brow incision combined with intraoral incision can provide better access to ZMC fractures and avoid the disadvantages caused by coronal incision. This surgical approach leaves minimal scar and injury to the facial nerve, with better esthetic and functional outcomes. Supported by Shanghai Leading Academic Discipline Project (Grant No. Y0203).

  9. Edge Fracture in Complex Fluids.

    PubMed

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  10. Patient reported health related quality of life early outcomes at 12 months after surgically managed tibial plafond fracture.

    PubMed

    Bonato, Luke J; Edwards, Elton R; Gosling, Cameron McR; Hau, Raphael; Hofstee, Dirk Jan; Shuen, Alex; Gabbe, Belinda J

    2017-04-01

    Tibial plafond fractures represent a small but complex subset of fractures of the lower limb. The aim of this study was to describe the health related quality of life, pain and return to work outcomes 12 months following surgically managed tibial plafond fracture. The Victorian Orthopaedic Trauma Outcomes Registry (VOTOR) database was used to identify patients with tibial plafond fractures. All patients captured by VOTOR with a tibial plafond fracture between September 2003 and July 2009, were identified consecutively and comprised the initial cohort. The radiographs of all identified patients were classified using the AO/OTA fracture classification. A review of the included patient's medical records was performed. Data were collected on the injury event, management and complications. Outcomes at 12 months were prospectively collected by telephone interview and included return to work, a numerical rating scale for assessment of pain and the Short Form 12 (SF-12). There were 98 unilateral tibial plafond fractures; 91 fractures were managed operatively, 4 non-operatively and 3 underwent amputation. The 91 operatively managed patients were the focus of this study. A two-stage management approach, involving temporary external fixation, followed by definitive open reduction and internal fixation, was the most common operative treatment. The follow-up rate at 12 months was 70%. 57% had returned to work by 12 months post-injury, the median (IQR) pain score was 2 (0-5) and 27% reported moderate to severe persistent pain. Mean PCS-12 scores were significantly lower than Australian norms (p=0.99), 38.2 for males and 37.5 for females. The presence of persistent pain, loss of physical health and a low return to work rate highlights the profound impact of tibial plafond fractures on patients' lives. Although this study looked at the early 12 month results, it is expected these outcomes will continue to improve over time. Further studies, with larger patient numbers, must focus on how to improve not only the operative management of these fractures, but also patient's mental and overall physical health in the long term. Improved management techniques and early identification of injury patterns known to perform poorly may help long-term outcomes. Copyright © 2016. Published by Elsevier Ltd.

  11. Surgical management of pediatric mandibular trauma.

    PubMed

    Aldelaimi, Tahrir N; Khalil, Afrah A

    2013-05-01

    Surgical treatment of pediatric maxillofacial region is a complex and challenging task to maxillofacial surgeons. Incorrect and inappropriate treatment of trauma will end with a secondary deformity that is very difficult to correct. Twenty-eight children with mandibular trauma were seen at the maxillofacial surgery department of Ramadi Teaching Hospital during the period from July 2009 to June 2012. Age, sex, etiology, associated injuries, pattern of fractures, and treatments were reviewed. Road traffic accident was the most common cause for pediatric mandibular trauma. Significant advances have been made in the management of these injuries, decreasing the incidence of secondary deformities.

  12. Imaging of Dentoalveolar and Jaw Trauma.

    PubMed

    Alimohammadi, Reyhaneh

    2018-01-01

    Prior to the invention of cone beam CT, use of 2-D plain film imaging for trauma involving the mandible was common practice, with CT imaging opted for in cases of more complex situations, especially in the maxilla and related structures. Cone beam CT has emerged as a reasonable and reliable alternative considering radiation dosage, image quality, and comfort for the patient. This article presents an overview of the patterns of dental and maxillofacial fractures using conventional and advanced imaging techniques illustrated with multiple clinical examples selected from the author's oral and maxillofacial radiology practice database. Published by Elsevier Inc.

  13. Depressed Skull Fractures: A Pattern of Abusive Head Injury in Three Older Children

    ERIC Educational Resources Information Center

    Lee, Anselm C. W.; Ou, Yvonne; Fong, Dawson

    2003-01-01

    Objective: To describe a pattern of abusive head injury in a series of children older than 4 years of age. Methods: A hospital chart review of abused children with skull fractures from 1999 to 2001 was carried out. The clinical features, social background, and subsequent outcome and management are described. Results: An 11-year-old girl and a pair…

  14. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and Spiegelman, M., "A simple model of reaction induced cracking applied to serpentinization and carbonation of peridotite," Earth Planet. Sci. Lett. 291, Issues 1-4, 2010, pp. 215 - 227. [4] Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., "Controls on rock weathering rates by reaction-induced hierarchial fracturing," Earth Planet. Sci. Lett. 275, 2008, pp. 364 - 369.

  15. Continuum mechanics analysis of fracture progression in the vitrified cryoprotective agent DP6

    PubMed Central

    Steif, Paul S.; Palastro, Matthew C.; Rabin, Yoed

    2008-01-01

    As part of an ongoing effort to study the continuum mechanics effects associated with cryopreservation, the current report focuses on the prediction of fracture formation in cryoprotective agents. Fractures had been previously observed in 1 mℓ samples of the cryoprotective agent cocktail DP6, contained in a standard 15 mℓ glass vial, and subjected to various cooling rates. These experimental observations were obtained by means of a cryomacroscope, which has been recently presented by the current research team. High and low cooling rates were found to produce very distinct patterns of cracking. The current study seeks to explain the observed patterns on the basis of stresses predicted from finite element analysis, which relies on a simple viscoelastic constitutive model and on estimates of the critical stress for cracking. The current study demonstrates that the stress which results in instantaneous fracture at low cooling rates is consistent with the stress to initiate fracture at high cooling rate. This consistency supports the credibility of the proposed constitutive model and analysis, and the unified criterion for fracturing, that is, a critical stress threshold. PMID:18412493

  16. Fracture pattern interpretation in the skull: differentiating blunt force from ballistics trauma using concentric fractures.

    PubMed

    Hart, Gina O

    2005-11-01

    There have been several anthropological studies on trauma analysis in recent literature, but few studies have focused on the differences between the three mechanisms of trauma (sharp force trauma, blunt force trauma and ballistics trauma). The hypothesis of this study is that blunt force and ballistics fracture patterns in the skull can be differentiated using concentric fractures. Two-hundred and eleven injuries from skulls exhibiting concentric fractures were examined to determine if the mechanism of trauma could be determined by beveling direction. Fractures occurring in buttressed and non-buttressed regions were examined separately. Contingency tables and Pearson's Chi-Square were used to evaluate the relationship between the two variables (the mechanism of trauma and the direction of beveling), while Pearson's r correlation was used to determine the strength of the relationship. Contingency tables and Chi-square tests among the entire sample, the buttressed areas, and the non-buttressed areas led to the null hypothesis (no relationship) to be rejected. Pearson's r correlation indicated that the relationship between the variables studied is greater than chance allocation.

  17. When are CT angiograms indicated for patients with lower extremity fractures? A review of 275 extremities.

    PubMed

    Monazzam, Shafagh; Goodell, Parker B; Salcedo, Edgardo S; Nelson, Sandahl H; Wolinsky, Philip R

    2017-01-01

    Computed tomography angiogram (CTA) is frequently utilized to detect vascular injuries even without examination findings indicating a vascular injury. We had the following hypotheses: (1) a CTA for lower extremity fractures with no clinical signs of a vascular injury is not indicated, and (2) fracture location and pattern would correlate with the risk of a vascular injury. A retrospective review was conducted on patients who had an acute lower extremity fracture(s) and a CTA. Their charts were reviewed for multiple factors including the presence or absence of hard or soft signs of a vascular injury, soft tissue status, and fracture location/pattern. Every CTA radiology report was reviewed and any vascular intervention or amputation resulting from a vascular injury was recorded. Statistical analysis was performed. Of the 275 CTAs of fractured extremities reviewed, 80 (29%) had a positive CTA finding and 16 (6%) required treatment. A total of 109 (40%) of the extremities had no hard or soft signs; all had normal CTAs. Having at least one hard or soft sign was a significant risk factor for having a positive CTA. An open fracture, isolated proximal third fibula fracture, distal and shaft tibia fractures, and the presence of multiple fractures in one extremity were also associated with an increased risk for having a positive CTA. We found no evidence to support the routine use of CTAs to evaluate lower extremity fractures unless at least one hard or soft sign is present. The presence of an open fracture, distal tibia or tibial shaft fractures, multiple fractures in one extremity, and/or an isolated proximal third fibula fracture increases the risk of having a finding consistent with a vascular injury on a CTA. Only 6% of the cases required treatment, and all of them had diminished or absent distal pulses on presentation. Diagnostic test, level III.

  18. Ice shelf fracture parameterization in an ice sheet model

    NASA Astrophysics Data System (ADS)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  19. The use of circular external fixators in the management of lower limb trauma in Dublin: a single surgeon's 20-year experience.

    PubMed

    O'Neill, B J; Fox, C M; Molloy, A P; O'hEireamhoin, S; Moore, D P

    2016-02-01

    It has been estimated that approximately 520,000 injury presentations are made to Irish accident and emergency departments each year. Fractures account for 20 % of these injuries. Circular external fixators (frames) have been shown to be a safe and effective method of treatment for long bone fractures where internal fixation is impossible or in-advisable. We present the outcomes of all frames applied at our institution for stabilisation of acute fractures over a 20-year period. We retrospectively reviewed a prospectively compiled database of all frames applied in our institution and identified all frames which were applied for acute lower limb trauma. We identified 68 fractures in 63 patients. There were 11 femoral fractures and 57 tibial fractures. All fractures were classified using the AO Classification system, and most fractures were Type C fractures. We used an Ilizarov frame for 53 fractures and a Taylor Spatial Frame for 15 fractures. The mean time in frame was 365 days for a femoral fracture and 230 days for a tibial fracture. There were five tibial non-unions giving an overall union rate of 93 %. Factors associated with non-union included high-energy trauma and cigarette smoking. The vast majority of lower limb fractures can be treated using 'conventional' methods. Complex fractures which are not amenable to open reduction and internal fixation or cast immobilisation can be treated in a frame with excellent results. The paucity of published reports regarding the use of frames for complex trauma reflects the under-utilisation of the technique.

  20. Dry Volume Fracturing Simulation of Shale Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng

    2017-11-01

    Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.

  1. An integrated profile of natural fractures in gas-bearing shale complex (Pomerania, Poland): based on structural profiling of oriented core and borehole logging data.

    NASA Astrophysics Data System (ADS)

    Bobek, Kinga; Jarosiński, Marek; Stadtmuller, Marek; Pachytel, Radomir; Lis-Śledziona, Anita

    2016-04-01

    Natural fractures in gas-bearing shales has significant impact on reservoir stimulation and increase of exploitation. Density of natural fractures and their orientation in respect to the maximum horizontal stress are crucial for propagation of technological hydraulic fractures. Having access to continuous borehole core profile and modern geophysical logging from several wells in the Pomeranian part of the Early Paleozoic Baltic Basin (Poland) we were able to compare the consistency of structural interpretation of several data sets. Although, final aim of our research is to optimize the method of fracture network reconstruction on a reservoir scale, at a recent stage we were focused on quantitative characterization of tectonic structures in a direct vicinity of boreholes. The data we have, cover several hundred meters long profiles of boreholes from the Ordovician and Silurian shale complexes. Combining different sets of data we broaden the scale of observation from borehole core (5 cm radius), through XRMI scan of a borehole wall (10 cm radius), up to penetration of a signal of an acoustic dipole logging (several tens of cm range). At the borehole core we examined the natural tectonic structures and mechanically significant features, like: mineral veins, fractured veins, bare fractures, slickensides, fault zones, stylolites, bedding plane and mechanically contrasting layers. We have also noticed drilling-induced features like centerline fractures and core disking, controlled by a recent tectonic stress. We have measured the orientation of fractures, their size, aperture and spacing and also describe the character of veins and tried to determine the stress regime responsible for fault slippage and fracture propagation. Wide range of analyzed features allowed us to discriminate fracture sets and reconstruct tectonic evolution of the complex. The most typical for analyzed shale complexes are steep and vertical strata-bound fractures that create an orthogonal joint system, which is locally disturbed by small-scale faults and fractures, associated with them. For regular joints, observed on borehole core, we have calculated variation of mean height and area and volume of mineralization for veins. Fracture density variation reveals good correlation with lithological shale formations which are comparable with Consistent Mechanical Units differentiated based on detailed lithological profiling and geophysical data (see Pachytel et al., this issue).We have also proposed a new method of a rose diagram construction presenting strike of fractures taking into account their size and angular error bar in strike determination. Each fracture was weighted with its length or aperture and an angular error was included by blurring the less credible records. This allowed for more precise adjustment of fracture sets direction in comparison to conventional diagrams without weighting procedure. Recently, we are processing acoustic dipole logs for anisotropy analyses aiming in comparison with density of fracture sets. Our study, which is conducted in the frame of ShaleMech Project (within Blue Gas Program) is in progress, thus the presented results should be considered as preliminary.

  2. Fracture performance of computer-aided manufactured zirconia and alloy crowns.

    PubMed

    Rosentritt, Martin; Behr, Michael; Thaller, Christian; Rudolph, Heike; Feilzer, Albert

    2009-09-01

    To compare the fracture resistance and fracture performance of CAD/CAM zirconia and alloy crowns. One electrophoretic deposition alumina ceramic (Wolceram, Wolceram) and 4 zirconia-based systems (ce.novation, ce.novation; Cercon, DeguDent; Digizon, Amann Girrbach; and Lava, 3M ESPE) were investigated. A porcelain-fused-to-metal method (Academy, Bego Medical) was used in either conventional casting technique or laser sintering. Sixteen crowns of each material were fabricated and veneered with glass-ceramic as recommended by the manufacturers. Crown and root dimensions were measured, and 8 crowns of each system were adhesively bonded or conventionally cemented. After the crowns were artificially aged in a simulated oral environment (1,200,000 mechanical loads with 50 N; 3,000 thermal cycles with distilled water between 5 degrees C and 55 degrees C; 2 minutes per cycle), fracture resistance and fracture patterns were determined and defect sizes investigated. The fracture force varied between 1,111 N and 2,038 N for conventional cementation and between 1,181 N and 2,295 N for adhesive bonding. No significant differences were found between adhesive and conventional cementations. Fracture patterns presented mostly as a chipping of the veneering, in single cases as a fracture of the core, and in 1 case as a fracture of the tooth. Crown material and cementation do not have any significant influence on the fracture force and fracture performance of all-ceramic and metal-based crowns. Therefore, it may be concluded that adhesive bonding is not necessary for the application of high-strength ceramics.

  3. Injury Characteristics of Low-Energy Lisfranc Injuries Compared With High-Energy Injuries.

    PubMed

    Renninger, Christopher H; Cochran, Grant; Tompane, Trevor; Bellamy, Joseph; Kuhn, Kevin

    2017-09-01

    Lisfranc injuries result from high- and low-energy mechanisms though the literature has been more focused on high-energy mechanisms. A comparison of high-energy (HE) and low-energy (LE) injury patterns is lacking. The objective of this study was to report injury patterns in LE Lisfranc joint injuries and compare them to HE injury patterns. Operative Lisfranc injuries were identified over a 5-year period. Patient demographics, mechanism of injury, injury pattern, associated injuries, missed diagnoses, clinical course, and imaging studies were reviewed and compared. HE mechanism was defined as motor vehicle crash, motorcycle crash, direct crush, and fall from greater than 4 feet and LE mechanism as athletic activity, ground level twisting, or fall from less than 4 feet. Thirty-two HE and 48 LE cases were identified with 19.3 months of average follow-up. There were no differences in demographics or missed diagnosis frequency (21% HE vs 18% LE). Time to seek care was not significantly different. HE injuries were more likely to have concomitant nonfoot fractures (37% vs 6%), concomitant foot fractures (78% vs 4%), cuboid fractures (31% vs 6%), metatarsal base fractures (84% vs 29%), displaced intra-articular fractures (59% vs 4%), and involvement of all 5 rays (23% vs 6%). LE injuries were more commonly ligamentous (68% vs 16%), with fewer rays involved (2.7 vs 4.1). LE mechanisms were a more common cause of Lisfranc joint injury in this cohort. These mechanisms generally resulted in an isolated, primarily ligamentous injury sparing the lateral column. Both types had high rates of missed injury that could result in delayed treatment. Differences in injury patterns could help direct future research to optimize treatment algorithms. Level III, comparative series.

  4. Microfluidics experiments of dissolution in a fracture. Influence of Damköhler and Péclet numbers, and of the geometry on the dissolution pattern

    NASA Astrophysics Data System (ADS)

    Osselin, Florian; Budek, Agnieszka; Cybulski, Olgierd; Szymczak, Piotr

    2015-04-01

    Dissolution of natural rocks is an ever present phenomenon in nature. The shaping of natural landscapes by the dissolution of limestone gives for example birth to exceptional features like karsts. Currently dissolution is also at the heart of key research topics as Carbon Capture and Storage or Enhanced Oil Recovery. The basics principles of dissolution are well-known, however, the sheer amount of different patterns arising from these mechanisms and the strong dependency on parameters such as pore network, chemical composition and flow rate, make it particularly difficult to study theoretically and experimentally. In this study we present a microfluidic experiment simulating the behavior of a dissolving fluid in a fracture. The experiments consist of a chip of gyspum inserted between two polycarbonate plates and subjected to a constant flow rate of pure water. The point in using microfluidics is that it allows a complete control on the experimental parameters such as geometry and chemical composition of the porous medium, flow rate, fracture aperture, roughness of the fracture walls, and an in situ observation of the geometry evolution which is impossible with 3D natural rocks. Thanks to our experiments we have been able to cover the whole range of dissolution patterns, from wormholing or DLA fingering to homogeneous dissolution, by changing Péclet and Damköhler numbers. Moreover, we have been able to tweak the geometry of our artificial fracture, inserting finger seeds or non-dissolvable obstacles. The comparison of the experimental patterns with the numerical dissolution code dissol (Szymczak and Ladd 2011) has then shown a very good correlation of the patterns, giving confidence in both experiments and modeling.

  5. Facial fractures in children.

    PubMed

    Boyette, Jennings R

    2014-10-01

    Facial trauma in children differs from adults. The growing facial skeleton presents several challenges to the reconstructive surgeon. A thorough understanding of the patterns of facial growth and development is needed to form an individualized treatment strategy. A proper diagnosis must be made and treatment options weighed against the risk of causing further harm to facial development. This article focuses on the management of facial fractures in children. Discussed are common fracture patterns based on the development of the facial structure, initial management, diagnostic strategies, new concepts and old controversies regarding radiologic examinations, conservative versus operative intervention, risks of growth impairment, and resorbable fixation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The use of Electronic Speckle Pattern Interferometry (ESPI) in the crack propagation analysis of epoxy resins

    NASA Astrophysics Data System (ADS)

    Herbert, D. P.; Al-Hassani, A. H. M.; Richardson, M. O. W.

    The ESPI (electronic speckle pattern interferometry) technique at high magnification levels is demonstrated to be of considerable value in interpreting the fracture behaviour of epoxy resins. The fracture toughness of powder coating system at different thicknesses has been measured using a TDCB (tapered double cantilever beam) technique and the deformation zone at the tip of the moving crack monitored. Initial indications are that a mechanistic changeover occurs at a critical bond (coating) thickness and that this is synonymous with the occurence of a fracture toughness maximum, which in turn is associated with a deformation zone of specific diameter.

  7. Fracture Reactivation in Chemically Reactive Rock Systems

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2) variations in the degree of fracture cement infill in fractures of same orientation, allowing fractures to reactivate at times when adjacent, more cemented fractures remain dormant. The observed interaction of chemical and mechanical fracture growth and sealing processes in this chemically reactive and heavily deformed rock unit results in a complex fracture network geometry not generally observed in less chemically reactive, shallower crustal environments.

  8. Intra- and interobserver agreement in the classification and treatment of distal third clavicle fractures.

    PubMed

    Bishop, Julie Y; Jones, Grant L; Lewis, Brian; Pedroza, Angela

    2015-04-01

    In treatment of distal third clavicle fractures, the Neer classification system, based on the location of the fracture in relation to the coracoclavicular ligaments, has traditionally been used to determine fracture pattern stability. To determine the intra- and interobserver reliability in the classification of distal third clavicle fractures via standard plain radiographs and the intra- and interobserver agreement in the preferred treatment of these fractures. Cohort study (Diagnosis); Level of evidence, 3. Thirty radiographs of distal clavicle fractures were randomly selected from patients treated for distal clavicle fractures between 2006 and 2011. The radiographs were distributed to 22 shoulder/sports medicine fellowship-trained orthopaedic surgeons. Fourteen surgeons responded and took part in the study. The evaluators were asked to measure the size of the distal fragment, classify the fracture pattern as stable or unstable, assign the Neer classification, and recommend operative versus nonoperative treatment. The radiographs were reordered and redistributed 3 months later. Inter- and intrarater agreement was determined for the distal fragment size, stability of the fracture, Neer classification, and decision to operate. Single variable logistic regression was performed to determine what factors could most accurately predict the decision for surgery. Interrater agreement was fair for distal fragment size, moderate for stability, fair for Neer classification, slight for type IIB and III fractures, and moderate for treatment approach. Intrarater agreement was moderate for distal fragment size categories (κ = 0.50, P < .001) and Neer classification (κ = 0.42, P < .001) and substantial for stable fracture (κ = 0.65, P < .001) and decision to operate (κ = 0.65, P < .001). Fracture stability was the best predictor of treatment, with 89% accuracy (P < .001). Fracture stability determination and the decision to operate had the highest interobserver agreement. Fracture stability was the key determinant of treatment, rather than the Neer classification system or the size of the distal fragment. © 2015 The Author(s).

  9. A new failure mechanism in thin film by collaborative fracture and delamination: Interacting duos of cracks

    NASA Astrophysics Data System (ADS)

    Marthelot, Joël; Bico, José; Melo, Francisco; Roman, Benoît

    2015-11-01

    When a thin film moderately adherent to a substrate is subjected to residual stress, the cooperation between fracture and delamination leads to unusual fracture patterns, such as spirals, alleys of crescents and various types of strips, all characterized by a robust characteristic length scale. We focus on the propagation of a duo of cracks: two fractures in the film connected by a delamination front and progressively detaching a strip. We show experimentally that the system selects an equilibrium width on the order of 25 times the thickness of the coating and independent of both fracture and adhesion energies. We investigate numerically the selection of the width and the condition for propagation by considering Griffith's criterion and the principle of local symmetry. In addition, we propose a simplified model based on the criterion of maximum of energy release rate, which provides insights of the physical mechanisms leading to these regular patterns, and predicts the effect of material properties on the selected width of the detaching strip.

  10. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multistage-hydraulic-fracture treatments are currently the most-established method for effectively stimulating and enabling economic development of gas-bearing organic-rich shale formations. Fracture cleanup in the stimulated reservoir volume (SRV) is critical to stimulation effectiveness and long-term well performance. But, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls to less than expectations. A systematic study of the factors that hinder fracture-fluid cleanup in shale formations can help optimize fracture treatments and better quantify long-term volumes of produced water and gas. Fracture-fluid cleanup is a complex process influenced by mutliphase flow through porousmore » media (relative permeability hysteresis, capillary pressure), reservoir-rock and -fluid properties, fracture-fluid properties, proppant placement, fracture-treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best and most-practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent effect on fracture-fluid cleanup and well deliverability. Here, a 3D, two-phase, dual-porosity model was used to investigate the effect of mutliphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir-rock compaction, gas slippage, and gas desorption on fracture-fluid cleanup and well performance in Marcellus Shale. Our findings have shed light on the factors that substantially constrain efficient fracture-fluid cleanup in gas shales, and we have provided guidelines for improved fracture-treatment designs and water management.« less

  11. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE PAGES

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; ...

    2017-04-01

    Horizontal wells combined with successful multistage-hydraulic-fracture treatments are currently the most-established method for effectively stimulating and enabling economic development of gas-bearing organic-rich shale formations. Fracture cleanup in the stimulated reservoir volume (SRV) is critical to stimulation effectiveness and long-term well performance. But, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls to less than expectations. A systematic study of the factors that hinder fracture-fluid cleanup in shale formations can help optimize fracture treatments and better quantify long-term volumes of produced water and gas. Fracture-fluid cleanup is a complex process influenced by mutliphase flow through porousmore » media (relative permeability hysteresis, capillary pressure), reservoir-rock and -fluid properties, fracture-fluid properties, proppant placement, fracture-treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best and most-practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent effect on fracture-fluid cleanup and well deliverability. Here, a 3D, two-phase, dual-porosity model was used to investigate the effect of mutliphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir-rock compaction, gas slippage, and gas desorption on fracture-fluid cleanup and well performance in Marcellus Shale. Our findings have shed light on the factors that substantially constrain efficient fracture-fluid cleanup in gas shales, and we have provided guidelines for improved fracture-treatment designs and water management.« less

  12. Computed tomography image-guided surgery in complex acetabular fractures.

    PubMed

    Brown, G A; Willis, M C; Firoozbakhsh, K; Barmada, A; Tessman, C L; Montgomery, A

    2000-01-01

    Eleven complex acetabular fractures in 10 patients were treated by open reduction with internal fixation incorporating computed tomography image guided software intraoperatively. Each of the implants placed under image guidance was found to be accurate and without penetration of the pelvis or joint space. The setup time for the system was minimal. Accuracy in the range of 1 mm was found when registration was precise (eight cases) and was in the range of 3.5 mm when registration was only approximate (three cases). Added benefits included reduced intraoperative fluoroscopic time, less need for more extensive dissection, and obviation of additional surgical approaches in some cases. Compared with a series of similar fractures treated before this image guided series, the reduction in operative time was significant. For patients with complex anterior and posterior combined fractures, the average operation times with and without application of three-dimensional imaging technique were, respectively, 5 hours 15 minutes and 6 hours 14 minutes, revealing 16% less operative time for those who had surgery using image guidance. In the single column fracture group, the operation time for those with three-dimensional imaging application, was 2 hours 58 minutes and for those with traditional surgery, 3 hours 42 minutes, indicating 20% less operative time for those with imaging modality. Intraoperative computed tomography guided imagery was found to be an accurate and suitable method for use in the operative treatment of complex acetabular fractures with substantial displacement.

  13. The treatment of complex proximal humeral fractures: analysis of the results of 55 cases treated with PHILOS plate.

    PubMed

    Fattoretto, D; Borgo, A; Iacobellis, C

    2016-08-01

    Complex proximal humerus fractures are often difficult to treat. Their frequency is high, especially in the elderly, and their treatment is still controversial. The aim of this study was to analyze the clinical and radiological results achieved by patients with complex proximal humerus fractures, treated with PHILOS plate only. A cohort of 55 patients was selected. The mean age was 63.4 (range 33-89), while the mean follow-up time was 21.5 months (range 6-75). Clinical outcome was evaluated with the "Constant-Murley shoulder score." All the informations about the presence of complications were gathered, and radiological images were used to calculate the head-shaft angle. The overall mean Constant score was 61.93 ± 18.59, the Individual CS was 70 ± 20 % and the Relative CS was 83 ± 23 %. No significant differences were found between fractures Neer 3 and Neer 4 and between the surgical approaches (delta-split vs. delto-pectoral). Six patients had a fracture with dislocation, seven patients (12.7 %) had complications while in four patients a head-shaft angle beyond the normal range was found. Osteosynthesis with PHILOS plate is stable in the greater part of the cases, and it allows an earlier rehabilitation and so a good functional result, which could be compromised by a prolonged immobilization. Therefore, PHILOS plate is a good option for the treatment of complex proximal humerus fractures.

  14. Broken bones: common pediatric fractures--part I.

    PubMed

    Hart, Erin S; Albright, Maurice B; Rebello, Gleeson N; Grottkau, Brian E

    2006-01-01

    Musculoskeletal injuries are one of the most frequently encountered problems in pediatric practice, with fractures accounting for a surprisingly large percentage of these injuries. A fracture occurs when bone is subjected to more energy than it can absorb. Pediatric healthcare providers must have a good understanding of normal bone growth and development and must recognize common mechanisms of injury and fracture patterns seen in children. Nearly 20% of children who present with an injury have a fracture, and it is estimated that 42% of boys and 27% of girls will sustain a fracture during childhood (Wilkins, 1996). The immature skeleton has several unique properties that directly affect the management of fractures in children.

  15. Thermal drawdown-induced flow channeling in a single fracture in EGS

    DOE PAGES

    Guo, Bin; Fu, Pengcheng; Hao, Yue; ...

    2016-01-28

    Here, the evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution causes non-uniform temperature decrease in the rock body, which makes the flow increasingly concentrated into some preferential paths through the action of thermal stress. This mechanism may cause rapid heat production deterioration of EGS reservoirs. In this study, we investigated the effects of aperture heterogeneity on flow pattern evolution in a single fracture in a low-permeability crystalline formation. We developedmore » a numerical model on the platform of GEOS to simulate the coupled thermo-hydro-mechanical processes in a penny-shaped fracture accessed via an injection well and a production well. We find that aperture heterogeneity generally exacerbates flow channeling and reservoir performance generally decreases with longer correlation length of aperture field. The expected production life is highly variable (5 years to beyond 30 years) when the aperture correlation length is longer than 1/5 of the well distance, whereas a heterogeneous fracture behaves similar to a homogeneous one when the correlation length is much shorter than the well distance. Besides, the mean production life decreases with greater aperture standard deviation only when the correlation length is relatively long. Although flow channeling is inevitable, initial aperture fields and well locations that enable tortuous preferential paths tend to deliver long heat production lives.« less

  16. Fracture spacing in tensile brittle layers adhering to a rigid substrate

    NASA Astrophysics Data System (ADS)

    Lazarus, Véronique

    2017-01-01

    A natural question arising when observing crack networks in brittle layers such as, e.g., paints, muds, skins, pottery glazes, coatings, ceramics, is what determines the distance between cracks. This apparently simple question received a wealth of more or less complex and appropriate answers, but no consensus has emerged. Here, we show that the cracks interact mutually as soon as the spacing between them is smaller than ten times the thickness of the layer. Then, a simple Griffith-type balance between the elastic deformation energy and the fracture bulk and debonding costs captures a broad number of observations, going from the square-root or linear increase of the spacing with the thickness, to its decrease with loading until saturation. The adhesion strength is identified as playing a key role in these behaviour changes. As illustration, we show how the model can be applied to study the influence of the layer thickness on crack patterns. We believe that the versatility of the approach should permit wide applicability, from geosciences to engineering.

  17. Maxillofacial injuries due to work-related accidents in the North West of Italy.

    PubMed

    Roccia, Fabio; Boffano, Paolo; Bianchi, Francesca Antonella; Gerbino, Giovanni

    2013-09-01

    The aim of this study was to assess the incidence and patterns of work-related maxillofacial injuries, identifying worker categories with a high risk of injury. From a systematic computer-assisted database that has continuously recorded patients hospitalized with maxillofacial fractures, only patients with work-related injuries were considered. Occupation, mechanism of injury, and demographic and clinical data were analyzed. Work-related facial injuries represented the fifth most common cause of injury, with a percentage of 6.3 %. Maxillofacial fractures were most often seen in construction workers (37.9 %). The middle third was involved in 67 % of the cases; the mandible was the most frequently injured site. Work-related maxillofacial trauma is rare, but it is often complex and challenging as Facial Injury Severity Scale values show. In agreement with the few published reports, construction workers, together with farm and forestry workers, are at the highest risk of injuries, mainly because of struck by a thrown, projected, or falling object.

  18. Infiltration pattern in a regolith-fractured bedrock profile: field observation of a dye stain pattern

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul

    2006-02-01

    We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.

  19. Measurements of radiated elastic wave energy from dynamic tensile cracks

    NASA Technical Reports Server (NTRS)

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  20. An overview of geophysical technologies appropriate for characterization and monitoring at fractured-rock sites

    EPA Science Inventory

    Geophysical methods are used increasingly for characterization and monitoring at remediation sites in fractured-rock aquifers. The complex heterogeneity of fractured rock poses enormous challenges to groundwater remediation professionals, and new methods are needed to cost-effect...

  1. Three-dimensional computer simulation of radiostereometric analysis (RSA) in distal radius fractures.

    PubMed

    Madanat, Rami; Moritz, Niko; Aro, Hannu T

    2007-01-01

    Physical phantom models have conventionally been used to determine the accuracy and precision of radiostereometric analysis (RSA) in various orthopaedic applications. Using a phantom model of a fracture of the distal radius it has previously been shown that RSA is a highly accurate and precise method for measuring both translation and rotation in three-dimensions (3-D). The main shortcoming of a physical phantom model is its inability to mimic complex 3-D motion. The goal of this study was to create a realistic computer model for preoperative planning of RSA studies and to test the accuracy of RSA in measuring complex movements in fractures of the distal radius using this new model. The 3-D computer model was created from a set of tomographic scans. The simulation of the radiographic imaging was performed using ray-tracing software (POV-Ray). RSA measurements were performed according to standard protocol. Using a two-part fracture model (AO/ASIF type A2), it was found that for simple movements in one axis, translations in the range of 25microm-2mm could be measured with an accuracy of +/-2microm. Rotations ranging from 16 degrees to 2 degrees could be measured with an accuracy of +/-0.015 degrees . Using a three-part fracture model the corresponding values of accuracy were found to be +/-4microm and +/-0.031 degrees for translation and rotation, respectively. For complex 3-D motion in a three-part fracture model (AO/ASIF type C1) the accuracy was +/-6microm for translation and +/-0.120 degrees for rotation. The use of 3-D computer modelling can provide a method for preoperative planning of RSA studies in complex fractures of the distal radius and in other clinical situations in which the RSA method is applicable.

  2. An Integrated Tensorial Approach for Quantifying Porous, Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Healy, David; Rizzo, Roberto; Harland, Sophie; Farrell, Natalie; Browning, John; Meredith, Phil; Mitchell, Tom; Bubeck, Alodie; Walker, Richard

    2017-04-01

    The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, and larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. Based on previously published work (Oda, Cowin, Sayers & Kachanov) this presentation describes an integrated tensorial approach to quantifying fracture networks and predicting the key properties of fractured rock: permeability and elasticity (and in turn, seismic velocities). Each of these properties can be represented as tensors, and these entities capture the essential 'directionality', or anisotropy of the property. In structural geology, we are familiar with using tensors for stress and strain, where these concepts incorporate volume averaging of many forces (in the case of the stress tensor), or many displacements (for the strain tensor), to produce more tractable and more computationally efficient quantities. It is conceptually attractive to formulate both the structure (the fracture network) and the structure-dependent properties (permeability, elasticity) in a consistent way with tensors of 2nd and 4th rank, as appropriate. Examples are provided to highlight the interdependence of the property tensors with the geometry of the fracture network. The fabric tensor (or orientation tensor of Scheidegger, Woodcock) describes the orientation distribution of fractures in the network. The crack tensor combines the fabric tensor (orientation distribution) with information about the fracture density and fracture size distribution. Changes to the fracture network, manifested in the values of the fabric and crack tensors, translate into changes in predicted permeability and elasticity (seismic velocity). Conversely, this implies that measured changes in any of the in situ properties or responses in the subsurface (e.g. permeability, seismic velocity) could be used to predict, or at least constrain, the fracture network. Explicitly linking the fracture network geometry to the permeability and elasticity (seismic velocity) through a tensorial formulation provides an exciting and efficient alternative to existing approaches.

  3. River capture controlling changes in the drainage pattern and river slope

    NASA Astrophysics Data System (ADS)

    Castelltort, Xavier; Colombo, Ferran

    2016-04-01

    The crystalline block of Les Guilleries, in the northeast of the Iberian Peninsula, is part of the Hercynian basement over which Palaeogene materials of the Ebro basinwere deposited . This massif is affected by a family of basement fractures of NW-SE direction which continue under the Paleogene cover. This is evident in the areas of contact between the two units. One of these areas affected by fractures was used by the primitive river Ter to transition, through a process of river capture, from the crystal unit Guilleries, with a rectangular drainage pattern, toward the sedimentary cover of the Ebro basin, with a meander drainage pattern. The fractured material that the river Ter used to deepen against the dip of the layers is more evident due to it being rigid and resistant to erosion, the Sandstones of Folgueroles Fm. The use of fractures resulted in a course of the river Ter that can be divided into three subparallel reaches with a shape of Z, which can be described as structural pseudomeanders. The change in the drainage pattern of the river between its passage accross the basement and the cover can never be the product of a process of antecedence or superimposition as has been proclaimed earlier. The rectangular pattern fits the structure of the crystalline massif. The meandering pattern on the cover is due to the difficulty of flowing through the Sandstones of Folgueroles Fm, and to the subsequent pressure loss affecting the current of the river that moves upstream beyond the Bellmunt Anticline. Up to the point where the pattern meander is conserved, river slope is below 1%. Upstream, the river slope increases significantly due to the adaptation of the river to a new layout.

  4. [APPLICATION OF BUTTERFLY SHAPED LOCKING COMPRESSION PLATE IN COMPLEX DISTAL RADIUS FRACTURES].

    PubMed

    Jiang, Zongyuan; Ma, Tao; Xia, Jiang; Hu, Caizhi; Xu, Lei

    2014-06-01

    To investigate the effectiveness of butterfly shaped locking compression plate for the treatment of complex distal radius fractures. Between June 2011 and January 2013, 20 cases of complex distal radius fractures were treated with butterfly shaped locking compression plate fixation. There were 11 males and 9 females with an average age of 54 years (range, 25-75 years). Injury was caused by falling in 10 cases, by traffic accident in 7 cases, and by falling from height in 3 cases. All of fractures were closed. According to AO classification system, there were 8 cases of type C1, 8 cases of type C2, and 4 cases of type C3. Of them, 9 cases had radial styloid process fracture, 4 cases had sigmoid notch fracture, and 7 cases had both radial styloid process fracture and sigmoid notch fracture. The mean interval between injury and operation was 5.2 days (range, 3-15 days). All incisions healed by first intention; no complications of infection and necrosis occurred. All cases were followed up 14 months on average (range, 10-22 months). All factures healed after 9.3 weeks on average (range, 6-11 weeks). No complications such as displacement of fracture, joint surface subsidence, shortening of the radius, and carpal tunnel syndrome were found during follow-up. At last follow-up, the mean palmar tilt angle was 10.2° (range, 7-15°), and the mean ulnar deviation angle was 21.8° (range, 17-24°). The mean range of motion of the wrist was 45.3° (range, 35-68°) in dorsal extension, 53.5° (range, 40-78°) in palmar flexion, 19.8° (range, 12-27°) in radial inclination, 26.6° (range, 18-31°) in ulnar inclination, 70.2° (range, 45-90°) in pronation, and 68.4° (range, 25-88°) in supination. According to the Dienst scoring system, the results were excellent in 8 cases, good in 10 cases, and fair in 2 cases, and the excellent and good rate was 90%. Treatment of complex distal radius fractures with butterfly shaped locking compression plate can reconstruct normal anatomic structures, especially for radial styloid process and sigmoid notch fractures, and it can get good functional recovery of the wrist and the distal radioulnar joint.

  5. Novel Anterior Plating Technique for Patella Fracture Fixation.

    PubMed

    Siljander, Matthew P; Vara, Alexander D; Koueiter, Denise M; Wiater, Brett P; Wiater, Patrick J

    2017-07-01

    Patella fracture fixation remains a significant challenge for orthopedic surgeons. Although tension band fixation allows for reliable osseous union, especially in simple fracture patterns, it still presents several problems. Plate fixation of patella fractures is a method that allows for more rigid stabilization and earlier mobilization. At the authors' level 1 trauma center, one fellowship-trained trauma surgeon has transitioned to using a novel anterior, low-profile mesh plate construct for all types of patella fractures. This construct allows for stable fixation, osseous union, and neutralization of the inferior pole for even the most comminuted of patella fractures. [Orthopedics. 2017; 40(4):e739-e743.]. Copyright 2017, SLACK Incorporated.

  6. Surgical treatment of intra-articular calcaneal fractures.

    PubMed

    Stapleton, John J; Zgonis, Thomas

    2014-10-01

    Most intra-articular calcaneal fractures are a result of high-energy trauma. The operative management of calcaneal fractures has been based on achieving anatomic reduction and minimizing complications of the compromised soft tissue envelope. The traditional extensile lateral approach offers advantages of achieving adequate fracture reduction with the risk of wound-healing complications and infection. Limited open reduction and internal fixation techniques with or without using external fixation focuses on achieving fracture reduction with less risk of wound complications but higher risk of malunion. This article discusses key points of operative management for various intra-articular calcaneal fracture patterns and clinical presentations. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The Convergence of Fracture Repair and Stem Cells: Interplay of Genes, Aging, Environmental Factors and Disease

    PubMed Central

    Hadjiargyrou, Michael; O’Keefe, Regis J

    2015-01-01

    The complexity of fracture repair makes it an ideal process for studying the interplay between the molecular, cellular, tissue, and organ level events involved in tissue regeneration. Additionally, as fracture repair recapitulates many of the processes that occur during embryonic development, investigations of fracture repair provide insights regarding skeletal embryogenesis. Specifically, inflammation, signaling, gene expression, cellular proliferation and differentiation, osteogenesis, chondrogenesis, angiogenesis, and remodeling represent the complex array of interdependent biological events that occur during fracture repair. Here we review studies of bone regeneration in genetically modified mouse models, during aging, following environmental exposure, and in the setting of disease that provide insights regarding the role of multipotent cells and their regulation during fracture repair. Complementary animal models and ongoing scientific discoveries define an increasing number of molecular and cellular targets to reduce the morbidity and complications associated with fracture repair. Last, some new and exciting areas of stem cell research such as the contribution of mitochondria function, limb regeneration signaling, and microRNA (miRNA) posttranscriptional regulation are all likely to further contribute to our understanding of fracture repair as an active branch of regenerative medicine. PMID:25264148

  8. Hoverboards: spectrum of injury and association with an uncommon fracture.

    PubMed

    Schapiro, Andrew H; Lall, Neil U; Anton, Christopher G; Trout, Andrew T

    2017-04-01

    Self-balancing electric scooters, commonly known as hoverboards, are a new and popular consumer item with recognized fall hazards. The spectrum of injuries associated with hoverboard use has not been studied. The purpose of this study is to determine the spectrum of radiologically apparent injuries associated with hoverboard use. We retrospectively reviewed all imaging studies interpreted at our institution for hoverboard-related injuries during an 8-month period. We recorded patient demographics and injury characteristics. Thirty-two of the 47 pediatric patients imaged for hoverboard-related injury had radiologically detectable injuries, all fractures. Fifty percent of these 32 patients were female and 50% were male, with a mean age of 12.4 years. There were 42 fractures total, all involving the appendicular skeleton, with 74% in the upper extremities and 26% in the lower extremities. Thirty-eight percent of the fractures involved the physis. A distinct injury pattern was seen in three patients who sustained open distal phalanx juxta-epiphyseal fractures. Most of the fractures sustained during hoverboard use are commonly seen in everyday pediatric radiology practice, with an overall pattern paralleling that reported in association with skateboard use. However an otherwise uncommon fracture, the distal phalanx juxta-epiphyseal fracture, was identified in association with hoverboard use, and this finding has important treatment implications including need for irrigation and debridement, antibiotic therapy, and potential surgical fixation.

  9. COMplex Fracture Orthopedic Rehabilitation (COMFORT) - Real-time visual biofeedback on weight bearing versus standard training methods in the treatment of proximal femur fractures in the elderly: study protocol for a multicenter randomized controlled trial.

    PubMed

    Raaben, Marco; Redzwan, Syaiful; Augustine, Robin; Blokhuis, Taco Johan

    2018-04-12

    Proximal femur fractures are a common injury after low energy trauma in the elderly. Most rehabilitation programs are based on restoring mobility and early resumption of weight-bearing. However, therapy compliance is low in patients following lower extremity fractures. Moreover, little is known about the relevance of gait parameters and how to steer the rehabilitation after proximal femur fractures in the elderly. Therefore, the aim of this prospective, randomized controlled trial is to gain insight in gait parameters and evaluate if real-time visual biofeedback can improve therapy compliance after proximal femur fractures in the elderly. This is a two-arm, parallel-design, prospective, randomized controlled trial. Inclusion criteria are age ≥ 60 years, a proximal femur fracture following low energy trauma, and unrestricted-weight bearing. Exclusion criteria are cognitive impairment and limited mobility before trauma. Participants are randomized into either the control group, which receives care as usual, or the intervention group, which receives real-time visual biofeedback about weight-bearing during gait in addition to care as usual. Spatiotemporal gait parameters will be measured in 94 participants per group during a 30-m walk with an ambulatory biofeedback system (SensiStep). The progress of rehabilitation will be evaluated by the primary outcome parameters maximum peak load and step duration in relation to the discharge date. Secondary outcome parameters include other spatiotemporal gait parameters in relation to discharge date. Furthermore, the gait parameters will be related to three validated clinical tests: Elderly Mobility Scale; Functional Ambulation Categories; and Visual Analogue Scale. The primary hypothesis is that participants in the intervention group will show improved and faster rehabilitation compared to the control group. The first aim of this multicenter trial is to investigate the normal gait patterns after proximal femur fractures in the elderly. The use of biofeedback systems during rehabilitation after proximal femur fractures in the elderly is promising; therefore, the second aim is to investigate the effect of real-time visual biofeedback on gait after proximal femur fractures in the elderly. This could lead to improved outcome. In addition, analysis of the population may indicate characteristics of subgroups that benefit from feedback, making a differentiated approach in rehabilitation strategy possible. TrialRegister.nl, NTR6794 . Registered on 31 October 2017.

  10. Identifying Flow Networks in a Karstified Aquifer by Application of the Cellular Automata-Based Deterministic Inversion Method (Lez Aquifer, France)

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.

    2017-12-01

    The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.

  11. Mandibular Fracture Patterns at a Medical Center in Central Taiwan: A 3-Year Epidemiological Review.

    PubMed

    Lin, Fu-Yu; Wu, Chao-I; Cheng, Hsu-Tang

    2017-12-01

    Mandibular fractures constitute a major portion of maxillofacial trauma and may lead to considerable functional and aesthetic sequelae if treatment is inadequate or delayed. An epidemiology study on mandibular fractures may guide the preventive efforts of the Taiwan public health care system. Therefore, a retrospective review was conducted at a medical center in central Taiwan to evaluate the current mandibular fracture epidemiology.The medical records and digitized radiographs of 198 patients who received treatment for mandibular fractures during a 3-year period (from October 2010 to September 2013) at a medical center in central Taiwan were reviewed to obtain demographic and injury data.The average age was 29.4 years (3-82 years). Patients aged 21 to 30 years sustained the most mandibular fractures (62 patients, 31.3%). The overall sex distribution (male to female) ratio was 1.8. Motor-vehicle accidents (MVAs) were the most common mechanism of injury (162 patients, 82%), and scooter and motorcycle riders wearing partial-coverage helmets constituted the majority of patients. A chart review identified 198 patients with 335 mandibular fractures; 113 patients (57.1%) had multiple mandibular fractures. The most common fracture sites were the symphysis and parasymphysis regions (38.9%), followed by the condyle (26.0%), angle (14.3%), body (14.3%), and ramus (6.6%).MVAs are the major cause of mandibular fractures in central Taiwan, and patients aged <30 years sustained the most mandibular fractures. Compared with previous studies, the present study has a higher percentage of women with mandibular fractures. In addition, inadequate mandibular protection by partial-coverage helmets may be a major reason for mandibular fractures most commonly localized in the symphysis and parasymphysis regions. The incidence and causes of mandibular fractures may reflect the trauma patterns within the community, thus facilitating the development of a preventive strategy for the socioeconomic and environmental background of central Taiwan. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  12. Bits and Pieces: A Crowd-Sourced Series of 54 Cases of Fractured Hormonal Implants.

    PubMed

    Crouthamel, Bonnie C; Schiff, Melissa A; Amies Oelschlager, Anne-Marie E; Prager, Sarah W; Debiec, Katherine E

    2018-04-01

    The fracture of hormonal implants, including Implanon, Nexplanon (both from Merck & Co, Inc), and histrelin acetate is rare. Our aim was to describe patient demographic characteristics, mechanisms, and consequences of fractured implants by surveying physicians' experience via listservs and social media. DESIGN, SETTING, PARTICIPANTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: We developed a Research Electronic Data Capture survey for physicians regarding their experience with implant fracture, including patient characteristics, mechanism of fracture, changes in menstrual bleeding patterns, time from insertion to fracture, and time from fracture to seeking care. We distributed the survey to providers in listservs for the North American Society for Pediatric and Adolescent Gynecology, the Family Planning Fellowship, the Ryan Program, and the Facebook Physician Moms Group and Facebook OB-GYN Mom Group. We performed descriptive analyses. We received 42 survey responses, representing 54 discrete implant fractures of which 70% (n=14) were Nexplanon, 26% (n=38) were Implanon, and 4% (n=2) were histrelin acetate. Mechanisms of implant fracture included patient manipulation (23%, n=12), unintentional trauma (11%, n=6), interpersonal violence (8%, n=4), lifting/carrying (6%, n=3), fracture with removal (6%, n=3), and unknown (47%, n=25). Bleeding pattern was not altered in 78% (n=42) of cases. Time interval between placement and fracture was less than 2 years for 63% (n=34) of cases. Thirty-nine percent (n=21) of patients presented for care more than 1 month from the time of fracture. Patients should be counseled about potential for hormonal implant fracture, advised against excessive manipulation of implants, and counseled to present for care immediately upon noticing an implant fracture. Surveying physicians through listervs and social media is an effective strategy to increase the reporting of rare complications and events. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  13. A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue.

    PubMed

    Yang, Rui; Arola, Dwayne; Han, Zhihui; Zhang, Xiuyin

    2014-10-01

    Mechanical and thermal fatigue may affect ceramic restorations in the oral environment. The purpose of this study was to determine the influence of thermal and mechanical cycling on the fracture load and fracture patterns of 3 machinable ceramics. Seventy-two human third molar teeth were prepared for bonding ceramic specimens of Sirona CEREC Blocs, IPS e.maxCAD, or inCoris ZI meso blocks. The 24 specimens of each ceramic were divided into 4 groups (n=6), which underwent no preloading (control), thermocycling (5°C-55°C, 2000 cycles), mechanical cycling (10(5) cycles, 100 N), and thermocycling (5°C-55°C, 2000 cycles) plus mechanical cycling (10(5) cycles, 100 N). The specimens were subsequently loaded to failure, and both stereomicroscopy and scanning electron microscopy were used to investigate the fracture patterns. The data were analyzed with 2-way ANOVA and the Fisher exact probability test (α=.05). Mechanical and thermal cycling had a significant influence on the critical load to failure of the 3 ceramics. No significant difference was found between mechanical cycling for 10(5) times and thermocycling for 2000 times within the same ceramic. The specimens of inCoris ZI experienced significantly higher fracture loads for all the groups. The fracture patterns of the 3 machinable ceramics showed that failure mainly occurred at the cement-dentin interface. The effects of combined thermal and mechanical cycling on the fracture load of ceramics were more significant than any individual mode of cyclic fatigue. Overall, the inCoris ZI resisted thermal and mechanical fatigue better than the Sirona CEREC and IPS e.maxCAD. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Multiple injuries after earthquakes: a retrospective analysis on 1,871 injured patients from the 2008 Wenchuan earthquake.

    PubMed

    Lu-Ping, Zhao; Rodriguez-Llanes, Jose Manuel; Qi, Wu; van den Oever, Barbara; Westman, Lina; Albela, Manuel; Liang, Pan; Gao, Chen; De-Sheng, Zhang; Hughes, Melany; von Schreeb, Johan; Guha-Sapir, Debarati

    2012-05-17

    Multiple injuries have been highlighted as an important clinical dimension of the injury profile following earthquakes, but studies are scarce. We investigated the pattern and combination of injuries among patients with two injuries following the 2008 Wenchuan earthquake. We also described the general injury profile, causes of injury and socio-demographic characteristics of the injured patients. A retrospective hospital-based analysis of 1,871 earthquake injured patients, totaling 3,177 injuries, admitted between 12 and 31 May 2008 to the People's Hospital of Deyang city (PHDC). An electronic, webserver-based database with International Classification of Diseases (ICD)-10-based classification of earthquake-related injury diagnoses (IDs), anatomical sites and additional background variables of the inpatients was used. We analyzed this dataset for injury profile and number of injuries per patient. We then included all patients (856) with two injuries for more in-depth analysis. Possible spatial anatomical associations were determined a priori. Cross-tabulation and more complex frequency matrices for combination analyses were used to investigate the injury profile. Out of the 1,871 injured patients, 810 (43.3%) presented with a single injury. The rest had multiple injuries; 856 (45.8%) had two, 169 (9.0%) patients had three, 32 (1.7%) presented with four injuries, while only 4 (0.2%) were diagnosed with five injuries. The injury diagnoses of patients presenting with two-injuries showed important anatomical intra-site or neighboring clustering, which explained 49.1% of the combinations. For fractures, the result was even more marked as spatial clustering explained 57.9% of the association pattern. The most frequent combination of IDs was a double-fracture, affecting 20.7% of the two-injury patients (n = 177). Another 108 patients (12.6%) presented with fractures associated with crush injury and organ-soft tissue injury. Of the 3,177 injuries, 1,476 (46.5%) were fractures. Most injuries were located in the head (22.9%) and lower extremities (30.8%). Multiple injuries are put forward as an important component of the injury profile after this earthquake. A pattern of injury combinations and spatial aggregation of injuries was also found. Clinical diagnosis and treatment should be adapted to care of these patients. More studies are needed to generalize these findings.

  15. Short uncemented stems allow greater femoral flexibility and may reduce peri-prosthetic fracture risk: a dry bone and cadaveric study.

    PubMed

    Jones, Christopher; Aqil, Adeel; Clarke, Susannah; Cobb, Justin P

    2015-09-01

    Short femoral stems for uncemented total hip arthroplasty have been introduced as a safe alternative to traditional longer stem designs. However, there has been little biomechanical examination of the effects of stem length on complications of surgery. This study aims to examine the effect of femoral stem length on torsional resistance to peri-prosthetic fracture. We tested 16 synthetic and two paired cadaveric femora. Specimens were implanted and then rapidly rotated until fracture to simulate internal rotation on a planted foot, as might occur during stumbling. 3D planning software and custom-printed 3D cutting guides were used to enhance the accuracy and consistency of our stem insertion technique. Synthetic femora implanted with short stems fractured at a significantly higher torque (27.1 vs. 24.2 Nm, p = 0.03) and angle (30.3° vs. 22.3°, p = 0.002) than those implanted with long stems. Fracture patterns of the two groups were different, but showed remarkable consistency within each group. These characteristic fracture patterns were closely replicated in the pair of cadaveric femora. This new short-stemmed press-fit femoral component allows more femoral flexibility and confers a higher resistance to peri-prosthetic fracture from torsional forces than long stems.

  16. Comparing slow and fast rupture in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Brantut, N.; David, E.; Mitchell, T. M.

    2017-12-01

    During the brittle failure of rock, elastically stored energy is converted into a localized fracture plane and surrounding fracture damage, seismic radiation, and thermal energy. However, the partitioning of energy might vary with the rate of elastic energy release during failure. Here, we present the results of controlled (slow) and dynamic (fast) rupture experiments on dry Lanhélin granite and Westerly granite samples, performed under triaxial stress conditions at confining pressures of 50 and 100 MPa. During the tests, we measured sample shortening, axial load and local strains (with 2 pairs of strain gauges glued directly onto the sample). In addition, acoustic emissions (AEs) and changes in seismic velocities were monitored. The AE rate was used as an indicator to manually control the axial load on the sample to stabilize rupture in the quasi-static failure experiments. For the dynamic rupture experiments a constant strain rate of 10-5 s-1 was applied until sample failure. A third experiment, labeled semi-controlled rupture, involved controlled rupture up to a point where the rupture became unstable and the remaining elastic energy was released dynamically. All experiments were concluded after a macroscopic fracture had developed across the whole sample and frictional sliding commenced. Post-mortem samples were epoxied, cut and polished to reveal the macroscopic fracture and the surrounding damage zone. The samples failed with average rupture velocities varying from 5x10-6 m/s up to >> 0.1 m/s. The analyses of AE locations on the slow ruptures reveal that within Westerly granite samples - with a smaller grain size - fracture planes are disbanded in favor of other planes when a geometrical irregularity is encountered. For the coarser grained Lanhélin granite a single fracture plane is always formed, although irregularities are recognized as well. The semi-controlled experiments show that for both rock types the rupture can become unstable in response to these irregularities. In Westerly granite, slow rupture experiments tend to produce complex fracture patterns while during the dynamic rupture experiments secondary rupture planes are not formed. These findings show that grain or flaw size, flaw distribution, and rupture speed strongly influence fracture localization and propagation.

  17. Prediction of forming limit in hydro-mechanical deep drawing of steel sheets using ductile fracture criterion

    NASA Astrophysics Data System (ADS)

    Oh, S.-T.; Chang, H.-J.; Oh, K. H.; Han, H. N.

    2006-04-01

    It has been observed that the forming limit curve at fracture (FLCF) of steel sheets, with a relatively higher ductility limit have linear shapes, similar to those of a bulk forming process. In contrast, the FLCF of sheets with a relatively lower ductility limit have rather complex shapes approaching the forming limit curve at neck (FLCN) towards the equi-biaxial strain paths. In this study, the FLCFs of steel sheets were measured and compared with the fracture strains predicted from specific ductile fracture criteria, including a criterion suggested by the authors, which can accurately describe FLCFs with both linear and complex shapes. To predict the forming limit for hydro-mechanical deep drawing of steel sheets, the ductile fracture criteria were integrated into a finite element simulation. The simulation, results based on the criterion suggested by authors accurately predicted the experimetal, fracture limits of steel sheets for the hydro-mechanical deep drawing process.

  18. Conversion of external fixation to open reduction and internal fixation for complex distal radius fractures.

    PubMed

    Natoli, R M; Baer, M R; Bednar, M S

    2016-05-01

    Distal radius fractures are common injuries treated in a multitude of ways. One treatment paradigm not extensively studied is initial treatment by external fixation (EF) followed by conversion to open reduction internal fixation (ORIF). Such a paradigm may be beneficial in damage control situations, when there is extensive soft tissue injury, or when appropriate personnel/hospital resources are not available for immediate internal fixation. There is no increased risk of infection when converting EF to ORIF in the treatment of complex distal radius fractures when conversion occurs early or if EF pin sites are overlapped by the definitive fixation. Using an IRB approved protocol, medical records over nine years were queried to identify patients with distal radius fractures that had undergone initial EF and were later converted to ORIF. Charts were reviewed for demographic data, injury characteristics, operative details, time to conversion from EF to ORIF, assessment of whether the EF pin sites overlapped the definitive fixation, presence of infection after ORIF, complications, and occupational therapy measurements of range of motion and strength. In total, 16 patients were identified, only one of which developed an infection following conversion to ORIF. Fisher's exact testing showed that infection did not depend on open fracture, time to conversion of one week or less, presence of EF pin sites overlapping definitive fixation, fracture classification, high energy mechanism of injury, or concomitant injury to the DRUJ. Planned staged conversion from EF to ORIF for complex distal radius fractures does not appear to result in an increased rate of infection if conversion occurs early or if the EF pin sites are overlapped by definitive fixation. This treatment paradigm may be reasonable for treating complex distal radius fractures in damage control situations, when there is extensive soft tissue injury, or when appropriate personnel/hospital resources are not available for immediate internal fixation. IV, retrospective case series. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Minimal internal fixation augmented by small wire transfixion frames for high-energy tibial plateau fractures.

    PubMed

    Katsenis, Dimitris; Athanasiou, Vasilis; Vasilis, Athanasiou; Megas, Panayiotis; Panayiotis, Megas; Tyllianakis, Minos; Minos, Tillianakis; Lambiris, Elias

    2005-04-01

    To evaluate the outcome of bicondylar tibial plateau fractures treated with minimal internal fixation augmented by small wire external fixation frames and to assess the necessity of bridging the knee joint by extending the external fixation to the distal femur. This is a retrospective study of 48 tibial plateau fractures. There were 40 (83.5%) Schatzker type VI fractures, 8 Schatzker type V fractures, and 18 (37.5%) fractures were open. A complex injury according to the Tscherne-Lobenhoffer classification was recorded in 30 (62.5%) patients. All fractures were treated with combined minimally invasive internal and external fixation. Closed reduction was achieved in 32 (66.6%) of the fractures. Extension of the external fixation to the distal femur was done in 30 (62.5%) fractures. Results were assessed according to the criteria of Honkonen-Jarvinen. Follow-up ranged from 28 to 60 months with an average of 38 months. All fractures but 1 united at an average of 13.5 weeks (range 11-18 weeks). One patient developed an infected nonunion of the diaphyseal segment of his fracture. Thirty-nine (81%) patients achieved an excellent or good radiologic result. An excellent or good final clinical result was recorded in 36 patients (76%). Bridging the knee joint did not affect significantly the result (P < 0.418). No significant correlation was found between the type of fracture and the final score (P < 0.458). Hybrid internal and external fixation combined with tibiofemoral extension of the fixation is an attractive treatment option for complex tibial plateau fractures.

  20. Characterization and Management of Mandibular Fractures: Lessons Learned from Iraq and Afghanistan

    DTIC Science & Technology

    2013-03-01

    Anatomic reduction is the goal. In complex fractures, maintain large segments of bone and obtain soft tissue coverage. Atlas Oral Maxillofacial Surg...conflicts of Iraq and Afghanistan. J Oral Maxillofac Surg 2010;68(1):3e7; with permission.) Fig. 2 Complex facial injury with avulsive tissue loss...a point distant from the site of injury Complicated (complex)dfracture with considerable injury to the adjacent soft tissue or adjacent parts, may

  1. Pattern and presentation of spine trauma in Gwagwalada-Abuja, Nigeria.

    PubMed

    Kawu, A A

    2012-01-01

    The objective was to demonstrate the correlations and effects of age, gender, and cause of accident on the type of vertebral fracture as well as on the likelihood to sustain neurological deficit following trauma in Nigeria. Spinal column injury is a well-documented problem but literature has been mute on this problem in Nigeria unlike the many papers on spinal cord injury. A retrospective review of spinal cord injured (SCI) patients was performed. Age, sex, cause and level of injury, fracture pattern and distribution, and neurologic presentation of SCI patients from 1997 to 2007 were studied from case notes. There were 202 patients with male preponderance and a mean age of 38.9 ± 11.4 years over the 11-year period. The most common cause of spine injury was road traffic injury (79.7%). Cervical spine injury (10.4%) accounted for the highest number of cases with complete neurologic deficit. The majority of patients, 119 (58.9%) sustained a type A fracture, 37 (18.3%) a type B fracture, and 41(20.3%) patients experienced a type C fracture. All patients had neurologic deficits. Age (P=0.032) and road traffic injury (P=0.029) were independently associated with type of fracture after multivariate analysis. Age (P=0.038), road traffic injury (P=0.027), and cervical spine fracture (P=0.009) were also independently associated with neurologic deficit. These data showed the correlation between trauma mechanism and the type of fracture seen, and also the type of fracture and the incidence of neurologic deficit. The predictors of fracture types are age and road traffic injury while age, road traffic injury, and cervical spine fractures predict neurologic deficit.

  2. Minimally-invasive plate osteosynthesis in distal tibial fractures: Results and complications.

    PubMed

    Vidović, Dinko; Matejčić, Aljoša; Ivica, Mihovil; Jurišić, Darko; Elabjer, Esmat; Bakota, Bore

    2015-11-01

    Distal tibial or pilon fractures are usually the result of combined compressive and shear forces, and may result in instability of the metaphysis, with or without articular depression, and injury to the soft tissue. The complexity of injury, lack of muscle cover and poor vascularity make these fractures difficult to treat. Surgical treatment of distal tibial fractures includes several options: external fixation, IM nailing, ORIF and minimally-invasive plate osteosynthesis (MIPO). Management of distal tibial fractures with MIPO enables preservation of soft tissue and remaining blood supply. This is a report of a series of prospectively studied closed distal tibial and pilon fractures treated with MIPO. A total of 21 patients with closed distal tibial or pilon fractures were enrolled in the study between March 2008 and November 2013 and completed follow-up. Demographic characteristics, mechanism of injury, time required for union, ankle range of motion and complications were recorded. Fractures were classified according to the AO/OTA classification. Nineteen patients were initially managed with an ankle-spanning external fixator. When the status of the soft tissue had improved and swelling had subsided enough, a definitive internal fixation with MIPO was performed. Patients were invited for follow-up examinations at 3 and 6 weeks and then at intervals of 6 to 8 weeks until 12 months. Mean age of the patients was 40.1 years (range 19-67 years). Eighteen cases were the result of high-energy trauma and three were the result of low-energy trauma. According to the AO/OTA classification there were extraarticular and intraarticular fractures, but only simple articular patterns without depression or comminution. The average time for fracture union was 19.7 weeks (range 12-38 weeks). Mean range of motion was 10° of dorsiflexion (range 5-15°) and 28.3° of plantar flexion (range 20-35°). Three cases were metalwork-related complications. Two patients underwent plate removal at 24 weeks because of plate impingement. There was one case of wound breakdown at 11 weeks. One patient had fracture union with tibial recurvatum of approximately 10°, without functional impairment. Two patients had delayed union. MIPO is a reliable method of treatment for distal tibial fractures; it provides a high union rate and good functional outcome with minimal soft tissue complications. Skin impingement remains a common complication with MIPO, but this can be solved by timely plate removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A novel ex vivo model of compressive immature rib fractures at pathophysiological rates of loading.

    PubMed

    Beadle, Nicola; Burnett, Timothy L; Hoyland, Judith A; Sherratt, Michael J; Freemont, Anthony J

    2015-11-01

    Compressive rib fractures are considered to be indicative of non-accidental injury (NAI) in infants, which is a significant and growing issue worldwide. The diagnosis of NAI is often disputed in a legal setting, and as a consequence there is a need to model such injuries ex vivo in order to characterise the forces required to produce non-accidental rib fractures. However, current models are limited by type of sample, loading method and rate of loading. Here, we aimed to: i) develop a loading system for inducing compressive fractures in whole immature ribs that is more representative of the physiological conditions and mechanism of injury employed in NAI and ii) assess the influence of loading rate and rib geometry on the mechanical performance of the tissue. Porcine ribs (5-6 weeks of age) from 12 animals (n=8 ribs/animal) were subjected to axial compressive load directed through the anterior-posterior rib axis at loading rates of 1, 30, 60 or 90 mm/s. Key mechanical parameters (including peak load, load and percentage deformation to failure and effective stiffness) were quantified from the load-displacement curves. Measurements of the rib length, thickness at midpoint, distance between anterior and posterior extremities, rib curvature and fracture location were determined from radiographs. This loading method typically produced incomplete fractures around the midpoint of the ribs, with 87% failing in this manner; higher loads and less deformation were required for ribs to completely fracture through both cortices. Loading rate, within the range of 1-90 mm/s, did not significantly affect any key mechanical parameters of the ribs. Load-displacement curves displaying characteristic and quantifiable features were produced for 90% of the ribs tested, and multiple regression analyses indicate that, in addition to the geometrical variables, there are other factors such as the micro- and nano-structure that influence the measured mechanical data. A reproducible method of inducing fractures in a consistent location in immature porcine ribs has been successfully developed. Fracture appearance may be indicative of the amount of load and deformation that produced the fracture, which is an important finding for NAI, where knowledge of the aetiology of fractures is vital. Characteristic rib behaviour independent of loading rate and, to an extent, rib geometry has been demonstrated, allowing further investigation into how the complex micro- and nano-structure of immature ribs influences the mechanical performance under compressive load. This research will ultimately enable improved characterisation of the loading pattern involved in non-accidental rib fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  5. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-11-01

    Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries.

  6. Geriatric Trauma Patients With Cervical Spine Fractures due to Ground Level Fall: Five Years Experience in a Level One Trauma Center.

    PubMed

    Wang, Hao; Coppola, Marco; Robinson, Richard D; Scribner, James T; Vithalani, Veer; de Moor, Carrie E; Gandhi, Raj R; Burton, Mandy; Delaney, Kathleen A

    2013-04-01

    It has been found that significantly different clinical outcomes occur in trauma patients with different mechanisms of injury. Ground level falls (GLF) are usually considered "minor trauma" with less injury occurred in general. However, it is not uncommon that geriatric trauma patients sustain cervical spine (C-spine) fractures with other associated injuries due to GLF or less. The aim of this study is to determine the injury patterns and the roles of clinical risk factors in these geriatric trauma patients. Data were reviewed from the institutional trauma registry of our local level 1 trauma center. All patients had sustained C-spine fracture(s). Basic clinical characteristics, the distribution of C-spine fracture(s), and mechanism of injury in geriatric patients (65 years or older) were compared with those less than 65 years old. Furthermore, different clinical variables including age, gender, Glasgow coma scale (GCS), blood alcohol level, and co-existing injuries were analyzed by multivariate logistic regression in geriatric trauma patients due to GLF and internally validated by random bootstrapping technique. From 2006 - 2010, a total of 12,805 trauma patients were included in trauma registry, of which 726 (5.67%) had sustained C-spine fracture(s). Among all C-spine fracture patients, 19.15% (139/726) were geriatric patients. Of these geriatric patients 27.34% (38/139) and 53.96% (75/139) had C1 and C2 fractures compared with 13.63% (80/587) and 21.98% (129/587) in young trauma patients (P < 0.001). Of geriatric trauma patients 13.67% (19/139) and 18.71% (26/139) had C6 and C7 fractures compared with 32.03% (188/587) and 41.40% (243/587) in younger ones separately (P < 0.001). Furthermore, 53.96% (75/139) geriatric patients had sustained C-spine fractures due to GLF with more upper C-spine fractures (C1 and C2). Only 3.2% of those had positive blood alcohol levels compared with 52.9% of younger patients (P < 0.001). In addition, 6.34% of geriatric patients due to GLF had intracranial pathology (ICP) which was one of the most common co-injuries with C-spine fractures. Logistic regression analysis showed the adjusted odds ratios of 1.17 (age) and 91.57 (male) in geriatric GLF patients to predict this co-injury pattern of C-spine fracture and ICP. Geriatric patients tend to sustain more upper C-spine fractures than non-geriatric patients regardless of the mechanisms. GLF or less not only can cause isolated C-spines fracture(s) but also lead to other significant injuries with ICP as the most common one in geriatric patients. Advanced age and male are two risk factors that can predict this co-injury pattern. In addition, it seems that alcohol plays no role in the cause of GLF in geriatric trauma patients.

  7. Geriatric Trauma Patients With Cervical Spine Fractures due to Ground Level Fall: Five Years Experience in a Level One Trauma Center

    PubMed Central

    Wang, Hao; Coppola, Marco; Robinson, Richard D.; Scribner, James T.; Vithalani, Veer; de Moor, Carrie E.; Gandhi, Raj R.; Burton, Mandy; Delaney, Kathleen A.

    2013-01-01

    Background It has been found that significantly different clinical outcomes occur in trauma patients with different mechanisms of injury. Ground level falls (GLF) are usually considered “minor trauma” with less injury occurred in general. However, it is not uncommon that geriatric trauma patients sustain cervical spine (C-spine) fractures with other associated injuries due to GLF or less. The aim of this study is to determine the injury patterns and the roles of clinical risk factors in these geriatric trauma patients. Methods Data were reviewed from the institutional trauma registry of our local level 1 trauma center. All patients had sustained C-spine fracture(s). Basic clinical characteristics, the distribution of C-spine fracture(s), and mechanism of injury in geriatric patients (65 years or older) were compared with those less than 65 years old. Furthermore, different clinical variables including age, gender, Glasgow coma scale (GCS), blood alcohol level, and co-existing injuries were analyzed by multivariate logistic regression in geriatric trauma patients due to GLF and internally validated by random bootstrapping technique. Results From 2006 - 2010, a total of 12,805 trauma patients were included in trauma registry, of which 726 (5.67%) had sustained C-spine fracture(s). Among all C-spine fracture patients, 19.15% (139/726) were geriatric patients. Of these geriatric patients 27.34% (38/139) and 53.96% (75/139) had C1 and C2 fractures compared with 13.63% (80/587) and 21.98% (129/587) in young trauma patients (P < 0.001). Of geriatric trauma patients 13.67% (19/139) and 18.71% (26/139) had C6 and C7 fractures compared with 32.03% (188/587) and 41.40% (243/587) in younger ones separately (P < 0.001). Furthermore, 53.96% (75/139) geriatric patients had sustained C-spine fractures due to GLF with more upper C-spine fractures (C1 and C2). Only 3.2% of those had positive blood alcohol levels compared with 52.9% of younger patients (P < 0.001). In addition, 6.34% of geriatric patients due to GLF had intracranial pathology (ICP) which was one of the most common co-injuries with C-spine fractures. Logistic regression analysis showed the adjusted odds ratios of 1.17 (age) and 91.57 (male) in geriatric GLF patients to predict this co-injury pattern of C-spine fracture and ICP. Conclusion Geriatric patients tend to sustain more upper C-spine fractures than non-geriatric patients regardless of the mechanisms. GLF or less not only can cause isolated C-spines fracture(s) but also lead to other significant injuries with ICP as the most common one in geriatric patients. Advanced age and male are two risk factors that can predict this co-injury pattern. In addition, it seems that alcohol plays no role in the cause of GLF in geriatric trauma patients. PMID:23519239

  8. Diabetic calcaneal fractures.

    PubMed

    Sagray, Bryan A; Stapleton, John J; Zgonis, Thomas

    2013-01-01

    Calcaneal fractures among the diabetic population are severe and complex injuries that warrant careful evaluation in an effort to carry out adequate conservative or surgical management. The complication rates associated with diabetic fracture management are increased and may include poor wound healing, deep infection, malunion, and Charcot neuroarthropathy, each of which can pose a risk for limb loss. The significant surgery-associated morbidity accompanying diabetic calcaneal fractures has led to improved methods of calcaneal fracture management. This article reviews the overall management of diabetic calcaneal fractures, complications, and outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. What are the differences in injury patterns of young and elderly traffic accident fatalities considering death on scene and death in hospital?

    PubMed

    Heinrich, Daniela; Holzmann, Christopher; Wagner, Anja; Fischer, Anja; Pfeifer, Roman; Graw, Matthias; Schick, Sylvia

    2017-07-01

    Older traffic participants have higher risks of injury than the population up to 65 years in case of comparable road traffic accidents and further, higher mortality rates at comparable injury severities. Rib fractures as risk factors are currently discussed. However, death on scene is associated with hardly survivable injuries and might not be a matter of neither rib fractures nor age. As 60% of traffic accident fatalities are estimated to die on scene, they are not captured in hospital-based trauma registries and injury patterns remain unknown. Our database comprises 309 road traffic fatalities, autopsied at the Institute of Legal Medicine Munich in 2004 and 2005. Injuries are coded according to Abbreviated Injury Scale, AIS© 2005 update 2008 [1]. Data used for this analysis are age, sex, site of death, site of accident, traffic participation mode, measures of injury severity, and rib fractures. The injury patterns of elderly, aged 65+ years, are compared to the younger ones divided by their site of death. Elderly with death on scene more often show serious thorax injuries and pelvic fractures than the younger. Some hints point towards older fatalities showing less frequently serious abdominal injuries. In hospital, elderly fatalities show lower Injury Severity Scores (ISSs) compared to the younger. The number of rib fractures is significantly higher for the elderly but is not the reason for death. Results show that young and old fatalities have different injury patterns and reveal first hints towards the need to analyze death on scene more in-depth.

  10. Spine Trauma-What Are the Current Controversies?

    PubMed

    Oner, Cumhur; Rajasekaran, Shanmuganathan; Chapman, Jens R; Fehlings, Michael G; Vaccaro, Alexander R; Schroeder, Gregory D; Sadiqi, Said; Harrop, James

    2017-09-01

    Although less common than other musculoskeletal injuries, spinal trauma may lead to significantly more disability and costs. During the last 2 decades there was substantial improvement in our understanding of the basic patterns of spinal fractures leading to more reliable classification and injury severity assessment systems but also rapid developments in surgical techniques. Despite these advancements, there remain unresolved issues concerning the management of these injuries. At this moment there is persistent controversy within the spinal trauma community, which can be grouped under 6 headings. First of all there is still no unanimity on the role and timing of medical and surgical interventions for patients with associated neurologic injury. The same is also true for type and timing of surgical intervention in multiply injured patients. In some common injury types like odontoid fractures and burst type (A3-A4) fractures in thoracolumbar spine, there is wide variation in practice between operative versus nonoperative management without clear reasons. Also, the role of different surgical approaches and techniques in certain injury types are not clarified yet. Methods of nonoperative management and care of elderly patients with concurrent complex disorders are also areas where there is no consensus. In this overview article the main reasons for these controversies are reviewed and the possible ways for resolutions are discussed.

  11. Greenstick fracture of the mandible: a case report.

    PubMed

    Kalia, V; Singh, A P

    2008-03-01

    This case report is an insight in to pediatric traumatology whereby bilateral greenstick fracture of condyle is used as a means to discuss the incidence and anatomic considerations for the management of the same, highlighting the fact that dental surgeons require a unique understanding of the anatomy, growth considerations, healing pattern and operative management involving minimal manipulation while managing pediatric facial fractures.

  12. Folding kinematics expressed in fracture patterns: An example from the Anti-Atlas fold belt, Morocco

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan

    2008-11-01

    The Anti-Atlas fold belt, Morocco, formed during the same Variscan collisional event that produced the Valley-and-Ridge fold-thrust belt of the Appalachian mountains. Both are external belts of the Appalachian-Ouachita-Mauritanides chain and at the map scale have very similar topographic expressions. The Anti-Atlas, however, consists of map-scale folds that are buckle-related, detachment folds, whereas the Valley-and-Ridge folds developed in response to imbricate thrusting. For this reason, the Anti-Atlas is referred to as a fold belt rather than a fold-thrust belt. This paper examines Variscan folding processes in the Anti-Atlas Mountains. Folding in some layers occurred by sliding along a penetrative network of mesoscale fractures, i.e. cataclastic flow, during buckling. Layer-parallel shortening fractures were reactivated in the later stages of folding to accommodate limb rotation. Although 'boutonnieres', i.e. basement uplifts, punctuate the fold belt, the fracture patterns indicate that the uplifts failed to provide any 'bending' component. Folding is also interpreted to occur under low to moderate confining pressures because the fracture network includes conjugate shear fractures with very small (˜20°) dihedral angles.

  13. HYDRAULIC CHARACTERIZATION FOR STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    EPA Science Inventory

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. This is primarily the result of the complexity of the fracture framework, which governs the groundwater flow pathways and...

  14. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influencedmore » by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.« less

  15. Fractal Analysis of Permeability of Unsaturated Fractured Rocks

    PubMed Central

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model. PMID:23690746

  16. Fractal analysis of permeability of unsaturated fractured rocks.

    PubMed

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.

  17. Scaling Laws of Discrete-Fracture-Network Models

    NASA Astrophysics Data System (ADS)

    Philippe, D.; Olivier, B.; Caroline, D.; Jean-Raynald, D.

    2006-12-01

    The statistical description of fracture networks through scale still remains a concern for geologists, considering the complexity of fracture networks. A challenging task of the last 20-years studies has been to find a solid and rectifiable rationale to the trivial observation that fractures exist everywhere and at all sizes. The emergence of fractal models and power-law distributions quantifies this fact, and postulates in some ways that small-scale fractures are genetically linked to their larger-scale relatives. But the validation of these scaling concepts still remains an issue considering the unreachable amount of information that would be necessary with regards to the complexity of natural fracture networks. Beyond the theoretical interest, a scaling law is a basic and necessary ingredient of Discrete-Fracture-Network models (DFN) that are used for many environmental and industrial applications (groundwater resources, mining industry, assessment of the safety of deep waste disposal sites, ..). Indeed, such a function is necessary to assemble scattered data, taken at different scales, into a unified scaling model, and to interpolate fracture densities between observations. In this study, we discuss some important issues related to scaling laws of DFN: - We first describe a complete theoretical and mathematical framework that takes account of both the fracture- size distribution and the fracture clustering through scales (fractal dimension). - We review the scaling laws that have been obtained, and we discuss the ability of fracture datasets to really constrain the parameters of the DFN model. - And finally we discuss the limits of scaling models.

  18. Pediatric Ankle Fractures: Concepts and Treatment Principles

    PubMed Central

    Su, Alvin W.; Larson, A. Noelle

    2016-01-01

    Synopsis Current clinical concepts are reviewed regarding the epidemiology, anatomy, evaluation and treatment of pediatric ankle fractures. Correct diagnosis and management relies on appropriate exam, imaging, and knowledge of fracture patterns specific to children. Treatment is guided by patient history, physical examination, plain film radiographs and, in some instances, CT. Treatment goals are to restore acceptable limb alignment, physeal anatomy, and joint congruency. For high risk physeal fractures, patients should be monitored for growth disturbance as needed until skeletal maturity. PMID:26589088

  19. Case report. Pediatric carpal fracture dislocation.

    PubMed

    DeCoster, T A; Faherty, S; Morris, A L

    1994-01-01

    Transcarpal fractures in children are rare in the orthopaedic literature. This is a case report of a 10-year-old boy who sustained fractures across the distal radius, scaphoid, lunate, and triquetrum with gross displacement. Treatment consisted of open reduction with internal fixation of the fractures and ligamentous repair through a combined dorsal and palmar approach. The injury healed with good wrist function but abnormal carpal development. This unusual pattern of injury is described so that it may be more readily appreciated in the future.

  20. Solutal convection induced by dissolution. Influence on erosion dynamics and interface shaping.

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael; Philippi, Julien; Cohen, Caroline; Derr, Julien; Courrech du Pont, Sylvain

    2017-04-01

    Rock fractures invaded by a water flow, are often subjected to dissolution, which let grow and evolve the initial fracture network, by evacuating the eroded minerals under a solute form. In the case of fast kinetic of dissolution, local erosion rate is set by the advection of the solute. The erosion velocity decreases indeed with the solute concentration at the interface and vanishes when this concentration reaches the saturation value. Even in absence of an imposed or external flow, advection can drive the dissolution, when buoyancy effects due to gravity induce a solutal convection flow, which controls the erosive dynamics and modifies the shape of the dissolving interface. Here, we investigate using model experiments with fast dissolving materials and numerical simulations in simplified situations, solutal convection induced by dissolution. Results are interpreted regarding a linear stability analysis of the corresponding solutal Rayleigh-Benard instability. A dissolving surface is suspended above a water height, initially at rest. In a first step, solute flux is transported through a growing diffusion layer. Then after an onset time, once the layer exceeds critical width, convection flow starts under the form of falling plumes. A dynamic equilibrium results in average from births and deaths of intermittent plumes, setting the size of the solute concentration boundary layer at the interface and thus the erosion velocity. Solutal convection can also induce a pattern on the dissolving interface. We show experimentally with suspended and inclined blocks of salt and sugar, that in a linear stage, the first wavelength of the dissolution pattern corresponds to the wavelength of the convection instability. Then pattern evolves to more complex shapes due to non-linear interactions between the flow and the eroded interface. More generally, we inquire what are the conditions to observe a such solutal convection instability in geological situations and if the properties of dissolution patterns can be related to the characteristic of the convective flow. C. Oltéan, F. Golfier and M.A. Buès, Numerical and experimental investigation of buoyancy-driven dissolution in vertical fracture, J. Geophys. Res. Solid Earth, 118(5), 2038-2048 (2013) C. Cohen, M. Berhanu, J. Derr and S. Courrech du Pont, Erosion patterns on dissolving and melting bodies (2015 Gallery of Fluid motion), Phys. Rev. Fluids, 1, 050508 (2016) T. S. Sullivan, Y. Liu, and R. E. Ecke, Turbulent solutal convection and surface patterning in solid dissolution, Phys. Rev. E 54, 486 (1996)

  1. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    NASA Astrophysics Data System (ADS)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of photogrammetry in rock mechanics, petroleum geology, hydrogeology, and structural geology.

  2. Analysis of PITFL injuries in rotationally unstable ankle fractures.

    PubMed

    Warner, Stephen J; Garner, Matthew R; Schottel, Patrick C; Hinds, Richard M; Loftus, Michael L; Lorich, Dean G

    2015-04-01

    Reduction and stabilization of the syndesmosis in unstable ankle fractures is important for ankle mortise congruity and restoration of normal tibiotalar contact forces. Of the syndesmotic ligaments, the posterior inferior tibiofibular ligament (PITFL) provides the most strength for maintaining syndesmotic stability, and previous work has demonstrated the significance of restoring PITFL function when it remains attached to a posterior malleolus fracture fragment. However, little is known regarding the nature of a PITFL injury in the absence of a posterior malleolus fracture. The goal of this study was to describe the PITFL injury pattern based on magnetic resonance imaging (MRI) and intraoperative observation. A prospective database of all operatively treated ankle fractures by a single surgeon was used to identify all supination-external rotation (SER) types III and IV ankle fracture patients with complete preoperative orthogonal ankle radiographs and MRI. All patients with a posterior malleolus fracture were excluded. Using a combination of preoperative imaging and intraoperative findings, we analyzed the nature of injuries to the PITFL. In total, 185 SER III and IV operatively treated ankle fractures with complete imaging were initially identified. Analysis of the preoperative imaging and operative reports revealed 34% (63/185) had a posterior malleolus fracture and were excluded. From the remaining 122 ankle fractures, the PITFL was delaminated from the posterior malleolus in 97% (119/122) of cases. A smaller proportion (3%; 3/122) had an intrasubstance PITFL rupture. Accurate and stable syndesmotic reduction is a significant component of restoring the ankle mortise after unstable ankle fractures. In our large cohort of rotationally unstable ankle fractures without posterior malleolus fractures, we found that most PITFL injuries occur as a delamination off the posterior malleolus. This predictable PITFL injury pattern may be used to guide new methods for stabilizing the syndesmosis in these patients. Level IV, case series. © The Author(s) 2014.

  3. Incidence of traumatic long-bone fractures requiring in-hospital management: a prospective age- and gender-specific analysis of 4890 fractures.

    PubMed

    Meling, Terje; Harboe, Knut; Søreide, Kjetil

    2009-11-01

    Musculoskeletal trauma represents a considerable global health burden; however, reliable population-based incidence data are lacking. Thus, we prospectively investigated the age- and sex-specific incidence patterns of long-bone fractures in a defined population. A 4-year prospective study of all long-bone fractures in a defined Norwegian population was carried out. The demographic data, as well as data on fracture type and location and mode of treatment were collected using recognised classification (e.g., AO/OTA - Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association; Gustilo-Anderson (GA) for open fractures). Age- and sex-adjusted incidences were calculated using population statistics. During the study period, 4890 long-bone fractures were recorded. The overall incidence per 100,000 per year was 406 with a 95% confidence interval (95%CI) of 395-417. The age-adjusted incidence for those <16 years (339; 95%CI: 318-360) was lower than that for those >or=16 years (427; 95%CI: 414-440). The overall male incidence (337; 95%CI: 322-355) was lower than the female (476; 95%CI: 459-493), but the male:female ratio was 2:1 among those <50 years, and 1:3 in those >or=50 years. The upper limb fractures had an overall incidence of 159 (95%CI: 152-166), whereas the lower limb fracture incidence was 247 (95%CI: 238-256). Open fractures occurred in 3%, with an incidence of 13 (95%CI: 11-15). Paediatric fractures were more likely to be treated conservatively with only 8% requiring internal fixation, compared to 56% internal fixation in those >or=16 years of age. An increase in the use of angular stable plates occurred during the study period. This prospectively collected study of long-bone fractures in a defined population recognises age- and gender-specific fracture patterns. Boys predominate in the younger age group for which treatment is basically conservative. In the senior population, women and operative treatment predominate.

  4. Acetabular fractures: anatomic and clinical considerations.

    PubMed

    Lawrence, David A; Menn, Kirsten; Baumgaertner, Michael; Haims, Andrew H

    2013-09-01

    Classifying acetabular fractures can be an intimidating topic. However, it is helpful to remember that there are only three basic types of acetabular fractures: column fractures, transverse fractures, and wall fractures. Within this framework, acetabular fractures are classified into two broad categories: elementary or associated fractures. We will review the osseous anatomy of the pelvis and provide systematic approaches for reviewing both radiographs and CT scans to effectively evaluate the acetabulum. Although acetabular fracture classification may seem intimidating, the descriptions and distinctions discussed and shown in this article hopefully make the topic simpler to understand. Approach the task by recalling that there are only three basic types of acetabular fractures: column fractures (coronally oriented on CT images), transverse fractures (sagittally oriented on CT images), and wall fractures (obliquely oriented on CT images). We have provided systematic approaches for reviewing both conventional radiographs and CT scans to effectively assess the acetabulum. The clinical implications of the different fracture patterns have also been reviewed because it is critically important to include pertinent information for our clinical colleagues to provide the most efficient and timely clinical care.

  5. Functional outcomes of conservatively treated clavicle fractures

    PubMed Central

    Bajuri, Mohd Yazid; Maidin, S; Rauf, A; Baharuddin, M; Harjeet, S

    2011-01-01

    OBJECTIVE: The main aim of the study was to analyze the outcomes of clavicle fractures in adults treated non-surgically and to evaluate the clinical effects of displacement, fracture patterns, fracture location, fracture comminution, shortening and fracture union on shoulder function. METHODS: Seventy clavicle fractures were non-surgically treated in the Orthopedics Department at the Tuanku Ja'afar General Hospital, a tertiary care hospital in Seremban, Malaysia, an average of six months after injury. The clavicle fractures were treated conservatively with an arm sling and a figure-eight splint for three weeks. No attempt was made to reduce displaced fractures, and the patients were allowed immediate free-shoulder mobilization, as tolerated. They were prospectively evaluated clinically and radiographically. Shoulder function was evaluated using the Constant scoring technique. RESULTS: There were statistically significant functional outcome impairments in non-surgically treated clavicle fractures that correlated with the fracture type (comminution), the fracture displacement (21 mm or more), shortening (15 mm or more) and the fracture union (malunion). CONCLUSION: This article reveals the need for surgical intervention to treat clavicle fractures and improve shoulder functional outcomes. PMID:21655759

  6. Identification and characterisation of individual Fractures in 3D fracture-network of shale reservoir rocks from microtomography

    NASA Astrophysics Data System (ADS)

    Qi, C.; Liu, J.

    2017-12-01

    Fractures are essential for unconventional hydrocarbon production. However, the observation of fractures in three-dimensional (3D) space is very difficult except using microtomography to obtain 3D fracture structures at micro-scales. Twelve shale samples taken from a specimen are analyzed in this study: six of them were isobarically and five were isothermally processed in experiments of simulating hydrocarbon generation and expulsion and one is unprocessed. The resolutions of microtomographic images are in the range from 5.83 to 9.12 μm. Fractures developed in different complexities: some samples have mostly parallel fractures, some have major parallel fractures plus irregular fractures forming crack-network and some samples have fully intersected fractures of various directions. To identify individual fractures in 3D network is crucial for the characterization of fractures and it needs to separate each fractures or disconnect intersections of fractures. For those samples with fewer intersections, it is not difficult to disconnect intersections manually slice by slice using Avizo®. For those samples with complex intersections, it is impractical to process manually. A patented method and corresponding programs are used to separate, identify and characterize individual fractures. By procedures of filtering, smoothing, thinning, separating and combining, intersected cracks are separated, the segments of a broken elongated cracks are identified as one crack, and the thinned thickness is restored, finally the shape, orientation and dimensions of individual fractures are characterized. Our results show that: 1) relatively large fractures are very thin, showing typical fracture morphology, while small fractures may have various shapes; 2) isothermal processed samples have stronger anisotropy, which implies that the fractures in isothermal series are thinner or flatter than in isobaric series; 3) the fractal dimension exists in the samples and there is good correlation between the fractal dimension and temperature/pressure. This study is a first trial of the characterization of individual cracks in 3D network. It lays a foundation for future research on the prediction of large-scale fractures in tight reservoirs.

  7. Fracture patterns after bilateral sagittal split osteotomy of the mandibular ramus according to the Obwegeser/Dal Pont and Hunsuck/Epker modifications.

    PubMed

    Möhlhenrich, Stephan Christian; Kniha, Kristian; Peters, Florian; Ayoub, Nassim; Goloborodko, Evgeny; Hölzle, Frank; Fritz, Ulrike; Modabber, Ali

    2017-05-01

    The aim of this study was to compare the fracture patterns after sagittal split osteotomy according to Obwegeser/Dal Pont (ODP) and Hunsuck/Epker (HE), as well as to investigate the relationship between lateral bone cut ending or angle and the incidence of unfavorable/bad splits. Postoperative cone-beam computed tomograms of 124 splits according to ODP and 60 according to HE were analyzed. ODP led to 75.8% and HE led to 60% lingual fractures with mandibular foramen contact. Horizontal fractures were found in 9.7% and 6.7%, respectively, and unfavorable/bad splits were found in 11.3% and 10%, respectively. The lateral osteotomy angle was 106.22° (SD 12.03)° for bad splits and 106.6° (SD 13.12)° for favorable splits. Correlations were found between favorable fracture patterns and split modifications and between buccal ending of the lateral bone cut and bad splits (p < 0.001). No relationship was observed between split modifications (p = 0.792) or the osteotomy angle (p = 0.937) and the incidence of unfavorable/bad splits. Split modifications had no influence on the incidence of unfavorable/bad splits, but the buccal ending of the lateral bone cut did have an influence. More lingual fractures with mandibular foramen contact are expected with the ODP modification. The osteotomy angle did not differ between favorable and bad splits. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. A rare combined injury of dorsal fracture-dislocation of four carpometacarpal joints and trapezium, trapezoid and distal radius bone fractures.

    PubMed

    Touloupakis, Georgios; Stuflesser, Wilfried; Antonini, Guido; Ferrara, Fabrizio; Crippa, Cornelio; Lettera, Maria Gabriella

    2016-05-06

    Incorrect or delayed diagnosis and treatment of the carpometacarpal fracture-dislocations is often associated with poor prognosis. We present a rare case of unusual pattern of injury, involving dorsal dislocation of four ulnar carpometacarpal joints, associated with fracture of the trapezium, a burst fracture of the trapezoid  bone and an extra-articular fracture of the third distal  of the radius. The first surgical intervention was followed by unsatisfactory results, confirmed by the CT scans. A second surgery followed and an open reduction and pinning with K wires performed. Post-operative follow up lasting for nine months revealed a very good surgical outcome.

  9. Fractography of induction-hardened steel fractured in fatigue and overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, C.G.; Laird, C.

    1997-07-01

    The fracture surfaces of induction-hardened steel specimens obtained from an auto axle were characterized, macroscopically and microscopically, after being fractured in fatigue and monotonic overload. Specimens were tested in cyclic three-point bending under load control, and the S-N curve was established for specimens that had been notched by spark machining to facilitate fractography. Scanning electron microscopy of the fractured surfaces obtained for lives spanning the range 17,000 to 418,000 cycles revealed diverse fracture morphologies, including intergranular fracture and transgranular fatigue fracture. The results are being offered to assist in the analysis of complex field failures in strongly hardened steel.

  10. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo

    2017-12-01

    A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.

  11. Assessing Impact Direction in 3-point Bending of Human Femora: Incomplete Butterfly Fractures and Fracture Surfaces,.

    PubMed

    Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C

    2018-01-01

    Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.

  12. Fracture Characterization

    EPA Science Inventory

    The goal of this volume is to compare and assess various techniques for understanding fracture patterns at a site at Pease International Tradeport, NH, and to give an overview of the site as a whole. Techniques included are: core logging, geophysical logging, radar studies, and...

  13. Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.

    PubMed

    Kovler, I; Joskowicz, L; Weil, Y A; Khoury, A; Kronman, A; Mosheiff, R; Liebergall, M; Salavarrieta, J

    2015-10-01

    The aim of orthopedic trauma surgery is to restore the anatomy and function of displaced bone fragments to support osteosynthesis. For complex cases, including pelvic bone and multi-fragment femoral neck and distal radius fractures, preoperative planning with a CT scan is indicated. The planning consists of (1) fracture reduction-determining the locations and anatomical sites of origin of the fractured bone fragments and (2) fracture fixation-selecting and placing fixation screws and plates. The current bone fragment manipulation, hardware selection, and positioning processes based on 2D slices and a computer mouse are time-consuming and require a technician. We present a novel 3D haptic-based system for patient-specific preoperative planning of orthopedic fracture surgery based on CT scans. The system provides the surgeon with an interactive, intuitive, and comprehensive, planning tool that supports fracture reduction and fixation. Its unique features include: (1) two-hand haptic manipulation of 3D bone fragments and fixation hardware models; (2) 3D stereoscopic visualization and multiple viewing modes; (3) ligaments and pivot motion constraints to facilitate fracture reduction; (4) semiautomatic and automatic fracture reduction modes; and (5) interactive custom fixation plate creation to fit the bone morphology. We evaluate our system with two experimental studies: (1) accuracy and repeatability of manual fracture reduction and (2) accuracy of our automatic virtual bone fracture reduction method. The surgeons achieved a mean accuracy of less than 1 mm for the manual reduction and 1.8 mm (std [Formula: see text] 1.1 mm) for the automatic reduction. 3D haptic-based patient-specific preoperative planning of orthopedic fracture surgery from CT scans is useful and accurate and may have significant advantages for evaluating and planning complex fractures surgery.

  14. CLINICAL FEATURES AND PATTERN OF FRACTURES AT THE TIME OF DIAGNOSIS OF OSTEOGENESIS IMPERFECTA IN CHILDREN.

    PubMed

    Brizola, Evelise; Zambrano, Marina Bauer; Pinheiro, Bruna de Souza; Vanz, Ana Paula; Félix, Têmis Maria

    2017-01-01

    To characterize the fracture pattern and the clinical history at the time of diagnosis of osteogenesis imperfecta. In this retrospective study, all patients with osteogenesis imperfecta, of both genders, aged 0-18 years, who were treated between 2002 and 2014 were included. Medical records were assessed to collect clinical data, including the presence of blue sclerae, dentinogenesis imperfecta, positive familial history of osteogenesis imperfecta, and the site of the fractures. In addition, radiographic findings at the time of the diagnosis were reviewed. Seventy-six patients (42 females) were included in the study. Individuals' age ranged from 0 to 114 months, with a median (interquartile range) age of 38 (6-96) months. Blue sclerae were present in 93.4% of patients, dentinogenesis imperfecta was observed in 27.6% of patients, and wormian bones in 29.4% of them. The number of fractures at diagnosis ranged from 0 to 17, with a median of 3 (2-8) fractures. Forty (57%) patients had fractures of the upper and lower extremities, and 9 patients also had spinal fractures. The diagnosis was performed at birth in 85.7% of patients with type 3, and 39.3% of those with type 4/5 of the disorder. Osteogenesis imperfecta is a genetic disorder with distinctive clinical features such as bone fragility, recurrent fractures, blue sclerae, and dentinogenesis imperfecta. It is important to know how to identify these characteristics in order to facilitate the diagnosis, optimize the treatment, and differentiate osteogenesis imperfecta from other disorders that also can lead to fractures.

  15. CLINICAL FEATURES AND PATTERN OF FRACTURES AT THE TIME OF DIAGNOSIS OF OSTEOGENESIS IMPERFECTA IN CHILDREN

    PubMed Central

    Brizola, Evelise; Zambrano, Marina Bauer; Pinheiro, Bruna de Souza; Vanz, Ana Paula; Félix, Têmis Maria

    2017-01-01

    ABSTRACT Objective: To characterize the fracture pattern and the clinical history at the time of diagnosis of osteogenesis imperfecta. Methods: In this retrospective study, all patients with osteogenesis imperfecta, of both genders, aged 0-18 years, who were treated between 2002 and 2014 were included. Medical records were assessed to collect clinical data, including the presence of blue sclerae, dentinogenesis imperfecta, positive familial history of osteogenesis imperfecta, and the site of the fractures. In addition, radiographic findings at the time of the diagnosis were reviewed. Results: Seventy-six patients (42 females) were included in the study. Individuals’ age ranged from 0 to 114 months, with a median (interquartile range) age of 38 (6-96) months. Blue sclerae were present in 93.4% of patients, dentinogenesis imperfecta was observed in 27.6% of patients, and wormian bones in 29.4% of them. The number of fractures at diagnosis ranged from 0 to 17, with a median of 3 (2-8) fractures. Forty (57%) patients had fractures of the upper and lower extremities, and 9 patients also had spinal fractures. The diagnosis was performed at birth in 85.7% of patients with type 3, and 39.3% of those with type 4/5 of the disorder. Conclusions: Osteogenesis imperfecta is a genetic disorder with distinctive clinical features such as bone fragility, recurrent fractures, blue sclerae, and dentinogenesis imperfecta. It is important to know how to identify these characteristics in order to facilitate the diagnosis, optimize the treatment, and differentiate osteogenesis imperfecta from other disorders that also can lead to fractures. PMID:28977334

  16. Extremity fractures associated with ATVs and dirt bikes: a 10-year national epidemiologic study.

    PubMed

    Lombardo, D J; Jelsema, T; Gambone, A; Weisman, M; Petersen-Fitts, G; Whaley, J D; Sabesan, V J

    2017-08-01

    Morbidity and mortality of all-terrain vehicles and dirt bikes have been studied, as well as the association of helmet use and head injury. The purpose of this study is to compare and contrast the patterns of extremity fractures associated with ATVs and dirt bikes. We believe there will be unique and potentially preventable injury patterns associated with dirt bikes and three-wheeled ATVs due to the poor stability of these vehicles. Descriptive epidemiology study. The National Electronic Injury Surveillance System (NEISS) was used to acquire data for extremity fractures related to ATV (three wheels, four wheels, and number of wheels undefined) and dirt bike use from 2007 to 2012. Nationwide estimation of injury incidence was determined using NEISS weight calculations. The database yielded an estimate of 229,362 extremity fractures from 2007 to 2012. The incidence rates of extremity fractures associated with ATV and dirt bike use were 3.87 and 6.85 per 1000 participant-years. The largest proportion of all fractures occurred in the shoulder (27.2%), followed by the wrist and lower leg (13.8 and 12.4%, respectively). There were no differences in the distribution of the location of fractures among four-wheeled or unspecified ATVs. However, three-wheeled ATVs and dirt bikes had much larger proportion of lower leg, foot, and ankle fractures compared to the other vehicle types. While upper extremity fractures were the most commonly observed in this database, three-wheeled ATVs and dirt bikes showed increased proportions of lower extremity fractures. Several organizations have previously advocated for better regulation of the sale and use of these specific vehicles due to increased risks. These findings help illustrate some of the specific risks associated with these commonly used vehicles.

  17. Asymmetry in gait pattern following bicondylar tibial plateau fractures-A prospective one-year cohort study.

    PubMed

    Elsoe, Rasmus; Larsen, Peter

    2017-07-01

    Despite the high number of studies evaluating outcomes following tibial plateau fractures, the literature lacks studies including the objective assessment of gait pattern. The purpose of the present study was to evaluate asymmetry in gait patterns at 12 months after frame removal following ring fixation of a tibial plateau fracture. The study design was a prospective cohort study. The primary outcome measurement was the gait patterns 12 months after frame removal measured with a pressure-sensitive mat. The mat registers footprints and present gait speed, cadence, as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. Twenty-three patients were included with a mean age of 54.4 years (32-78 years). Patients presented with a shorter step-length of the injured leg compared to the non-injured leg (asymmetry of 11.3%). Analysis of single-support showed shorter support time of the injured leg compared to the non-injured leg (asymmetry of 8.7%). Moreover, analysis of swing-time showed increased swing-time of the injured leg (asymmetry of 8.9%). Compared to a healthy reference population, increased asymmetry in all gait patterns was observed. The association between asymmetry and health-related quality of life (HRQOL) showed moderate associations (single-support: R=0.50, P=0.03; step-length: R=0.43, P=0.07; swing-time: R=0.46, P=0.05). Compared to a healthy reference population, gait asymmetry is common 12 months after frame removal in patients treated with external ring fixation following a tibial plateau fracture of the tibia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of bone surrogates for indirect and direct ballistic fractures.

    PubMed

    Bir, Cynthia; Andrecovich, Chris; DeMaio, Marlene; Dougherty, Paul J

    2016-04-01

    The mechanism of injury for fractures to long bones has been studied for both direct ballistic loading as well as indirect. However, the majority of these studies have been conducted on both post-mortem human subjects (PMHS) and animal surrogates which have constraints in terms of storage, preparation and testing. The identification of a validated bone surrogate for use in forensic, medical and engineering testing would provide the ability to investigate ballistic loading without these constraints. Two specific bone surrogates, Sawbones and Synbone, were evaluated in comparison to PMHS for both direct and indirect ballistic loading. For the direct loading, the mean velocity to produce fracture was 121 ± 19 m/s for the PMHS, which was statistically different from the Sawbones (140 ± 7 m/s) and Synbone (146 ± 3 m/s). The average distance to fracture in the indirect loading was .70 cm for the PMHS. The Synbone had a statistically similar average distance to fracture (.61 cm, p=0.54) however the Sawbones average distance to fracture was statistically different (.41 cm, p<0.05). Fractures patterns were found to be comparable to the PMHS for tests conducted with Synbones, however the input parameters were slightly varied to produce similar results. The fractures patterns with the Sawbones were not found to be as comparable to the PMHS. An ideal bone surrogate for ballistic testing was not identified and future work is warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Incidence and pattern of mandibular fractures in Rohilkhand region, Uttar Pradesh state, India: A retrospective study

    PubMed Central

    Giri, Kolli Yada; Singh, Aishwarya Pratap; Dandriyal, Ramakant; Indra, Niranjanaprasad; Rastogi, Sanjay; Mall, Sunil Kumar; Chowdhury, Shouvik; Singh, Himanshu Pratap

    2015-01-01

    Aims To understand and evaluate the significance of various aetiological factors in determining the incidence and dictating the patterns of mandibular fractures in Rohilkhand region. Methods The patient records and radiographs for 144 patients treated for mandibular fractures were reviewed between the time periods from January 2012 to December 2013. Data on age, gender, aetiology, use of intoxicants, head injury, associated injuries, days of the week, anatomic site and multiple fractures within the mandible were recorded and assessed. Results Maximum incidence of fractures was observed among the individuals in 3rd decade (35.4%) followed by 2nd and 4th decades, which exhibited 32 and 30 cases (22.2% and 20.8%), respectively. Male to female ratio was biased (4:1) portraying a male predominance. Road traffic accidents (RTAs) were observed to be the predominant aetiological factor responsible accounting for 79.2% of the total injuries followed by assaults (11.8%) and falls (9%). Parasymphysis exhibited the highest incidence (32.63%) amongst the anatomic sites, followed by body (18.75%), angle (16.66%), condyle (15.27%), symphysis (12.50%), ramus (2.77%) and coronoid (1.38%). Conclusion The study reveals that majority of affected patients were in the 2nd and 3rd decades. A definitive relationship existed between RTA and the incidence of mandibular fractures. The frequency further increased with consumption of social intoxicants. The most commonly fractured site was parasymphysis either isolated or associated with other fractures in the mandible. PMID:26587379

  20. Fractography and fracture toughness of human dentin.

    PubMed

    Yan, J; Taskonak, B; Mecholsky, J J

    2009-10-01

    Dentin, the mineralized tissue forming the bulk of the tooth, serves as an energy-absorbing cushion for the hard, wear-resistant enamel and protects the inner soft tissues. Several studies used fracture mechanics methods to study the fracture toughness of dentin. However, all of them utilized precracks and cannot be used to estimate the intrinsic critical flaw size of dentin. We applied quantitative fractography to study the fracture pattern and fracture toughness of human dentin. Sixteen specimens were prepared from the coronal dentin and fractured in three-point flexure. Fracture surfaces were examined using a scanning electron microscope and the fracture toughness was calculated using a fracture mechanics equation. It was found that human dentin has a fracture surface similar to those of brittle materials. Twist hackle markings were observed and were used to identify the fracture origins. Average fracture toughness of all specimens was found to be 2.3 MPa m(1/2) and the average critical flaw size was estimated to 120 mum. It is suggested that fractography is a promising technique in analyzing the fracture of dentin under catastrophic failure.

  1. Multiscale model reduction for shale gas transport in poroelastic fractured media

    NASA Astrophysics Data System (ADS)

    Akkutlu, I. Yucel; Efendiev, Yalchin; Vasilyeva, Maria; Wang, Yuhe

    2018-01-01

    Inherently coupled flow and geomechanics processes in fractured shale media have implications for shale gas production. The system involves highly complex geo-textures comprised of a heterogeneous anisotropic fracture network spatially embedded in an ultra-tight matrix. In addition, nonlinearities due to viscous flow, diffusion, and desorption in the matrix and high velocity gas flow in the fractures complicates the transport. In this paper, we develop a multiscale model reduction approach to couple gas flow and geomechanics in fractured shale media. A Discrete Fracture Model (DFM) is used to treat the complex network of fractures on a fine grid. The coupled flow and geomechanics equations are solved using a fixed stress-splitting scheme by solving the pressure equation using a continuous Galerkin method and the displacement equation using an interior penalty discontinuous Galerkin method. We develop a coarse grid approximation and coupling using the Generalized Multiscale Finite Element Method (GMsFEM). GMsFEM constructs the multiscale basis functions in a systematic way to capture the fracture networks and their interactions with the shale matrix. Numerical results and an error analysis is provided showing that the proposed approach accurately captures the coupled process using a few multiscale basis functions, i.e. a small fraction of the degrees of freedom of the fine-scale problem.

  2. Dynamic Fracture Behavior of Plastic-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team

    2011-06-01

    Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.

  3. Developing a shale heterogeneity index to predict fracture response in the Mancos Shale

    NASA Astrophysics Data System (ADS)

    DeReuil, Aubry; Birgenheier, Lauren; McLennan, John

    2017-04-01

    The interplay between sedimentary heterogeneity and fracture propagation in mudstone is crucial to assess the potential of low permeability rocks as unconventional reservoirs. Previous experimental research has demonstrated a relationship between heterogeneity and fracture of brittle rocks, as discontinuities in a rock mass influence micromechanical processes such as microcracking and strain localization, which evolve into macroscopic fractures. Though numerous studies have observed heterogeneity influencing fracture development, fundamental understanding of the entire fracture process and the physical controls on this process is still lacking. This is partly due to difficulties in quantifying heterogeneity in fine-grained rocks. Our study tests the hypothesis that there is a correlation between sedimentary heterogeneity and the manner in which mudstone is fractured. An extensive range of heterogeneity related to complex sedimentology is represented by various samples from cored intervals of the Mancos Shale. Samples were categorized via facies analysis consisting of: visual core description, XRF and XRD analysis, SEM and thin section microscopy, and reservoir quality analysis that tested porosity, permeability, water saturation, and TOC. Systematic indirect tensile testing on a broad variety of facies has been performed, and uniaxial and triaxial compression testing is underway. A novel tool based on analytically derived and statistically proven relationships between sedimentary geologic and geomechanical heterogeneity is the ultimate result, referred to as the shale heterogeneity index. Preliminary conclusions from development of the shale heterogeneity index reveal that samples with compositionally distinct bedding withstand loading at higher stress values, while texturally and compositionally homogeneous, bedded samples fail at lower stress values. The highest tensile strength results from cemented Ca-enriched samples, medial to high strength samples have approximately equivalent proportions of Al-Ca-Si compositions, while Al-rich samples have consistently low strength. Moisture preserved samples fail on average at approximately 5 MPa lower than dry samples of similar facies. Additionally, moisture preserved samples fail in a step-like pattern when tested perpendicular to bedding. Tensile fractures are halted at heterogeneities and propagate parallel to bedding planes before developing a through-going failure plane, as opposed to the discrete, continuous fractures that crosscut dry samples. This result suggests that sedimentary heterogeneity plays a greater role in fracture propagation in moisture preserved samples, which are more indicative of in-situ reservoir conditions. Stress-strain curves will be further analyzed, including estimation of an energy released term based on post-failure response, and an estimation of volume of cracking measure on the physical fracture surface.

  4. Patterns Associated with Adult Mandibular Fractures in Southern Taiwan—A Cross-Sectional Retrospective Study

    PubMed Central

    Lin, Ko-Chien; Peng, Shu-Hui; Kuo, Pao-Jen; Chen, Yi-Chun; Rau, Cheng-Shyuan; Hsieh, Ching-Hua

    2017-01-01

    Purpose: This study aimed to determine the patterns associated with adult mandibular fractures from a Level-I trauma center in southern Taiwan. Methods: The data of adult trauma patients admitted between 1 January 2009 and 31 December 2014 were retrieved from the Trauma Registry System and retrospectively reviewed. Fracture site and cause of injury were categorized into groups for comparison, and corresponding odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by multivariate logistic regression. Results: Motorcycle accidents were the most common cause of mandibular fractures (76.3%), followed by falls (10.9%), motor vehicle accidents (4.8%), and being struck by/against objects (4.5%). Of the 503 cases of mandibular fractures, the condylar neck and head were the most common sites (32.0%), followed by the parasymphysis (21.7%), symphysis (19.5%), angle and ramus (17.5%), and body (9.3%). The location of mandibular fractures in patients who had motorcycle accidents was similar to that in all patients. Motor vehicle accidents resulted in a significantly higher number of body fractures (OR 3.3, 95% CI 1.24–8.76, p = 0.017) and struck injury in a significantly higher number of angle and ramus fractures (OR 3.9, 95% CI 1.48–10.26, p = 0.006) compared to motorcycle accidents. The helmet-wearing status and body weight were not associated with the location of mandibular fractures in motorcycle accidents. Conclusions: Our study revealed that the anatomic fracture sites of mandible were specifically related to different etiologies. In southern Taiwan, motorcycle accidents accounted for the major cause of mandibular fractures and were associated with the condylar neck and head as the most frequent fracture sites. In contrast, motor vehicle accidents and struck injuries tended to cause more body fracture as well as angle and ramus fracture compared to motorcycle accidents. Furthermore, the status of helmet-wearing and body weight were not associated with the location of mandible fractures caused by motorcycle accidents. PMID:28737727

  5. Effects of fiber-glass-reinforced composite restorations on fracture resistance and failure mode of endodontically treated molars.

    PubMed

    Nicola, Scotti; Alberto, Forniglia; Riccardo, Michelotto Tempesta; Allegra, Comba; Massimo, Saratti Carlo; Damiano, Pasqualini; Mario, Alovisi; Elio, Berutti

    2016-10-01

    The study evaluated the fracture resistance and fracture patterns of endodontically treated mandibular first molars restored with glass-fiber-reinforced direct composite restorations. In total, 60 extracted intact first molars were treated endodontically; a mesio-occluso-distal (MOD) cavity was prepared and specimens were then divided into six groups: sound teeth (G1), no restoration (G2), direct composite restoration (G3), fiber-post-supported direct composite restoration (G4), direct composite reinforced with horizontal mesio-distal glass-fibers (G5), and buccal-palatal glass-fibers (G6). Specimens were subjected to 5000 thermocycles and 20,000 cycles of 45° oblique loading force at 1.3Hz and 50N; they were then loaded until fracture. The maximum fracture loads were recorded in Newtons (N) and data were analyzed with one-way ANOVA and post-hoc Tukey tests (p<0.05). Fractured specimens were analyzed with a scanning electron microscope (SEM). The mean static loads (in Newtons) were: G1, 831.83; G2, 282.86; G3, 364.18; G4, 502.93; G5, 499.26; and G6, 582.22. Fracture resistance did not differ among G4, G5, and G6, but was significantly higher than G3 (p=0.001). All specimens fractured in a catastrophic way. In G6, glass fibers inducted a partial deflection of the fracture, although they were not able to stop crack propagation. For the direct restoration of endodontically treated molars, reinforcement of composite resins with glass-fibers or fiber posts can enhance fracture resistance. The SEM analysis showed a low ability of horizontal glass-fibers to deviate the fracture, but this effect was not sufficient to lead to more favorable fracture patterns above the cement-enamel junction (CEJ). The fracture resistance of endodontically treated molars restored with direct composite restorations seems to be increased by reinforcement with fibers, even if it is insufficient to restore sound molar fracture resistance and cannot avoid vertical fractures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Coblation vertebroplasty for complex vertebral insufficiency fractures.

    PubMed

    Wilson, David J; Owen, Sara; Corkill, Rufus A

    2013-07-01

    Coblation to create a cavity in the affected vertebral body was performed for complex fractures and/or when there was a posterior wall defect. This permitted a low-pressure injection and potentially reduces the risk of extravasation of cement into the spinal canal. Prospective audit for outcome measures and complications allowed retrospective review of cases treated by coblation. A commercial wand inserted via a wide-bore vertebroplasty needle created a cavity before inserting cement. A visual analogue scale assessed pain and Roland Morris scoring assessed mobility. Thirty-two coblation procedures were performed. Primary diagnoses were myeloma, metastases, osteoporosis and trauma. Outcome measures were recorded with a 56 % success rate, 6 % no change and 32 % with mixed but mainly positive results; 6 % died before follow-up. No complications were observed; in particular no patient suffered neurological damage and none have developed subsequent fractures at the treated levels. This technique makes possible cementation of patients who would otherwise be unsuitable for vertebroplasty. The modest pain and disability improvement is partly due to our stringent criteria as well as fracture complexity. Further work will assess the efficacy of the method compared with conservative measures. • Treatment of vertebral compression fractures with possible posterior wall defects is controversial. • Coblation before vertebroplasty allows a low-pressure injection into fractured vertebrae. • This technique reduces risk of extravasation of cement. • No serious complication of our coblation procedures was observed.

  7. Status of the internal orbit after reduction of zygomaticomaxillary complex fractures.

    PubMed

    Ellis, Edward; Reddy, Likith

    2004-03-01

    We sought to determine the status of the internal orbit before and after reduction of zygomaticomaxillary complex (ZMC) fractures when treated without internal orbital reconstruction. We conducted a retrospective study of preoperative and postoperative computed tomography (CT) scans in 65 patients with unilateral ZMC fractures who were treated by reduction of the ZMC complex without internal orbital reconstruction. The size and location of the internal orbital defects, orbital soft tissue displacement, and orbital volume were assessed in the preoperative and postoperative CT scans. Reduction in the ZMC fractures was considered ideal in 58 of the 65 patients. Only minor malpositions occurred in the remaining 7 patients. The size of the internal orbital defects increased slightly with ZMC reduction but the internal orbital fractures were realigned, and few had increases in orbital volume or soft tissue sagging into the sinuses. Examination of follow-up CT scans in several patients taken weeks to months later showed that the residual defects became smaller and that none of these patients had an increase in orbital volume or soft tissue sagging. The preoperative CT scan can be used to assess the amount of internal orbital disruption for purposes of developing a treatment plan in patients with ZMC fractures. When there is minimal or no soft tissue herniation and minimal disruption of the internal orbit, ZMC reduction is adequate treatment.

  8. Geophysical investigation of liquefaction and surface ruptures at selected sites in Oklahoma post the 2016 Mw 5.8 Pawnee, OK earthquake

    NASA Astrophysics Data System (ADS)

    Kolawole, F.; Ismail, A. M.; Pickens, C. M.; Beckendorff, D.; Mayle, M. V.; Goussi, J. F.; Nyalugwe, V.; Aghayan, A.; Tim, S.; Atekwana, E. A.

    2016-12-01

    To date, the Mw 5.8 Pawnee, Oklahoma, earthquake on September 3, 2016 produced the largest moment release in the central and eastern United States, linked to saline waste water injection into the underlying formations. This earthquake occurred in a region of complex fault interactions, and typical of most of the earthquake activity in Oklahoma the earthquake ruptured a previously unknown left-lateral strike-slip fault striking 109°. Moreover, unlike the 2011 Mw 5.7 Prague, Oklahoma earthquake, the Pawnee earthquake produced surface deformation including fractures and liquefaction features. In this study, we use high resolution electrical resistivity, ground penetrating radar (GPR) and surface fracture mapping to image the zones of surface disruption. Our objective was to report some of the near-surface deformations that are associated with the recent earthquake and compare them with deep structures. We selected two sites for this study. We observed linear fractures and liquefaction at the first site which is 5 km away from the earthquake epicenter, while the second site, 7.5 km away from the epicenter, showed mostly curvilinear fractures. The resistivity and GPR sections showed indication of saturated sediments at about 2 m - 5 m below ground surface and settlement-sag structure within the liquefaction dominated area, and less saturated sediments in areas dominated by fractures only. GPS mapping of fractures at the first site revealed a pattern of en-echelon fractures oriented 93°-116°, sub-parallel to the orientation of the slip direction of the earthquake, while the fractures at the second site trend along the bank of a river meander. We infer that the liquefaction was enhanced by the occurrence of loose, wet, fluvial deposits of the Arkansas River flood plain and adequate near-surface pore pressure at the liquefaction dominated areas. Our results suggest the greater influence of surface morphological heterogeneity on the ruptures farther away from the epicenter, while the relationship between the deep structures, displacement kinematics and the linear fractures closer to the epicenter are unclear. We conclude that high resolution geophysical imaging can be used as a rapid response tool for evaluating areas susceptible to failure during earthquakes and can help improve hazard mitigation measures.

  9. Role of upwelling hydrothermal fluids in the development of alteration patterns at fast spreading ridges: Evidence from the sheeted dike complex at Pito Deep

    NASA Astrophysics Data System (ADS)

    Heft, Kerri L.; Gillis, Kathryn M.; Pollock, Megan A.; Karson, Jeffery A.; Klein, Emily M.

    2008-05-01

    Alteration of sheeted dikes exposed along submarine escarpments at the Pito Deep Rift (NE edge of the Easter microplate) provides constraints on the crustal component of axial hydrothermal systems at fast spreading mid-ocean ridges. Samples from vertical transects through the upper crust constrain the temporal and spatial scales of hydrothermal fluid flow and fluid-rock reaction. The dikes are relatively fresh (average extent of alteration is 27%), with the extent of alteration ranging from 0 to >80%. Alteration is heterogeneous on scales of tens to hundreds of meters and displays few systematic spatial trends. Background alteration is amphibole-dominated, with chlorite-rich dikes sporadically distributed throughout the dike complex, indicating that peak temperatures ranged from <300°C to >450°C and did not vary systematically with depth. Dikes locally show substantial metal mobility, with Zn and Cu depletion and Mn enrichment. Amphibole and chlorite fill fractures throughout the dike complex, whereas quartz-filled fractures and faults are only locally present. Regional variability in alteration characteristics is found on a scale of <1-2 km, illustrating the diversity of fluid-rock interaction that can be expected in fast spreading crust. We propose that much of the alteration in sheeted dike complexes develops within broad, hot upwelling zones, as the inferred conditions of alteration cannot be achieved in downwelling zones, particularly in the shallow dikes. Migration of circulating cells along rides axes and local evolution of fluid compositions produce sections of the upper crust with a distinctive character of alteration, on a scale of <1-2 km and <5-20 ka.

  10. Periprosthetic fractures of the humerus.

    PubMed

    McDonough, Edward B; Crosby, Lynn A

    2005-12-01

    Periprosthetic humeral fractures present a treatment challenge for the orthopedic surgeon. The overall incidence of fracture is between 0.5% and 3%, with the majority of fractures occurring intraoperatively and involving the humeral diaphysis. Excess torque produced during surgery is usually responsible for intraoperative fractures. Improper canal preparation or prosthetic placement may also increase the chance of sustaining a fracture. Postoperative fractures are most commonly caused by minor trauma, such as a fall. Poor bone quality, female sex, advanced age, and history of rheumatoid arthritis are the risk factors most commonly associated with periprosthetic fractures. All 4 systems used to describe periprosthetic humeral shaft fractures classify fracture patterns according to the anatomic relation of the fracture to the prosthetic stem. Treatment decisions should be made with respect to obtaining fracture stability, initiating early gleno-humeral motion, and restoring shoulder function. Intraoperative fractures and any postoperative fracture resulting in prosthetic instability should be treated with a long-stem prosthesis extending at least 2 to 3 cortical diameters past the fracture site with consideration for rigid plate fixation. Short oblique or transverse postoperative fractures should be managed with early stable fixation. There has been some support for conservative treatment of long oblique or spiral postoperative fractures. Postoperative diaphyseal fractures distal to the stem generally are well maintained with standard fracture management.

  11. Epidemiology of Bone Fracture in Female Trauma Patients Based on Risks of Osteoporosis Assessed using the Osteoporosis Self-Assessment Tool for Asians Score

    PubMed Central

    Rau, Cheng-Shyuan; Wu, Shao-Chun; Kuo, Pao-Jen; Chen, Yi-Chun; Chien, Peng-Chen; Hsieh, Hsiao-Yun

    2017-01-01

    Background: Osteoporotic fractures are defined as low-impact fractures resulting from low-level trauma. However, the exclusion of high-level trauma fractures may result in underestimation of the contribution of osteoporosis to fractures. In this study, we aimed to investigate the fracture patterns of female trauma patients with various risks of osteoporosis based on the Osteoporosis Self-Assessment Tool for Asians (OSTA) score. Methods: According to the data retrieved from the Trauma Registry System of a Level I trauma center between 1 January 2009 and 31 December 2015, a total of 6707 patients aged ≥40 years and hospitalized for the treatment of traumatic bone fracture were categorized as high-risk (OSTA < −4, n = 1585), medium-risk (−1 ≥ OSTA ≥ −4, n = 1985), and low-risk (OSTA > −1, n = 3137) patients. Two-sided Pearson’s, chi-squared, or Fisher’s exact tests were used to compare categorical data. Unpaired Student’s t-test and Mann–Whitney U-test were used to analyze normally and non-normally distributed continuous data, respectively. Propensity-score matching in a 1:1 ratio was performed with injury mechanisms as adjusted variables to evaluate the effects of OSTA-related grouping on the fracture patterns. Results: High- and medium-risk patients were significantly older, had higher incidences of comorbidity, and were more frequently injured from a fall and bicycle accident than low-risk patients did. Compared to low-risk patients, high- and medium-risk patients had a higher injury severity and mortality. In the propensity-score matched population, the incidence of fractures was only different in the extremity regions between high- and low-risk patients as well as between medium- and low-risk patients. The incidences of femoral fractures were significantly higher in high-risk (odds ratio [OR], 3.4; 95% confidence interval [CI], 2.73–4.24; p < 0.001) and medium-risk patients (OR, 1.4; 95% CI, 1.24–1.54; p < 0.001) than in low-risk patients. In addition, high-risk patients had significantly lower odds of humeral, radial, patellar, and tibial fractures; however, such lower odds were not found in medium- risk than low-risk patients. Conclusions: The fracture patterns of female trauma patients with high- and medium-risk osteoporosis were different from that of low-risk patients exclusively in the extremity region. PMID:29137199

  12. Decision-making for complex scapula and ipsilateral clavicle fractures: a review.

    PubMed

    Hess, Florian; Zettl, Ralph; Smolen, Daniel; Knoth, Christoph

    2018-03-23

    Complex scapula with ipsilateral clavicle fracures remains a challange and treatment recommendations are still missing.  This review provides an overview of the evolution of the definition, classification and treatment strategies for complex scapula and ipsilateral clavicle fractures. As with other rare conditions, consensus has not been reached on the most suitable management strategies to treat these patients. The aim of this review is twofold: to compile and summarize the currently available literature on this topic, and to recommend treatment approaches. Included in the review are the following topics: biomechanics of scapula and ipsilateral clavicle fractures, preoperative radiological evaluation, surgical treatment of the clavicle only, surgical treatment of both the clavicle and scapula, and nonsurgical treatment options. A decision-making algorithm is proposed for different treatment strategies based on pre-operative parameters, and an example of a case treated our institution is presented to illustrate use of the algorithm. The role of instability in complex scapula with ipsilateral clavicle fractures remains unclear. The question of stability is preoperatively less relevant than the question of whether the dislocated fragments lead to compromised shoulder function.

  13. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    NASA Astrophysics Data System (ADS)

    Potirakis, S. M.; Karadimitrakis, A.; Eftaxias, K.

    2013-06-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  14. Natural time analysis of critical phenomena: the case of pre-fracture electromagnetic emissions.

    PubMed

    Potirakis, S M; Karadimitrakis, A; Eftaxias, K

    2013-06-01

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  15. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  16. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the direction of σ1. Conversely, the crack plane develops perpendicular to the bedding plane, if the bedding plane is orientated normal to σ1. Fracture initiation pressures are higher in the Divider orientation ( 24MPa) than in the Short-Transverse orientation ( 14MPa) showing a tensile strength anisotropy ( 42%) comparable to ambient tensile strength results. We then use X-Ray Computed Tomography (CT) 3D-images to evaluate the evolved fracture network in terms of fracture pattern, aperture and post-test water permeability. For both fracture orientations, very fine, axial fractures evolve over the entire length of the sample. For the fracturing in the Divider orientation, it has been observed, that in some cases, secondary fractures are branching of the main fracture. Test data from fluid driven fracturing experiments suggest that fracture pattern, fracture propagation trajectories and fracturing fluid pressure (initiation and propagation pressure) are predominantly controlled by the interaction between the anisotropic mechanical properties of the shale and the anisotropic stress environment. The orientation of inherent rock anisotropy relative to the principal stress directions seems to be the main control on fracture orientation and required fracturing pressure.

  17. A rare type of ankle fracture: Syndesmotic rupture combined with a high fibular fracture without medial injury.

    PubMed

    van Wessem, K J P; Leenen, L P H

    2016-03-01

    High fibular spiral fractures are usually caused by pronation-external rotation mechanism. The foot is in pronation and the talus externally rotates, causing a rupture of the medial ligaments or a fracture of the medial malleolus. With continued rotation the anterior and posterior tibiofibular ligament will rupture, and finally, the energy leaves the fibula by creating a spiral fracture from anterior superior to posterior inferior. In this article we demonstrate a type of ankle fracture with syndesmotic injury and high fibular spiral fractures without a medial component. This type of ankle fractures cannot be explained by the Lauge-Hansen classification, since it lacks injury on the medial side of the ankle, but it does have the fibular fracture pattern matching the pronation external rotation injury (anterior superior to posterior inferior fracture). We investigated the mechanism of this injury illustrated by 3 cases and postulate a theory explaining the biomechanics behind this type of injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A theoretical and experimental technique to measure fracture properties in viscoelastic solids

    NASA Astrophysics Data System (ADS)

    Freitas, Felipe Araujo Colares De

    Prediction of crack growth in engineering structures is necessary for better analysis and design. However, this prediction becomes quite complex for certain materials in which the fracture behavior is both rate and path dependent. Asphaltic materials used in pavements have that intrinsic complexity in their behavior. A lot of research effort has been devoted to better understanding viscoelastic behavior and fracture in such materials. This dissertation presents a further refinement of an experimental test setup, which is significantly different from standard testing protocols, to measure viscoelastic and fracture properties of nonlinear viscoelastic solids, such as asphaltic materials. The results presented herein are primarily for experiments with asphalt, but the test procedure can be used for other viscoelastic materials as well. Even though the test is designed as a fracture test, experiments on the investigated materials have uncovered very complex phenomena prior to fracture. Viscoelasticity and micromechanics are used to explain some of the physical phenomena observed in the tests. The material behavior prior to fracture includes both viscoelastic behavior and a necking effect, which is further discussed in the appendix of the present study. The dissertation outlines a theoretical model for the prediction of tractions ahead of the crack tip. The major contribution herein lies in the development of the experimental procedure for evaluating the material parameters necessary for deploying the model in the prediction of ductile crack growth. Finally, predictions of crack growth in a double cantilever beam specimens and asphalt concrete samples are presented in order to demonstrate the power of this approach for predicting crack growth in viscoelastic media.

  19. Surgical and functional outcomes after operative management of complex and displaced intra-articular glenoid fractures.

    PubMed

    Anavian, Jack; Gauger, Erich M; Schroder, Lisa K; Wijdicks, Coen A; Cole, Peter A

    2012-04-04

    Operative treatment is indicated for displaced fractures of the glenoid fossa. However, little is known regarding functional outcomes in these patients. This study assesses surgical and functional results after treatment of displaced, high-energy, complex, intra-articular glenoid fractures. Thirty-three patients with displaced intra-articular fractures of the glenoid were treated surgically between 2002 and 2009. The indications for operative treatment included articular fracture gap or step-off of ≥ 4 mm. Twenty-five patients also had extra-articular scapular involvement. A posterior approach was utilized in twenty-one patients, an anterior approach in seven, and a combined approach in five. Functional outcomes, including Disabilities of the Arm, Shoulder and Hand (DASH) and Short Form-36 (SF-36) scores, shoulder motion and strength, and return to work and/or activities, were obtained for thirty patients (91%). At a mean follow-up of twenty-seven months (range, twelve to seventy-three months), all patients had radiographic union of the fracture. The mean DASH score was 10.8 (range, 0 to 42). All mean SF-36 subscores were comparable with those of the normal population. Twenty-six patients (87%) were pain-free at the time of follow-up, and four had mild pain with prolonged activity. Twenty-seven (90%) of thirty patients returned to their preinjury level of work and/or activities. Our data suggest that surgical treatment for complex, displaced intra-articular glenoid fractures with or without involvement of the scapular neck and body can be associated with good functional outcomes and a low complication rate.

  20. Comparative study of the prognosis of an extracorporeal reduction and a closed treatment in mandibular condyle head and/or neck fractures.

    PubMed

    Park, Jung-Min; Jang, Yong-Wook; Kim, Seong-Gon; Park, Young-Wook; Rotaru, Horatiu; Baciut, Grigore; Hurubeanu, Lucia

    2010-12-01

    The objective of this study was a comparison of the prognosis between an extracorporeal reduction technique and closed treatment of a mandibular condyle fracture. The relationship between condylar resorption and several clinical variables was also studied. Seventy-one patients who had a mandibular condyle fracture took part in this study. Thirty-five patients (female: 7, male: 28, age: 30.46 ± 14.27 years) were treated by extracorporeal reduction, and 36 patients (male: 24, female: 12, age: 24.28 ± 9.99 years) were treated using a closed treatment. The presence of complications such as condylar resorption, malocclusion, nerve disorder, and disc displacement was evaluated with panoramic radiographs and clinical examinations 12 months after treatment. The relationships between the complications and other clinical variables were evaluated statistically. The anatomic site and fracture type were closely related to condyle resorption in the bivariate analysis. Condylar head fractures showed significantly higher condyle resorption than condylar neck fractures (P = .023). A complex or compound fracture showed significantly higher condyle resorption compared with a simple fracture (P = .006). Patients who had a complex/compound fracture were 34.366 times more likely to have condyle resorption compared with those who had a simple fracture (P = .002). The patient's age and treatment method were also significant predictors for condyle resorption. Fracture type was the strongest predictor of condylar resorption. Because treatment method and patient age were also related to the prognosis, the optimal treatment for mandibular condylar head and/or neck fractures should be individualized according to the patient's condition. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Recent Advances and Developments in Knee Surgery: Principles of Periprosthetic Knee Fracture Management

    PubMed Central

    Chimutengwende-Gordon, Mukai; Khan, Wasim; Johnstone, David

    2012-01-01

    The management of distal femoral, tibial and patellar fractures after total knee arthroplasty can be complex. The incidence of these fractures is increasing as the number of total knee arthroplasties being performed and patient longevity is increasing. There is a wide range of treatment options including revision arthroplasty for loose implants. This review article discusses the epidemiology, risk factors, classification and treatment of these fractures. PMID:22888380

  2. Epidemiology of stress fracture injuries among US high school athletes, 2005-2006 through 2012-2013.

    PubMed

    Changstrom, Bradley G; Brou, Lina; Khodaee, Morteza; Braund, Cortney; Comstock, R Dawn

    2015-01-01

    High school athletes in the United States sustain millions of injuries annually, approximately 10% of which are fractures. However, there is no clear estimate of the number of stress fractures sustained by high school athletes annually despite reports that stress fractures account for 0.7% to 20% of injuries seen in sports medicine clinics. This suggests a high utilization of resources for a potentially preventable injury. In addition, stress fractures have been associated with low energy availability and disordered eating in young athletes, highlighting the importance of early recognition and intervention. To investigate stress fracture rates and patterns in a large national sample of US high school athletes. Descriptive epidemiologic study. Data from High School RIO (Reporting Information Online), a national sports injury surveillance study, were analyzed to describe rates and patterns of stress fracture injury sustained from 2005-2006 through 2012-2013, across sports and by sex. From 2005-2006 through 2012-2013, a total of 51,773 injuries were sustained during 25,268,873 athlete-exposures, of which 389 (0.8%) were stress fractures, resulting in an overall stress fracture rate of 1.54 per 100,000 athlete-exposures. Rates per 100,000 athlete-exposures were highest in girls' cross country (10.62), girls' gymnastics (7.43), and boys' cross country (5.42). In sex-comparable sports, girls sustained more stress fractures (63.3%) than did boys (36.7%) and had higher rates of stress fracture (2.22 vs 1.27; rate ratio, 1.75; 95% CI, 1.38-2.23). The most commonly injured sites were the lower leg (40.3% of all stress fractures), foot (34.9%), and lower back/lumbar spine/pelvis (15.2%). Management was nonsurgical in 98.7% of the cases, and 65.3% of injuries resulted in ≥3 weeks of time loss, medical disqualification, or an end to the season before athletes could return to play. Although a rare injury, stress fractures cause considerable morbidity for high school athletes of both sexes. Future research should evaluate risks of stress fractures to drive development of targeted prevention efforts. © 2014 The Author(s).

  3. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.

    PubMed

    Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar

    2017-10-01

    Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.

  4. Three Dimensional Forming Simulation of the Shielded Slot Plate for the MCFC Using a Ductile Fracture Criterion

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Yang, D. Y.; Lee, S. R.; Chang, I. G.; Lee, T. W.

    2011-08-01

    The shielded slot plate, which has a sheared corrugated trapezoidal pattern, is a component of the metallic bipolar plate for the molten carbonate fuel cell (MCFC). In order to increase the efficiency of the fuel cell, the unit cell of the shielded slot plate should have a relatively large upper area. Additionally, defects from the forming process should be minimized. In order to simulate the slitting process, whereby sheared corrugated patterns are formed, ductile fracture criteria based on the histories of stress and strain are employed. The user material subroutine VUMAT is employed for implementation of the material and ductile fracture criteria in the commercial FEM software ABAQUS. The variables of the ductile fracture criteria were determined by comparing the simulation results and the experimental results of the tension test and the shearing test. Parametric studies were conducted to determine the critical value of the ductile fracture criterion. Employing these ductile fracture criteria, the three dimensional forming process of the shielded slot plate was numerically simulated. The effects of the slitting process in the forming process of the shielded slot plate were analyzed through a FEM simulation and experimental studies. Finally, experiments involving microscopic and macroscopic observations were conducted to verify the numerical simulations of the 3-step forming process.

  5. Interpretation and classification of bone scintigraphic findings in stress fractures.

    PubMed

    Zwas, S T; Elkanovitch, R; Frank, G

    1987-04-01

    A new system for classification of stress fractures identified by bone scintigraphy was developed and divided into four grades according to lesion dimension, bone extension, and tracer accumulation. The scintigraphic findings were evaluated for severity of lesions by extent of the visualized bone response, ranging from ill-defined cortical lesions with slightly increased activity (I) to well-defined intramedullary transcortical lesions with intensely increased activity (IV). Bone scintigraphies using [99mTc]MDP were obtained in 310 military recruits suspected of having stress fractures. In 235 patients, 391 stress fractures were diagnosed. Forty percent of the lesions were asymptomatic. Most of the lesions were in the tibiae (72%), and 87% of the patients had one or two lesions, while 13% had three to five lesions. Eighty-five percent of the lesions were classified as mild and showed early and more complete resolution on follow-up studies after treatment as compared to the severe grades. Furthermore, specific scintigraphic patterns have been introduced for distinguishing inflammatory shin-splints from stress fractures, allowing for their appropriate early treatment. Thus, early recognition of mild stress fracture scintigraphic patterns representing the beginning of pathologic bone response to stress enabled a prompt and effective treatment to prevent progression of lesions, protracted disability, and complications.

  6. Use of satellite pictures for determining major shield fractures relevant for ore prospecting, northern Finland

    NASA Technical Reports Server (NTRS)

    Tuominen, H. V.; Aarnisalo, J. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A combined analysis of LANDSAT 1 imagery, aeromagnetic and other maps, and aerial photos has revealed a dense network of bedrock fractures in northern Finland. They form several fracturing zones, which obviously represent surficial manifestations of major fractures. The fractures follow, in general, the eight main trends of crustal shear characteristics of the Baltic Shield, but show distinct deviations from them in detail. The major fracture zones divide the bedrock into a mosaic of polygonal blocks, which in many cases coincide with the main rock units of the area and are characterized by different patterns of internal fracturing. Known mineralizations show a tendency to concentrate along the fracture zones. Optical filtering of original LANDSAT images might provide a rapid tool for the analysis of major structural trends in extensive areas such as shields or entire continents.

  7. Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions

    NASA Astrophysics Data System (ADS)

    Watanabe, Noriaki; Egawa, Motoki; Sakaguchi, Kiyotoshi; Ishibashi, Takuya; Tsuchiya, Noriyoshi

    2017-06-01

    Hydraulic fracturing experiments were conducted at 200-450°C by injecting water into cylindrical granite samples containing a borehole at an initial effective confining pressure of 40 MPa. Intensive fracturing was observed at all temperatures, but the fracturing characteristics varied with temperature, perhaps due to differences in the water viscosity. At the lowest considered temperature (200°C), fewer fractures propagated linearly from the borehole, and the breakdown pressure was twice the confining pressure. However, these characteristics disappeared with increasing temperature; the fracture pattern shifted toward the formation of a greater number of shorter fractures over the entire body of the sample, and the breakdown pressure decreased greatly. Hydraulic fracturing significantly increased the permeability at all temperatures, and this permeability enhancement was likely to form a productive geothermal reservoir even at the highest considered temperature, which exceeded both the brittle-ductile transition temperature of granite and the critical temperature of water.

  8. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  9. Predictive modelling of fault related fracturing in carbonate damage-zones: analytical and numerical models of field data (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Mannino, Irene; Cianfarra, Paola; Salvini, Francesco

    2010-05-01

    Permeability in carbonates is strongly influenced by the presence of brittle deformation patterns, i.e pressure-solution surfaces, extensional fractures, and faults. Carbonate rocks achieve fracturing both during diagenesis and tectonic processes. Attitude, spatial distribution and connectivity of brittle deformation features rule the secondary permeability of carbonatic rocks and therefore the accumulation and the pathway of deep fluids (ground-water, hydrocarbon). This is particularly true in fault zones, where the damage zone and the fault core show different hydraulic properties from the pristine rock as well as between them. To improve the knowledge of fault architecture and faults hydraulic properties we study the brittle deformation patterns related to fault kinematics in carbonate successions. In particular we focussed on the damage-zone fracturing evolution. Fieldwork was performed in Meso-Cenozoic carbonate units of the Latium-Abruzzi Platform, Central Apennines, Italy. These units represent field analogues of rock reservoir in the Southern Apennines. We combine the study of rock physical characteristics of 22 faults and quantitative analyses of brittle deformation for the same faults, including bedding attitudes, fracturing type, attitudes, and spatial intensity distribution by using the dimension/spacing ratio, namely H/S ratio where H is the dimension of the fracture and S is the spacing between two analogous fractures of the same set. Statistical analyses of structural data (stereonets, contouring and H/S transect) were performed to infer a focussed, general algorithm that describes the expected intensity of fracturing process. The analytical model was fit to field measurements by a Montecarlo-convergent approach. This method proved a useful tool to quantify complex relations with a high number of variables. It creates a large sequence of possible solution parameters and results are compared with field data. For each item an error mean value is computed (RMS), representing the effectiveness of the fit and so the validity of this analysis. Eventually, the method selects the set of parameters that produced the least values. The tested algorithm describes the expected H/S values as a function of the distance from the fault core (D), the clay content (S), and the fault throw (T). The preliminary results of the Montecarlo inversion show that the distance (D) has the most effective influence in the H/S spatial distribution and the H/S value decreases with the distance from the fault-core. The rheological parameter shows a value similar to the diagenetic H/S values (1-1.5). The resulting equation has a reasonable RMS value of 0.116. The results of the Montecarlo models were finally implemented in FRAP, a fault environment modelling software. It is a true 4D tool that can predict stress conditions and permeability architecture associated to a given faults during single or multiple tectonic events. We present some models of fault-related fracturing among the studied faults performed by FRAP and we compare them with the field measurements, to test the validity of our methodology.

  10. Fractal lacunarity of trabecular bone and magnetic resonance imaging: New perspectives for osteoporotic fracture risk assessment

    PubMed Central

    Zaia, Annamaria

    2015-01-01

    Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern even in aging men. Screening of the population at risk for bone degeneration and treatment assessment of osteoporotic patients to prevent bone fragility fractures represent useful tools to improve quality of life in the elderly and to lighten the related socio-economic impact. Bone mineral density (BMD) estimate by means of dual-energy X-ray absorptiometry is normally used in clinical practice for osteoporosis diagnosis. Nevertheless, BMD alone does not represent a good predictor of fracture risk. From a clinical point of view, bone microarchitecture seems to be an intriguing aspect to characterize bone alteration patterns in aging and pathology. The widening into clinical practice of medical imaging techniques and the impressive advances in information technologies together with enhanced capacity of power calculation have promoted proliferation of new methods to assess changes of trabecular bone architecture (TBA) during aging and osteoporosis. Magnetic resonance imaging (MRI) has recently arisen as a useful tool to measure bone structure in vivo. In particular, high-resolution MRI techniques have introduced new perspectives for TBA characterization by non-invasive non-ionizing methods. However, texture analysis methods have not found favor with clinicians as they produce quite a few parameters whose interpretation is difficult. The introduction in biomedical field of paradigms, such as theory of complexity, chaos, and fractals, suggests new approaches and provides innovative tools to develop computerized methods that, by producing a limited number of parameters sensitive to pathology onset and progression, would speed up their application into clinical practice. Complexity of living beings and fractality of several physio-anatomic structures suggest fractal analysis as a promising approach to quantify morpho-functional changes in both aging and pathology. In this particular context, fractal lacunarity seems to be the proper tool to characterize TBA texture as it is able to describe both discontinuity of bone network and sizes of bone marrow spaces, whose changes are an index of bone fracture risk. In this paper, an original method of MRI texture analysis, based on TBA fractal lacunarity is described and discussed in the light of new perspectives for early diagnosis of osteoporotic fractures. PMID:25793162

  11. Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2018-03-01

    Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.

  12. Perspective View of Venus (Center Latitude 45 Degrees N., Center Longitude 11 Degrees E.)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This perspective view of Venus, generated by computer from Magellan data and color-coded with emissivity, shows part of the lowland plains in Sedna Planitia. Circular depressions with associated fracture patterns called 'coronae' are apparently unique to the lowlands of Venus, and tend to occur in linear clusters along the planet's major tectonic belts. Coronae differ greatly in size and detailed morphology: the central depression may or may not lie below the surrounding plains, and may or may not be surrounded by a raised rim or a moat outside the rim. The corona shown here is relatively small (100 km in diameter and 1 km deep) and is of the subtype known as an 'arachnoid' because of the spider-like configuration of concentric (body) and radial (legs) fractures. Coronae are thought to be caused by localized 'hot spot' magmatic activity in Venus' subsurface. Intrusion of magma into the crust first pushes up the surface, after which cooling and contraction create the central depression and generate a pattern of concentric fractures. In some cases, lava may be extruded onto the surface. The fractured ridge at the left is classified as a 'nova' or 'stellate fracture center' and is believed to represent an early phase of corona formation, in which subsidence due to cooling has not yet created the central depression, and the fracture pattern is still entirely radial. Magellan MIDR quadrangle* containing this image: C1-45N011. Image resolution (m): 225. Size of region shown (E-W x N-S, in km): 439 x 474. Range of emissivities from violet to red: 0.82 -- 0.88. Vertical exaggeration: 100. Azimuth of viewpoint (deg clockwise from East): 150. Elevation of viewpoint (km): 600. *Quadrangle name indicates approximate center latitude (N=north, S=south) and center longitude (East).

  13. Dismounted Blast Injuries in Patients Treated at a Role 3 Military Hospital in Afghanistan: Patterns of Injury and Mortality.

    PubMed

    Oh, John S; Tubb, Creighton C; Poepping, Thomas P; Ryan, Paul; Clasper, Jonathan C; Katschke, Adrian R; Tuman, Caroline; Murray, Michael J

    2016-09-01

    The purposes of this study are to define the pattern of injuries sustained by dismounted troops exposed to improvised explosive devices blasts treated at a Role 3 combat support hospital and to assess injury patterns and mortality associated with the mechanism. Our hypothesis was that mortality is associated with pelvic fracture, massive transfusion, high Injury Severity Score (ISS), multiple limb amputations, and transfer from a Role 2 facility. Retrospective study of 457 patients. Analysis performed on trauma registry data and systematic review of radiographs. 99.9% were men with a median age of 23 years and median ISS 10. 141 patients (30.9%) required massive blood transfusion. Limb amputations were frequently observed injuries, 109 of 172 amputees (63.4%) had a double amputation. 34 subjects (7.4%) had pelvic fractures; majority of pelvic fractures (88%) were unstable (Tile B or C). Risk factors associated with the overall mortality rate of 1.8% were an ISS greater than 15 (odds ratio: 11.5; 95% confidence interval: 1.38, 533; p = 0.009), need for massive transfusion (p < 0.0001), and the presence of a pelvic fracture (odds ratio: 7.63; 95% confidence interval: 1.13, 41.3; p = 0.018). Dismounted improvised explosive devices blast injuries result in devastating multiple limb amputations and unstable pelvic fractures, which are associated with mortality after initial trauma resuscitation at a Role 3 hospital. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  14. Hemodynamic Deterioration in Lateral Compression Pelvic Fracture After Prehospital Pelvic Circumferential Compression Device Application.

    PubMed

    Garner, Alan A; Hsu, Jeremy; McShane, Anne; Sroor, Adam

    Increased fracture displacement has previously been described with the application of pelvic circumferential compression devices (PCCDs) in patients with lateral compression-type pelvic fracture. We describe the first reported case of hemodynamic deterioration temporally associated with the prehospital application of a PCCD in a patient with a complex acetabular fracture with medial displacement of the femoral head. Active hemorrhage from a site adjacent to the acetabular fracture was subsequently demonstrated on angiography. Caution in the application of PCCDs to patients with lateral compression-type fractures is warranted. Copyright © 2017 Air Medical Journal Associates. All rights reserved.

  15. Damage characterization on human femur bone by means of ultrasonics and acoustic emission

    NASA Astrophysics Data System (ADS)

    Strantza, M.; Polyzos, D.; Louis, O.; Boulpaep, F.; Van Hemelrijck, D.; Aggelis, D. G.

    2015-07-01

    Human bone tissue is characterized as a material with high brittleness. Due to this nature, visible signs of cracking are not easy to be detected before final failure. The main objective of this work is to investigate if the acoustic emission (AE) technique can offer valuable insight to the fracture process of human femur specimens as in other engineering materials characterization. This study describes the AE activity during fracture of whole femur bones under flexural load. Before fracture, broadband AE sensors were used in order to measure parameters like wave velocity dispersion and attenuation. Waveform parameters like the duration, rise time and average frequency, were also examined relatively to the propagation distance as a preparation for the AE monitoring during fracture. After the ultrasonic study, the samples were partly cast in concrete and fixed as cantilevers. A point load was applied on the femur head, which due to the test geometry resulted in a combination of two different patterns of fracture, bending and torsion. Two AE broadband sensors were placed in different points of the sample, one near the fixing end and the other near the femur head. Preliminary analysis shows that parameters like the number of acquired AE signals and their amplitude are well correlated with the load history. Furthermore, the parameters of rise time and frequency can differentiate the two fracture patterns. Additionally, AE allows the detection of the load at the onset of fracture from the micro-cracking events that occur at the early loading stages, allowing monitoring of the whole fracture process. Parameters that have been used extensively for monitoring and characterization of fracture modes of engineering materials seem to poses characterization power in the case of bone tissue monitoring as well.

  16. A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model.

    PubMed

    Bradley, Amanda L; Swain, Michael V; Neil Waddell, J; Das, Raj; Athens, Josie; Kieser, Jules A

    2014-05-01

    Forensic biomechanics is increasingly being used to explain how observed injuries occur. We studied infant rib fractures from a biomechanical and morphological perspective using a porcine model. We used 24, 6th ribs of one day old domestic pigs Sus scrofa, divided into three groups, desiccated (representing post-mortem trauma), fresh ribs with intact periosteum (representing peri-mortem trauma) and those stored at -20°C. Two experiments were designed to study their biomechanical behaviour fracture morphology: ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and Scanning Electron Microscopy (SEM). During axial compression fresh ribs did not fracture because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening and visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. Frozen then thawed bone showed similar patterns to fresh bone. Morphologically, fresh ribs showed extensive periosteal damage to the tensile surface with areas of collagen fibre pull-out along the tensile surface. While all dry ribs fractured precipitously, with associated fibre pull-out, the latter feature was absent in thawed ribs. Our study highlights the fact that under controlled loading, fresh piglet ribs (representing perimortem trauma) did not fracture through bone, but was associated with periosteal tearing. These results suggest firstly, that complete lateral rib fracture in infants may in fact not result from pure compression as has been previously assumed; and secondly, that freezing of bone during storage may affect its fracture behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Fractures from trampolines: results from a national database, 2002 to 2011.

    PubMed

    Loder, Randall T; Schultz, William; Sabatino, Meagan

    2014-01-01

    No study specifically analyzes trampoline fracture patterns across a large population. The purpose of this study was to determine such patterns. We queried the National Electronic Injury Surveillance System database for trampoline injuries between 2002 and 2011, and the patients were analyzed by age, sex, race, anatomic location of the injury, geographical location of the injury, and disposition from the emergency department (ED). Statistical analyses were performed with SUDAAN 10 software. Estimated expenses were determined using 2010 data. There were an estimated 1,002,735 ED visits for trampoline-related injuries; 288,876 (29.0%) sustained fractures. The average age for those with fractures was 9.5 years; 92.7% were aged 16 years or younger; 51.7% were male, 95.1% occurred at home, and 9.9% were admitted. The fractures were located in the upper extremity (59.9%), lower extremity (35.7%), and axial skeleton (spine, skull/face, rib/sternum) (4.4%-spine 1.0%, skull/face 2.9%, rib/sternum 0.5%). Those in the axial skeleton were older (16.5 y) than the upper extremity (8.7 y) or lower extremity (10.0 y) (P<0.0001) and more frequently male (67.9%). Lower extremity fractures were more frequently female (54.0%) (P<0.0001). The forearm (37%) and elbow (19%) were most common in the upper extremity; elbow fractures were most frequently admitted (20.0%). The tibia/fibula (39.5%) and ankle (31.5%) were most common in the lower extremity; femur fractures were most frequently admitted (57.9%). Cervical (36.4%) and lumbar (24.7%) were most common locations in the spine; cervical fractures were the most frequently admitted (75.6%). The total ED expense for all trampoline injuries over this 10-year period was $1.002 billion and $408 million for fractures. Trampoline fractures most frequently involve the upper extremity followed by the lower extremity, >90% occur in children. The financial burden to society is large. Further efforts for prevention are needed.

  18. Obesity and bone.

    PubMed

    Compston, Juliet

    2013-03-01

    Recent studies indicate that fractures in obese postmenopausal women and older men contribute significantly to the overall fracture burden. The effect of obesity is to some extent site-dependent, the risk being increased for some fractures and decreased for others, possibly related to different patterns of falling and the presence or absence of soft tissue padding. Risk factors for fracture in obese individuals appear to be similar to those in the nonobese population, although falls may be particularly important in the obese. There is some evidence that the morbidity associated with fractures in obese individuals is greater than in the nonobese; however, a recent study indicates that the mortality associated with fracture is lower in obese and overweight people than in those of normal weight. The evidence base for strategies to prevent fractures in obese individuals is weak and is an important area for future research.

  19. [Treatment of periprosthetic and peri-implant fractures : modern plate osteosynthesis procedures].

    PubMed

    Raschke, M J; Stange, R; Kösters, C

    2012-11-01

    Periprosthetic fractures are increasing not only due to the demographic development with high life expectancy, the increase in osteoporosis and increased prosthesis implantation but also due to increased activity of the elderly population. The therapeutic algorithms are manifold but general valid rules for severe fractures are not available. The most commonly occurring periprosthetic fractures are proximal and distal femoral fractures but in the clinical routine fractures of the tibial head, ankle, shoulder, elbow and on the borders to other implants (peri-implant fractures) and complex interprosthetic fractures are being seen increasingly more. It is to be expected that in the mid-term further options, such as cement augmentation of cannulated polyaxial locking screws will extend the portfolio of implants for treatment of periprosthetic fractures. The aim of this review article is to present the new procedures for osteosynthesis of periprosthetic fractures.

  20. [Treatment of periprosthetic and peri-implant fractures : modern plate osteosynthesis procedures].

    PubMed

    Raschke, M J; Stange, R; Kösters, C

    2012-08-01

    Periprosthetic fractures are increasing not only due to the demographic development with high life expectancy, the increase in osteoporosis and increased prosthesis implantation but also due to increased activity of the elderly population. The therapeutic algorithms are manifold but general valid rules for severe fractures are not available. The most commonly occurring periprosthetic fractures are proximal and distal femoral fractures but in the clinical routine fractures of the tibial head, ankle, shoulder, elbow and on the borders to other implants (peri-implant fractures) and complex interprosthetic fractures are being seen increasingly more. It is to be expected that in the mid-term further options, such as cement augmentation of cannulated polyaxial locking screws will extend the portfolio of implants for treatment of periprosthetic fractures. The aim of this review article is to present the new procedures for osteosynthesis of periprosthetic fractures.

  1. Measurement of width and pressure in a propagating hydraulic fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at DOE's Nevada Test Site. This was accomplished by creating an instrumented fracture at a tunnel complex (at a depth of 1400 ft) where realistic in situ conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory and currently in use in models today. This is apparently due to the tortuosity of the fracture path, multiplemore » fracture strands, roughness and sharp turns (corners) in the flow path due to natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated.« less

  2. Multiwell fracturing experiments. [Nitrogen foam fracture treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.

    The objective of the Multiwell fracturing experiments is to test and develop the technology for the efficient stimulation of tight, lenticular gas sands. This requires basic understanding of: (1) fracture behavior and geometry in this complex lithologic environment, and (2) subsequent production into the created fracture. The intricate interplay of the hydraulic fracture with the lens geometry, the internal reservoir characteristics (fractures, reservoir breaks, etc.), the in situ stresses, and the mechanical defects (fracture, bedding, etc.) need to be defined in order to develop a successful stimulation program. The stimulation phase of the Multiwell Experiment is concerned with: (1) determiningmore » important rock/reservoir properties that influence or control fracture geometry and behavior, (2) designing fracture treatments to achieve a desired size and objectives, and (3) conducting post-treatment analyses to evaluate the effectiveness of the treatment. Background statement, project description, results and evaluation of future plans are presented. 5 refs., 2 figs., 2 tabs.« less

  3. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners.

    PubMed

    Nieves, Jeri W; Melsop, Kathryn; Curtis, Meredith; Kelsey, Jennifer L; Bachrach, Laura K; Greendale, Gail; Sowers, Mary Fran; Sainani, Kristin L

    2010-08-01

    To identify nutrients, foods, and dietary patterns associated with stress fracture risk and changes in bone density among young female distance runners. Two-year, prospective cohort study. Observational data were collected in the course of a multicenter randomized trial of the effect of oral contraceptives on bone health. One hundred and twenty-five female competitive distance runners ages 18-26 years. Dietary variables were assessed with a food frequency questionnaire. Bone mineral density and content (BMD/BMC) of the spine, hip, and total body were measured annually by dual x-ray absorptiometry (DEXA). Stress fractures were recorded on monthly calendars, and had to be confirmed by radiograph, bone scan, or magnetic resonance imaging. Seventeen participants had at least one stress fracture during follow-up. Higher intakes of calcium, skim milk, and dairy products were associated with lower rates of stress fracture. Each additional cup of skim milk consumed per day was associated with a 62% reduction in stress fracture incidence (P < .05); and a dietary pattern of high dairy and low fat intake was associated with a 68% reduction (P < .05). Higher intakes of skim milk, dairy foods, calcium, animal protein, and potassium were associated with significant (P < .05) gains in whole-body BMD and BMC. Higher intakes of calcium, vitamin D, skim milk, dairy foods, potassium, and a dietary pattern of high dairy and low fat were associated with significant gains in hip BMD. In young female runners, low-fat dairy products and the major nutrients in milk (calcium, vitamin D, and protein) were associated with greater bone gains and a lower stress fracture rate. Potassium intake was also associated with greater gains in hip and whole-body BMD. Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  4. Northern East Pacific Rise: Magnetic anomaly and bathymetric framework

    USGS Publications Warehouse

    Klitgord, Kim D.; Mammerickx, Jacqueline

    1982-01-01

    The oceanic crust in the eastern Pacific between 7°N and 30°N and east of 127°W contains a fairly complete history of the spreading centers associated with the East Pacific Rise since 25 m.y. B.P. (late Oligocene). In this paper, we have summarized the seafloor spreading magnetic-anomaly data and the bathymetric data that reflect the record of this tectonic history. The well-defined magnetic lineations north of the Clarion fracture zone, in the mouth of the Gulf of California, and on the east flank of the East Pacific Rise (EPR) are carefully examined and used to provide a guide for interpreting the spreading pattern between the Clarion and Clipperton fracture zones, southward of the Rivera fracture zone over the Mathematician Ridge, and over the entire EPR east of the Mathematician Ridge between the Rivera and Siqueiros fracture zones. The bathymetric data provide a trace of the fracture zone pattern in each of the above mentioned areas. The fracture zone bathymetry and the seafloor spreading magnetic lineations on the EPR south of the Rivera fracture zone have a distinctive fanning pattern caused by close poles of rotation and plate boundary reorganizations. All these data provide a good record of the plate reorganizations in the middle Miocene at magnetic anomaly 5 A time (12.5 to 11 m.y. B.P.), in the late Miocene at magnetic anomaly 3′−4 time (6.5 m.y. B.P.), and in the Pliocene at magnetic anomaly 2′−3 time (3.5 m.y. B.P.). Several abandoned spreading centers, including the Mathematician Ridge, were left behind as a result of these reorganizations. The Mathematician Ridge is shown to be a set of ridges and trough whose origin is related to the tectonic activity associated with each of the above mentioned reorganizations since anomaly 5A.

  5. Persistent ulnar-sided wrist pain after treatment of triquetral dorsal chip fracture: six cases related to triangular fibrocartilage complex injury.

    PubMed

    Lee, Seoung-joon; Rathod, Chasanal Mohan; Park, Kwang-Won; Hwang, Jin-Ho

    2012-05-01

    Persistent ulnar-sided wrist pain after treatment of triquetral dorsal chip fracture even after union is a matter of concern. There could be various reasons for this persistent pain like arthritis, instability, fractures and non-union. We correlate our findings of physical examination and wrist arthroscopy as triangular fibrocartilage complex injury to be one of the causes of this persistent pain. Six subjects who had persistent ulnocarpal joint pain and tenderness after triquetral dorsal chip fracture, despite 2 months of conservative treatment, were subjected to physical tests. If the physical examination yields positive results, then magnetic resonance imaging followed by arthroscopic treatment was performed. The six patients were then evaluated using the visual analogue scale, the Mayo modified wrist score, and the grip strength test. Triangular fibrocartilage complex (TFCC) injury was observed in all six cases and partial TFCC resection and synovectomy were performed. Analysis of the visual analogue scale, Mayo modified wrist score, and grip strength test data revealed statistically significant improvements (P < 0.05). In addition to several causes reported in the published literature, TFCC injury can be a cause of persistent ulnar pain after treatment of triquetral dorsal chip fracture. Arthroscopic partial TFCC resection can be considered to be a suitable treatment for such cases.

  6. Traumatic fractures as a result of falls in children and adolescents: A retrospective observational study.

    PubMed

    Wang, Hongwei; Yu, Hailong; Zhou, Yue; Li, Changqing; Liu, Jun; Ou, Lan; Zhao, Yiwen; Song, Guoli; Han, Jianda; Chen, Yu; Xiang, Liangbi

    2017-09-01

    The aim of this study is to investigate the incidence and pattern of traumatic fractures (TFs) as a result of falls in a population of children and adolescents (≤18 years old) in China.This was a cross-sectional study. We retrospectively reviewed 1412 patients who were children and adolescents with TFs as a result of falls admitted to our university-affiliated hospitals in China from 2001 to 2010. Etiologies included high fall (height ≥2) and low fall (height <2 m). The incidence and pattern were summarized with respect to different age groups, year of admission, etiologies, genders, and the neurological function.This study enrolled 1054 males (74.6%) and 358 females (25.4%) aged 10.8 ± 4.7 years. The etiologies were low fall (1059, 75.0%) and high fall (353, 25.0%). There were 2073 fractures in total and 92 patients (6.5%) presented with multiple fractures. The most common fracture sites were upper extremity fractures in 814 patients (57.6%) and lower extremity fractures in 383 patients (27.1%), followed by craniofacial fractures in 233 patients (16.5%). A total of 231 (16.4%) patients suffered a nerve injury. The frequencies of early and late complications/associated injuries were 19.5% (n = 275) and 9.2% (n = 130). The frequencies of emergency admission, nerve injury, spinal fracture, lower extremity fractures, craniofacial fracture, sternum and rib fracture, and early complications/ASOIs were significantly larger in high fall than low fall (all P <.001, respectively). The frequencies of medical insurance rate (P = .042) and upper extremity fractures (P <.001) were significantly larger in low fall than high fall. The frequencies of spinal fracture (P = .039), lower extremity fractures (P = .048), and craniofacial fracture (P = .041) were significantly larger in female than the male patients. The frequency of upper extremity fractures (P <.001) and the mean age (P <.001) was significantly larger in male than female patients. The frequencies of emergency admission, high fall, spinal fracture, and craniofacial fracture were significantly larger in patients with nerve injury than other patients without nerve injury (all P <.001, respectively).Low falls and upper extremity fractures were the most common etiologies and sites, respectively. High fall, spinal fracture and craniofacial fracture were risk factors for nerve injury. Therefore, we should focus on patients who were caused by high fall and presented with spinal and craniofacial fracture to determine the presence of a nerve injury so that we can provide early, timely diagnosis and targeted treatment to children.

  7. Venus - Complex Network of Narrow Fractures Near Hestia Rupes Region

    NASA Image and Video Library

    1996-10-23

    This image from NASA Magellan spacecraft covers region near Hestia Rupes on the northwestern corner of Aphrodite Terra. The complex network of narrow (<1 kilometer) fractures in the center of the image extends for approximately 50 kilometers (31 miles). This network exhibits tributary-like branches similar to those observed in river systems on Earth. However, the angular intersections of tributaries suggest tectonic control. These features appear to be due to drainage of lava along preexisting fractures and subsequent collapse of the surface. The underlying tectonic fabric can be observed in the northeast trending ridges which predate the plains. http://photojournal.jpl.nasa.gov/catalog/PIA00469

  8. Survey study suggests that reverse total shoulder arthroplasty is becoming the treatment of choice for four-part fractures of the humeral head in the elderly.

    PubMed

    Savin, David D; Zamfirova, Ina; Iannotti, Joseph; Goldberg, Benjamin A; Youderian, Ari R

    2016-09-01

    The role of reverse total shoulder arthroplasty (RTSA) for three and four-part proximal humerus fractures is evolving. However, there does not appear to be a clear consensus amongst surgeons. The purpose of this study is to further define the standard of care, assessing surgeon preference and treatment considerations for management of such fractures. Orthopaedic surgeons were surveyed on their training, practice setting, and experience regarding management of four-part proximal humerus fractures. The survey also presented five representative cases to assess treatment preferences. Two hundred five surgeons responded to the survey with fellowship training in shoulder and elbow surgery (114), orthopaedic trauma (35) or sports medicine/other training (56). There was no difference between respondents with years in practice and confidence with performing RTSA, however, surgeons in the academic setting were more confident in performing the surgery. Surgeons preferred RTSA for management of four-part fractures in patients over age 65. However, they also trended to favour hemiarthroplasty with higher co-morbidities. Physicians with more than 11 years of experience were more likely to choose hemiarthroplasty for older and high comorbidity patients. RTSA was not the preferred treatment method for younger, active patients. Patient age and fracture pattern had a greater influence on the surgeon's decision. There is a consensus in our study population that RTSA is the preferred treatment for four-part proximal humerus fractures for elderly patients with patient age and fracture pattern being the most important factors in making management decisions. Level III - Case controlled study.

  9. Desiccation of a pool of blood: from fluid mechanics to forensic investigations

    NASA Astrophysics Data System (ADS)

    Nicloux, Celine; Brutin, David

    2012-11-01

    The evaporation of biological fluids (with droplet configuration) has been studied since a few years due to several applications in medical fields such as medical tests, drug screening, biostabilization... The evaporation of a drop of whole blood leads to the formation of final typical pattern of cracks. Flow motion, adhesion, gelation and fracturation all occur during the evaporation of this complex matter. During the drying, a sol-gel transition develops. The evaporation of a pool of blood is studied in order to link the pattern formation and the evaporation dynamics. We intend to transfer the knowledge acquired for drops on pool to improve the forensic investigations. In this study, we focus on both pool of blood and pure water to determine the transition region from drop to pool and then to characterize the evaporation rate in the pool configuration. The spreading of blood which can be seen as a complex fluid is strongly influenced the substrate nature. The initial contact angle of blood on different substrate nature will influence the maximum thickness of the layer and then will influence the evaporation mass flux. The authors gratefully acknowledge the help and the fruitful discussions raised with A. Boccoz.

  10. Principles of managing Vancouver type B periprosthetic fractures around cemented polished tapered femoral stems.

    PubMed

    Quah, Conal; Porteous, Matthew; Stephen, Arthur

    2017-05-01

    The management of periprosthetic fractures around total hip replacements is a complex and challenging problem. Getting it right first time is an important factor in reducing the morbidity, mortality and financial burden associated with these injuries. Understanding and applying the basic principles of fracture management helps increase the chance of successful treatment. Based on these principles, we suggest a treatment algorithm for managing periprosthetic fractures around polished tapered femoral stems.

  11. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Huang, H.; Deo, M.

    2016-03-01

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less

  12. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Zhou; H. Huang; M. Deo

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less

  13. Online Studies on Variation in Orthopedic Surgery: Computed Tomography in MPEG4 Versus DICOM Format.

    PubMed

    Mellema, Jos J; Mallee, Wouter H; Guitton, Thierry G; van Dijk, C Niek; Ring, David; Doornberg, Job N

    2017-10-01

    The purpose of this study was to compare the observer participation and satisfaction as well as interobserver reliability between two online platforms, Science of Variation Group (SOVG) and Traumaplatform Study Collaborative, for the evaluation of complex tibial plateau fractures using computed tomography in MPEG4 and DICOM format. A total of 143 observers started with the online evaluation of 15 complex tibial plateau fractures via either the SOVG or Traumaplatform Study Collaborative websites using MPEG4 videos or a DICOM viewer, respectively. Observers were asked to indicate the absence or presence of four tibial plateau fracture characteristics and to rate their satisfaction with the evaluation as provided by the respective online platforms. The observer participation rate was significantly higher in the SOVG (MPEG4 video) group compared to that in the Traumaplatform Study Collaborative (DICOM viewer) group (75 and 43%, respectively; P < 0.001). The median observer satisfaction with the online evaluation was seven (range, 0-10) using MPEG4 video compared to six (range, 1-9) using DICOM viewer (P = 0.11). The interobserver reliability for recognition of fracture characteristics in complex tibial plateau fractures was higher for the evaluation using MPEG4 video. In conclusion, observer participation and interobserver reliability for the characterization of tibial plateau fractures was greater with MPEG4 videos than with a standard DICOM viewer, while there was no difference in observer satisfaction. Future reliability studies should account for the method of delivering images.

  14. Patterns, severity, and management of maxillofacial injuries in a suburban South Western Nigeria tertiary center.

    PubMed

    Ogunmuyiwa, Stella Aimiede; Gbolahan, Olalere Omoyosola; Ayantunde, Abiodun Abraham; Odewabi, Adenike Abidemi

    2015-01-01

    Trauma remains a leading cause of maxillofacial injury globally. Changing etiological factors and patterns of maxillofacial injury continue to be reported and are largely modulated by socio-geographic and environmental factors. It is important to have an in-depth understanding of the pattern and etiology in a particular region before effective preventive measures can be developed. The aim was to evaluate the patterns, etiological factors, and management of maxillofacial injuries in Ogun state, Nigeria. A prospective descriptive cohort study of all consecutive patients that presented with maxillofacial injuries at our center between January and December 2013. Information about demographic data, types of maxillofacial and associated injury, etiology of injury, treatment received and complications were collected and analyzed. Seventy patients presented with maxillofacial injury during the study period with a male to female ratio of 4:1. The age range was 9 months to 60 years with a mean of 30.11 ± standard deviation 14.97 years. Majority of the facial fractures were due to motorcycle related crashes. There were 57.1% mandibular fractures and 55.7% middle third fractures. Closed reduction with maxillo-mandibular fixation was the major method of treatment of facial fractures. Postoperative complications were observed in 11.4% of patients. Road traffic crashes (RTCs) remain the leading etiological factor of maxillofacial injuries in our center. Enforcement of stricter traffic regulations and possibly replacement of motorcycles with tricycles for commercial transportation may help to reduce the incidence of RTCs.

  15. Radiographic pattern of skeletal trauma in children seen in a tertiary hospital in Sagamu, South West Nigeria.

    PubMed

    Olatunji, A A; Thanni, L O A

    2013-03-01

    The study was aimed at identifying the pattern of skeletal trauma in the paediatric age group as it relates to the causes. A retrospective analysis of the records on the request cards, case notes, radiographs and reports (where available) of all children aged one day to 15 years who were referred to the radiology department of Olabisi Onabanjo University Teaching Hospital, Sagamu was carried out. Fractures were analysed with respect to sex, age, causes, type and location of fracture. The analysis spanned a period of twenty-eight months during which a total of three hundred and twenty eight radiographs were analysed. The mean ages of male and female patients were 5.4±4.6 and 5.1±4.6 years, respectively, with a range of 0.2-15 years. Normal radiographs were found in 124 (37.80%) patients,53.1 (16.1%) had 55 fractures, and 39 (11.9%) had soft tissue swelling. Fractures were found most commonly in male children and in the age range 4-6 years. Fractures occur three times more in the upper limbs, and the bones most frequently affected are the humerus, radius, and the ulna in descending order. Most of the fractures were due to Road Traffic Injury (RTI) seen in 18.9%, falls seen in 18.9%, and birth trauma, which was responsible for 7.5%. The most frequently involved bone in fractures is the humerus followed by the femur bone. Skull fractures occur mostly in the parietal bone. Fractures are still mostly investigated with plain radiographs. Fractures are more frequent in male children and in the 4-6 year age range; it is seen more in the upper limb bones especially in the humerus. Skull fractures are relatively rare. Half of the fractures occur in the distal and mid portions of long bones. This study has also high lighted the importance of road traffic injury and falls as aetiological factors in fracture occurring in children. Effort should be made to ease deliveries in order to reduce the incidence of birth trauma.

  16. [Treatment of multi-segment fracture of complex femoral shaft with instrument-assisted reduction combined with intramedullary interlocking nail fixation].

    PubMed

    Fan, Ke-Jie; Chen, Ke; Ma, Wen-Long; Tian, Ke-Wei; Ye, Ye; Chen, Hong-Gan; Tang, Yan-Feng; Cai, Hong-Min

    2018-05-25

    To investigate the effect of minimally invasive mini-incision and instrumented reduction combined with interlocking intramedullary nailing in the treatment of patients with multi-segment fracture of complex femoral shaft. From January 2013 to January 2016, 32 patients with multiple fractures segments of femoral shaft were treated with instrumentation-assisted reduction combined with interlocking intramedullary nailing, including 22 males and 10 females with an average age of 45 years old ranging 17 to 68 years old. The time from injured to operation was 5 to 10 days with an average of 7 days. After admission, routine tibial tubercle or supracondylar bone traction was performed. The patient's general condition was evaluated, the operation time and intraoperative blood loss were recorded. According to Thorsen femoral fracture morphology evaluation criteria and Hohl knee function evaluation of postoperative efficacy, postoperative fracture healing, complications and postoperative recovery of limb function were observed. All patients were followed up for 6 to 24 months with an average of 12 months. The operative time ranged from 48 to 76 minutes with an average of 67 min. The intraoperative blood loss was 150 to 400 ml with an average of 220 ml. The surgical incisions all achieved grade A healing. The fractures reached the clinical standard of healing. The fracture healing time ranged from 4.2 to 10.8 months with an average of 5.7 months. There were no nonunion, incision infection and internal fixation fracture, failure and other complications. According to Thorsen femoral fracture morphology evaluation criteria, the result was excellent in 28 cases, good in 3 cases, fair in 1 case. According to Hohl knee function evaluation criteria, the result was excellent in 30 cases, good in 2 cases. Instrument-assisted reduction combined with interlocking intramedullary nail fixation is a safe and effective method for the treatment of complex femoral shaft fractures. It has advantages of small trauma, fixed fixation, quick recovery, early postoperative functional exercise. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  17. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  18. A model for the origin of Martian polygonal terrain

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.

    1993-01-01

    Extensive areas of the Martian northern plains in Utopia and Acidalia Planitiae are characterized by 'polygonal terrain.' Polygonal terrain consists of material cut by complex troughs defining a pattern resembling mudcracks, columnar joints, or frost-wedge polygons on the Earth. However, the Martian polygons are orders of magnitude larger than these potential Earth analogs, leading to severe mechanical difficulties for genetic models based on simple analogy arguments. Stratigraphic studies show that the polygonally fractured material in Utopia Planitia was deposited on a land surface with significant topography, including scattered knobs and mesas, fragments of ancient crater rims, and fresh younger craters. Sediments or volcanics deposited over topographically irregular surfaces can experience differential compaction producing drape folds. Bending stresses due to these drape folds would be superposed on the pervasive tensile stresses due to desiccation or cooling, such that the probability of fracturing is enhanced above buried topographic highs and suppressed above buried topographic lows. Thus it was proposed that the scale of the Martian polygons is controlled by the spacing of topographic highs on the buried surface rather than by the physics of the shrinkage process.

  19. Sacral Bone Mass Distribution Assessed by Averaged Three-Dimensional CT Models: Implications for Pathogenesis and Treatment of Fragility Fractures of the Sacrum.

    PubMed

    Wagner, Daniel; Kamer, Lukas; Sawaguchi, Takeshi; Richards, R Geoff; Noser, Hansrudi; Rommens, Pol M

    2016-04-06

    Fragility fractures of the sacrum are increasing in prevalence due to osteoporosis and epidemiological changes and are challenging in their treatment. They exhibit specific fracture patterns with unilateral or bilateral fractures lateral to the sacral foramina, and sometimes an additional transverse fracture leads to spinopelvic dissociation. The goal of this study was to assess sacral bone mass distribution and corresponding changes with decreased general bone mass. Clinical computed tomography (CT) scans of intact pelves in ninety-one individuals (mean age and standard deviation, 61.5 ± 11.3 years) were used to generate three-dimensional (3D) models of the sacrum averaging bone mass in Hounsfield units (HU). Individuals with decreased general bone mass were identified by measuring bone mass in L5 (group 1 with <100 HU; in contrast to group 2 with ≥100 HU). In group 1, a large zone of negative Hounsfield units was located in the paraforaminal lateral region from S1 to S3. Along the trans-sacral corridors, a Hounsfield unit peak was observed laterally, corresponding to cortical bone of the auricular surface. The lowest Hounsfield unit values were found in the paraforaminal lateral region in the sacral ala. An intermediate level of bone mass was observed in the area of the vertebral bodies, which also demonstrated the largest difference between groups 1 and 2. Overall, the Hounsfield units were lower at S2 than S1. The models of averaged bone mass in the sacrum revealed a distinct 3D distribution pattern. The negative values in the paraforaminal lateral region may explain the specific fracture patterns in fragility fractures of the sacrum involving the lateral areas of the sacrum. Transverse fractures located between S1 and S2 leading to spinopelvic dissociation may occur because of decreased bone mass in S2. The largest difference between the studied groups was found in the vertebral bodies and might support the use of transsacral or cement-augmented implants. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  20. TOUGH-RBSN simulator for hydraulic fracture propagation within fractured media: Model validations against laboratory experiments

    NASA Astrophysics Data System (ADS)

    Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens

    2017-11-01

    This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.

  1. The influence of muscle fatigue on electromyogram and plantar pressure patterns as an explanation for the incidence of metatarsal stress fractures.

    PubMed

    Weist, Roger; Eils, Eric; Rosenbaum, Dieter

    2004-12-01

    Stress fractures are common overuse injuries in runners and appear most frequently in the metatarsals. To investigate fatigue-related changes in surface electromyographic activity patterns and plantar pressure patterns during treadmill running as potential causative factors for metatarsal stress fractures. Prospective cohort study with repeated measurements. Thirty experienced runners volunteered to participate in a maximally exhaustive run above the anaerobic threshold. Surface electromyographic activity was monitored for 14 muscles, and plantar pressures were measured using an in-shoe monitoring system. Fatigue was documented with blood lactate measurements. The results demonstrated an increased maximal force (5%, P < .01), peak pressure (12%, P < .001), and impulse (9%, P < .01) under the second and third metatarsal head and under the medial midfoot (force = 7%, P < .05; pressure = 6%, P < .05; impulse = 17%, P < .01) toward the end of the fatiguing run. Contact area and contact time were only slightly affected. The mean electromyographic activity was significantly reduced in the medial gastrocnemius (-9%, P < .01), lateral gastrocnemius (-12%, P < .01), and soleus (-9%, P < .001) muscles. The demonstrated alteration of the rollover process with an increased forefoot loading may help to explain the incidence of stress fractures of the metatarsals under fatiguing loading conditions.

  2. Simultaneous avulsion fracture of the posterior medial and posterior lateral meniscus root: a case report and review of the literature.

    PubMed

    Feucht, Matthias J; Salzmann, Gian M; Pestka, Jan M; Südkamp, Norbert P; Niemeyer, Philipp

    2014-04-01

    Injuries of the meniscus roots are increasingly recognized as a serious knee joint pathology. An avulsion fracture of the meniscus root is a rare variant of this injury pattern. In this article, a case of a traumatic simultaneous avulsion fracture of both the posterior medial and posterior lateral meniscus root associated with a tear of the anterior cruciate ligament is presented. Both avulsion fractures were treated by indirect arthroscopic transtibial pullout fixation of the bony fragment. Based on the findings of our literature review, root avulsion fractures seem to be more common in young male patients after an acute trauma to the knee joint.

  3. The Effects of Fracture Anisotropy on the Damage Pattern and Seismic Radiation from a Chemical Explosion in a Granite Quarry

    NASA Astrophysics Data System (ADS)

    Rogers-Martinez, M. A.; Sammis, C. G.; Ezzedine, S. M.

    2017-12-01

    As part of the New England Damage Experiment (NEDE) a 122.7 kg Heavy ANFO charge was detonated at a depth of 13 m in a granite quarry in Barre Vt. Subsequent drill cores from the source region revealed that most of the resultant fracturing was concentrated in the rift plane of the highly anisotropic Barre granite. We simulated this explosion using a dynamic damage mechanics model embedded in the ABAQUS 3D finite element code. The damage mechanics was made anisotropic by taking the critical stress intensity factor to be a function of azimuth in concert with the physics of interacting parallel fractures and laboratory studies of anisotropic granite. In order to identify the effects of anisotropy, the explosion was also simulated assuming 1) no initial damage (pure elasticity) and 2) isotropic initial damage. For the anisotropic case, the calculated fracture pattern simulated that observed in NEDE. The simulated seismic radiation looked very much like that from a tensile fracture oriented in the rift plane, and similar to the crack-like moment tensor observed in the far field of many nuclear explosions.

  4. Second generation locked plating for complex proximal humerus fractures in very elderly patients.

    PubMed

    Gavaskar, Ashok S; Karthik B, Bhupesh; Tummala, Naveen C; Srinivasan, Parthasarathy; Gopalan, Hitesh

    2016-11-01

    Humeral head sacrificing procedures are more favored in elderly patients with complex proximal humerus fractures because of high incidence of failures and complications with osteosynthesis. The purpose of this study is to assess the outcome of second generation locked plating techniques in 3 and 4 part fractures in active elderly patients >70years with an emphasis on function and complications. 29 patients with displaced 3 and 4 part proximal humerus fractures were treated using the principles of second-generation proximal humerus locked plating. Fixed angle locked plating (PHILOS) using the anterolateral deltoid spilt approach augmented with traction cuff sutures was performed. Minimum of 7 locking head screws including 2 calcar screws were used. In cases with a comminuted medial calcar, an endosteal fibular strut was used. Subchondral metaphyseal bone voids were filled with injectable calcium phosphate cement. Radiological outcome (union, head - shaft angle, tuberosity reduction), functional outcome assessment (Constant and ASES scores) and complications (loss of reduction, nonunion and osteonecrosis) were assessed. The fracture united in 24 of the 26 patients available for follow up at a mean of 27 months (12-40 months). 3 patients developed complications that required arthroplasty (fixation failure in 2 patients and osteonecrosis in 1 patient). Follow up age adjusted Constant (63.1±11.9) and ASES scores (62.58±7.5) showed the extent of functional improvement post surgery. Patients with fractures having a non-comminuted medial calcar and valgus displacement of the humeral head had better functional scores and fewer complications. Osteosynthesis with second generation locked plating techniques provide satisfactory outcome in very elderly patients with complex proximal humerus fractures with minimal complications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. What are the control mechanisms of evenly-spaced parallel strike-slip faults? Insights from DEM modeling

    NASA Astrophysics Data System (ADS)

    Bonilla Sierra, V.; Donze, F. V.; Duriez, J.; Klinger, Y.; Scholtes, L.

    2016-12-01

    At the very early stages of a pure strike-slip fault zone formation, shear displacement along a deep buried parent fault produces a characteristic set of "evenly-spaced" strike-slip faults at the surface, e.g. Southern San Andreas, North Anatolian, Central Asian, and Northern Tibetan fault systems. This mode III fracture propagation is initiated by the rotation of the local principal stress at the tip of the parent discontinuity, generating twisted fractures with a helicoidal shape. In sandbox or clay-cake experiments used to reproduce these structures, it has been observed that the spacing and possibly the characteristic length of the fractures appearing at the surface are proportional to the overburden thickness of the deformed layer. Based on a Discrete Element Method (YADE DEM-Open Source), we have investigated the conditions controlling the linear relationships between the spacing of the surface "evenly-spaced" strike-slip discontinuities and the thickness of the deformed layer. Increasing the basement displacement of the model, a diffused shear zone appears first at the tip of the basal parent discontinuity. From this mist zone, localized and strongly interacting shear fractures start to propagate. This interaction process can generate complex internal structures: some fractures will propagate faster than their neighbors, modifying their close surrounding stress environment. Some propagating fractures can stop growing and asymmetrical fracture sets can be observed. This resulting hierarchical bifurcation process leads to a set of "en echelon" discontinuities appearing at the surface (Figure 1). In a pure strike-slip mode, fracture spacing is proportional to the thickness, with a ratio and a bifurcation mode controlled by the cohesion value at the first order. Depending on the Poisson's ratio value, which mainly controls the orientation of the discontinuities, this ratio can be affected at a lower degree. In presence of mixed-mode (transpression or transtension), these linear relationships disappear. Figure 1: Effects of the cohesion C and the thickness T of the deformed layer on the surface discontinuity pattern (a) T = Tref and C = Cref (b) T = Tref and C= 10×Cref (c) T = 2×Tref and C = Cref (d) T = 2×Tref and 10×Cref. The color code corresponds to the instantaneous velocity in the Y direction.

  6. Do thoraco-lumbar spinal injuries classification systems exhibit lower inter- and intra-observer agreement than other fractures classifications?: A comparison using fractures of the trochanteric area of the proximal femur as contrast model.

    PubMed

    Urrutia, Julio; Zamora, Tomas; Klaber, Ianiv; Carmona, Maximiliano; Palma, Joaquin; Campos, Mauricio; Yurac, Ratko

    2016-04-01

    It has been postulated that the complex patterns of spinal injuries have prevented adequate agreement using thoraco-lumbar spinal injuries (TLSI) classifications; however, limb fracture classifications have also shown variable agreements. This study compared agreement using two TLSI classifications with agreement using two classifications of fractures of the trochanteric area of the proximal femur (FTAPF). Six evaluators classified the radiographs and computed tomography scans of 70 patients with acute TLSI using the Denis and the new AO Spine thoraco-lumbar injury classifications. Additionally, six evaluators classified the radiographs of 70 patients with FTAPF using the Tronzo and the AO schemes. Six weeks later, all cases were presented in a random sequence for repeat assessment. The Kappa coefficient (κ) was used to determine agreement. Inter-observer agreement: For TLSI, using the AOSpine classification, the mean κ was 0.62 (0.57-0.66) considering fracture types, and 0.55 (0.52-0.57) considering sub-types; using the Denis classification, κ was 0.62 (0.59-0.65). For FTAPF, with the AO scheme, the mean κ was 0.58 (0.54-0.63) considering fracture types and 0.31 (0.28-0.33) considering sub-types; for the Tronzo classification, κ was 0.54 (0.50-0.57). Intra-observer agreement: For TLSI, using the AOSpine scheme, the mean κ was 0.77 (0.72-0.83) considering fracture types, and 0.71 (0.67-0.76) considering sub-types; for the Denis classification, κ was 0.76 (0.71-0.81). For FTAPF, with the AO scheme, the mean κ was 0.75 (0.69-0.81) considering fracture types and 0.45 (0.39-0.51) considering sub-types; for the Tronzo classification, κ was 0.64 (0.58-0.70). Using the main types of AO classifications, inter- and intra-observer agreement of TLSI were comparable to agreement evaluating FTAPF; including sub-types, inter- and intra-observer agreement evaluating TLSI were significantly better than assessing FTAPF. Inter- and intra-observer agreements using the Denis classification were also significantly better than agreement using the Tronzo scheme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Occurrence and pattern of long bone fractures in growing dogs with normal and osteopenic bones.

    PubMed

    Kumar, K; Mogha, I V; Aithal, H P; Kinjavdekar, P; Singh, G R; Pawde, A M; Kushwaha, R B

    2007-11-01

    A retrospective study was undertaken to record the occurrence and pattern of long bone fractures, and the efficacy of Intramedullary (IM) Steinmann pin fixing in growing dogs. All the records of growing dogs during a 10-year-period were screened to record the cause of trauma, the age and sex of the animal, the bone involved, the type and location of the fracture, the status of fixation, alignment, maintenance of fixation and fracture healing. The results were analysed and comparisons were made between growing dogs with normal and osteopenic bones. Among the 310 cases of fractures recorded, the bones were osteopenic in 91 cases (29%). Minor trauma was the principal cause of fracture in dogs with osteopenia (25%), and indigenous breeds were most commonly affected (38%). Fractures in dogs with osteopenic bones were most commonly recorded in the age group of 2-4 months (53%), whereas fractures in normal dogs were almost equally distributed between 2 and 8 months of age. Male dogs were affected significantly more often in both groups. In osteopenic bones, most fractures were recorded in the femur (56%), and they were distributed equally along the length of the bone. Whereas in normal bones, fractures were almost equally distributed in radius/ulna, femur and tibia, and were more often recorded at the middle and distal third of long bones. Oblique fractures were most common in both groups; however, comminuted fractures were more frequent in normal bones, whereas incomplete fractures were more common in osteopenic bones. Ninety-nine fracture cases treated with IM pinning (66 normal, 33 osteopenic) were evaluated for the status of fracture reduction and healing. In a majority of the cases (61%) with osteopenic bones, the diameter of the pin was relatively smaller than the diameter of the medullary cavity (<70-75%), whereas in 68% of the cases in normal bones the pin diameter was optimum. The status of fracture fixing was satisfactory to good in significantly more osteonormal (59%) than osteopenic dogs (42%). Fracture healing, however, was satisfactory in significantly more cases with osteopenic than normal bones. The appearance of callus was relatively early and the amount of bridging callus was relatively large in greater number of osteopenic bone fractures. Mal-union and non-union were recorded more often in osteopenic cases than in normal cases. However, the incidence of bone shortening and osteomyelitis was significantly higher in normal bones than in osteopenic bones.

  8. Asymmetry in gait pattern following tibial shaft fractures - a prospective one-year follow-up study of 49 patients.

    PubMed

    Larsen, Peter; Laessoe, Uffe; Rasmussen, Sten; Graven-Nielsen, Thomas; Berre Eriksen, Christian; Elsoe, Rasmus

    2017-01-01

    Despite the high number of studies evaluating the outcomes following tibial shaft fractures, the literature lacks studies including objective assessment of patients' recovery regarding gait pattern. The purpose of the present study was to evaluate whether gait patterns at 6 and 12 months post-operatively following intramedullary nailing of a tibial shaft fracture are different compared with a healthy reference population. The study design was a prospective cohort study. The primary outcome measurement was the gait patterns at 6 and 12 months post-operatively measured with a 6-metre-long pressure-sensitive mat. The mat registers footprints and present gait speed, cadence as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. 49 patients were included with a mean age of 43.1 years (18-79 years). Forty-three patients completed the 12-month follow-up (88%). Gait speed and cadence were significantly increased between the 6- and 12-month follow-up (P<0.001). At 6-month follow-up, patients showed considerable asymmetry in the injured leg compared with the non-injured leg: single-support time 12.8% shorter, swing-time 12.8% longer, step-length 11.9% shorter, and rotation of the foot increased by 32.3%. At the 12-month follow-up, gait asymmetry become almost normalized compared to a healthy reference group. In patients treated by intramedullary nailing following a tibial shaft fracture, gait asymmetry accompanied with slower speed and cadence are common during the first 6 months and become normalized compared with a healthy reference population between 6 and 12 months post-operatively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Injury pattern in lethal motorbikes-pedestrian collisions, in the area of Barcelona, Spain.

    PubMed

    Rebollo-Soria, M Carmen; Arregui-Dalmases, Carlos; Sánchez-Molina, David; Velázquez-Ameijide, Juan; Galtés, Ignasi

    2016-10-01

    There are several studies about M1 type vehicle-pedestrian collision injury pattern, and based on them, there has been several changes in automobiles for pedestrian protection. However, the lack of sufficient studies about injury pattern in motorbikes-pedestrian collisions leads to a lack of optimization design of these vehicles. The objective of this research is to study the injury pattern of pedestrians involved in collisions with motorized two-wheeled vehicles. A retrospective descriptive study of pedestrian's deaths after collisions with motorcycles in an urban area, like Barcelona was performed. The cases were collected from the Forensic Pathology Service database of the Institute of Legal Medicine of Catalonia. The selected cases were categorized as pedestrian-motorcycle collision, between January 1st, 2005 and December 31st, 2014. Data were collected from the autopsy, medical, and police report. The collected information was then analyzed using Microsoft Excel statistical functions. Traumatic Brain Injury is the main cause of death in pedestrian hit by motorized two-wheeled vehicles (62.85%). The most frequent injury was the subarachnoid hemorrhage, in 71.4% of cases, followed by cerebral contusions and skull base fractures (65.7%). By contrast, pelvic fractures and tibia fractures only appeared in 28.6%. The study characterizes the injury pattern of pedestrians involved in a collision with motorized two-wheeled vehicles in an urban area, like Barcelona, which has been found to be different from other vehicle-pedestrian collisions, with a higher incidence of brain injuries and minor frequency of lower extremities fractures in pelvis, tibia and fibula. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. Plains Tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; McGill, G. E.; Zuber, M. T.

    1996-01-01

    Tectonic deformation in the plains of Venus is pervasive, with virtually every area of the planet showing evidence for faulting or fracturing. This deformation can be classified into three general categories, defined by the intensity and areal extent of the surface deformation: distributed deformation, concentrated deformation, and local fracture patterns.

  11. Sustainable Fracturing Rationale to Reach Well Objectives: the Impact of Uncertainties and Complexities on Compliance Assurances

    EPA Pesticide Factsheets

    The presentation will discuss lessons learned; extract best practices and guidelines applied to injection of fluids and slurries during fracturing and exploration and production associated streams disposal.

  12. Floor-fractured crater models of the Sudbury structure, Canada

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1992-01-01

    The Sudbury structure in Ontario, Canada, is one of the oldest and largest impact structures recognized in the geological record. It is also one of the most extensively deformed and volcanically modified impact structures on Earth. Although few other terrestrial craters are recognized as volcanically modified, numerous impact craters on the Moon have been volcanically and tectonically modified and provide possible analogs for the observed pattern of modification at Sudbury. We correlate the pattern of early deformation at Sudbury to fracture patterns in two alternative lunar analogs and then use these analogs both to estimate the initial size of the Sudbury structure and to model the nature of early crater modification at Sudbury.

  13. Fractal patterns of fracture in sandwich composite materials under biaxial tension

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Yao, Xuefeng; Qi, Jia

    1996-04-01

    The paper presents a successful experiment to generate a fractal pattern of branching cracks in a brittle material sandwiched in ductile plates. A glass sheet bonded between two polycarbonate plates was heated at different levels of temperatures and the stress field due to the difference of thermal coefficients of the materials was solved by combining the results from isochromatic fringes and thermal stress analysis. At a critical degree of temperature, a crack was initiated at a point and soon produced crack branches to release the stored energy. A tree—like fractal patterns of the branch cracks was then developed with the growth of the branches that subsequently produced more branches on their ways of propagation. The fractal dimension of the fracture pattern was evaluated and the mechanism of the fragmentation was analyzed with the help of the residual stress field of isochromatic and isoclinic patterns.

  14. Discolored Fracture Zones in Martian Sandstone

    NASA Image and Video Library

    2015-12-17

    This view from NASA's Curiosity Mars rover shows an example of discoloration closely linked to fractures in the Stimson formation sandstone on lower Mount Sharp. The pattern is evident along two perpendicular fractures. Curiosity's Navigation Camera (Navcam) acquired the component images of this mosaic on Aug. 23, 2015, during the 1.083rd Martian day, or sol, of the mission. The location is along the rover's path between "Marias Pass" and "Bridger Basin." In this region, the rover has found fracture zones to be associated with rock compositions enriched in silica, relative to surrounding bedrock. http://photojournal.jpl.nasa.gov/catalog/PIA20268

  15. Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow

    NASA Astrophysics Data System (ADS)

    Moreira, N.; Dias, R.

    2018-05-01

    The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.

  16. True polar wander on Europa from global-scale small-circle depressions.

    PubMed

    Schenk, Paul; Matsuyama, Isamu; Nimmo, Francis

    2008-05-15

    The tectonic patterns and stress history of Europa are exceedingly complex and many large-scale features remain unexplained. True polar wander, involving reorientation of Europa's floating outer ice shell about the tidal axis with Jupiter, has been proposed as a possible explanation for some of the features. This mechanism is possible if the icy shell is latitudinally variable in thickness and decoupled from the rocky interior. It would impose high stress levels on the shell, leading to predictable fracture patterns. No satisfactory match to global-scale features has hitherto been found for polar wander stress patterns. Here we describe broad arcuate troughs and depressions on Europa that do not fit other proposed stress mechanisms in their current position. Using imaging from three spacecraft, we have mapped two global-scale organized concentric antipodal sets of arcuate troughs up to hundreds of kilometres long and 300 m to approximately 1.5 km deep. An excellent match to these features is found with stresses caused by an episode of approximately 80 degrees true polar wander. These depressions also appear to be geographically related to other large-scale bright and dark lineaments, suggesting that many of Europa's tectonic patterns may also be related to true polar wander.

  17. Lunate fractures and associated radiocarpal and midcarpal instabilities: a systematic review.

    PubMed

    Shunmugam, Meenalochani; Phadnis, Joideep; Watts, Amy; Bain, Gregory I

    2018-01-01

    The aim of this study was to analyse lunate fractures and any associated osseo-ligamentous injuries. A systematic review identified 34 cases. We identified carpal instabilities at the radiocarpal and midcarpal joints in volar and dorsal directions. Radiocarpal instabilities (10/34) were usually dorsoradial (8/10), with a transverse lunate fracture, best seen on a coronal image. Midcarpal instabilities (24/34) were usually volar (14/18), with a volar lunate shear fracture, best seen on a sagittal image. Instabilities were sub-classified into non-displaced, subluxated and dislocated. Associated fractures of the scaphoid and the radial and ulnar styloid processes were common. Lunate fractures without subluxation or dislocation had good outcomes with cast immobilization or fixation of associated fractures. Lunate fracture-subluxations are unstable injuries that are best managed with fixation of the carpal fractures. Lunate fracture-dislocations are complex injuries, requiring stabilization of the lunate, associated fractures and ligament injuries; complications are common and acute or delayed salvage procedures may be required.

  18. [Dislocation of the ankle without simoustaneously fracture of the bones].

    PubMed

    Qayyum, Faiza; Qayyum, Abbas Ali; Sahlstrüm, Sven Arne

    2014-09-01

    The ankle is a unique modified saddle joint that, together with the subtalar joint, provides range of motion in several physical planes while maintaining stability. The ankle complex functions as a pivoting structure positioned to bear the entire weight of the body which leaves it vulnerable to injuries. Pure dislocation without associated fracture is rare; however, cases of isolated ankle dislocation without fracture have been reported. We report a case of a closed ankle dislocation without an associated fracture in a 17-year-old boy.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammeschlag, S.B.; Hughes, S.; O'Reilly, G.V.

    Orbital blow-out fractures were experimentally created in eight human cadavers. Each orbit underwent conventional radiographic studies, complex motion tomography, and computed tomographic examinations. A comparison of the three modalities was made. Anatomical correlation was obtained by dissecting the orbits. The significance of medial-wall fractures and enophthalmos is discussed. Limitation of inferior rectus muscle mobility is thought to be a result of muscle kinking associated with orbital fat-pad prolapse at the fracture site, rather than muscle incarceration. Blow-out fractures should be evaluated by computed tomographic computer reformations in the oblique sagittal plane.

  20. Percolation Theory and Modern Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

Top