Science.gov

Sample records for complex fuel assembly

  1. Fuel nozzle assembly

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  2. Transfer of fuel assemblies

    SciTech Connect

    Vuckovich, M.; Burkett, J. P.; Sallustio, J.

    1984-12-11

    Fuel assemblies of a nuclear reactor are transferred during fueling or refueling or the like by a crane. The work-engaging fixture of the crane picks up an assembly, removes it from this slot, transfers it to the deposit site and deposits it in its slot at the deposit site. The control for the crane includes a strain gauge connected to the crane line which raises and lowers the load. The strain gauge senses the load on the crane. The signal from the strain gauge is compared with setpoints; a high-level setpoint, a low-level setpoint and a slack-line setpoint. If the strain gauge signal exceeds the high-level setpoint, the line drive is disabled. This event may occur during raising of a fuel assembly which encounters resistance. The high-level setpoint may be overridden under proper precautions. The line drive is also disabled if the strain gauge signal is less than the low-level setpoint. This event occurs when a fuel assembly being deposited contacts the bottom of its slot or an obstruction in, or at the entry to the slot. To preclude lateral movement and possible damage to a fuel assembly suspended from the crane line, the traverse drive of the crane is disabled once the strain-gauge exceets the lov-level setpoint. The traverse drive can only be enabled after the strain-gauge signal is less than the slack-line set-point. This occurs when the lines has been set in slack-line setting. When the line is tensioned after slack-li ne setting, the traverse drive remains enabled only if the line has been disconnected from the fuel assembly.

  3. Fuel cell sub-assembly

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  4. Fuel assembly for nuclear reactors

    DOEpatents

    Creagan, Robert J.; Frisch, Erling

    1977-01-01

    A new and improved fuel assembly is formed to minimize the amount of parasitic structural material wherein a plurality of hollow tubular members are juxtaposed to the fuel elements of the assembly. The tubular members may serve as guide tubes for control elements and are secured to a number of longitudinally spaced grid members along the fuel assembly. The grid members include means thereon engaging each of the fuel elements to laterally position the fuel elements in a predetermined array. Openings in the bottom of each hollow member serve as a shock absorber to cushion shock transmitted to the structure when the control elements are rapidly inserted in their corresponding tubular members.

  5. Materials and Fuels Complex Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  6. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  7. Fuel cell design and assembly

    DOEpatents

    Myerhoff, Alfred

    1984-01-01

    The present invention is directed to a novel bipolar cooling plate, fuel cell design and method of assembly of fuel cells. The bipolar cooling plate used in the fuel cell design and method of assembly has discrete opposite edge and means carried by the plate defining a plurality of channels extending along the surface of the plate toward the opposite edges. At least one edge of the channels terminates short of the edge of the plate defining a recess for receiving a fastener.

  8. Nuclear core and fuel assemblies

    DOEpatents

    Downs, Robert E.

    1981-01-01

    A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

  9. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  10. Nuclear reactor composite fuel assembly

    DOEpatents

    Burgess, Donn M.; Marr, Duane R.; Cappiello, Michael W.; Omberg, Ronald P.

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  11. FUEL ASSEMBLY SHAKER TEST SIMULATION

    SciTech Connect

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through

  12. Nuclear fuel assembly wear sleeve

    SciTech Connect

    Cadwell, D.J.; Kmonk, S.

    1983-03-08

    An improved control rod guide tube for use in a fuel assembly in a nuclear reactor. The guide tube extends the complete length of the fuel assembly and has its upper end fastened in a cylindrical housing by swaging the guide tube material into grooves formed in the housing walls. To eliminate wear on the guide tube inner walls caused by hydraulic induced vibratory forces on a control rod adapted to move therein, a thin-walled chrome plated sleeve is threaded into the top end of the guide thimble and extends downwardly a distance sufficient to be engaged by the control rod during reactor operation. The sleeve serves as a highly resistant wear surface between the control rod and walls on the guide tube in the fuel assembly.

  13. Cooling assembly for fuel cells

    DOEpatents

    Kaufman, Arthur; Werth, John

    1990-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  14. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  15. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  16. Fabrication of fuel pin assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1972-01-01

    Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.

  17. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  18. Apparatus for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Metz, III, Curtis F.

    1980-01-01

    A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

  19. Fuel rod assembly to manifold attachment

    DOEpatents

    Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.

    1980-01-01

    A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.

  20. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    DTIC Science & Technology

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment

  1. Fuel fire tests of selected assemblies

    NASA Astrophysics Data System (ADS)

    Kydd, G.; Spindola, K.; Askew, G. K.

    1982-04-01

    A varing assortment of clothing assemblies was tested in the Fuel Fire Test Facility at the Naval Air Development Center. Included was a Nomex-Kevlar Cloque Coverall which had relatively good protection from fuel flames.

  2. Method for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Watson, Clyde D.

    1977-01-01

    A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.

  3. LMFBR fuel assembly design for HCDA fuel dispersal

    DOEpatents

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  4. Locking support for nuclear fuel assemblies

    DOEpatents

    Ledin, Eric

    1980-01-01

    A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.

  5. Thermal Analysis of a TREAT Fuel Assembly

    SciTech Connect

    Papadias, Dionissios; Wright, Arthur E.

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  6. A classification scheme for LWR fuel assemblies

    SciTech Connect

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs.

  7. SOLID GAS SUSPENSION NUCLEAR FUEL ASSEMBLY

    DOEpatents

    Schluderberg, D.C.; Ryon, J.W.

    1962-05-01

    A fuel assembly is designed for use in a gas-suspension cooled nuclear fuel reactor. The coolant fluid is an inert gas such as nitrogen or helium with particles such as carbon suspended therein. The fuel assembly is contained within an elongated pressure vessel extending down into the reactor. The fuel portion is at the lower end of the vessel and is constructed of cylindrical segments through which the coolant passes. Turbulence promotors within the passageways maintain the particles in agitation to increase its ability to transfer heat away from the outer walls. Shielding sections and alternating passageways above the fueled portion limit the escape of radiation out of the top of the vessel. (AEC)

  8. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  9. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  10. Nuclear fuel assemblies and fuel debris monitor for characterization of fuel assemblies for final storage

    SciTech Connect

    Sokcic-Kostic, M.; Langer, F.; Schultheis, R.; Klein, Ch.

    2013-07-01

    NUKEM monitor FAMOS is designed to measure the burn up of fuel assemblies (FA's) and allows the calculation of the content of fissile material and other actinides. The knowledge of the isotopic composition and activities of FA's is required for a safe handling and storage of the elements. The monitor analyses the measurement results on the basis of burn up calculations which improve the quality of the results, with respect to previous systems, which did not use those. (authors)

  11. Fuel cell assembly with electrolyte transport

    DOEpatents

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  12. Fuel cell with electrolyte matrix assembly

    DOEpatents

    Kaufman, Arthur; Pudick, Sheldon; Wang, Chiu L.

    1988-01-01

    This invention is directed to a fuel cell employing a substantially immobilized electrolyte imbedded therein and having a laminated matrix assembly disposed between the electrodes of the cell for holding and distributing the electrolyte. The matrix assembly comprises a non-conducting fibrous material such as silicon carbide whiskers having a relatively large void-fraction and a layer of material having a relatively small void-fraction.

  13. Reusable fuel test assembly for the FFTF

    SciTech Connect

    Pitner, A.L.; Dittmer, J.O. )

    1992-01-01

    A fuel test assembly that provides re-irradiation capability after interim discharge and reconstitution of the test pin bundle has been developed for use in the Fast Flux Test Facility (FFTF). This test vehicle permits irradiation test data to be obtained at multiple exposures on a few select test pins without the substantial expense of fabricating individual test assemblies as would otherwise be required. A variety of test pin types can be loaded in the reusable test assembly. A reusable test vehicle for irradiation testing in the FFTF has long been desired, but a number of obstacles previously prevented the implementation of such an experimental rig. The MFF-8A test assembly employs a 169-pin bundle using HT-9 alloy for duct and cladding material. The standard driver pins in the fuel bundle are sodium-bonded metal fuel (U-10 wt% Zr). Thirty-seven positions in the bundle are replaceable pin positions. Standard MFF-8A driver pins can be loaded in any test pin location to fill the bundle if necessary. Application of the MFF-8A reusable test assembly in the FFTF constitutes a considerable cost-saving measure with regard to irradiation testing. Only a few well-characterized test pins need be fabricated to conduct a test program rather than constructing entire test assemblies.

  14. Membrane electrode assembly for a fuel cell

    NASA Technical Reports Server (NTRS)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  15. Fuel injection assembly for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)

    2002-01-01

    A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.

  16. Processing of driver fuel assemblies at FFTF

    SciTech Connect

    Danko, A.D.; Hicks, D.F.; Arneson, S.O.

    1982-07-01

    The ability to disassemble an irradiated Fast Flux Test Facility (FFTF) Driver Fuel Assembly (DFA) is important both to the continued operation of the FFTF and the future of the Breeder Reactor Program. At the FFTF, DFA's with up to three (3)* kilowatts of decay heat will be placed in the Interim Examination and Maintenance (IEM) Cell for disassembly and nondestructive examination. This process includes sodium removal, duct measurement, duct cutting and pulling, fuel pin removal, and component disposition to other laboratories for destructive examination.

  17. Oxygen reduction reaction catalyzed by nickel complexes based on thiophosphorylated calix[4]resorcinols and immobilized in the membrane electrode assembly of fuel cells.

    PubMed

    Kadirov, M K; Knyazeva, I R; Nizameev, I R; Safiullin, R A; Matveeva, V I; Kholin, K V; Khrizanforova, V V; Ismaev, T I; Burilov, A R; Budnikova, Yu H; Sinyashin, O G

    2016-10-18

    The catalytic activity of the nickel complexes of thiophosphorylated calix[4]resorcinols for oxygen reduction in a polymer electrolyte membrane fuel cell (PEMFC) has been studied. The conformation of the macrocyclic ligand determines the morphology and catalytic properties of the resulting organometallic species.

  18. Selected Isotopes for Optimized Fuel Assembly Tags

    SciTech Connect

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2008-10-01

    In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

  19. Fuel assembly shaker and truck test simulation

    SciTech Connect

    Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

    2014-09-30

    This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when traveling down the same road at

  20. Manifold seal for fuel cell stack assembly

    DOEpatents

    Schmitten, Phillip F.; Wright, Maynard K.

    1989-01-01

    An assembly for sealing a manifold to a stack of fuel cells includes a first resilient member for providing a first sealing barrier between the manifold and the stack. A second resilient member provides a second sealing barrier between the manifold and the stack. The first and second resilient members are retained in such a manner as to define an area therebetween adapted for retaining a sealing composition.

  1. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  2. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  3. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    SciTech Connect

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-12-31

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR`s) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design.

  4. Interface ring for gas turbine fuel nozzle assemblies

    SciTech Connect

    Fox, Timothy A.; Schilp, Reinhard

    2016-03-22

    A gas turbine combustor assembly including a combustor liner and a plurality of fuel nozzle assemblies arranged in an annular array extending within the combustor liner. The fuel nozzle assemblies each include fuel nozzle body integral with a swirler assembly, and the swirler assemblies each include a bellmouth structure to turn air radially inwardly for passage into the swirler assemblies. A radially outer removed portion of each of the bellmouth structures defines a periphery diameter spaced from an inner surface of the combustor liner, and an interface ring is provided extending between the combustor liner and the removed portions of the bellmouth structures at the periphery diameter.

  5. Fuel injection assembly for use in turbine engines and method of assembling same

    SciTech Connect

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  6. Cross flow characteristics in a three fuel assemblies

    SciTech Connect

    Bae, J. H.; Euh, D. J.; Park, C. K.; Youn, Y. J.; Kwon, T. S.

    2012-07-01

    To evaluate the reactor thermal margin of APR+, reactor core flow distribution including both axial and lateral directional hydraulic resistances of fuel assemblies should be known. 3-Ch cross flow test facility has been constructed with three full-size fuel assemblies to investigate the cross flow characteristics. Performance tests have been performed. The axial and lateral directional hydraulic resistances of fuel assemblies have been measured. The test results have been compared to the CFD calculation. (authors)

  7. Fuel fire tests of selected assemblies. Interim report

    SciTech Connect

    Kydd, G.; Spindola, K.; Askew, G.K.

    1982-04-13

    A varing assortment of clothing assemblies was tested in the Fuel Fire Test Facility at the Naval Air Development Center. Included was a Nomex-Kevlar Cloque Coverall which had relatively good protection from fuel flames.

  8. Calibration of spent fuel measurement assembly

    NASA Astrophysics Data System (ADS)

    Koleska, Michal; Viererbl, Ladislav; Marek, Milan

    2014-11-01

    The LVR-15 research reactor (Czech Republic) had been converted from the highly enriched IRT-2M to the low enriched IRT-4M fuel. For the possibility of the independent pre-transport evaluation of IRT-2M burnup, a spectrometric system was developed. This spectrometric system consists of the fuel holder, the collimator and the portable Canberra Big MAC HPGe (High Purity Germanium) detector. In order to have well reproducible and reliable experimental data for modeling of the measurement system, calibration with the 110mAg isotope with known activity was performed. This isotope was chosen for having energies similar to isotopes measured in fuel assemblies. The 110mAg isotope was prepared by irradiating of the silver foil in LVR-15 research reactor; its activity was evaluated in the LVR-15's spectrometric laboratory. From the measured data, an efficiency curve of the spectrometric system has been determined. The experimental data were compared to the calculation results with the MCNPX model of the spectrometric system.

  9. Reversible BWR fuel assembly and method of using same

    SciTech Connect

    Freeman, T.R.; Wilson, J.F.; Knott, R.P.

    1987-04-07

    A nuclear fuel assembly is described comprising: (a) a flow channel; (b) a lower nozzle assembly structurally attached to the flow channel to form therewith an external envelope; (c) an invertible fuel bundle adapted to be inserted into the envelope, the fuel bundle comprising elongated fuel rods held in a spaced lateral array between top and bottom tie plates. Each of the top and bottom tie plates is substantially identical and has means for supporting the fuel bundle within the envelope in either of two mutually inverted vertical orientations whereby the orientation of the fuel bundle in a flow channel may be reversed during burn-up operation.

  10. Adaptive Accommodation Control Method for Complex Assembly

    NASA Astrophysics Data System (ADS)

    Kang, Sungchul; Kim, Munsang; Park, Shinsuk

    Robotic systems have been used to automate assembly tasks in manufacturing and in teleoperation. Conventional robotic systems, however, have been ineffective in controlling contact force in multiple contact states of complex assemblythat involves interactions between complex-shaped parts. Unlike robots, humans excel at complex assembly tasks by utilizing their intrinsic impedance, forces and torque sensation, and tactile contact clues. By examining the human behavior in assembling complex parts, this study proposes a novel geometry-independent control method for robotic assembly using adaptive accommodation (or damping) algorithm. Two important conditions for complex assembly, target approachability and bounded contact force, can be met by the proposed control scheme. It generates target approachable motion that leads the object to move closer to a desired target position, while contact force is kept under a predetermined value. Experimental results from complex assembly tests have confirmed the feasibility and applicability of the proposed method.

  11. Separator assembly for use in spent nuclear fuel shipping cask

    DOEpatents

    Bucholz, James A.

    1983-01-01

    A separator assembly for use in a spent nuclear fuel shipping cask has a honeycomb-type wall structure defining parallel cavities for holding nuclear fuel assemblies. Tubes formed of an effective neutron-absorbing material are embedded in the wall structure around each of the cavities and provide neutron flux traps when filled with water.

  12. Mechanical Analysis of the Fuel Assembly Box of a HPLWR Fuel Assembly

    SciTech Connect

    Himmel, Steffen; Starflinger, Joerg; Schulenberg, Thomas; Hofmeister, Jan

    2006-07-01

    The aim of the work presented in this paper is to demonstrate that the assembly box of the fuel assembly for a HPLWR proposed by Hofmeister et al. will remain mechanically within the design limits. The commercial finite element code ANSYS has been used to investigate the deformation behaviour caused by thermal convective and pressure boundary conditions provided by the results from Waata et al. for the fuel assembly. The results of these ANSYS analyses show a bending of the assembly box caused by the applied temperature and pressure distribution which, however, is still within the geometrical allowances. The maximum bending of the 4.35 m long assembly box appears close to the mid section, i.e. at 2.45 m axial height, and amounts to about 2 mm, only. The maximum indentation is mainly caused by the pressure difference across the box wall and occurs near the top of the assembly. The indentation at this point can be evaluated to be around 0.2 mm. Both bending and indentation will influence the coolant mass flux and the moderator distribution, and thus needs to be considered for predictions of the power profile and of the coolant heat-up. They are not considered to be critical as long as these deformations are small compared with the nominal gap width of 1 mm between box wall and claddings and 10 mm between adjacent assembly boxes. A second analysis has been performed to study the effect on non-symmetric coolant temperature profiles. A coolant temperature increase by 30 deg. C on one side of the box increased the thermal bending to 4 mm, indicating the sensitivity of this design with respect to temperature non-uniformities. (authors)

  13. INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP603) SHOWING CRANE ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FUEL STORAGE BUILDING (CPP-603) SHOWING CRANE ASSEMBLY FOR TRANSFER PIT. INL PHOTO NUMBER NRTS-51-2404. Unknown Photographer, 5/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. Precharacterization Report for Instrumented Fuel Assembly (IFA)-527

    SciTech Connect

    Cunningham, M. E.; Bradley, E. R.; Daniel, J. L.; Davis, N. C.; Lanning, D. D.; Williford, R. E.

    1981-07-01

    This report is a resource document covering the rationale, design, fabrication, and preirradiation characterization of instrumented fuel assembly (IFA)-527. This assembly is being irradiated in the Halden Boiling Water Reactor (HBWR) in Norway as part of the Experimental Support and Development of Single-Rod Fuel Codes Program conducted by Pacific Northwest laboratory (PNL) and sponsored by the Fuel Behavior Research Branch of the U.S. Nuclear Regulatory Commission (NRC). Data from this assembly will be used to better understand light water reactor (LWR) fuel behavior under normal operating conditions.

  15. Some methods for achieving more efficient performance of fuel assemblies

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2014-07-01

    More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.

  16. Mechanical Tests and Analyses on the FBR Ductless Fuel Assembly

    SciTech Connect

    Itoh, K.; Sato, T.; Ogura, M.; Ohkubo, Y.; Moro, S.; Madarame, H.

    2002-07-01

    Fast Breeder Reactor (FBR) cores, which are composed of ductless fuel assemblies, have many potentialities of cost reduction through whole fuel cycle procedures with safety features, and of reduced high-level-waste disposal. The mechanistic aspects of the ductless fuel assembly have been investigated by mechanical tests and analyses, and the core static behaviors under the irradiation and the seismic occasion have been clarified in this study. (authors)

  17. Fuel assembly cooling experience at the FFTF IEM cell

    SciTech Connect

    McGuinness, P.W.

    1985-11-01

    To date, 13 fuel assemblies requiring forced cooling have been processed through the Fast Flux Test Facility (FFTF) interim examination and maintenance (IEM) cell. Of these, two assemblies experienced overtemperature conditions due to inadequate forced cooling. Both of the occurrences have contributed significantly to the process of learning how to operate a fuel assembly cooling system remotely in an argon atmosphere hot cell. Many innovations have been made to the cooling system to enhance safety and increase productivity, and are briefly described.

  18. Method and apparatus for close packing of nuclear fuel assemblies

    DOEpatents

    Newman, Darrell F.

    1993-01-01

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  19. Method and apparatus for close packing of nuclear fuel assemblies

    DOEpatents

    Newman, D.F.

    1993-03-30

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  20. Criticality safety evaluation report for FFTF 42% fuel assemblies

    SciTech Connect

    Richard, R.F.

    1997-10-28

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC).

  1. Combustor with two stage primary fuel assembly

    DOEpatents

    Sharifi, Mehran; Zolyomi, Wendel; Whidden, Graydon Lane

    2000-01-01

    A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.

  2. Co-translational assembly of protein complexes.

    PubMed

    Wells, Jonathan N; Bergendahl, L Therese; Marsh, Joseph A

    2015-12-01

    The interaction of biological macromolecules is a fundamental attribute of cellular life. Proteins, in particular, often form stable complexes with one another. Although the importance of protein complexes is widely recognized, we still have only a very limited understanding of the mechanisms underlying their assembly within cells. In this article, we review the available evidence for one such mechanism, namely the coupling of protein complex assembly to translation at the polysome. We discuss research showing that co-translational assembly can occur in both prokaryotic and eukaryotic organisms and can have important implications for the correct functioning of the complexes that result. Co-translational assembly can occur for both homomeric and heteromeric protein complexes and for both proteins that are translated directly into the cytoplasm and those that are translated into or across membranes. Finally, we discuss the properties of proteins that are most likely to be associated with co-translational assembly.

  3. Fuel injection assembly for use in turbine engines and method of assembling same

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-03-24

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.

  4. Fuel burner and combustor assembly for a gas turbine engine

    DOEpatents

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  5. Current conducting end plate of fuel cell assembly

    DOEpatents

    Walsh, Michael M.

    1999-01-01

    A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.

  6. Temperature measuring analysis of the nuclear reactor fuel assembly

    SciTech Connect

    Urban, F. E-mail: zdenko.zavodny@stuba.sk; Kučák, L. E-mail: zdenko.zavodny@stuba.sk; Bereznai, J. E-mail: zdenko.zavodny@stuba.sk; Závodný, Z. E-mail: zdenko.zavodny@stuba.sk; Muškát, P. E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  7. Fuel assembly cooling experience at the FFTF/IEM cell

    SciTech Connect

    McGuinness, P.W.

    1985-01-01

    In the Fast Flux Test Facility (FFTF), sodium wetted irradiated fuel assemblies are discharged to the Interim Examination and Maintenance (IEM) Cell for disassembly and post-irradiation examination in an inert argon atmosphere. While in the IEM Cell, fuel assemblies are cooled by the IEM Cell Subassembly Cooling System. This paper describes the cooling system design, performance, and lessons learned, including a discussion of two overtemperature incidents. 2 refs., 6 figs.

  8. Modeling depletion simulations for a high-burnup, highly heterogeneous BWR fuel assembly with scale

    SciTech Connect

    Smith, H. J.

    2012-07-01

    Extensive SCALE isotopic validation studies have been performed for various PWR fuel assembly designs and operating conditions, and to a lesser extent for BWR fuel assembly designs. However, no SCALE validation work has been documented for newer, highly heterogeneous BWR fuel assembly designs at high burnup. Isotopic benchmark calculations of the earlier, more geometrically uniform BWR fuel assemblies are less sensitive to simplification of the operating history details and certain modeling assumptions than heterogeneous fuel assemblies, particularly at high burnup. This analysis shows the capability of SCALE to simulate a complex highly heterogeneous SVEA96 Optima fuel assembly and illustrates the importance of the need for the highest possible accuracy and precision in isotope measurements intended to be used as benchmark-quality results. In addition, this analysis quantifies the impact of various modeling assumptions on the results. The sample for which the simulation results are reported here achieved a burnup 62 GWd/MTU and was analyzed as part of the MALIBU Extension program. (authors)

  9. 3D hydrodynamic lift force model for AREVA fuel assembly in EDF PWRs

    SciTech Connect

    Ekomie, S.; Bigot, J.; Dolleans, Ph.; Vallory, J.

    2007-07-01

    The accurate knowledge of the hydrodynamic lift force acting on a fuel assembly in PWR core is necessary to design the hold-down system of this assembly. This paper presents the model used by AREVA NP and EDF for computing this force. It results from a post-processing of sub-channel thermal-hydraulic codes respectively porous medium approach code THYC (EDF) and sub-channel type code FLICA III-F (AREVA NP). This model is based on the application of the Euler's theorem. Some hypotheses used to simplify the complexity of fuel assembly geometry are supported by CFD calculations. Then the model is compared to some experimental results obtained on a single fuel assembly inserted in the HERMES-T test facility located in CEA - Cadarache. Finally, the model is applied to calculate the lift force for the whole core. Various loading patterns including homogenous and mixed cores have been investigated and compared. (authors)

  10. Portable instrument for inspecting irradiated nuclear fuel assemblies

    DOEpatents

    Nicholson, Nicholas; Dowdy, Edward J.; Holt, David M.; Stump, Jr., Charles J.

    1985-01-01

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  11. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    DOEpatents

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  12. Assembly reflects evolution of protein complexes.

    PubMed

    Levy, Emmanuel D; Boeri Erba, Elisabetta; Robinson, Carol V; Teichmann, Sarah A

    2008-06-26

    A homomer is formed by self-interacting copies of a protein unit. This is functionally important, as in allostery, and structurally crucial because mis-assembly of homomers is implicated in disease. Homomers are widespread, with 50-70% of proteins with a known quaternary state assembling into such structures. Despite their prevalence, their role in the evolution of cellular machinery and the potential for their use in the design of new molecular machines, little is known about the mechanisms that drive formation of homomers at the level of evolution and assembly in the cell. Here we present an analysis of over 5,000 unique atomic structures and show that the quaternary structure of homomers is conserved in over 70% of protein pairs sharing as little as 30% sequence identity. Where quaternary structure is not conserved among the members of a protein family, a detailed investigation revealed well-defined evolutionary pathways by which proteins transit between different quaternary structure types. Furthermore, we show by perturbing subunit interfaces within complexes and by mass spectrometry analysis, that the (dis)assembly pathway mimics the evolutionary pathway. These data represent a molecular analogy to Haeckel's evolutionary paradigm of embryonic development, where an intermediate in the assembly of a complex represents a form that appeared in its own evolutionary history. Our model of self-assembly allows reliable prediction of evolution and assembly of a complex solely from its crystal structure.

  13. Large branched self-assembled DNA complexes

    NASA Astrophysics Data System (ADS)

    Tosch, Paul; Wälti, Christoph; Middelberg, Anton P. J.; Davies, A. Giles

    2007-04-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes.

  14. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGES

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; ...

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  15. PWR and BWR spent fuel assembly gamma spectra measurements

    SciTech Connect

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; Trellue, Holly; Vo, D.

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  16. PWR and BWR spent fuel assembly gamma spectra measurements

    SciTech Connect

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; Trellue, Holly; Vo, D.

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  17. PWR and BWR spent fuel assembly gamma spectra measurements

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  18. Storage assembly for spent nuclear fuel

    SciTech Connect

    Lapides, M.E.

    1982-04-27

    A technique for storing spent fuel rods from a nuclear reactor is disclosed herein. This technique utilizes a housing including a closed inner chamber for containing the fuel rods and a thermally conductive member located partially within the housing chamber and partially outside the housing for transferring heat generated by the fuel rods from the chamber to the ambient surroundings. Particulate material is located within the chamber and surrounds the fuel rods contained therein. This material is selected to serve as a heat transfer media between the contained cells and the heat transferring member and, at the same time, stand ready to fuse into a solid mass around the contained cells if the heat transferring member malfunctions or otherwise fails to transfer the generated heat out of the housing chamber in a predetermined way.

  19. Hydrogen storage and integrated fuel cell assembly

    DOEpatents

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  20. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    SciTech Connect

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  1. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-07-11

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  2. Storage, transportation and disposal system for used nuclear fuel assemblies

    DOEpatents

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  3. Fuel assembly duct cutting in the FFTF/IEM Cell

    SciTech Connect

    Gibbons, P.W.

    1985-01-01

    Two mill type slitting cutters are used in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell during the disassembly sequence of a Driver Fuel Assembly. This disassembly is necessary so that selected parts may be examined both in the IEM Cell and elsewhere. The cutters have been in use for two years. During this time eight Driver Fuel assemblies have been taken apart in the IEM Cell. The cutters' operating philosophy and characteristics, as well as lessons learned from a significant equipment failure are presented. 1 ref., 6 figs., 1 tab.

  4. Detachable connection for a nuclear reactor fuel assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.

    1983-08-29

    A locking connection for releasably attaching a handling socket to the duct tube of a fuel assembly for a nuclear reactor. The connection comprises a load pad housing mechanically attached to the duct tube and a handling socket threadably secured within the housing. A retaining ring is interposed between the housing and the handling socket and is formed with a projection and depression engagable within a cavity and groove of the housing and handling socket, respectively, to form a detachable interlocked connection assembly.

  5. Detachable connection for a nuclear reactor fuel assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1986-01-01

    A locking connection for releasably attaching a handling socket to the duct tube of a fuel assembly for a nuclear reactor. The connection comprises a load pad housing mechanically attached to the duct tube and a handling socket threadably secured within the housing. A retaining ring is interposed between the housing and the handling socket and is formed with a projection and depression engageable within a cavity and groove of the housing and handling socket, respectively, to form a detachable interlocked connection assembly.

  6. Pentaindenocorannulene: Properties, Assemblies, and C60 Complex.

    PubMed

    Lampart, Samuel; Roch, Loïc M; Dutta, Amit K; Wang, Yujia; Warshamanage, Rangana; Finke, Aaron D; Linden, Anthony; Baldridge, Kim K; Siegel, Jay S

    2016-11-14

    Pentaindenocorannulene (C50 H20  , 1), a deep bowl polynuclear aromatic hydrocarbon, accepts 4 electrons, crystallizes in columnar bowl-in-bowl assemblies and forms a nested C60 @12 complex. Spectra, structures and computations are presented. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Method and apparatus for assembling solid oxide fuel cells

    DOEpatents

    Szreders, B.E.; Campanella, N.

    1988-05-11

    This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.

  8. National Aerospace Fuels Research Complex

    DTIC Science & Technology

    2010-03-01

    formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation ; or convey any rights...Logistics Agency) ECAT Estudios Combustibles y Altas Temperaturas (rig) F-T Fischer-Tropsch FSII Fuel System Icing Inhibitor GC Gas Chromatograph

  9. Photon dose rates from spent fuel assemblies with relation to self-protection (Rev. 1)

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-02-01

    Photon dose rates as a function of fission product decay times have been calculated for spent fuel assemblies typical of MTR-type research and test reactors. Based upon these dose rates, the length of time that a spent fuel assembly will be self-protecting (dose rate greater than 100 rem/h at 1 m in air) can be estimated knowing the mass of fuel burned, the fraction of fuel burned, and the fuel assembly specific power density.

  10. Physical characteristics of GE (General Electric) BWR (boiling-water reactor) fuel assemblies

    SciTech Connect

    Moore, R.S.; Notz, K.J.

    1989-06-01

    The physical characteristics of fuel assemblies manufactured by the General Electric Company for boiling-water reactors are classified and described. The classification into assembly types is based on the GE reactor product line, the Characteristics Data Base (CDB) assembly class, and the GE fuel design. Thirty production assembly types are identified. Detailed physical data are presented for each assembly type in an appendix. Descriptions of special (nonstandard) fuels are also reported. 52 refs., 1 fig., 6 tabs.

  11. Determination of BWR Spent Nuclear Fuel Assembly Effective Thermal Conductivity

    SciTech Connect

    Matthew D. Hinds

    2001-10-17

    The purpose of this calculation is to provide an effective thermal conductivity for use in predicting peak cladding temperatures in boiling water reactor (BWR) fuel assemblies with 7x7,8x8, and 9x9 rod arrays. The first objective of this calculation is to describe the development and application of a finite element representation that predicts peak spent nuclear fuel temperatures for BWR assemblies. The second objective is to use the discrete representation to develop a basis for determining an effective thermal conductivity (described later) for a BWR assembly with srneared/homogeneous properties and to investigate the thermal behavior of a spent fuel assembly. The scope of this calculation is limited to a steady-state two-dimensional representation of the waste package interior region. This calculation is subject to procedure AP-3.124, Calculations (Ref. 27) and guided by the applicable technical work plan (Ref. 14). While these evaluations were originally developed for the thermal analysis of conceptual waste package designs emplaced in the potential repository at Yucca Mountain, the methodology applies to storage and transportation thermal analyses as well. Note that the waste package sketch in Attachment V depicts a preliminary design, and should not be interpreted otherwise.

  12. HP1/ORC complex and heterochromatin assembly.

    PubMed

    Shareef, Mohammed M; Badugu, RamaKrishna; Kellum, Rebecca

    2003-03-01

    We have used the highly conserved heterochromatin component, heterochromatin protein 1 (HP1), as a molecular tag for purifying other protein components of Drosophila heterochromatin. A complex of HP1 associated with the origin recognition complex (ORC) and an HP1/ORC-associated protein (HOAP) was purified from the maternally loaded cytoplasm of early Drosophila embryo. We propose that the DNA-binding activities of ORC and HOAP function to recruit underphosphorylatedisoforms of HP1 to sites of heterochromatin nucleation. The roles of highly phosphorylated HP1, other DNA-binding proteins known to interact with HP1, and histone modifying activities in heterochromatin assembly are also addressed.

  13. Dynamics of Pre-replicative Complex Assembly*

    PubMed Central

    Tsakraklides, Vasiliki; Bell, Stephen P.

    2010-01-01

    The pre-replicative complex (pre-RC) is formed at all potential origins of replication through the action of the origin recognition complex (ORC), Cdc6, Cdt1, and the Mcm2-7 complex. The end result of pre-RC formation is the loading of the Mcm2-7 replicative helicase onto origin DNA. We examined pre-RC formation in vitro and found that it proceeds through separable binding events. Origin-bound ORC recruits Cdc6, and this ternary complex then promotes helicase loading in the presence of a pre-formed Mcm2-7-Cdt1 complex. Using a stepwise pre-RC assembly assay, we investigated the fate of pre-RC components during later stages of the reaction. We determined that helicase loading is accompanied by dissociation of ORC, Cdc6, and Cdt1 from origin DNA. This dissociation requires ATP hydrolysis at a late stage of pre-RC assembly. Our results indicate that pre-RC formation is a dynamic process. PMID:20097898

  14. Micro-Pocket Fission Detectors (MPFD) For Fuel Assembly Analysis

    SciTech Connect

    Troy Unruh; Michael Reichenberger; Phillip Ugorowski

    2013-09-01

    Neutron sensors capable of real-time measurement of thermal flux, fast flux, and temperature in a single miniaturized probe are needed in irradiation tests required to demonstrate the performance of candidate new fuels, and cladding materials. In-core ceramic-based miniature neutron detectors or “Micro-Pocket Fission Detectors” (MPFDs) have been studied at Kansas State University (KSU). The first MPFD prototypes were tested in various neutron fields at the KSU TRIGA research reactor with successful results. Currently, a United States Department of Energy-sponsored joint KSU/Idaho National Laboratory (INL) effort is underway to develop a high-temperature, high-pressure version of the MPFD using radiation-resistant, high temperature materials, which would be capable of withstanding irradiation test conditions in high performance material and test reactors (MTRs). Ultimately, this more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, existing and advanced reactor designs, high performance MTRs, and transient test reactors has the potential to lead to higher accuracy and resolution data from irradiation testing, more detailed core flux measurements and enhanced fuel assembly processing. Prior evaluations by KSU indicate that these sensors could also be used to monitor burn-up of nuclear fuel. If integrated into nuclear fuel assemblies, MPFDs offer several advantages to current spent fuel management systems.

  15. LWR fuel assembly designs for the transmutation of LWR Spent Fuel TRU with FCM and UO{sub 2}-ThO{sub 2} Fuels

    SciTech Connect

    Bae, G.; Hong, S. G.

    2013-07-01

    In this paper, transmutation of transuranic (TRU) nuclides from LWR spent fuels is studied by using LWR fuel assemblies which consist of UO{sub 2}-ThO{sub 2} fuel pins and FCM (Fully Ceramic Microencapsulated) fuel pins. TRU from LWR spent fuel is loaded in the kernels of the TRISO particle fuels of FCM fuel pins. In the FCM fuel pins, the TRISO particle fuels are distributed in SiC matrix having high thermal conductivity. The loading patterns of fuel pins and the fuel compositions are searched to have high transmutation rate and feasible neutronic parameters including pin power peaking, temperature reactivity coefficients, and cycle length. All studies are done only in fuel assembly calculation level. The results show that our fuel assembly designs have good transmutation performances without multi-recycling and without degradation of the safety-related neutronic parameters. (authors)

  16. Fuel Assembly Calculations Using the Method of Discrete Ordinates

    SciTech Connect

    Pautz, Andreas; Langenbuch, Siegfried

    2005-02-15

    The discrete ordinates code DORT is employed to treat pin cell and fuel assembly configurations in two spatial dimensions. Despite DORT's restriction to regular (i.e., Cartesian) coordinates, we demonstrate its ability to calculate accurate pin power distributions and eigenvalues of typical reactor fuel lattices. Several numerical experiments have been performed to investigate the effects of spatial, angular, and energy discretization and to quantify their impact on the results. DORT is also used to homogenize and collapse cross-section sets within the framework of the coupled transport/burnup code system KENOREST.

  17. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, Donald R.

    1993-01-01

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  18. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, D.R.

    1993-03-23

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  19. Premixer assembly for mixing air and fuel for combustion

    SciTech Connect

    York, William David; Johnson, Thomas Edward; Keener, Christopher Paul

    2016-12-13

    A premixer assembly for mixing air and fuel for combustion includes a plurality of tubes disposed at a head end of a combustor assembly. Also included is a tube of the plurality of tubes, the tube including an inlet end and an outlet end. Further included is at least one non-circular portion of the tube extending along a length of the tube, the at least one non-circular portion having a non-circular cross-section, and the tube having a substantially constant cross-sectional area along its length

  20. Fail-safe storage rack for fuel rod assemblies

    SciTech Connect

    Lewis, D.R.

    1991-12-31

    This report discusses a fail-safe storage rack which is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  1. Self-assembled virus-membrane complexes

    NASA Astrophysics Data System (ADS)

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas E.; Butler, John; Coridan, Robert; Tang, Jay X.; Wong, Gerard C. L.

    2004-09-01

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlated arrays of Ru(bpy)32+ macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.

  2. Self-assembled virus-membrane complexes

    SciTech Connect

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas; Butler, John; Coridan, Robert; Tang, Jay; Wong, Gerard

    2010-11-16

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlated arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.

  3. Pressurized water reactor fuel assembly subchannel void fraction measurement

    SciTech Connect

    Akiyama, Yoshiei; Hori, Keiichi; Miyazaki, Keiji; Mishima, Kaichiro; Sugiyama, Shigekazu

    1995-12-01

    The void fraction measurement experiment of pressurized water reactor (PWR) fuel assemblies has been conducted since 1987 under the sponsorship of the Ministry of International Trade and Industry as a Japanese national project. Two types of test sections are used in this experiment. One is a 5 x 5 array rod bundle geometry, and the other is a single-channel geometry simulating one of the subchannels in the rod bundle. Wide gamma-ray beam scanners and narrow gamma-ray beam computed tomography scanners are used to measure the subchannel void fractions under various steady-state and transient conditions. The experimental data are expected to be used to develop a void fraction prediction model relevant to PWR fuel assemblies and also to verify or improve the subchannel analysis method. The first series of experiments was conducted in 1992, and a preliminary evaluation of the data has been performed. The preliminary results of these experiments are described.

  4. Development of an ultrasonic cleaning method for fuel assemblies

    SciTech Connect

    Heki, H.; Komura, S.; Kato, H.; Sakai, H. ); Hattori, T. )

    1991-01-01

    Almost all radiation buildup in light water reactors is the result of the deposition of activated corrosion and wear products in out-of-core areas. After operation, a significant quantity of corrosion and wear products is deposited on the fuel rods as crud. At refueling shutdowns, these activation products are available for removal. If they can be quickly and easily removed, buildup of radioactivity on out-of-core surfaces and individual exposure dose can be greatly reduced. After studying various physical cleaning methods (e.g., water jet and ultrasonic), the ultrasonic cleaning method was selected as the most effective for fuel assembly cleaning. The ultrasonic cleaning method is especially able to efficiently clean the fuel without removing the channel box. The removed crud in the channel box would be swept out to the filtration unit. Parameter survey tests were carried out to evaluate the optimum conditions for ultrasonic cleaning using a mock-up of a short section of fuel assembly with the channel box. The ultrasonic device used was a 600-W ultrasonic transducer operating at 26-kHz ultrasonic frequency.

  5. Control assembly for controlling a fuel cell system during shutdown and restart

    DOEpatents

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  6. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 1, Activation measurements and comparison with calculations for spent fuel assembly hardware

    SciTech Connect

    Luksic, A.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1. 5 refs., 4 figs., 21 tabs.

  7. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

    SciTech Connect

    Short, S.M.; Luksic, A.T.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly that is also radioactive and required disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volume 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  8. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 2, Calculated activity profiles of spent nuclear fuel assembly hardware for pressurized water reactors

    SciTech Connect

    Short, S.M.; Luksic, A.T.; Lotz, T.L.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report present a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from Laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  9. A vented inverted fuel assembly design for an SFR

    SciTech Connect

    Vitillo, F.; Todreas, N. E.; Driscoll, M. J.

    2012-07-01

    The inverted geometry (fuel outside coolant tubes) has been previously investigated at MIT for application in gas-cooled fast reactors and pressurized water-cooled thermal reactors. Venting has also been studied for conventional fuel pins and was employed for those in the Dounreay Fast Reactor. In the present work the inverted fuel approach was adopted because it allows high fuel volume fraction, reduction of the coolant void reactivity, neutron leakage and enrichment, as well as lower pressure drop for the same channel length because grids and wire wraps are no longer necessary. Furthermore most results also apply to venting of conventional fuel pins. Physical and chemical behavior of volatile fission products in sodium was investigated to determine the maximum activity inventory which would eventually be released into the primary sodium. Results of this analysis show that the most troublesome radionuclides in terms of propensity to escape from the venting system are noble gases ({sup 85}Kr and {sup 133}Xe), and cesium ({sup 134}Cs and {sup 137}Cs). A final vented inverted fuel assembly design is proposed which meets all the design goals which have been set. Additionally purification systems were devised to reduce radionuclide activity of the coolant and the cover gas to tolerable levels. It is concluded that vented inverted (or vented conventional pin) fuel is a feasible concept and has sufficiently promising advantages - increasing fuel volume fraction to 50% and core outlet temperature by 20 deg. C, hence incrementing plant thermal efficiency by about 1% - to warrant serious consideration for future SFR designs. (authors)

  10. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    DOEpatents

    Yuh, Chao-Yi; Farooque, Mohammad; Johnsen, Richard

    2007-04-10

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  11. Fuel assembly design for APR1400 with low CBC

    NASA Astrophysics Data System (ADS)

    Hah, Chang Joo

    2015-04-01

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to ΔkTARGET. A set of new designed fuel assembly satisfies an objective function, min [f =∑i (ΔkF A-Δki ) ] , and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to ΔkTARGET as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  12. Fuel assembly design for APR1400 with low CBC

    SciTech Connect

    Hah, Chang Joo

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  13. Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect

    Not Available

    1989-08-01

    This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

  14. Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect

    Not Available

    1989-08-01

    This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

  15. Application for approval for construction of the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

    SciTech Connect

    Not Available

    1989-08-01

    The following ''Application for Approval of Construction'' is being submitted by the US Department of Energy-Richland Operations Office, pursuant to 40 CFR 61.07, for three new sources of airborne radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were canceled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building and stack and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex. 2 refs., 16 figs., 12 tabs.

  16. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-12-31

    This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

  17. Method and apparatus for assembling solid oxide fuel cells

    DOEpatents

    Szreders, Bernard E.; Campanella, Nicholas

    1989-01-01

    A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. The vanes, which each include a plurality of spaced slots along the facing edges thereof, may be pivotally displaced from a generally vertical orientation, wherein each jet air tube is positioned within and engaged by the aligned slots of a plurality of paired upper and lower vanes to facilitate their insertion in respective aligned SOFC tubes arranged in a matrix array, to an inclined orientation, wherein the jet air tubes may be removed from the positioning/insertion assembly after being inserted in the SOFC tubes. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing.

  18. Thermal hydraulic analysis of annular fuel-based assemblies

    SciTech Connect

    Kyu Hyun Han; Soon Heung Chang

    2004-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels. (authors)

  19. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  20. Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine.

    PubMed

    Song, Tingjie; Liang, Haojun

    2012-07-04

    A strategy for gold nanoparticle (AuNP) assembly driven by a dynamic DNA-fueled molecular machine is revealed here. In this machine, the aggregation of DNA-functionalized AuNPs is regulated by a series of toehold-mediated strand displacement reactions of DNA. The aggregation rate of the AuNPs can be regulated by controlling the amount of oligonucleotide catalyst. The versatility of the dynamic DNA-fueled molecular machine in the construction of two-component "OR" and "AND" logic gates has been demonstrated. This newly established strategy may find broad potential applications in terms of building up an "interface" that allows the combination of the strand displacement-based characteristic of DNA with the distinct assembly properties of inorganic nanoparticles, ultimately leading to the fabrication of a wide range of complex multicomponent devices and architectures.

  1. The Assembly Pathway of Mitochondrial Respiratory Chain Complex I.

    PubMed

    Guerrero-Castillo, Sergio; Baertling, Fabian; Kownatzki, Daniel; Wessels, Hans J; Arnold, Susanne; Brandt, Ulrich; Nijtmans, Leo

    2017-01-10

    Mitochondrial complex I is the largest integral membrane enzyme of the respiratory chain and consists of 44 different subunits encoded in the mitochondrial and nuclear genome. Its biosynthesis is a highly complicated and multifaceted process involving at least 14 additional assembly factors. How these subunits assemble into a functional complex I and where the assembly factors come into play is largely unknown. Here, we applied a dynamic complexome profiling approach to elucidate the assembly of human mitochondrial complex I and its further incorporation into respiratory chain supercomplexes. We delineate the stepwise incorporation of all but one subunit into a series of distinct assembly intermediates and their association with known and putative assembly factors, which had not been implicated in this process before. The resulting detailed and comprehensive model of complex I assembly is fully consistent with recent structural data and the remarkable modular architecture of this multiprotein complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pseudotannins self-assembled into antioxidant complexes.

    PubMed

    Cheng, H A; Drinnan, C T; Pleshko, N; Fisher, O Z

    2015-10-21

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated.

  3. Pseudotannins Self-assembled into Antioxidant Complexes

    PubMed Central

    Cheng, H. A.; Drinnan, C. T.; Pleshko, N.; Fisher, O. Z.

    2015-01-01

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated. PMID:26313262

  4. Fluid flow plate for decreased density of fuel cell assembly

    DOEpatents

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  5. Cerium migration during PEM fuel cell assembly and operation

    DOE PAGES

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; ...

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less

  6. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  7. High Energy Absorption Top Nozzle For A Nuclaer Fuel Assembly

    DOEpatents

    Sparrow, James A.; Aleshin, Yuriy; Slyeptsov, Aleksey

    2004-05-18

    A high energy absorption top nozzle for a nuclear fuel assembly that employs an elongated upper tubular housing and an elongated lower tubular housing slidable within the upper tubular housing. The upper and lower housings are biased away from each other by a plurality of longitudinally extending springs that are restrained by a longitudinally moveable piston whose upward travel is limited within the upper housing. The energy imparted to the nozzle by a control rod scram is mostly absorbed by the springs and the hydraulic affect of the piston within the nozzle.

  8. Fuel cell cooler assembly and edge seal means therefor

    DOEpatents

    Breault, Richard D.; Roethlein, Richard J.; Congdon, Joseph V.

    1980-01-01

    A cooler assembly for a stack of fuel cells comprises a fibrous, porous coolant tube holder sandwiched between and bonded to at least one of a pair of gas impervious graphite plates. The tubes are disposed in channels which pass through the holder. The channels are as deep as the holder thickness, which is substantially the same as the outer diameter of the tubes. Gas seals along the edges of the holder parallel to the direction of the channels are gas impervious graphite strips.

  9. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  10. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  11. Neutron collar calibration and evaluation for assay of LWR fuel assemblies containing burnable neutron absorbers

    SciTech Connect

    Henriksen, P.W.; Menlove, H.O.; Stewart, J.E.; Qiao, S.Z.; Wenz, T.R. ); Verrecchia, G.P.D. . Safeguards Directorate)

    1990-11-01

    The neutron coincidence collar is used to verify the uranium content in light water reactor fuel assemblies. An AmLi neutron source actively interrogates the fuel assembly to measure the {sup 235}U content and the {sup 238}U content can be verified from a passive neutron coincidence measurement. This report gives the collar calibration data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies both with and without cadmium liners. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and various fuel assembly sizes. The data were collected using the Los Alamos BWR and PWR test assemblies as well as fuel assemblies from several fuel fabrication facilities. 11 refs., 15 figs., 14 tabs.

  12. The Conceptual Design for a Fuel Assembly of a New Research Reactor

    SciTech Connect

    Ryu, J-S.; Cho, Y-G.; Yoon, D-B.; Dan, H-J.; Chae, H-T.; Park, C.

    2004-10-06

    A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibration characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.

  13. Plant mitochondrial Complex I composition and assembly: A review.

    PubMed

    Subrahmanian, Nitya; Remacle, Claire; Hamel, Patrice Paul

    2016-07-01

    In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  14. 96. SEED 1 FUEL ASSEMBLY FROM LOCATION L9 BEING REMOVED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    96. SEED 1 FUEL ASSEMBLY FROM LOCATION L-9 BEING REMOVED FROM REACTOR VESSEL BY MEANS OF FUEL EXTRACTION CRANE, JANUARY 7, 1960 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  15. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence; Matlin, Ramail

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  16. Between-cycle laser system for depressurization and resealing of modified design nuclear fuel assemblies

    DOEpatents

    Bradley, John G.

    1982-01-01

    A laser beam is used to puncture fuel cladding for release of contained pressurized fission gas from plenum sections or irradiated fuel pins. Exhausted fission gases are collected and trapped for safe disposal. The laser beam, adjusted to welding mode, is subsequently used to reseal the puncture holes. The fuel assembly is returned to additional irradiation or, if at end of reactivity lifetime, is routed to reprocess. The fuel assembly design provides graded cladding lengths, by rows or arrays, such that the cladding of each component fuel element of the assembly is accessible to laser beam reception.

  17. Changes to Irradiation Conditions of VVER-1000 Surveillance Specimens Resulting from Fuel Assemblies with Greater Fuel Height

    NASA Astrophysics Data System (ADS)

    Panferov, Pavel; Kochkin, Viacheslav; Erak, Dmitry; Makhotin, Denis; Reshetnikov, Alexandr; Timofeev, Andrey

    2016-02-01

    The goal of the work was to obtain experimental data on the influence of newtype fuel assemblies with higher fuel rods on the irradiation conditions of surveillance specimens installed on the baffe of VVER-1000. For this purpose, two surveillance sets with container assemblies of the same design irradiated in reactors with different fuel assemblies in the core were investigated. Measurements of neutron dosimeters from these sets and retrospective measurements of 54Mn activity accumulated in each irradiated specimen allow a detailed distribution of the fast neutron flux in the containers to be obtained. Neutron calculations have been done using 3D discrete ordinate code KATRIN. On the basis of the obtained results, a change of the lead factor due to newtype fuel assemblies was evaluated for all types of VVER-1000 container assemblies.

  18. Air Transport of Spent Nuclear Fuel (SNF) Assemblies

    SciTech Connect

    Haire, M.J.; Moses, S.D.; Shapovalov, V.I.; Morenko, A.

    2007-07-01

    Sometimes the only feasible means of shipping research reactor spent nuclear fuel (SNF) among countries is via air transport because of location or political conditions. The International Atomic Energy Agency (IAEA) has established a regulatory framework to certify air transport Type C casks. However, no such cask has been designed, built, tested, and certified. In lieu of an air transport cask, research reactor SNF has been transported using a Type B cask under an exemption with special arrangements for administrative and security controls. This work indicates that it may be feasible to transport commercial power reactor SNF assemblies via air, and that the cost is only about three times that of shipping it by railway. Optimization (i.e., reduction) of this cost factor has yet to be done. (authors)

  19. Cap assembly for a bundled tube fuel injector

    SciTech Connect

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-04-26

    A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate. A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.

  20. Unraveling the complexity of mitochondrial complex I assembly: A dynamic process.

    PubMed

    Sánchez-Caballero, Laura; Guerrero-Castillo, Sergio; Nijtmans, Leo

    2016-07-01

    Mammalian complex I is composed of 44 different subunits and its assembly requires at least 13 specific assembly factors. Proper function of the mitochondrial respiratory chain enzyme is of crucial importance for cell survival due to its major participation in energy production and cell signaling. Complex I assembly depends on the coordination of several crucial processes that need to be tightly interconnected and orchestrated by a number of assembly factors. The understanding of complex I assembly evolved from simple sequential concept to the more sophisticated modular assembly model describing a convoluted process. According to this model, the different modules assemble independently and associate afterwards with each other to form the final enzyme. In this review, we aim to unravel the complexity of complex I assembly and provide the latest insights in this fundamental and fascinating process. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  1. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly.

    PubMed

    Wells, Jonathan N; Bergendahl, L Therese; Marsh, Joseph A

    2016-02-02

    The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization.

  2. Performance of boiling water reactor fuel lead test assemblies to 35 MWd/kg U

    SciTech Connect

    Rowland, T.C.; Ikemoto, R.N.; Gehl, S.

    1986-01-01

    This joint Electric Power Research Institute/General Electric (EPRI/GE) fuel performance program involved thorough preirradiation characterization of fuel used in lead test assemblies (LTAs), detailed surveillance of their operation, and interim site examinations of the assemblies during reactor outages. The program originally included four GE-5 LTAs operating in the Peach Bottom-2 (PB-2) reactor. The program was later modified to include the pressurized fuel rod test assembly in the Peach Bottom-3 (PB-3) reactor. The program modification also included extending the operation of the PB-2 and PB-3 LTA fuel beyond normal discharge exposures. Results are summarized in the paper.

  3. Buoyancy-driven flow excursions in fuel assemblies

    SciTech Connect

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  4. Buoyancy-driven flow excursions in fuel assemblies

    SciTech Connect

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-12-31

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels.

  5. Building a complex complex: Assembly of mitochondrial respiratory chain complex I.

    PubMed

    Formosa, Luke E; Dibley, Marris G; Stroud, David A; Ryan, Michael T

    2017-08-07

    Mitochondrial complex I is the primary entry point for electrons into the electron transport chain, required for the bulk of cellular ATP production via oxidative phosphorylation. Complex I consists of 45 subunits, which are encoded by both nuclear and mitochondrial DNA. Currently, at least 15 assembly factors are known to be required for the complete maturation of complex I. Mutations in the genes encoding subunits and assembly factors lead to complex I deficiency, which can manifest as mitochondrial disease. The current model of complex I assembly suggests that the enzyme is built by the association of a set of smaller intermediate modules containing specific conserved core subunits and additional accessory subunits. Each module must converge in a spatially and temporally orchestrated fashion to allow assembly of the mature holoenzyme to occur. This review outlines the current understanding of complex I biogenesis, with an emphasis on the assembly factors that facilitate the building of this architectural giant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Structure, dynamics, assembly, and evolution of protein complexes.

    PubMed

    Marsh, Joseph A; Teichmann, Sarah A

    2015-01-01

    The assembly of individual proteins into functional complexes is fundamental to nearly all biological processes. In recent decades, many thousands of homomeric and heteromeric protein complex structures have been determined, greatly improving our understanding of the fundamental principles that control symmetric and asymmetric quaternary structure organization. Furthermore, our conception of protein complexes has moved beyond static representations to include dynamic aspects of quaternary structure, including conformational changes upon binding, multistep ordered assembly pathways, and structural fluctuations occurring within fully assembled complexes. Finally, major advances have been made in our understanding of protein complex evolution, both in reconstructing evolutionary histories of specific complexes and in elucidating general mechanisms that explain how quaternary structure tends to evolve. The evolution of quaternary structure occurs via changes in self-assembly state or through the gain or loss of protein subunits, and these processes can be driven by both adaptive and nonadaptive influences.

  7. Fuel assembly for the production of tritium in light water reactors

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1983-06-10

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  8. Fuel assembly for the production of tritium in light water reactors

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1985-01-01

    A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.

  9. PWR internal flow modeling with fuel assemblies details

    SciTech Connect

    Popov, E.; Yan, J.; Karoutas, Z.; Gehin, J.; Brewster, R.; Baglietto, E.

    2012-07-01

    This study is an example of a massive parallel computing of the coolant flow in a nuclear reactor. It resolves the flow velocities in each assembly on pin level and predicts the flow distribution in complex geometries such as the lower and upper reactor plenums. The size of the developed model (1.035 billion cells) required the runs to be executed on the NCCS clusters (www.nccs.gov). STAR-CCM+ code (www.ed-adapco.com) was installed on two clusters: JAGUARXT5 and FROST, both of which were capable of executing this model. (authors)

  10. Peptide-Assembled Optically Responsive Nanoparticle Complexes (Preprint)

    DTIC Science & Technology

    2007-03-01

    resulting from the assembly of photothermally responsive plasmonic nanoparticles with thermally labile bimolecular linkers. Au nanoshells (NS) and quantum...of the nanoparticle-peptide complex. 15. SUBJECT TERMS Au Nanoshells (NS), Quantum Dots (QD), Peptide 16. SECURITY CLASSIFICATION OF: 19a...resulting from the assembly of photothermally responsive plasmonic nanoparticles with thermally labile biomolecular linkers. Au nanoshells (NS) and

  11. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    SciTech Connect

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Rael, Carlos D.; Desimone, David J.

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performed in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.

  12. Neutron collar calibration for assay of LWR (light-water reactor) fuel assemblies

    SciTech Connect

    Menlove, H.O.; Pieper, J.E.

    1987-03-01

    The neutron-coincidence collar is used for the verification of the uranium content in light-water reactor fuel assemblies. An AmLi neutron source is used to give an active interrogation of the fuel assembly to measure the /sup 235/U content, and the /sup 238/U content is verified from a passive neutron-coincidence measurement. This report gives the collar calibration data of pressurized-water reactor and boiling-water reactor fuel assemblies. Calibration curves and correction factors are presented for neutron absorbers (burnable poisons) and different fuel assembly sizes. The data were collected at Exxon Nuclear, Franco-Belge de Fabrication de Combustibles, ASEA-Atom, and other nuclear fuel fabrication facilities.

  13. Multiscale Model for the Assembly Kinetics of Protein Complexes.

    PubMed

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2016-02-04

    The assembly of proteins into high-order complexes is a general mechanism for these biomolecules to implement their versatile functions in cells. Natural evolution has developed various assembling pathways for specific protein complexes to maintain their stability and proper activities. Previous studies have provided numerous examples of the misassembly of protein complexes leading to severe biological consequences. Although the research focusing on protein complexes has started to move beyond the static representation of quaternary structures to the dynamic aspect of their assembly, the current understanding of the assembly mechanism of protein complexes is still largely limited. To tackle this problem, we developed a new multiscale modeling framework. This framework combines a lower-resolution rigid-body-based simulation with a higher-resolution Cα-based simulation method so that protein complexes can be assembled with both structural details and computational efficiency. We applied this model to a homotrimer and a heterotetramer as simple test systems. Consistent with experimental observations, our simulations indicated very different kinetics between protein oligomerization and dimerization. The formation of protein oligomers is a multistep process that is much slower than dimerization but thermodynamically more stable. Moreover, we showed that even the same protein quaternary structure can have very diverse assembly pathways under different binding constants between subunits, which is important for regulating the functions of protein complexes. Finally, we revealed that the binding between subunits in a complex can be synergistically strengthened during assembly without considering allosteric regulation or conformational changes. Therefore, our model provides a useful tool to understand the general principles of protein complex assembly.

  14. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    SciTech Connect

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  15. Development of ORIGEN Libraries for Mixed Oxide (MOX) Fuel Assembly Designs

    DOE PAGES

    Mertyurek, Ugur; Gauld, Ian C.

    2015-12-24

    In this research, ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup.more » The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. Finally, the nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.« less

  16. Photon dose rates from spent fuel assemblies with relation to self- protection

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1995-12-01

    Photon dose rates as a function of fission product decay times have been calculated for spent fuel assemblies typical of MTR-type research and test reactors. Based upon these dose rates, the length of time that a spent fuel assembly will be self-protecting (dose rate greater than 100 rem/h at 1 m in air) can be estimated knowing the mass of fuel burned, the fraction of fuel burned, and the fuel assembly specific power density. The calculated dose rates cover 20 years of fission product decay, spent fuel with up to 80% {sup 235}U burnup and assembly power densities ranging from 0.089 to 2.857 MW/kg{sup 235}U. Most of the results are unshielded dose rates at 1 m in air with some shielded dose rates at 40 cm in water. Dose rate sensitivity estimates have been evaluated for a variety of MTR fuel assembly designs and for uncertainties in both the physical and analytical models of the fuel assemblies.

  17. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    SciTech Connect

    Clarno, Kevin T; Hamilton, Steven P; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Pugmire, Dave; Dilts, Gary; Banfield, James E

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  18. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  19. DNA tile based self-assembly: building complex nanoarchitectures.

    PubMed

    Lin, Chenxiang; Liu, Yan; Rinker, Sherri; Yan, Hao

    2006-08-11

    DNA tile based self-assembly provides an attractive route to create nanoarchitectures of programmable patterns. It also offers excellent scaffolds for directed self-assembly of nanometer-scale materials, ranging from nanoparticles to proteins, with potential applications in constructing nanoelectronic/nanophotonic devices and protein/ligand nanoarrays. This Review first summarizes the currently available DNA tile toolboxes and further emphasizes recent developments toward self-assembling DNA nanostructures with increasing complexity. Exciting progress using DNA tiles for directed self-assembly of other nanometer scale components is also discussed.

  20. Fuel sender assembly requiring no calibration and having reduced wear

    SciTech Connect

    Gaston, R.D.

    1990-05-15

    This patent describes a fuel sender assembly. It comprises: a float rod having a pivot portion and an arm portion; a housing member having a rod hole rotatably securing the pivot portion and having an arcuate slot radially disposed from the rod hole, the rod hole being sized to substantially prevent radial movement of the pivot portion; a resistance element secured to the housing member and having a first connection thereto; a carrier element received by the housing member, the carrier element having an interior portion aligned with the rod hole and receiving the pivot portion of the float rod, the carrier element having an exterior portion extending through the arcuate slot for receiving the arm portion, the exterior portion permitting limited movement of the arm portion relative to the housing member in a direction substantially parallel with the pivot portion; and spring contact means rigidly coupled to the interior portion of the carrier element for slidably contacting the resistance element as a second connection thereto.

  1. Self-Assembly of Structures with Addressable Complexity.

    PubMed

    Jacobs, William M; Frenkel, Daan

    2016-03-02

    The self-assembly of structures with "addressable complexity", where every component is distinct and is programmed to occupy a specific location within a target structure, is a promising route to engineering materials with precisely defined morphologies. Because systems with many components are inherently complicated, one might assume that the chances of successful self-assembly are extraordinarily small. Yet recent advances suggest otherwise: addressable structures with hundreds of distinct building blocks have been designed and assembled with nanometer precision. Despite this remarkable success, it is often challenging to optimize a self-assembly reaction to ensure that the intended structure is kinetically accessible. In this Perspective, we focus on the prediction of kinetic pathways for self-assembly and implications for the design of robust experimental protocols. The development of general principles to predict these pathways will enable the engineering of complex materials using a much wider range of building blocks than is currently possible.

  2. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  3. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

  4. Use of Computational Fluid Dynamics (CFD) tools for fuel assembly analysis.

    SciTech Connect

    Garner, P. L.; Sofu, T.; Nuclear Engineering Division

    2004-01-01

    The STAR-CD computer program for Computational Fuel Dynamics (CFD) has been applied to the Russian pin-type fuel assemblies proposed as low enriched uranium (LEU) replacements for the high enriched uranium (HEU) (36%) IRT-3M fuel assemblies currently used in the WWR-SM reactor in Uzbekistan. For fuel assemblies containing twisted, finned pin-type fuel, STAR-CD was first used to model the single pin having the highest power density along with its associated coolant as an isolated unit cell. Velocity, pressure, temperature, heat flux, etc. were calculated on a detailed spatial basis in the coolant, cladding, and fuel. The model was then expanded to include multiple fuel pins; the computed motion of coolant from one portion of the assembly to another can reduce the peak temperatures below what one would compute using a single-pin model and, thus, change conclusions regarding the margin to onset of nucleate boiling. STAR-CD has also been applied to the IRT-3M tube-type fuel assemblies in the current HEU core.

  5. SOFC cells and stacks for complex fuels

    SciTech Connect

    Edward M. Sabolsky; Matthew Seabaugh; Katarzyna Sabolsky; Sergio A. Ibanez; Zhimin Zhong

    2007-07-01

    Reformed hydrocarbon and coal (syngas) fuels present an opportunity to integrate solid oxide fuel cells into the existing fuel infrastructure. However, these fuels often contain impurities or additives that may lead to cell degradation through sulfur poisoning or coking. Achieving high performance and sulfur tolerance in SOFCs operating on these fuels would simplify system balance of plant and sequestration of anode tail gas. NexTech Materials, Ltd., has developed a suite of materials and components (cells, seals, interconnects) designed for operation in sulfur-containing syngas fuels. These materials and component technologies have been integrated into an SOFC stack for testing on simulated propane, logistic fuel reformates and coal syngas. Details of the technical approach, cell and stack performance is reported.

  6. The underwater coincidence counter for plutonium measurements in mixed-oxide fuel assemblies manual

    SciTech Connect

    G. W. Eccleston; H. O. Menlove; M. Abhold; M. Baker; J. Pecos

    1999-05-01

    This manual describes the Underwater Coincidence Counter (UWCC) that has been designed for the measurement of plutonium in mixed-oxide (MOX) fuel assemblies prior to irradiation. The UWCC uses high-efficiency {sup 3}He neutron detectors to measure the spontaneous-fission and induced-fission rates in the fuel assembly. Measurements can be made on MOX fuel assemblies in air or underwater. The neutron counting rate is analyzed for singles, doubles, and triples time correlations to determine the {sup 240}Pu effective mass per unit length of the fuel assembly. The system can verify the plutonium loading per unit length to a precision of less than 1% in a measurement time of 2 to 3 minutes. System design, components, performance tests, and operational characteristics are described in this manual.

  7. Predicting fire behavior in palmetto-gallberry fuel complexes

    Treesearch

    W A. Hough; F. A. Albini

    1978-01-01

    Rate of spread, fireline intensity, and flame length can be predicted with reasonable accuracy for backfires and low-intensity head fires in the palmetto-gallberry fuel complex of the South. This fuel complex was characterized and variables were adjusted for use in Rothermel's (1972) spread model. Age of rough, height of understory, percent of area covered by...

  8. Nondestructive verification with minimal movement of irradiated light-water-reactor fuel assemblies

    SciTech Connect

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Klosterbuer, S.F.; Menlove, H.O.

    1982-10-01

    Nondestructive verification of irradiated light-water reactor fuel assemblies can be performed rapidly and precisely by measuring their gross gamma-ray and neutron signatures. A portable system measured fuel assemblies with exposures ranging from 18.4 to 40.6 GWd/tU and with cooling times ranging from 1575 to 2638 days. Differences in the measured results for side or corner measurements are discussed. 25 figures, 20 tables.

  9. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    SciTech Connect

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of /sup 235/U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the /sup 235/U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described.

  10. An analytical solution for the consideration of the effect of adjacent fuel assemblies; comparison of rectangular and hexagonal structures

    SciTech Connect

    Merk, B.; Rohde, U.

    2012-07-01

    A new analytical method is described to deal with the Leakage Environmental Effect. The method is based on the analytical solution of the two-group diffusion equation for two adjacent fuel assemblies. The quality of the results for this highly efficient method is demonstrated for square fuel assemblies. In additional tests the transferability of the concept to hexagonal VVER-440-type fuel assemblies is shown and a comparison between the results for rectangular and hexagonal assemblies is given. (authors)

  11. Chart system simplifies identification of complex design assemblies

    NASA Technical Reports Server (NTRS)

    Morin, H. P.

    1966-01-01

    Identification breakdown chart that lists the component parts required for any specific end item is used to identify rapidly and accurately, from numerous drawings, all the component parts of a complex design assembly. Cylindrical and complex configurations are depicted as continuous flat surfaces for ready identification.

  12. A US perspective on fast reactor fuel fabrication technology and experience part I: metal fuels and assembly design

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Fielding, Randall S.; Porter, Douglas L.; Crawford, Douglas C.; Meyer, Mitchell K.

    2009-06-01

    This paper is part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF). Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated in a considerable amount of research that resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  13. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly.

    PubMed

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-04-21

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  14. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  15. Conformational flexibility facilitates self-assembly of complex DNA nanostructures.

    PubMed

    Zhang, Chuan; Su, Min; He, Yu; Zhao, Xin; Fang, Ping-an; Ribbe, Alexander E; Jiang, Wen; Mao, Chengde

    2008-08-05

    Molecular self-assembly is a promising approach to the preparation of nanostructures. DNA, in particular, shows great potential to be a superb molecular system. Synthetic DNA molecules have been programmed to assemble into a wide range of nanostructures. It is generally believed that rigidities of DNA nanomotifs (tiles) are essential for programmable self-assembly of well defined nanostructures. Recently, we have shown that adequate conformational flexibility could be exploited for assembling 3D objects, including tetrahedra, dodecahedra, and buckyballs, out of DNA three-point star motifs. In the current study, we have integrated tensegrity principle into this concept to assemble well defined, complex nanostructures in both 2D and 3D. A symmetric five-point-star motif (tile) has been designed to assemble into icosahedra or large nanocages depending on the concentration and flexibility of the DNA tiles. In both cases, the DNA tiles exhibit significant flexibilities and undergo substantial conformational changes, either symmetrically bending out of the plane or asymmetrically bending in the plane. In contrast to the complicated natures of the assembled structures, the approach presented here is simple and only requires three different component DNA strands. These results demonstrate that conformational flexibility could be explored to generate complex DNA nanostructures. The basic concept might be further extended to other biomacromolecular systems, such as RNA and proteins.

  16. Active Well Coincidence Counter measurements of enriched uranium fuel assemblies in scanning and stationary modes

    SciTech Connect

    Krick, M.S.; Cowder, L. ); Maltsev, V.; Chernikov, A.; Mokeenko, P.; D'yadkov, K.; Ivanov, V. Nuclear Power Plant, Zarechnyy ); Lagattu, A.; Lopatin, Y.; Czock, K.; Rundquist, D.; Pedraza, L. )

    1991-01-01

    Enriched uranium fuel assemblies were measured with an Active Well Coincidence Counter (AWCC) at the Beloyarskaya Nuclear Power Plant. Special AWCC inserts, electronics, and software were used. Stationary and scanning measurements were performed to establish calibrations and performance specifications for the assay of {sup 235}U and {sub 235}U/cm for BN600 fuel. 6 refs., 7 figs., 2 tabs.

  17. Solution assembly of cytokine receptor ectodomain complexes

    SciTech Connect

    Wu, Zining; Ciardelli, T.L.; Johnson, K.W.

    1995-09-01

    For the majority of single transmembrane-spanning cell surface receptors, signal transmission across the lipid bilayer barrier involves several discrete components of molecular recognition. The interaction between ligand and the extracellular segment of its cognate receptor (ectodomain) initiates either homomeric or heteromeric association of receptor subunits. Specific recognition among these subunits may then occur between ectodomain regions, within the membrane by interhelical contact or inside the cell between cytoplasmic domains. Any or all of these interactions may contribute to the stability of the signaling complex. It is the characteristics of ligand binding by the ectodomains of these receptors that controls the heteromeric or homomeric nature and the stoichiometry of the complex. Cytokines and their receptors belong to a growing family of macromolecular systems that exhibit these functional features and share many structural similarities as well. Interleukin-2 is a multifunctional cytokine that represents, perhaps, the most complex example to date of ligand recognition among the hematopoietin receptor family. It is the cooperative binding of IL-2 by all three proteins on the surface of activated T-lymphocytes, however, that ultimately results in crosslinking of the {beta}- and {gamma}-subunits and signaling via association of their cytoplasmic domains. Although the high-affinity IL-2R functions as a heterotrimer, heterodimers of the receptor subunits are also physiologically important. The {alpha}/{beta} heterodimer or {open_quotes}pseudo-high affinity{close_quotes} receptor captures IL-2 as a preformed cell surface complex while the {beta}/{gamma} intermediate affinity site exists, in the absence of the {alpha} subunit, on the majority of natural killer cells. We have begun to study stable complexes of cytokine receptor ectodomains of defined composition and that mimic the ligand binding characteristics of the equivalent cell surface receptor sites.

  18. U.S. Commercial Spent Nuclear Fuel Assembly Characteristics - 1968-2013

    SciTech Connect

    Hu, Jianwei; Peterson, Joshua L.; Gauld, Ian C.; Bowman, Stephen M.

    2016-09-01

    Activities related to management of spent nuclear fuel (SNF) are increasing in the US and many other countries. Over 240,000 SNF assemblies have been discharged from US commercial reactors since the late 1960s. The enrichment and burnup of SNF have changed significantly over the past 40 years, and fuel assembly designs have also evolved. Understanding the general characteristics of SNF helps regulators and other stakeholders form overall strategies towards the final disposal of US SNF. This report documents a survey of all US commercial SNF assemblies in the GC-859 database and provides reference SNF source terms (e.g., nuclide inventories, decay heat, and neutron/photon emission) at various cooling times up to 200 years after fuel discharge. This study reviews the distribution and evolution of fuel parameters of all SNF assemblies discharged over the past 40 years. Assemblies were categorized into three groups based on discharge year, and the median burnups and enrichments of each group were used to establish representative cases. An extended burnup case was created for boiling water reactor (BWR) fuels, and another was created for the pressurized water reactor (PWR) fuels. Two additional cases were developed to represent the eight mixed oxide (MOX) fuel assemblies in the database. Burnup calculations were performed for each representative case. Realistic parameters for fuel design and operations were used to model the SNF and to provide reference fuel characteristics representative of the current inventory. Burnup calculations were performed using the ORIGEN code, which is part of the SCALE nuclear modeling and simulation code system. Results include total activity, decay heat, photon emission, neutron flux, gamma heat, and plutonium content, as well as concentrations for 115 significant nuclides. These quantities are important in the design, regulation, and operations of SNF storage, transportation, and disposal systems.

  19. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium

  20. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    SciTech Connect

    Hamilton, Steven P; Clarno, Kevin T; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth

    2012-01-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms, such as neutron flux distribution, coolant conditions and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. With this novel capability, AMPFuel was used to model an entire 1717 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics). A full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 160 billion degrees of freedom for 10 loading steps. The single radiation transport calculation required about 50% of the time required to solve the thermo-mechanics with a single loading step, which demonstrates that it is feasible to incorporate, in a single code, a high-fidelity radiation transport capability with a high-fidelity nuclear fuel thermo-mechanics capability and anticipate acceptable computational requirements. The

  1. Verification of 235U enrichment of fresh VVER-440 fuel assemblies.

    PubMed

    Almási, I; Nguyen, C T; Zsigrai, J; Lakosi, L; Hlavathy, Z; Nagy, P; Buglyó, N

    2012-10-01

    Enrichment of uniformly and non-uniformly enriched ("profiled") fuel assemblies in a range of 1.6-4.4% was verified by gamma-ray spectrometry at a nuclear power plant (NPP). HPGe detectors and a CdZnTe (CZT) detector, the latter fitting into the central tube of the assemblies, were used for obtaining information from outer and inner fuel rods. A procedure which has minimal impact on the NPP work was developed for verifying freshly arrived assemblies under normal operational conditions, and is now in routine use. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Method of preparing gas tags for identification of single and multiple failures of nuclear reactor fuel assemblies

    DOEpatents

    McCormick, Norman J.

    1976-01-01

    For use in the identification of failed fuel assemblies in a nuclear reactor, the ratios of the tag gas isotopic concentrations are located on curved surfaces to enable the ratios corresponding to failure of a single fuel assembly to be distinguished from those formed from any combination of two or more failed assemblies.

  3. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A. ); Blake, J.E.; Rush, G.C. )

    1990-01-01

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  4. Design of a full scale model fuel assembly for full power production reactor flow excursion experiments

    SciTech Connect

    Nash, C.A.; Blake, J.E.; Rush, G.C.

    1990-12-31

    A novel full scale production reactor fuel assembly model was designed and built to study thermal-hydraulic effects of postulated Savannah River Site (SRS) nuclear reactor accidents. The electrically heated model was constructed to simulate the unique annular concentric tube geometry of fuel assemblies in SRS nuclear production reactors. Several major design challenges were overcome in order to produce the prototypic geometry and thermal-hydraulic conditions. The two concentric heater tubes (total power over 6 MW and maximum heat flux of 3.5 MW/m{sup 2}) (1.1E+6 BTU/(ft{sup 2}hr)) were designed to closely simulate the thermal characteristics of SRS uranium-aluminum nuclear fuel. The paper discusses the design of the model fuel assembly, which met requirements of maintaining prototypic geometric and hydraulic characteristics, and approximate thermal similarity. The model had a cosine axial power profile and the electrical resistance was compatible with the existing power supply. The model fuel assembly was equipped with a set of instruments useful for code analysis, and durable enough to survive a number of LOCA transients. These instruments were sufficiently responsive to record the response of the fuel assembly to the imposed transient.

  5. Neutron measurement techniques for the nondestructive analysis of irradiated fuel assemblies

    SciTech Connect

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Klosterbuer, S.F.; Lee, D.M.; Menlove, H.O.

    1981-11-01

    Nondestructive measurement of the passive neutron signatures of irradiated light-water reactor fuel assemblies is a rapid and simple technique for verifying operator-declared exposure values. Fuel assemblies from four different reactor facilities have been measured to establish the functional relationship between the operator-declared exposure values and the experimentally measured neutron emission rates. Experimentally measured neutron emission rates of small fuel rod sections have been shown to agree with the predicted results from our calculational model. Destructive results for the actinide isotopes also agreed very well with our prediction. Neutron emission rates varied by 30 to 40% between opposite corners of the source fuel assembly. Symmetrical neutron detector systems that measure all sides simultaneously were evaluated.

  6. High mechanical performance of Areva upgraded fuel assemblies for PWR in USA

    SciTech Connect

    Gottuso, Dennis; Canat, Jean-Noel; Mollard, Pierre

    2007-07-01

    The merger of the product portfolios of the former Siemens and Framatome fuel businesses gave rise to a new family of PWR products which combine the best features of the different technologies to enhance the main performance of each of the existing products. In this way, the technology of each of the three main fuel assembly types usually delivered by AREVA NP, namely Mark-BW{sup TM}, HTP{sup TM} and AFA 3G{sup TM} has been enriched by one or several components from the others which contributes to improve their robustness and to enhance their performance. The combined experience of AREVA's products shows that the ROBUST FUELGUARD{sup TM}, the HMP{sup TM} end grid, the MONOBLOC{sup TM} guide tube, a welded structure, M5{sup R} material for every zirconium component and an upper QUICK-DISCONNECT{sup TM} are key features for boosting fuel assembly robustness. The ROBUST FUELGUARD benefits from a broad experience demonstrating its high efficiency in stopping debris. In addition, its mechanical strength has been enhanced and the proven blade design homogenizes the downstream flow distribution to strongly reduce excitation of fuel rods. The resistance to rod-to-grid fretting resistance of AREVA's new products is completed by the use of a lower HMP grid with 8 lines of contact to insure low wear. The Monobloc guide tube with a diameter maximized to strengthen the fuel assembly stiffness, excludes through its uniform outer geometry any local condition which could weaken guide tube straightness. The application of a welded cage to all fuel assemblies of the new family of products in combination with stiffer guide tubes and optimized hold-down assures each fuel assembly enhanced resistance to distortion. The combination of these features has been widely demonstrated as an effective method to reduce the risk of incomplete RCCA insertion and significantly reduce assembly distortion. Thanks to its enhanced performance, M5 alloy insures that all fuel assemblies in the family

  7. Analysis of subcritical experiments using fresh and spent research reactor fuel assemblies

    NASA Astrophysics Data System (ADS)

    Zino, John Frederick

    1999-11-01

    This research investigated the concepts associated with crediting the burnup of spent nuclear fuel assemblies for the purposes of criticality safety. To accomplish this, a collaborative experimental research program was undertaken between Westinghouse, the University of Missouri Research Reactor (MURR) facility and Oak Ridge National Laboratory (ORNL). The purpose of the program was to characterize the subcritical behavior of a small array of fresh and spent MURR fuel assemblies using the 252Cf Source-driven noise technique. An aluminum test rig was built which was capable of holding up to four, highly enriched (93.15 wt.% 235U) MURR fuel assemblies in a 2 x 2 array. The rig was outfitted with one source and four detector drywells which allowed researchers to perform active neutron noise measurements on the array of fuel assemblies. The 1 atmosphere gas 3He neutron detectors used to perform the measurements were quenched with CF4 gas to allow improved discrimination of the neutron signals in the very high gamma-ray fields associated with spent fuel (˜8000 R/hr). In addition, the detector drywells were outfitted with 1″ lead collars to provide additional gamma-ray shielding from the spent fuel. Reactivity changes were induced in the subcritical lattice by replacing individual fresh assemblies (in a 4-assembly array) with spent assemblies of known, maximum burnup (143 Mw-D). The absolute and relative measured reactivity changes were then compared to those predicted by three-dimensional Monte Carlo calculations. The purpose of these comparisons was to investigate the accuracy of modern transport theory depletion calculations to accurately simulate the reactivity effects of burnup in spent nuclear fuel. A total of seven subcritical measurements were performed at the MURR reactor facility on July 20th and 27th, 1998. These measurements generated several estimates of prompt neutron decay constants (alpha) and ratios of spectral densities through frequency correlations

  8. Modeling the Self-assembly of the Cellulosome Enzyme Complex*

    PubMed Central

    Bomble, Yannick J.; Beckham, Gregg T.; Matthews, James F.; Nimlos, Mark R.; Himmel, Michael E.; Crowley, Michael F.

    2011-01-01

    Most bacteria use free enzymes to degrade plant cell walls in nature. However, some bacteria have adopted a different strategy wherein enzymes can either be free or tethered on a protein scaffold forming a complex called a cellulosome. The study of the structure and mechanism of these large macromolecular complexes is an active and ongoing research topic, with the goal of finding ways to improve biomass conversion using cellulosomes. Several mechanisms involved in cellulosome formation remain unknown, including how cellulosomal enzymes assemble on the scaffoldin and what governs the population of cellulosomes created during self-assembly. Here, we present a coarse-grained model to study the self-assembly of cellulosomes. The model captures most of the physical characteristics of three cellulosomal enzymes (Cel5B, CelS, and CbhA) and the scaffoldin (CipA) from Clostridium thermocellum. The protein structures are represented by beads connected by restraints to mimic the flexibility and shapes of these proteins. From a large simulation set, the assembly of cellulosomal enzyme complexes is shown to be dominated by their shape and modularity. The multimodular enzyme, CbhA, binds statistically more frequently to the scaffoldin than CelS or Cel5B. The enhanced binding is attributed to the flexible nature and multimodularity of this enzyme, providing a longer residence time around the scaffoldin. The characterization of the factors influencing the cellulosome assembly process may enable new strategies to create designers cellulosomes. PMID:21098021

  9. β-Barrel membrane protein assembly by the Bam complex.

    PubMed

    Hagan, Christine L; Silhavy, Thomas J; Kahne, Daniel

    2011-01-01

    β-barrel membrane proteins perform important functions in the outer membranes (OMs) of Gram-negative bacteria and of the mitochondria and chloroplasts of eukaryotes. The protein complexes that assemble these proteins in their respective membranes have been identified and shown to contain a component that has been conserved from bacteria to humans. β-barrel proteins are handled differently from α-helical membrane proteins in the cell in order to efficiently transport them to their final locations in unfolded but folding-competent states. The mechanism by which the assembly complex then binds, folds, and inserts β-barrels into the membrane is not well understood, but recent structural, biochemical, and genetic studies have begun to elucidate elements of how the complex provides a facilitated pathway for β-barrel assembly. Ultimately, studies of the mechanism of β-barrel assembly and comparison to the better-understood process of α-helical membrane protein assembly will reveal whether there are general principles that guide the folding and insertion of all membrane proteins.

  10. Applicability of a set of tomographic reconstruction algorithms for quantitative SPECT on irradiated nuclear fuel assemblies

    NASA Astrophysics Data System (ADS)

    Jacobsson Svärd, Staffan; Holcombe, Scott; Grape, Sophie

    2015-05-01

    A fuel assembly operated in a nuclear power plant typically contains 100-300 fuel rods, depending on fuel type, which become strongly radioactive during irradiation in the reactor core. For operational and security reasons, it is of interest to experimentally deduce rod-wise information from the fuel, preferably by means of non-destructive measurements. The tomographic SPECT technique offers such possibilities through its two-step application; (1) recording the gamma-ray flux distribution around the fuel assembly, and (2) reconstructing the assembly's internal source distribution, based on the recorded radiation field. In this paper, algorithms for performing the latter step and extracting quantitative relative rod-by-rod data are accounted for. As compared to application of SPECT in nuclear medicine, nuclear fuel assemblies present a much more heterogeneous distribution of internal attenuation to gamma radiation than the human body, typically with rods containing pellets of heavy uranium dioxide surrounded by cladding of a zirconium alloy placed in water or air. This inhomogeneity severely complicates the tomographic quantification of the rod-wise relative source content, and the deduction of conclusive data requires detailed modelling of the attenuation to be introduced in the reconstructions. However, as shown in this paper, simplified models may still produce valuable information about the fuel. Here, a set of reconstruction algorithms for SPECT on nuclear fuel assemblies are described and discussed in terms of their quantitative performance for two applications; verification of fuel assemblies' completeness in nuclear safeguards, and rod-wise fuel characterization. It is argued that a request not to base the former assessment on any a priori information brings constraints to which reconstruction methods that may be used in that case, whereas the use of a priori information on geometry and material content enables highly accurate quantitative assessment, which

  11. Comparison of prediction models for Cherenkov light emissions from nuclear fuel assemblies

    NASA Astrophysics Data System (ADS)

    Branger, E.; Grape, S.; Jacobsson Svärd, S.; Jansson, P.; Andersson Sundén, E.

    2017-06-01

    The Digital Cherenkov Viewing Device (DCVD) [1] is a tool used by nuclear safeguards inspectors to verify irradiated nuclear fuel assemblies in wet storage based on the Cherenkov light produced by the assembly. Verifying that no rods have been substituted in the fuel, so-called partial-defect verification, is done by comparing the intensity measured with a DCVD with a predicted intensity, based on operator fuel declaration. The prediction model currently used by inspectors is based on simulations of Cherenkov light production in a BWR 8x8 geometry. This work investigates prediction models based on simulated Cherenkov light production in a BWR 8x8 and a PWR 17x17 assembly, as well as a simplified model based on a single rod in water. Cherenkov light caused by both fission product gamma and beta decays was considered. The simulations reveal that there are systematic differences between the model used by safeguards inspectors and the models described in this publication, most noticeably with respect to the fuel assembly cooling time. Consequently, if the intensity predictions are based on another fuel type than the fuel type being measured, a systematic bias in intensity with respect to burnup and cooling time is introduced. While a simplified model may be accurate enough for a set of fuel assemblies with nearly identical cooling times, the prediction models may differ systematically by up to 18 % for fuels with more varied cooling times. Accordingly, these investigations indicate that the currently used model may need to be exchanged with a set of more detailed, fuel-type specific models, in order minimize the model dependent systematic deviations.

  12. Assembly of complex plant–fungus networks

    PubMed Central

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2014-01-01

    Species in ecological communities build complex webs of interaction. Although revealing the architecture of these networks is fundamental to understanding ecological and evolutionary dynamics in nature, it has been difficult to characterize the structure of most species-rich ecological systems. By overcoming this limitation through next-generation sequencing technology, we herein uncover the network architecture of below-ground plant–fungus symbioses, which are ubiquitous to terrestrial ecosystems. The examined symbiotic network of a temperate forest in Japan includes 33 plant species and 387 functionally and phylogenetically diverse fungal taxa, and the overall network architecture differs fundamentally from that of other ecological networks. In contrast to results for other ecological networks and theoretical predictions for symbiotic networks, the plant–fungus network shows moderate or relatively low levels of interaction specialization and modularity and an unusual pattern of ‘nested’ network architecture. These results suggest that species-rich ecological networks are more architecturally diverse than previously recognized. PMID:25327887

  13. Investigation of a Shock Absorber for Safeguard of Fuel Assemblies Failure

    SciTech Connect

    Karalevicius, Renatas; Dundulis, Gintautas; Rimkevicius, Sigitas; Uspuras, Eugenijus

    2006-07-01

    The Ignalina NPP has two reactors. The Unit 1 was shut down, therefore the special equipment was designed for transportation of the fuel from Unit 1 to Unit 2. The fuel-loaded basket can drop during transportation. The special shock absorber was designed in order to avoid failure of fuel assemblies during transportation. In case of drop of fuel loaded basket, the failure of fuel assemblies can occur. This shock absorber was studied by scaled experiments at Lithuanian Energy Institute. Static and dynamic investigations of shock absorber are presented in this paper, including dependency of axial force versus axial compression. The finite element codes BRIGADE/Plus and ABAQUS/Explicit were used for analysis. Static simulation was used to optimize the dimensions of shock absorber. Dynamic analysis shows that shock absorber is capable to withstand the dynamic load for successful force suppression function in case of an accident. (authors)

  14. Emergence of hierarchical structural complexities in nanoparticles and their assembly

    NASA Astrophysics Data System (ADS)

    Zeng, Chenjie; Chen, Yuxiang; Kirschbaum, Kristin; Lambright, Kelly J.; Jin, Rongchao

    2016-12-01

    We demonstrate that nanoparticle self-assembly can reach the same level of hierarchy, complexity, and accuracy as biomolecules. The precise assembly structures of gold nanoparticles (246 gold core atoms with 80 p-methylbenzenethiolate surface ligands) at the atomic, molecular, and nanoscale levels were determined from x-ray diffraction studies. We identified the driving forces and rules that guide the multiscale assembly behavior. The protecting ligands self-organize into rotational and parallel patterns on the nanoparticle surface via C-Hṡṡṡπ interaction, and the symmetry and density of surface patterns dictate directional packing of nanoparticles into crystals with orientational, rotational, and translational orders. Through hierarchical interactions and symmetry matching, the simple building blocks evolve into complex structures, representing an emergent phenomenon in the nanoparticle system.

  15. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  16. The optimization of an AP1000 fuel assembly for the transmutation of plutonium and minor actinides

    NASA Astrophysics Data System (ADS)

    Washington, Jeremy A.

    The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. The goal of this thesis is to examine the potential of light water reactors for plutonium and minor actinides transmutation as a near-term solution. This thesis screens the available nuclear isotope database to identify potential absorbers as coatings on a transmutation fuel in a light water reactor. A spectral shift absorber coating tunes the neutron energy spectrum experienced by the underlying target fuel. Eleven different spectral shift absorbers (B4C, CdO, Dy2O3, Er 2O3, Eu2O3, Gd2O3, HfO2, In2O3, Lu2O3, Sm2O3, and TaC) have been selected for further evaluation. A model developed using the NEWT module of SCALE 6.1 code provided performance data for the burnup of the target fuel rods. Irradiation of the target fuels occurs in a Westinghouse 17x17 XL Robust Fuel Assembly over a 1400 Effective Full Power Days (EFPD) interval. The fuels evaluated in this thesis include PuO2, Pu3Si2, PuN, MOX, PuZrH, PuZrHTh, PuZrO 2, and PuUZrH. MOX (5 wt% PuO2), Pu0.31ZrH 1.6Th1.08, and PuZrO2MgO (8 wt%) are selected for detailed analysis in a multi-pin transmutation assembly. A coupled model optimized the resulting transmutation fuel elements. The optimization considered three stages of fuel assemblies containing target fuel pins. The first stage optimized four target fuel pins adjacent to the central instrumentation channel. The second stage evaluated a variety of assemblies with multiple target fuel pins and the third stage re-optimized target fuel pins in the second-stage assembly. A PuZrO2MgO (8 wt%) target fuel with a coating of Lu 2O3 resulted in the greatest reduction in curium-244

  17. Assaying Used Nuclear Fuel Assemblies Using Lead Slowing-Down Spectroscopy and Singular Value Decomposition

    SciTech Connect

    Kulisek, Jonathan A.; Anderson, Kevin K.; Casella, Andrew M.; Gesh, Christopher J.; Warren, Glen A.

    2013-04-01

    This study investigates the use of a Lead Slowing-Down Spectrometer (LSDS) for the direct and independent measurement of fissile isotopes in light-water nuclear reactor fuel assemblies. The current study applies MCNPX, a Monte Carlo radiation transport code, to simulate the measurement of the assay of the used nuclear fuel assemblies in the LSDS. An empirical model has been developed based on the calibration of the LSDS to responses generated from the simulated assay of six well-characterized fuel assemblies. The effects of self-shielding are taken into account by using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the self-shielding functions from the assay of assemblies in the calibration set. The performance of the empirical algorithm was tested on version 1 of the Next-Generation Safeguards Initiative (NGSI) used fuel library consisting of 64 assemblies, as well as a set of 27 diversion assemblies, both of which were developed by Los Alamos National Laboratory. The potential for direct and independent assay of the sum of the masses of Pu-239 and Pu-241 to within 2%, on average, has been demonstrated.

  18. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines

    PubMed Central

    Staley, Jonathan P; Woolford, John L

    2009-01-01

    Summary Ribosomes and spliceosomes are ribonucleoprotein nanomachines that catalyze translation of mRNA to synthesize proteins and splicing of introns from pre-mRNAs, respectively. Assembly of ribosomes involves more than 300 proteins and RNAs, and that of spliceosomes over 100 proteins and RNAs. Construction of these enormous ribonucleoprotein particles (RNPs) is a dynamic process, in which the nascent RNPs undergo numerous ordered rearrangements of RNA-RNA, RNA-protein, and protein-protein interactions. Here we outline similar principles that have emerged from studies of ribosome and spliceosome assembly. Constituents of both RNPs form subassembly complexes, which can simplify the task of assembly and segregate functions of assembly factors. Reorganization of RNP topology, and proofreading of proper assembly, are catalyzed by protein- or RNA- dependent ATPases or GTPases. Dynamics of intermolecular interactions may be facilitated or regulated by cycles of posttranslational modifications. Despite this repertoire of tools, mistakes occur in RNP assembly or in processing of RNA substrates. Quality control mechanisms recognize and turnover misassembled RNPs and reject improper substrates. PMID:19167202

  19. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines.

    PubMed

    Staley, Jonathan P; Woolford, John L

    2009-02-01

    Ribosomes and spliceosomes are ribonucleoprotein nanomachines that catalyze translation of mRNA to synthesize proteins and splicing of introns from pre-mRNAs, respectively. Assembly of ribosomes involves more than 300 proteins and RNAs, and that of spliceosomes over 100 proteins and RNAs. Construction of these enormous ribonucleoprotein particles (RNPs) is a dynamic process, in which the nascent RNPs undergo numerous ordered rearrangements of RNA-RNA, RNA-protein, and protein-protein interactions. Here we outline similar principles that have emerged from studies of ribosome and spliceosome assembly. Constituents of both RNPs form subassembly complexes, which can simplify the task of assembly and segregate functions of assembly factors. Reorganization of RNP topology, and proofreading of proper assembly, are catalyzed by protein- or RNA-dependent ATPases or GTPases. Dynamics of intermolecular interactions may be facilitated or regulated by cycles of post-translational modifications. Despite this repertoire of tools, mistakes occur in RNP assembly or in processing of RNA substrates. Quality control mechanisms recognize and turnover misassembled RNPs and reject improper substrates.

  20. Acceptance of failed SNF (spent nuclear fuel) assemblies by the Federal Waste Management System

    SciTech Connect

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. This document discusses acceptance of failed spent fuel assemblies by the Federal Waste Management System. 18 refs., 7 figs., 25 tabs.

  1. Silicon carbide composite for light water reactor fuel assembly applications

    NASA Astrophysics Data System (ADS)

    Yueh, Ken; Terrani, Kurt A.

    2014-05-01

    The feasibility of using SiCf-SiCm composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  2. Prediction of dryout performance for boiling water reactor fuel assemblies based on subchannel analysis with the RINGS code

    SciTech Connect

    Knabe, P.; Wehle, F.

    1995-12-01

    A fuel assembly with a large critical power margin introduces flexibility into reload fuel management. Therefore, optimization of the bundle and spacer geometry to maximize the bundle critical power is an important design objective. With a view to reducing the extent of the complex full-scale tests usually carried out to determine the thermal-hydraulic characteristics of various assembly geometries, the subchannel analysis method was further developed with the Siemens RINGS code. The annular flow code predicts dryout power and dryout location by calculating the conditions at which the liquid film flow rate is reduced to zero, allowing for evaporation, droplet entrainment, and droplet deposition. Appropriate attention is paid to the modeling of spacer effects. Comparison with experimental data of 3 x 3 and 4 x 4 tests shows the capability of RINGS to predict the flow quality and mass flux in subchannels under typical boiling water reactor operating conditions. By using the RINGS code, experimental critical power data for 3 x 3, 4 x 4, 5 x 5, 7 x 7, 8 x 8, 9 x 9, and 10 x 10 fuel assemblies were successfully postcalculated.

  3. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  4. Neutronic optimization in high conversion Th-{sup 233}U fuel assembly with simulated annealing

    SciTech Connect

    Kotlyar, D.; Shwageraus, E.

    2012-07-01

    This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-{sup 233}U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density. (authors)

  5. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  6. Perforating the nuclear boundary - how nuclear pore complexes assemble.

    PubMed

    Weberruss, Marion; Antonin, Wolfram

    2016-12-15

    The nucleus is enclosed by the nuclear envelope, a double membrane which creates a selective barrier between the cytoplasm and the nuclear interior. Its barrier and transport characteristics are determined by nuclear pore complexes (NPCs) that are embedded within the nuclear envelope, and control molecular exchange between the cytoplasm and nucleoplasm. In this Commentary, we discuss the biogenesis of these huge protein assemblies from approximately one thousand individual proteins. We will summarize current knowledge about distinct assembly modes in animal cells that are characteristic for different cell cycle phases and their regulation.

  7. Designing isotropic interactions for self-assembly of complex lattices.

    PubMed

    Edlund, E; Lindgren, O; Jacobi, M Nilsson

    2011-08-19

    We present a direct method for solving the inverse problem of designing isotropic potentials that cause self-assembly into target lattices. Each potential is constructed by matching its energy spectrum to the reciprocal representation of the lattice to guarantee that the desired structure is a ground state. We use the method to self-assemble complex lattices not previously achieved with isotropic potentials, such as a snub square tiling and the kagome lattice. The latter is especially interesting because it provides the crucial geometric frustration in several proposed spin liquids. © 2011 American Physical Society

  8. Cooperative Assembly of Magic Number C60-Au Complexes

    NASA Astrophysics Data System (ADS)

    Xie, Yang-Chun; Tang, Lin; Guo, Quanmin

    2013-11-01

    We report the assembly of magic number (C60)m-(Au)n complexes on the Au(111) surface. These complexes have a unique structure consisting of a single atomic layer Au island wrapped by a self-selected number (seven, ten, or twelve) of C60 molecules. The smallest structure consisting of 7 C60 molecules and 19 Au atoms, stable up to 400 K, has a preferred orientation on the surface. We propose a globalized metal-organic coordination mechanism for the stability of the (C60)m-(Au)n complexes.

  9. Integral gas seal for fuel cell gas distribution assemblies and method of fabrication

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1985-03-19

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  10. Method of fabricating an integral gas seal for fuel cell gas distribution assemblies

    DOEpatents

    Dettling, Charles J.; Terry, Peter L.

    1988-03-22

    A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

  11. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    SciTech Connect

    Chodak, III, Paul

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  12. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  13. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    NASA Technical Reports Server (NTRS)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  14. Morphological features (defects) in fuel cell membrane electrode assemblies

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Fowler, M. W.; Simon, L. C.; Grot, S.

    Reliability and durability issues in fuel cells are becoming more important as the technology and the industry matures. Although research in this area has increased, systematic failure analysis, such as a failure modes and effects analysis (FMEA), are very limited in the literature. This paper presents a categorization scheme of causes, modes, and effects related to fuel cell degradation and failure, with particular focus on the role of component quality, that can be used in FMEAs for polymer electrolyte membrane (PEM) fuel cells. The work also identifies component defects imparted on catalyst-coated membranes (CCM) by manufacturing and proposes mechanisms by which they can influence overall degradation and reliability. Six major defects have been identified on fresh CCM materials, i.e., cracks, orientation, delamination, electrolyte clusters, platinum clusters, and thickness variations.

  15. Mcm subunits can assemble into two different active unwinding complexes.

    PubMed

    Kanter, Diane M; Bruck, Irina; Kaplan, Daniel L

    2008-11-07

    The replication fork helicase in eukaryotes is a large complex that is composed of Mcm2-7, Cdc45, and GINS. The Mcm2-7 proteins form a heterohexameric ring that hydrolyzes ATP and provide the motor function for this unwinding complex. A comprehensive study of how individual Mcm subunit biochemical activities relate to unwinding function has not been accomplished. We studied the mechanism of the Mcm4-Mcm6-Mcm7 complex, a useful model system because this complex has helicase activity in vitro. We separately purified each of three Mcm subunits until they were each nuclease-free, and we then examined the biochemical properties of different combinations of Mcm subunits. We found that Mcm4 and Mcm7 form an active unwinding assembly. The addition of Mcm6 to Mcm4/Mcm7 results in the formation of an active Mcm4/Mcm6/Mcm7 helicase assembly. The Mcm4-Mcm7 complex forms a ringed-shaped hexamer that unwinds DNA with 3' to 5' polarity by a steric exclusion mechanism, similar to Mcm4/Mcm6/Mcm7. The Mcm4-Mcm7 complex has a high level of ATPase activity that is further stimulated by DNA. The ability of different Mcm mixtures to form rings or exhibit DNA stimulation of ATPase activity correlates with the ability of these complexes to unwind DNA. The Mcm4/Mcm7 and Mcm4/Mcm6/Mcm7 assemblies can open to load onto circular DNA to initiate unwinding. We conclude that the Mcm subunits are surprisingly flexible and dynamic in their ability to interact with one another to form active unwinding complexes.

  16. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.; Bounds, J.A.; Kimpland, R.H.; Damjanovich, R.P.; Jaegers, P.J.

    1997-08-01

    Experiments were performed to measure a variety of parameters for SHEBA: behavior of the facility during transient and steady-state operation; characteristics of the SHEBA fuel; delayed-critical solution height vs solution temperature; initial reactor period and reactivity vs solution height; calibration of power level vs reactor power instrumentation readings; flux profile in SHEBA; radiation levels and neutron spectra outside the assembly for code verification and criticality alarm and dosimetry purposes; and effect on reactivity of voids in the fuel.

  17. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  18. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells.

    PubMed

    Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E

    2017-01-03

    Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm(2)) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.

  19. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOEpatents

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  20. Giant capsids from lattice self-assembly of cyclodextrin complexes

    NASA Astrophysics Data System (ADS)

    Yang, Shenyu; Yan, Yun; Huang, Jianbin; Petukhov, Andrei V.; Kroon-Batenburg, Loes M. J.; Drechsler, Markus; Zhou, Chengcheng; Tu, Mei; Granick, Steve; Jiang, Lingxiang

    2017-06-01

    Proteins can readily assemble into rigid, crystalline and functional structures such as viral capsids and bacterial compartments. Despite ongoing advances, it is still a fundamental challenge to design and synthesize protein-mimetic molecules to form crystalline structures. Here we report the lattice self-assembly of cyclodextrin complexes into a variety of capsid-like structures such as lamellae, helical tubes and hollow rhombic dodecahedra. The dodecahedral morphology has not hitherto been observed in self-assembly systems. The tubes can spontaneously encapsulate colloidal particles and liposomes. The dodecahedra and tubes are respectively comparable to and much larger than the largest known virus. In particular, the resemblance to protein assemblies is not limited to morphology but extends to structural rigidity and crystallinity--a well-defined, 2D rhombic lattice of molecular arrangement is strikingly universal for all the observed structures. We propose a simple design rule for the current lattice self-assembly, potentially opening doors for new protein-mimetic materials.

  1. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    DOEpatents

    Kelley; Dana A. , Farooque; Mohammad , Davis; Keith

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  2. Facile and green assembly of nanocomposite membranes for fuel cells.

    PubMed

    Quartarone, Eliana; Villa, Davide Carlo; Angioni, Simone; Mustarelli, Piercarlo

    2015-02-04

    We report on a facile spray deposition method, which allows obtaining nanocomposite membranes for high-temperature polymer fuel cells characterized by high homogeneity and excellent proton conductivity. The proposed method is also green, as it requires much smaller amounts of solvents with respect to standard casting.

  3. Feasibility study on the verification of fresh fuel assemblies in shipping containers

    SciTech Connect

    Swinth, K.L.; Tanner, J.E.

    1990-09-01

    The purpose of this study was to examine the feasibility of using various nondestructive measurement techniques to determine the presence of fuel assemblies inside shipping containers and to examine the feasibility of measuring the fissile content of the containers. Passive and active techniques based on both gamma and neutron assay were examined. In addition, some experiments and calculations were performed to evaluate neutron techniques. Passive counting of the 186 keV gamma from {sup 235}U is recommended for use as an attributes measurement technique. Experiments and studies indicated that a bismuth germanate (BGO) scintillator is the preferred detector. A properly designed system based on this detector will provide a compact detector that can selectively verify fuel assemblies within a shipping container while the container is in a stack of similarly loaded containers. Missing fuel assemblies will be readily detected, but gamma counting of assemblies cannot detect changes in the fissile content of the inner rods in an assembly. If a variables technique is required, it is recommended that more extensive calculations be performed and removal of the outer shipping container be considered. Marking (sealing) of the assemblies with a uniquely identifiable transponder was also considered. This would require the development of procedures that would assure proper application and removal of the seal. When change to a metal outer container occurs, the technique will no longer be useful unless a radiolucent window is included in the container. 20 refs., 7 figs., 2 tabs.

  4. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    SciTech Connect

    Ham, Y.S.; Kerr, P.; Sitaraman, S.; Swan, R.; Rossa, R.; Liljenfeldt, H.

    2015-07-01

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)

  5. Polymer Chromophore-Catalyst Assembly for Solar Fuel Generation.

    PubMed

    Jiang, Junlin; Sherman, Benjamin D; Zhao, Yan; He, Ru; Ghiviriga, Ion; Alibabaei, Leila; Meyer, Thomas J; Leem, Gyu; Schanze, Kirk S

    2017-06-14

    A polystyrene-based chromophore-catalyst assembly (poly-2) has been synthesized and assembled at a mesoporous metal oxide photoanode. The assembly contains water oxidation catalyst centers based on [Ru(trpy) (phenq)](2+) (Ru-Cat) and [Ru(bpy)3](2+) derivatives (Ru-C) as chromophores (trpy= 2,2';6,2″- terpyridine, phenq = 2-(quinol-8'-yl)-1,10-phenanthroline and bpy = 2,2'-bipyridine). The photophysical and electrochemical properties of the polychromophore-oxidation catalyst assembly were investigated in solution and at the surface of mesoporous metal oxide films. The layer-by-layer (LbL) method was utilized to construct multilayer films with cationic poly-2 and anionic poly(acrylic acid) (PAA) for light-driven photochemical oxidations. Photocurrent measurements of (PAA/poly-2)10 LbL films on mesoporous TiO2 demonstrate light-driven oxidation of phenol and benzyl alcohol in aqueous solution. Interestingly, illumination of (PAA/poly-2)5 LbL films on a fluorine doped SnO2/TiO2 core/shell photoanode in aqueous solution gives rise to an initial photocurrent (∼18.5 μA·cm(-2)) that is in part ascribed to light driven water oxidation.

  6. Cyclic peptide-polymer complexes and their self-assembly.

    PubMed

    Bélanger, Dominique; Tong, Xia; Soumaré, Sadia; Dory, Yves L; Zhao, Yue

    2009-01-01

    The efficient synthesis of novel chiral cyclic peptides cyclo[NHCHX-CH=CHCH(2)CO(NHCH(2)CH=CHCH(2)CO)(2)] designed to develop hydrogen-bonding interactions with suitable polymers is described. Complexation of a carboxylic acid derivatized cyclic peptide 2 (X = CH(2)OCOCH(2)CH(2)CO(2)H) capable of self-assembling as "endless" tubes, with poly(vinyl alcohol) (PVA) led to a vast weak-interaction network, in which the cyclopeptide developed extensive hydrogen-bonding interactions with the hydroxyl groups of PVA through not only the carboxylic acid, but also its ester carbonyl and amide groups. In aqueous solution, the peptide/PVA complexes self-assemble into long-grain ricelike aggregates compatible with the stacking of cyclic peptides through intercycle hydrogen bonds. Upon casting on silicon wafer, the anisotropic aggregates can coalesce to form filaments tens of micrometers long. The study demonstrates that complexing functionalized cyclic peptides with polymers through hydrogen bonding is a useful approach for using polymers to mediate the self-assembly and self-organization of cyclic peptides.

  7. Assembly of RNA polymerase II preinitiation complexes before assembly of nucleosomes allows efficient initiation of transcription on nucleosomal templates

    SciTech Connect

    Knezetic, J.A.; Jacob, G.A.; Luse, D.S.

    1988-08-01

    The authors have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, they demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that the observations are not the result of slow displacemnt of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.

  8. Automated closure system for nuclear reactor fuel assemblies

    SciTech Connect

    Christiansen, D. W.; Brown, W. F.

    1985-09-17

    A welder for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  9. Automated closure system for nuclear reactor fuel assemblies

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1985-01-01

    A welder for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  10. Monte Carlo characterization of PWR spent fuel assemblies to determine the detectability of pin diversion

    NASA Astrophysics Data System (ADS)

    Burdo, James S.

    This research is based on the concept that the diversion of nuclear fuel pins from Light Water Reactor (LWR) spent fuel assemblies is feasible by a careful comparison of spontaneous fission neutron and gamma levels in the guide tube locations of the fuel assemblies. The goal is to be able to determine whether some of the assembly fuel pins are either missing or have been replaced with dummy or fresh fuel pins. It is known that for typical commercial power spent fuel assemblies, the dominant spontaneous neutron emissions come from Cm-242 and Cm-244. Because of the shorter half-life of Cm-242 (0.45 yr) relative to that of Cm-244 (18.1 yr), Cm-244 is practically the only neutron source contributing to the neutron source term after the spent fuel assemblies are more than two years old. Initially, this research focused upon developing MCNP5 models of PWR fuel assemblies, modeling their depletion using the MONTEBURNS code, and by carrying out a preliminary depletion of a ¼ model 17x17 assembly from the TAKAHAMA-3 PWR. Later, the depletion and more accurate isotopic distribution in the pins at discharge was modeled using the TRITON depletion module of the SCALE computer code. Benchmarking comparisons were performed with the MONTEBURNS and TRITON results. Subsequently, the neutron flux in each of the guide tubes of the TAKAHAMA-3 PWR assembly at two years after discharge as calculated by the MCNP5 computer code was determined for various scenarios. Cases were considered for all spent fuel pins present and for replacement of a single pin at a position near the center of the assembly (10,9) and at the corner (17,1). Some scenarios were duplicated with a gamma flux calculation for high energies associated with Cm-244. For each case, the difference between the flux (neutron or gamma) for all spent fuel pins and with a pin removed or replaced is calculated for each guide tube. Different detection criteria were established. The first was whether the relative error of the

  11. An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors

    SciTech Connect

    Menlove, Howard O; Lee, Sang - Yoon

    2009-01-01

    This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

  12. Fuel nozzle assembly for use in turbine engines and methods of assembling same

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-02-03

    A fuel nozzle for use with a turbine engine is described herein. The fuel nozzle includes a housing that is coupled to a combustor liner defining a combustion chamber. The housing includes an endwall that at least partially defines the combustion chamber. A plurality of mixing tubes extends through the housing for channeling fuel to the combustion chamber. Each mixing tube of the plurality of mixing tubes includes an inner surface that extends between an inlet portion and an outlet portion. The outlet portion is oriented adjacent the housing endwall. At least one of the plurality of mixing tubes includes a plurality of projections that extend outwardly from the outlet portion. Adjacent projections are spaced a circumferential distance apart such that a groove is defined between each pair of circumferentially-apart projections to facilitate enhanced mixing of fuel in the combustion chamber.

  13. The structure of the β-barrel assembly machinery complex

    SciTech Connect

    Bakelar, Jeremy; Buchanan, Susan K.; Noinaj, Nicholas

    2016-01-08

    β-Barrel outer membrane proteins (OMPs) are found in the outer membranes of Gram-negative bacteria and are essential for nutrient import, signaling, and adhesion. A 200-kilodalton five-component complex called the β-barrel assembly machinery (BAM) complex has been implicated in the biogenesis of OMPs. In this paper, we report the structure of the BAM complex from Escherichia coli, revealing that binding of BamCDE modulates the conformation of BamA, the central component, which may serve to regulate the BAM complex. The periplasmic domain of BamA was in a closed state that prevents access to the barrel lumen, which indicates substrate OMPs may not be threaded through the barrel during biogenesis. Finally and further, conformational shifts in the barrel domain lead to opening of the exit pore and rearrangement at the lateral gate.

  14. The structure of the β-barrel assembly machinery complex

    DOE PAGES

    Bakelar, Jeremy; Buchanan, Susan K.; Noinaj, Nicholas

    2016-01-08

    β-Barrel outer membrane proteins (OMPs) are found in the outer membranes of Gram-negative bacteria and are essential for nutrient import, signaling, and adhesion. A 200-kilodalton five-component complex called the β-barrel assembly machinery (BAM) complex has been implicated in the biogenesis of OMPs. In this paper, we report the structure of the BAM complex from Escherichia coli, revealing that binding of BamCDE modulates the conformation of BamA, the central component, which may serve to regulate the BAM complex. The periplasmic domain of BamA was in a closed state that prevents access to the barrel lumen, which indicates substrate OMPs may notmore » be threaded through the barrel during biogenesis. Finally and further, conformational shifts in the barrel domain lead to opening of the exit pore and rearrangement at the lateral gate.« less

  15. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  16. PBF Reactor Building (PER620). Detail of fuel test assembly in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of fuel test assembly in preparation for test. When complete, it will fit into in-pile tube. The maximum outside diameter of which must be about 8.25 inches. Date: 1982. INEEL negative no. 82-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. Measuring the Multiplication of Spent Fuel Assemblies – It’s easier than you think!

    SciTech Connect

    Tobin, Stephen Joseph

    2016-11-09

    This is a set of eight slides which advertise how easy it can be to measure the multiplication of a spent fuel assembly. A robust (fission chambers), rapid (under 15 minutes), direct (multiplication is measured, not photons from fission fragments) measurement of multiplication is possible.

  18. A monolithic silicon-based membrane-electrode assembly for micro fuel cells

    NASA Astrophysics Data System (ADS)

    Yuzova, V. A.; Merkushev, F. F.; Semenova, O. V.

    2017-08-01

    We report the basic possibility of creating a micro fuel cell (MFC) with a monolithic silicon-based membrane-electrode assembly (MEA), which employs a porous three-layer framework structure manufactured by two-sided anodic etching of a 500-μm-thick silicon wafer. A technology of MEAs for MFCs is described.

  19. RELIABILITY of FUEL ASSEMBLY EFFLUENT TEMPERATURES UNDER L0CA/LOPA CONDITIONS

    SciTech Connect

    Sachs, A.D.

    1999-06-21

    The purpose of this study was to ascertain whether or not the K-Reactor safety computers could calculate primarily false positive, but also false negative, and ''on-scale'' misleading fuel assembly average effluent temperatures (AETs) due to relatively large temperature changes in or flooding of the -36 foot elevation isothermal box during a LOCA/LOPA.

  20. Evaluation of FSV-1 cask for the transport of LWR irradiated fuel assemblies

    SciTech Connect

    Not Available

    1980-05-01

    The Model FSV-1 spent fuel shipping cask was designed by General Atomic Company (GA) to service the Fort St. Vrain (FSV) nuclear generating station, a High Temperature Gas Reactor (HTGR) owned and operated by Public Service Company of Colorado (PSC). This report presents an evaluation of the suitability of the FSV-1 cask for the transport of irradiated Light Water Reactor (LWR) fuel assemblies from both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The FSV-1 cask evaluation parameters covered a wide spectrum of LWR fuel assemblies, based on burnup in Megawatt Days/Metric Ton of Heavy Metal (MWD/MTHM) and years of decay since irradiation. The criteria for suitability included allowable radiation dose rates, cask surface and interior temperatures and the Gross Vehicle Weight (GVW) of the complete shipping system.

  1. Effect of assembly error of bipolar plate on the contact pressure distribution and stress failure of membrane electrode assembly in proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Dong'an; Peng, Linfa; Lai, Xinmin

    In practice, the assembly error of the bipolar plate (BPP) in a PEM fuel cell stack is unavoidable based on the current assembly process. However its effect on the performance of the PEM fuel cell stack is not reported yet. In this study, a methodology based on FEA model, "least squares-support vector machine (LS-SVM)" simulation and statistical analysis is developed to investigate the effect of the assembly error of the BPP on the pressure distribution and stress failure of membrane electrode assembly (MEA). At first, a parameterized FEA model of a metallic BPP/MEA assembly is established. Then, the LS-SVM simulation process is conducted based on the FEA model, and datasets for the pressure distribution and Von Mises stress of MEA are obtained, respectively for each assembly error. At last, the effect of the assembly error is obtained by applying the statistical analysis to the LS-SVM results. A regression equation between the stress failure and the assembly error is also built, and the allowed maximum assembly error is calculated based on the equation. The methodology in this study is beneficial to understand the mechanism of the assembly error and can be applied to guide the assembly process for the PEM fuel cell stack.

  2. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, David J.; Feld, Sam H.

    1986-01-01

    A welding fixture for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  3. Welding fixture for nuclear fuel pin cladding assemblies

    DOEpatents

    Oakley, D.J.; Feld, S.H.

    1984-02-22

    A welding fixture is described for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

  4. Self-assembly in sugar-oil complex glasses.

    PubMed

    Dave, Hiteshkumar; Gao, Feng; Lee, Jing-Huei; Liberatore, Matthew; Ho, Chia-Chi; Co, Carlos C

    2007-04-01

    In aqueous systems, the hydrophobic effect drives the self-assembly of amphiphiles into a broad range of micellar, rod-like, bicontinuous and liquid-crystalline complex fluids. Many of these are relevant to biological matter or technological applications. However, amphiphilic self-assembly is not limited to aqueous systems. Replacement of water with supercritical carbon dioxide, for example, results in complex fluids that combine the properties of gases and liquids. Along this vein, we explore the self-assembly of surfactants in anhydrous sugars. Our study reveals that anhydrous powders of sugars and surfactants suspended in oil spontaneously form molten glasses with nanometre-size domains of sugar and liquid oil without mixing. The low cost, water solubility, low toxicity and stabilizing properties of glassy sugars make them ideal water replacements for many pharmaceutical, food and materials synthesis applications. The optical clarity and solid appearance of these glasses at room temperature belie their inclusion of more than 50% (vol.) oil, which confers liquid-like diffusivity. The unique combination of solid- and liquid-like properties may lead to applications in sensors and optical devices.

  5. Self-assembly in sugar-oil complex glasses

    NASA Astrophysics Data System (ADS)

    Dave, Hiteshkumar; Gao, Feng; Lee, Jing-Huei; Liberatore, Matthew; Ho, Chia-Chi; Co, Carlos C.

    2007-04-01

    In aqueous systems, the hydrophobic effect drives the self-assembly of amphiphiles into a broad range of micellar, rod-like, bicontinuous and liquid-crystalline complex fluids. Many of these are relevant to biological matter or technological applications. However, amphiphilic self-assembly is not limited to aqueous systems. Replacement of water with supercritical carbon dioxide, for example, results in complex fluids that combine the properties of gases and liquids. Along this vein, we explore the self-assembly of surfactants in anhydrous sugars. Our study reveals that anhydrous powders of sugars and surfactants suspended in oil spontaneously form molten glasses with nanometre-size domains of sugar and liquid oil without mixing. The low cost, water solubility, low toxicity and stabilizing properties of glassy sugars make them ideal water replacements for many pharmaceutical, food and materials synthesis applications. The optical clarity and solid appearance of these glasses at room temperature belie their inclusion of more than 50% (vol.) oil, which confers liquid-like diffusivity. The unique combination of solid- and liquid-like properties may lead to applications in sensors and optical devices.

  6. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    SciTech Connect

    McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard; Grey, Carissa; Engelhardt, Charles; Saltzstein, Sylvia J.; Sorenson, Ken B.

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  7. Microstructural Analysis of an HT9 Fuel Assembly Duct Irradiated in FFTF to 155 Dpa at 443ºC

    SciTech Connect

    Bulent H. Sencer; James I Cole; John R. Kennedy; Stuart A. Maloy; Frank A. Garner

    2009-09-01

    The majority of published data on the irradiation response of ferritic/martensitic steels has been derived from simple free-standing specimens irradiated in experimental assemblies under well-defined and near-constant conditions, while components of long-lived fuel assemblies are more complex in shape and will experience progressive changes in environmental conditions. To insure that the resistance of HT9 to void swelling is maintained under more realistic operating conditions, this study addresses the radiation-induced microstructure of an HT9 ferritic/martensitic (F/M) steel hexagon duct that was examined following a six-year irradiation campaign of a fuel assembly in the Fast Flux Test Reactor Facility (FFTF). The calculated irradiation exposure and operating temperature of the duct location examined were ~155 dpa at ~443ºC. It was found that dislocation networks were contained predominantly a/2<111> Burgers vector. Surprisingly, for such a large irradiation dose, type a<100> interstitial loops were observed at relatively high density. Additionally, a high density of precipitation was observed. These two microstructural characteristics may have contributed to the rather low swelling level of 0.3%. It appears that the inherent swelling resistance of this alloy observed in specimens irradiated under non-varying experimental conditions is not significantly degraded compared to time-dependent variations in neutron flux-spectra, temperature and stress state that are characteristic of actual reactor components.

  8. Freeze-thaw cycles as drivers of complex ribozyme assembly

    PubMed Central

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-01-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools. PMID:25991529

  9. Freeze-thaw cycles as drivers of complex ribozyme assembly

    NASA Astrophysics Data System (ADS)

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-06-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles, even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools.

  10. Assembly of the mariner Mos1 Synaptic Complex

    PubMed Central

    Augé-Gouillou, Corinne; Brillet, Benjamin; Hamelin, Marie-Hélène; Bigot, Yves

    2005-01-01

    The mobility of transposable elements via a cut-and-paste mechanism depends on the elaboration of a nucleoprotein complex known as the synaptic complex. We show here that the Mos1 synaptic complex consists of the two inverted terminal repeats of the element brought together by a transposase tetramer and is designated paired-end complex 2 (PEC2). The assembly of PEC2 requires the formation of a simpler complex, containing one terminal repeat and two transposase molecules and designated single-end complex 2 (SEC2). In light of the formation of SEC2 and PEC2, we demonstrate the presence of two binding sites for the transposase within a single terminal repeat. We have found that the sequence of the Mos1 inverted terminal repeats contains overlapping palindromic and mirror motifs, which could account for the binding of two transposase molecules “side by side” on the same inverted terminal repeat. We provide data indicating that the Mos1 transposase dimer is formed within a single terminal repeat through a cooperative pathway. Finally, the concept of a tetrameric synaptic complex may simply account for the inability of a single mariner transposase molecule to interact at the same time with two kinds of DNA: the inverted repeat and the target DNA. PMID:15767689

  11. The PINCH-ILK-parvin complexes: assembly, functions and regulation.

    PubMed

    Wu, Chuanyue

    2004-07-05

    Cell-extracellular matrix (ECM) adhesion is mediated by transmembrane cell adhesion receptors (e.g., integrins) and receptor proximal cytoplasmic proteins. Over the past several years, studies using biochemical, structural, cell biological and genetic approaches have provided important evidence suggesting crucial roles of integrin-linked kinase (ILK), PINCH and CH-ILKBP/actopaxin/affixin/parvin (abbreviated as parvin herein) in ECM control of cell behavior. One general theme emerging from these studies is that the formation of ternary protein complexes consisting of ILK, PINCH and parvin is pivotal to the functions of PINCH, ILK and parvin proteins. In addition, recent studies have begun to uncover the molecular mechanisms underlying the assembly, functions and regulation of the PINCH-ILK-parvin (PIP) complexes. The PIP complexes provide crucial physical linkages between integrins and the actin cytoskeleton and transduce diverse signals from ECM to intracellular effectors. Among the challenges of future studies are to define the functions of different PIP complexes in various cellular processes, identify additional partners of the PIP complexes that regulate and/or mediate the functions of the PIP complexes, and determine the roles of the PIP complexes in the pathogenesis of human diseases involving abnormal cell-ECM adhesion and signaling.

  12. Acceptance of non-fuel assembly hardware by the Federal Waste Management System

    SciTech Connect

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E. R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high-priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high-level waste will be accepted in the following categories: failed fuel; consolidated fuel and associated structural parts; non-fuel-assembly hardware; fuel in metal storage casks; fuel in multi-element sealed canisters; inspection and testing requirements for wastes; canister criteria; spent fuel selection for delivery; and defense and commercial high-level waste packages. 14 refs., 12 figs., 43 tabs.

  13. CFD prediction of flow and phase distribution in fuel assemblies with spacers

    SciTech Connect

    Anglart, H.; Nylund, O.; Kurul, N.

    1995-09-01

    This paper is concerned with the modeling and computation of multi-dimensional two-phase flows in BWR fuel assemblies. The modeling principles are presented based on using a two-fluid model in which lateral interfacial effects are accounted for. This model has been used to evaluate the velocity fields of both vapor and liquid phases, as well as phase distribution, between fuel elements in geometries similar to BWR fuel bundles. Furthermore, this model has been used to predict, in a detailed mechanistic manner, the effects of spacers on flow and phase distribution between, and pressure drop along, fuel elements. The related numerical simulations have been performed using a CFD computer code, CFDS-FLOW3D.

  14. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    NASA Astrophysics Data System (ADS)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio

    2015-07-01

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  15. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    SciTech Connect

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio; Davila, Jesus

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  16. Differential die-away technique for determination of the fissile contents in spent fuel assembly

    SciTech Connect

    Lee, Tachoon; Menlove, Howard O; Swinhoe, Nartyn T; Tobin, Stephen J

    2010-01-01

    Monte Carlo simulations were performed for the differential die-away (DDA) technique to quantify its capability to measure the fissile contents in spent fuel assemblies of 64 different cases in terms of initial enrichment, burnup, and cooling time. The DDA count rate varies according to the contents of fissile isotopes such as {sup 235}U, {sup 239}Pu, and {sup 241}Pu contained in the spent fuel assembly. The effective {sup 239}Pu concept was introduced to quantify the total fissile mass of spent fuel by weighting the relative signal contributions of {sup 235}U and {sup 241}Pu compared to that of {sup 239}Pu. The Monte Carlo simulation results show that the count rate of the DDA instrument for a spent fuel assembly of 4% initial enrichment, 45 GWD/MTU burnup, and 5 year cooling time is {approx} 9.8 x 10{sup 4} counts per second (c/s) with the 100-Hz repeated interrogation pattern of 0 to 10 {micro}s interrogation, 0.2 ms to 1 ms counting time, and 1 x 10{sup 9} n/s neutron source. The {sup 244}Cm neutron background count rate for this counting time scheme is {approx} 1 x 10{sup 4} c/s, and thus the signal to background ratio is {approx}10.

  17. Predicting fissile content of spent nuclear fuel assemblies with the passive neutron Albedo reactivity technique and Monte Carlo code emulation

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-10-13

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed.

  18. Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications

    SciTech Connect

    Ashford, Dennis L.; Gish, Melissa K.; Vannucci, Aaron K.; Brennaman, M. Kyle; Templeton, Joseph L.; Papanikolas, John M.; Meyer, Thomas J.

    2015-12-09

    As the world’s population increases, the U.S. Department of Energy has estimated that energy consumption will increase with it, increasing from 5.7 × 1020 J in 2012 to 8.1 × 1020 J in 2040. This projection takes into account population growth, average gross domestic product per capita, and globally averaged energy intensity.(1) At the same time, there is an increased understanding of the importance of integrating good environmental practices with stimulating economic growth and leadership provided by international organizations, such as the Organization for Economic Cooperation and Development. Most of the increases in energy consumption will come from emerging economies in Asia, Africa, and South America where goals, priorities, and challenges are diverse. To meet these demands there is a need to develop alternate energy sources. Although renewable and nuclear energy are growing by 2.5% a year, fossil fuels are still projected to make up at least 80% of the global energy supply in 2040.

  19. Mortality at an automotive stamping and assembly complex.

    PubMed

    Park, R; Krebs, J; Mirer, F

    1994-10-01

    Mortality among workers with 2 or more years employment at an automotive stamping and assembly complex was analyzed using standardized mortality ratio (SMR), proportional mortality ratio (PMR), and mortality odds ratio (MOR) methods. The stamping plant all-cause SMR was considerably less than expected (for white men, SMR = 0.65, 95% confidence interval [CI] = 0.54, 0.79; for black men, SMR = 0.73, 95% CI = 0.45, 1.13), indicating a strong "healthy worker effect." However, six stomach cancer deaths produced an SMR of 4.4 (95% CI = 1.62, 9.6) and a PMR of 6.8 (95% CI = 2.5, 15). Based on small numbers of cases, stomach cancer risk increased with duration in stamping and tool and die departments where exposures included drawing compound and other metalworking fluids. Stamping plant lung cancer mortality was elevated among production welders (MOR = 2.7, 95% CI = 1.2, 6.3), and increased with duration. Welding was performed on sheet metal sometimes coated with drawing compound, primer, or epoxy resin adhesive. As was observed for the stamping plant, the all-cause SMR for the two assembly plants was unusually low (for white men, SMR = 0.64, 95% CI = 0.56, 0.73; for black men, SMR = 0.57, 95% CI = 0.43, 0.75). The lung cancer SMR was not elevated but the MOR was (MOR = 1.58, 95% CI = 1.1, 2.4) and increased with assembly plant duration (MOR = 1.78, 95% CI = 1.02, 3.1, at mean duration of cases). In the assembly plants, paint oven stack emissions had been reintroduced into the plant by the ventilation system.

  20. Spent fuel dry storage technology development: thermal evaluation of isolated drywells containing spent fuel (1 kW PWR spent fuel assembly)

    SciTech Connect

    Unterzuber, R; Wright, J B

    1980-09-01

    A spent fuel Isolated Drywell Test was conducted at the Engine-Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site. Two PWR spent fuel assemblies having a decay heat level of approximately 1.1 kW were encapsulated inside the E-MAD Hot Bay and placed in instrumented near-surface drywell storage cells. Temperatures from the two isolated drywells and the adjacent soil have been recorded throughout the 19 month Isolated Drywell Test. Canister and drywell liner temperatures reached their peak values (254{sup 0}F and 203{sup 0}F, respectively) during August 1979. Thereafter, all temperatures decreased and showed a cycling pattern which responded to seasonal atmospheric temperature changes. A computer model was utilized to predict the thermal response of the drywell. Computer predictions of the drywell temperatures and the temperatures of the surrounding soil are presented and show good agreement with the test data.

  1. Computed isotopic inventory and dose assessment for SRS fuel and target assemblies

    SciTech Connect

    Chandler, M.C.; Ketusky, E.T.; Thoman, D.C.

    1995-06-19

    Past studies have identified and evaluated important radionuclide contributors to dose from reprocessed spent fuel sent to waste for Mark 16B and 22 fuel assemblies and for Mark 31 A and 31B target assemblies. Fission-product distributions after a 5- and 15-year decay time were calculated for a ``representative`` set of irradiation conditions (i.e., reactor power, irradiation time, and exposure) for each type of assembly. The numerical calculations were performed using the SHIELD/GLASS system of codes. The sludge and supernate source terms for dose were studied separately with the significant radionuclide contributors for each identified and evaluated. Dose analysis considered both inhalation and ingestion pathways: The inhalation pathway was analyzed for both evaporative and volatile releases. Analysis of evaporative releases utilized release fractions for the individual radionuclides as defined in the ICRP-30 by DOE guidance. A release fraction of unity was assumed for each radionuclide under volatile-type releases, which would encompass internally initiated events (e.g., fires, explosions), process-initiated events, and externally initiated events. Radionuclides which contributed at least 1% to the overall dose were designated as significant contributors. The present analysis extends and complements the past analyses through considering a broader spectrum of fuel types and a wider range of irradiation conditions. The results provide for a more thorough understanding of the influences of fuel composition and irradiation parameters on fission product distributions (at 2 years or more). Additionally, the present work allows for a more comprehensive evaluation of radionuclide contributions to dose and an estimation of the variability in the radionuclide composition of the dose source term that results from the spent fuel sent to waste encompassing a broad spectrum of fuel compositions and irradiation conditions.

  2. Solution High-Energy Burst Assembly (SHEBA) results from subprompt critical experiments with uranyl fluoride fuel

    SciTech Connect

    Cappiello, C.C.; Butterfield, K.B.; Sanchez, R.G.

    1997-10-01

    The Solution High-Energy Burst Assembly (SHEBA) was originally constructed during 1980 and was designed to be a clean free-field geometry, right-circular, cylindrically symmetric critical assembly employing U(5%)O{sub 2}F{sub 2} solution as fuel. A second version of SHEBA, employing the same fuel but equipped with a fuel pump and shielding pit, was commissioned in 1993. This report includes data and operating experience for the 1993 SHEBA only. Solution-fueled benchmark work focused on the development of experimental measurements of the characterization of SHEBA; a summary of the results are given. A description of the system and the experimental results are given in some detail in the report. Experiments were designed to: (1) study the behavior of nuclear excursions in a low-enrichment solution, (2) evaluate accidental criticality alarm detectors for fuel-processing facilities, (3) provide radiation spectra and dose measurements to benchmark radiation transport calculations on a low-enrichment solution system similar to centrifuge enrichment plants, and (4) provide radiation fields to calibrate personnel dosimetry. 15 refs., 37 figs., 10 tabs.

  3. Computer simulation of supramolecular assembly by metal-ligand complexation

    NASA Astrophysics Data System (ADS)

    Wang, Shihu; Chen, Chun-Chung; Dormidontova, Elena E.

    2006-03-01

    Monte Carlo simulations were employed to study the supramolecular assembly of oligomers end-functionalized by ligands capable of complexation with metal ions. The properties of these metallo-supramolecular polymers strongly depend on the oligomer concentration, strength of complexation, and metal-to- ligand ratio. At high oligomer concentration the average molecular weight exhibits a maximum near the stoichiometric composition and decreases for higher or lower metal content. On the other hand, at low oligomer concentration the molecular weight shows a local minimum around the stoichiometric composition. This unusual behavior is attributed to the larger population of small rings around the stoichiometric composition, which make up a significant fraction of the overall molecular weight at low oligomer concentration. This effect is especially pronounced at low temperature, where the fraction of rings is higher. The fraction of chains and rings for different concentrations, temperatures and oligomer lengths were calculated and compared with experimental data.

  4. Assembly and localization of Toll-like receptor signalling complexes.

    PubMed

    Gay, Nicholas J; Symmons, Martyn F; Gangloff, Monique; Bryant, Clare E

    2014-08-01

    Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease.

  5. Using lanthanoid complexes to phase large macromolecular assemblies.

    PubMed

    Talon, Romain; Kahn, Richard; Durá, M Asunción; Maury, Olivier; Vellieux, Frédéric M D; Franzetti, Bruno; Girard, Eric

    2011-01-01

    Lanthanoid ions exhibit extremely large anomalous X-ray scattering at their L(III) absorption edge. They are thus well suited for anomalous diffraction experiments. A novel class of lanthanoid complexes has been developed that combines the physical properties of lanthanoid atoms with functional chemical groups that allow non-covalent binding to proteins. Two structures of large multimeric proteins have already been determined by using such complexes. Here the use of the luminescent europium tris-dipicolinate complex [Eu(DPA)(3)](3-) to solve the low-resolution structure of a 444 kDa homododecameric aminopeptidase, called PhTET1-12s from the archaea Pyrococcus horikoshii, is reported. Surprisingly, considering the low resolution of the data, the experimental electron density map is very well defined. Experimental phases obtained by using the lanthanoid complex lead to maps displaying particular structural features usually observed in higher-resolution maps. Such complexes open a new way for solving the structure of large molecular assemblies, even with low-resolution data.

  6. Nucleotide-dependent assembly of the peroxisomal receptor export complex

    PubMed Central

    Grimm, Immanuel; Saffian, Delia; Girzalsky, Wolfgang; Erdmann, Ralf

    2016-01-01

    Pex1p and Pex6p are two AAA-ATPases required for biogenesis of peroxisomes. Both proteins form a hetero-hexameric complex in an ATP-dependent manner, which has a dual localization in the cytosol and at the peroxisomal membrane. At the peroxisomal membrane, the complex is responsible for the release of the import receptor Pex5p at the end of the matrix protein import cycle. In this study, we analyzed the recruitment of the AAA-complex to its anchor protein Pex15p at the peroxisomal membrane. We show that the AAA-complex is properly assembled even under ADP-conditions and is able to bind efficiently to Pex15p in vivo. We reconstituted binding of the Pex1/6p-complex to Pex15p in vitro and show that Pex6p mediates binding to the cytosolic part of Pex15p via a direct interaction. Analysis of the isolated complex revealed a stoichiometry of Pex1p/Pex6p/Pex15p of 3:3:3, indicating that each Pex6p molecule of the AAA-complex binds Pex15p. Binding of the AAA-complex to Pex15p in particular and to the import machinery in general is stabilized when ATP is bound to the second AAA-domain of Pex6p and its hydrolysis is prevented. The data indicate that receptor release in peroxisomal protein import is associated with a nucleotide-depending Pex1/6p-cycle of Pex15p-binding and release. PMID:26842748

  7. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, Charles W.

    1992-01-01

    A single canister process container for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining their integrity at temperature necessary to oxide the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container.

  8. Analysis of pulsed neutron measurements on the fuel pebble assembly during the approach to critical mass

    SciTech Connect

    Brodkin, E.; Lebedev, G.

    1995-12-31

    The two-dimensional cylindrical model of HTR-ASTRA fuel pebble bed assembly was used in the transport calculations of k{sub eff} and corresponding Rossi-{alpha} for interpretation of pulsed neutron measurements which have been carrying out during approach to critical mass. This analysis demonstrates possibility to evaluate k{sub eff} above 0.9 using {alpha}-prompt decay constant measured during core loading by fuel balls and to extrapolate these data for determination of critical mass similar to inverse counting technique.

  9. COBRA-SFS predictions of single assembly spent fuel heat transfer data

    SciTech Connect

    Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.; Rector, D.R.

    1986-04-01

    The study reported here is one of several efforts to evaluate and qualify the COBRA-SFS computer code for use in spent fuel storage system thermal analysis. The ability of COBRA-SFS to predict the thermal response of two single assembly spent fuel heat transfer tests was investigated through comparisons of predictions with experimental test data. From these comparisons, conclusions regarding the computational treatment of the physical phenomena occurring within a storage system can be made. This objective was successfully accomplished as reasonable agreement between predictions and data were obtained for the 21 individual test cases of the two experiments.

  10. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  11. Humanized docking system for assembly of targeting drug delivery complexes.

    PubMed

    Backer, Marina V; Gaynutdinov, Timur I; Gorshkova, Inna I; Crouch, Robert J; Hu, Tao; Aloise, Renee; Arab, Mohamed; Przekop, Kristen; Backer, Joseph M

    2003-05-20

    Targeted drug delivery requires 'loading' drugs onto targeting proteins. Traditional technologies for loading drugs rely on chemical conjugation of drugs or drug carriers to targeting proteins. An alternative approach might rely on assembly of targeting complexes using a docking system that includes two components: a 'docking' tag fused to a targeting protein, and a 'payload' module containing an adapter protein for non-covalent binding to the docking tag. We describe here a fully humanized adapter/docking tag system based on non-covalent interaction between two fragments of human pancreatic RNase I. A 15 amino acid long N-terminal fragment of RNase I designed to serve as a docking tag, was fused to the N-terminus of human vascular endothelial growth factor that served as a targeting protein. An 18-125 and an 18-127 amino acid long fragments of RNase I were engineered, expressed and refolded into active conformations to serve as adapter proteins. Interactions between the targeting and adapter proteins were characterized using enzymatic analysis and surface plasmon resonance. Targeting DNA delivery complexes were assembled, characterized by dynamic light scattering, and found to be very effective in receptor-mediated DNA delivery.

  12. Experience gained from carrying out ultrasonic cleaning of fuel assemblies and control and protection system assemblies in the Novovoronezh NPP unit 3

    NASA Astrophysics Data System (ADS)

    Gorburov, V. I.; Shvarov, V. A.; Vitkovskii, S. L.

    2014-02-01

    A growth of deposits on fuel assembly elements was revealed during operation of the Novovoronezh NPP Unit 3 starting from 1997. This growth caused progressive reduction of coolant flow rate through the reactor core and increase of pressure difference across the assemblies, which eventually led to the need to reduce the power unit output and then to shut down the power unit. In view of these circumstances, it was decided to develop an installation for ultrasonic cleaning of fuel assemblies. The following conclusions were drawn with regard of this installation after completion of all stages of its development, commissioning, and improvement: no detrimental effect of ultrasound on the integrity of fuel assemblies was revealed, whereas the cleaning effect on the fuel assemblies subjected to ultrasonic treatment and improvement of their thermal-hydraulic characteristics are obvious. With these measures implemented, it became possible to clean all fuel assemblies in the core in 2011, to achieve better thermal-hydraulic characteristics, and to avoid reduction of power output and off-scheduled outages of Unit 3.

  13. Influence of void fraction in the power distribution for a GE-12 fuel assembly

    NASA Astrophysics Data System (ADS)

    Castillo, S. J.; Vargas, G. A.; del Valle Gallegos, E.

    2017-01-01

    Analysis of the influence of void fraction distribution is very important to learn about the fission process and heat produced by the fuel assembly, here in this study several void fraction (VF) values along different burnup values have been considered in order to observe their influence in power distribution, uranium consumption, neutron flux andbehaviour for a GE-12 fuel assembly. For this study, burnups up to 60 MWd/kg and VF values up to 0.8 were considered setting the uranium enrichment at 3.5 weight percent at the start of every VF scenario, results show that higher void fractions reduce the thermal flux decreasing thermal fission and limiting heat production.

  14. Nuclear reactor fuel assembly duct-tube-to-inlet-nozzle attachment system

    DOEpatents

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the lower end 21 of a nuclear reactor fuel assembly duct tube to an upper end 11 of a nuclear reactor fuel assembly inlet nozzle. The duct tube's lower end 21 has sides terminating in locking tabs 22 which end in inwardly-extending flanges 23. The flanges 23 engage recesses 13 in the top section 12 of the inlet nozzle's upper end 11. A retaining collar 30 slides over the inlet nozzle's upper end 11 to restrain the flanges 23 in the recesses 13. A locking nut 40 has an inside threaded portion 41 which engages an outside threaded portion 15 of the inlet nozzle's upper end 11 to secure the retaining collar 30 against protrusions 24 on the duct tube's sides.

  15. Development of techniques for joining fuel rod simulators to test assemblies

    SciTech Connect

    Moorhead, A.J.; Reed, R.W.

    1980-01-01

    A unique tubular electrode carrier is described for gas tungsten-arc welding small-diameter nuclear fuel rod simulators to the tubesheet of a test assembly. Both the close-packed geometry of the array of simulators and the extension of coaxial electrical conductors from each simulator hindered access to the weld joint. Consequently, a conventional gas tungsten-arc torch could not be used. Two seven-rod assemblies that were mockups of the simulator-to-tubesheet joint area were welded and successfully tested. Modified versions of the electrode carrier for brazing electrical leads to the upper ends of the fuel pin simulators are also described. Satisfactory brazes have been made on both single-rod mockups and an array of 25 simulators by using the modified electrode carrier and a filler metal with a composition of 71.5 Ag-28 Cu-0.5 Ni.

  16. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    SciTech Connect

    Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A; Drypolcher, Anthony F; Hickey, Joseph

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is in support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the

  17. Automated assembling of single fuel cell units for use in a fuel cell stack

    NASA Astrophysics Data System (ADS)

    Jalba, C. K.; Muminovic, A.; Barz, C.; Nasui, V.

    2017-05-01

    The manufacturing of PEMFC stacks (POLYMER ELEKTROLYT MEMBRAN Fuel Cell) is nowadays still done by hand. Over hundreds of identical single components have to be placed accurate together for the construction of a fuel cell stack. Beside logistic problems, higher total costs and disadvantages in weight the high number of components produce a higher statistic interference because of faulty erection or material defects and summation of manufacturing tolerances. The saving of costs is about 20 - 25 %. Furthermore, the total weight of the fuel cells will be reduced because of a new sealing technology. Overall a one minute cycle time has to be aimed per cell at the manufacturing of these single components. The change of the existing sealing concept to a bonded sealing is one of the important requisites to get an automated manufacturing of single cell units. One of the important steps for an automated gluing process is the checking of the glue application by using of an image processing system. After bonding the single fuel cell the sealing and electrical function can be checked, so that only functional and high qualitative cells can get into further manufacturing processes.

  18. A comparison of spent fuel assembly control instruments: The Cadarache PYTHON and the Los Alamos Fork

    SciTech Connect

    Bignan, G.; Capsie, J.; Romeyer-Dherbey, J. . Direction des Reacteurs Nucleaires); Rinard, P. )

    1991-01-01

    Devices to monitor spent fuel assemblies while stored under water with nondestructive assay methods, have been developed in France and in the United States. Both devices are designed to verify operator's declared values of exposures and cooling-time but the applications and thus the designs of the systems differ. A study, whose results are presented in this paper, has been conducted to compare the features and the performances of the two instruments. 4 refs., 9 figs.

  19. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    SciTech Connect

    Spelt, P.F.

    1992-01-01

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs.

  20. Human factors and safety issues associated with actinide retrieval from spent light water reactor fuel assemblies

    SciTech Connect

    Spelt, P.F.

    1992-08-01

    A major problem in environmental restoration and waste management is the disposition of used fuel assemblies from the many light water reactors in the United States, which present a radiation hazard to those whose job is to dispose of them, with a similar threat to the general environment associated with long-term storage in fuel repositories around the country. Actinides resident in the fuel pins as a result of their use in reactor cores constitute a significant component of this hazard. Recently, the Department of Energy has initiated an Actinide Recycle Program to study the feasibility of using pyrochemical (molten salt) processes to recover actinides from the spent fuel assemblies of commercial reactors. This project concerns the application of robotics technology to the operation and maintenance functions of a plant whose objective is to recover actinides from spent fuel assemblies, and to dispose of the resulting hardware and chemical components from this process. Such a procedure involves a number of safety and human factors issues. The purpose of the project is to explore the use of robotics and artificial intelligence to facilitate accomplishment of the program goals while maintaining the safety of the humans doing the work and the integrity of the environment. This project will result in a graphic simulation on a Silicon Graphics workstation as a proof of principle demonstration of the feasibility of using robotics along with an intelligent operator interface. A major component of the operator-system interface is a hybrid artificial intelligence system developed at Oak Ridge National Laboratory, which combines artificial neural networks and an expert system into a hybrid, self-improving computer-based system interface. 10 refs.

  1. An integrated approach for determining plutonium mass in spent fuel assemblies with nondestructive assay

    SciTech Connect

    Swinhoe, Martyn T; Tobin, Stephen J; Fensin, Mike L; Menlove, Howard O

    2009-01-01

    be part of a system that cost-effectively meets the burnup credit needs of a repository. Behind each of these reasons is a regulatory structure with MC&A requirements. In the case of the IAEA, the accountable quantity is elemental plutonium. The material in spent fuel (fissile isotopes, fission products, etc.) emits signatures that provide information about the content and history of the fuel. A variety of nondestructive assay (NDA) techniques are available to quantify these signatures. The effort presented in this paper is investigation of the capabilities of 12 NDA techniques. For these 12, none is conceptually capable of independently determining the Pu content in a spent fuel assembly while at the same time being able to detect the diversion of a significant quantity of rods. For this reason the authors are investigating the capability of 12 NDA techniques with the end goal of integrating a few techniques together into a system that is capable of measuring Pu mass in an assembly. The work described here is the beginning of what is anticipated to be a five year effort: (1) two years of modeling to select the best technologies, (2) one year fabricating instruments and (3) two years measuring spent fuel. This paper describes the first two years of this work. In order to cost effectively and robustly model the performance of the 12 NDA techniques, an 'assembly library' was created. The library contains the following: (a) A diverse range of PWR spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future. (b) Diversion scenarios that capture a range of possible rod removal options. (c) The spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. It is our intention to make this library available to other researchers in the field for inter-comparison purposes. The performance of each instrument will be quantified for the full assembly

  2. A CFD M&S PROCESS FOR FAST REACTOR FUEL ASSEMBLIES

    SciTech Connect

    Kurt D. Hamman; Ray A. Berry

    2008-09-01

    A CFD modeling and simulation process for large-scale problems using an arbitrary fast reactor fuel assembly design was evaluated. Three dimensional flow distributions of sodium for several fast reactor fuel assembly pin spacing configurations were simulated on high performance computers using commercial CFD software. This research focused on 19-pin fuel assembly “benchmark” geometry, similar in design to the Advanced Burner Test Reactor, where each pin is separated by helical wire-wrap spacers. Several two-equation turbulence models including the k-e and SST (Menter) k-? were evaluated. Considerable effort was taken to resolve the momentum boundary layer, so as to eliminate the need for wall functions and reduce computational uncertainty. High performance computers were required to generate the hybrid meshes needed to predict secondary flows created by the wire-wrap spacers; computational meshes ranging from 65 to 85 million elements were common. A general validation methodology was followed, including mesh refinement and comparison of numerical results with empirical correlations. Predictions for velocity, temperature, and pressure distribution are shown. The uncertainty of numerical models, importance of high fidelity experimental data, and the challenges associated with simulating and validating large production-type problems are presented.

  3. Total evaluation of in bundle void fraction measurement test of PWR fuel assembly

    SciTech Connect

    Hori, Keiichi; Miyazaki, Keiji; Akiyama, Yoshiei; Nishioka, Hiromasa; Takeda, Naoki

    1996-08-01

    Nuclear Power Engineering Corporation is performing the various proof or verification tests on safety and reliability of nuclear power plants under the sponsorship of the Ministry of International Trade and Industry. As one program of these Japanese national projects, an in bundle void fraction measurement test of a pressurized water reactor (PWR) fuel assembly was started in 1987 and finished at the end of 1994. The experiments were performed using the 5 x 5 square array rod bundle test sections. The rod bundle test section simulates the partial section and full length of a 17 x 17 type Japanese PWR fuel assembly. A distribution of subchannel averaged void fraction in a rod bundle test section was measured by the gamma-ray attenuation method using the stationary multi beam systems. The additional single channel test was performed to obtain the required information for the calibration of the rod bundle test data and the assessment of the void prediction method. Three test rod bundles were prepared to analyze an axial power distribution effect, an unheated rod effect, and a grid spacer effect. And, the obtained data were used for the assessment of the void prediction method relevant to the subchannel averaged void fraction of PWR fuel assemblies. This paper describes the outline of the experiments, the evaluation of the experimental data and the assessment of void prediction method.

  4. Iterative ct reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    NASA Astrophysics Data System (ADS)

    Abir, Muhammad Imran Khan

    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off?normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections.

  5. Determining fissile content in PWR spent fuel assemblies using a passive neutron Albedo reactivity with fission chambers technique

    SciTech Connect

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-01-01

    State regulatory bodies and organizations such as the IAEA that are concerned with preventing the proliferation of nuclear weapons are interested in a means of quantifying the amount of plutonium in a given spent fuel assembly. The complexity of spent nuclear fuel makes the measurement of plutonium content challenging. There are a variety of techniques that can measure various properties of spent nuclear fuel including burnup, and mass of fissile content. No single technique can provide all desired information, necessitating an approach using multiple detector systems and types. This paper presents our analysis of the Passive Neutron Albedo Reactivity Fission Chamber (PNAR-FC) detector system. PNAR-FC is a simplified version of the PNAR technique originally developed in 1997. This earlier research was performed with a high efficiency, {sup 3}He-based system (PNAR-3He) with which multiplicty analysis was performed. With the PNAR technique a portion of the spent fuel assembly is wrapped in a 1 mm thick cadmium liner. Neutron count rates are measured both with and without the cadmium liner present. The ratio of the count rate with the cadmium liner to the count rate without the cadmium liner is calculated and called the cadmium ratio. In the PNAR-3He technique, multiplicity measurements were made and the cadmium ratio was shown to scale with the fissile content of the material being measured. PNAR-FC simplifies the PNAR technique by using only a few fission chambers instead of many {sup 3}He tubes. Using a simplified PNAR-FC technique provides for a cheaper, lighter, and thus more portable detector system than was possible with the PNAR-3He system. The challenge with the PNAR-FC system are two-fold: (1) the change in the cadmium ratio is weaker as a afunction of the changing fissile content relative to multiplicity count rates, and (2) the efficiency for the fission chamber based system are poorer than for the {sup 3}He based detectors. In this paper, we present our

  6. Estimation of critical flow velocity for collapse of booster fuel assembly

    SciTech Connect

    Donna Guillen; Mark J. Russell

    2005-09-01

    A Gas Test Loop (GTL) system is currently being designed to provide a high intensity fast-flux irradiation environment for testing fuels and materials for advanced concept nuclear reactors. To assess the performance of candidate reactor fuels, these fuels must be irradiated under actual fast reactor flux conditions and operating environments, preferably in an existing irradiation facility. The GTL system is being designed for operation in the northwest test lobe of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The Technical and Functional Requirements (T&FRs) for the GTL stipulate a minimum neutron flux intensity (10{sup 15} n/cm{sup 2} {center_dot} s) and fast to thermal neutron ratio (>15) for the test environment. The incorporation of booster fuel within the test lobe is necessary to achieve these neutron flux requirements. The current design of the booster fuel assembly for the GTL calls for 3 concentric rings of 4 ft long uranium silicide fuel plates clad with 6061 aluminum.

  7. Implementation of the active neutron Coincidence Collar for the verification of unirradiated PWR and BWR fuel assemblies

    SciTech Connect

    Menlove, H.O.; Keddar, A.

    1982-01-01

    An active neutron interrogation technique has been developed for the measurement of the /sup 235/U content in fresh fuel assemblies. The method employs an AmLi neutron source to induce fission reactions in the fuel assembly and coincidence counting of the resulting fission reaction neutrons. When no interrogation source is present, the passive neutron coincidence rate gives a measure of the /sup 238/U by the spontaneous fission reactions. The system can be applied to the fissile content determination in fresh fuel assemblies for accountability, criticality control, and safeguards purposes. Field tests have been performed by International Atomic Energy Agency (IAEA) staff using the Coincidence Collar to verify the /sup 235/U content in light-water-reactor fuel assemblies. The results gave an accuracy of 1 to 2% in the active mode (/sup 235/U) and 2 to 3% in the passive mode (/sup 238/U) under field conditions.

  8. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOEpatents

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  9. Molecular assembly and organic film growth on complex intermetallic surfaces

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, Abdullah; Sharma, Hem Raj; Sadowski, Jerzy T.; Ledieu, Julian; Fournée, Vincent; McGrath, Ronan

    We extensively studied the role of molecular symmetry and symmetry/structures of wide ranges of substrate-surfaces from non-periodic to periodic to quasi-crystalline in nucleation, growth and phase transition in films made of organic molecular materials. Recently, most interest in quasicrystals is due to the generalization of aperiodic ordering to several classes of systems. Compared to periodic materials, these provide a closer approximation to an isotropic first Brillouin zone, which is of great importance to the design of new functional materials. Here, we present results obtained from our ongoing study of interface mediated molecular assembly extended on complex intermetallic surfaces with specific examples of C60 and Zn-phthalocyanine on quasicrystalline and approximant surfaces. We employed in-situ real-time low-energy electron microscopy (LEEM) for investigation of the processes in assembly and film growth and post-growth STM study and DFT calculations to understand structural details and growth mechanism. Research were carried out in part at the Center for Functional Nanomaterials, Brookhaven National Lab, USA; partly at Institut Jean Lamour, Université de Lorraine, France; and partly at the Surface Science Research Centre, University of Liverpool, UK.

  10. Clustered hydrophobic amino acids in amphipathic helices mediate erlin1/2 complex assembly.

    PubMed

    Pednekar, Deepa; Wang, Yuan; Fedotova, Tatyana V; Wojcikiewicz, Richard J H

    2011-11-11

    Erlin1 and erlin2 are highly homologous, ∼40kDa, endoplasmic reticulum membrane proteins that assemble into a ring-shaped complex with a mass of ∼2 MDa. How this complex is formed is not understood, but appears to involve multiple interactions, including a coiled-coil region that mediates lower-order erlin assembly, and a short hydrophobic region, termed the "assembly domain", that mediates higher-order assembly into ∼2 MDa complexes. Here we have used molecular modeling, mutagenesis and cross-linking to examine the role of the assembly domain in higher-order assembly. We find (i) that the assembly domains of erlin1 and erlin2 are amphipathic helices, (ii) that erlin1 alone and erlin2 alone can assemble into ∼2 MDa complexes, (iii) that higher-order assembly is strongly inhibited by point mutations to the assembly domain, (iv) that three interacting hydrophobic residues in the assembly domain and aromaticity are essential for higher-order assembly, and (iv) that while erlins1 and 2 are equally capable of forming lower-order homo- and hetero-oligomers, hetero-oligomers are the most prevalent form when erlin1 and erlin2 are co-expressed. Overall, we conclude that the ∼2 MDa erlin1/2 complex is composed of an assemblage of lower-order hetero-oligomers, probably heterotrimers, linked together by assembly domain hydrophobic residues. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Type 3 Secretion Translocators Spontaneously Assemble a Hexadecameric Transmembrane Complex*

    PubMed Central

    Romano, Fabian B.; Tang, Yuzhou; Rossi, Kyle C.; Monopoli, Kathryn R.; Ross, Jennifer L.; Heuck, Alejandro P.

    2016-01-01

    A type 3 secretion system is used by many bacterial pathogens to inject proteins into eukaryotic cells. Pathogens insert a translocon complex into the target eukaryotic membrane by secreting two proteins known as translocators. How these translocators form a translocon in the lipid bilayer and why both proteins are required remains elusive. Pseudomonas aeruginosa translocators PopB and PopD insert pores into membranes forming homo- or hetero-complexes of undetermined stoichiometry. Single-molecule fluorescence photobleaching experiments revealed that PopD formed mostly hexameric structures in membranes, whereas PopB displayed a bi-modal distribution with 6 and 12 subunits peaks. However, individually the proteins are not functional for effector translocation. We have found that when added together, the translocators formed distinct hetero-complexes containing 8 PopB and 8 PopD molecules. Thus, the interaction between PopB and PopD guide the assembly of a unique hetero-oligomer in membranes. PMID:26786106

  12. Spontaneous assembly of miktoarm stars into vesicular interpolyelectrolyte complexes.

    PubMed

    Plamper, Felix A; Gelissen, Arjan P; Timper, Jan; Wolf, Andrea; Zezin, Alexander B; Richtering, Walter; Tenhu, Heikki; Simon, Ulrich; Mayer, Joachim; Borisov, Oleg V; Pergushov, Dmitry V

    2013-05-27

    Mixing a bis-hydrophilic, cationic miktoarm star polymer with a linear polyanion leads to the formation of unilamellar polymersomes, which consist of an interpolyelectrolyte complex (IPEC) wall sandwiched between poly(ethylene oxide) brushes. The experimental finding of this rare IPEC morphology is rationalized theoretically: the star architecture forces the assembly into a vesicular shape due to the high entropic penalty for stretching of the insoluble arms in non-planar morphologies. The transmission electron microscopy of vitrified samples (cryogenic TEM) is compared with the samples at ambient conditions (in situ TEM), giving one of the first TEM reports on soft matter in its pristine environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, John R.; Halbig, James K.; Menlove, Howard O.; Klosterbuer, Shirley F.

    1985-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  14. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOEpatents

    Phillips, J.R.; Halbig, J.K.; Menlove, H.O.; Klosterbuer, S.F.

    1984-01-01

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  15. Structural mechanisms of DREAM complex assembly and regulation

    PubMed Central

    Guiley, Keelan Z.; Liban, Tyler J.; Felthousen, Jessica G.; Ramanan, Parameshwaran

    2015-01-01

    The DREAM complex represses cell cycle genes during quiescence through scaffolding MuvB proteins with E2F4/5 and the Rb tumor suppressor paralog p107 or p130. Upon cell cycle entry, MuvB dissociates from p107/p130 and recruits B-Myb and FoxM1 for up-regulating mitotic gene expression. To understand the biochemical mechanisms underpinning DREAM function and regulation, we investigated the structural basis for DREAM assembly. We identified a sequence in the MuvB component LIN52 that binds directly to the pocket domains of p107 and p130 when phosphorylated on the DYRK1A kinase site S28. A crystal structure of the LIN52–p107 complex reveals that LIN52 uses a suboptimal LxSxExL sequence together with the phosphate at nearby S28 to bind the LxCxE cleft of the pocket domain with high affinity. The structure explains the specificity for p107/p130 over Rb in the DREAM complex and how the complex is disrupted by viral oncoproteins. Based on insights from the structure, we addressed how DREAM is disassembled upon cell cycle entry. We found that p130 and B-Myb can both bind the core MuvB complex simultaneously but that cyclin-dependent kinase phosphorylation of p130 weakens its association. Together, our data inform a novel target interface for studying MuvB and p130 function and the design of inhibitors that prevent tumor escape in quiescence. PMID:25917549

  16. Evaluation of the magnitude and effects of bundle duct interaction in fuel assemblies at developmental plant conditions

    SciTech Connect

    Serell, D.C.; Kaplan, S.

    1980-09-01

    Purpose of this evaluation is to estimate the magnitude and effects of irradiation and creep induced fuel bundle deformations in the developmental plant. This report focuses on the trends of the results and the ability of present models to evaluate the assembly temperatures in the presence of bundle deformation. Although this analysis focuses on the developmental plant, the conclusions are applicable to LMFBR fuel assemblies in general if they have wire spacers.

  17. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  18. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    SciTech Connect

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  19. Complex molecular assemblies at hand via interactive simulations.

    PubMed

    Delalande, Olivier; Férey, Nicolas; Grasseau, Gilles; Baaden, Marc

    2009-11-30

    Studying complex molecular assemblies interactively is becoming an increasingly appealing approach to molecular modeling. Here we focus on interactive molecular dynamics (IMD) as a textbook example for interactive simulation methods. Such simulations can be useful in exploring and generating hypotheses about the structural and mechanical aspects of biomolecular interactions. For the first time, we carry out low-resolution coarse-grain IMD simulations. Such simplified modeling methods currently appear to be more suitable for interactive experiments and represent a well-balanced compromise between an important gain in computational speed versus a moderate loss in modeling accuracy compared to higher resolution all-atom simulations. This is particularly useful for initial exploration and hypothesis development for rare molecular interaction events. We evaluate which applications are currently feasible using molecular assemblies from 1900 to over 300,000 particles. Three biochemical systems are discussed: the guanylate kinase (GK) enzyme, the outer membrane protease T and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex involved in membrane fusion. We induce large conformational changes, carry out interactive docking experiments, probe lipid-protein interactions and are able to sense the mechanical properties of a molecular model. Furthermore, such interactive simulations facilitate exploration of modeling parameters for method improvement. For the purpose of these simulations, we have developed a freely available software library called MDDriver. It uses the IMD protocol from NAMD and facilitates the implementation and application of interactive simulations. With MDDriver it becomes very easy to render any particle-based molecular simulation engine interactive. Here we use its implementation in the Gromacs software as an example.

  20. DNA-surfactant complexes: self-assembly properties and applications.

    PubMed

    Liu, Kai; Zheng, Lifei; Ma, Chao; Göstl, Robert; Herrmann, Andreas

    2017-08-14

    Over the last few years, DNA-surfactant complexes have gained traction as unique and powerful materials for potential applications ranging from optoelectronics to biomedicine because they self-assemble with outstanding flexibility spanning packing modes from ordered lamellar, hexagonal and cubic structures to disordered isotropic phases. These materials consist of a DNA backbone from which the surfactants protrude as non-covalently bound side chains. Their formation is electrostatically driven and they form bulk films, lyotropic as well as thermotropic liquid crystals and hydrogels. This structural versatility and their easy-to-tune properties render them ideal candidates for assembly in bulk films, for example granting directional conductivity along the DNA backbone, for dye dispersion minimizing fluorescence quenching allowing applications in lasing and nonlinear optics or as electron blocking and hole transporting layers, such as in LEDs or photovoltaic cells, owing to their extraordinary dielectric properties. However, they do not only act as host materials but also function as a chromophore itself. They can be employed within electrochromic DNA-surfactant liquid crystal displays exhibiting remarkable absorptivity in the visible range whose volatility can be controlled by the external temperature. Concomitantly, applications in the biological field based on DNA-surfactant bulk films, liquid crystals and hydrogels are rendered possible by their excellent gene and drug delivery capabilities. Beyond the mere exploitation of their material properties, DNA-surfactant complexes proved outstandingly useful for synthetic chemistry purposes when employed as scaffolds for DNA-templated reactions, nucleic acid modifications or polymerizations. These promising examples are by far not exhaustive but foreshadow their potential applications in yet unexplored fields. Here, we will give an insight into the peculiarities and perspectives of each material and are confident to

  1. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly

    PubMed Central

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-01-01

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation. PMID:27110782

  2. The Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex.

    PubMed

    Fern, Joshua; Lu, Jennifer; Schulman, Rebecca

    2016-02-23

    While the self-assembly of different types of DNA origami into well-defined complexes could produce nanostructures on which thousands of locations can be independently functionalized with nanometer-scale precision, current assembly processes have low yields. Biomolecular complex formation requires relatively strong interactions and reversible assembly pathways that prevent kinetic trapping. To characterize how these issues control origami complex yields, the equilibrium constants for each possible reaction for the assembly of a heterotetrameric ring, the unit cell of a rectangular lattice, were measured using fluorescence colocalization microscopy. We found that origami interface structure controlled reaction free energies. Cooperativity, measured for the first time for a DNA nanostructure assembly reaction, was weak. Simulations of assembly kinetics suggest assembly occurs via parallel pathways with the primary mechanism of assembly being hierarchical: two dimers form that then bind to one another to complete the ring.

  3. Forced-to-natural convection transition tests in parallel simulated liquid metal reactor fuel assemblies

    SciTech Connect

    Levin, A.E. ); Montgomery, B.H. )

    1990-01-01

    The Thermal-Hydraulic Out of Reactor Safety (THORS) Program at Oak Ridge National Laboratory (ORNL) had as its objective the testing of simulated, electrically heated liquid metal reactor (LMR) fuel assemblies in an engineering-scale, sodium loop. Between 1971 and 1985, the THORS Program operated 11 simulated fuel bundles in conditions covering a wide range of normal and off-normal conditions. The last test series in the Program, THORS-SHRS Assembly 1, employed two parallel, 19-pin, full-length, simulated fuel assemblies of a design consistent with the large LMR (Large Scale Prototype Breeder -- LSPB) under development at that time. These bundles were installed in the THORS Facility, allowing single- and parallel-bundle testing in thermal-hydraulic conditions up to and including sodium boiling and dryout. As the name SHRS (Shutdown Heat Removal System) implies, a major objective of the program was testing under conditions expected during low-power reactor operation, including low-flow forced convection, natural convection, and forced-to-natural convection transition at various powers. The THORS-SHRS Assembly 1 experimental program was divided up into four phases. Phase 1 included preliminary and shakedown tests, including the collection of baseline steady-state thermal-hydraulic data. Phase 2 comprised natural convection testing. Forced convection testing was conducted in Phase 3. The final phase of testing included forced-to-natural convection transition tests. Phases 1, 2, and 3 have been discussed in previous papers. The fourth phase is described in this paper. 3 refs., 2 figs.

  4. COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies

    SciTech Connect

    Rhodes, C.A.

    1984-12-01

    This report describes the computer program COXPRO-II, which was written for performing thermal analyses of irradiated fuel assemblies in a gaseous environment with no forced cooling. The heat transfer modes within the fuel pin bundle are radiation exchange among fuel pin surfaces and conduction by the stagnant gas. The array of parallel cylindrical fuel pins may be enclosed by a metal wrapper or shroud. Heat is dissipated from the outer surface of the fuel pin assembly by radiation and convection. Both equilateral triangle and square fuel pin arrays can be analyzed. Steady-state and unsteady-state conditions are included. Temperatures predicted by the COXPRO-II code have been validated by comparing them with experimental

  5. Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices

    DTIC Science & Technology

    2012-07-10

    Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices Key...Assembly of Photosynthetic Antenna Protein / Pigments Complexes from Algae and Plants for Development of Nanobiodevices 5a. CONTRACT NUMBER...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This is the report of a project to use photosynthetic antenna pigment complexes from algae and plants as

  6. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    SciTech Connect

    Williamson, D.A.

    1991-12-31

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas & Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States` utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste.

  7. Controlling the hydrophilicity and contact resistance of fuel cell bipolar plate surfaces using layered nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    Hybrid nanostructured coatings exhibiting the combined properties of electrical conductivity and surface hydrophilicity were obtained by using Layer-by-Layer (LBL) assembly of cationic polymer, silica nanospheres, and carbon nanoplatelets. This work demonstrates that by controlling the nanoparticle zeta (zeta) potential through the suspension parameters (pH, organic solvent type and amount, and ionic content) as well as the assembly sequence, the nanostructure and composition of the coatings may be adjusted to optimize the desired properties. Two types of silica nanospheres were evaluated as the hydrophilic component: X-TecRTM 3408 from Nano-X Corporation, with a diameter of about 20 nm, and polishing silica from Electron Microscopy Supply, with diameter of about 65 nm. Graphite nanoplatelets with a thickness of 5~10nm (Aquadag RTM E from Acheson Industries) were used as electrically conductive filler. A cationic copolymer of acrylamide and a quaternary ammonium salt (SuperflocRTM C442 from Cytec Corporation) was used as the binder for the negatively charged nanoparticles. Coatings were applied to gold-coated stainless steel substrates presently used a bipolar plate material for proton exchange membrane (PEM) fuel cells. Coating thickness was found to vary nearly linearly with the number of polymer-nanoparticle layers deposited while a monotonic increase in coating contact resistance was observed for all heterogeneous and pure silica coatings. Thickness increased if the difference in the oppositely charged zeta potentials of the adsorbing components was enhanced through alcohol addition. Interestingly, an opposite effect was observed if the zeta potential difference was increased through pH variation. This previously undocumented difference in adsorption behavior is herein related to changes to the surface chemical heterogeneity of the nanoparticles. Coating contact resistance and surface wettability were found to have a more subtle dependence on the assembly

  8. Integrated quality assurance for assembly and testing of complex structures

    NASA Astrophysics Data System (ADS)

    von Kopylow, Christoph; Bothe, Thorsten; Elandaloussi, Frank; Kalms, Michael; Jüptner, Werner

    2005-11-01

    Modern production processes are directed by properties of the components to be manufactured. These components have different sizes, functionalities, high assembly complexity and high security requirements. The increasing requirements during the manufacturing of complex products like cars and aircrafts demand new solutions for the quality assurance - especially for the production at different places. The main focus is to find a measurement strategy that is cost effective, flexible and adaptive. That means a clear definition of the measurement problem, the measurement with adapted resolution, the data preparation and evaluation and support during measurement and utilisation of the results directly in the production. In this paper we describe flexible measurement devices on example of three different techniques: fringe projection, fringe reflection and shearography. These techniques allow the detection of surface and subsurface defects like bumps, dents and delaminations with high resolution. The defects can be optically mapped onto the object's surface. Results are demonstrated with big components taken from automotive and aircraft production. We will point out the most important adaptations of the systems to realize miniaturized, robust and mobile devices for the quality assurance in an industrial environment. Additionally the implementation into a Mobile Maintenance and Control structure is demonstrated.

  9. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  10. Mechanical and thermomechanical calculations related to the storage of spent nuclear-fuel assemblies in granite

    SciTech Connect

    Butkovich, T.R.

    1981-08-01

    A generic test of the geologic storage of spent-fuel assemblies from an operating nuclear reactor is being made by the Lawrence Livermore National Laboratory at the US Department of Energy`s Nevada Test Site. The spent-fuel assemblies were emplaced at a depth of 420 m (1370 ft) below the surface in a typical granite and will be retrieved at a later time. The early time, close-in thermal history of this type of repository is being simulated with spent-fuel and electrically heated canisters in a central drift, with auxiliary heaters in two parallel side drifts. Prior to emplacement of the spent-fuel canisters, preliminary calculations were made using a pair of existing finite-element codes. Calculational modeling of a spent-fuel repository requires a code with a multiple capability. The effects of both the mining operation and the thermal load on the existing stress fields and the resultant displacements of the rock around the repository must be calculated. The thermal loading for each point in the rock is affected by heat tranfer through conduction, radiation, and normal convection, as well as by ventilation of the drifts. Both the ADINA stress code and the compatible ADINAT heat-flow code were used to perform the calculations because they satisfied the requirements of this project. ADINAT was adapted to calculate radiative and convective heat transfer across the drifts and to model the effects of ventilation in the drifts, while the existing isotropic elastic model was used with the ADINA code. The results of the calculation are intended to provide a base with which to compare temperature, stress, and displacement data taken during the planned 5-y duration of the test. In this way, it will be possible to determine how the existing jointing in the rock influences the results as compared with a homogeneous, isotropic rock mass. Later, new models will be introduced into ADINA to account for the effects of jointing.

  11. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  12. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.

    PubMed

    Girishkumar, G; Rettker, Matthew; Underhile, Robert; Binz, David; Vinodgopal, K; McGinn, Paul; Kamat, Prashant

    2005-08-30

    A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.

  13. Uncertainty in the delayed neutron fraction in fuel assembly depletion calculations

    NASA Astrophysics Data System (ADS)

    Aures, Alexander; Bostelmann, Friederike; Kodeli, Ivan A.; Velkov, Kiril; Zwermann, Winfried

    2017-09-01

    This study presents uncertainty and sensitivity analyses of the delayed neutron fraction of light water reactor and sodium-cooled fast reactor fuel assemblies. For these analyses, the sampling-based XSUSA methodology is used to propagate cross section uncertainties in neutron transport and depletion calculations. Cross section data is varied according to the SCALE 6.1 covariance library. Since this library includes nu-bar uncertainties only for the total values, it has been supplemented by delayed nu-bar uncertainties from the covariance data of the JENDL-4.0 nuclear data library. The neutron transport and depletion calculations are performed with the TRITON/NEWT sequence of the SCALE 6.1 package. The evolution of the delayed neutron fraction uncertainty over burn-up is analysed without and with the consideration of delayed nu-bar uncertainties. Moreover, the main contributors to the result uncertainty are determined. In all cases, the delayed nu-bar uncertainties increase the delayed neutron fraction uncertainty. Depending on the fuel composition, the delayed nu-bar values of uranium and plutonium in fact give the main contributions to the delayed neutron fraction uncertainty for the LWR fuel assemblies. For the SFR case, the uncertainty of the scattering cross section of U-238 is the main contributor.

  14. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    SciTech Connect

    Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh; Ba Vien Luong; Kien Cuong Nguyen

    2008-07-15

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configuration with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)

  15. Non-fuel assembly components: 10 CFR 61.55 classification for waste disposal

    SciTech Connect

    Migliore, R.J.; Reid, B.D.; Fadeff, S.K.; Pauley, K.A.; Jenquin, U.P.

    1994-09-01

    This document reports the results of laboratory radionuclide measurements on a representative group of non-fuel assembly (NFA) components for the purposes of waste classification. This document also provides a methodology to estimate the radionuclide inventory of NFA components, including those located outside the fueled region of a nuclear reactor. These radionuclide estimates can then be used to determine the waste classification of NFA components for which there are no physical measurements. Previously, few radionuclide inventory measurements had been performed on NFA components. For this project, recommended scaling factors were selected for the ORIGEN2 computer code that result in conservative estimates of radionuclide concentrations in NFA components. These scaling factors were based upon experimental data obtained from the following NFA components: (1) a pressurized water reactor (PWR) burnable poison rod assembly, (2) a PVM rod cluster control assembly, and (3) a boiling water reactor cruciform control rod blade. As a whole, these components were found to be within Class C limits. Laboratory radionuclide measurements for these components are provided in detail.

  16. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program

  17. Development of coupled SCALE4.2/GTRAN2 computational capability for advanced MOX fueled assembly designs

    SciTech Connect

    Vujic, J.; Greenspan, E.; Slater, Postma, T.; Casher, G.; Soares, I.; Leal, L.

    1995-05-01

    An advanced assembly code system that can efficiently and accurately analyze various designs (current and advanced) proposed for plutonium disposition is being developed by {open_quotes}marrying{close_quotes} two existing state-of-the-art methodologies-GTRAN2 and SCALE 4.2. The resulting code system, GT-SCALE, posses several unique characteristics: exact 2D representation of a complete fuel assembly, while preserving the heterogeniety of each of its pin cells; flexibility in the energy group structure, the present upper limit being 218 groups; a comprehensive cross-section library and material data base; and accurate burnup calculations. The resulting GT-SCALE is expected to be very useful for a wide variety of applications, including the analysis of very heterogeneous UO{sub 2} fueled LWR fuel assemblies; of hexagonal shaped fuel assemblies as of the Russian LWRs; of fuel assemblies for HTGRs; as well as for the analysis of criticality safety and for calculation of the source term of spent fuel.

  18. Neutronic performance of several LEU fuel assembly designs for the WWR-SM research reactor in Uzbekistan.

    SciTech Connect

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.; Yuldashev, B. S.; Baytelesov, S.; Rakhmanov, A.; Technology Development; Inst. of Nuclear Physics

    2002-01-01

    The 10 MW WWR-SM research reactor in Uzbekistan currently uses HEU (36%) IRT-3M 6-tube fuel assemblies manufactured by the Novosibirsk Chemical Concentrates Plant in Russia. Recent 4x4 core configurations reflected by beryllium have been operated at 8 MW. The Institute of Nuclear Physics plans to convert the reactor to LEU (19.7%) fuel as soon as a suitable LEU fuel assembly is qualified. This study compares the neutronic performance of the reactor and its experiments using LEU pin-type and LEU tube-type fuel assembly designs with the current HEU (36%) reference fuel assembly. Both 3D Monte Carlo and 3D diffusion theory calculations were performed to analyze a critical core configuration with partially-burned HEU fuel assemblies in order to establish the credibility of the analytical methods and computer models used to describe the reactor and its experiments. Results based on these techniques are in reasonable agreement with the measured data. An LEU pin-type design (164 pins, 4.5 g U/cm{sup 3}, 375g {sup 235}U) or an LEU tube-type design (IRT-3M, 6-tube, 5.4 gU/cm{sup 3}, and 364g {sup 235}U) with U9Mo-Al fuel meat could operate with about the same cycle length and experiment load as the reference HEU (36%) IRT-3M fuel. The annual fuel assembly consumption would be nearly the same in these HEU and LEU cores. For the LEU pin-type design, fast (thermal) fluxes would be reduced by 2.5% (14%) for experiments located at the center of the fuel assemblies and by 0.5% (4%) for experiments located in experiment channels in the beryllium reflector. For the LEU tube-type design, fast (thermal) fluxes would be reduced by 3.5% (15%) for experiments located at the center of the fuel assemblies and by 1.2% (5%) for experiments located in experiment channels in the beryllium reflector. If the {sup 235}U content of the LEU pin-type fuel assemblies were increased to 480g (using pins similar to those planned to be tested in the WWR-M reactor at Gatchina, Russia in 2003 and 2004

  19. Characterization of Delayed-Particle Emission Signatures for Pyroprocessing. Part 1: ABTR Fuel Assembly.

    SciTech Connect

    Durkee, Jr., Joe W.

    2015-06-19

    A three-part study is conducted using the MCNP6 Monte Carlo radiation-transport code to calculate delayed-neutron (DN) and delayed-gamma (DG) emission signatures for nondestructive assay (NDA) metal-fuel pyroprocessing. In Part 1, MCNP6 is used to produce irradiation-induced used nuclear fuel (UNF) isotopic inventories for an Argonne National Laboratory (ANL) Advanced Burner Test Reactor (ABTR) preconceptual design fuel assembly (FA) model. The initial fuel inventory consists of uranium mixed with light-water-reactor transuranic (TRU) waste and 10 wt% zirconium (U-LWR-SFTRU-10%Zr). To facilitate understanding, parametric evaluation is done using models for 3% and 5% initial 235U a% enrichments, burnups of 5, 10, 15, 20, 30, …, 120 GWd/MTIHM, and 3-, 5-, 10-, 20-, and 30- year cooling times. Detailed delayed-particle radioisotope source terms for the irradiate FA are created using BAMF-DRT and SOURCES3A. Using simulation tallies, DG activity ratios (DGARs) are developed for 134Cs/137Cs 134Cs/154Eu, and 154Eu/137Cs markers as a function of (1) burnup and (2) actinide mass, including elemental uranium, neptunium, plutonium, americium, and curium. Spectral-integrated DN emission is also tallied. The study reveals a rich assortment of DGAR behavior as a function of DGAR type, enrichment, burnup, and cooling time. Similarly, DN emission plots show variation as a function of burnup and of actinide mass. Sensitivity of DGAR and DN signatures to initial 235U enrichment, burnup, and cooling time is evident. Comparisons of the ABTR radiation signatures and radiation signatures previously reported for a generic Westinghouse oxide-fuel assembly indicate that there are pronounced differences in the ABTR and Westinghouse oxide-fuel DN and DG signatures. These differences are largely attributable to the initial TRU inventory in the ABTR fuel. The actinide and nonactinide inventories for the

  20. Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies

    SciTech Connect

    Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G.; Carrell, R.D.; Jaeger, C.D.; Thompson, M.L.; Strasser, A.A.

    1998-03-01

    The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

  1. Stress and plastic deformation of MEA in fuel cells. Stresses generated during cell assembly

    NASA Astrophysics Data System (ADS)

    Bograchev, Daniil; Gueguen, Mikael; Grandidier, Jean-Claude; Martemianov, Serguei

    A linear elastic-plastic 2D model of fuel cell with hardening is developed for analysis of mechanical stresses in MEA arising in cell assembly procedure. The model includes the main components of real fuel cell (membrane, gas diffusion layers, graphite plates, and seal joints) and clamping elements (steel plates, bolts, nuts). The stress and plastic deformation in MEA are simulated with ABAQUS code taking into account the realistic clamping conditions. The stress distributions are obtained on the local and the global scales. The first one corresponds to the single tooth/channel structure. The global scale deals with features of the entire cell (the seal joint and the bolts). Experimental measurements of the residual membrane deformations have been provided at different bolts torques. The experimental data are in a good agreement with numerical predictions concerning the beginning of the plastic deformation.

  2. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOEpatents

    Forsberg, C.W.

    1992-03-24

    A single canister process container is described for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining its integrity at a temperature necessary to oxidize the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container. 10 figs.

  3. Nuclear fuel assemblies' deformations measurement by optoelectronic methods in cooling ponds

    NASA Astrophysics Data System (ADS)

    Senchenko, E. S.; Zavyalov, P. S.; Finogenov, L. V.; Khakimov, D. R.

    2013-12-01

    Increasing the reliability and life-time of nuclear fuel is actual problems for nuclear power engineering. It takes to provide the high geometric stability of nuclear fuel assemblies (FA) under exploitation, since various factors cause FA mechanical deformation (bending and twisting). To obtain the objective information and make recommendations for the FA design improvement one have to fulfill the post reactor FA analysis. Therefore it takes measurements of the FA geometric parameters in cooling ponds of nuclear power plants. As applied to this problem we have developed and investigated the different optoelectronic methods, namely, structured light method, television and shadow ones. In this paper effectiveness of these methods has been investigated using the special experimental test stand and fulfilled researches are described. The experimental results of FA measurements by different methods and recommendation for their usage is given.

  4. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  5. A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies

    NASA Astrophysics Data System (ADS)

    Zhu, Huayang; Kee, Robert J.

    We have developed a general mathematical model to represent the membrane-electrode assembly (MEA) of fuel-cell systems. The model is used to analyze the effects of various polarization resistances on cell performance. The model accommodates arbitrary gas mixtures on the anode and cathode sides of the MEA. Moreover, it accommodates a variety of porous electrode and electrolyte structures. Concentration overpotentials are based on a dusty-gas representation of transport through porous electrodes. The activation overpotentials are represented using the Butler-Volmer equation. Although the model is general, the emphasis in this paper is on solid-oxide fuel-cell (SOFC) systems for the direct electrochemical oxidation (DECO) of hydrocarbons.

  6. Forced-convection boiling tests performed in parallel simulated LMR fuel assemblies

    SciTech Connect

    Rose, S.D.; Carbajo, J.J.; Levin, A.E.; Lloyd, D.B.; Montgomery, B.H.; Wantland, J.L.

    1985-04-21

    Forced-convection tests have been carried out using parallel simulated Liquid Metal Reactor fuel assemblies in an engineering-scale sodium loop, the Thermal-Hydraulic Out-of-Reactor Safety facility. The tests, performed under single- and two-phase conditions, have shown that for low forced-convection flow there is significant flow augmentation by thermal convection, an important phenomenon under degraded shutdown heat removal conditions in an LMR. The power and flows required for boiling and dryout to occur are much higher than decay heat levels. The experimental evidence supports analytical results that heat removal from an LMR is possible with a degraded shutdown heat removal system.

  7. Fuel cleanup system for the tritium systems test assembly: design and experiments

    SciTech Connect

    Kerr, E.C.; Bartlit, J.R.; Sherman, R.H.

    1980-01-01

    A major subsystem of the Tritium Systems Test Assembly is the Fuel Cleanup System (FCU) whose functons are to: (1) remove impurities in the form of argon and tritiated methane, water, and ammonia from the reactor exhaust stream and (2) recover tritium for reuse from the tritiated impurities. To do this, a hybrid cleanup system has been designed which utilizes and will test concurrently two differing technologies - one based on disposable, hot metal (U and Ti) getter beds and a second based on regenerable cryogenic asdorption beds followed by catalytic oxidation of impurities to DTO and stackable gases and freezout of the resultant DTO to recover essentially all tritium for reuse.

  8. Steady state temperature profiles in two simulated liquid metal reactor fuel assemblies with identical design specifications

    SciTech Connect

    Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

    1985-01-01

    Temperature data from steady state tests in two parallel, simulated liquid metal reactor fuel assemblies with identical design specifications have been compared to determine the extent to which they agree. In general, good agreement was found in data at low flows and in bundle-center data at higher flows. Discrepancies in the data wre noted near the bundle edges at higher flows. An analysis of bundle thermal boundary conditions showed that the possible eccentric placement of one bundle within the housing could account for these discrepancies.

  9. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    PubMed

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  10. Fabrication of complex structures or assemblies by Hot Isostatic Pressure (HIP) welding

    NASA Technical Reports Server (NTRS)

    Ashurst, A. N.; Goldstein, M.; Ryan, M. J.; Lessmann, G. G.; Bryant, W. A.

    1974-01-01

    HIP welding is effective method for fabricating complex structures or assemblies such as alternator rotors, regeneratively-cooled rocket-motor thrust chambers, and jet engine turbine blades. It can be applied to fabrication of many assemblies which require that component parts be welded together along complex interfaces.

  11. Rail Shock and Vibration Pre-Test Modeling of a Used Nuclear Fuel Assembly

    SciTech Connect

    Ross, Steven B.; Klymyshyn, Nicholas A.; Jensen, Philip J.; Best, Ralph E.; Maheras, Steven J.; McConnell, Paul E.; Orchard, John

    2015-04-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste (HLW). The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and HLW generated by existing and future nuclear fuel cycles. The Storage and Transportation staff within the UFDC is responsible for addressing issues regarding the long-term or extended storage (ES) of UNF and its subsequent transportation. Available information is not sufficient to determine the ability of ES UNF, including high-burnup fuel, to withstand shock and vibration forces that could occur when the UNF is shipped by rail from nuclear power plant sites to a storage or disposal facility. There are three major gaps in the available information – 1) the forces that UNF assemblies would be subjected to when transported by rail, 2) the mechanical characteristics of fuel rod cladding, which is an essential structure for controlling the geometry of the UNF, a safety related feature, and 3) modeling methodologies to evaluate multiple possible degradation or damage mechanisms over the UNF lifetime. In order to address the first gap, options for tests to determine the physical response of surrogate UNF assemblies subjected to shock and vibration forces that are expected to be experienced during normal conditions of transportation (NCT) by rail must be identified and evaluated. The objective of the rail shock and vibration tests is to obtain data that will help researchers understand the mechanical loads that ES UNF assemblies would be subjected to under normal conditions of transportation and to fortify the computer modeling that will be necessary to evaluate the impact

  12. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  13. Void fraction distribution in a boiling water reactor fuel assembly and the evaluation of subchannel analysis codes

    SciTech Connect

    Inoue, Akira; Futakuchi, Masanobu; Yagi, Makoto; Mitsutake, Toru; Morooka, Shinichi

    1995-12-01

    Void fraction measurement tests for boiling water reactor (BWR) simulated nuclear fuel assemblies have been conducted using an X-ray computed tomography scanner.there are two types of fuel assemblies concerning water rods. One fuel assembly has two water rods; the other has one large water rod. The effects of the water rods on radial void fraction distributions are measured within the fuel assemblies. The results show that the water rod effect does not make a large difference in void fraction distribution. The subchannel analysis codes COBRA/BWR and THERMIT-2 were compared with subchannel-averaged void fractions. The prediction accuracy of COBRA/BWR and THERMIT-2 for the subchannel-averaged void fraction was {Delta}{alpha} = {minus}3.6%, {sigma} = 4.8% and {Delta}{alpha} = {minus}4.1%, {sigma} = 4.5%, respectively, where {Delta}{alpha} is the average of the difference measured and calculated values. The subchannel analysis codes are highly applicable for the prediction of a two-phase flow distribution within BWR fuel assemblies.

  14. Precise calculation of neutron-capture reactions contribution in energy release for different types of VVER-1000 fuel assemblies

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Georgy; Bahdanovich, Rynat; Pham, Phu

    2017-09-01

    Precise calculation of energy release in a nuclear reactor is necessary to obtain the correct spatial power distribution and predict characteristics of burned nuclear fuel. In this work, previously developed method for calculation neutron-capture reactions - capture component - contribution in effective energy release in a fuel core of nuclear reactor is discussed. The method was improved and implemented to the different models of VVER-1000 reactor developed for MCU 5 and MCNP 4 computer codes. Different models of equivalent cell and fuel assembly in the beginning of fuel cycle were calculated. These models differ by the geometry, fuel enrichment and presence of burnable absorbers. It is shown, that capture component depends on fuel enrichment and presence of burnable absorbers. Its value varies for different types of hot fuel assemblies from 3.35% to 3.85% of effective energy release. Average capture component contribution in effective energy release for typical serial fresh fuel of VVER-1000 is 3.5%, which is 7 MeV/fission. The method will be used in future to estimate the dependency of capture energy on fuel density, burn-up, etc.

  15. Westinghouse Fuel Assemblies Performance after Operation in South-Ukraine NPP Mixed Core

    SciTech Connect

    Abdullayev, A. M.; Kulish, G. V.; Slyeptsov, O.; Slyeptsov, S.; Aleshin, Y.; Sparrow, S.; Lashevych, P.; Sokolov, D.; Latorre, Richard

    2013-09-14

    The evaluation of WWER-1000 Westinghouse fuel performance was done using the results of post–irradiation examinations of six LTAs and the WFA reload batches that have operated normally in mixed cores at South-Ukraine NPP, Unit-3 and Unit-2. The data on WFA/LTA elongation, FR growth and bow, WFA bow and twist, RCCA drag force and drag work, RCCA drop time, FR cladding integrity as well as the visual observation of fuel assemblies obtained during the 2006-2012 outages was utilized. The analysis of the measured data showed that assembly growth, FR bow, irradiation growth, and Zr-1%Nb grid and ZIRLO cladding corrosion lies within the design limits. The RCCA drop time measured for the LTA/WFA is about 1.9 s at BOC and practically does not change at EOC. The measured WFA bow and twist, and data of drag work on RCCA insertion showed that the WFA deformation in the mixed core is mostly controlled by the distortion of Russian FAs (TVSA) having the higher lateral stiffness. The visual inspection of WFAs carried out during the 2012 outages revealed some damage to the Zr-1%Nb grid outer strap for some WFAs during the loading sequence. The performed fundamental investigations allowed identifying the root cause of grid outer strap deformation and proposing the WFA design modifications for preventing damage to SG at a 225 kg handling trip limit.

  16. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    SciTech Connect

    Bronson, M.C.

    1997-10-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

  17. Investigation on heavy liquid metal cooling of ADS fuel pin assemblies

    NASA Astrophysics Data System (ADS)

    Litfin, K.; Batta, A.; Class, A. G.; Wetzel, Th.; Stieglitz, R.

    2011-08-01

    In the framework of accelerator driven sub-critical reactor systems heavy liquid metals are considered as coolant for the reactor core and the spallation target. In particular lead or lead bismuth eutectic (LBE) exhibit efficient heat removal properties and high production rate of neutrons. However, the excellent heat conductivity of LBE-flows expressed by a low molecular Prandtl number of the order 10 -2 requires improved modeling of the turbulent heat transfer. Although various models for thermal hydraulics of LBE flows are existing, validated heat transfer correlations for ADS-relevant conditions are still missing. In order to validate the sub-channel codes and computational fluid dynamics codes used to design fuel assemblies, the comparison with experimental data is inevitable. Therefore, an experimental program composed of three major experiments, a single electrically heated rod, a 19-pin hexagonal water rod bundle and a LBE rod bundle, has been initiated at the Karlsruhe Liquid metal Laboratory (KALLA) of the Karlsruhe Institute of Technology, in order to quantify and separate the individual phenomena occurring in the momentum and energy transfer of a fuel assembly.

  18. Measurements on spent-fuel assemblies at Arkansas Nuclear One using the Fork system. Final report, January 1995

    SciTech Connect

    Ewing, R.I.; Bronowski, D.R.; Bosler, G.E.; Siebelist, R.; Priore, J.; Hansford, C.H.; Sullivan, S.

    1997-03-01

    The Fork measurement system has been used to examine spent-fuel assemblies at the two reactors of Arkansas Nuclear One, operated by Entergy Operations, Inc. The Unit 1 reactor is a Babcock and Wilcox (B and W) design, and the Unit 2 reactor is a Combustion Engineering (CE) design. The neutron and gamma-ray emissions from individual spent-fuel assemblies were measured in the storage pools by raising each assembly pathway out of the storage rack and performing a measurement near the center of the assembly. The overall accuracy of the measurements after corrections is about 2%. Thirty-four assemblies were examined at Unit 1, and forty-one assemblies at Unit 2. The average deviation of the burnup measurements from the calibration was 3.0% at Unit 1 and 3.5% at Unit 2, indicating 2 to 3% random variation among the reactor records. There was no indication of clearly anomalous assemblies. Axial Scans of the variation in neutron and gamma ray emission were obtained by collecting data at several locations along the length of three assemblies at Unit 2. Two of these assemblies were nonstandard in that each contained a small neutron source. The sources were detected by the axial scans. The test program was a cooperative effort involving Sandia National Laboratories, Los Alamos National Laboratory, Entergy Operations, Inc., the Electric Power Research Institute, and the Office of Civilian Radioactive Waste Management of the US Department of Energy.

  19. Multiphysics Simulations of the Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements Using COMSOL

    SciTech Connect

    Freels, James D; Jain, Prashant K

    2011-01-01

    A research and development project is ongoing to convert the currently operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched Uranium (HEU U3O8) fuel to low-enriched Uranium (LEU U-10Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, COMSOL is chosen to provide the needed multiphysics simulation capability to validate against the HEU design data and calculations, and predict the performance of the LEU fuel for design and safety analyses. The focus of this paper is on the unique issues associated with COMSOL modeling of the 3D geometry, meshing, and solution of the HFIR fuel plate and assembled fuel elements. Two parallel paths of 3D model development are underway. The first path follows the traditional route through examination of all flow and heat transfer details using the Low-Reynolds number k-e turbulence model provided by COMSOL v4.2. The second path simplifies the fluid channel modeling by taking advantage of the wealth of knowledge provided by decades of design and safety analyses, data from experiments and tests, and HFIR operation. By simplifying the fluid channel, a significant level of complexity and computer resource requirements are reduced, while also expanding the level and type of analysis that can be performed with COMSOL. Comparison and confirmation of validity of the first (detailed) and second (simplified) 3D modeling paths with each other, and with available data, will enable an expanded level of analysis. The detailed model will be used to analyze hot-spots and other micro fuel behavior events. The simplified model will be used to analyze events such as routine heat-up and expansion of the entire fuel element, and flow blockage. Preliminary, coarse-mesh model results of the detailed individual fuel plate are presented. Examples of the solution for an entire fuel element consisting of multiple individual fuel plates produced by the simplified model are also presented.

  20. Directed self-assembly, genomic assembly complexity and the formation of biological structure, or, what are the genes for nacre?

    PubMed

    Cartwright, Julyan H E

    2016-03-13

    Biology uses dynamical mechanisms of self-organization and self-assembly of materials, but it also choreographs and directs these processes. The difference between abiotic self-assembly and a biological process is rather like the difference between setting up and running an experiment to make a material remotely compared with doing it in one's own laboratory: with a remote experiment-say on the International Space Station-everything must be set up beforehand to let the experiment run 'hands off', but in the laboratory one can intervene at any point in a 'hands-on' approach. It is clear that the latter process, of directed self-assembly, can allow much more complicated experiments and produce far more complex structures than self-assembly alone. This control over self-assembly in biology is exercised at certain key waypoints along a trajectory and the process may be quantified in terms of the genomic assembly complexity of a biomaterial. © 2016 The Author(s).

  1. Single-step assembly of complex 3-D microstructures

    SciTech Connect

    Hui, E.E.; Howe, R.T.; Rodgers, M.S.

    2000-01-04

    This paper describes three-dimensional microstructures fabricated in a planar process and assembled in a single step. Multiple plates are constrained by hinges in such a way as to reduce the assembly process to a single degree-of-freedom of motion. Serial microassembly of these structures is simpler; moreover, self-assembly using hydrodynamic forces during release is much more feasible than with earlier, multiple degree-of-freedom hinged structures. A 250-{micro}m corner cube reflector, a 6-sided closed box, and a 3-D model of the Berkeley Campanile clock tower have been demonstrated in the 4-level polysilicon SUMMiT MEMS foundry.

  2. Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask

    SciTech Connect

    Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

    2001-11-20

    The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

  3. Monte Carlo Modeling of Fast Sub-critical Assembly with MOX Fuel for Research of Accelerator-Driven Systems

    NASA Astrophysics Data System (ADS)

    Polanski, A.; Barashenkov, V.; Puzynin, I.; Rakhno, I.; Sissakian, A.

    It is considered a sub-critical assembly driven with existing 660 MeV JINR proton accelerator. The assembly consists of a central cylindrical lead target surrounded with a mixed-oxide (MOX) fuel (PuO2 + UO2) and with reflector made of beryllium. Dependence of the energetic gain on the proton energy, the neutron multiplication coefficient, and the neutron energetic spectra have been calculated. It is shown that for subcritical assembly with a mixed-oxide (MOX) BN-600 fuel (28%PuO 2 + 72%UO2) with effective density of fuel material equal to 9 g/cm 3 , the multiplication coefficient keff is equal to 0.945, the energetic gain is equal to 27, and the neutron flux density is 1012 cm˜2 s˜x for the protons with energy of 660 MeV and accelerator beam current of 1 uA.

  4. Assembly complexity of prokaryotic genomes using short reads

    PubMed Central

    2010-01-01

    Background De Bruijn graphs are a theoretical framework underlying several modern genome assembly programs, especially those that deal with very short reads. We describe an application of de Bruijn graphs to analyze the global repeat structure of prokaryotic genomes. Results We provide the first survey of the repeat structure of a large number of genomes. The analysis gives an upper-bound on the performance of genome assemblers for de novo reconstruction of genomes across a wide range of read lengths. Further, we demonstrate that the majority of genes in prokaryotic genomes can be reconstructed uniquely using very short reads even if the genomes themselves cannot. The non-reconstructible genes are overwhelmingly related to mobile elements (transposons, IS elements, and prophages). Conclusions Our results improve upon previous studies on the feasibility of assembly with short reads and provide a comprehensive benchmark against which to compare the performance of the short-read assemblers currently being developed. PMID:20064276

  5. Ultrasonics permits brazing complex stainless steel assembly without flux

    NASA Technical Reports Server (NTRS)

    Baker, W. H.

    1967-01-01

    Ultrasonic vibration of an assembly of stainless steel instrumentation tubes ensures brazing without flux. Vibration with an ultrasonic transducer permits the brazing material to flow down each tube in contact with a seal plug installed in a pressure vessel wall.

  6. CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0

    SciTech Connect

    Toth, Sandor; Legradi, Gabor; Aszodi, Attila

    2006-07-01

    From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960 mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)

  7. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    SciTech Connect

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the /sup 235/U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The /sup 238/U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables.

  8. Comparison of HYDRA predictions to temperature data from two single-assembly spent fuel heat transfer tests

    SciTech Connect

    McCann, R.A.

    1986-12-01

    The HYDRA computer code was used to simulate the thermal performance of an actual and a model spent fuel assembly. The HYDRA-predicted temperatures were then compared with measured data from two single-assembly test sections. The objective of this effort was to further verify the predictive capabilities of the HYDRA code for use in assessments of the hydrothermal performance of spent fuel dry storage systems. After HYDRA has been adequately evaluated and validated, the code will be documented to permit design and licensing safety analyses.

  9. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  10. Self-assembly of polymeric microspheres of complex internal structures

    NASA Astrophysics Data System (ADS)

    Fialkowski, Marcin; Bitner, Agnieszka; Grzybowski, Bartosz A.

    2005-01-01

    Self-assembly can easily produce intricate structures that would be difficult to make by conventional fabrication means. Here, self-assembly is used to prepare multicomponent polymeric microspheres of arbitrary internal symmetries. Droplets of liquid prepolymers are printed onto a water-soluble hydrogel, and are allowed to spread and coalesce into composite patches. These patches are then immersed in an isodense liquid, which both compensates the force of gravity and dissolves the gel beneath the polymers. Subsequently, the patches fold into spheres whose internal structures are dictated by the arrangement of the droplets printed onto the surface. The spheres can be solidified either thermally or by ultraviolet radiation. We present a theoretical analysis of droplet spreading, coalescence and folding. Conditions for the stability of the folded microspheres are derived from linear stability analysis. The composite microbeads that we describe are likely to find uses in optics, colloidal self-assembly and controlled-delivery applications.

  11. Ordered assembly of the V(D)J synaptic complex ensures accurate recombination.

    PubMed

    Jones, Jessica M; Gellert, Martin

    2002-08-01

    Recombination of gene segments at the immunoglobulin and T-cell receptor loci requires that the RAG1 and RAG2 proteins bring together DNA signal sequences (RSSs) with 12- and 23-bp spacers into a synaptic complex and cleave the DNA. A RAG1/2 multimer that can cleave both signals is shown to assemble on an isolated RSS, and the complementary RSS enters this complex as naked DNA. When RAG1/2 is allowed to bind 12 and 23 RSSs separately prior to their mixing, synaptic complex assembly and cleavage activity are greatly reduced, indicating that only a complex initially assembled on a single RSS leads to productive cleavage. RAG1/2 complexes assembled on 12 RSSs will only incorporate 23 partners, while complexes assembled on 23 RSSs show a 5- to 6-fold preference for 12 partners. Thus, initial assembly on a 12 RSS most accurately reflects the strict 12/23 coupled cleavage observed in the cell. Additional cellular factors such as chromatin may ensure that RAG1/2 first assembles on a 12 RSS, and then a free 23 RSS enters to activate cleavage.

  12. Ordered assembly of the V(D)J synaptic complex ensures accurate recombination

    PubMed Central

    Jones, Jessica M.; Gellert, Martin

    2002-01-01

    Recombination of gene segments at the immunoglobulin and T-cell receptor loci requires that the RAG1 and RAG2 proteins bring together DNA signal sequences (RSSs) with 12- and 23-bp spacers into a synaptic complex and cleave the DNA. A RAG1/2 multimer that can cleave both signals is shown to assemble on an isolated RSS, and the complementary RSS enters this complex as naked DNA. When RAG1/2 is allowed to bind 12 and 23 RSSs separately prior to their mixing, synaptic complex assembly and cleavage activity are greatly reduced, indicating that only a complex initially assembled on a single RSS leads to productive cleavage. RAG1/2 complexes assembled on 12 RSSs will only incorporate 23 partners, while complexes assembled on 23 RSSs show a 5- to 6-fold preference for 12 partners. Thus, initial assembly on a 12 RSS most accurately reflects the strict 12/23 coupled cleavage observed in the cell. Additional cellular factors such as chromatin may ensure that RAG1/2 first assembles on a 12 RSS, and then a free 23 RSS enters to activate cleavage. PMID:12145216

  13. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  14. The influence of changes in the VVER-1000 fuel assembly shape during operation on the power density distribution

    SciTech Connect

    Shishkov, L. K. Gorodkov, S. S.; Mikailov, E. F.; Sukhino-Homenko, E. A.; Sumarokova, A. S.

    2016-12-15

    A new approach to calculation of the coefficients of sensitivity of the fuel pin power to deviations in gap sizes between fuel assemblies of the VVER-1000 reactor during its operation is proposed. It is shown that the calculations by the MCU code should be performed for a full-size model of the core to take the interference of the gap influence into account. In order to reduce the conservatism of calculations, the coolant density and coolant temperature feedbacks should be taken into account, as well as the fuel burnup.

  15. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    SciTech Connect

    Trellue, Holly Renee; Fugate, Michael Lynn; Tobin, Stephen Joesph

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  16. Investigations on the thermal-hydraulics of a natural circulation cooled BWR fuel assembly

    SciTech Connect

    Kok, H.V.; Hagen, T.H.J.J. van der; Mudde, R.F.

    1995-09-01

    A scaled natural circulation loop facility has been built after the Dodewaard Boiling Water Reactor, which is the only operating natural circulation cooled BWR in the world. The loop comprises one fuel assembly, a riser with a downcomer and a condenser with a cooling system. Freon-12 is used as a scaling liquid. This paper reports on the first measurements done with this facility. Quantities like the circulation flow, carry-under and the void-fraction have been measured as a function of power, pressure, liquid level, riser length, condensate temperature and friction factors. The behavior of the circulation flow can be understood by considering the driving force. Special attention has been paid to the carry-under, which has been shown to have a very important impact on the dynamics of a natural circulation cooled BWR.

  17. Estimation of Critical Flow Velocity for Collapse of Gas Test Loop Booster Fuel Assembly

    SciTech Connect

    Guillen; Mark J. Russell

    2006-07-01

    This paper presents calculations performed to determine the critical flow velocity for plate collapse due to static instability for the Gas Test Loop booster fuel assembly. Long, slender plates arranged in a parallel configuration can experience static divergence and collapse at sufficiently high coolant flow rates. Such collapse was exhibited by the Oak Ridge High Flux Reactor in the 1940s and the Engineering Test Reactor at the Idaho National Laboratory in the 1950s. Theoretical formulas outlined by Miller, based upon wide-beam theory and Bernoulli’s equation, were used for the analysis. Calculations based upon Miller’s theory show that the actual coolant flow velocity is only 6% of the predicted critical flow velocity. Since there is a considerable margin between the theoretically predicted plate collapse velocity and the design velocity, the phenomena of plate collapse due to static instability is unlikely.

  18. Multipurpose insulation system for a radioisotope fueled Mini-Brayton Heat Source Assembly

    NASA Technical Reports Server (NTRS)

    Aller, P.; Saylor, W.; Schmidt, G.; Wein, D.

    1976-01-01

    The Mini-Brayton Heat Source Assembly (HSA) consists of a radioisotope fueled heat source, a heat exchanger, a multifoil thermal insulation blanket, and a hermetically sealed housing. The thermal insulation blanket is a multilayer wrap of thin metal foil separated by a sparsely coated oxide. The objectives of the insulation blanket are related to the effective insulation of the HSA during operation, the transfer of the full thermal inventory to the housing when the primary coolant is not flowing, and the transfer of the full thermal inventory to the housing in the event of a flow stoppage of the primary coolant. A description is given of the approaches which have been developed to make it possible for the insulation blanket to meet these requirements.

  19. Designing ‘Smart’ Particles for the Assembly of Complex Macroscopic Structures**

    PubMed Central

    Barg, S.; Bell, R.; Weaver, J.; Walter, C.; Goyos, L.; Saiz, E.

    2013-01-01

    Surface functionalization with a branched copolymer surfactant is used to create responsive inorganic particles that can self-assemble in complex structures. The assembly process is triggered by a pH switch that reversibly activates multiple hydrogen bonds between ceramic particles and soft templates. PMID:23780923

  20. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation: Appendix 2A, Physical descriptions of LWR (Light-Water Reactor) fuel assemblies

    SciTech Connect

    Not Available

    1987-12-01

    This appendix includes a four-page Physical Description report for each assembly type identified from the current data. Where available, a drawing of an assembly follows the appropriate Physical Description report. If no drawing is available for an assembly, a cross-reference to a similar assembly is provided if possible. For Advanced Nuclear Fuels, Babcock and Wilcox, Combustion Engineering, and Westinghouse assemblies, information was obtained via subcontracts with these fuel vendors. Data for some assembly types are not available. For such assemblies, the information shown in this report was obtained from the open literature and by inference from reload fuels made by other vendors. Efforts to obtain additional information are continuing. Individual Physical Description reports can be generated interactively through the menu-driven LWR Assemblies Data Base system. These reports can be viewed on the screen or directed to a printer. Special reports and compilations of specific data items can be produced on request.

  1. Assembly, checkout, and operation optimization analysis technique for complex systems

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Computerized simulation model of a launch vehicle/ground support equipment system optimizes assembly, checkout, and operation of the system. The model is used to determine performance parameters in three phases or modes - /1/ systems optimization techniques, /2/ operation analysis methodology, and /3/ systems effectiveness analysis technique.

  2. Fuel cell on-site integrated energy system parametric analysis of a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.

    1977-01-01

    A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.

  3. Developing complex structures and functions through cell-directed assembly

    NASA Astrophysics Data System (ADS)

    Baca, Helen K.

    The integration of biological building blocks into functional platforms is important to applications across the field of nanotechnology. However, hybrid materials that incorporate biological units such as whole cells require functional bio/inorganic interfaces, benign synthesis conditions and fluidic support systems to avoid dehydration. Cell-directed assembly integrates biological materials in a uniformly nanostructured inorganic host that maintains cell accessibility, addressability, and viability in the absence of an external fluidic architecture. During immobilization of S. cerevisiae cells in a porous, lipid-templated silica matrix the cell forms its own novel interface through which it both directs assembly of the inorganic host phase and provides a fluid, membrane-like environment for the localization of proteins and nanocrystals in extended nanostructures. Characterization of the assembly process and the bio/nano interface through in-situ grazing incidence X-ray scattering, electron microscopy, and laser scanning confocal imaging, shows the cells profoundly alter the self-assembly pathway, creating around themselves multilayered phospholipid vesicles that interface coherently with the nanostructured silica host. The immobilized cells mediate their local pH and stress, collectively switching the silica mesophase. Replacing the cell with several cell models demonstrates that the living cell is necessary for the formation of the lipid interface and transformation of the inorganic phase, serving as a site for lipid aggregate nucleation and ordering. The living cell's response to osmotic stress is an important part of its ability to direct the structure of its local and global environments. Cell-directed assembly supports a highly biocompatible immobilization strategy that extends viability of immobilized cells to several weeks and creates cell-directed hierarchical structures that serve as stand-alone sensors through reporter protein expression, or organize

  4. Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans.

    PubMed

    Stroh, Anke; Anderka, Oliver; Pfeiffer, Kathy; Yagi, Takao; Finel, Moshe; Ludwig, Bernd; Schägger, Hermann

    2004-02-06

    Stable supercomplexes of bacterial respiratory chain complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) have been isolated as early as 1985 (Berry, E. A., and Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458-2467). However, these assemblies did not comprise complex I (NADH:ubiquinone oxidoreductase). Using the mild detergent digitonin for solubilization of Paracoccus denitrificans membranes we could isolate NADH oxidase, assembled from complexes I, III, and IV in a 1:4:4 stoichiometry. This is the first chromatographic isolation of a complete "respirasome." Inactivation of the gene for tightly bound cytochrome c552 did not prevent formation of this supercomplex, indicating that this electron carrier protein is not essential for structurally linking complexes III and IV. Complex I activity was also found in the membranes of mutant strains lacking complexes III or IV. However, no assembled complex I but only dissociated subunits were observed following the same protocols used for electrophoretic separation or chromatographic isolation of the supercomplex from the wild-type strain. This indicates that the P. denitrificans complex I is stabilized by assembly into the NADH oxidase supercomplex. In addition to substrate channeling, structural stabilization of a membrane protein complex thus appears as one of the major functions of respiratory chain supercomplexes.

  5. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I).

    PubMed

    Friedrich, Thorsten; Dekovic, Doris Kreuzer; Burschel, Sabrina

    2016-03-01

    Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.

  6. Mutation of C20orf7 Disrupts Complex I Assembly and Causes Lethal Neonatal Mitochondrial Disease

    PubMed Central

    Sugiana, Canny; Pagliarini, David J.; McKenzie, Matthew; Kirby, Denise M.; Salemi, Renato; Abu-Amero, Khaled K.; Dahl, Hans-Henrik M.; Hutchison, Wendy M.; Vascotto, Katherine A.; Smith, Stacey M.; Newbold, Robert F.; Christodoulou, John; Calvo, Sarah; Mootha, Vamsi K.; Ryan, Michael T.; Thorburn, David R.

    2008-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease. PMID:18940309

  7. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    SciTech Connect

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Prele, G.

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  8. Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shin, J. Felix; Xu, Wen; Zanella, Marco; Dawson, Karl; Savvin, Stanislav N.; Claridge, John B.; Rosseinsky, Matthew J.

    2017-01-01

    Electrode materials for intermediate temperature (500-700 ∘C) solid oxide fuel cells require electrical and mechanical stability to maintain performance during the cell lifetime. This has proven difficult to achieve for many candidate cathode materials and their derivatives with good transport and electrocatalytic properties because of reactivity towards cell components, and the fuels and oxidants. Here we present Ba0.5Sr0.5(Co0.7Fe0.3)0.6875W0.3125O3-δ (BSCFW), a self-assembled composite prepared through simple solid state synthesis, consisting of B-site cation ordered double perovskite and disordered single perovskite oxide phases, as a candidate cathode material. These phases interact by dynamic compositional change at the operating temperature, promoting both chemical stability through the increased amount of W in the catalytically active single perovskite provided from the W-reservoir double perovskite, and microstructural stability through reduced sintering of the supported catalytically active phase. This interactive catalyst-support system enabled stable high electrochemical activity through the synergic integration of the distinct properties of the two phases.

  9. Preparation of a self-humidifying membrane electrode assembly for fuel cell and its performance analysis

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Mao, Zongqiang; Xu, Jingming; Xie, Xiaofeng; Yang, Lizhai

    2003-10-01

    A novel nano-porous material SiO2-gel was prepared. After being purified by H2O2, then protonized by H2SO4 and desiccated in vacuum, the SiO2-gel, mixed with Nafion solution, was coated between an electrode and a solid electrolyte, which made a new type of self-humidifying membrane electrode assembly. The SiO2 powder was characterized by FTIR, BET and XRD. The surface of the electrodes was characterized by SEM and EDS. The performances of the self-humidifying membrane electrodes were analyzed by polarization discharge and AC impedance under the operation modes of external humidification and self-humidification respectively. Experimental-results indicated that the SiO2 powder held super-hydrophilicity, and the layer of SiO2 and Nafion polymer between electrode and solid electrolyte expanded three-dimension electrochemistry reac-tion area, maintained stability of catalyst layer and enhanced back-diffusion of water from cathode to anode, so the PEM Fuel cell can generate electricity at self-humidification mode. The power density of single PEM fuel cell reached 1.5 W/cm2 under 0.2 Mpa, 70°C and dry hydrogen and oxygen.

  10. Quantity Distance for the Kennedy Space Center Vehicle Assembly Building for Solid Propellant Fueled Launchers

    NASA Technical Reports Server (NTRS)

    Stover, Steven; Diebler, Corey; Frazier, Wayne

    2006-01-01

    The NASA KSC VAB was built to process Apollo launchers in the 1960's, and later adapted to process Space Shuttles. The VAB has served as a place to assemble solid rocket motors (5RM) and mate them to the vehicle's external fuel tank and Orbiter before rollout to the launch pad. As Space Shuttle is phased out, and new launchers are developed, the VAB may again be adapted to process these new launchers. Current launch vehicle designs call for continued and perhaps increased use of SRM segments; hence, the safe separation distances are in the process of being re-calculated. Cognizant NASA personnel and the solid rocket contractor have revisited the above VAB QD considerations and suggest that it may be revised to allow a greater number of motor segments within the VAB. This revision assumes that an inadvertent ignition of one SRM stack in its High Bay need not cause immediate and complete involvement of boosters that are part of a vehicle in adjacent High Bay. To support this assumption, NASA and contractor personnel proposed a strawman test approach for obtaining subscale data that may be used to develop phenomenological insight and to develop confidence in an analysis model for later use on full-scale situations. A team of subject matter experts in safety and siting of propellants and explosives were assembled to review the subscale test approach and provide options to NASA. Upon deliberations regarding the various options, the team arrived at some preliminary recommendations for NASA.

  11. Radionuclide characterization of reactor decommissioning waste and spent fuel assembly hardware

    SciTech Connect

    Robertson, D.E.; Thomas, C.W.; Wynhoff, N.L.; Hetzer, D.C. )

    1991-01-01

    This study is providing the NRC and licensees with a more comprehensive and defensible data base and regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during a two-phase sampling, measurement, and assessment program involving the actual decommissioning of Shippingport Station and the detailed analysis of neutron-activated materials from commercial reactors. Radiological characterization studies at Shippingport have shown that neutron activation products, dominated by {sup 60}Co, comprised the residual radionuclide inventory. Fission products and transuranic radionuclides were essentially absent. Waste classification assessments have shown that all decommissioning materials (except reactor pressure vessel internals) could be disposed of as Class A waste. Measurements and assessments of spent fuel assembly hardware have shown that {sup 63}Ni, {sup 59}Ni, and {sup 94}Nb sometimes greatly exceed the 10CFR61 Class C limit for some components, and thus would require disposal in a high level waste repository. These measurements are providing the basis for an assessment of the disposal options for these types of highly radioactive materials. Comparisons of predicted (calculated) activation product concentrations with the empirical data are providing as assessment of the accuracy of calculational methods. Work is continuing on radiological characterization of spent PWR and BWR control rod assemblies. Additional work is planned on current issues/problems relating to reactor decommissioning. These efforts will be reported on in future supplements to this report. 20 refs., 23 figs., 34 tabs.

  12. Computational simulation of thermal hydraulic processes in the model LMFBR fuel assembly

    NASA Astrophysics Data System (ADS)

    Bayaskhalanov, M. V.; Merinov, I. G.; Korsun, A. S.; Vlasov, M. N.

    2017-01-01

    The aim of this study was to verify a developed software module on the experimental fuel assembly with partial blockage of the flow section. The developed software module for simulation of thermal hydraulic processes in liquid metal coolant is based on theory of anisotropic porous media with specially developed integral turbulence model for coefficients determination. The finite element method is used for numerical solution. Experimental data for hexahedral assembly with electrically heated smooth cylindrical rods cooled by liquid sodium are considered. The results of calculation obtained with developed software module for a case of corner blockade are presented. The calculated distribution of coolant velocities showed the presence of the vortex flow behind the blockade. Features vortex region are in a good quantitative and qualitative agreement with experimental data. This demonstrates the efficiency of the hydrodynamic unit for developed software module. But obtained radial coolant temperature profiles differ significantly from the experimental in the vortex flow region. The possible reasons for this discrepancy were analyzed.

  13. Towards neat methanol operation of direct methanol fuel cells: a novel self-assembled proton exchange membrane.

    PubMed

    Li, Jing; Cai, Weiwei; Ma, Liying; Zhang, Yunfeng; Chen, Zhangxian; Cheng, Hansong

    2015-04-18

    We report here a novel proton exchange membrane with remarkably high methanol-permeation resistivity and excellent proton conductivity enabled by carefully designed self-assembled ionic conductive channels. A direct methanol fuel cell utilizing the membrane performs well with a 20 M methanol solution, very close to the concentration of neat methanol.

  14. Artificial Neural Network-Based Monitoring of the Fuel Assembly Temperature Sensor and FPGA Implementation

    SciTech Connect

    2015-07-01

    Numerous methods have been developed around the world to model the dynamic behavior and detect a faulty operating mode of a temperature sensor. In this context, we present in this study a new method based on the dependence between the fuel assembly temperature profile on control rods positions, and the coolant flow rate in a nuclear reactor. This seems to be possible since the insertion of control rods at different axial positions and variations in flow rate of the reactor coolant results in different produced thermal power in the reactor. This is closely linked to the instant fuel rod temperature profile. In a first step, we selected parameters to be used and confirmed the adequate correlation between the chosen parameters and those to be estimated by the proposed monitoring system. In the next step, we acquired and de-noised the data of corresponding parameters, the qualified data is then used to design and train the artificial neural network. The effective data denoising was done by using the wavelet transform to remove a various kind of artifacts such as inherent noise. With the suitable choice of wavelet level and smoothing method, it was possible for us to remove all the non-required artifacts with a view to verify and analyze the considered signal. In our work, several potential mother wavelet functions (Haar, Daubechies, Bi-orthogonal, Reverse Bi-orthogonal, Discrete Meyer and Symlets) were investigated to find the most similar function with the being processed signals. To implement the proposed monitoring system for the fuel rod temperature sensor (03 wire RTD sensor), we used the Bayesian artificial neural network 'BNN' technique to model the dynamic behavior of the considered sensor, the system correlate the estimated values with the measured for the concretization of the proposed system we propose an FPGA (field programmable gate array) implementation. The monitoring system use the correlation. (authors)

  15. Examination of stainless steel-clad Connecticut Yankee fuel assembly S004 after storage in borated water

    SciTech Connect

    Langstaff, D.C.; Bailey, W.J.; Johnson, A.B. Jr.; Landow, M.P.; Pasupathi, V.; Klingensmith, R.W.

    1982-09-01

    A Connecticut Yankee fuel assembly (S004) was tested nondestructively and destructively. It was concluded that no obvious degradation of the 304L stainless steel-clad spent fuel from assembly S004 occurred during 5 y of storage in borated water. Furthermore, no obvious degradation due to the pool environment occurred on 304 stainless steel-clad rods in assemblies H07 and G11, which were stored for shorter periods but contained operationally induced cladding defects. The seam welds in the cladding on fuel rods from assembly S004, H07, and G11 were similar in that they showed a wrought microstructure with grains noticeably smaller than those in the cladding base metal. The end cap welds showed a dendritically cored structure, typical of rapidly quenched austenitic weld metal. Some intergranular melting may have occurred in the heat-affected zone (HAZ) in the cladding adjacent to the end cap welds in rods from assemblies S004 and H07. However, the weld areas did not show evidence of corrosion-induced degradation.

  16. Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency.

    PubMed

    Leman, Géraldine; Gueguen, Naïg; Desquiret-Dumas, Valérie; Kane, Mariame Selma; Wettervald, Céline; Chupin, Stéphanie; Chevrollier, Arnaud; Lebre, Anne-Sophie; Bonnefont, Jean-Paul; Barth, Magalie; Amati-Bonneau, Patrizia; Verny, Christophe; Henrion, Daniel; Bonneau, Dominique; Reynier, Pascal; Procaccio, Vincent

    2015-08-01

    Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOEpatents

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  18. In-field Calibration of a Fast Neutron Collar for the Measurement of Fresh PWR Fuel Assemblies

    SciTech Connect

    Swinhoe, Martyn Thomas; De Baere, Paul

    2015-04-17

    A new neutron collar has been designed for the measurement of fresh LEU fuel assemblies. This collar uses “fast mode” measurement to reduce the effect of burnable poison rods on the assay and thus reduce the dependence on the operator’s declaration. The new collar design reduces effect of poison rods considerably. Instead of 12 pins of 5.2% Gd causing a 20.4% effect, as in the standard thermal mode collar, they only cause a 3.2% effect in the new collar. However it has higher efficiency so that reasonably precise measurements can be made in 25 minutes, rather than the 1 hour of previous collars. The new collar is fully compatible with the use of the standard data collection and analysis code INCC. This report describes the calibration that was made with a mock-up assembly at Los Alamos National Laboratory and with actual assemblies at the AREVA Fuel fabrication Plant in Lingen, Germany.

  19. Improved strategies for fuel assembly, pin cell and reflector cross section generation using the discrete ordinates code DORT

    SciTech Connect

    Pautz, A.

    2006-07-01

    Additional functionality has been added to the Discrete Ordinates transport code DORT in order to produce few-group, homogenized cross sections for typical fuel assembly geometries, both on the assembly and the pin cell level. It is demonstrated, that even on the pin-by-pin level almost perfect reaction rate and pin power conservation can be achieved by using the so called Super-homogenization (SPH) algorithm. This method also allows the generation of appropriate reflector cross sections, which can significantly improve the quality of pin power values in the vicinity of moderator regions. The effectiveness of this approach is demonstrated on several examples, including single fuel assembly calculations as well as the C5G7-MOX and the recent NBA VENUS-7 plutonium recycling benchmark problems. (authors)

  20. Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly

    PubMed Central

    Vartak, Rasika; Deng, Janice; Fang, Hezhi; Bai, Yidong

    2015-01-01

    Respiratory Complex I deficiency is implicated in numerous degenerative and metabolic diseases. In particular, mutations in several mitochondrial DNA (mtDNA)-encoded Complex I subunits including ND4, ND5 and ND6 have been identified in several neurological diseases. We previously demonstrated that these subunits played essential roles in Complex I assembly which in turn affected mitochondrial function. Here, we carried out a comprehensive study of the Complex I assembly pathway. We identified a new Complex I intermediate containing both membrane and matrix arms at an early assembly stage. We find that lack of the ND6 subunit does not hinder membrane arm formation; instead it recruits ND1 and ND5 enter the intermediate. While ND4 is important for the formation of the newly identified intermediate, the addition of ND5 stabilizes the complex and is required for the critical transition from Complex I to supercomplexes assembly. As a result, the Complex I assembly pathway has been redefined in this study. PMID:25887158

  1. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes.

    PubMed

    Grabow, Wade W; Zakrevsky, Paul; Afonin, Kirill A; Chworos, Arkadiusz; Shapiro, Bruce A; Jaeger, Luc

    2011-02-09

    RNA is an attractive biopolymer for nanodesign of self-assembling particles for nanobiotechnology and synthetic biology. Here, we experimentally characterize by biochemical and biophysical methods the formation of thermostable and ribonuclease resistant RNA nanorings previously proposed by computational design. High yields of fully programmable nanorings were produced based on several RNAI/IIi kissing complex variants selected for their ability to promote polygon self-assembly. This self-assembly strategy relying on the particular geometry of bended kissing complexes has potential for developing short interfering RNA delivery agents.

  2. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes

    PubMed Central

    Grabow, Wade W.; Zakrevsky, Paul; Afonin, Kirill A.; Chworos, Arkadiusz; Shapiro, Bruce A.; Jaeger, Luc

    2011-01-01

    RNA is an attractive biopolymer for nanodesign of self-assembling particles for nanobiotechnology and synthetic biology. Here, we experimentally characterize by biochemical and biophysical methods the formation of thermostable and ribonuclease resistant RNA nanorings previously proposed by computational design. High yields of fully programmable nanorings were produced based on several RNAI/IIi kissing complex variants selected for their ability to promote polygon self-assembly. This self-assembly strategy relying on the particular geometry of bended kissing complexes has potential for developing siRNAs delivery agents. PMID:21229999

  3. Non-intrusive Experimental Study on Nuclear Fuel Assembly Response to Seismic Loads

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Noah A.

    length run times needed to capture the effect of the seismic transients on the fluid velocity field. A custom DIC system is used to non-intrusively measure the structural displacements at the same time the PIV measurements are recorded. With this non-intrusive system, simultaneous full field fluid velocity measurements and structural response measurements to seismic forcing are obtained for the first time. Furthermore, the RIM facility allows for fluid measurements within the fuel bundle that have not been accessible before. This work presents data on fluid structure interaction (FSI) measurements in still fluid, and with axial flow at Reynolds number typical to a PWR, with seismic forcing from a shake table. Analysis of the cases in still water will show development of a vertical pulsatile flow, in addition to a cross flow, created by the horizontal oscillations of the fuel bundle driving pressure gradients in both the vertical and spanwise directions. Furthermore in still water the onset of vortices being shed from the bundle oscillations is found to occur at a critical Keulegan Carpenter number which has a direct impact on bundle dynamics. The insights from the still water cases are paramount in improving the understanding of what occurs in the more complex case with axial flow, where the vertical pulsatile flow is found to be prevalent as well. Additionally this data provides for the first time high spatial and temporal full field fluid velocity measurements that can be used for validation of numerical codes.

  4. Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States

    Treesearch

    Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar

    2012-01-01

    Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...

  5. Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host–guest complexation

    PubMed Central

    Wang, Jie; Qiu, Zhiqiang; Wang, Yiming; Li, Li; Pham, Duc-Truc; Prud’homme, Robert K

    2016-01-01

    Summary The employment of cyclodextrin host–guest complexation to construct supramolecular assemblies with an emphasis on polymer networks is reviewed. The main driving force for this supramolecular assembly is host–guest complexation between cyclodextrin hosts and guest groups either of which may be discrete molecular species or substituents on a polymer backbone. The effects of such complexation on properties at the molecular and macroscopic levels are discussed. It is shown that cyclodextrin complexation may be used to design functional polymer materials with tailorable properties, especially for photo-, pH-, thermo- and redox-responsiveness and self-healing. PMID:26877808

  6. Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host-guest complexation.

    PubMed

    Wang, Jie; Qiu, Zhiqiang; Wang, Yiming; Li, Li; Guo, Xuhong; Pham, Duc-Truc; Lincoln, Stephen F; Prud'homme, Robert K

    2016-01-01

    The employment of cyclodextrin host-guest complexation to construct supramolecular assemblies with an emphasis on polymer networks is reviewed. The main driving force for this supramolecular assembly is host-guest complexation between cyclodextrin hosts and guest groups either of which may be discrete molecular species or substituents on a polymer backbone. The effects of such complexation on properties at the molecular and macroscopic levels are discussed. It is shown that cyclodextrin complexation may be used to design functional polymer materials with tailorable properties, especially for photo-, pH-, thermo- and redox-responsiveness and self-healing.

  7. Biotin-Streptavidin Affinity Purification of RNA-Protein Complexes Assembled In Vitro.

    PubMed

    Hou, Shuai; Shi, Lei; Lei, Haixin

    2016-01-01

    RNA-protein complexes are essential for the function of different RNAs, yet purification of specific RNA-protein complexes can be complicated and is a major obstacle in understanding the mechanism of regulatory RNAs. Here we present a protocol to purify RNA-protein complexes assembled in vitro based on biotin-streptavidin affinity. In vitro transcribed RNA is labeled with (32)P and biotin, ribonucleoprotein particles or RNPs are assembled by incubation of RNA in nuclear extract and fractionated using gel filtration, and RNP fractions are pooled for biotin-streptavidin affinity purification. The amount of RNA-protein complexes purified following this protocol is sufficient for mass spectrometry.

  8. Structural insights into the assembly and regulation of distinct viral capsid complexes

    PubMed Central

    Sarker, Subir; Terrón, María C.; Khandokar, Yogesh; Aragão, David; Hardy, Joshua M.; Radjainia, Mazdak; Jiménez-Zaragoza, Manuel; de Pablo, Pedro J.; Coulibaly, Fasséli; Luque, Daniel; Raidal, Shane R.; Forwood, Jade K.

    2016-01-01

    The assembly and regulation of viral capsid proteins into highly ordered macromolecular complexes is essential for viral replication. Here, we utilize crystal structures of the capsid protein from the smallest and simplest known viruses capable of autonomously replicating in animal cells, circoviruses, to establish structural and mechanistic insights into capsid morphogenesis and regulation. The beak and feather disease virus, like many circoviruses, encode only two genes: a capsid protein and a replication initiation protein. The capsid protein forms distinct macromolecular assemblies during replication and here we elucidate these structures at high resolution, showing that these complexes reverse the exposure of the N-terminal arginine rich domain responsible for DNA binding and nuclear localization. We show that assembly of these complexes is regulated by single-stranded DNA (ssDNA), and provide a structural basis of capsid assembly around single-stranded DNA, highlighting novel binding interfaces distinct from the highly positively charged N-terminal ARM domain. PMID:27698405

  9. Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes.

    PubMed

    Beier, Sebastian; Himmelbach, Axel; Schmutzer, Thomas; Felder, Marius; Taudien, Stefan; Mayer, Klaus F X; Platzer, Matthias; Stein, Nils; Scholz, Uwe; Mascher, Martin

    2016-07-01

    Hierarchical shotgun sequencing remains the method of choice for assembling high-quality reference sequences of complex plant genomes. The efficient exploitation of current high-throughput technologies and powerful computational facilities for large-insert clone sequencing necessitates the sequencing and assembly of a large number of clones in parallel. We developed a multiplexed pipeline for shotgun sequencing and assembling individual bacterial artificial chromosomes (BACs) using the Illumina sequencing platform. We illustrate our approach by sequencing 668 barley BACs (Hordeum vulgare L.) in a single Illumina HiSeq 2000 lane. Using a newly designed parallelized computational pipeline, we obtained sequence assemblies of individual BACs that consist, on average, of eight sequence scaffolds and represent >98% of the genomic inserts. Our BAC assemblies are clearly superior to a whole-genome shotgun assembly regarding contiguity, completeness and the representation of the gene space. Our methods may be employed to rapidly obtain high-quality assemblies of a large number of clones to assemble map-based reference sequences of plant and animal species with complex genomes by sequencing along a minimum tiling path. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Reconstructing prions: fibril assembly from simple yeast to complex mammals.

    PubMed

    Sigurdson, Christina; Polymenidou, Magdalini; Aguzzi, Adriano

    2005-01-01

    With the epizootics of bovine spongiform encephalopathy (BSE) in North American cattle, BSE infections in goats, new forms of human Creutzfeldt-Jakob disease (CJD) and the spread of chronic wasting disease in North American deer and elk, one wonders whether we are gaining control over the transmissible spongiform encephalopathies (TSEs). Although many basic scientific questions in the prion field remain hotly debated and unresolved [1], including the function of the cellular prion protein (PrP), light has been shed on a diverse array of topics, and discussions at the latest TSE meeting ranged broadly from yeast prion fibril assembly to mammalian prion neurotoxicity to future TSE therapies. Prion diseases are protein misfolding disorders which cause degeneration of the central nervous system (CNS) and ultimately death. The unique and surprising feature is that prion diseases are infectious. Yeast prions are derived from proteins differing from the mammalian PrP but are also infectious, self propagating proteins which typically can convert into an aggregated, amyloidogenic form having high beta sheet content. The simple yeast organism has served as a valuable model for understanding aspects of prion biology, such as prion fibril assembly.

  11. The Prp19 complex directly functions in mitotic spindle assembly.

    PubMed

    Hofmann, Jennifer C; Tegha-Dunghu, Justus; Dräger, Stefanie; Will, Cindy L; Lührmann, Reinhard; Gruss, Oliver J

    2013-01-01

    The conserved Prp19 (pre-RNA processing 19) complex is required for pre-mRNA splicing in eukaryotic nuclei. Recent RNAi screens indicated that knockdown of Prp19 complex subunits strongly delays cell proliferation. Here we show that knockdown of the smallest subunit, BCAS2/Spf27, destabilizes the entire complex and leads to specific mitotic defects in human cells. These could result from splicing failures in interphase or reflect a direct function of the complex in open mitosis. Using Xenopus extracts, in which cell cycle progression and spindle formation can be reconstituted in vitro, we tested Prp19 complex functions during a complete cell cycle and directly in open mitosis. Strikingly, immunodepletion of the complex either before or after interphase significantly reduces the number of intact spindles, and increases the percentage of spindles with lower microtubule density and impaired metaphase alignment of chromosomes. Our data identify the Prp19 complex as the first spliceosome subcomplex that directly contributes to mitosis in vertebrates independently of its function in interphase.

  12. Improvement of the thermal margins in the Swedish Ringhals-3 PWR by introducing new fuel assemblies with thorium

    SciTech Connect

    Lau, C. W.; Demaziere, C.; Nylen, H.; Sandberg, U.

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium to fissile material. In this paper, the focus is on using thorium to improve the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. All the key safety parameters, such as isothermal temperature coefficient of reactivity, Doppler temperature of reactivity, boron worth, shutdown margins and fraction of delayed neutrons are studied in this paper, and are within safety limits for the new core design using the uranium-thorium-based fuel assemblies. The calculations were performed by the two-dimensional transport code CASMO-4E and the two group steady-state three dimensional nodal code SIMULATE-3 from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core designs with less neutron leakage or could be used in power uprates to offer efficient safety margins. (authors)

  13. Development of inexpensive metal macrocyclic complexes for use in fuel cells

    SciTech Connect

    Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.; Cropley, C.C.; Hamdan, M.

    1998-01-01

    Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.

  14. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  15. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods

    SciTech Connect

    Margaret A. Marshall

    2012-09-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this

  16. Critical Configuration and Physics Measurements for Assemblies of U(93.15)O2 Fuel Rods

    SciTech Connect

    Margaret A. Marshall

    2013-03-01

    A series of critical experiments were completed in 1962-1965 at Oak Ridge National Laboratory’s (ORNL’s) Critical Experiments Facility (CEF) in support of the Medium-Power Reactor Experiments (MPRE) program. In the late 1950s, efforts were made to study “power plants for the production of electrical power in space vehicles.”(a) The MPRE program was a part of those efforts and studied the feasibility of a stainless-steel system, boiling potassium 1 MW(t), or about 140 kW(e), reactor. The program was carried out in [fiscal years] 1964, 1965, and 1966. A summary of the program’s effort was compiled in 1967. The delayed critical experiments were a mockup of a small, potassium-cooled space power reactor for validation of reactor calculations and reactor physics methods. Initial experiments, performed in November and December of 1962, consisted of a core of unmoderated stainless-steel tubes, each containing 26 UO2 fuel pellets, surrounded by a graphite reflector. Measurements were made to determine critical reflector arrangements, fission-rate distributions, and cadmium ratio distributions. Subsequent experiments used beryllium reflectors and also measured the reactivity for various materials placed in the core. “The [assemblies were built] on [a] vertical assembly machine so that the movable part was the core and bottom reflector.”(Reference 1) The experiment studied in this evaluation was the first of the series and had the fuel tubes packed tightly into a 22.87 cm outside diameter (OD) core tank. Two critical configurations were found by varying the amount of graphite reflector (References 1 and 2). Once the critical configurations had been achieved, various measurements of reactivity, relative axial and radial activation rates of 235U, , and cadmium ratios were performed. The cadmium ratio, reactivity, and activation rate measurements performed on the critical configurations are described in Sections 1.3, 1.4 and 1.7, respectively. Information for this

  17. Determination of optimal imaging parameters for the reconstruction of a nuclear fuel assembly using limited angle neutron tomography

    NASA Astrophysics Data System (ADS)

    Abir, M. I.; Islam, F. F.; Craft, A.; Williams, W. J.; Wachs, D. M.; Chichester, D. L.; Meyer, M. K.; Lee, H. K.

    2016-01-01

    The core components of nuclear reactors (e.g., fuel assemblies, spacer grids, control rods) encounter harsh environments due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of nuclear power plants; post-irradiation examination (PIE) can reveal information about the integrity of these components. Neutron computed tomography (CT) is one important PIE measurement tool for nondestructively evaluating the structural integrity of these items. CT typically requires many projections to be acquired from different view angles, after which a mathematical algorithm is used for image reconstruction. However, when working with heavily irradiated materials and irradiated nuclear fuel, obtaining many projections is laborious and expensive. Image reconstruction from a smaller number of projections has been explored to achieve faster and more cost-efficient PIE. Classical reconstruction methods (e.g., filtered backprojection), unfortunately, do not typically offer stable reconstructions from a highly asymmetric, few-projection data set and often create severe streaking artifacts. We propose an iterative reconstruction technique to reconstruct curved, plate-type nuclear fuel assemblies using limited-angle CT. The performance of the proposed method is assessed using simulated data and validated through real projections. We also discuss the systematic strategy for establishing the conditions of reconstructions and finding the optimal imaging parameters for reconstructions of the fuel assemblies from few projections using limited-angle CT. Results show that a fuel assembly can be reconstructed using limited-angle CT if 36 or more projections are taken from a particular direction with 1° angular increment.

  18. Assembly and Stacking of Flow-through Enzymatic Bioelectrodes for High Power Glucose Fuel Cells.

    PubMed

    Abreu, Caroline; Nedellec, Yannig; Gross, Andrew J; Ondel, Olivier; Buret, Francois; Goff, Alan Le; Holzinger, Michael; Cosnier, Serge

    2017-07-19

    Bioelectrocatalytic carbon nanotube based pellets comprising redox enzymes were directly integrated in a newly conceived flow-through fuel cell. Porous electrodes and a separating cellulose membrane were housed in a glucose/oxygen biofuel cell design with inlets and outlets allowing the flow of electrolyte through the entire fuel cell. Different flow setups were tested and the optimized single cell setup, exploiting only 5 mmol L(-1) glucose, showed an open circuit voltage (OCV) of 0.663 V and provided 1.03 ± 0.05 mW at 0.34 V. Furthermore, different charge/discharge cycles at 500 Ω and 3 kΩ were applied to optimize long-term stability leading to 3.6 J (1 mW h) of produced electrical energy after 48 h. Under continuous discharge at 6 kΩ, about 0.7 mW h could be produced after a 24 h period. The biofuel cell design further allows a convenient assembly of several glucose biofuel cells in reduced volumes and their connection in parallel or in series. The configuration of two biofuel cells connected in series showed an OCV of 1.35 V and provided 1.82 ± 0.09 mW at 0.675 V, and when connected in parallel, showed an OCV of 0.669 V and provided 1.75 ± 0.09 mW at 0.381 V. The presented design is conceived to stack an unlimited amount of biofuel cells to reach the necessary voltage and power for portable electronic devices without the need for step-up converters or energy managing systems.

  19. Decay characteristics of once-through LWR and LMFBR spent fuels, high-level wastes, and fuel-assembly structural material wastes

    SciTech Connect

    Croff, A.G.; Alexander, C.W.

    1980-11-01

    The decay characteristics of spent fuel, high-level waste, and fuel-assembly structural material (cladding) waste are presented in the form of ORIGEN2 output tables for (1) a pressurized water reactor operating on a once-through cycle with low-enrichment uranium feed, (2) a boiling-water reactor operating on a once-through cycle with low-enrichment uranium feed, and (3) a liquid-metal fast breeder reactor being fueled with depleted uranium enriched with discharged light water reactor plutonium on a once-through basis. The decay characteristics given include the mass (g), radioactivity (Ci), thermal power (W), photon activity (photons/s and MeV/W-s in 18 energy groups), and neutron activity (neutrons/s) from (..cap alpha..,n) and spontaneous fission events. The first three characteristics are given for each element and for the principal nuclide contributors to the activation products, actinides, and fission products. Also included are a summary description of the ORIGEN2 reactor models that form the basis for the calculated results and a physical description of the fuel assemblies for the three reactors.

  20. Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells.

    PubMed

    Zhuang, Li; Zhou, Shungui; Wang, Yueqiang; Liu, Chengshuai; Geng, Shu

    2009-08-15

    One of the main challenges for scaling up microbial fuel cell (MFC) technologies is developing low-cost cathode architectures that can generate high power output. This study developed a simple method to convert non-conductive material (canvas cloth) into an electrically conductive and catalytically active cloth cathode assembly (CCA) in one step. The membrane-less CCA was simply constructed by coating the cloth with conductive paint (nickel-based or graphite-based) and non-precious metal catalyst (MnO(2)). Under the fed-batch mode, the tubular air-chamber MFCs equipped with Ni-CCA and graphite-CCA generated the maximum power densities of 86.03 and 24.67 mW m(-2) (normalized to the projected cathode surface area), or 9.87 and 2.83 W m(-3) (normalized to the reactor liquid volume), respectively. The higher power output of Ni-CCA-MFC was associated with the lower volume resistivity of Ni-CCA (1.35 x 10(-2)Omega cm) than that of graphite-CCA (225 x 10(-2)Omega cm). At an external resistance of 100 Omega, Ni-CCA-MFC and graphite-CCA-MFC removed approximately 95% COD in brewery wastewater within 13 and 18d, and achieved coulombic efficiencies of 30.2% and 19.5%, respectively. The accumulated net water loss through the cloth by electro-osmotic drag exhibited a linear correlation (R(2)=0.999) with produced coulombs. With a comparable power production, such CCAs only cost less than 5% of the previously reported membrane cathode assembly. The new cathode configuration here is a mechanically durable, economical system for MFC scalability.

  1. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  2. Mesoscale assembly of chemically modified graphene into complex cellular networks

    PubMed Central

    Barg, Suelen; Perez, Felipe Macul; Ni, Na; do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo

    2014-01-01

    The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm−3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities. PMID:24999766

  3. Folding and self-assembly of a small protein complex

    PubMed Central

    Sieradzan, Adam K.; Liwo, Adam; Hansmann, Ulrich H.E.

    2012-01-01

    The synthetic homotetrameric ββα (BBAT1) protein possesses a stable quaternary structure with a ββα fold. Because of its small size (a total of 84 residues), the homotetramer is an excellent model system with which to study the self-assembly and protein-protein interactions. We find from replica exchange molecular dynamics simulations with the coarse-grain UNRES force field that the folding and association pathway consists of three well-separated steps, where that association to a tetramer precedes and facilitates folding of the four chains. At room temperature the tetramer exists in an ensemble of diverse structures. The crystal structure becomes energetically favored only when the molecule is put in a dense and crystal-like environment. The observed picture of folding promoted by association may mirror the mechanism according to which intrinsically unfolded proteins assume their functional structure. PMID:24039552

  4. Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores.

    PubMed

    Sun, Changxia; Fu, Guo; Ciziene, Danguole; Stewart, Murray; Musser, Siegfried M

    2013-04-23

    Nuclear pore complexes (NPCs) mediate the exchange of macromolecules between the cytoplasm and the nucleoplasm. Soluble nuclear transport receptors bind signal-dependent cargos to form transport complexes that diffuse through the NPC and are then disassembled. Although transport receptors enable the NPC's permeability barrier to be overcome, directionality is established by complex assembly and disassembly. Here, we delineate the choreography of importin-α/CAS complex assembly and disassembly in permeabilized cells, using single-molecule fluorescence resonance energy transfer and particle tracking. Monitoring interaction sequences in intact NPCs ensures spatiotemporal preservation of structures and interactions critical for activity in vivo. We show that key interactions between components are reversible, multiple outcomes are often possible, and the assembly and disassembly of complexes are precisely controlled to occur at the appropriate place and time. Importin-α mutants that impair interactions during nuclear import were used together with cytoplasmic Ran GTPase-activating factors to demonstrate that importin-α/CAS complexes form in the nuclear basket region, at the termination of protein import, and disassembly of importin-α/CAS complexes after export occurs in the cytoplasmic filament region of the NPC. Mathematical models derived from our data emphasize the intimate connection between transport and the coordinated assembly and disassembly of importin-α/CAS complexes for generating productive transport cycles.

  5. Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores

    PubMed Central

    Sun, Changxia; Fu, Guo; Ciziene, Danguole; Stewart, Murray; Musser, Siegfried M.

    2013-01-01

    Nuclear pore complexes (NPCs) mediate the exchange of macromolecules between the cytoplasm and the nucleoplasm. Soluble nuclear transport receptors bind signal-dependent cargos to form transport complexes that diffuse through the NPC and are then disassembled. Although transport receptors enable the NPC's permeability barrier to be overcome, directionality is established by complex assembly and disassembly. Here, we delineate the choreography of importin-α/CAS complex assembly and disassembly in permeabilized cells, using single-molecule fluorescence resonance energy transfer and particle tracking. Monitoring interaction sequences in intact NPCs ensures spatiotemporal preservation of structures and interactions critical for activity in vivo. We show that key interactions between components are reversible, multiple outcomes are often possible, and the assembly and disassembly of complexes are precisely controlled to occur at the appropriate place and time. Importin-α mutants that impair interactions during nuclear import were used together with cytoplasmic Ran GTPase-activating factors to demonstrate that importin-α/CAS complexes form in the nuclear basket region, at the termination of protein import, and disassembly of importin-α/CAS complexes after export occurs in the cytoplasmic filament region of the NPC. Mathematical models derived from our data emphasize the intimate connection between transport and the coordinated assembly and disassembly of importin-α/CAS complexes for generating productive transport cycles. PMID:23569239

  6. Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity.

    PubMed

    Joseph, Anna-Maria; Hood, David A

    2012-03-01

    We investigated the assembly of the TOM complex within skeletal muscle under conditions of chronic contractile activity-induced mitochondrial biogenesis. Tom40 import into mitochondria was increased by chronic contractile activity, as was its time-dependent assembly into the TOM complex. These changes coincided with contractile activity-induced augmentations in the expression of key protein import machinery components Tim17, Tim23, and Tom22, as well as the cytosolic chaperone Hsp90. These data indicate the adaptability of the TOM protein import complex and suggest a regulatory role for the assembly of this complex in exercise-induced mitochondrial biogenesis. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  7. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    DOEpatents

    Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  8. Monte Carlo simulations of a differential die-away instrument for determination of fissile content in spent fuel assemblies

    SciTech Connect

    Lee, Taehoon; Menlove, Howard O; Swinhoe, Martyn T; Tobin, Stephen J

    2010-01-01

    The differential die-away (DDA) technique has been simulated by using the MCNPX code to quantify its capability to measure the fissile content in spent fuel assemblies, For 64 different spent fuel cases of various initial enrichment, burnup and cooling time, the count rate and signal to background ratios of the DDA system were obtained, where neutron backgrounds are mainly coming from the {sup 244}Cm of the spent fuel. To quantify the total fissile mass of spent fuel, a concept of the effective {sup 239}Pu mass was introduced by weighting the relative contribution to the signal of {sup 235}U and {sup 241}Pu compared to {sup 239}Pu and the calibration curves of DDA count rate vs. {sup 239}Pu{sub eff} were obtained by using the MCNPX code. With a deuterium-tritium (DT) neutron generator of 10{sup 9} n/s strength, signal to background ratios of sufficient magnitude are acquired for a DDA system with the spent fuel assembly in water.

  9. TRUMP-BD: A computer code for the analysis of nuclear fuel assemblies under severe accident conditions

    SciTech Connect

    Lombardo, N.J.; Marseille, T.J.; White, M.D.; Lowery, P.S.

    1990-06-01

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic in form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.

  10. Dual Detection of Chromosomes and Microtubules by the Chromosomal Passenger Complex Drives Spindle Assembly

    PubMed Central

    Tseng, Boo Shan; Tan, Lei; Kapoor, Tarun M.; Funabiki, Hironori

    2010-01-01

    SUMMARY Chromosome-dependent spindle assembly requires the chromosomal recruitment and activation of Aurora B, the kinase subunit of the chromosomal passenger complex (CPC). It remains unclear how the chromosome-activated kinase spatially transmits signals to organize the micron scale spindle. Here we reveal that the CPC must detect two structures, chromosomes and microtubules, to support spindle assembly in Xenopus egg extracts. While Aurora B is enriched on chromosomes in metaphase, we establish that a fraction of Aurora B is targeted to the metaphase spindle and phosphorylates microtubule-bound substrates. We demonstrate that chromosomally activated Aurora B must be targeted to microtubules to drive spindle assembly. Moreover, although the CPC-microtubule interaction can activate Aurora B, which further promotes microtubule assembly, this positive feedback is not initiated without chromosomes. We propose that the dual detection of chromosomes and microtubules by the CPC is a critical step in assembling spindles around and only around chromosomes. PMID:20627073

  11. Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly.

    PubMed

    Tseng, Boo Shan; Tan, Lei; Kapoor, Tarun M; Funabiki, Hironori

    2010-06-15

    Chromosome-dependent spindle assembly requires the chromosomal recruitment and activation of Aurora B, the kinase subunit of the chromosomal passenger complex (CPC). It remains unclear how the chromosome-activated kinase spatially transmits signals to organize the micron-scale spindle. Here we reveal that the CPC must detect two structures, chromosomes and microtubules, to support spindle assembly in Xenopus egg extracts. While Aurora B is enriched on chromosomes in metaphase, we establish that a fraction of Aurora B is targeted to the metaphase spindle and phosphorylates microtubule-bound substrates. We demonstrate that chromosomally activated Aurora B must be targeted to microtubules to drive spindle assembly. Moreover, although the CPC-microtubule interaction can activate Aurora B, which further promotes microtubule assembly, this positive feedback is not initiated without chromosomes. We propose that the dual detection of chromosomes and microtubules by the CPC is a critical step in assembling spindles around and only around chromosomes.

  12. Assembly of Slx4 signaling complexes behind DNA replication forks.

    PubMed

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.

  13. Assembly of Slx4 signaling complexes behind DNA replication forks

    PubMed Central

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-01-01

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. PMID:26113155

  14. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.

    PubMed

    Munson, M; Chen, X; Cocina, A E; Schultz, S M; Hughson, F M

    2000-10-01

    In the eukaryotic secretory and endocytic pathways, transport vesicles shuttle cargo among intracellular organelles and to and from the plasma membrane. Cargo delivery entails fusion of the transport vesicle with its target, a process thought to be mediated by membrane bridging SNARE protein complexes. Temporal and spatial control of intracellular trafficking depends in part on regulating the assembly of these complexes. In vitro, SNARE assembly is inhibited by the closed conformation adopted by the syntaxin family of SNAREs. To visualize this closed conformation directly, the X-ray crystal structure of a yeast syntaxin, Sso1p, has been determined and refined to 2.1 A resolution. Mutants designed to destabilize the closed conformation exhibit accelerated rates of SNARE assembly. Our results provide insight into the mechanism of SNARE assembly and its intramolecular and intermolecular regulation.

  15. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials.

    PubMed

    Mendes, Ana C; Baran, Erkan T; Reis, Rui L; Azevedo, Helena S

    2013-01-01

    Self-assembly is a ubiquitous process in biology where it plays numerous important roles and underlies the formation of a wide variety of complex biological structures. Over the past two decades, materials scientists have aspired to exploit nature's assembly principles to create artificial materials, with hierarchical structures and tailored properties, for the fabrication of functional devices. Toward this goal, both biological and synthetic building blocks have been subject of extensive research in self-assembly. In fact, molecular self-assembly is becoming increasingly important for the fabrication of biomaterials because it offers a great platform for constructing materials with high level of precision and complexity, integrating order and dynamics, to achieve functions such as stimuli-responsiveness, adaptation, recognition, transport, and catalysis. The importance of peptide self-assembling building blocks has been recognized in the last years, as demonstrated by the literature available on the topic. The simple structure of peptides, as well as their facile synthesis, makes peptides an excellent family of structural units for the bottom-up fabrication of complex nanobiomaterials. Additionally, peptides offer a great diversity of biochemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties to form self-assembled structures with different molecular configurations. The motivation of this review is to provide an overview on the design principles for peptide self-assembly and to illustrate how these principles have been applied to manipulate their self-assembly across the scales. Applications of self-assembling peptides as nanobiomaterials, including carriers for drug delivery, hydrogels for cell culture and tissue repair are also described.

  16. Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly.

    PubMed

    Min, Booki; Poulsen, Finn Willy; Thygesen, Anders; Angelidaki, Irini

    2012-08-01

    Membrane electrode assemblies (MEAs) were incorporated into the cathode chamber of a submersible microbial fuel cell (SMFC). A close contact of the electrodes could produce high power output from SMFC in which anode and cathode electrodes were connected in parallel. In polarization test, the maximum power density was 631 mW/m(2) at current density of 1772 mA/m(2) at 82 Ω. With 180-Ω external resistance, one set of the electrodes on the same side could generate more power density of 832±4 mW/m(2) with current generation of 1923±4 mA/m(2). The anode, inclusive a biofilm behaved ohmic, whereas a Tafel type behavior was observed for the oxygen reduction. The various impedance contributions from electrodes, electrolyte and membrane were analyzed and identified by electrochemical impedance spectroscopy. Air flow rate to the cathode chamber affected microbial voltage generation, and higher power generation was obtained at relatively low air flow less than 2 mL/min. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations.

    PubMed

    Zhang, Fang; Ahn, Yongtae; Logan, Bruce E

    2014-01-01

    The effectiveness of refinery wastewater (RW) treatment using air-cathode, microbial fuel cells (MFCs) was examined relative to previous tests based on completely anaerobic microbial electrolysis cells (MECs). MFCs were configured with separator electrode assembly (SEA) or spaced electrode (SPA) configurations to measure power production and relative impacts of oxygen crossover on organics removal. The SEA configuration produced a higher maximum power density (280±6 mW/m(2); 16.3±0.4 W/m(3)) than the SPA arrangement (255±2 mW/m(2)) due to lower internal resistance. Power production in both configurations was lower than that obtained with the domestic wastewater (positive control) due to less favorable (more positive) anode potentials, indicating poorer biodegradability of the RW. MFCs with RW achieved up to 84% total COD removal, 73% soluble COD removal and 92% HBOD removal. These removals were higher than those previously obtained in mini-MEC tests, as oxygen crossover from the cathode enhanced degradation in MFCs compared to MECs.

  18. Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Leray, O.; Hursin, M.; Ferroukhi, H.; Vasiliev, A.; Aures, A.; Bostelmann, F.; Zwermann, W.; Cabellos, O.; Diez, C. J.; Dyrda, J.; Garcia-Herranz, N.; Castro, E.; van der Marck, S.; Sjöstrand, H.; Hernandez, A.; Fleming, M.; Sublet, J.-Ch.; Fiorito, L.

    2017-01-01

    The impact of the current nuclear data library covariances such as in ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, SCALE and TENDL, for relevant current reactors is presented in this work. The uncertainties due to nuclear data are calculated for existing PWR and BWR fuel assemblies (with burn-up up to 40 GWd/tHM, followed by 10 years of cooling time) and for a simplified PWR full core model (without burn-up) for quantities such as k∞, macroscopic cross sections, pin power or isotope inventory. In this work, the method of propagation of uncertainties is based on random sampling of nuclear data, either from covariance files or directly from basic parameters. Additionally, possible biases on calculated quantities are investigated such as the self-shielding treatment. Different calculation schemes are used, based on CASMO, SCALE, DRAGON, MCNP or FISPACT-II, thus simulating real-life assignments for technical-support organizations. The outcome of such a study is a comparison of uncertainties with two consequences. One: although this study is not expected to lead to similar results between the involved calculation schemes, it provides an insight on what can happen when calculating uncertainties and allows to give some perspectives on the range of validity on these uncertainties. Two: it allows to dress a picture of the state of the knowledge as of today, using existing nuclear data library covariances and current methods.

  19. Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system

    DOEpatents

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

  20. Improvements of MCOR: A Monte Carlo depletion code system for fuel assembly reference calculations

    SciTech Connect

    Tippayakul, C.; Ivanov, K.; Misu, S.

    2006-07-01

    This paper presents the improvements of MCOR, a Monte Carlo depletion code system for fuel assembly reference calculations. The improvements of MCOR were initiated by the cooperation between the Penn State Univ. and AREVA NP to enhance the original Penn State Univ. MCOR version in order to be used as a new Monte Carlo depletion analysis tool. Essentially, a new depletion module using KORIGEN is utilized to replace the existing ORIGEN-S depletion module in MCOR. Furthermore, the online burnup cross section generation by the Monte Carlo calculation is implemented in the improved version instead of using the burnup cross section library pre-generated by a transport code. Other code features have also been added to make the new MCOR version easier to use. This paper, in addition, presents the result comparisons of the original and the improved MCOR versions against CASMO-4 and OCTOPUS. It was observed in the comparisons that there were quite significant improvements of the results in terms of k{sub inf}, fission rate distributions and isotopic contents. (authors)

  1. The iron-sulphur protein Ind1 is required for effective complex I assembly.

    PubMed

    Bych, Katrine; Kerscher, Stefan; Netz, Daili J A; Pierik, Antonio J; Zwicker, Klaus; Huynen, Martijn A; Lill, Roland; Brandt, Ulrich; Balk, Janneke

    2008-06-18

    NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi-subunit protein complex containing eight iron-sulphur (Fe-S) clusters. Little is known about the assembly of complex I and its Fe-S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide-binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe-S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two-dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe-S clusters showed that only a minor fraction (approximately 20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe-4S] cluster that was readily transferred to an acceptor Fe-S protein. Our data suggest that Ind1 facilitates the assembly of Fe-S cofactors and subunits of complex I.

  2. The iron–sulphur protein Ind1 is required for effective complex I assembly

    PubMed Central

    Bych, Katrine; Kerscher, Stefan; Netz, Daili J A; Pierik, Antonio J; Zwicker, Klaus; Huynen, Martijn A; Lill, Roland; Brandt, Ulrich; Balk, Janneke

    2008-01-01

    NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial inner membrane is a multi-subunit protein complex containing eight iron–sulphur (Fe–S) clusters. Little is known about the assembly of complex I and its Fe–S clusters. Here, we report the identification of a mitochondrial protein with a nucleotide-binding domain, named Ind1, that is required specifically for the effective assembly of complex I. Deletion of the IND1 open reading frame in the yeast Yarrowia lipolytica carrying an internal alternative NADH dehydrogenase resulted in slower growth and strongly decreased complex I activity, whereas the activities of other mitochondrial Fe–S enzymes, including aconitase and succinate dehydrogenase, were not affected. Two-dimensional gel electrophoresis, in vitro activity tests and electron paramagnetic resonance signals of Fe–S clusters showed that only a minor fraction (∼20%) of complex I was assembled in the ind1 deletion mutant. Using in vivo and in vitro approaches, we found that Ind1 can bind a [4Fe–4S] cluster that was readily transferred to an acceptor Fe–S protein. Our data suggest that Ind1 facilitates the assembly of Fe–S cofactors and subunits of complex I. PMID:18497740

  3. NDUFA9 point mutations cause a variable mitochondrial complex I assembly defect.

    PubMed

    Baertling, Fabian; Sánchez-Caballero, Laura; van den Brand, Mariël Am; Fung, Cheuk-Wing; Chan, Sophelia Hoi-Shan; Wong, Virginia Chun-Nei; Hellebrekers, Debby M E; de Coo, Irenaeus F M; Smeitink, Jan Am; Rodenburg, Richard Jt; Nijtmans, Leo Gj

    2017-07-03

    Mitochondrial respiratory chain complex I consists of 44 different subunits and contains three functional modules: the Q-, the N- and the P-module. NDUFA9 is a Q-module subunit required for complex I assembly or stability. However, its role in complex I biogenesis has not been studied in patient fibroblasts. So far, a single patient carrying an NDUFA9 variant with a severe neonatally fatal phenotype has been reported. Via exome sequencing, we identified a novel homozygous NDUFA9 missense variant in another patient with a milder phenotype including childhood-onset progressive generalized dystonia and axonal peripheral neuropathy. We performed complex I assembly analysis using primary skin fibroblasts of both patients. Reduced complex I abundance and an accumulation of Q-module subassemblies were present in both patients but more pronounced in the severe clinical phenotype patient. The latter displayed additional accumulation of P-module subassemblies, which was not present in the milder-phenotype patient. Lentiviral complementation of both patient fibroblast cell lines with wild-type NDUFA9 rescued complex I deficiency and the assembly defects. Our report further characterizes the phenotypic spectrum of NDUFA9 deficiency and demonstrates that the severity of the clinical phenotype correlates with the severity of the effects of the different NDUFA9 variants on complex I assembly. This article is protected by copyright. All rights reserved.

  4. Complex shape product tolerance and accuracy control method for virtual assembly

    NASA Astrophysics Data System (ADS)

    Ma, Huiping; Jin, Yuanqiang; Zhang, Xiaoguang; Zhou, Hai

    2015-02-01

    The simulation of virtual assembly process for engineering design lacks of accuracy in the software of three-dimension CAD at present. Product modeling technology with tolerance, assembly precision preanalysis technique and precision control method are developed. To solve the problem of lack of precision information transmission in CAD, tolerance mathematical model of Small Displacement Torsor (SDT) is presented, which can bring about technology transfer and establishment of digital control function for geometric elements from the definition, description, specification to the actual inspection and evaluation process. Current tolerance optimization design methods for complex shape product are proposed for optimization of machining technology, effective cost control and assembly quality of the products.

  5. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition

    PubMed Central

    Wang, Yongming; Pryputniewicz-Dobrinska, Diana; Nagy, Enikö Éva; Kaufman, Christopher D.; Singh, Manvendra; Yant, Steve; Wang, Jichang; Dalda, Anna; Kay, Mark A.; Ivics, Zoltán; Izsvák, Zsuzsanna

    2017-01-01

    The functional relevance of the inverted repeat structure (IR/DR) in a subgroup of the Tc1/mariner superfamily of transposons has been enigmatic. In contrast to mariner transposition, where a topological filter suppresses single-ended reactions, the IR/DR orchestrates a regulatory mechanism to enforce synapsis of the transposon ends before cleavage by the transposase occurs. This ordered assembly process shepherds primary transposase binding to the inner 12DRs (where cleavage does not occur), followed by capture of the 12DR of the other transposon end. This extra layer of regulation suppresses aberrant, potentially genotoxic recombination activities, and the mobilization of internally deleted copies in the IR/DR subgroup, including Sleeping Beauty (SB). In contrast, internally deleted sequences (MITEs) are preferred substrates of mariner transposition, and this process is associated with the emergence of Hsmar1-derived miRNA genes in the human genome. Translating IR/DR regulation to in vitro evolution yielded an SB transposon version with optimized substrate recognition (pT4). The ends of SB transposons excised by a K248A excision+/integration- transposase variant are processed by hairpin resolution, representing a link between phylogenetically, and mechanistically different recombination reactions, such as V(D)J recombination and transposition. Such variants generated by random mutation might stabilize transposon-host interactions or prepare the transposon for a horizontal transfer. PMID:27913727

  6. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition.

    PubMed

    Wang, Yongming; Pryputniewicz-Dobrinska, Diana; Nagy, Enikö Éva; Kaufman, Christopher D; Singh, Manvendra; Yant, Steve; Wang, Jichang; Dalda, Anna; Kay, Mark A; Ivics, Zoltán; Izsvák, Zsuzsanna

    2017-01-09

    The functional relevance of the inverted repeat structure (IR/DR) in a subgroup of the Tc1/mariner superfamily of transposons has been enigmatic. In contrast to mariner transposition, where a topological filter suppresses single-ended reactions, the IR/DR orchestrates a regulatory mechanism to enforce synapsis of the transposon ends before cleavage by the transposase occurs. This ordered assembly process shepherds primary transposase binding to the inner 12DRs (where cleavage does not occur), followed by capture of the 12DR of the other transposon end. This extra layer of regulation suppresses aberrant, potentially genotoxic recombination activities, and the mobilization of internally deleted copies in the IR/DR subgroup, including Sleeping Beauty (SB). In contrast, internally deleted sequences (MITEs) are preferred substrates of mariner transposition, and this process is associated with the emergence of Hsmar1-derived miRNA genes in the human genome. Translating IR/DR regulation to in vitro evolution yielded an SB transposon version with optimized substrate recognition (pT4). The ends of SB transposons excised by a K248A excision(+)/integration(-) transposase variant are processed by hairpin resolution, representing a link between phylogenetically, and mechanistically different recombination reactions, such as V(D)J recombination and transposition. Such variants generated by random mutation might stabilize transposon-host interactions or prepare the transposon for a horizontal transfer. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Stereochemistry in self-assembled encapsulation complexes: Constellational isomerism

    PubMed Central

    Yamanaka, Masamichi; Shivanyuk, Alexander; Rebek, Julius

    2004-01-01

    A previously uncharacterized form of stereochemistry, constellational isomerism, is described. The isomerism arises from different arrangements of small-molecule guests in the space of a self-assembled, cylindrical host. The cylindrical host detains three molecules each of CHCl3, 1,2-dichloroethane, or isopropyl chloride. The exchange of guests in and out of the host is slow on the NMR time scale. The dimensions of the capsular host and the sizes of the guests hinder the mobility of molecules inside, and separate NMR signals are seen for guests at the ends of the capsule and those near its center. When two different guests are encapsulated, the spectra show up to four additional species: two sets of constellational isomers. In every pairwise combination of the three guests, all isomers could be identified. The equilibrium distributions of isomers depended on the concentrations of the guests in the bulk solution. The relative stability of the constellational isomers was a function of the polarity of the guest molecule and its ability to interact with the components of the capsule. The different arrangements represent information, and some possibilities for their use in data storage are proposed. PMID:14981269

  8. Rational design of self-assembly pathways for complex multicomponent structures.

    PubMed

    Jacobs, William M; Reinhardt, Aleks; Frenkel, Daan

    2015-05-19

    The field of complex self-assembly is moving toward the design of multiparticle structures consisting of thousands of distinct building blocks. To exploit the potential benefits of structures with such "addressable complexity," we need to understand the factors that optimize the yield and the kinetics of self-assembly. Here we use a simple theoretical method to explain the key features responsible for the unexpected success of DNA-brick experiments, which are currently the only demonstration of reliable self-assembly with such a large number of components. Simulations confirm that our theory accurately predicts the narrow temperature window in which error-free assembly can occur. Even more strikingly, our theory predicts that correct assembly of the complete structure may require a time-dependent experimental protocol. Furthermore, we predict that low coordination numbers result in nonclassical nucleation behavior, which we find to be essential for achieving optimal nucleation kinetics under mild growth conditions. We also show that, rather surprisingly, the use of heterogeneous bond energies improves the nucleation kinetics and in fact appears to be necessary for assembling certain intricate 3D structures. This observation makes it possible to sculpt nucleation pathways by tuning the distribution of interaction strengths. These insights not only suggest how to improve the design of structures based on DNA bricks, but also point the way toward the creation of a much wider class of chemical or colloidal structures with addressable complexity.

  9. Meshing complex macro-scale objects into self-assembling bricks

    PubMed Central

    Hacohen, Adar; Hanniel, Iddo; Nikulshin, Yasha; Wolfus, Shuki; Abu-Horowitz, Almogit; Bachelet, Ido

    2015-01-01

    Self-assembly provides an information-economical route to the fabrication of objects at virtually all scales. However, there is no known algorithm to program self-assembly in macro-scale, solid, complex 3D objects. Here such an algorithm is described, which is inspired by the molecular assembly of DNA, and based on bricks designed by tetrahedral meshing of arbitrary objects. Assembly rules are encoded by topographic cues imprinted on brick faces while attraction between bricks is provided by embedded magnets. The bricks can then be mixed in a container and agitated, leading to properly assembled objects at high yields and zero errors. The system and its assembly dynamics were characterized by video and audio analysis, enabling the precise time- and space-resolved characterization of its performance and accuracy. Improved designs inspired by our system could lead to successful implementation of self-assembly at the macro-scale, allowing rapid, on-demand fabrication of objects without the need for assembly lines. PMID:26226488

  10. Examining the Scope and Thermodynamics of Assembly in Nesting Complexes Comprising Molecular Baskets and TPA Ligands.

    PubMed

    Zhiquan, Lei; Polen, Shane M; Hadad, Christopher M; RajanBabu, T V; Badjić, Jovica D

    2017-09-15

    Molecular baskets capture various tris(2-pyridylmethyl)amine ligands, with and without zinc(II) cation, to form nesting complexes. The results of our computational (MD) and experimental ((1)H NMR/ITC) studies suggest that the assembly is driven by the hydrophobic effect with the charge of complementary molecular components playing an important role in the formation of nesting complexes. In brief, the complexation only takes place when the basket and the ligand carry either oppositely charged or noncharged groups.

  11. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  12. Non-Canonical Interleukin 23 Receptor Complex Assembly

    PubMed Central

    Schröder, Jutta; Moll, Jens M.; Baran, Paul; Grötzinger, Joachim; Scheller, Jürgen; Floss, Doreen M.

    2015-01-01

    IL-23, composed of the cytokine subunit p19 and the soluble α receptor subunit p40, binds to a receptor complex consisting of the IL-23 receptor (IL-23R) and the IL-12 receptor β1 (IL-12Rβ1). Complex formation was hypothesized to follow the “site I-II-III” architectural paradigm, with site I of p19 being required for binding to p40, whereas sites II and III of p19 mediate binding to IL-12Rβ1 and IL-23R, respectively. Here we show that the binding mode of p19 to p40 and of p19 to IL-23R follow the canonical site I and III paradigm but that interaction of IL-23 to IL-12Rβ1 is independent of site II in p19. Instead, binding of IL-23 to the cytokine binding module of IL-12Rβ1 is mediated by domains 1 and 2 of p40 via corresponding site II amino acids of IL-12Rβ1. Moreover, domains 2 and 3 of p40 were sufficient for complex formation with p19 and to induce binding of p19 to IL-23R. The Fc-tagged fusion protein of p40_D2D3/p19 did, however, not act as a competitive IL-23 antagonist but, at higher concentrations, induced proliferation via IL-23R but independent of IL-12Rβ1. On the basis of our experimental validation, we propose a non-canonical topology of the IL-23·IL-23R·IL-12Rβ1 complex. Furthermore, our data help to explain why p40 is an antagonist of IL-23 and IL-12 signaling and show that site II of p19 is dispensable for IL-23 signaling. PMID:25371211

  13. Enantioselective assembly of a ruthenium(II) polypyridyl complex into a double helix.

    PubMed

    Van Hecke, Kristof; Cardinaels, Thomas; Nockemann, Peter; Jacobs, Jeroen; Vanpraet, Louis; Parac-Vogt, Tatjana N; Van Deun, Rik; Binnemans, Koen; Van Meervelt, Luc

    2014-08-18

    Evolution can increase the complexity of matter by self-organization into helical architectures, the best example being the DNA double helix. One common aspect, apparently shared by most of these architectures, is the presence of covalent bonds within the helix backbone. Here, we report the unprecedented crystal structures of a metal complex that self-organizes into a continuous double helical structure, assembled by non-covalent building blocks. Built up solely by weak stacking interactions, this alternating tread stairs-like double helical assembly mimics the DNA double helix structure. Starting from a racemic mixture in aqueous solution, the ruthenium(II) polypyridyl complex forms two polymorphic structures of a left-handed double helical assembly of only the Λ-enantiomer. The stacking of the helices is different in both polymorphs: a crossed woodpile structure versus a parallel columnar stacking. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Differential die-away instrument: Report on comparison of fuel assembly experiments and simulations

    SciTech Connect

    Goodsell, Alison Victoria; Henzl, Vladimir; Swinhoe, Martyn Thomas; Rael, Carlos D.; Desimone, David J.

    2015-01-14

    Experimental results of the assay of mock-up (fresh) fuel with the differential die-away (DDA) instrument were compared to the Monte Carlo N-Particle eXtended (MCNPX) simulation results. Most principal experimental observables, the die-away time and the in tegral of the DDA signal in several time domains, have been found in good agreement with the MCNPX simulation results. The remaining discrepancies between the simulation and experimental results are likely due to small differences between the actual experimental setup and the simulated geometry, including uncertainty in the DT neutron generator yield. Within this report we also present a sensitivity study of the DDA instrument which is a complex and sensitive system and demonstrate to what degree it can be impacted by geometry, material composition, and electronics performance.

  15. Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly

    PubMed Central

    Tardiff, Daniel F.; Rosbash, Michael

    2006-01-01

    Pre-mRNA splicing is catalyzed by the spliceosome, a macromolecular machine dedicated to intron removal and exon ligation. Despite an abundance of in vitro information and a small number of in vivo studies, the pathway of yeast (Saccharomyces cerevisiae) in vivo spliceosome assembly remains uncertain. To address this situation, we combined in vivo depletions of U1, U2, or U5 snRNAs with chromatin immunoprecipitation (ChIP) analysis of other splicing snRNPs along an intron-containing gene. The data indicate that snRNP recruitment to nascent pre-mRNA predominantly proceeds via the canonical three-step assembly pathway: first U1, then U2, and finally the U4/U6•U5 tri-snRNP. Tandem affinity purification (TAP) using a U2 snRNP-tagged protein allowed the characterization of in vivo assembled higher-order splicing complexes. Consistent with an independent snRNP assembly pathway, we observed high levels of U1–U2 prespliceosomes under U5-depletion conditions, and we observed significant levels of a U2/U5/U6/Prp19-complex mature splicing complex under wild-type conditions. These complexes have implications for the steady-state distribution of snRNPs within nuclei and also reinforce the stepwise recruitment of U1, U2, and the tri-snRNP during in vivo spliceosome assembly. PMID:16618970

  16. Chromatin remodeling complexes in the assembly of long noncoding RNA-dependent nuclear bodies.

    PubMed

    Kawaguchi, Tetsuya; Hirose, Tetsuro

    2015-01-01

    Paraspeckles are subnuclear structures that assemble on nuclear paraspeckle assembly transcript 1 (NEAT1) long noncoding (lnc)RNA. Paraspeckle formation requires appropriate NEAT1 biogenesis and subsequent assembly with multiple prion-like domain (PLD) containing RNA-binding proteins. We found that SWI/SNF chromatin remodeling complexes function as paraspeckle components that interact with paraspeckle proteins (PSPs) and NEAT1. SWI/SNF complexes play an essential role in paraspeckle formation that does not require their ATP-dependent chromatin remodeling activity. Instead, SWI/SNF complexes facilitate organization of the PSP interaction network required for intact paraspeckle assembly. SWI/SNF complexes may collectively bind multiple PSPs to recruit them onto NEAT1. SWI/SNF complexes are also required for Sat III (Satellite III) lncRNA-dependent formation of nuclear stress bodies under heat shock conditions. Organization of the lncRNA-dependent omega speckle in Drosophila also depends on the chromatin remodeling complex. These findings raise the possibility that a common mechanism controls the formation of lncRNA-dependent nuclear body architecture.

  17. ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.

    SciTech Connect

    Lell, R. M.; Schaefer, R. W.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; Nuclear Engineering Division; Inst. of Physics and Power Engineering

    2007-10-01

    Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration

  18. The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis▿

    PubMed Central

    Volokhina, Elena B.; Beckers, Frank; Tommassen, Jan; Bos, Martine P.

    2009-01-01

    The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the β-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysis of genome sequences revealed homologs of BamC, BamD (previously described as ComL), and BamE and a second BamE homolog, Mlp. No homolog of BamB was found. As in E. coli, ComL/BamD appeared essential for viability and for OMP assembly, and it could not be replaced by its E. coli homolog. BamE was not essential but was found to contribute to the efficiency of OMP assembly and to the maintenance of OM integrity. A bamC mutant showed only marginal OMP assembly defects, but the impossibility of creating a bamC bamE double mutant further indicated the function of BamC in OMP assembly. An mlp mutant was unaffected in OMP assembly. The results of copurification assays demonstrated the association of BamC, ComL, and BamE with Omp85. Semi-native gel electrophoresis identified the RmpM protein as an additional component of the Omp85 complex, which was confirmed in copurification assays. RmpM was not required for OMP folding but stabilized OMP complexes. Thus, the Bam complex in N. meningitidis consists of Omp85/BamA plus RmpM, BamC, ComL/BamD, and BamE, of which ComL/BamD and BamE appear to be the most important accessory components for OMP assembly. PMID:19767435

  19. Optimization of enrichment distributions in nuclear fuel assemblies loaded with uranium and plutonium via a modified linear programming technique

    NASA Astrophysics Data System (ADS)

    Cuevas Vivas, Gabriel Francisco

    A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed OXide (MOX) fuels. MOX isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide-range of applicability of the optimization technique. The features of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or

  20. Monitoring assembly of ribonucleoprotein complexes by isothermal titration calorimetry

    PubMed Central

    Recht, Michael I.; Ryder, Sean P.; Williamson, James R.

    2010-01-01

    Isothermal titration calorimetry (ITC) is a useful technique to study RNA-protein interactions, as it provides the only method by which the thermodynamic parameters of free energy, enthalpy, and entropy can be directly determined. This chapter presents a general procedure for studying RNA-protein interactions using ITC, and gives specific examples for monitoring the binding of Caenorhabditis elegans GLD-1 STAR domain to TGE RNA and the binding of Aquifex aeolicus S6:S18 ribosomal protein heterodimer to an S15-rRNA complex. PMID:18982287

  1. Determination of the rod-wise fission gas release fraction in a complete fuel assembly using non-destructive gamma emission tomography

    NASA Astrophysics Data System (ADS)

    Holcombe, Scott; Andersson, Peter; Svärd, Staffan Jacobsson; Hallstadius, Lars

    2016-11-01

    A gamma tomography instrument has been developed at the Halden Boiling Water Reactor (HBWR) in cooperation between the Institute for Energy Technology, Westinghouse (Sweden) and Uppsala University. The instrument is used to record the gamma radiation field surrounding complete fuel assemblies and consists of a shielded enclosure with fixtures to accurately position the fuel and detector relative to each other. A High Purity Germanium detector is used for acquiring high-resolution spectroscopic data, allowing for analysis of multiple gamma-ray peaks. Using the data extracted from the selected peaks, tomographic reconstruction algorithms are used to reproduce the corresponding spatial gamma-ray source distributions within the fuel assembly. With this method, rod-wise data can be can be deduced without the need to dismantle the fuel. In this work, the tomographic device has been experimentally benchmarked for non-destructive rod-wise determination of the Fission Gas Release (FGR) fraction. Measurements were performed on the fuel-stack and gas-plenum regions of a complete fuel assembly, and quantitative tomographic reconstructions of the measurement data were performed in order to determine the rod-wise ratio of 85Kr in the gas plenum to 137Cs in the fuel stack. The rod-wise ratio of 85Kr/137Cs was, in turn, used to calculate the rod-wise FGR fraction. In connection to the tomographic measurements, the fuel rods were also measured individually using gamma scanning in order to provide an experimental benchmark for the tomographic method. Fuel rods from two donor driver fuel assemblies were placed into a nine-rod HBWR driver fuel assembly configuration. In order to provide a challenging measurement object and thus an appropriate benchmark for the tomographic method, five rods were taken from an assembly with a burnup of 51 MWd/kgUO2, and four rods were from an assembly with a burnup of 26 MWd/kgUO2. At the time of the measurements, the nine rods had cooled for

  2. Ionic Complexes of Metal Oxide Clusters for Versatile Self-Assemblies.

    PubMed

    Li, Bao; Li, Wen; Li, Haolong; Wu, Lixin

    2017-06-20

    The combination of rational design of building components and suitable utilization of driving force affords spontaneous molecular assemblies with well-defined nanostructure and morphology over multiple length scales. The serious challenges in constructing assemblies with structural advantages for the realization of functions programmed into the building components usually lie ahead since the process that occurs does not always follow the expected roadmap in the absence of external intervention. Thus, prefabricated intermediates that help in governing the target self-assemblies are developed into a type of unique building blocks. Metal oxide cluster polyanions are considered as a type of molecular nanoclusters with size scale and structural morphology similar to those of many known inorganic particles and clusters but possess distinctive characteristics. Following the understanding of these clusters in self-assembly and the rationalization of their most efficient design strategy and approach, the obtained fundamental principles can also be applied in common nanoparticle- and cluster-based systems. On the other hand, the deliberate synergy offered by organic countercations that support the self-assembly of these clusters greatly expands the opportunity for the functionalization of complex building units via control of multiple interactions. The ionic combination of the inorganic clusters with hydrophilicity and the cationic organic component with hydrophobicity leads to discrete properties of the complexes. Significantly, the core-shell structure with rigid-flexible features and amphiphilicity will pave the way for hierarchical self-assemblies of the obtained complexes, while the intrinsic characteristics of the metal oxide clusters can be modulated through external physicochemical stimuli. Within this context, over the past decade we have extensively explored the ionic combination of inorganic polyanionic clusters with cationic organic amphiphiles and devoted our

  3. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  4. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  5. Precision Assembly of Complex Cellular Microenvironments using Holographic Optical Tweezers

    PubMed Central

    Kirkham, Glen R.; Britchford, Emily; Upton, Thomas; Ware, James; Gibson, Graham M.; Devaud, Yannick; Ehrbar, Martin; Padgett, Miles; Allen, Stephanie; Buttery, Lee D.; Shakesheff, Kevin

    2015-01-01

    The accurate study of cellular microenvironments is limited by the lack of technologies that can manipulate cells in 3D at a sufficiently small length scale. The ability to build and manipulate multicellular microscopic structures will facilitate a more detailed understanding of cellular function in fields such as developmental and stem cell biology. We present a holographic optical tweezers based technology to accurately generate bespoke cellular micro-architectures. Using embryonic stem cells, 3D structures of varying geometries were created and stabilized using hydrogels and cell-cell adhesion methods. Control of chemical microenvironments was achieved by the temporal release of specific factors from polymer microparticles positioned within these constructs. Complex co-culture micro-environmental analogues were also generated to reproduce structures found within adult stem cell niches. The application of holographic optical tweezers-based micromanipulation will enable novel insights into biological microenvironments by allowing researchers to form complex architectures with sub-micron precision of cells, matrices and molecules. PMID:25716032

  6. Structure and Assembly Pathway of the Ribosome Quality Control Complex

    PubMed Central

    Shao, Sichen; Brown, Alan; Santhanam, Balaji; Hegde, Ramanujan S.

    2015-01-01

    Summary During ribosome-associated quality control, stalled ribosomes are split into subunits and the 60S-housed nascent polypeptides are poly-ubiquitinated by Listerin. How this low-abundance ubiquitin ligase targets rare stall-generated 60S among numerous empty 60S is unknown. Here, we show that Listerin specificity for nascent chain-60S complexes depends on nuclear export mediator factor (NEMF). The 3.6 Å cryo-EM structure of a nascent chain-containing 60S-Listerin-NEMF complex revealed that NEMF makes multiple simultaneous contacts with 60S and peptidyl-tRNA to sense nascent chain occupancy. Structural and mutational analyses showed that ribosome-bound NEMF recruits and stabilizes Listerin’s N-terminal domain, while Listerin’s C-terminal RWD domain directly contacts the ribosome to position the adjacent ligase domain near the nascent polypeptide exit tunnel. Thus, highly specific nascent chain targeting by Listerin is imparted by the avidity gained from a multivalent network of context-specific individually weak interactions, highlighting a new principle of client recognition during protein quality control. PMID:25578875

  7. Precision assembly of complex cellular microenvironments using holographic optical tweezers.

    PubMed

    Kirkham, Glen R; Britchford, Emily; Upton, Thomas; Ware, James; Gibson, Graham M; Devaud, Yannick; Ehrbar, Martin; Padgett, Miles; Allen, Stephanie; Buttery, Lee D; Shakesheff, Kevin

    2015-02-26

    The accurate study of cellular microenvironments is limited by the lack of technologies that can manipulate cells in 3D at a sufficiently small length scale. The ability to build and manipulate multicellular microscopic structures will facilitate a more detailed understanding of cellular function in fields such as developmental and stem cell biology. We present a holographic optical tweezers based technology to accurately generate bespoke cellular micro-architectures. Using embryonic stem cells, 3D structures of varying geometries were created and stabilized using hydrogels and cell-cell adhesion methods. Control of chemical microenvironments was achieved by the temporal release of specific factors from polymer microparticles positioned within these constructs. Complex co-culture micro-environmental analogues were also generated to reproduce structures found within adult stem cell niches. The application of holographic optical tweezers-based micromanipulation will enable novel insights into biological microenvironments by allowing researchers to form complex architectures with sub-micron precision of cells, matrices and molecules.

  8. Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold.

    PubMed

    Gaik, Monika; Flemming, Dirk; von Appen, Alexander; Kastritis, Panagiotis; Mücke, Norbert; Fischer, Jessica; Stelter, Philipp; Ori, Alessandro; Bui, Khanh Huy; Baßler, Jochen; Barbar, Elisar; Beck, Martin; Hurt, Ed

    2015-02-02

    Nuclear pore complexes (NPCs) are huge assemblies formed from ∼30 different nucleoporins, typically organized in subcomplexes. One module, the conserved Nup82 complex at the cytoplasmic face of NPCs, is crucial to terminate mRNA export. To gain insight into the structure, assembly, and function of the cytoplasmic pore filaments, we reconstituted in yeast the Nup82-Nup159-Nsp1-Dyn2 complex, which was suitable for biochemical, biophysical, and electron microscopy analyses. Our integrative approach revealed that the yeast Nup82 complex forms an unusual asymmetric structure with a dimeric array of subunits. Based on all these data, we developed a three-dimensional structural model of the Nup82 complex that depicts how this module might be anchored to the NPC scaffold and concomitantly can interact with the soluble nucleocytoplasmic transport machinery. © 2015 Gaik et al.

  9. Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold

    PubMed Central

    Gaik, Monika; Flemming, Dirk; von Appen, Alexander; Kastritis, Panagiotis; Mücke, Norbert; Fischer, Jessica; Stelter, Philipp; Ori, Alessandro; Bui, Khanh Huy; Baßler, Jochen; Barbar, Elisar

    2015-01-01

    Nuclear pore complexes (NPCs) are huge assemblies formed from ∼30 different nucleoporins, typically organized in subcomplexes. One module, the conserved Nup82 complex at the cytoplasmic face of NPCs, is crucial to terminate mRNA export. To gain insight into the structure, assembly, and function of the cytoplasmic pore filaments, we reconstituted in yeast the Nup82–Nup159–Nsp1–Dyn2 complex, which was suitable for biochemical, biophysical, and electron microscopy analyses. Our integrative approach revealed that the yeast Nup82 complex forms an unusual asymmetric structure with a dimeric array of subunits. Based on all these data, we developed a three-dimensional structural model of the Nup82 complex that depicts how this module might be anchored to the NPC scaffold and concomitantly can interact with the soluble nucleocytoplasmic transport machinery. PMID:25646085

  10. Development of the JAERI (Japan Atomic Energy Research Institute) fuel cleanup system for tests at the Tritium Systems Test Assembly

    SciTech Connect

    Konishi, S.; Inoue, M.; Hayashi, T.; Okuno, K.; Naruse, Y. ); Barnes, J.W.; Anderson, J.L. )

    1990-01-01

    Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI) has developed the Fuel Cleanup System (FCU) which accepts simulated fusion reactor exhaust and produces pure hydrogen isotopes and tritium-free waste. The major components are: a palladium diffuser, a catalytic reactor, cold traps, a ceramic electrolysis cell, and zirconium-cobalt beds. In 1988, an integrated loop of the FCU process was installed in the TPL and a number of hot'' runs were performed to study the system characteristics and improve system performance. Under the US-Japan collaboration program, the JAERI Fuel Cleanup System'' (JFCU) was designed and fabricated by JAERI/TPL for testing at the Tritium Systems Test Assembly (TSTA) in Los Alamos National Laboratory as a major subsystem of the simulated fusion fuel cycle. The JFCU was installed in the TSTA in early 1990.

  11. CFD Simulations of a Flow Mixing and Heat Transfer Enhancement in an Advanced LWR Nuclear Fuel Assembly

    SciTech Connect

    In, Wang-Kee; Chun, Tae-Hyun; Shin, Chang-Hwan; Oh, Dong-Seok

    2007-07-01

    A computational fluid dynamics (CFD) analysis has been performed to investigate a flow-mixing and heat-transfer enhancement caused by a mixing-vane spacer in a LWR fuel assembly which is a rod bundle. This paper presents the CFD simulations of a flow mixing and heat transfer in a fully heated 5x5 array of a rod bundle with a split-vane and hybrid-vane spacer. The CFD prediction at a low Reynolds number of 42,000 showed a reasonably good agreement of the initial heat transfer enhancement with the measured one for a partially heated experiment using a similar spacer structure. The CFD simulation also predicted the decay rate of a normalized Nusselt number downstream of the split-vane spacer which agrees fairly well with those of the experiment and the correlation. The CFD calculations for the split vane and hybrid vane at the LWR operating conditions(Re = 500,000) predicted hot fuel spots in a streaky structure downstream of the spacer, which occurs due to the secondary flow occurring in an opposite direction near the fuel rod. However, the split-vane and hybrid-vane spacers are predicted to significantly enhance the overall heat transfer of a LWR nuclear fuel assembly. (authors)

  12. Complex Archimedean tiling self-assembled from DNA nanostructures.

    PubMed

    Zhang, Fei; Liu, Yan; Yan, Hao

    2013-05-22

    Archimedean tilings are periodic polygonal tessellations that are created by placing regular polygons edge-to-edge around a vertex to fill the plane. Here we show that three- and four-arm DNA junction tiles with specifically designed arm lengths and intertile sticky-end interactions can be used to form sophisticated two-dimensional (2D) and three-dimensional (3D) tessellation patterns. We demonstrate two different complex Archimedean patterns, (3(3).4(2)) and (3(2).4.3.4), and the formation of 2D lattices, 3D tubes, and sealed polygon-shaped pockets from the tessellations. The successful growth of hybrid DNA tile motif arrays suggests that it maybe possible to generate 2D quasi-crystals from DNA building blocks.

  13. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II*

    PubMed Central

    Maklashina, Elena; Rajagukguk, Sany; Starbird, Chrystal A.; McDonald, W. Hayes; Koganitsky, Anna; Eisenbach, Michael; Iverson, Tina M.; Cecchini, Gary

    2016-01-01

    Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation. PMID:26644464

  14. Nuclear Localization of Schizosaccharomyces pombe Mcm2/Cdc19p Requires MCM Complex Assembly

    PubMed Central

    Pasion, Sally G.; Forsburg, Susan L.

    1999-01-01

    The minichromosome maintenance (MCM) proteins MCM2–MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear. PMID:10588642

  15. Structure and assembly of the flagellar hook-basal body complex of Salmonella typhimurium

    SciTech Connect

    Jones, C.J.

    1989-01-01

    The hook-basal body (HBB) complex is a multi-component structure which comprises a significant part of the bacterial flagellar motor. Electrophoretic mobility shifts of HBB complex component proteins from four non-flagellate mutants have enabled the author to assign each protein as being the product of the gene defective in each of the respective strains. The author has purified and characterized HBB complexes lacking either the L ring or both the P and L rings, and concluded that the 27-kDa basal-body protein is the major component of the L ring, and that the 38-kDa basal-body protein is the major component of the P ring. He has sequenced the genes encoding the subunit proteins of the M, P, and L rings of the basal body, and have examined both the gene and deduced amino acid sequences for clues regarding the regulation of these genes and the structure of their products. By quantitating the amount of {sup 35}S incorporated into the component protein vivo and correcting for the amount of contained in each protein (as deduced from gene sequencing data), he has determined the relative stoichiometries of most of the known component proteins of the HBB complex. He has developed a protocol for differential {sup 35}S-radiolabeling of HBB complexes in vivo and used it to examine the HBB complex assembly process. He has identified proteins required for M-ring assembly or stabilization and for the possible initiation of rod assembly. The rod is not stable until the P ring is assembled onto it. The monomers of the P and L rings are exported independent of flagellar assembly. These radiolabeling experiments have also enabled me to identify several new component proteins of the HBB complex.

  16. Thermodynamic Interrogation of the Assembly of a Viral Genome Packaging Motor Complex

    PubMed Central

    Yang, Teng-Chieh; Ortiz, David; Nosaka, Lyn’Al; Lander, Gabriel C.; Catalano, Carlos Enrique

    2015-01-01

    Viral terminase enzymes serve as genome packaging motors in many complex double-stranded DNA viruses. The functional motors are multiprotein complexes that translocate viral DNA into a capsid shell, powered by a packaging ATPase, and are among the most powerful molecular motors in nature. Given their essential role in virus development, the structure and function of these biological motors is of considerable interest. Bacteriophage λ-terminase, which serves as a prototypical genome packaging motor, is composed of one large catalytic subunit tightly associated with two DNA recognition subunits. This protomer assembles into a functional higher-order complex that excises a unit length genome from a concatemeric DNA precursor (genome maturation) and concomitantly translocates the duplex into a preformed procapsid shell (genome packaging). While the enzymology of λ-terminase has been well described, the nature of the catalytically competent nucleoprotein intermediates, and the mechanism describing their assembly and activation, is less clear. Here we utilize analytical ultracentrifugation to determine the thermodynamic parameters describing motor assembly and define a minimal thermodynamic linkage model that describes the effects of salt on protomer assembly into a tetrameric complex. Negative stain electron microscopy images reveal a symmetric ring-like complex with a compact stem and four extended arms that exhibit a range of conformational states. Finally, kinetic studies demonstrate that assembly of the ring tetramer is directly linked to activation of the packaging ATPase activity of the motor, thus providing a direct link between structure and function. The implications of these results with respect to the assembly and activation of the functional packaging motor during a productive viral infection are discussed. PMID:26488657

  17. NDUFAF5 Hydroxylates NDUFS7 at an Early Stage in the Assembly of Human Complex I.

    PubMed

    Rhein, Virginie F; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2016-07-08

    Complex I (NADH ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 45 proteins. One arm lies in the inner membrane, and the other extends about 100 Å into the matrix of the organelle. The extrinsic arm contains binding sites for NADH, the primary electron acceptor FMN, and seven iron-sulfur clusters that form a pathway for electrons linking FMN to the terminal electron acceptor, ubiquinone, which is bound in a tunnel in the region of the junction between the arms. The membrane arm contains four antiporter-like domains, energetically coupled to the quinone site and involved in pumping protons from the matrix into the intermembrane space contributing to the proton motive force. Seven of the subunits, forming the core of the membrane arm, are translated from mitochondrial genes, and the remaining subunits, the products of nuclear genes, are imported from the cytosol. Their assembly is coordinated by at least thirteen extrinsic assembly factor proteins that are not part of the fully assembled complex. They assist in insertion of co-factors and in building up the complex from smaller sub-assemblies. One such factor, NDUFAF5, belongs to the family of seven-β-strand S-adenosylmethionine-dependent methyltransferases. However, similar to another family member, RdmB, it catalyzes the introduction of a hydroxyl group, in the case of NDUFAF5, into Arg-73 in the NDUFS7 subunit of human complex I. This modification occurs early in the pathway of assembly of complex I, before the formation of the juncture between peripheral and membrane arms.

  18. Accessory subunits are integral for assembly and function of human mitochondrial complex I.

    PubMed

    Stroud, David A; Surgenor, Elliot E; Formosa, Luke E; Reljic, Boris; Frazier, Ann E; Dibley, Marris G; Osellame, Laura D; Stait, Tegan; Beilharz, Traude H; Thorburn, David R; Salim, Agus; Ryan, Michael T

    2016-10-06

    Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the mitochondrial respiratory chain and is composed of 45 subunits in humans, making it one of the largest known multi-subunit membrane protein complexes. Complex I exists in supercomplex forms with respiratory chain complexes III and IV, which are together required for the generation of a transmembrane proton gradient used for the synthesis of ATP. Complex I is also a major source of damaging reactive oxygen species and its dysfunction is associated with mitochondrial disease, Parkinson's disease and ageing. Bacterial and human complex I share 14 core subunits that are essential for enzymatic function; however, the role and necessity of the remaining 31 human accessory subunits is unclear. The incorporation of accessory subunits into the complex increases the cellular energetic cost and has necessitated the involvement of numerous assembly factors for complex I biogenesis. Here we use gene editing to generate human knockout cell lines for each accessory subunit. We show that 25 subunits are strictly required for assembly of a functional complex and 1 subunit is essential for cell viability. Quantitative proteomic analysis of cell lines revealed that loss of each subunit affects the stability of other subunits residing in the same structural module. Analysis of proteomic changes after the loss of specific modules revealed that ATP5SL and DMAC1 are required for assembly of the distal portion of the complex I membrane arm. Our results demonstrate the broad importance of accessory subunits in the structure and function of human complex I. Coupling gene-editing technology with proteomics represents a powerful tool for dissecting large multi-subunit complexes and enables the study of complex dysfunction at a cellular level.

  19. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis

    PubMed Central

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E.; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S.; Mortimer, Jenny C.; Brown, Steven P.; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  20. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    PubMed

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S; Mortimer, Jenny C; Brown, Steven P; Persson, Staffan; Dupree, Paul

    2016-06-09

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.

  1. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  2. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design.

    PubMed

    Ahn, Yongtae; Logan, Bruce E

    2012-03-01

    Scaling up microbial fuel cells (MFCs) requires the development of compact reactors with multiple electrodes. A scalable single chamber MFC (130 mL), with multiple graphite fiber brush anodes and a single air-cathode cathode chamber (27 m2/m3), was designed with a separator electrode assembly (SEA) to minimize electrode spacing. The maximum voltage produced in fed-batch operation was 0.65 V (1,000 Ω) with a textile separator, compared to only 0.18 V with a glass fiber separator due to short-circuiting by anode bristles through this separator with the cathode. The maximum power density was 975 mW/m2, with an overall chemical oxygen demand (COD) removal of >90% and a maximum coulombic efficiency (CE) of 53% (50 Ω resistor). When the reactor was switched to continuous flow operation at a hydraulic retention time (HRT) of 8 h, the cell voltage was 0.21 ± 0.04 V, with a very high CE = 85%. Voltage was reduced to 0.13 ± 0.03 V at a longer HRT = 16 h due to a lower average COD concentration, and the CE (80%) decreased slightly with increased oxygen intrusion into the reactor per amount of COD removed. Total internal resistance was 33 Ω, with a solution resistance of 2 Ω. These results show that the SEA type MFC can produce stable power and a high CE, making it useful for future continuous flow treatment using actual wastewaters.

  3. Electricity producing property and bacterial community structure in microbial fuel cell equipped with membrane electrode assembly.

    PubMed

    Rubaba, Owen; Araki, Yoko; Yamamoto, Shuji; Suzuki, Kei; Sakamoto, Hisatoshi; Matsuda, Atsunori; Futamata, Hiroyuki

    2013-07-01

    It is important for practical use of microbial fuel cells (MFCs) to not only develop electrodes and proton exchange membranes but also to understand the bacterial community structure related to electricity generation. Four lactate fed MFCs equipped with different membrane electrode assemblies (MEAs) were constructed with paddy field soil as inoculum. The MEAs significantly affected the electricity-generating properties of the MFCs. MEA-I was made with Nafion 117 solution and the other MEAs were made with different configurations of three kinds of polymers. MFC-I equipped with MEA-I exhibited the highest performance with a stable current density of 55 ± 3 mA m⁻². MFC-III equipped with MEA-III with the highest platinum concentration, exhibited the lowest performance with a stable current density of 1.7 ± 0.1 mA m⁻². SEM observation revealed that there were cracks on MEA-III. These results demonstrated that it is significantly important to prevent oxygen-intrusion for improved MFC performance. By comparing the data of DGGE and phylogenetic analyzes, it was suggested that the dominant bacterial communities of MFC-I were constructed with lactate-fermenters and Fe(III)-reducers, which consisted of bacteria affiliated with the genera of Enterobacter, Dechlorosoma, Pelobacter, Desulfovibrio, Propioniferax, Pelosinus, and Firmicutes. A bacterium sharing 100% similarity to one of the DGGE bands was isolated from MFC-I. The 16S rRNA gene sequence of the isolate shared 98% similarity to gram-positive Propioniferax sp. P7 and it was confirmed that the isolate produced electricity in an MFC. These results suggested that these bacteria are valuable for constructing the electron transfer network in MFC.

  4. Optimizing membrane electrode assembly of direct methanol fuel cells for portable power

    NASA Astrophysics Data System (ADS)

    Liu, Fuqiang

    Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of high methanol oxidation and oxygen reduction kinetics, as well as low methanol and water crossover. In this thesis a novel membrane electrode assembly (MEA) for direct methanol fuel cells has been developed, aiming to improve these fundamental properties. Firstly, methanol oxidation kinetics has been enhanced and methanol crossover has been minimized by proper control of ionomer crystallinity and its swelling in the anode catalyst layer through heat-treatment. Heat-treatment has a major impact on anode characteristics. The short-cured anode has low ionomer crystallinity, and thus swells easily when in contact with methanol solution to create a much denser anode structure, giving rise to higher methanol transport resistance than the long-cured anode. Variations in interfacial properties in the anode catalyst layer (CL) during cell conditioning were also characterized, and enhanced kinetics of methanol oxidation and severe limiting current phenomenon were found to be caused by a combination of interfacial property variations and swelling of ionomer over time. Secondly, much effort has been expended to develop a cathode CL suitable for operation under low air stoichiometry. The effects of fabrication procedure, ionomer content, and porosity distribution on the microstructure and cathode performance under low air stoichiometry are investigated using electrochemical and surface morphology characterizations to reveal the correlation between microstructure and electrochemical behavior. At the same time, computational fluid dynamics (CFD) models of DMFC cathodes have been developed to theoretically interpret the experimental results, to investigate two-phase transport, and to elucidate mechanism of cathode mixed potential due to methanol crossover. Thirdly, a MEA with low

  5. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture

    PubMed Central

    Eychenne, Thomas; Novikova, Elizaveta; Barrault, Marie-Bénédicte; Alibert, Olivier; Boschiero, Claire; Peixeiro, Nuno; Cornu, David; Redeker, Virginie; Kuras, Laurent; Nicolas, Pierre; Werner, Michel; Soutourina, Julie

    2016-01-01

    Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator–TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts. PMID:27688401

  6. Fuel cell on-site integrated energy system parametric analysis of a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.

    1977-01-01

    The use of phosphoric acid fuel cell powerplant to provide all the electricity required by an 81-unit garden apartment complex is studied. Byproduct heat is recovered and provides some of the heat required by the complex. The onsite integrated energy system contains energy conversion equipment including combinations of compression and absorption chillers, heat pumps, electric resistance heaters, and thermal storage. The annual fuel requirement for several onsite integrated energy systems as well as the fuel cell breakeven cost for one specific system were calculated. It is found that electrical efficiency cannot be traded off against thermal efficiency without paying a penalty in system efficiency.

  7. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  8. Experimental studies of heat exchange for sodium boiling in the fuel assembly model: Safety substantiation of a promising fast reactor

    NASA Astrophysics Data System (ADS)

    Khafizov, R. R.; Poplavskii, V. M.; Rachkov, V. I.; Sorokin, A. P.; Trufanov, A. A.; Ashurko, Yu. M.; Volkov, A. V.; Ivanov, E. F.; Privezentsev, V. V.

    2017-01-01

    Numerical simulation of the ULOF-type accident development in a fast reactor with sodium coolant performed using the COREMELT code indicates that sodium boiling in the active core takes place. The boiling is accompanied by oscillations of the technological parameters of the reactor installation; these oscillations can go on during several tens of seconds. In this case, it is possible that a stable regime of removal of heat from residual energy release is implemented. The model of the two-phase coolant flow applied in the code has an important effect on the numerical results; that is why this model needs experimental verification. For eliminating the development of an accident resulting in destruction of the active core elements, a structural solution is proposed; the essence of it is the application of the sodium void above the reactor active core. The experimental installation was developed and the heat exchange at sodium boiling in the model fuel assembly of the fast reactor in the regimes of natural and forced circulation in the presence of the sodium void and the top end shield was studied. It was demonstrated that, in the presence of the sodium void, it is possible to provide long-term cooling of the fuel assembly for a thermal flux density on the fuel element simulator surface of up to 140 and 170 kW/m2 in the natural and forced circulation modes, respectively. The obtained data are used for more precise determination of the numerical model of sodium boiling in the fuel assembly and verification of the COREMELT code.

  9. Complex shapes self-assembled from single-stranded DNA tiles.

    PubMed

    Wei, Bryan; Dai, Mingjie; Yin, Peng

    2012-05-30

    Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA or RNA tiles into periodic and algorithmic two-dimensional lattices, extended ribbons and tubes, three-dimensional crystals, polyhedra and simple finite two-dimensional shapes. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a 'single-stranded tile' (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly. Although ribbons and tubes with controlled circumferences have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands--folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles--acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.

  10. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases

    PubMed Central

    Giachin, Gabriele; Bouverot, Romain; Acajjaoui, Samira; Pantalone, Serena; Soler-López, Montserrat

    2016-01-01

    Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases. PMID:27597947

  11. Novel MTND1 mutations cause isolated exercise intolerance, complex I deficiency and increased assembly factor expression

    PubMed Central

    Gorman, Grainne S.; Blakely, Emma L.; Hornig-Do, Hue-Tran; Tuppen, Helen A.L.; Greaves, Laura C.; He, Langping; Baker, Angela; Falkous, Gavin; Newman, Jane; Trenell, Michael I.; Lecky, Bryan; Petty, Richard K.; Turnbull, Doug M.; McFarland, Robert

    2015-01-01

    We describe the clinical, biochemical and molecular characterization of two adults with progressive exercise intolerance and severe isolated mitochondrial complex I (CI) deficiency due to novel MTND1 mutations. We demonstrate compensatory CI assembly factor up-regulation probably partially rescuing the clinical phenotype. PMID:25626417

  12. Assessing Complex Problem-Solving Skills and Knowledge Assembly Using Web-Based Hypermedia Design.

    ERIC Educational Resources Information Center

    Dabbagh, Nada

    This research project studied the effects of hierarchical versus heterarchical hypermedia structures of Web-based case representations on complex problem-solving skills and knowledge assembly in problem-centered learning environments in order to develop a system or model that informs the design of Web-based cases for ill-structured problems across…

  13. Structural basis for assembly and disassembly of the CRM1 nuclear export complex

    SciTech Connect

    Dong, Xiuhua; Biswas, Anindita; Chook, Yuh Min

    2009-09-15

    CRM1 (or exportin 1, Xpo1) transports proteins out of the cell nucleus through the nuclear pore complex. In the cytoplasm, GTP hydrolysis and consequent dissociation of Ran from CRM1 releases low-affinity substrates, while additional factors facilitate release of high-affinity substrates. Here we provide a model for human CRM1 export complex assembly and disassembly through structural and biochemical analyses of CRM1 bound to the substrate snurportin 1 (SNUPN, also called snuportin 1).

  14. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases

    PubMed Central

    1995-01-01

    Interaction of cells with extracellular matrix via integrin adhesion receptors plays an important role in a wide range of cellular: functions, for example cell growth, movement, and differentiation. Upon interaction with substrate, integrins cluster and associate with a variety of cytoplasmic proteins to form focal complexes and with the actin cytoskeleton. Although the intracellular signals induced by integrins are at present undefined, it is thought that they are mediated by proteins recruited to the focal complexes. It has been suggested, for example, that after recruitment to focal adhesions p125FAK can activate the ERK1/2 MAP kinase cascade. We have previously reported that members of the rho family of small GTPases can trigger the assembly of focal complexes when activated in cells. Using microinjection techniques, we have now examined the role of the extracellular matrix and of the two GTP-binding proteins, rac and rho, in the assembly of integrin complexes in both mouse and human fibroblasts. We find that the interaction of integrins with extracellular matrix alone is not sufficient to induce integrin clustering and focal complex formation. Similarly, activation of rho or rac by extracellular growth factors does not lead to focal complex formation in the absence of matrix. Focal complexes are only assembled in the presence of both matrix and functionally active members of the rho family. In agreement with this, the interaction of integrins with matrix in the absence of rho/rac activity is unable to activate the ERK1/2 kinases in Swiss 3T3 cells. In fact, ERK1/2 can be activated fully by growth factors in the absence of matrix and it seems unlikely, therefore, that the adhesion dependence of fibroblast growth is mediated through the ras/MAP kinase pathway. We conclude that extracellular matrix is not sufficient to trigger focal complex assembly and subsequent integrin-dependent signal transduction in the absence of functionally active members of the rho

  15. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    SciTech Connect

    Savander, V. I.; Shumskiy, B. E.; Pinegin, A. A.

    2016-12-15

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  16. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    NASA Astrophysics Data System (ADS)

    Savander, V. I.; Shumskiy, B. E.; Pinegin, A. A.

    2016-12-01

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  17. Studying the vibration and random hydrodynamic loads on the fuel rods bundles in the fuel assemblies of the reactor installations used at nuclear power stations equipped with VVER reactors

    NASA Astrophysics Data System (ADS)

    Solonin, V. I.; Perevezentsev, V. V.

    2012-05-01

    Random hydrodynamic loads causing vibration of fuel rod bundles in a turbulent flow of coolant are obtained from the results of pressure pulsation measurements carried out over the perimeter of the external row of fuel rods in the bundle of a full-scale mockup of a fuel assembly used in a second-generation VVER-440 reactor. It is shown that the turbulent flow structure is a factor determining the parameters of random hydrodynamic loads and the vibration of fuel rod bundles excited by these loads. The results from a calculation of random hydrodynamic loads are used for estimating the vibration levels of fuel rod bundles used in prospective designs of fuel assemblies for VVER reactors.

  18. A non-canonical mechanism for Crm1-export cargo complex assembly.

    PubMed

    Fischer, Ute; Schäuble, Nico; Schütz, Sabina; Altvater, Martin; Chang, Yiming; Faza, Marius Boulos; Panse, Vikram Govind

    2015-04-21

    The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export.

  19. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion

    PubMed Central

    Yue, Peng; Zhang, Yubo; Mei, Kunrong; Wang, Shaoxiao; Lesigang, Johannes; Zhu, Yueyao; Dong, Gang; Guo, Wei

    2017-01-01

    The soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs) constitute the core machinery for membrane fusion during eukaryotic cell vesicular trafficking. However, how the assembly of the SNARE complex is initiated is unknown. Here we report that Sec3, a component of the exocyst complex that mediates vesicle tethering during exocytosis, directly interacts with the t-SNARE protein Sso2. This interaction promotes the formation of an Sso2-Sec9 ‘binary' t-SNARE complex, the early rate-limiting step in SNARE complex assembly, and stimulates membrane fusion. The crystal structure of the Sec3-Sso2 complex suggests that Sec3 binding induces conformational changes of Sso2 that are crucial for the relief of its auto-inhibition. Interestingly, specific disruption of the Sec3–Sso2 interaction in cells blocks exocytosis without affecting the function of Sec3 in vesicle tethering. Our study reveals an activation mechanism for SNARE complex assembly, and uncovers a role of the exocyst in promoting membrane fusion in addition to vesicle tethering. PMID:28112172

  20. A non-canonical mechanism for Crm1-export cargo complex assembly

    PubMed Central

    Fischer, Ute; Schäuble, Nico; Schütz, Sabina; Altvater, Martin; Chang, Yiming; Boulos Faza, Marius; Panse, Vikram Govind

    2015-01-01

    The transport receptor Crm1 mediates the export of diverse cargos containing leucine-rich nuclear export signals (NESs) through complex formation with RanGTP. To ensure efficient cargo release in the cytoplasm, NESs have evolved to display low affinity for Crm1. However, mechanisms that overcome low affinity to assemble Crm1-export complexes in the nucleus remain poorly understood. In this study, we reveal a new type of RanGTP-binding protein, Slx9, which facilitates Crm1 recruitment to the 40S pre-ribosome-associated NES-containing adaptor Rio2. In vitro, Slx9 binds Rio2 and RanGTP, forming a complex. This complex directly loads Crm1, unveiling a non-canonical stepwise mechanism to assemble a Crm1-export complex. A mutation in Slx9 that impairs Crm1-export complex assembly inhibits 40S pre-ribosome export. Thus, Slx9 functions as a scaffold to optimally present RanGTP and the NES to Crm1, therefore, triggering 40S pre-ribosome export. This mechanism could represent one solution to the paradox of weak binding events underlying rapid Crm1-mediated export. DOI: http://dx.doi.org/10.7554/eLife.05745.001 PMID:25895666

  1. Self-assembly of cyclodextrin complexes: effect of temperature, agitation and media composition on aggregation.

    PubMed

    Messner, Martin; Kurkov, Sergey V; Maraver Palazón, Marta; Álvarez Fernández, Berta; Brewster, Marcus E; Loftsson, Thorsteinn

    2011-10-31

    Recently it has been shown that aggregation of drug/cyclodextrin inclusion complexes is strongly influenced by the drug molecule in addition to self-assembling tendencies of the cyclodextrin itself in aqueous media. Whereas the mechanistic basis of cyclodextrin self-assembly is known, the driving forces for complex aggregation are still unknown. In the present study, the influence of temperature on hydrocortisone/2-hydroxypropyl-β-cyclodextrin complex aggregation is investigated as are influences associated with the addition of ethanol or water soluble polymers to the aqueous systems. Furthermore the effect of stirring on the aggregation is assessed. Size exclusion permeability studies were conducted to estimate complex aggregation tendencies. The results indicate that self-assembled complex aggregates are metastable and notably become smaller with increasing temperature and the addition of ethanol. Water soluble polymers also reduce the size of the complex aggregates. Specifically, hexadimethrine bromide had the greatest impact, since addition of this compound eliminated aggregates from the systems or reduced their size below the molecular weight cut-off of the sizing membrane (8 kDa). Similar observations are made when aqueous solutions of hydrocortisone and 2-hydroxypropyl-β-cyclodextrin are equilibrated by stirred.

  2. The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells

    PubMed Central

    Yan, Kaowen; Li, Li; Wang, Xiaojian; Hong, Ruisha; Zhang, Ying; Yang, Hua; Lin, Ming; Zhang, Sha; He, Qihua; Zheng, Duo; Tang, Jun; Yin, Yuxin

    2015-01-01

    Deubiquitinating enzymes (DUBs) negatively regulate protein ubiquitination and play an important role in diverse physiological processes, including mitotic division. The BRCC36 isopeptidase complex (BRISC) is a DUB that is specific for lysine 63–linked ubiquitin hydrolysis; however, its biological function remains largely undefined. Here, we identify a critical role for BRISC in the control of mitotic spindle assembly in cultured mammalian cells. BRISC is a microtubule (MT)-associated protein complex that predominantly localizes to the minus ends of K-fibers and spindle poles and directly binds to MTs; importantly, BRISC promotes the assembly of functional bipolar spindle by deubiquitinating the essential spindle assembly factor nuclear mitotic apparatus (NuMA). The deubiquitination of NuMA regulates its interaction with dynein and importin-β, which are required for its function in spindle assembly. Collectively, these results uncover BRISC as an important regulator of the mitotic spindle assembly and cell division, and have important implications for the development of anticancer drugs targeting BRISC. PMID:26195665

  3. Involvement of human ORC and TRF2 in pre-replication complex assembly at telomeres.

    PubMed

    Tatsumi, Yasutoshi; Ezura, Kai; Yoshida, Kazumasa; Yugawa, Takashi; Narisawa-Saito, Mako; Kiyono, Tohru; Ohta, Satoshi; Obuse, Chikashi; Fujita, Masatoshi

    2008-10-01

    The origin recognition complex (ORC) binds to replication origins to regulate the cell cycle-dependent assembly of pre-replication complexes (pre-RCs). We have found a novel link between pre-RC assembly regulation and telomere homeostasis in human cells. Biochemical analyses showed that human ORC binds to TRF2, a telomere sequence-binding protein that protects telomeres and functions in telomere length homeostasis, via the ORC1 subunit. Immunostaining further revealed that ORC and TRF2 partially co-localize in nuclei, whereas chromatin immunoprecipitation analyses confirmed that pre-RCs are assembled at telomeres in a cell cycle-dependent manner. Over-expression of TRF2 stimulated ORC and MCM binding to chromatin and RNAi-directed TRF2 silencing resulted in reduced ORC binding and pre-RC assembly at telomeres. As expected from previous reports, TRF2 silencing induced telomere elongation. Interestingly, ORC1 silencing by RNAi weakened the TRF2 binding as well as the pre-RC assembly at telomeres, suggesting that ORC and TRF2 interact with each other to achieve stable binding. Furthermore, ORC1 silencing also resulted in modest telomere elongation. These data suggest that ORC might be involved in telomere homeostasis in human cells.

  4. ELYS/MEL-28 Chromatin Association Coordinates Nuclear Pore Complex Assembly and Replication Licensing

    PubMed Central

    Gillespie, Peter J.; Khoudoli, Guennadi A.; Stewart, Graeme; Swedlow, Jason R.; Blow, J. Julian

    2007-01-01

    Summary Xenopus egg extract supports all the major cell-cycle transitions in vitro. We have used a proteomics approach to identify proteins whose abundance on chromatin changes during the course of an in vitro cell cycle. One of the proteins we identified was ELYS/MEL-28, which has recently been described as the earliest-acting factor known to be required for nuclear pore complex (NPC) assembly [1–4]. ELYS interacts with the Nup107-160 complex and is required for its association with chromatin. ELYS contains an AT-hook domain, which we show binds to chromatin with a high affinity. This domain can compete with full-length ELYS for chromatin association, thereby blocking NPC assembly. This provides evidence that ELYS interacts directly with chromatin and that this interaction is essential for NPC assembly and compartmentalization of chromosomal DNA within the cell. Furthermore, we detected a physical association on chromatin between ELYS and the Mcm2-7 replication-licensing proteins. ELYS chromatin loading, NPC assembly, and nuclear growth were delayed when Mcm2-7 was prevented from loading onto chromatin. Because nuclear assembly is required to shut down licensing prior to entry into S phase, our results suggest a mechanism by which these two early cell-cycle events are coordinated with one another. PMID:17825564

  5. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    NASA Astrophysics Data System (ADS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-11-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s-1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  6. Layer-by-layer self-assembly of ceramic particles for complex shape coating synthesis

    NASA Astrophysics Data System (ADS)

    Qiu, Hongwei

    Layer-by-layer (LbL) self-assembly was explored as a non-line-of-sight method for uniform infiltration and deposition of a multilayer of ceramic particles into complex structures. Key parameters for controlling the LbL self-assembly process were studied using a model system which consisted of a silicon substrate, 100 nm and 500 nm silica particles, and a polycation/polyanion combination. We correlated the surface coverage of the silica particles to the NaCl concentration used in deposition of the polyelectrolyte layers and to the number of the polyelectrolyte layers deposited. The effect of particle size on the surface coverage was rationally explained based on the screening length. We found that the effects of particle size, polydispersity, and electrolyte concentration in the particle suspension on the surface coverage and morphology of the first silica particle layer deposited on the polyelectrolyte layer surface were highly coupled, and resolving these effects was important for infiltrating a uniform coating of multilayer silica particle assemblies into a cellular structure as an ultimate complex substrate. Based on this understanding, the Lbl, self-assembly method was applied as a method of assembling, infiltrating, and immobilizing a 4-layer coating of negatively charged ˜3 mum Pd/NaAI(Si)O catalyst particles in the confined space of the cellular structure with ˜400 mum interconnected cells. The 4-layer coating deposited on the inner wall of a stainless steel capillary tube was mechanically stable under water flow rate up to 10 ml/min over the pH range of 3 to 11. Scotch tape peeling evaluation suggested that failure locations were mostly within the catalyst particle assembly, but near the assembly-PEM interface region.

  7. Importin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly.

    PubMed

    Harel, Amnon; Chan, Rene C; Lachish-Zalait, Aurelie; Zimmerman, Ella; Elbaum, Michael; Forbes, Douglass J

    2003-11-01

    Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin beta down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin beta to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin beta 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin beta-regulation of NPC assembly. Excess full-length importin beta and beta 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin beta NPC block, which maps downstream of GTPgammaS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 microM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin beta. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.

  8. Portable instrument for inspecting irradiated nuclear-fuel assemblies in a water-filled storage pond by measurement of induced Cerenkov radiation

    DOEpatents

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.J. Jr.

    1982-05-13

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  9. Reducing irreducible complexity: divergence of quaternary structure and function in macromolecular assemblies.

    PubMed

    Egelman, Edward H

    2010-02-01

    The bacterial flagellar system is an intricate assembly (containing approximately 40 different proteins) that is involved in both protein secretion and bacterial motility. It has also become the icon of the neo-creationist movement in the United States, with the argument that it shows 'irreducible complexity' and could not have been the product of evolution. Recent studies provide new insights into the evolution of the flagellar system and lead to the suggestion that the divergence of quaternary structure in protein assemblies may be an underappreciated mechanism for rapid evolutionary divergence. Work on the enzyme FucU, involved in fucose metabolism, may suggest similar conclusions.

  10. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    PubMed Central

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-01-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557

  11. Higher-order oligomerization of Spc110p drives γ-tubulin ring complex assembly

    PubMed Central

    Lyon, Andrew S.; Morin, Geneviève; Moritz, Michelle; Yabut, King Clyde B.; Vojnar, Tamira; Zelter, Alex; Muller, Eric; Davis, Trisha N.; Agard, David A.

    2016-01-01

    The microtubule (MT) cytoskeleton plays important roles in many cellular processes. In vivo, MT nucleation is controlled by the γ-tubulin ring complex (γTuRC), a 2.1-MDa complex composed of γ-tubulin small complex (γTuSC) subunits. The mechanisms underlying the assembly of γTuRC are largely unknown. In yeast, the conserved protein Spc110p both stimulates the assembly of the γTuRC and anchors the γTuRC to the spindle pole body. Using a quantitative in vitro FRET assay, we show that γTuRC assembly is critically dependent on the oligomerization state of Spc110p, with higher-order oligomers dramatically enhancing the stability of assembled γTuRCs. Our in vitro findings were confirmed with a novel in vivo γTuSC recruitment assay. We conclude that precise spatial control over MT nucleation is achieved by coupling localization and higher-order oligomerization of the receptor for γTuRC. PMID:27226487

  12. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    NASA Astrophysics Data System (ADS)

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-03-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.

  13. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes.

    PubMed

    Cojal González, José D; Iyoda, Masahiko; Rabe, Jürgen P

    2017-03-10

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.

  14. Assembly, characterization, and electrochemical properties of immobilized metal bipyridyl complexes on silicon(111) surfaces.

    PubMed

    Lattimer, Judith R C; Blakemore, James D; Sattler, Wesley; Gul, Sheraz; Chatterjee, Ruchira; Yachandra, Vittal K; Yano, Junko; Brunschwig, Bruce S; Lewis, Nathan S; Gray, Harry B

    2014-10-28

    Silicon(111) surfaces have been functionalized with mixed monolayers consisting of submonolayer coverages of immobilized 4-vinyl-2,2'-bipyridyl (1, vbpy) moieties, with the remaining atop sites of the silicon surface passivated by methyl groups. As the immobilized bipyridyl ligands bind transition metal ions, metal complexes can be assembled on the silicon surface. X-ray photoelectron spectroscopy (XPS) demonstrates that bipyridyl complexes of [Cp*Rh], [Cp*Ir], and [Ru(acac)2] were formed on the surface (Cp* is pentamethylcyclopentadienyl, acac is acetylacetonate). For the surface prepared with Ir, X-ray absorption spectroscopy at the Ir LIII edge showed an edge energy as well as post-edge features that were essentially identical with those observed on a powder sample of [Cp*Ir(bpy)Cl]Cl (bpy is 2,2'-bipyridyl). Charge-carrier lifetime measurements confirmed that the silicon surfaces retain their highly favorable photoelectronic properties upon assembly of the metal complexes. Electrochemical data for surfaces prepared on highly doped, n-type Si(111) electrodes showed that the assembled molecular complexes were redox active. However the stability of the molecular complexes on the surfaces was limited to several cycles of voltammetry.

  15. Thermal-induced dynamic self-assembly of adenine-grafted polyoxometalate complexes.

    PubMed

    He, Zhenfeng; Yan, Yi; Li, Bao; Ai, Hui; Wang, Huanbing; Li, Haolong; Wu, Lixin

    2012-09-07

    A new kind of organic-inorganic hybrid complexes based on polyoxometalate were synthesized through symmetrically grafting two adeninyl groups onto Anderson-type MnMo(6) clusters and encapsulating the clusters by organic surfactants. The resultant complexes exhibited thermal-induced dynamic self-assembly behaviors which greatly depended on the ambient temperature and the chain length of cationic surfactants. With the encapsulation of a short surfactant tetrabutyl ammonium, the complex assembled into fibrous, rod-like, and tubular architectures respectively upon heating; while for the case of using a long surfactant dimethyldioctadecyl ammonium as counter ions, the assemblies of the complex transformed from fibers to spheres with the increased temperature. Moreover, the two types of transformations were both reversible during a cooling process. The related mechanism was investigated by combining multiple characterization methods including X-ray crystallography, XPS, FT-IR and temperature-dependent (1)H NMR, which indicated that such a thermal-induced morphological transformation resulted from a synergy effect of the variation of the multiple hydrogen bonds among the complexes and the rearrangement of the surfactants surrounding the MnMo(6) clusters. These results demonstrated a new concept that hydrogen bonds can be rationally employed as the driving force for the fabrication of polyoxometalate-based materials with smart responsive properties.

  16. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    PubMed Central

    Kuroiwa, Keita; Masaki, Yoshitaka; Koga, Yuko; Deming, Timothy J.

    2013-01-01

    The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN)2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN)2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM) showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals). This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water. PMID:23337202

  17. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription

    PubMed Central

    Torreira, Eva; Louro, Jaime Alegrio; Pazos, Irene; González-Polo, Noelia; Gil-Carton, David; Duran, Ana Garcia; Tosi, Sébastien; Gallego, Oriol; Calvo, Olga; Fernández-Tornero, Carlos

    2017-01-01

    Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I–Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association. DOI: http://dx.doi.org/10.7554/eLife.20832.001 PMID:28262097

  18. Real-time assembly landscape of bacterial 30S translation initiation complex.

    PubMed

    Milón, Pohl; Maracci, Cristina; Filonava, Liudmila; Gualerzi, Claudio O; Rodnina, Marina V

    2012-05-06

    Initiation factors guide the ribosome in the selection of mRNA and translational reading frame. We determined the kinetically favored assembly pathway of the 30S preinitiation complex (30S PIC), an early intermediate in 30S initiation complex formation in Escherichia coli. IF3 and IF2 are the first factors to arrive, forming an unstable 30S-IF2-IF3 complex. Subsequently, IF1 joins and locks the factors in a kinetically stable 30S PIC to which fMet-tRNA(fMet) is recruited. Binding of mRNA is independent of initiation factors and can take place at any time during 30S PIC assembly, depending on the cellular concentration of the mRNA and the structural determinants at the ribosome-binding site. The kinetic analysis shows both specific and cumulative effects of initiation factors as well as kinetic checkpoints of mRNA selection at the entry into translation.

  19. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription.

    PubMed

    Torreira, Eva; Louro, Jaime Alegrio; Pazos, Irene; González-Polo, Noelia; Gil-Carton, David; Duran, Ana Garcia; Tosi, Sébastien; Gallego, Oriol; Calvo, Olga; Fernández-Tornero, Carlos

    2017-03-06

    Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I-Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association.

  20. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.