Sample records for complex gas environments

  1. The Paralinear Oxidation of SiC in Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    SiC is proposed for structural applications in high pressure, high temperature. high gas velocity environments of turbine and rocket engines. These environments are typically composed of complex gas mixtures containing carbon dioxide, oxygen, water vapor, and nitrogen. It is known that the primary oxidant for SiC in these environments is water vapor.

  2. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan; Opila, Elizabeth; Nickel, Klaus G.

    2004-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Over the past forty years, a wealth of information on the behavior of ceramic materials in heat engine environments has been obtained. In the first part of the talk we summarize the behavior of monolithic SiC and Si3N4. These materials show excellent baseline behavior in clean, oxygen environments. However the aggressive components in a heat engine environment such as water vapor and salt deposits can be quite degrading. In the second part of the talk we discuss SiC-based composites. The critical issue with these materials is oxidation of the fiber coating. We conclude with a brief discussion of future directions in ceramic corrosion research.

  3. Molecular complexes in close and far away

    PubMed Central

    Klemperer, William; Vaida, Veronica

    2006-01-01

    In this review, gas-phase chemistry of interstellar media and some planetary atmospheres is extended to include molecular complexes. Although the composition, density, and temperature of the environments discussed are very different, molecular complexes have recently been considered as potential contributors to chemistry. The complexes reviewed include strongly bound aggregates of molecules with ions, intermediate-strength hydrogen bonded complexes (primarily hydrates), and weakly bonded van der Waals molecules. In low-density, low-temperature environments characteristic of giant molecular clouds, molecular synthesis, known to involve gas-phase ion-molecule reactions and chemistry at the surface of dust and ice grains is extended here to involve molecular ionic clusters. At the high density and high temperatures found on planetary atmospheres, molecular complexes contribute to both atmospheric chemistry and climate. Using the observational, laboratory, and theoretical database, the role of molecular complexes in close and far away is discussed. PMID:16740667

  4. Quantitative carbon detector for enhanced detection of molecules in foods, pharmaceuticals, cosmetics, flavors, and fuels.

    PubMed

    Beach, Connor A; Krumm, Christoph; Spanjers, Charles S; Maduskar, Saurabh; Jones, Andrew J; Dauenhauer, Paul J

    2016-03-07

    Analysis of trace compounds, such as pesticides and other contaminants, within consumer products, fuels, and the environment requires quantification of increasingly complex mixtures of difficult-to-quantify compounds. Many compounds of interest are non-volatile and exhibit poor response in current gas chromatography and flame ionization systems. Here we show the reaction of trimethylsilylated chemical analytes to methane using a quantitative carbon detector (QCD; the Polyarc™ reactor) within a gas chromatograph (GC), thereby enabling enhanced detection (up to 10×) of highly functionalized compounds including carbohydrates, acids, drugs, flavorants, and pesticides. Analysis of a complex mixture of compounds shows that the GC-QCD method exhibits faster and more accurate analysis of complex mixtures commonly encountered in everyday products and the environment.

  5. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments.

    PubMed

    Monroy, Javier; Hernandez-Bennets, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-06-23

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment.

  6. GADEN: A 3D Gas Dispersion Simulator for Mobile Robot Olfaction in Realistic Environments

    PubMed Central

    Hernandez-Bennetts, Victor; Fan, Han; Lilienthal, Achim; Gonzalez-Jimenez, Javier

    2017-01-01

    This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e., accounting for walls, furniture, etc.). Moreover, it integrates the simulation of different environmental sensors, such as metal oxide gas sensors, photo ionization detectors, or anemometers. We illustrate the potential and applicability of the proposed tool by presenting a simulation case in a complex and realistic office-like environment where gas leaks of different chemicals occur simultaneously. Furthermore, we accomplish quantitative and qualitative validation by comparing our simulated results against real-world data recorded inside a wind tunnel where methane was released under different wind flow profiles. Based on these results, we conclude that our simulation framework can provide a good approximation to real world measurements when advective airflows are present in the environment. PMID:28644375

  7. Laboratory Studies on the Formation of Carbon-Bearing Molecules in Extraterrestrial Environments: From the Gas Phase to the Solid State

    NASA Technical Reports Server (NTRS)

    Jamieson, C. S.; Guo, Y.; Gu, X.; Zhang, F.; Bennett, C. J.; Kaiser, R. I.

    2006-01-01

    A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides; synthesis of hydrogen terminated carbon chains as precursors to complex PAHs and to carbonaceous dust grains in general; nitriles as precursor to amino acids).

  8. Spectroscopic diagnostics of organic chemistry in the protostellar environment

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.

    2001-01-01

    A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.

  9. Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311

    USGS Publications Warehouse

    Riedel, M.; Collett, T.; Malone, M.J.; Collett, T.S.; Mitchell, M.; Guerin, G.; Akiba, F.; Blanc-Valleron, M.; Ellis, M.; Hashimoto, Y.; Heuer, V.; Higashi, Y.; Holland, M.; Jackson, P.D.; Kaneko, M.; Kastner, M.; Kim, J.-H.; Kitajima, H.; Long, P.E.; Malinverno, A.; Myers, Gwen E.; Palekar, L.D.; Pohlman, J.; Schultheiss, P.; Teichert, B.; Torres, M.E.; Trehu, A.M.; Wang, Jingyuan; Worthmann, U.G.; Yoshioka, H.

    2009-01-01

    A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50-120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow occurrences of high gas hydrate concentrations contradict the previous model of gas hydrate formation at an accretionary prism. However, long-lived fluid flow (part of the old model) is still required to explain the shallow high gas hydrate concentrations, although it is most likely not pervasive throughout the entire accretionary prism, but rather localized and focused by the tectonic processes. Differences in the fluid flow regime across all of the transect drill sites indicate site-specific and probably disconnected (compartmented) deeper fluid sources in the various parts of the accretionary prism. The data and future analyses will yield a better understanding of the geologic controls, evolution and ultimate fate of gas hydrate in an accretionary prism as an important contribution to the role of gas hydrate methane gas in slope stability and possibly in climate change. ?? The Geological Society of London 2009.

  10. Detection of gas plumes in cluttered environments using long-wave infrared hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Broadwater, Joshua B.; Spisz, Thomas S.; Carr, Alison K.

    2008-04-01

    Long-wave infrared hyperspectral sensors provide the ability to detect gas plumes at stand-off distances. A number of detection algorithms have been developed for such applications, but in situations where the gas is released in a complex background and is at air temperature, these detectors can generate a considerable amount of false alarms. To make matters more difficult, the gas tends to have non-uniform concentrations throughout the plume making it spatially similar to the false alarms. Simple post-processing using median filters can remove a number of the false alarms, but at the cost of removing a significant amount of the gas plume as well. We approach the problem using an adaptive subpixel detector and morphological processing techniques. The adaptive subpixel detection algorithm is able to detect the gas plume against the complex background. We then use morphological processing techniques to isolate the gas plume while simultaneously rejecting nearly all false alarms. Results will be demonstrated on a set of ground-based long-wave infrared hyperspectral image sequences.

  11. GAS-611 firefly in zero gravity

    NASA Technical Reports Server (NTRS)

    Williams, Tony

    1988-01-01

    The Get Away Special 611 (GAS-611) project will carry a small, self-contained biological experiment into a microgravity environment for a period of 120 hours. The payload will be a colony of Lampyridae (fireflies). The ability of this beetle to produce light with an efficiency of 98 pct will be evaluated in the micro-G environment. The chemical process that occurs could be assisted by the earth's gravitational pull and the very complex tracheae system found within this species of beetle. The effects of microgravity on mating and beetle larvae will also be studied.

  12. "Unresolved Complex Mixture" (UCM): A brief history of the term and moving beyond it.

    PubMed

    Farrington, John W; Quinn, James G

    2015-07-15

    The term "Unresolved Complex Mixture" (UCM) has been used extensively for decades to describe a gas chromatographic characteristic indicative of the presence of fossil fuel hydrocarbons (mainly petroleum hydrocarbons) in hydrocarbons isolated from aquatic samples. We chronicle the origin of the term. While it is still a useful characteristic for screening samples, more modern higher resolution two dimensional gas chromatography and gas chromatography coupled with advanced mass spectrometry techniques (Time-of-Flight or Fourier Transform-Ion Cyclotron Resonance) should be employed for analyses of petroleum contaminated samples. This will facilitate advances in understanding of the origins, fates and effects of petroleum compounds in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The characteristics of gas hydrates occurring in natural environment

    NASA Astrophysics Data System (ADS)

    Lu, H.; Moudrakovski, I.; Udachin, K.; Enright, G.; Ratcliffe, C.; Ripmeester, J.

    2009-12-01

    In the past few years, extensive analyses have been carried out for characterizing the natural gas hydrate samples from Cascadia, offshore Vancouver Island; Mallik, Mackenzie Delta; Mount Elbert, Alaska North Slope; Nankai Trough, offshore Japan; Japan Sea and offshore India. With the results obtained, it is possible to give a general picture of the characteristics of gas hydrates occurring in natural environment. Gas hydrate can occur in sediments of various types, from sands to clay, although it is preferentially enriched in sediments of certain types, for example coarse sands and fine volcanic ash. Most of the gas hydrates in sediments are invisible, occurring in the pores of the sediments, while some hydrates are visible, appearing as massive, nodular, planar, vein-like forms and occurring around the seafloor, in the fractures related to fault systems, or any other large spaces available in sediments. Although methane is the main component of most of the natural gas hydrates, C2 to C7 hydrocarbons have been recognized in hydrates, sometimes even in significant amounts. Shallow marine gas hydrates have been found generally to contain minor amounts of hydrogen sulfide. Gas hydrate samples with complex gas compositions have been found to have heterogeneous distributions in composition, which might reflect changes in the composition of the available gas in the surrounding environment. Depending on the gas compositions, the structure type of a natural gas hydrate can be structure I, II or H. For structure I methane hydrate, the large cages are almost fully occupied by methane molecules, while the small cages are only partly occupied. Methane hydrates occurring in different environments have been identified with almost the same crystallographic parameters.

  14. Going clean: structure and dynamics of peptides in the gas phase and paths to solvation.

    PubMed

    Baldauf, Carsten; Rossi, Mariana

    2015-12-16

    The gas phase is an artificial environment for biomolecules that has gained much attention both experimentally and theoretically due to its unique characteristic of providing a clean room environment for the comparison between theory and experiment. In this review we give an overview mainly on first-principles simulations of isolated peptides and the initial steps of their interactions with ions and solvent molecules: a bottom up approach to the complexity of biological environments. We focus on the accuracy of different methods to explore the conformational space, the connections between theory and experiment regarding collision cross section evaluations and (anharmonic) vibrational spectra, and the challenges faced in this field.

  15. Is ram-pressure stripping an efficient mechanism to remove gas in galaxies?

    NASA Astrophysics Data System (ADS)

    Quilis, Vicent; Planelles, Susana; Ricciardelli, Elena

    2017-07-01

    We study how the gas in a sample of galaxies (M* > 109 M⊙) in clusters, obtained in a cosmological simulation, is affected by the interaction with the intracluster medium (ICM). The dynamical state of each elemental parcel of gas is studied using the total energy. At z ˜ 2, the galaxies in the simulation are evenly distributed within clusters, later moving towards more central locations. In this process, gas from the ICM is accreted and mixed with the gas in the galactic halo. Simultaneously, the interaction with the environment removes part of the gas. A characteristic stellar mass around M* ˜ 1010 M⊙ appears as a threshold marking two differentiated behaviours. Below this mass, galaxies are located at the external part of clusters and have eccentric orbits. The effect of the interaction with the environment is marginal. Above, galaxies are mainly located at the inner part of clusters with mostly radial orbits with low velocities. In these massive systems, part of the gas, strongly correlated with the stellar mass of the galaxy, is removed. The amount of removed gas is subdominant compared with the quantity of retained gas, which is continuously influenced by the hot gas coming from the ICM. The analysis of individual galaxies reveals the existence of a complex pattern of flows, turbulence and a constant fuelling of gas to the hot corona from the ICM, which could mean that the global effect of the interaction of galaxies with their environment is substantially less dramatic than previously expected.

  16. Lightweight engine containment. [Kevlar shielding

    NASA Technical Reports Server (NTRS)

    Weaver, A. T.

    1977-01-01

    Kevlar fabric styles and weaves were studied, as well as methods of application for advanced gas turbine engines. The Kevlar material was subjected to high speed impacts by simple projectiles fired from a rifle, as well as more complex shapes such as fan blades released from gas turbine rotors in a spin pit. Just contained data was developed for a variety of weave and/or application techniques, and a comparative containment weight efficiency was established for Kevlar containment applications. The data generated during these tests is being incorporated into an analytical design system so that blade containment trade-off studies between Kevlar and metal case engine structures can be made. Laboratory tests and engine environment tests were performed to determine the survivability of Kevlar in a gas turbine environment.

  17. Thermal barrier coatings for gas-turbine engine applications.

    PubMed

    Padture, Nitin P; Gell, Maurice; Jordan, Eric H

    2002-04-12

    Hundreds of different types of coatings are used to protect a variety of structural engineering materials from corrosion, wear, and erosion, and to provide lubrication and thermal insulation. Of all these, thermal barrier coatings (TBCs) have the most complex structure and must operate in the most demanding high-temperature environment of aircraft and industrial gas-turbine engines. TBCs, which comprise metal and ceramic multilayers, insulate turbine and combustor engine components from the hot gas stream, and improve the durability and energy efficiency of these engines. Improvements in TBCs will require a better understanding of the complex changes in their structure and properties that occur under operating conditions that lead to their failure. The structure, properties, and failure mechanisms of TBCs are herein reviewed, together with a discussion of current limitations and future opportunities.

  18. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    NASA Astrophysics Data System (ADS)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH (2001). Bacteria and Archaea Physically Associated with Gulf of Mexico Gas Hydrates. Appl Environ Microbiol 67: 5143-5153. Rogers R, Zhang G, Dearman J, Woods C (2007). Investigations into surfactant/gas hydrate relationship. J Petrol Sci Eng 56: 82-88.

  19. A GIS-based Model for Natural Gas Data Conversion

    NASA Astrophysics Data System (ADS)

    Bitik, E.; Seker, D. Z.; Denli, H. H.

    2014-12-01

    In Turkey gas utility sector has undergone major changes in terms of increased competition between gas providers, efforts in improving services, and applying new technological solutions. This paper discusses the challenges met by gas companies to switch from long workflows of gas distribution, sales and maintenance into IT driven efficient management of complex information both spatially and non-spatially. The aim of this study is migration of all gas data and information into a GIS environment in order to manage and operate all infrastructure investments with a Utility Management System. All data conversion model for migration was designed and tested during the study. A flowchart is formed to transfer the old data layers to the new structure based on geodatabase.

  20. Experimental and theoretical studies on the gas/solid/gas transformation cycle in extraterrestrial environments

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Gazeau, Marie-Claire; Chaquin, Patrick; Raulin, François; Bénilan, Yves

    2001-12-01

    The ubiquity of molecular material in the universe, from hydrogen to complex organic matter, is the result of intermixed physicochemical processes that have occurred throughout history. In particular, the gas/solid/gas phase transformation cycle plays a key role in chemical evolution of organic matter from the interstellar medium to planetary systems. This paper focuses on two examples that are representative of the diversity of environments where such transformations occur in the Solar System: (1) the photolytic evolution from gaseous to solid material in methane containing planetary atmospheres and (2) the degradation of high molecular weight compounds into gas phase molecules in comets. We are currently developing two programs which couple experimental and theoretical studies. The aim of this research is to provide data necessary to build models in order to better understand (1) the photochemical evolution of Titan's atmosphere, through a laboratory program to determine quantitative spectroscopic data on long carbon chain molecules (polyynes) obtained in the SCOOP program (French acronym for Spectroscopy of Organic Compounds Oriented for Planetology), and (2) the extended sources in comets, through a laboratory program of quantitative studies of photochemical and thermal degradation processes on relevant polymers (e.g., Polyoxymethylene) by the SEMAPhOrE Cometaire program (French acronym for Experimental Simulation and Modeling Applied to Organic Chemistry in Cometary Environment).

  1. Formation of complex organic molecules in cold objects: the role of gas-phase reactions

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia; Ceccarelli, Cecilia; Taquet, Vianney

    2015-04-01

    While astrochemical models are successful in reproducing many of the observed interstellar species, they have been struggling to explain the observed abundances of complex organic molecules. Current models tend to privilege grain surface over gas-phase chemistry in their formation. One key assumption of those models is that radicals trapped in the grain mantles gain mobility and react on lukewarm ( ≳ 30 K) dust grains. Thus, the recent detections of methyl formate (MF) and dimethyl ether (DME) in cold objects represent a challenge and may clarify the respective role of grain-surface and gas-phase chemistry. We propose here a new model to form DME and MF with gas-phase reactions in cold environments, where DME is the precursor of MF via an efficient reaction overlooked by previous models. Furthermore, methoxy, a precursor of DME, is also synthesized in the gas phase from methanol, which is desorbed by a non-thermal process from the ices. Our new model reproduces fairly well the observations towards L1544. It also explains, in a natural way, the observed correlation between DME and MF. We conclude that gas-phase reactions are major actors in the formation of MF, DME and methoxy in cold gas. This challenges the exclusive role of grain-surface chemistry and favours a combined grain-gas chemistry.

  2. Teaching the Combined Gas Law

    ERIC Educational Resources Information Center

    Andersen, Lauren; Nobile, Nicole; Cormas, Peter

    2011-01-01

    For students to develop an understanding of science content and processes, teachers must create classroom environments in which students use inquiry to understand the natural world. However, teachers frequently find it difficult, if not impossible, to demonstrate complex scientific concepts, which textbooks often fail to properly explain. During…

  3. 40 CFR 62.1104 - Identification of sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 62.1104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS..., Contra Costa County Pulp Mill. (b) Louisiana Pacific Corp., Samoa Complex. (c) Crown Simpson Pulp Company, Fairhaven. (d) Simpson Paper Company, Shasta County Pulp Mill. [47 FR 47385, Oct. 26, 1982] Landfill Gas...

  4. 40 CFR 62.1104 - Identification of sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 62.1104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS..., Contra Costa County Pulp Mill. (b) Louisiana Pacific Corp., Samoa Complex. (c) Crown Simpson Pulp Company, Fairhaven. (d) Simpson Paper Company, Shasta County Pulp Mill. [47 FR 47385, Oct. 26, 1982] Landfill Gas...

  5. 40 CFR 62.1104 - Identification of sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 62.1104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS..., Contra Costa County Pulp Mill. (b) Louisiana Pacific Corp., Samoa Complex. (c) Crown Simpson Pulp Company, Fairhaven. (d) Simpson Paper Company, Shasta County Pulp Mill. [47 FR 47385, Oct. 26, 1982] Landfill Gas...

  6. The space-time structure of oil and gas field growth in a complex depositional system

    USGS Publications Warehouse

    Drew, L.J.; Mast, R.F.; Schuenemeyer, J.H.

    1994-01-01

    Shortly after the discovery of an oil and gas field, an initial estimate is usually made of the ultimate recovery of the field. With the passage of time, this initial estimate is almost always revised upward. The phenomenon of the growth of the expected ultimate recovery of a field, which is known as "field growth," is important to resource assessment analysts for several reasons. First, field growth is the source of a large part of future additions to the inventory of proved reserves of crude oil and natural gas in most petroliferous areas of the world. Second, field growth introduces a large negative bias in the forecast of the future rates of discovery of oil and gas fields made by discovery process models. In this study, the growth in estimated ultimate recovery of oil and gas in fields made up of sandstone reservoirs formed in a complex depositional environment (Frio strand plain exploration play) is examined. The results presented here show how the growth of oil and gas fields is tied directly to the architectural element of the shoreline processes and tectonics that caused the deposition of the individual sand bodies hosting the producible hydrocarbon. ?? 1994 Oxford University Press.

  7. Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Mountjoy, Joshu J.; Pecher, Ingo; Henrys, Stuart; Crutchley, Gareth; Barnes, Philip M.; Plaza-Faverola, Andreia

    2014-11-01

    Morphological and seismic data from a submarine landslide complex east of New Zealand indicate flow-like deformation within gas hydrate-bearing sediment. This "creeping" deformation occurs immediately downslope of where the base of gas hydrate stability reaches the seafloor, suggesting involvement of gas hydrates. We present evidence that, contrary to conventional views, gas hydrates can directly destabilize the seafloor. Three mechanisms could explain how the shallow gas hydrate system could control these landslides. (1) Gas hydrate dissociation could result in excess pore pressure within the upper reaches of the landslide. (2) Overpressure below low-permeability gas hydrate-bearing sediments could cause hydrofracturing in the gas hydrate zone valving excess pore pressure into the landslide body. (3) Gas hydrate-bearing sediment could exhibit time-dependent plastic deformation enabling glacial-style deformation. We favor the final hypothesis that the landslides are actually creeping seafloor glaciers. The viability of rheologically controlled deformation of a hydrate sediment mix is supported by recent laboratory observations of time-dependent deformation behavior of gas hydrate-bearing sands. The controlling hydrate is likely to be strongly dependent on formation controls and intersediment hydrate morphology. Our results constitute a paradigm shift for evaluating the effect of gas hydrates on seafloor strength which, given the widespread occurrence of gas hydrates in the submarine environment, may require a reevaluation of slope stability following future climate-forced variation in bottom-water temperature.

  8. How micron-sized dust particles determine the chemistry of our Universe

    PubMed Central

    Dulieu, François; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stéphanie

    2013-01-01

    In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H2) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species. However, the mechanism that converts species on dust to gas species remains elusive. Here we report experimental evidence that species forming on interstellar dust analogs can be directly released into the gas. This process, entitled chemical desorption (fig. 1), can dominate over the chemistry due to the gas phase by more than ten orders of magnitude. It also determines which species remain on the surface and are available to participate in the subsequent complex chemistry that forms the molecules necessary for the emergence of life. PMID:23439221

  9. A common framework for greenhouse gas assessment protocols in temperate agroforestry systems: Connecting via GRACEnet

    USDA-ARS?s Scientific Manuscript database

    Agroforestry systems offer many ecosystem benefits, but such systems have previously been marginalized in temperate environments due to overriding economic goals and perceived management complexity. In view of adaptation to a changing climate, agroforestry systems offer advantages that require quan...

  10. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  11. INTEGRATED AND REAL-TIME DIFFUSION DENUDER SAMPLE FOR PM2.5. (R825367)

    EPA Science Inventory

    Abstract

    Particulate matter (PM) is a complex mixture of stable condensed phases, adsorbed or dissolved gases, and semi-volatile materials, i.e. compounds that transfer between the gas and condensed phases. Fine particles in both rural and urban environments contain su...

  12. Optical control and diagnostics sensors for gas turbine machinery

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Jenkins, Thomas P.; Heeg, Bauke

    2012-10-01

    There exists a vast range of optical techniques that have been under development for solving complex measurement problems related to gas-turbine machinery and phenomena. For instance, several optical techniques are ideally suited for studying fundamental combustion phenomena in laboratory environments. Yet other techniques hold significant promise for use as either on-line gas turbine control sensors, or as health monitoring diagnostics sensors. In this paper, we briefly summarize these and discuss, in more detail, some of the latter class of techniques, including phosphor thermometry, hyperspectral imaging and low coherence interferometry, which are particularly suited for control and diagnostics sensing on hot section components with ceramic thermal barrier coatings (TBCs).

  13. A predictive numerical model for potential mapping of the gas hydrate stability zone in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Leon, R.; Somoza, L.

    2009-04-01

    This comunication presents a computational model for mapping the regional 3D distribution in which seafloor gas hydrates would be stable, that is carried out in a Geographical Information System (GIS) environment. The construction of the model is comprised of three primary steps, namely (1) the construction of surfaces for the various variables based on available 3D data (seafloor temperature, geothermal gradient and depth-pressure); (2) the calculation of the gas function equilibrium functions for the various hydrocarbon compositions reported from hydrate and sediment samples; and (3) the calculation of the thickness of the hydrate stability zone. The solution is based on a transcendental function, which is solved iteratively in a GIS environment. The model has been applied in the northernmost continental slope of the Gulf of Cadiz, an area where an abundant supply for hydrate formation, such as extensive hydrocarbon seeps, diapirs and fault structures, is combined with deep undercurrents and a complex seafloor morphology. In the Gulf of Cadiz, model depicts the distribution of the base of the gas hydrate stability zone for both biogenic and thermogenic gas compositions, and explains the geometry and distribution of geological structures derived from gas venting in the Tasyo Field (Gulf of Cadiz) and the generation of BSR levels on the upper continental slope.

  14. Description and control of dissociation channels in gas-phase protein complexes

    NASA Astrophysics Data System (ADS)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  15. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments

    NASA Astrophysics Data System (ADS)

    E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.

    2017-12-01

    Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer - solid conduction, radiation, gas conduction, and convection - are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.

  16. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    PubMed

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photodissociation Spectroscopy of Anionic Transition Metal Complexes

    NASA Astrophysics Data System (ADS)

    Kaufman, Sydney Hamilton

    Transition metal complexes play an important role in many aspects of chemistry; whether in supporting biological functions, as catalysts for organic reactions, in the environment, or in industry. This thesis is comprised of gas-phase spectroscopic studies of four transition metal species with implications for many different chemical applications. Most knowledge of the target molecules in this thesis are derived from studies in the condensed phase, where the chemical environment can change molecular properties. As a result, it is difficult to gain an understanding of the intrinsic properties in solution as well as a molecular-level picture of chemical reactions that take place where many oxidation states, molecular species, and solvent interactions occur. By isolating one particular species in the gas phase, we are able to observe how each species interacts with light independent of perturbing effects of solvent and counter ions. In this thesis, we perform spectroscopic experiments on mass-selected ions in the gas phase, where we are able to gain information on intrinsic molecular properties without the influence of a condensed phase chemical environment. We employ photodissociation spectroscopy, where we mass-select a particular ionic species from solution and irradiate that molecular ion with the output of a tunable laser in the ultraviolet and visible regions. By monitoring the fragments produced, we can obtain an electronic absorption spectrum of the isolated species as well as gain insight into the photochemistry of the ions under study from the fragmentation pathways observed. We combine this method with solution absorption spectra as well as electronic structure calculations.

  18. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    NASA Astrophysics Data System (ADS)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  19. Reduced gas seepages in serpentinized peridotite complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Deville, E.; Vacquand, C.; Beaumont, V.; Francois, G.; Sissmann, O.; Pillot, D.; Arcilla, C. A.; Prinzhofer, A.

    2017-12-01

    A comparative study of reduced gas seepages associated to serpentinized ultrabasic rocks was conducted in the ophiolitic complexes of Oman, the Philippines, Turkey and New Caledonia. This study is based on analyzes of the gas chemical composition, noble gases contents, and stable isotopes of carbon, hydrogen and nitrogen. These gas seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct families of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These families are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich family associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 families. H2-bearing gases are either associated to ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and high pH conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4 (conditions of strong carbon restriction). The N2-rich family is associated with relatively high contents of crustal 4He. In this family N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  20. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Vacquand, Christèle; Deville, Eric; Beaumont, Valérie; Guyot, François; Sissmann, Olivier; Pillot, Daniel; Arcilla, Carlo; Prinzhofer, Alain

    2018-02-01

    This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 types. H2-bearing gases are either associated with ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and alkaline conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4. The N2-rich type is notably associated with relatively high contents of crustal 4He and in this gas type N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  1. Computational Prediction of Pressure and Thermal Environments in the Flame Trench With Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Sozer, Emre; Barad, Michael F.; Housman, Jeffrey A.; Kiris, Cetin C.; Moini-Yekta, Shayan; Vu, Bruce T.; Parlier, Christopher R.

    2014-01-01

    One of the key objectives for the development of the 21st Century Space Launch Com- plex is to provide the exibility needed to support evolving launch vehicles and spacecrafts with enhanced range capacity. The launch complex needs to support various proprietary and commercial vehicles with widely di erent needs. The design of a multi-purpose main ame de ector supporting many di erent launch vehicles becomes a very challenging task when considering that even small geometric changes may have a strong impact on the pressure and thermal environment. The physical and geometric complexity encountered at the launch site require the use of state-of-the-art Computational Fluid Dynamics (CFD) tools to predict the pressure and thermal environments. Due to harsh conditions encountered in the launch environment, currently available CFD methods which are frequently employed for aerodynamic and ther- mal load predictions in aerospace applications, reach their limits of validity. This paper provides an in-depth discussion on the computational and physical challenges encountered when attempting to provide a detailed description of the ow eld in the launch environ- ment. Several modeling aspects, such as viscous versus inviscid calculations, single-species versus multiple-species ow models, and calorically perfect gas versus thermally perfect gas, are discussed. The Space Shuttle and the Falcon Heavy launch vehicles are used to study di erent engine and geometric con gurations. Finally, we provide a discussion on traditional analytical tools which have been used to provide estimates on the expected pressure and thermal loads.

  2. Astrochemistry

    NASA Astrophysics Data System (ADS)

    Millar, T. J.

    2015-08-01

    In the last 40 years a wide range of molecules, including neutrals, cations and anions, containing up to 13 atoms—in addition to detections of {{\\text{C}}60} and {{\\text{C}}70} —have been found in the harsh environment of the interstellar medium. The exquisite sensitivity and very high spectral and, more recently, spatial resolution, of modern telescopes has enabled the physics of star formation to be probed through rotational line emission. In this article, I review the basic properties of interstellar clouds and the processes that initiate the chemistry and generate chemical complexity, particularly in regions of star and planet formation. Our understanding of astrochemistry has evolved over the years. Before 1990, the general consensus was that molecules were formed in binary, gas-phase, or volume, reactions, most importantly ion-neutral reactions despite the very low ionization in clouds. Since then, observations have indicated unambiguously that there is also a contribution from surface processes, particularly on the icy mantles that form around refractory grain cores in cold, dense gas. The balance between these two processes depends on particular physical conditions and can vary during the life cycle of a particular volume of interstellar cloud. The complex chemistry that occurs in space is driven mostly through interaction of the gas with cosmic ray protons, a source of ionization that enables a rich ion-neutral chemistry. In addition, I show that the interaction between the gas and the dust in cold, dense regions also leads to additional chemical complexity through reactions that take place in ices at only a few tens of degrees above absolute zero. Although densities are low compared to those in terrestrial environments, the extremely long life times of interstellar clouds and their enormous sizes, enable complex molecules to be synthesised and detected. I show that in some instances, particularly in reactions involving deuterium, the rotational populations of reactants, together with spin-selection rules, can determine the detailed abundances. Although the review is mainly focused on regions associated with star formation, I also consider chemistry in other interesting astronomical regions—in the early Universe and in the envelopes formed by mass loss during the final stages of stellar evolution.

  3. A Quasi-Optical Method for Measuring the Complex Permittivity of Materials.

    DTIC Science & Technology

    1984-09-01

    structural mechanics, flight dynamics; high-temperature thermomechanica, gas kinetics and radiation; research in environmental chemistry and...specific chemical reactions and radia- tion transport in rocket pluses, applied laser spectroscopy, laser chemistry, batery electrochemistry, space...corrosion; evaluation of materials in space environment ; materials performance In space transportation systems; anal- ysis of system vulnerability and

  4. Transport of gases between the environment and alveoli – theoretical foundations

    PubMed Central

    Butler, James P.; Tsuda, Akira

    2015-01-01

    The transport of oxygen and carbon dioxide in the gas phase from the ambient environment to and from the alveolar gas/blood interface is accomplished through the tracheobronchial tree, and involves mechanisms of bulk or convective transport and diffusive net transport. The geometry of the airway tree and the fluid dynamics of these two transport processes combine in such a way that promotes a classical fractionation of ventilation into dead space and alveolar ventilation respectively. This simple picture continues to capture much of the essence of gas phase transport. On the other hand, a more detailed look at the interaction of convection and diffusion leads to significant new issues, many of which remain open questions. These are associated with parallel and serial inhomogeneities especially within the distal acinar units, velocity profiles in distal airways and terminal spaces subject to moving boundary conditions, and the serial transport of respiratory gases within the complex acinar architecture. This chapter focuses specifically on the theoretical foundations of gas transport, addressing two broad areas. The first deals with the reasons why the classical picture of alveolar and dead space ventilation is so successful; the second examines the underlying assumptions within current approximations to convective and diffusive transport, and how they interact to effect net gas exchange. PMID:23733643

  5. Evolution and development of fetal membranes and placentation in amniote vertebrates.

    PubMed

    Ferner, Kirsten; Mess, Andrea

    2011-08-31

    We review aspects of fetal membrane evolution and patterns of placentation within amniotes, the most successful land vertebrates. Special reference is given to embryonic gas supply. The evolution of fetal membranes is a prerequisite for reproduction independent from aquatic environments. Starting from a basically similar repertoire of fetal membranes - the amnion, chorion, allantois and yolk sac, which form the cleidoic egg - different structural solutions for embryonic development have evolved. In oviparous amniotes the chorioallantoic membrane is the major site for the exchange of respiratory gases between fetus and outer environment. The richly vascularised yolk sac and allantois in concert with the chorion play an important role in the evolution of placentation in various viviparous amniotes. Highly complex placentas have evolved independently among squamate sauropsids and in marsupial and placental mammals. In conclusion, there seems to be a natural force to improve gas exchange processes in intrauterine environments by reducing the barrier between the blood systems and optimising the exchange areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Examining the X-ray Properties of Lenticular Galaxies: Rollins S0 X-ray Sample (RS0X)

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Malespina, Alysa

    2017-01-01

    Lenticular galaxies represent a complex morphology in which many questions remain. The S0 morphology possesses spiral galaxy attributes, such as a disk, while also displaying the luminosity and old stellar population indicative of an elliptical galaxy. The proposed formation mechanisms for lenticulars are also varied, with the absence of gas suggesting a faded spiral and the high masses and luminosities implying a merger formation. The star formation and high-energy emission from a sample of S0s will be used to better understand the properties and formation mechanisms of this unique subset of galaxies.We use the Chandra X-ray Observatory archives cycle 1 - 16 to identify a sample of seventeen lenticular galaxies residing in a variety of environments. Data was analyzed using the CIAO software to produce true color images, radial profiles of the halo gas, gas contours, as well as determine the X-ray luminosities of the point sources and gas.The X-ray gas temperature of the sample S0s varied over a narrow range between 0.61 and 0.96 keV, with one outlier, NGC 4382 at 2.0 keV. The X-ray luminosity of the halo gas varies by four dex. The gas temperatures and X-ray luminosities do not vary by environment, with the majority of sample S0s displaying values of typical elliptical galaxies. The S0 sample is X-ray under-luminous relative to the optical luminosity as compared to the sample of early-type galaxies of Ellis & O’Sullivan (2006).The halo gas exhibited some distinct morphological features, such as multiple X-ray peaks, which may indicate a merger event, and highly concentrated gas, suggesting limited gravitational disturbance. Isolated S0, NGC 4406, displays an asymmetric halo, which could be interpreted as gas stripping. An isolated lenticular experiencing gas redistribution due to gravitational perturbation or a cluster-like medium could be interpreted as NGC 4406 forming in a higher galactic density environment than the field.

  7. Design of a Micro Cable Tunnel Inspection Robot

    NASA Astrophysics Data System (ADS)

    Song, Wei; Liu, Lei; Zhou, Xiaolong; Wang, Chengjiang

    2016-11-01

    As the ventilation system in cable tunnel is not perfect and the environment is closed, it is easy to accumulate toxic and harmful gas. It is a serious threat to the life safety of inspection staff. Therefore, a micro cable tunnel inspection robot is designed. The whole design plan mainly includes two parts: mechanical structure design and control system design. According to the functional requirements of the tunnel inspection robot, a wheel arm structure with crawler type is proposed. Some sensors are used to collect temperature, gas and image and transmit the information to the host computer in real time. The result shows the robot with crawler wheel arm structure has the advantages of small volume, quick action and high performance-price ratio. Besides, it has high obstacle crossing and avoidance ability and can adapt to a variety of complex cable tunnel environment.

  8. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures

    PubMed Central

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476

  9. Probability theory for 3-layer remote sensing in ideal gas law environment.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2013-08-26

    We extend the probability model for 3-layer radiative transfer [Opt. Express 20, 10004 (2012)] to ideal gas conditions where a correlation exists between transmission and temperature of each of the 3 layers. The effect on the probability density function for the at-sensor radiances is surprisingly small, and thus the added complexity of addressing the correlation can be avoided. The small overall effect is due to (a) small perturbations by the correlation on variance population parameters and (b) cancellation of perturbation terms that appear with opposite signs in the model moment expressions.

  10. Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, Jacob L.; Yu, Yang; Ohodnicki, Paul R.

    In-situ monitoring of the multi-component gas streams in high temperature energy conversion devices offer the promises to higher efficiency via improved understanding of the chemical environments during device operation. While conventional resistive based metal oxide semiconductor gas sensors suffer from strong cross-sensitivity, optical sensing approaches offer intrinsic advantages to achieve gas selectivity based on wavelength specific interactions. This manuscript describes a novel method to achieve multicomponent gas sensing during gas exposure of H2, CO2, CH4and CO in humid high temperature environments. A single sensor element comprised of a perovskite La0.3Sr0.7TiO3(LSTO) oxide thin film layer coated on silica optical fiber wasmore » used. The sensing responses consisted of two wavelength-specific near infrared (NIR) mechanisms, namely broadband absorption associated with the metal oxide layer, and wavelength localized thermal emission responses associated with the hydroxyl defects within the silica fiber. Principal component analysis (PCA) was applied to couple the two mechanisms to achieve selective gas identification. Successful discrimination of H2and CO2on a single fiber sensor was achieved, where the results are both stable and reversible. This design demonstrates that by coupling multiple optical mechanisms on a single oxide coated fiber sensor, simple platforms can also achieve multi-component sensing functionality without the added complexity of a sensor array. Thus, it suggests a new approach to construct simple, robust and functional sensor designs capable of gas discrimination and quantification in multi-component gas streams.« less

  11. Students' Learning with the Connected Chemistry (CC1) Curriculum: Navigating the Complexities of the Particulate World

    ERIC Educational Resources Information Center

    Levy, Sharona T.; Wilensky, Uri

    2009-01-01

    The focus of this study is students' learning with a Connected Chemistry unit, CC1 (denotes Connected Chemistry, chapter 1), a computer-based environment for learning the topics of gas laws and kinetic molecular theory in chemistry (Levy and Wilensky 2009). An investigation was conducted into high-school students' learning with Connected…

  12. Gas-deposit-alloy corrosion interactions in simulated combustion environments

    NASA Astrophysics Data System (ADS)

    Luer, Kevin Raymond

    High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage correlated with the initial sulfur content in the deposit. Fe3O4 in the deposit was beneficial because it acted as a sulfur getter or oxygen source. Carbon had a mixed effect. The reaction behavior was modeled using computational thermochemistry based on Gibbs free energy minimization. A calculation method was introduced to predict equilibrium corrosion microstructures and trace reaction paths in complex gas-deposit-metal environments. Kinetic factors were identified where equilibrium reaction products were not experimentally observed.

  13. Uranyl extraction by N,N-dialkylamide ligands studied using static and dynamic DFT simulations.

    PubMed

    Sieffert, Nicolas; Wipff, Georges

    2015-02-14

    We report DFT static and dynamic studies on uranyl complexes [UO(2)(NO(3))x(H(2)O)(y)L(z)](2-x) involved in the uranyl extraction from water to an "oil" phase (hexane) by an amide ligand L (N,N-dimethylacetamide). Static DFT results "in solution" (continuum SMD models for water and hexane) predict that the stepwise formation of [UO(2)(NO(3))(2)L(2)] from the UO(2)(H(2)O)(5)(2+) species is energetically favourable, and allow us to compare cis/trans isomers of penta- and hexa-coordinated complexes and key intermediates in the two solvents. DFT-MD simulations of [UO(2)(NO(3))(2)L(2)], [UO(2)(NO(3))(2)(H(2)O)L(2)], and [UO(2)(NO(3))(H(2)O)L(2)](+) species in explicit solvent environments (water, hexane, or the water/hexane interface) represented at the MM or full-DFT level reveal a versatile solvent dependent binding mode of nitrates, also evidenced by metadynamics simulations. In water and at the interface, the latter exchange from bi- to monodentate, via in plane rotational motions in some cases. Remarkably, structures of complexes at the interface are more "water-like" than gas phase- or hexane-like. Thus, the order of U-O(NO(3))/U-O(L) bond distances observed in the gas phase (U-O(nit) < U-OL) is inverted at the interface and in water. Overall, the results are consistent with the experimental observation of uranyl extraction from nitric acid solutions by amide analogues (bearing "fatty" substituents), and allow us to propose possible extraction mechanisms, involving complexation of L "right at the interface". They also point to the importance of the solvent environment and the dynamics on the structure and stability of the complexes.

  14. Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.

    2018-04-01

    We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.

  15. Versatile fluid-mixing device for cell and tissue microgravity research applications.

    PubMed

    Wilfinger, W W; Baker, C S; Kunze, E L; Phillips, A T; Hammerstedt, R H

    1996-01-01

    Microgravity life-science research requires hardware that can be easily adapted to a variety of experimental designs and working environments. The Biomodule is a patented, computer-controlled fluid-mixing device that can accommodate these diverse requirements. A typical shuttle payload contains eight Biomodules with a total of 64 samples, a sealed containment vessel, and a NASA refrigeration-incubation module. Each Biomodule contains eight gas-permeable Silastic T tubes that are partitioned into three fluid-filled compartments. The fluids can be mixed at any user-specified time. Multiple investigators and complex experimental designs can be easily accommodated with the hardware. During flight, the Biomodules are sealed in a vessel that provides two levels of containment (liquids and gas) and a stable, investigator-controlled experimental environment that includes regulated temperature, internal pressure, humidity, and gas composition. A cell microencapsulation methodology has also been developed to streamline launch-site sample manipulation and accelerate postflight analysis through the use of fluorescent-activated cell sorting. The Biomodule flight hardware and analytical cell encapsulation methodology are ideally suited for temporal, qualitative, or quantitative life-science investigations.

  16. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    NASA Astrophysics Data System (ADS)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuanyuan; Browning, Nigel D.

    As gas-solid heterogeneous catalytic reactions are molecular in nature, a full mechanistic understanding of the process requires atomic scale characterization under realistic operating conditions. While atomic resolution imaging has become a routine in modern high-vacuum (scanning) transmission electron microscopy ((S)TEM), both image quality and resolution nominally degrade when reaction gases are introduced. In this work, we systematically assess the effects of different gases at various pressures on the quality and resolution of images obtained at room temperature in the annular dark field STEM imaging mode using a differentially pumped (DP) gas cell. This imaging mode is largely free from inelasticmore » scattering effects induced by the presence of gases and retains good imaging properties over a wide range of gas mass/pressures. We demonstrate the application of the ESTEM with atomic resolution images of a complex oxide alkane oxidation catalyst MoVNbTeOx (M1) immersed in light and heavy gas environments.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuanyuan; Browning, Nigel D.

    As gas-solid heterogeneous catalytic reactions are molecular in nature, a full mechanistic understanding of the process requires atomic scale characterization under realistic operating conditions. While atomic resolution imaging has become a routine in modern high-vacuum (scanning) transmission electron microscopy ((S)TEM), both image quality and resolution nominally degrade when reaction gases are introduced. In this work, we systematically assess the effects of different gases at various pressures on the quality and resolution of images obtained at room temperature in the annular dark field STEM imaging mode using a differentially pumped (DP) gas cell. This imaging mode is largely free from inelasticmore » scattering effects induced by the presence of gases and retains good imaging properties over a wide range of gas mass/pressures. Furthermore, we demonstrate the application of the ESTEM with atomic resolution images of a complex oxide alkane oxidation catalyst MoVNbTeOx (M1) immersed in light and heavy gas environments.« less

  19. Prebiotic-like chemistry on Titan.

    PubMed

    Raulin, François; Brassé, Coralie; Poch, Olivier; Coll, Patrice

    2012-08-21

    Titan, the largest satellite of Saturn, is the only one in the solar system with a dense atmosphere. Mainly composed of dinitrogen with several % of methane, this atmosphere experiences complex organic processes, both in the gas and aerosol phases, which are of prebiotic interest and within an environment of astrobiological interest. This tutorial review presents the different approaches which can be followed to study such an exotic place and its chemistry: observation, theoretical modeling and experimental simulation. It describes the Cassini-Huygens mission, as an example of observational tools, and gives the new astrobiologically oriented vision of Titan which is now available by coupling the three approaches. This includes the many analogies between Titan and the Earth, in spite of the much lower temperature in the Saturn system, the complex organic chemistry in the atmosphere, from the gas to the aerosol phases, but also the potential organic chemistry on Titan's surface, and in its possible internal water ocean.

  20. Science-based decision-making on complex issues: Marcellus shale gas hydrofracking and New York City water supply.

    PubMed

    Eaton, Timothy T

    2013-09-01

    Complex scientific and non-scientific considerations are central to the pending decisions about "hydrofracking" or high volume hydraulic fracturing (HVHF) to exploit unconventional natural gas resources worldwide. While incipient plans are being made internationally for major shale reservoirs, production and technology are most advanced in the United States, particularly in Texas and Pennsylvania, with a pending decision in New York State whether to proceed. In contrast to the narrow scientific and technical debate to date, focused on either greenhouse gas emissions or water resources, toxicology and land use in the watersheds that supply drinking water to New York City (NYC), I review the scientific and technical aspects in combination with global climate change and other critical issues in energy tradeoffs, economics and political regulation to evaluate the major liabilities and benefits. Although potential benefits of Marcellus natural gas exploitation are large for transition to a clean energy economy, at present the regulatory framework in New York State is inadequate to prevent potentially irreversible threats to the local environment and New York City water supply. Major investments in state and federal regulatory enforcement will be required to avoid these environmental consequences, and a ban on drilling within the NYC water supply watersheds is appropriate, even if more highly regulated Marcellus gas production is eventually permitted elsewhere in New York State. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The role of gas in determining image quality and resolution during in situ scanning transmission electron microscopy experiments

    DOE PAGES

    Zhu, Yuanyuan; Browning, Nigel D.

    2017-05-24

    As gas-solid heterogeneous catalytic reactions are molecular in nature, a full mechanistic understanding of the process requires atomic scale characterization under realistic operating conditions. While atomic resolution imaging has become a routine in modern high-vacuum (scanning) transmission electron microscopy ((S)TEM), both image quality and resolution nominally degrade when reaction gases are introduced. In this work, we systematically assess the effects of different gases at various pressures on the quality and resolution of images obtained at room temperature in the annular dark field STEM imaging mode using a differentially pumped (DP) gas cell. This imaging mode is largely free from inelasticmore » scattering effects induced by the presence of gases and retains good imaging properties over a wide range of gas mass/pressures. Furthermore, we demonstrate the application of the ESTEM with atomic resolution images of a complex oxide alkane oxidation catalyst MoVNbTeOx (M1) immersed in light and heavy gas environments.« less

  2. Structure, function and evolution of the gas exchangers: comparative perspectives

    PubMed Central

    Maina, JN

    2002-01-01

    Over the evolutionary continuum, animals have faced similar fundamental challenges of acquiring molecular oxygen for aerobic metabolism. Under limitations and constraints imposed by factors such as phylogeny, behaviour, body size and environment, they have responded differently in founding optimal respiratory structures. A quintessence of the aphorism that ‘necessity is the mother of invention’, gas exchangers have been inaugurated through stiff cost–benefit analyses that have evoked transaction of trade-offs and compromises. Cogent structural–functional correlations occur in constructions of gas exchangers: within and between taxa, morphological complexity and respiratory efficiency increase with metabolic capacities and oxygen needs. Highly active, small endotherms have relatively better-refined gas exchangers compared with large, inactive ectotherms. Respiratory structures have developed from the plain cell membrane of the primeval prokaryotic unicells to complex multifunctional ones ofthe modern Metazoa. Regarding the respiratory medium used to extract oxygen from, animal life has had only two choices – water or air – within the biological range of temperature and pressure the only naturally occurring respirable fluids. In rarer cases, certain animalshave adapted to using both media. Gills (evaginated gas exchangers) are the primordial respiratory organs: they are the archetypal water breathing organs. Lungs (invaginated gas exchangers) are the model air breathing organs. Bimodal (transitional) breathers occupy the water–air interface. Presentation and exposure of external (water/air) and internal (haemolymph/blood) respiratory media, features determined by geometric arrangement of the conduits, are important features for gas exchange efficiency: counter-current, cross-current, uniform pool and infinite pool designs have variably developed. PMID:12430953

  3. Solid State Pathways towards Molecular Complexity in Space

    NASA Astrophysics Data System (ADS)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  4. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    NASA Astrophysics Data System (ADS)

    Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio

    2017-06-01

    Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  5. Research and Development in support of the Surface Chemistry Branch. Volume 1

    DTIC Science & Technology

    1988-06-01

    reactions could occur in the melt and/or gas phase-and (2) formation of HCN from RDX pyrolysis followed by hydrolysis with atmospheric/RDX decomposition ...interest is the development of electrochemically active transition metal complexes for the catalytic conversion/ decomposition of dissolved gases, such...impregnated charcoals for the collection and catalytic decomposition of toxic vapors (2), and the evaluation of Navy shipboard environments (3). For the

  6. An Interferometric Spectral Line and Imaging Survey of VY Canis Majoris in the 345 GHz Band

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Gottlieb, C. A.; Young, K. H.; Menten, K. M.; Patel, N. A.

    2013-12-01

    A spectral line survey of the oxygen-rich red supergiant VY Canis Majoris was made between 279 and 355 GHz with the Submillimeter Array (SMA). Two hundred twenty-three spectral features from 19 molecules (not counting isotopic species of some of them) were observed, including the rotational spectra of TiO, TiO2, and AlCl for the first time in this source. The parameters and an atlas of all spectral features are presented. Observations of each line with a synthesized beam of ~0.''9, reveal the complex kinematics and morphology of the nebula surrounding VY CMa. Many of the molecules are observed in high-lying rotational levels or in excited vibrational levels. From these, it was established that the main source of the submillimeter-wave continuum (dust) and the high-excitation molecular gas (the star) are separated by about 0.''15. Apparent coincidences between the molecular gas observed with the SMA, and some of the arcs and knots observed at infrared wavelengths and in the optical scattered light by the Hubble Space Telescope are identified. The observations presented here provide important constraints on the molecular chemistry in oxygen-dominated circumstellar environments and a deeper picture of the complex circumstellar environment of VY CMa.

  7. A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus.

    PubMed

    Shelburne, Samuel A; Keith, David; Horstmann, Nicola; Sumby, Paul; Davenport, Michael T; Graviss, Edward A; Brennan, Richard G; Musser, James M

    2008-02-05

    Although central to pathogenesis, the molecular mechanisms used by microbes to regulate virulence factor production in specific environments during host-pathogen interaction are poorly defined. Several recent ex vivo and in vivo studies have found that the level of group A Streptococcus (GAS) virulence factor gene transcripts is temporally related to altered expression of genes encoding carbohydrate utilization proteins. These findings stimulated us to analyze the role in pathogenesis of catabolite control protein A (CcpA), a GAS ortholog of a key global regulator of carbohydrate metabolism in Bacillus subtilis. Inasmuch as the genomewide effects of CcpA in a human pathogen are unknown, we analyzed the transcriptome of a DeltaccpA isogenic mutant strain grown in nutrient-rich medium. CcpA influences the transcript levels of many carbohydrate utilization genes and several well characterized GAS virulence factors, including the potent cytolysin streptolysin S. Compared with the wild-type parental strain, the DeltaccpA isogenic mutant strain was significantly less virulent in a mouse model of invasive infection. Moreover, the isogenic mutant strain was significantly impaired in ability to colonize the mouse oropharynx. When grown in human saliva, a nutrient-limited environment, CcpA influenced production of several key virulence factors not influenced during growth in nutrient-rich medium. Purified recombinant CcpA bound to the promoter region of the gene encoding streptolysin S. Our discovery that GAS virulence and complex carbohydrate utilization are directly linked through CcpA provides enhanced understanding of a mechanism used by a Gram-positive pathogen to modulate virulence factor production in specific environments.

  8. Ion pair particles at the air–water interface

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Francisco, Joseph S.

    2017-11-01

    Although the role of methanesulfonic acid (HMSA) in particle formation in the gas phase has been extensively studied, the details of the HMSA-induced ion pair particle formation at the air–water interface are yet to be examined. In this work, we have performed Born–Oppenheimer molecular dynamics simulations and density functional theory calculations to investigate the ion pair particle formation from HMSA and (R1)(R2)NH (for NH3, R1 = R2 = H; for CH3NH2, R1 = H and R2 = CH3; and for CH3NH2, R1 = R2 = CH3) at the air–water interface. The results show that, at the air–water interface, HMSA deprotonates within a few picoseconds and results in the formation of methanesulfonate ion (MSA‑)ṡṡH3O+ ion pair. However, this ion pair decomposes immediately, explaining why HMSA and water alone are not sufficient for forming stable particles in atmosphere. Interestingly, the particle formation from the gas-phase hydrogen-bonded complexes of HMSA with (R1)(R2)NH on the water droplet is observed with a few femtoseconds, suggesting a mechanism for the gas to particle conversion in aqueous environments. The reaction involves a direct proton transfer between HMSA and (R1)(R2)NH, and the resulting MSA‑ṡṡ(R1)(R2)NH2+ complex is bound by one to four interfacial water molecules. The mechanistic insights gained from this study may serve as useful leads for understanding about the ion pair particle formation from other precursors in forested and polluted urban environments.

  9. Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12 to 102 s

    PubMed Central

    Breuker, Kathrin; McLafferty, Fred W.

    2008-01-01

    Mass spectrometry (MS) has been revolutionized by electrospray ionization (ESI), which is sufficiently “gentle” to introduce nonvolatile biomolecules such as proteins and nucleic acids (RNA or DNA) into the gas phase without breaking covalent bonds. Although in some cases noncovalent bonding can be maintained sufficiently for ESI/MS characterization of the solution structure of large protein complexes and native enzyme/substrate binding, the new gaseous environment can ultimately cause dramatic structural alterations. The temporal (picoseconds to minutes) evolution of native protein structure during and after transfer into the gas phase, as proposed here based on a variety of studies, can involve side-chain collapse, unfolding, and refolding into new, non-native structures. Control of individual experimental factors allows optimization for specific research objectives. PMID:19033474

  10. Investigation of moisture-induced embrittlement of iron aluminides. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castagna, A.; Stoloff, N.S.

    Alloy FA-129 undergoes an increase in crack propagation rate and a loss of fracture toughness in moisture-bearing and hydrogen gas environments. A similar effect is seen on ductility of FA-129 in tensile tests. The embrittling effect in air is attributed to oxidation of aluminum in the alloy by water vapor to produce Al{sub 2}O{sub 3} and hydrogen gas. Alloy FAP-Y, which is disordered and contains only 16 a%Al is embrittled by hydrogen gas in a manner similar to that of FA-129. However, laboratory air had little effect on the crack growth rates, fracture toughness, or tensile ductility. The lower aluminummore » content apparently is insufficient to induce the Al-H{sub 2}O reaction. TEM and SEM analyses of microstructure and fracture surfaces were consistent with the change in fracture toughness with order and environment. Testing at elevated temperatures reduces crack growth rates in FA-129, and increases fracture toughness and ductility. This is consistent with the well documented peak in hydrogen embrittlement in structural alloys at or near room temperature. Elevated temperature affects the degree of embrittlement in a complex manner, possibly changing the rates of several of the processes involved.« less

  11. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes.

    PubMed

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (U VI O 2 2+ ) coordinated by formate or acetate ligands. Anionic complexes containing U VI O 2 2+ and formate ligands fragment by decarboxylation and elimination of CH 2 =O, ultimately to produce an oxo-hydride species [U VI O 2 (O)(H)] - . Cationic species ultimately dissociate to make [U VI O 2 (OH)] + . Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH 3 CO 2 •, with associated reduction of uranyl to U V O 2 + . Subsequent CID steps cause elimination of CO 2 and CH 4 , ultimately to produce [U V O 2 (O)] - . Loss of CH 4 occurs by an intra-complex H + transfer process that leaves U V O 2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH 2 =C=O to leave [U V O 2 (O)] - . Elimination of CH 4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H 2 O. The reactions of other anionic species with gas-phase H 2 O create hydroxyl products, presumably through the elimination of H 2 . Graphical Abstract ᅟ.

  12. Study of solid/liquid and solid/gas interfaces in Cu-isoleucine complex by surface X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.

    2013-02-01

    The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal-amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu-isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal-amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu-isoleucine complex under different ambient conditions. Cu(Ile)2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu-isoleucine crystal was measured under a protective dry N2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.

  13. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    NASA Astrophysics Data System (ADS)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  14. Chemistry in the Dusty Coma of Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Cochran, A. L.; Disanti, M. A.; Huebner, W. F.

    1998-09-01

    Recent progress on a multifluid, hydrodynamic model is presented for the dusty gas flow in the inner coma of comet Hale-Bopp at several heliocentric distances. The simulations are based on a 1-D neutral coma model with detailed photo and gas-phase chemistry and dust entrainment by the gas, a separate energy balance for the electrons, separate flow of the neutral gas, fast neutral atomic and molecular hydrogen, and dust entrainment with fragmentation. The model accounts for three sources of gas release: sublimation from surface ices, transport of gas from subsurface regions through the surface, and release of gas from dust in the coma. This permits a consistent study of the importance and strength of each possible source for a variety of gas-phase species. The simulations allow a study of the changes with heliocentric distance of features within a cometary coma, e.g., spatial distributions of gas-phase species and dust of various sizes and the velocity and temperature profiles. In particular, the model is used to probe spatial distributions of gas-phase species (e.g., CN, CH, C_3, C_2, HCN, HNC, CO) and dust, and the velocity and temperature structure to understand the complex gas-phase chemistry that occurs in the inner coma. Comparisons with observations are made where available to characterize the environment surrounding comet Hale-Bopp and to aid in assimilating a variety of diverse observations of this unique comet.

  15. Herschel Observations of C+ in the Vicinity of Star Forming Complexes in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Pineda, Jorge; Velusamy, T.; Langer, W.; Goldsmith, P.; Li, D.; Yorke, H.

    2010-05-01

    The CII fine-structure line at 158 um, is an excellent tracer of the warm diffuse gas and the hot, dense Photon Dominated Regions (PDRs). We can, therefore, use the CII emission as a probe to understand the effects of star formation on their interstellar environment. Here we present the first results from the Galactic Observations of Terahertz C+ (GOT C+), a Herschel Key Project study of CII fine structure emission in the vicinity of star forming complexes. In the Priority Science Phase of HIFI observations, the GOT C+ project collects data along a dozen lines of sight passing near star forming regions in the inner Galaxy from longitude 310 degrees to 25 degrees. We discuss our first results on the transition between dense and hot gas (traced by CII) and dense and cold gas (traced by 12CO and 13CO). This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP was supported under the NASA Postdoctoral Program at JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA, and is currently supported as a Caltech-JPL Postdoc.

  16. An imaging spectrometer for microgravity application

    NASA Technical Reports Server (NTRS)

    Wong, Wallace K.

    1995-01-01

    Flame structure is the result of complex interaction of mechanisms operating in both unwanted fires and controlled combustion systems. The scientific study of gas-jet diffusion flames in reduced-gravity environment is of interest because the effects of buoyancy on flow entrainment and acceleration are lessened. Measurements of flames have been restricted to cinematography, thermocouples, and radiometers. SSG, Inc. is developing an MWIR imaging spectrometer (MIS) for microgravity flame measurements. The device will be delivered to NASA Lewis at the end of this project to demonstrate flame measurements in the laboratory. With proper modifications, the MIS can be used to monitor a gas-jet flame under microgravity on a NASA Learjet or DC-9.

  17. Planetary environments and the conditions of life

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1988-01-01

    Geophysical models of the first 600 Ma ofthe earth's history following accretion and core formation point to a period of great environmental disequilibrium. In such an environment, the passage of energy from the earth's interior and from the sun through gas-liquid-solid domains and their boundaries with each other generated a dynamically interacting, complex hierarchy of self-organized structures ranging from bubbles at the sea-air interface to tectonic plates. The ability of a planet to produce such a hierarchy is speculated to be a prerequisite to the origin and sustenance of life. The application of this criterion to Mars argues against the origin of Martian life.

  18. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    NASA Technical Reports Server (NTRS)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  19. United States Air Force Academy get-away-special flexible beam experiment

    NASA Technical Reports Server (NTRS)

    Bubb, Keith W.; Lamberson, Steven E.; Lash, Thomas A.

    1989-01-01

    The Department of Astronautics at the United States Air Force Academy is currently planning to fly an experiment in a NASA Get-Away-Special (GAS) canister. The experiment was named the flex beam experiment. The primary technical objective of the flex beam experiment is to measure the damping of a thin beam in the vacuum and zero G environment of space. By measuring the damping in space, it is hoped to determine the amount of damping the beam normally experiences due to the gravitational forces present on Earth. This will allow validation of models which predict the dynamics of thin beams in the space environment. The experiment will also allow the Academy to develop and improve its ability to perform experiments within the confines of a NASA GAS canister. Several experiments, of limited technical difficulty, were flown by the Academy. More complex experiments are currently planned and it is hoped to learn techniques with each space shuttle flight.

  20. Chromatographic instrumentation in space: past, present and future developments for exobiological studies

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Sternberg, R.; Coscia, D.; Vidal-Madjar, C.; Millot, M.-C.; Sébille, B.; Israel, G.

    1999-01-01

    Several planetary exploration missions have already used chromatographic techniques to search for organic compounds, including complex organics, in extraterrestrial environments. So far, only gas chromatography (GC) has been used. In two cases (Viking and Cassini-Huygens), a Py-GC-MS instrument, coupling GC with a pyrolyzer and a mass spectrometer, has been flown. Powerful miniaturized Py-GC-MS instrumentation, with high resolution multi-GC columns and time-of-flight or Ion Trap mass spectrometers are under development, in the frame of the preparation of the Rosetta mission. There is now a strong need for new chromatographic instrumentation in space, in particular to perform detailed molecular analyses of complex non-volatile organics, including macromolecular compounds. Liquid Chromatography (LC), in particular High Performance Liquid Chromatography (HPLC) Supercritical Fluid Chromatography (SFC) or Chemical-Derivatization Gas Chromatography (CDGC) could provide a very efficient mean of analyzing a wide variety of exobiologically important compounds. LC or CDGC have never been used in space yet, but feasibility studies on their application in planetary mission are needed.

  1. Disentangling the intragroup HI in Compact Groups of galaxies by means of X3D visualization

    NASA Astrophysics Data System (ADS)

    Verdes-Montenegro, Lourdes; Vogt, Frederic; Aubery, Claire; Duret, Laetitie; Garrido, Julián; Sánchez, Susana; Yun, Min S.; Borthakur, Sanchayeeta; Hess, Kelley; Cluver, Michelle; Del Olmo, Ascensión; Perea, Jaime

    2017-03-01

    As an extreme kind of environment, Hickson Compact groups (HCGs) have shown to be very complex systems. HI-VLA observations revealed an intrincated network of HI tails and bridges, tracing pre-processing through extreme tidal interactions. We found HCGs to show a large HI deficiency supporting an evolutionary sequence where gas-rich groups transform via tidal interactions and ISM (interstellar medium) stripping into gas-poor systems. We detected as well a diffuse HI component in the groups, increasing with evolutionary phase, although with uncertain distribution. The complex net of detected HI as observed with the VLA seems hence so puzzling as the missing one. In this talk we revisit the existing VLA information on the HI distribution and kinematics of HCGs by means of X3D visualization. X3D constitutes a powerful tool to extract the most from HI data cubes and a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3-D) diagrams.

  2. Simulating the control of molecular reactions via modulated light fields: from gas phase to solution

    NASA Astrophysics Data System (ADS)

    Thallmair, Sebastian; Keefer, Daniel; Rott, Florian; de Vivie-Riedle, Regina

    2017-04-01

    Over the past few years quantum control has proven to be very successful in steering molecular processes. By combining theory with experiment, even highly complex control aims were realized in the gas phase. In this topical review, we illustrate the past achievements on several examples in the molecular context. The next step for the quantum control of chemical processes is to translate the fruitful interplay between theory and experiment to the condensed phase and thus to the regime where chemical synthesis can be supported. On the theory side, increased efforts to include solvent effects in quantum control simulations were made recently. We discuss two major concepts, namely an implicit description of the environment via the density matrix algorithm and an explicit inclusion of solvent molecules. By application to chemical reactions, both concepts conclude that despite environmental perturbations leading to more complex control tasks, efficient quantum control in the condensed phase is still feasible.

  3. Physical Conditions of Eta Car Complex Environment Revealed From Photoionization Modeling

    NASA Technical Reports Server (NTRS)

    Verner, E. M.; Bruhweiler, F.; Nielsen, K. E.; Gull, T.; Kober, G. Vieira; Corcoran, M.

    2006-01-01

    The very massive star, Eta Carinae, is enshrouded in an unusual complex environment of nebulosities and structures. The circumstellar gas gives rise to distinct absorption and emission components at different velocities and distances from the central source(s). Through photoionization modeling, we find that the radiation field from the more massive B-star companion supports the low ionization structure throughout the 5.54 year period. The radiation field of an evolved O-star is required to produce the higher ionization . emission seen across the broad maximum. Our studies utilize the HST/STIS data and model calculations of various regimes from doubly ionized species (T= 10,000K) to the low temperature (T = 760 K) conditions conductive to molecule formation (CH and OH). Overall analysis suggests the high depletion in C and O and the enrichment in He and N. The sharp molecular and ionic absorptions in this extensively CNO - processed material offers a unique environment for studying the chemistry, dust formation processes, and nucleosynthesis in the ejected layers of a highly evolved massive star.

  4. Identifying future directions for subsurface hydrocarbon migration research

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  5. Dust and molecules in extra-galactic planetary nebulae

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  6. Carbon nanotubes and other fullerene-related nanocrystals in the environment: A TEM study

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Soto, K. F.; Esquivel, E. V.; Bang, J. J.; Guerrero, P. A.; Lopez, D. A.; Ramirez, D. A.

    2004-06-01

    Carbon nanotubes and other fullerene-related nanocrystals are ubiquitous in the atmospheric environment—both indoor and outdoor. In fact, these nanostructures have been observed even in a 10,000 year-old ice core sample, indicating their natural existence in antiquity, probably as natural gas/methane combustion products. Similar carbon nanotubes and complex carbon nanocrystal aggregates are observed to be emitted from contemporary combustion sources such as kitchen stoves (natural gas and propane), water heater and furnace exhaust vents, natural gas-burning (electric) power plants, and industrial furnace operations, among others. These observations have been made by collecting nanoparticulates and nanocrystal aggregates on carbon/formvar and silicon monoxide/formvarcoated 3 mm grids that were examined with a transmission-electron microscope. This study begins to establish an environmental context for considering the potential impact of future nanostructured particles on human health.

  7. Public and stakeholder participation for managing and reducing the risks of shale gas development.

    PubMed

    North, D Warner; Stern, Paul C; Webler, Thomas; Field, Patrick

    2014-01-01

    Emerging technologies pose particularly strong challenges for risk governance when they have multidimensional and inequitable impacts, when there is scientific uncertainty about the technology and its risks, when there are strong value conflicts over the perceived benefits and risks, when decisions must be made urgently, and when the decision making environment is rife with mistrust. Shale gas development is one such emerging technology. Drawing on previous U.S. National Research Council committee reports that examined risk decision making for complex issues like these, we point to the benefits and challenges of applying the analytic-deliberative process recommended in those reports for stakeholder and public engagement in risk decision making about shale gas development in the United States. We discuss the different phases of such a process and conclude by noting the dangers of allowing controversy to ossify and the benefits of sound dialogue and learning among publics, stakeholders, industry, and regulatory decision makers.

  8. A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax

    NASA Astrophysics Data System (ADS)

    Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.

    2015-09-01

    Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 70.B-0695.

  9. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  10. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  11. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-03-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect modification". Fortunately, in the absence of "seed particles", the complex highly-reactive VOC system used does not create any secondary aerosol in situ. All PM present in these tests were, therefore, introduced by injection of MOA to serve as PM-to-be-modified by the gaseous environment. PM addition was only done during dark periods, either before or after the daylight period. The purpose of this design is to test if a non-toxic PM becomes toxic in initially unreacted ("Fresh"), or in reacted ("Aged") complex VOC conditions. To have a complete design, we also tested the effects of clean air and the same VOC conditions, but without introducing any PM. Thus, there were six exposure treatment conditions that were evaluated with the side-by-side, gas-only- and PM-only-effects exposure systems; five separate chamber experiments were performed: two with clean air and three with the complex VOC/NOx mixture. For all of these experiments and exposures, chemical composition data and matching biological effects results for two end-points were compared. Chemical measurements demonstrate the temporal evolution of oxidized species, with a corresponding increase in toxicity observed from exposed cells. The largest increase in gas-phase toxicity was observed in the two "Aged" VOC exposures. The largest increase in particle-phase toxicity was observed in the "Aged" VOC exposure with the addition of PM after sunset. These results are a clear demonstration that the findings from Part 1 can be extended to the complex urban oxidized environment. This further demonstrates that the atmosphere itself cannot be ignored as a source of toxic species when establishing the risks associated with exposure to PM. Because gases and PM are transported and deposited differently within the atmosphere and lungs, these results have significant consequences. In the next (and final) part of the study, testing is further applied to systems with real diesel exhaust, including primary PM from a vehicle operated with different types of diesel fuel.

  12. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect modification". Fortunately, in the absence of "seed particles", the complex highly-reactive VOC system used does not create any secondary aerosol in situ. All PM present in these tests were, therefore, introduced by injection of MOA to serve as PM-to-be-modified by the gaseous environment. PM addition was only done during dark periods, either before or after the daylight period. The purpose of this design is to test if a non-toxic PM becomes toxic in initially unreacted ("Fresh"), or in reacted ("Aged") complex VOC conditions. To have a complete design, we also tested the effects of clean air and the same VOC conditions, but without introducing any PM. Thus, there were six exposure treatment conditions that were evaluated with the side-by-side, gas-only- and PM-only-effects exposure systems; five separate chamber experiments were performed: two with clean air and three with the complex VOC/NOx mixture. For all of these experiments and exposures, chemical composition data and matching biological effects results for two end-points were compared. Chemical measurements demonstrate the temporal evolution of oxidized species, with a corresponding increase in toxicity observed from exposed cells. The largest increase in gas-phase toxicity was observed in the two "Aged" VOC exposures. The largest increase in particle-phase toxicity was observed in the "Aged" VOC exposure with the addition of PM after sunset. These results are a clear demonstration that the findings from Part 1 can be extended to the complex urban oxidized environment. This further demonstrates that the atmosphere itself cannot be ignored as a source of toxic species when establishing the risks associated with exposure to PM. Because gases and PM are transported and deposited differently within the atmosphere and lungs, these results have significant consequences. In the next (and final) part of the study, testing is further applied to systems with real diesel exhaust, including primary PM from a vehicle operated with different types of diesel fuel.

  13. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleeson, Brian

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO 2, SO 2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potentialmore » to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K 2SO 4, and FeS) and environmental oxidants (i.e., O 2, H 2O and CO 2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.« less

  14. Complex Hydrocarbon Seepages Along a Short Segment of the North Anatolian Fault (Sea of Marmara, Turkey).

    NASA Astrophysics Data System (ADS)

    Ruffine, L.; Croguennec, C.; Donval, J. P.; Rinnert, E.; Germain, Y.; Bignon, L.; Scalabrin, C.; Ondreas, H.; Alix, A. S.; Legoix, L.; Bermell, S.; Géli, L.

    2016-02-01

    The Sea of Marmara represents an outstanding environment for geoscientists to investigate on complex hydrocarbon migration through faults. It is characterized by a large number of seeps located along the faults and the basin edge, very diverse in composition, origin and flux. MARSITECruise in November 2014 corresponds to the latest expedition in a long series of scientific expeditions started in early 2000. During this multidisciplinary expedition, an ROV dive has been undertaken to study natural hydrocarbon emissions along the Ganos fault, a segment of the North Anatolian Faults (NAF) located at the westernmost part of the Sea of Marmara. The seafloor inspection revealed the presence of both oil and gas seeps. Six gas seeps have been sampled using an in-situ pressure-preservation device. The selection of the seeps to sample relied on both in situRaman analyses, followed by onboard measurement of the molecular and isotopic compositions of the collected gases. The gas flow-rate of each seep was also measured prior sampling. The results show that the sampled gases are highly heterogeneous from one seep to another, with methane molecular composition and δ13C varying between 2 and 99 % -mol and 34 and 58.4 ‰, respectively. In this communication, the hydrocarbon origin and flow-rate are discussed, as well as the influence area of each source. Acoustic data combined with video recording from the ROV-dive have also been used to discuss their fate into the water column. References Bourry, C., B. Chazallon, J. L. Charlou, J. P. Donval, L. Ruffine, P. Henry, L. Géli, M. N. Cagatay, S. Inan, and M. Moreau (2009), Free gas and gas hydrates from the Sea of Marmara, Turkey Chemical and structural characterization, Chem. Geol., 264(1-4), 197-206. Dupré, S., C. Scalabrin, L. Géli, P. Henry, C. Grall, J.-B. Tary, M. N. Çagatay, and C. Imren (2010), the MARMESONET Scientific Party Team Widespread gas emissions in the Sea of Marmara in relation with the tectonic and sedimentary environments: Results from shipborne multibeam echosounder water column imagery (MARMESONET expedition, 2009), European Geosciences Union General Assembly 2010, 2-7 May, Geophysical Research Abstracts, pp. 9429-9422, Vienna, Austria.

  15. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides.

    PubMed

    Zhang, Qingnan; Hu, Shu-Xian; Qu, Hui; Su, Jing; Wang, Guanjun; Lu, Jun-Bo; Chen, Mohua; Zhou, Mingfei; Li, Jun

    2016-06-06

    The chemistry of lanthanides (Ln=La-Lu) is dominated by the low-valent +3 or +2 oxidation state because of the chemical inertness of the valence 4f electrons. The highest known oxidation state of the whole lanthanide series is +4 for Ce, Pr, Nd, Tb, and Dy. We report the formation of the lanthanide oxide species PrO4 and PrO2 (+) complexes in the gas phase and in a solid noble-gas matrix. Combined infrared spectroscopic and advanced quantum chemistry studies show that these species have the unprecedented Pr(V) oxidation state, thus demonstrating that the pentavalent state is viable for lanthanide elements in a suitable coordination environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    PubMed Central

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-01-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349

  17. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks.

    PubMed

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-11-07

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.

  18. Gas Hydrate Research Site Selection and Operational Research Plans

    NASA Astrophysics Data System (ADS)

    Collett, T. S.; Boswell, R. M.

    2009-12-01

    In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a comprehensive set of logging-while-drilling (LWD) data through expected gas-hydrate-bearing sand reservoirs in seven wells at three sites in the Gulf of Mexico. The discovery of thick hydrate-bearing sands at two of the sites drilled in the Gulf Mexico validated the integrated geological and geophysical approach used in the pre-drill site selection process to identify gas hydrate reservoirs that may be conducive to energy production. The results of the GOM JIP Leg II LWD expedition are also being used to support the selection of sites for a future drilling, logging, and coring program. Operationally, recent drilling programs, such as ODP Leg 204, IODP Expedition 311, the Japanese Toaki-oki to Kumano-nada drilling leg, the Indian NGHP Expedition 01, and the South Korean Gas Hydrate Research and Development Organization Expedition 01 have demonstrated the great benefit of a multi-leg drilling approach, including the initial acquisition of LWD data that was used to then select sites for the drilling of complex core and wireline logging test holes. It is obvious that a fully integrated site selection approach and a “goal based” operational plan, possibly including numerous drill sites and drilling legs, are required considerations for any future gas hydrate research project.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.

    Compact groups of galaxies provide a unique environment to study the evolution of galaxies amid frequent gravitational encounters. These nearby groups have conditions similar to those in the earlier universe when galaxies were assembled and give us the opportunity to witness hierarchical formation in progress. To understand how the compact group environment affects galaxy evolution, we examine the gas and dust in these groups. We present new single-dish GBT neutral hydrogen (H i) observations of 30 compact groups and define a new way to quantify the group H i content as the H i-to-stellar mass ratio of the group asmore » a whole. We compare the H i content with mid-IR indicators of star formation and optical [g − r] color to search for correlations between group gas content and star formation activity of individual group members. Quiescent galaxies tend to live in H i-poor groups, and galaxies with active star formation are more commonly found in H i-rich groups. Intriguingly, we also find “rogue” galaxies whose star formation does not correlate with group H i content. In particular, we identify three galaxies (NGC 2968 in RSCG 34, KUG 1131+202A in RSCG 42, and NGC 4613 in RSCG 64) whose mid-IR activity is discrepant with the H i. We speculate that this mismatch between mid-IR activity and H i content is a consequence of strong interactions in this environment that can strip H i from galaxies and abruptly affect star formation. Ultimately, characterizing how and on what timescales the gas is processed in compact groups will help us understand the interstellar medium in complex, dense environments similar to the earlier universe.« less

  20. Ceramic Matrix Characterization Under a Gas Turbine Combustion and Loading Environment

    DTIC Science & Technology

    2014-03-17

    carrier gas is injected into the jet and melts the powder to create a coating on the material. Figure 11 shows the nozzle of the HVOF spray gun when used...CERAMIC MATRIX COMPOSITE CHARACTERIZATION UNDER A GAS TURBINE COMBUSTION AND LOADING ENVIRONMENT...the United States. AFIT-ENY-14-M-08 CERAMIC MATRIX COMPOSITE CHARACTERIZATION UNDER A GAS TURBINE COMBUSTION AND LOADING ENVIRONMENT

  1. Well log characterization of natural gas hydrates

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate production schemes.

  2. SELMA mission: How do airless bodies interact with space environment? The Moon as an accessible laboratory

    NASA Astrophysics Data System (ADS)

    Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Hurley, Dana; Horányi, Mihaly; Mall, Urs; Andre, Nicolas; Ivchenko, Nickolay; Oberst, Jürgen; Retherford, Kurt; Coates, Andrew; Masters, Adam; Wahlund, Jan-Erik; Kallio, Esa; SELMA Proposal Team

    2018-07-01

    The Moon is an archetypal atmosphere-less celestial body in the Solar System. For such bodies, the environments are characterized by complex interaction among the space plasma, tenuous neutral gas, dust and the outermost layer of the surface. Here we propose the SELMA mission (Surface, Environment, and Lunar Magnetic Anomalies) to study how airless bodies interact with space environment. SELMA uses a unique combination of remote sensing via ultraviolet and infrared wavelengths, and energetic neutral atom imaging, as well as in situ measurements of exospheric gas, plasma, and dust at the Moon. After observations in a lunar orbit for one year, SELMA will conduct an impact experiment to investigate volatile content in the soil of the permanently shadowed area of the Shackleton crater. SELMA also carries an impact probe to sound the Reiner-Gamma mini-magnetosphere and its interaction with the lunar regolith from the SELMA orbit down to the surface. SELMA was proposed to the European Space Agency as a medium-class mission (M5) in October 2016. Research on the SELMA scientific themes is of importance for fundamental planetary sciences and for our general understanding of how the Solar System works. In addition, SELMA outcomes will contribute to future lunar explorations through qualitative characterization of the lunar environment and, in particular, investigation of the presence of water in the lunar soil, as a valuable resource to harvest from the lunar regolith.

  3. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  4. The Far East hydrocarbon habitat - the charge perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doust, H.

    From a hydrocarbon exploration point of view, the Far East is typically the realm of Tertiary basins with youthful prospects. Considering the archipelagic nature of the area and the extensive marine environments associated with shallow seas, it is perhaps surprising that nearly all of the oil and gas in these basins is of terrestrial origin (typical for the basins are low-sulfur, light waxy oils with strong land-plant imprint, and a superabundance of gas). The reason for this can be sought in the late Mesozoic-early Tertiary history, when the current cycle of tectonic development commenced. At that time, much of whatmore » is now east and southeast Asia consisted of a large land area, comprised of microcontinental blocks welded together by fold belts. In the Paleogene, this continental area became subject to back-arc extension and collapse as a consequence of complex plate readjustments. Subsidence took place in fault-bounded (graben) depressions of many orientations throughout the area, and widespread lacustrine environments were established, especially in the Oligocene. The middle to late Tertiary history of these basins was dictated by their proximity to the open ocean and by the extent of crustal subsidence, but follows a transgressive-regressive cycle that gives rise to the following groups of plays: (1) early Tertiary transgressive clastics, basically oil-prone, (2) Miocene carbonates of the maximum transgression, gas prone, and (3) late Tertiary regressive clastics, oil and gas prone.« less

  5. 3-D basin-scale reconstruction of natural gas hydrate system of the Green Canyon, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Burwicz, Ewa; Reichel, Thomas; Wallmann, Klaus; Rottke, Wolf; Haeckel, Matthias; Hensen, Christian

    2017-05-01

    Our study presents a basin-scale 3-D modeling solution, quantifying and exploring gas hydrate accumulations in the marine environment around the Green Canyon (GC955) area, Gulf of Mexico. It is the first modeling study that considers the full complexity of gas hydrate formation in a natural geological system. Overall, it comprises a comprehensive basin reconstruction, accounting for depositional and transient thermal history of the basin, source rock maturation, petroleum components generation, expulsion and migration, salt tectonics, and associated multistage fault development. The resulting 3-D gas hydrate distribution in the Green Canyon area is consistent with independent borehole observations. An important mechanism identified in this study and leading to high gas hydrate saturation (>80 vol %) at the base of the gas hydrate stability zone (GHSZ) is the recycling of gas hydrate and free gas enhanced by high Neogene sedimentation rates in the region. Our model predicts the rapid development of secondary intrasalt minibasins situated on top of the allochthonous salt deposits which leads to significant sediment subsidence and an ensuing dislocation of the lower GHSZ boundary. Consequently, large amounts of gas hydrates located in the deepest parts of the basin dissociate and the released free methane gas migrates upward to recharge the GHSZ. In total, we have predicted the gas hydrate budget for the Green Canyon area that amounts to ˜3256 Mt of gas hydrate, which is equivalent to ˜340 Mt of carbon (˜7 × 1011 m3 of CH4 at STP conditions), and consists mostly of biogenic hydrates.

  6. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  7. Material Science

    NASA Image and Video Library

    2003-01-12

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  8. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  9. Evaluation of Fungal Metabolic Compounds Released to the Air in a Restricted Environment

    NASA Technical Reports Server (NTRS)

    Ferebee, Robert N.

    1991-01-01

    The metabolic action of selected fungi species on common components of the interior of Space Station Freedom (SSF) will be tested. When present, volatile organic chemicals will be collected on porous polymer adsorbent columns. Using thermal desorption, the volatile compounds will be passed onto a gas chromatographic column for analysis. The Space Station Freedom (SSF) modular complex will largely be individually self contained and the established air environment will not be easily adjusted. The development and maintenance of a safe working environment offers a considerable challenge. Present plans for use of SSF acknowledge periods of manned activities and alternate times when the station is unmanned. The obvious necessity for clean and safe air and water during periods of use have been pursued as fundamental systems to SSF success. Somewhat less obvious, although perhaps of no less importance to the success of long term cyclic usage, are those periods of inactivity. It is during these periods when spores from microorganisms may be afforded the best conditions to germinate and in the vegetative form react with the complex synthetic chemical polymers which compose the furnishings and hardware of SSF nodes. Biodegradation could constitute a real hygiene problem, if the organisms form and release volatile organic chemicals. Similar problems have been documented in closed and improperly ventilated buildings and work spaces. Many of the metabolic products of fungi and bacterial growth create a variety of health problems. Analytical chemical techniques will first be used to document the growth of Aspergillus, Penicillium, and Cladosporium fungal species on the potential substrates Nomex and Kevlar. Any volatile organics that are released will be measured using the spectrum of gas adsorption chromatography. The level of microbial contamination that is necessary to produce such volatile compounds and the relative amounts expected to accumulate will be estimated.

  10. The prediction of the gas environment of the PHILAE probe during its 2014 descent to the nucleus of the comet 67P

    NASA Astrophysics Data System (ADS)

    Crifo, J.-F.; Zakharov, V. V.; Rodionov, A. V.; Lukyanov, G. A.

    2016-11-01

    One of the objectives of the ESA "ROSETTA" mission to the comet 67P was to insert, in August 2014, an orbiter probe around the so-called nucleus of the comet, and to deposit the "PHILAE" lander at the surface of the nucleus in November 2014. The selection of the landing site and the definition of the release point and initial descent velocity vector were made in the period August to October 2014 on the basis of simulations of the descent trajectory. This requested an assessment of the gravitational and aerodynamic forces on PHILAE. We here describe the so-called RZC model developed to predict the gas environment of 67P in November 2014 and compute the aerodynamic force. We first outline the unusual diffculties resulting from (1) the complexity of the nucleus surface on all scales, (2) the absence of direct measurements of the gas flux at the surface itself, (3) the time-dependence of the gas production induced by the fast nucleus rotation, (4) the need to perform the whole program within less than three months. Then we outline the physical approach adopted to overcome these diffculties, and describe the RZC model which included three differing tools: (1) a set of gasdynamic/gaskinetic codes to compute the vacuum outflow of a rarefied gas mixture from a highly aspherical rotating solid source; (2) an heuristic approach to deal with the solid/gas initial boundary conditions, and (3) an iterative procedure to derive the gas production parameters on the nucleus surface from the observational data acquired from the orbiter probe. The satisfactory operation of the RZC code in the weeks preceding the November 2014 PHILAE descent is shown, and the forecasted aerodynamic force during the PHILAE descent is compared to the gravitational force.

  11. Corundum-Hibonite Inclusions and the Environments of High Temperature Processing in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Needham, A. W.; Messenger, S.

    2013-01-01

    Calcium, Aluminum-rich inclusions (CAIs) are composed of the suite of minerals predicted to be the first to condense from a cooling gas of solar composition [1]. Yet, the first phase to condense, corundum, is rare in CAIs, having mostly reacted to form hibonite followed by other phases at lower temperatures. Many CAIs show evidence of complex post-formational histories, including condensation, evaporation, and melting [e.g. 2, 3]. However, the nature of these thermal events and the nebular environments in which they took place are poorly constrained. Some corundum and corundum-hibonite grains appear to have survived or avoided these complex CAI reprocessing events. Such ultra-refractory CAIs may provide a clearer record of the O isotopic composition of the Sun and the evolution of the O isotopic composition of the planet-forming region [4-6]. Here we present in situ O and Mg isotopic analyses of two corundum/hibonite inclusions that record differing formation histories.

  12. Low noise lead screw positioner

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1986-01-01

    A very precise and low noise lead screw positioner, for positioning a retroreflector in an interferometer is described. A gas source supplies inert pressurized gas, that flows through narrow holes into the clearance space between a nut and the lead screw. The pressurized gas keeps the nut out of contact with the screw. The gas flows axially along the clearance space, into the environment. The small amount of inert gas flowing into the environment minimizes pollution. By allowing such flow into the environment, no seals are required between the end of the nut and the screw.

  13. 40 CFR Table W - 1A of Subpart W-Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false 1A of Subpart W-Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production W Table W Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING...

  14. Our Galactic Neighbor Hosts Complex Organic Molecules

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    For the first time, data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the presence of methyl formate and dimethyl ether in a star-forming region outside our galaxy. This discovery has important implications for the formation and survival of complex organic compounds importantfor the formation of life in low-metallicity galaxies bothyoung and old.No Simple Picture of Complex Molecule FormationALMA, pictured here with the Magellanic Clouds above, has observed organic molecules in our Milky Way Galaxy and beyond. [ESO/C. Malin]Complex organic molecules (those with at least six atoms, one or more of which must be carbon) are the precursors to the building blocks of life. Knowing how and where complex organic molecules can form is a key part of understanding how life came to be on Earth and how it might arise elsewhere in the universe. From exoplanet atmospheres to interstellar space, complex organic molecules are ubiquitous in the Milky Way.In our galaxy, complex organic molecules are often found in the intense environments of hot cores clumps of dense molecular gas surrounding the sites of star formation. However, its not yet fully understood how the complex organic molecules found in hot cores come to be. One possibility is that the compounds condense onto cold dust grains long before the young stars begin heating their natal shrouds. Alternatively, they might assemble themselves from the hot, dense gas surrounding the blazing protostars.Composite infrared and optical image of the N 113 star-forming region in the LMC. The ALMA coverage is indicated by the gray line. Click to enlarge. [Sewio et al. 2018]Detecting Complexity, a Galaxy AwayUsing ALMA, a team of researchers led by Marta Sewio (NASA Goddard Space Flight Center) recently detected two complex organic molecules methyl formate and dimethyl ether for the first time in our neighboring galaxy, the Large Magellanic Cloud (LMC). Previous searches for organic molecules in the LMC detected small amounts of methanol, the parentmolecule of the two newly-discovered compounds. By revealing the spectral signatures of dimethyl ether and methyl formate, Sewio and collaboratorsfurther prove thatorganic chemistry is hard at work in hot cores in the LMC.This discovery is momentous because dwarf galaxies like theLMC tend to have a lower abundance of the heavy elements that make up complex organic molecules most importantly, oxygen, carbon, and nitrogen. Beyond lacking the raw materials necessary to create complex molecules, the gas of low-metallicity galaxies does a poorer job preventing the penetration of high-energy photons. The impinging photons warm dust grains, resulting in a lower probability of forming and maintaining complex organic molecules. Despite this, organic molecules appear to beable todevelop and persist which has exciting implications for organic chemistry in low-metallicity environments.ALMA observation of emission by methyl formate in a hot core in the LMC.[Adapted from Sewio et al. 2018]A Lens into the PastIn the early universe, before the budding galaxies have had time to upcycle their abundant hydrogen into heavier elements, organic chemistry is thought to proceed slowly or not at all. The discovery of complex organic molecules in a nearby low-metallicity galaxy upends this theory and propels us toward a better understanding of the organic chemistry in the early universe.CitationMarta Sewio et al 2018ApJL853L19. doi:10.3847/2041-8213/aaa079

  15. Empirical Modeling of Plant Gas Fluxes in Controlled Environments

    NASA Technical Reports Server (NTRS)

    Cornett, Jessie David

    1994-01-01

    As humans extend their reach beyond the earth, bioregenerative life support systems must replace the resupply and physical/chemical systems now used. The Controlled Ecological Life Support System (CELSS) will utilize plants to recycle the carbon dioxide (CO2) and excrement produced by humans and return oxygen (O2), purified water and food. CELSS design requires knowledge of gas flux levels for net photosynthesis (PS(sub n)), dark respiration (R(sub d)) and evapotranspiration (ET). Full season gas flux data regarding these processes for wheat (Triticum aestivum), soybean (Glycine max) and rice (Oryza sativa) from published sources were used to develop empirical models. Univariate models relating crop age (days after planting) and gas flux were fit by simple regression. Models are either high order (5th to 8th) or more complex polynomials whose curves describe crop development characteristics. The models provide good estimates of gas flux maxima, but are of limited utility. To broaden the applicability, data were transformed to dimensionless or correlation formats and, again, fit by regression. Polynomials, similar to those in the initial effort, were selected as the most appropriate models. These models indicate that, within a cultivar, gas flux patterns appear remarkably similar prior to maximum flux, but exhibit considerable variation beyond this point. This suggests that more broadly applicable models of plant gas flux are feasible, but univariate models defining gas flux as a function of crop age are too simplistic. Multivariate models using CO2 and crop age were fit for PS(sub n), and R(sub d) by multiple regression. In each case, the selected model is a subset of a full third order model with all possible interactions. These models are improvements over the univariate models because they incorporate more than the single factor, crop age, as the primary variable governing gas flux. They are still limited, however, by their reliance on the other environmental conditions under which the original data were collected. Three-dimensional plots representing the response surface of each model are included. Suitability of using empirical models to generate engineering design estimates is discussed. Recommendations for the use of more complex multivariate models to increase versatility are included.

  16. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    NASA Astrophysics Data System (ADS)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  17. Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele

    2018-01-01

    Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.

  18. Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth

    PubMed Central

    Ehrenfreund, Pascale; Cami, Jan

    2010-01-01

    Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowledge of abundant organic material in different space environments and investigate the connection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. PMID:20554702

  19. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...

  20. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...

  1. Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas.

    PubMed

    Hansen, A K; Versolato, O O; Kłosowski, L; Kristensen, S B; Gingell, A; Schwarz, M; Windberger, A; Ullrich, J; López-Urrutia, J R Crespo; Drewsen, M

    2014-04-03

    The preparation of cold molecules is of great importance in many contexts, such as fundamental physics investigations, high-resolution spectroscopy of complex molecules, cold chemistry and astrochemistry. One versatile and widely applied method to cool molecules is helium buffer-gas cooling in either a supersonic beam expansion or a cryogenic trap environment. Another more recent method applicable to trapped molecular ions relies on sympathetic translational cooling, through collisional interactions with co-trapped, laser-cooled atomic ions, into spatially ordered structures called Coulomb crystals, combined with laser-controlled internal-state preparation. Here we present experimental results on helium buffer-gas cooling of the rotational degrees of freedom of MgH(+) molecular ions, which have been trapped and sympathetically cooled in a cryogenic linear radio-frequency quadrupole trap. With helium collision rates of only about ten per second--that is, four to five orders of magnitude lower than in typical buffer-gas cooling settings--we have cooled a single molecular ion to a rotational temperature of 7.5(+0.9)(-0.7) kelvin, the lowest such temperature so far measured. In addition, by varying the shape of, or the number of atomic and molecular ions in, larger Coulomb crystals, or both, we have tuned the effective rotational temperature from about 7 kelvin to about 60 kelvin by changing the translational micromotion energy of the ions. The extremely low helium collision rate may allow for sympathetic sideband cooling of single molecular ions, and eventually make quantum-logic spectroscopy of buffer-gas-cooled molecular ions feasible. Furthermore, application of the present cooling scheme to complex molecular ions should enable single- or few-state manipulations of individual molecules of biological interest.

  2. Atmospheric impacts of a natural gas development within the urban context of Morgantown, West Virginia.

    PubMed

    Williams, Philip J; Reeder, Matthew; Pekney, Natalie J; Risk, David; Osborne, John; McCawley, Michael

    2018-10-15

    The Marcellus Shale Energy and Environment Laboratory (MSEEL) in West Virginia provides a unique opportunity in the field of unconventional energy research. By studying near-surface atmospheric chemistry over several phases of a hydraulic fracturing event, the project will help evaluate the impact of current practices, as well as new techniques and mitigation technologies. A total of 10 mobile surveys covering a distance of approximately 1500 km were conducted through Morgantown. Our surveying technique involved using a vehicle-mounted Los Gatos Research gas analyzer to provide geo-located measurements of methane (CH 4 ) and carbon dioxide (CO 2 ). The ratios of super-ambient concentrations of CO 2 and CH 4 were used to separate well-pad emissions from the natural background concentrations over the various stages of well-pad development, as well as for comparisons to other urban sources of CH 4 . We found that regional background methane concentrations were elevated in all surveys, with a mean concentration of 2.699 ± 0.006 ppmv, which simply reflected the complexity of this riverine urban location. Emissions at the site were the greatest during the flow-back phase, with an estimated CH 4 volume output of 20.62 ± 7.07 g/s, which was significantly higher than other identified urban emitters. Our study was able to successfully identify and quantify MSEEL emissions within this complex urban environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Failure life determination of oilfield elastomer seals in sour gas/dimethyl disulfide environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennelley, K.J.; Abrams, P.I.; Vicic, J.C.

    1989-01-01

    Previous screening tests of various oilfield elastomers in sour gas/dimethyl disulfide environments indicated that hydrogenated nitrile (HNBR), tetrafluoroethylene-propylene (TFE/P), ethylene-propylene-diene (EPDM), and perfluorinated rubber (FFKM) elastomers may perform satisfactorily in these environments. This paper describes subsequent failure life tests conducted with the subject elastomers in the sour gas/dimethyl disulfide test environment at several elevated temperatures (> 135{degrees}C). The materials were tested in the form of O-rings (size 214), which were used to seal an autoclave containing the test environment at 14 MPa gas pressure. The results were used to extrapolate time to failure at a common reference temperature of 135{degrees}C.more » The performance of EPDM and HNBR in the sour gas/dimethyl disulfide mixture substantially exceeded a projected 20-year service life at 135{degrees}C, while FFKM and TFE/P did not.« less

  4. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity.

    PubMed

    Drobek, Martin; Kim, Jae-Hun; Bechelany, Mikhael; Vallicari, Cyril; Julbe, Anne; Kim, Sang Sub

    2016-04-06

    Gas sensors are of a great interest for applications including toxic or explosive gases detection in both in-house and industrial environments, air quality monitoring, medical diagnostics, or control of food/cosmetic properties. In the area of semiconductor metal oxides (SMOs)-based sensors, a lot of effort has been devoted to improve the sensing characteristics. In this work, we report on a general methodology for improving the selectivity of SMOx nanowires sensors, based on the coverage of ZnO nanowires with a thin ZIF-8 molecular sieve membrane. The optimized ZnO@ZIF-8-based nanocomposite sensor shows markedly selective response to H2 in comparison with the pristine ZnO nanowires sensor, while showing the negligible sensing response to C7H8 and C6H6. This original MOF-membrane encapsulation strategy applied to nanowires sensor architecture pave the way for other complex 3D architectures and various types of applications requiring either gas or ion selectivity, such as biosensors, photo(catalysts), and electrodes.

  5. Cratering Soil by Impinging Jets of Gas, with Application to Landing Rockets on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.; Vu, B. T.; Taylor, D. E.; Kromann, M. J.; Fuchs, M.; Yutko, B.; Dokos, A.; Immer, Christopher D.; Lane, J. E.; Dunkel, Michael B.; hide

    2007-01-01

    Several physical mechanisms are involved in excavating granular materials beneath a vertical jet of gas. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. A series of experiments and simulations have been performed to provide a detailed view of the complex gas/soil interactions. Measurements have also been taken from the Apollo lunar landing videos and from photographs of the resulting terrain, and these help to demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher-fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from landing spacecraft must be accurately predicted and controlled lest it erosively damage the surrounding hardware.

  6. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE PAGES

    Burke, Michael P.; Klippenstein, Stephen J.

    2017-08-14

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  7. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Klippenstein, Stephen J.

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  8. The Coupled Physical Structure of Gas and Dust in the IM Lup Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Huang, Jane; Loomis, Ryan A.; Andrews, Sean M.; Czekala, Ian

    2016-12-01

    The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter-centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, 13CO, and C18O in the IM Lup protoplanetary disk, one of the first systems where this dust-gas dichotomy was clearly seen. The 12CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data, we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field (G 0 ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.

  9. Gas-phase and solution-phase polymerization of epoxides by Cr(salen) complexes: evidence for a dinuclear cationic mechanism.

    PubMed

    Schön, Eva; Zhang, Xiangyang; Zhou, Zhiping; Chisholm, Malcolm H; Chen, Peter

    2004-11-15

    The gas-phase reactions of a series of mass-selected mononuclear and dinuclear Cr(salen) complexes with propylene oxide suggest that the enhanced reactivity of the dinuclear complexes in gas-phase and in solution may derive from a dicationic mechanism in which the alkoxide chain is mu(2)-coordinated to two Lewis acidic metal centers. The double coordination is proposed to suppress backbiting, and hence chain-transfer in the gas-phase homopolymerization of epoxides.

  10. 40 CFR 1065.267 - Gas chromatograph.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Gas chromatograph. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements § 1065.267 Gas chromatograph...

  11. 40 CFR 1065.267 - Gas chromatograph.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Gas chromatograph. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements § 1065.267 Gas chromatograph...

  12. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model.

    PubMed

    Yu, Hesheng; Thé, Jesse

    2017-05-01

    The dispersion of gaseous pollutant around buildings is complex due to complex turbulence features such as flow detachment and zones of high shear. Computational fluid dynamics (CFD) models are one of the most promising tools to describe the pollutant distribution in the near field of buildings. Reynolds-averaged Navier-Stokes (RANS) models are the most commonly used CFD techniques to address turbulence transport of the pollutant. This research work studies the use of [Formula: see text] closure model for the gas dispersion around a building by fully resolving the viscous sublayer for the first time. The performance of standard [Formula: see text] model is also included for comparison, along with results of an extensively validated Gaussian dispersion model, the U.S. Environmental Protection Agency (EPA) AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model). This study's CFD models apply the standard [Formula: see text] and the [Formula: see text] turbulence models to obtain wind flow field. A passive concentration transport equation is then calculated based on the resolved flow field to simulate the distribution of pollutant concentrations. The resultant simulation of both wind flow and concentration fields are validated rigorously by extensive data using multiple validation metrics. The wind flow field can be acceptably modeled by the [Formula: see text] model. However, the [Formula: see text] model fails to simulate the gas dispersion. The [Formula: see text] model outperforms [Formula: see text] in both flow and dispersion simulations, with higher hit rates for dimensionless velocity components and higher "factor of 2" of observations (FAC2) for normalized concentration. All these validation metrics of [Formula: see text] model pass the quality assurance criteria recommended by The Association of German Engineers (Verein Deutscher Ingenieure, VDI) guideline. Furthermore, these metrics are better than or the same as those in the literature. Comparison between the performances of [Formula: see text] and AERMOD shows that the CFD simulation is superior to Gaussian-type model for pollutant dispersion in the near wake of obstacles. AERMOD can perform as a screening tool for near-field gas dispersion due to its expeditious calculation and the ability to handle complicated cases. The utilization of [Formula: see text] to simulate gaseous pollutant dispersion around an isolated building is appropriate and is expected to be suitable for complex urban environment. Multiple validation metrics of [Formula: see text] turbulence model in CFD quantitatively indicated that this turbulence model was appropriate for the simulation of gas dispersion around buildings. CFD is, therefore, an attractive alternative to wind tunnel for modeling gas dispersion in urban environment due to its excellent performance, and lower cost.

  13. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less

  14. Optimized Diffusion of Run-and-Tumble Particles in Crowded Environments

    NASA Astrophysics Data System (ADS)

    Bertrand, Thibault; Zhao, Yongfeng; Bénichou, Olivier; Tailleur, Julien; Voituriez, Raphaël

    2018-05-01

    We study the transport of self-propelled particles in dynamic complex environments. To obtain exact results, we introduce a model of run-and-tumble particles (RTPs) moving in discrete time on a d -dimensional cubic lattice in the presence of diffusing hard-core obstacles. We derive an explicit expression for the diffusivity of the RTP, which is exact in the limit of low density of fixed obstacles. To do so, we introduce a generalization of Kac's theorem on the mean return times of Markov processes, which we expect to be relevant for a large class of lattice gas problems. Our results show the diffusivity of RTPs to be nonmonotonic in the tumbling probability for low enough obstacle mobility. These results prove the potential for the optimization of the transport of RTPs in crowded and disordered environments with applications to motile artificial and biological systems.

  15. A new sample environment for cryogenic nuclear resonance scattering experiments on single crystals and microsamples at P01, PETRA III

    NASA Astrophysics Data System (ADS)

    Rackwitz, Sergej; Faus, Isabelle; Schmitz, Markus; Kelm, Harald; Krüger, Hans-Jörg; Andersson, K. Kristoffer; Hersleth, Hans-Petter; Achterhold, Klaus; Schlage, Kai; Wille, Hans-Christian; Schünemann, Volker; Wolny, Juliusz A.

    2014-04-01

    In order to carry out orientation dependent nuclear resonance scattering (NRS) experiments on small single crystals of e.g. iron proteins and/or chemical complexes but also on surfaces and other micrometer-sized samples a 2-circle goniometer including sample positioning optics has been installed at beamline P01, PETRA III, DESY, Hamburg. This sample environment is now available for all users of this beamline. Sample cooling is performed with a cryogenic gas stream which allows NRS measurements in the temperature range from 80 up to 400 K. In a first test this new sample environment has been used in order to investigate the orientation dependence of the nuclear inelastic scattering (NIS) signature of (i) a dinuclear iron(II) spin crossover (SCO) system and (ii) a hydrogen peroxide treated metmyoglobin single crystal.

  16. Using comprehensive two-dimensional gas chromatography to explore the geochemistry of the Santa Barbara oil seeps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Christopher; Nelson, Robert

    The development of comprehensive two-dimensional gas chromatography (GC x GC) has expanded the analytical window for studying complex mixtures like oil. Compared to traditional gas chromatography, this technology separates and resolves at least an order of magnitude more compounds, has a much larger signal to noise ratio, and sorts compounds based on their chemical class; hence, providing highly refined inventories of petroleum hydrocarbons in geochemical samples that was previously unattainable. In addition to the increased resolution afforded by GC x GC, the resulting chromatograms have been used to estimate the liquid vapor pressures, aqueous solubilities, octanol-water partition coefficients, and vaporizationmore » enthalpies of petroleum hydrocarbons. With these relationships, powerful and incisive analyses of phase-transfer processes affecting petroleum hydrocarbon mixtures in the environment are available. For example, GC x GC retention data has been used to quantitatively deconvolve the effects of phase transfer processes such as water washing and evaporation. In short, the positive attributes of GC x GC-analysis have led to a methodology that has revolutionized the analysis of petroleum hydrocarbons. Overall, this research has opened numerous fields of study on the biogeochemical "genetics" (referred to as petroleomics) of petroleum samples in both subsurface and surface environments. Furthermore, these new findings have already been applied to the behavior of oil at other seeps as well, for petroleum exploration and oil spill studies.« less

  17. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  18. Investigation of Gasochromic Rhodium Complexes Towards Their Reactivity to CO and Integration into an Optical Gas Sensor for Fire Gas Detection.

    PubMed

    Pannek, Carolin; Tarantik, Karina R; Schmitt, Katrin; Wöllenstein, Jürgen

    2018-06-21

    The detection of the toxic gas carbon monoxide (CO) in the low ppm range is required in different applications. We present a study of the reactivity of different gasochromic rhodium complexes towards the toxic gas carbon monoxide (CO). Therefore, variations of binuclear rhodium complexes with different ligands were prepared. They were characterized by FTIR spectroscopy, ¹H NMR spectroscopy, and differential scanning calorimetry. All complexes are spectroscopically distinguishable and temperature stable up to at least 187 °C. The gasochromic behavior of all different compounds was tested. Therefore, the compounds were dissolved in toluene and exposed to 100 ppm CO for 10 min to investigate their gas sensitivity and reaction velocity. The changes in the transmission spectra were recorded by UV/vis spectroscopy. Furthermore, a significant influence of the solvent to the color dyes’ gasochromic reaction and behavior was observed. After characterization, one complex was transferred as sensing element into an optical gas sensor. Two different measurement principles (reflection- and waveguide-based) were built up and tested towards their capability as gasochromic CO sensors. Finally, different gas-dependent measurements were carried out.

  19. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    NASA Astrophysics Data System (ADS)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  20. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  1. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  2. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  3. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  4. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  6. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  7. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...

  9. 40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...

  10. Energetic Processing of Interstellar Ices: A Route to Complexity

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie L.

    2009-01-01

    More than 140 gas-phase molecules have been detected in the interstellar (IS) medium or in circumstellar environments including inorganics, organics, ions, and radicals. The significant abundance of large, complex organic molecules, and families of isomers in these regions makes the origin and formation history of these species the subject of debate. Observationally determined condensed-phase species are H2O, CO, CO2, NH3 and CH30H, with CH4, HCOOH, OCS, OCN-, H2CO and NH4(+) present at trace levels. These ices can undergo energetic processing with cosmic rays or far-UV photons to form larger complex organics with abundance levels that make them undetectable in icy mantles. Once warmed, however, it is likely that these complex species would enter the gas-phase where they might be detected by Herschel or Alma. Understanding the role of radiation chemistry and thermal processing of ices and identifying new products are the goals of our laboratory research. In the Cosmic lee Laboratory at NASA Goddard Space Plight Center, we can study both the photo-and radiation chemistries of ices from 8 -- 300 K. Using dear- and mid-IR spectroscopy we can follow the destruction of primary molecules and the formation of radicals and secondary products as a function of energetic processing. During warming we can monitor the trapping of species and the results of any thermal chemistry. An overview of recent and past work will focus on complex secondary radiation products from small condensed-phase IS species. Likely reactions include dimerization, isomerization, H-addition and H-elimination. Another focus of our work is the development of reaction schemes for the formation of complex molecules and the use of such schemes to predict new molecules awaiting detection by Herschel and Alma.

  11. Developing methanogenic microbial consortia from diverse coal sources and environments

    DOE PAGES

    Fuertez, John; Boakye, Richard; McLennan, John; ...

    2017-08-18

    Biogenic gas production is a promising alternative or supplement to conventional methane extraction from coalbeds. Adsorbed and free gas, generated over geologic time, can be supplemented with biogenic gas during short-term engineering operations. There are two generic protocols for doing this. The first is to contact the coal with nutrients to support native bacterial development. The second approach is to inject appropriately cultured ex-situ consortia into subsurface coal accumulations. Research has mainly focused on the former: in-situ stimulation of native microbial communities with added nutrients. Relatively few studies have been conducted on the strategies for enriching ex-situ microbial populations undermore » initial atmospheric exposure for subsequent injection into coal seams to stimulate biodegradation, and methanogenesis. In order to evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals (i.e., lignite, sub-bituminous, bituminous), complex hydrocarbon sources (i.e., oil shale, waxy crude), hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening (down-selection to high grade the most productive consortia) allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to twenty-four weeks were evaluated at 23 °C. Headspace concentrations of CH 4 and CO 2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm (154 sft 3/ton or 4.8 scm 3/g) for methane and 176,370 ppm (31 sft 3/ton or 0.9 scm 3/g) for carbon dioxide. Rudimentary statistical assessments – variance analysis (ANOVA) of a single factor - were used to identify trends and levels of significance or impact of the consortia enrichment. We then demonstrated that microbial communities from coal and lake sediments can be enriched and adapted to effectively generate methane under initial atmospheric exposure. The development and enrichment of these methanogenic consortia is described.« less

  12. Developing methanogenic microbial consortia from diverse coal sources and environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuertez, John; Boakye, Richard; McLennan, John

    Biogenic gas production is a promising alternative or supplement to conventional methane extraction from coalbeds. Adsorbed and free gas, generated over geologic time, can be supplemented with biogenic gas during short-term engineering operations. There are two generic protocols for doing this. The first is to contact the coal with nutrients to support native bacterial development. The second approach is to inject appropriately cultured ex-situ consortia into subsurface coal accumulations. Research has mainly focused on the former: in-situ stimulation of native microbial communities with added nutrients. Relatively few studies have been conducted on the strategies for enriching ex-situ microbial populations undermore » initial atmospheric exposure for subsequent injection into coal seams to stimulate biodegradation, and methanogenesis. In order to evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals (i.e., lignite, sub-bituminous, bituminous), complex hydrocarbon sources (i.e., oil shale, waxy crude), hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening (down-selection to high grade the most productive consortia) allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to twenty-four weeks were evaluated at 23 °C. Headspace concentrations of CH 4 and CO 2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm (154 sft 3/ton or 4.8 scm 3/g) for methane and 176,370 ppm (31 sft 3/ton or 0.9 scm 3/g) for carbon dioxide. Rudimentary statistical assessments – variance analysis (ANOVA) of a single factor - were used to identify trends and levels of significance or impact of the consortia enrichment. We then demonstrated that microbial communities from coal and lake sediments can be enriched and adapted to effectively generate methane under initial atmospheric exposure. The development and enrichment of these methanogenic consortia is described.« less

  13. Well log characterization of natural gas-hydrates

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas-hydrate reservoir properties (i.e., porosities and permeabilities) needed to accurately predict gas production rates for various gas-hydrate production schemes.

  14. Determination of binding-dioxygen in dioxygen complexes by headspace gas chromatography.

    PubMed

    Wang, Wei; Feng, Shun; Li, Ya-ni; Wu, Meiying; Wang, Jide

    2008-06-06

    Dioxygen complexes play important roles in organisms' bodies, so the determination of binding-dioxygen has practical significance. A simple and robust method based on headspace gas chromatography was proposed to determine the binding-dioxygen in dioxygen complexes. By measuring the content change of nitrogen gas in a vial, the amount of oxygen released from dixoygen complexes can be determined. The method was validated using potassium chlorate as model sample, and the results exhibited good recoveries (90-99%) with the relative standard deviation less than 8%. It was also used to analyze dioxygen complex of cobalt bis(salicylaldehyde) ethylenediimine and polyamine cobalt complexes prepared by solid-phase reaction.

  15. Shallow layer simulation of heavy gas released on a slope in a calm ambient. Part II. Instantaneous releases.

    PubMed

    Hankin, Robin K S

    2003-10-31

    This paper assesses the value of shallow layer modelling for instantaneous releases of heavy gas over a slope using the established computer model TWODEE [R.K.S. Hankin, Heavy gas dispersion over complex terrain, Ph.D. thesis, Cambridge University, 1997; J. Hazard. Mater. 66 (1999) 211; J. Hazard. Mater. 66 (1999) 227; J. Hazard. Mater. 66 (1999) 239] and the experimental results of Schatzmann et al. [M. Schatzmann, K. Marotzke, J. Donat, Research on continuous and instantaneous heavy gas clouds, Contribution of sub-project EV 4T-0021-D to the final report of the joint CEC project, Technical report, Meteorological Institute, University of Hamburg, February 1991]. This is the second of a two-part paper; part I considered continuous releases using the same model, using the same entrainment parameters. Schatzmann et al. carried out instantaneous releases of heavy gas over three slopes; each experiment was repeated five times under nominally identical conditions. The goodness-of-fit measures (GFMs) of Hanna et al. [Atmos. Environ. 27A (15) (1993) 2265] are generalized to account for the multiple releases carried out by Schatzmann et al. Using these statistical GFMs, predicted peak concentrations are generally correct to within a factor of two; and cloud arrival times are generally late.

  16. JPRS Report, East Europe

    DTIC Science & Technology

    1987-10-29

    nonferrous ores in quarries and underground; Installations for desulfurization , cleaning, and dry- ing of gas , turbocompressors for methane gas ; Mining...Products Exportation Bucharest Minis- "Indus- try of trial- Foreign Drilling installations and equipment for oil and gas ; export- Trade...equipment; try of Refineries, complex installations, parts, and equip- the ment for the oil- and gas -refining industry; Heavy Factories, complex

  17. Solution and Gas-Phase H/D Exchange of Protein-Small-Molecule Complexes: Cex and Its Inhibitors

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Terrier, Peran; Ding, Chuanfan; Douglas, D. J.

    2012-01-01

    The properties of noncovalent complexes of the enzyme exo-1,4-β-D-glycanase ("Cex") with three aza-sugar inhibitors, deoxynojirimycin (X2DNJ), isofagomine lactam (X2IL), and isofagomine (X2IF), have been studied with solution and gas-phase hydrogen deuterium exchange (H/Dx) and measurements of collision cross sections of gas-phase ions. In solution, complexes have lower H/Dx levels than free Cex because binding the inhibitors blocks some sites from H/Dx and reduces fluctuations of the protein. In mass spectra of complexes, abundant Cex ions are seen, which mostly are formed by dissociation of complexes in the ion sampling interface. Both complex ions and Cex ions formed from a solution containing complexes have lower cross sections than Cex ions from a solution of Cex alone. This suggests the Cex ions formed by dissociation "remember" their solution conformations. For a given charge, ions of the complexes have greater gas-phase H/Dx levels than ions of Cex. Unlike cross sections, H/Dx levels of the complexes do not correlate with the relative gas-phase binding strengths measured by MS/MS. Cex ions from solutions with or without inhibitors, which have different cross sections, show the same H/Dx level after 15 s, indicating the ions may fold or unfold on the seconds time scale of the H/Dx experiment. Thus, cross sections show that complexes have more compact conformations than free protein ions on the time scale of ca. 1 ms. The gas-phase H/Dx measurements show that at least some complexes retain different conformations from the Cex ions on a time scale of seconds.

  18. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  19. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  20. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  1. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  2. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  3. 40 CFR 98.408 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Definitions. 98.408 Section 98.408 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.408 Definitions. All terms...

  4. 40 CFR 98.408 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Definitions. 98.408 Section 98.408 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.408 Definitions. All terms...

  5. 40 CFR 98.408 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Definitions. 98.408 Section 98.408 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.408 Definitions. All terms...

  6. 40 CFR 98.408 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Definitions. 98.408 Section 98.408 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.408 Definitions. All terms...

  7. Water-Gas-Shift Membrane Reactor for High-Pressure Hydrogen Production. A comprehensive project report (FY2010 - FY2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaehn, John; Peterson, Eric; Orme, Christopher

    2013-01-01

    Idaho National Laboratory (INL), GE Global Research (GEGR), and Western Research Institute (WRI) have successfully produced hydrogen-selective membranes for water-gas-shift (WGS) modules that enable high-pressure hydrogen product streams. Several high performance (HP) polymer membranes were investigated for their gas separation performance under simulated (mixed gas) and actual syngas conditions. To enable optimal module performance, membranes with high hydrogen (H 2) selectivity, permeance, and stability under WGS conditions are required. The team determined that the VTEC PI 80-051 and VTEC PI 1388 (polyimide from Richard Blaine International, Inc.) are prime candidates for the H 2 gas separations at operating temperatures (~200°C).more » VTEC PI 80-051 was thoroughly analyzed for its H 2 separations under syngas processing conditions using more-complex membrane configurations, such as tube modules and hollow fibers. These membrane formats have demonstrated that the selected VTEC membrane is capable of providing highly selective H 2/CO 2 separation (α = 7-9) and H 2/CO separation (α = 40-80) in humidified syngas streams. In addition, the VTEC polymer membranes are resilient within the syngas environment (WRI coal gasification) at 200°C for over 1000 hours. The information within this report conveys current developments of VTEC PI 80-051 as an effective H 2 gas separations membrane for high-temperature syngas streams.« less

  8. A direct correlation among indoor Rn, soil gas Rn and geology in the Reading Prong near Boyertown, Pennsylvania

    USGS Publications Warehouse

    Reimer, G.M.; Gundersen, L.C.S.

    1989-01-01

    We feel that this study suggests a relationship among geology, soil gas Rn and the potential for indoor Rn accumulation in this portion of the Reading Prong. There are deviations from a perfect correlation but these are related to inhomogeneities in the geologic environment and perhaps variations in construction techniques of homes in the area. This study also demonstrates that several analyses in a small area may be necessary to adequately determine the Rn distribution for a particular geologic unit. That scale would be determined by the complexity of the local geology. Where no discrete source of elevated Rn supply is found for dwellings having a significant Rn accumulation, the implication is that overall gross permeability may be sufficient to supply Rn from a larger volume of soil and rock.

  9. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  10. Moving bed reactor setup to study complex gas-solid reactions.

    PubMed

    Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih

    2007-08-01

    A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.

  11. Membrane proteins bind lipids selectively to modulate their structure and function.

    PubMed

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these findings will be important not only for defining the selectivity of membrane proteins towards lipids, but also for understanding the role of lipids in modulating protein function or drug binding.

  12. 40 CFR 600.513-08 - Gas Guzzler Tax.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Gas Guzzler Tax. 600.513-08 Section 600.513-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's...

  13. MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha

    PubMed Central

    Jones, Victor A. S.

    2017-01-01

    The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. MpWIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced MpWIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. PMID:28174248

  14. Probing the energetics of dissociation of carbonic anhydrase-ligand complexes in the gas phase.

    PubMed Central

    Gao, J; Wu, Q; Carbeck, J; Lei, Q P; Smith, R D; Whitesides, G M

    1999-01-01

    This paper describes the use of electrospray ionization-Fourier transform ion cyclotron mass spectrometry (ESI-FTICR-MS) to study the relative stabilities of noncovalent complexes of carbonic anhydrase II (CAII, EC 4.2.1.1) and benzenesulfonamide inhibitors in the gas phase. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) was used to determine the energetics of dissociation of these CAII-sulfonamide complexes in the gas phase. When two molecules of a benzenesulfonamide (1) were bound simultaneously to one molecule of CAII, one of them was found to exhibit significantly weaker binding (DeltaE50 = 0.4 V, where E50 is defined as the amplitude of sustained off-resonance irradiation when 50% of the protein-ligand complexes are dissociated). In solution, the benzenesulfonamide group coordinates as an anion to a Zn(II) ion bound at the active site of the enzyme. The gas phase stability of the complex with the weakly bound inhibitor was the same as that of the inhibitor complexed with apoCAII (i.e., CAII with the Zn(II) ion removed from the binding site). These results indicate that specific interactions between the sulfonamide group on the inhibitor and the Zn(II) ion on CAII were preserved in the gas phase. Experiments also showed a higher gas phase stability for the complex of para-NO2-benzenesulfonamide-CAII than that for ortho-NO2-benzenesulfonamide-CAII complex. This result further suggests that steric interactions of the inhibitors with the binding pocket of CAII parallel those in solution. Overall, these results are consistent with the hypothesis that CAII retains, at least partially, the structure of its binding pocket in the gas phase on the time scale (seconds to minutes) of the ESI-FTICR measurements. PMID:10354450

  15. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  16. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  17. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  18. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  19. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  20. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  1. THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.

    The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter–centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, {sup 13}CO, and C{sup 18}O in the IM Lup protoplanetary disk, one of the first systems where this dust–gas dichotomy was clearly seen. The {sup 12}CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data,more » we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field ( G {sub 0} ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.« less

  2. Chemical complexity induced by efficient ice evaporation in the Barnard 5 molecular cloud

    NASA Astrophysics Data System (ADS)

    Taquet, V.; Wirström, E. S.; Charnley, S. B.; Faure, A.; López-Sepulcre, A.; Persson, C. M.

    2017-10-01

    Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. Here we present the detection of the complex organic molecules (COMs) acetaldehyde (CH3CHO) and methyl formate (CH3OCHO), as well as formic acid (HCOOH) and ketene (CH2CO), and the tentative detection of di-methyl ether (CH3OCH3) towards the "methanol hotspot" of Barnard 5 located between two dense cores using the single dish OSO 20 m, IRAM 30 m, and NRO 45 m telescopes. The high energy cis-conformer of formic acid is detected, suggesting that formic acid is mostly formed at the surface of interstellar grains and then evaporated. The detection of multiple transitions for each species allows us to constrain their abundances through LTE and non-LTE methods. All the considered COMs show similar abundances between 1 and 10% relative to methanol depending on the assumed excitation temperature. The non-detection of glycolaldehyde, an isomer of methyl formate, with a [glycolaldehyde]/[methyl formate] abundance ratio lower than 6%, favours gas phase formation pathways triggered by methanol evaporation. According to their excitation temperatures derived in massive hot cores, formic acid, ketene, and acetaldehyde have been designated as "lukewarm" COMs whereas methyl formate and di-methyl ether were defined as "warm" species. Comparison with previous observations of other types of sources confirms that lukewarm and warm COMs show similar abundances in low-density cold gas whereas the warm COMs tend to be more abundant than the lukewarm species in warm protostellar cores. This abundance evolution suggests either that warm COMs are indeed mostly formed in protostellar environments and/or that lukewarm COMs are efficiently depleted by increased hydrogenation efficiency around protostars.

  3. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  4. H2-rich fluids from serpentinization: Geochemical and biotic implications

    PubMed Central

    Sleep, N. H.; Meibom, A.; Fridriksson, Th.; Coleman, R. G.; Bird, D. K.

    2004-01-01

    Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the serpentinite minerals are Fe-rich. Olivine with the current mantle Fe/Mg ratio was oxidized during serpentinization after the Moon-forming impact. This process formed some of the ferric iron in the Earth's mantle. For the rest of Earth's history, serpentinites covered only a small fraction of the Earth's surface but were an important prebiotic and biotic environment. Extant methanogens react H2 with CO2 to form methane. This is a likely habitable environment on large silicate planets. The catalytic properties of FeNi3 allow complex organic compounds to form within serpentinite and, when mixed with atmospherically produced complex organic matter and waters that circulated through basalts, constitutes an attractive prebiotic substrate. Conversely, inorganic catalysis of methane by FeNi3 competes with nascent and extant life. PMID:15326313

  5. Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media.

    PubMed

    Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei

    2018-01-24

    Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.

  6. Teaching about Natural Gas and the Environment.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    This article contains a foldout entitled Natural Gas and the Environment for use in helping students become more aware of the relationships that exist between humans and the environment. Suggestions for classroom integration of this subject into your curriculum are also provided. (ZWH)

  7. Comparison of Physical Properties of Marine and Arctic Gas-Hydrate-Bearing Deposits

    NASA Astrophysics Data System (ADS)

    Winters, W. J.; Walker, M.; Collett, T. S.; Bryant, S. L.; Novosel, I.; Wilcox-Cline, R.; Bing, J.; Gomes, M. L.

    2009-12-01

    Gas hydrate (GH) occurs in both marine settings and in arctic environments within a wide variety of sediment types. Grain-size analyses from both environments indicate that intrinsic host-sediment properties have a strong influence on gas-hydrate distribution and morphologic characteristics. Depending on the amount formed or dissociated, gas hydrate can significantly change in situ sediment acoustic, mechanical, and hydraulic properties. The U.S. Geological Survey, in cooperation with the U.S. Dept. of Energy, BP Expl.-Alaska, Nat. GH Prog. of India, Canadian Geological Survey, Int. Ocean Drilling Program, Japan Oil Gas and Metals Nat. Corp., Japan Pet. Expl. Co., Int. Marine Past Global Changes Study (IMAGES) program, and Paleoceanography of the Atlantic and Geochemistry (PAGE) program, determined physical properties from marine and arctic sediments and their relation to the presence of GH. At two arctic sites, the Mount Elbert well on the Alaskan North Slope and the Mallik wells on the Mackenzie Delta, NWT, >10-m thick gas-hydrate-bearing (GHB) sandy deposits are capped by finer-grained sediments that may reduce gas migration. In the Mount Elbert well, average median grain sizes (MGS) for the two thickest GHB deposits are 65 and 60 µm. Finer-grained (average MGS of 9 and 28 µm) sediments have plug permeabilities that are 300 and 14 times smaller than underlying GHB sediment. Average MGS of GHB sediment from the Mallik 2L well is ~ 111 µm, compared to overlying sediment with an average MGS of ~ 32 µm. Gas hydrate morphology in the Gulf of Mexico (GOM) and offshore India is substantially more complex than in the arctic, and is related to pervasive, although not exclusive, finer-grained deposits. Massive, several-cm thick, GH layers were recovered in piston cores in the northern GOM, in sediment with little visible lithologic variability (average MGS ~ 0.8 µm). In wells off the east coast of India, GH was present in sand-rich, fractured clay, and reservoirs with both characteristics. Maximum MGS measured on more than 1200 samples was 46 µm, but the average MGS for 14 wells varied from 5 to 10 µm. At Site 10, in the Krishna-Godavari Basin, GH was observed in several morphologic configurations, including complex high-angle planar and rotational veins, solid nodules, and disseminated, in sediment with average MGS of 5 µm, liquid limits between 70 and 98, and plastic limits between 33 and 49. Sediment in a 692-m deep well drilled off the Andaman Islands sporadically hosted disseminated GH in thin coarser-grained ash beds and ash-rich zones. Average and maximum MGS in this well is 6 and 17 µm, respectively. To date, sandy GH reservoirs (with some exceptions, e.g., Nankai Trough) are typically associated with the arctic. However, the presence of thick offshore sand-rich GHB reservoirs is the subject of current investigations, such as by the Gulf of Mexico Joint Industry Project (JIP).

  8. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  9. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  10. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  11. Aging of Iodine-Loaded Silver Mordenite in NO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruffey, Stephanie H.; Jubin, Robert Thomas; Patton, Kaara K.

    2014-04-01

    Used nuclear fuel facilities need to control and minimize radioactive emissions. Off-gas systems are designed to remove radioactive contaminants, such as 85Kr, 14C, 3H, and 129I. In an off-gas system, any capture material will be exposed to a gas stream for months at a time. This gas stream may be at elevated temperature and could contain water, NOx gas, or a variety of other constituents comprising the dissolver off-gas stream in a nuclear fuel reprocessing plant. For this reason, it is important to evaluate the effects of long-term exposure, or aging, on proposed capture materials. One material under consideration ismore » reduced silver mordenite (Ag0Z), which is recognized for its efficient iodine capture properties. Iodine is immobilized on Ag0Z as AgI, a solid with low volatility (m.p. ≥ 500°C). The aim of this study was to determine whether extended aging at elevated temperature in a nominally 2% NO2 environment would result in a loss of immobilized iodine from this material due to either physical or chemical changes that might occur during aging. Charges of iodine-loaded reduced silver mordenite (I2-Ag0Z) were exposed to a 2% NO2 environment for 1, 2, 3, and 4 months at 150°C, then analyzed for iodine losses The aging study was completed successfully. The material did not visibly change color or form. The results demonstrate that no significant iodine loss was observed over the course of 4 months of 2% NO2 aging of I2-Ag0Z at elevated temperature within the margin of error and the variability (~10%) in the loading along the beds. This provides assurance that iodine will remain immobilized on Ag0Z during extended online use in an off-gas capture treatment system. Future tests should expose I2-Ag0Z to progressively more complex feed gases in an effort to accurately replicate the conditions expected in a reprocessing facility.« less

  12. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  13. Studies on disease transmission in spacecraft environments. [as experienced onboard Skylab 1

    NASA Technical Reports Server (NTRS)

    Kenyon, A. J.

    1974-01-01

    The effects of the Skylab gas mixtures on general health and immunocompetence of mice and ferrets subjected to the Skylab space cabin environment (SCE) were initially studied in a stainless steel low pressure facility which was maintained at gas ratios of 30% nitrogen and 70% oxygen under 5 psia, and which consisted of two subchambers, that permitted mutual isolation of experimental groups and/or selective removal of animals without return of the entire cabin to ambient pressure was developed. The studies demonstrated that ferrets immunized with Brucella Strain 19 prior to being housed in SCE had decreased synthesis of IgG compared to their respective controls. The possibility of latent infections being responsible for stress-induced upper respiratory diseases of astronauts required that the role of neutralizing antibody as a function of antibody affinity/avidity be investigated. The model consisted of Aleutian disease virus (ADV) which infects ferrets and mink resulting in nonneutralized immune complexes. These studies demonstrated that early antibody to ADV had lower affinity/avidity than late antibody with respect to chronicity. These studies culminated in a description of antibody affinity, first isolation of ADV and its cultivation in vitro.

  14. Photosynthesis in Hydrogen-Dominated Atmospheres

    PubMed Central

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  15. Photosynthesis in hydrogen-dominated atmospheres.

    PubMed

    Bains, William; Seager, Sara; Zsom, Andras

    2014-11-18

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  16. Novel pollutants in the Moscow atmosphere in winter period: Gas chromatography-high resolution time-of-flight mass spectrometry study.

    PubMed

    Mazur, D M; Polyakova, O V; Artaev, V B; Lebedev, A T

    2017-03-01

    The most common mass spectrometry approach analyzing contamination of the environment deals with targeted analysis, i.e. detection and quantification of the selected (priority) pollutants. However non-targeted analysis is becoming more often the method of choice for environmental chemists. It involves implementation of modern analytical instrumentation allowing for comprehensive detection and identification of the wide variety of compounds of the environmental interest present in the sample, such as pharmaceuticals and their metabolites, musks, nanomaterials, perfluorinated compounds, hormones, disinfection by-products, flame retardants, personal care products, and many others emerging contaminants. The paper presents the results of detection and identification of previously unreported organic compounds in snow samples collected in Moscow in March 2016. The snow analysis allows evaluation of long-term air pollution in the winter period. Gas chromatography coupled to a high resolution time-of-flight mass spectrometer has enabled us with capability to detect and identify such novel analytes as iodinated compounds, polychlorinated anisoles and even Ni-containing organic complex, which are unexpected in environmental samples. Some considerations concerning the possible sources of origin of these compounds in the environment are discussed. Copyright © 2017 LECO. Published by Elsevier Ltd.. All rights reserved.

  17. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort sediments without the presence of permafrost and gas hydrate, owing to the relative slope steepness compared to other submarine failures. Including the effects of the permafrost and gas hydrate in the sediments can result in an increase of the factor of safety under static conditions. However, modeling of the temporal effects of transgression of the Beaufort Shelf (considering change in pressure and temperature), indicates that, for a reasonable assumption of between 5-35% hydrate content, the factor of safety reduces to below unity and failure occurs.

  18. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys.

    PubMed

    Lee, Won-Jong; Chia, Wen-Jui; Wang, Jinliu; Chen, Yanfeng; Vaynman, Semyon; Fine, Morris E; Chung, Yip-Wah

    2010-11-02

    This article explores the subtle effects of surfaces and interfaces on the mechanical properties of bulk metallic alloys using three examples: environmental effects on fatigue life, hydrogen embrittlement effects on the ductility of intermetallics, and the role of coherent precipitates in the toughness of steels. It is demonstrated that the marked degradation of the fatigue life of metals is due to the strong chemisorption of adsorbates on exposed slip steps that are formed during fatigue deformation. These adsorbates reduce the reversibility of slip, thus accelerating fatigue damage in a chemically active gas environment. For certain intermetallic alloys such as Ni(3)Al and Ni(3)Fe, the ductility depends on the ambient gas composition and the atomic ordering in these alloys, both of which govern the complex surface chemical reactions taking place in the vicinity of crack tips. Finally, it is shown that local stresses at a coherent precipitate-matrix interface can activate dislocation motion at low temperatures, thus improving the fracture toughness of bulk alloys such as steels at cryogenic temperatures. These examples illustrate the complex interplay between surface chemistry and mechanics, often yielding unexpected results.

  19. The formation of submillimetre-bright galaxies from gas infall over a billion years.

    PubMed

    Narayanan, Desika; Turk, Matthew; Feldmann, Robert; Robitaille, Thomas; Hopkins, Philip; Thompson, Robert; Hayward, Christopher; Ball, David; Faucher-Giguère, Claude-André; Kereš, Dušan

    2015-09-24

    Submillimetre-bright galaxies at high redshift are the most luminous, heavily star-forming galaxies in the Universe and are characterized by prodigious emission in the far-infrared, with a flux of at least five millijanskys at a wavelength of 850 micrometres. They reside in haloes with masses about 10(13) times that of the Sun, have low gas fractions compared to main-sequence disks at a comparable redshift, trace complex environments and are not easily observable at optical wavelengths. Their physical origin remains unclear. Simulations have been able to form galaxies with the requisite luminosities, but have otherwise been unable to simultaneously match the stellar masses, star formation rates, gas fractions and environments. Here we report a cosmological hydrodynamic galaxy formation simulation that is able to form a submillimetre galaxy that simultaneously satisfies the broad range of observed physical constraints. We find that groups of galaxies residing in massive dark matter haloes have increasing rates of star formation that peak at collective rates of about 500-1,000 solar masses per year at redshifts of two to three, by which time the interstellar medium is sufficiently enriched with metals that the region may be observed as a submillimetre-selected system. The intense star formation rates are fuelled in part by the infall of a reservoir gas supply enabled by stellar feedback at earlier times, not through major mergers. With a lifetime of nearly a billion years, our simulations show that the submillimetre-bright phase of high-redshift galaxies is prolonged and associated with significant mass buildup in early-Universe proto-clusters, and that many submillimetre-bright galaxies are composed of numerous unresolved components (for which there is some observational evidence).

  20. A microfluidic investigation of gas exsolution in glass and shale fracture networks

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Jimenez-Martinez, J.; Harrison, A.; Currier, R.; Viswanathan, H. S.

    2016-12-01

    Microfluidic investigations of pore-scale fluid flow and transport phenomena has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real-time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. In this work, we describe a unique high pressure (up to 10.3 MPa) and temperature (up to 80 °C) microfluidics experimental system that allows us to investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in fractured rocks. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase gas (CO2 and N2) injection experiments designed to enhance oil recovery. In these experiments gas was injected into micromodels saturated with oil and allowed to soak for approximately 12 hours at elevated pressures. The pressure in the system was then decreased to atmospheric, causing the gas to expand and/or dissolve out of solution, subsequently mobilizing the oil. In addition to the experimental results, we present a relatively simple model designed to quantify the amount of oil mobilized as a function of decreasing system pressure. We will show comparisons between the experiments and model, and discuss the potential use of the model in field-scale reservoir simulations.

  1. Fibers in the NGC 1333 proto-cluster

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Tafalla, M.; Alves, J.

    2017-10-01

    Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123

  2. 40 CFR 60.5375 - What standards apply to gas well affected facilities?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What standards apply to gas well affected facilities? 60.5375 Section 60.5375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas...

  3. 40 CFR 60.5375 - What standards apply to gas well affected facilities?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What standards apply to gas well affected facilities? 60.5375 Section 60.5375 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas...

  4. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  6. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  7. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...

  9. Monte Carlo Methodology Serves Up a Software Success

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.

  10. Simulation and assessment of SO2 toxic environment after ignition of uncontrolled sour gas flow of well blowout in hills.

    PubMed

    Zhu, Yuan; Chen, Guo-ming

    2010-06-15

    To study the sulfur dioxide (SO(2)) toxic environment after the ignition of uncontrolled sour gas flow of well blowout, we propose an integrated model to simulate the accident scenario and assess the consequences of SO(2) poisoning. The accident simulation is carried out based on computational fluid dynamics (CFD), which is composed of well blowout dynamics, combustion of sour gas, and products dispersion. Furthermore, detailed complex terrains are built and boundary layer flows are simulated according to Pasquill stability classes. Then based on the estimated exposure dose derived from the toxic dose-response relationship, quantitative assessment is carried out by using equivalent emergency response planning guideline (ERPG) concentration. In this case study, the contaminated areas are graded into three levels, and the areas, maximal influence distances, and main trajectories are predicted. We show that wind drives the contamination and its distribution to spread downwind, and terrains change the distribution shape through spatial aggregation and obstacles. As a result, the most dangerous regions are the downwind areas, the foot of the slopes, and depression areas such as valleys. These cause unfavorable influences on emergency response for accident control and public evacuation. In addition, the effectiveness of controlling the number of deaths by employing ignition is verified in theory. Based on the assessment results, we propose some suggestions for risk assessment, emergency response and accident decision making. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Development of a 3D printed device to support long term intestinal culture as an alternative to hyperoxic chamber methods.

    PubMed

    Costa, Matheus O; Nosach, Roman; Harding, John C S

    2017-01-01

    Most interactions between pathogenic microorganisms and their target host occur on mucosal surfaces of internal organs such as the intestine. In vitro organ culture (IVOC) provides an unique tool for studying host-pathogen interactions in a controlled environment. However, this technique requires a complex laboratory setup and specialized apparatus. In addition, issues arise when anaerobic pathogens are exposed to the hyperoxic environment required for intestinal culture. The objective of this study was to develop an accessible 3D-printed device that would allow manipulation of the gas mixture used to supply the tissue culture media separately from the gas mixture exposed to the mucosal side of explants. Porcine colon explants from 2 pigs were prepared ( n  = 20) and cultured for 0h, 8h, 18h and 24h using the device. After the culture period, explants were fixed in formalin and H&E stained sections were evaluated for histological defects of the mucosa. At 8h, 66% of samples displayed no histological abnormalities, whereas samples collected at 18h and 24h displayed progressively increasing rates of superficial epithelial erosion and epithelial metaplasia. The 3D-design reported here allows investigators to setup intestinal culture explants while manipulating the gas media explants are exposed to, to support tissue viability for a minimal of 8h. The amount of media necessary and tissue contamination are potential issues associated with this apparatus.

  12. Gas Phase Chemistry and Molecular Complexity: How Far Do They Go?

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia

    2016-07-01

    The accumulation of organic molecules of increasing complexity is believed to be an important step toward the emergence of life. But how massive organic synthesis could occur in primitive Earth, i.e. a water-dominated environment, is a matter of debate. Two alternative theories have been suggested so far: endogenous and exogenous synthesis. In the first theory, the synthesis of simple organic molecules having a strong prebiotic potential (simple prebiotic molecules SPMs, such as H2CO, HCN, HC3N, NH2CHO) occurred directly on our planet starting from simple parent molecules of the atmosphere, liquid water and various energy sources. Miller's experiment was a milestone in this theory, but it was later recognized that the complexity of a planet cannot be reproduced in a single laboratory experiment. Some SPMs have been identified in the N2-dominated atmosphere of Titan (a massive moon of Saturn), which is believed to be reminiscent of the primitive terrestrial atmosphere. As such, the atmosphere of Titan represents a planetary scale laboratory for the comprehension of SPM formation in an environment close enough to primitive Earth and is the current frontier in the endogenous theory exploration. In the exogenous theory, SPMs came from space, the carriers being comets, asteroids and meteorites. The rationale behind this suggestion is that plenty of SPMs have been observed in interstellar clouds (ISCs), including star-forming regions, and in small bodies like comets, asteroids and meteorites. Therefore, the basic idea is that SPMs were formed in the solar nebula, preserved during the early phases of the Solar System formation in the body of comets/asteroids/meteorites and finally delivered to Earth by cometary and meteoritic falls. In this contribution, the status of our knowledge on how SPMs can be formed in the gas phase, either in the primitive terrestrial atmosphere or in the cold nebula from which the Solar System originated, will be presented. Particular attention will be given to neutral-neutral reactions.

  13. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment.

    PubMed

    Hosseini, Ali; Brown, Justin E; Gwynn, Justin P; Dowdall, Mark

    2012-11-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving 'concentrations in the environment near background values for naturally occurring radioactive substances'. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Detection and Estimation of 2-D Distributions of Greenhouse Gas Source Concentrations and Emissions over Complex Urban Environments and Industrial Sites

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. S.; Pernini, T.; Dobler, J. T.; Blume, N.; Braun, M.

    2017-12-01

    This work highlights the use of the greenhouse-gas laser imaging tomography experiment (GreenLITETM) data in conjunction with a sparse tomography approach to identify and quantify both urban and industrial sources of CO2 and CH4. The GreenLITETM system provides a user-defined set of time-sequenced intersecting chords or integrated column measurements at a fixed height through a quasi-horizontal plane of interest. This plane, with unobstructed views along the lines of sight, may range from complex industrial facilities to a small city scale or urban sector. The continuous time phased absorption measurements are converted to column concentrations and combined with a plume based model to estimate the 2-D distribution of gas concentration over extended areas ranging from 0.04-25 km2. Finally, these 2-D maps of concentration are combined with ancillary meteorological and atmospheric data to identify potential emission sources and provide first order estimates of their associated fluxes. In this presentation, we will provide a brief overview of the systems and results from both controlled release experiments and a long-term system deployment in Paris, FR. These results provide a quantitative assessment of the system's ability to detect and estimate CO2 and CH4 sources, and demonstrate its ability to perform long-term autonomous monitoring and quantification of either persistent or sporadic emissions that may have both health and safety as well as environmental impacts.

  15. 30 CFR 250.199 - Paperwork Reduction Act statements-information collection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protect the human, marine, and coastal environment, and will result in diligent exploration, development... are safe and protect the human, marine, and coastal environment. (5) Subpart E, Oil and Gas Well..., marine, and coastal environment. (6) Subpart F, Oil and Gas Well Workover Operations (1010-0043) To...

  16. 30 CFR 250.199 - Paperwork Reduction Act statements-information collection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protect the human, marine, and coastal environment, and will result in diligent exploration, development... are safe and protect the human, marine, and coastal environment. (5) Subpart E, Oil and Gas Well..., marine, and coastal environment. (6) Subpart F, Oil and Gas Well Workover Operations (1010-0043) To...

  17. 30 CFR 250.199 - Paperwork Reduction Act statements-information collection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protect the human, marine, and coastal environment, and will result in diligent exploration, development... are safe and protect the human, marine, and coastal environment. (5) Subpart E, Oil and Gas Well..., marine, and coastal environment. (6) Subpart F, Oil and Gas Well Workover Operations (1010-0043) To...

  18. Ultrahigh vacuum process for the deposition of nanotubes and nanowires

    DOEpatents

    Das, Biswajit; Lee, Myung B

    2015-02-03

    A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.

  19. Competitive Endogenous RNAs in Prostate Cancer

    DTIC Science & Technology

    2015-01-01

    that there is a negative correlation between GAS5 and miR-21, and microRNAs silence target genes via RISC complex carrying AGO2, next we asked whether...GAS5 directly interacts with miR-12 in the RISC complex. Thus, we synthesized GAS5 RNA probe and labeled with biotin and then mixed with cellular

  20. Gone with the Wind: Watching Galaxy Transformation in Abell 2125

    NASA Astrophysics Data System (ADS)

    Keel, W.; Owen, F.; Ledlow, M.; Wang, D.

    2003-12-01

    Dense environments clearly foster the transformation of galaxies, but it has proven difficult to untangle the roles of various processes in cluster environments. We have found a uniquely strong case for ongoing stripping of gas from the galaxy C153 in Abell 2125. The cluster, at z=0.25, includes merging subsystems with a relative line-of-sight velocity near 2000 km/s. C153, identified using the VLA as a strong radio source powered by star formation, is the brightest cluster member with activity of this kind, and part of the less populous blueshifted grouping. Several lines of evidence indicate that it is being swept by a stripping event. (1) A tail of ionized gas is seen in [O II] emission, which extends at least 70 kpc toward the cluster core, coinciding with a soft X-ray feature seen in the Chandra observations reported by Wang et al. (2) HST WFPC2 images reveal disturbed and clumpy morphology, including luminous star-forming complexes and chaotic dust features. (3) The spectral energy distribution and Gemini GMOS absorption-line spectrum indicate a massive burst of star formation ≈ 108 years ago superimposed on an older and much fainter population. (4) The stellar and gas kinematics are decoupled, with multiple gas velocity systems including counter-rotating components. The large velocity difference between the galaxy and (most of the) intracluster medium may contribute to the signatures being more prominent than hitherto seen. The starburst age is consistent with estimates of the time since the closest encounter of the major subsystems during the cluster-level merger. We continue to explore whether a starburst outflow or tidal damage has added to the role of stripping by the ICM, and how star formation has proceeded in the gas after leaving the galaxy disk. This work was supported by NASA through HST grant GO-07279.01-96A, and by the NSF through facilities at NRAO, Kitt Peak, and Gemini-North.

  1. In situ quantitative characterisation of the ocean water column using acoustic multibeam backscatter data

    NASA Astrophysics Data System (ADS)

    Lamarche, G.; Le Gonidec, Y.; Lucieer, V.; Lurton, X.; Greinert, J.; Dupré, S.; Nau, A.; Heffron, E.; Roche, M.; Ladroit, Y.; Urban, P.

    2017-12-01

    Detecting liquid, solid or gaseous features in the ocean is generating considerable interest in the geoscience community, because of their potentially high economic values (oil & gas, mining), their significance for environmental management (oil/gas leakage, biodiversity mapping, greenhouse gas monitoring) as well as their potential cultural and traditional values (food, freshwater). Enhancing people's capability to quantify and manage the natural capital present in the ocean water goes hand in hand with the development of marine acoustic technology, as marine echosounders provide the most reliable and technologically advanced means to develop quantitative studies of water column backscatter data. This is not developed to its full capability because (i) of the complexity of the physics involved in relation to the constantly changing marine environment, and (ii) the rapid technological evolution of high resolution multibeam echosounder (MBES) water-column imaging systems. The Water Column Imaging Working Group is working on a series of multibeam echosounder (MBES) water column datasets acquired in a variety of environments, using a range of frequencies, and imaging a number of water-column features such as gas seeps, oil leaks, suspended particulate matter, vegetation and freshwater springs. Access to data from different acoustic frequencies and ocean dynamics enables us to discuss and test multifrequency approaches which is the most promising means to develop a quantitative analysis of the physical properties of acoustic scatterers, providing rigorous cross calibration of the acoustic devices. In addition, high redundancy of multibeam data, such as is available for some datasets, will allow us to develop data processing techniques, leading to quantitative estimates of water column gas seeps. Each of the datasets has supporting ground-truthing data (underwater videos and photos, physical oceanography measurements) which provide information on the origin and chemistry of the seep content. This is of first importance when assessing the physical properties of water column scatterers from backscatter acoustic measurement.

  2. Non-Destructive Testing with Atmospheric Pressure Radio-Frequency Plasma

    NASA Astrophysics Data System (ADS)

    May, A.; Andarawis, E.

    2007-03-01

    We summarize our recent work using radio-frequency (RF) atmospheric pressure plasma (APP) for non-destructive evaluation (NDE), specifically for: (1) Clearance sensing (0-5mm) on rotating components, and (2) Generation of broadband ultrasound in air at 900kHz. RF-APP showed potential in both of these common NDE requirements, but further work is required to better characterize and optimize the performance of the new techniques. Application of RF-APP to other NDE disciplines, such as plasma spectroscopy and gas flow measurement, is also likely to be advantageous, especially in harsh environments where existing approaches are prohibitively expensive or complex.

  3. Environmental Control Subsystem Development

    NASA Technical Reports Server (NTRS)

    Laidlaw, Jacob; Zelik, Jonathan

    2017-01-01

    Kennedy Space Center's Launch Pad 39B, part of Launch Complex 39, is currently undergoing construction to prepare it for NASA's Space Launch System missions. The Environmental Control Subsystem, which provides the vehicle with an air or nitrogen gas environment, required development of its local and remote display screens. The remote displays, developed by NASA contractors and previous interns, were developed without complete functionality; the remote displays were revised, adding functionality to over 90 displays. For the local displays, multiple test procedures were developed to assess the functionality of the screens, as well as verify requirements. One local display screen was also developed.

  4. Science and society test VII: Energy and environment

    NASA Astrophysics Data System (ADS)

    Hafemeister, David W.

    1982-08-01

    Approximate numerical estimates are developed in order to quantify a variety of environmental effects that result from energy production. The results of these calculations are consistent with either direct observations or with more complex calculations. This paper will cover some of the possible environmental effects of the following: (1) the greenhouse effect caused by increased CO2 in the atmosphere; (2) loss of coolant accidents in nuclear reactors; (3) increased radon concentrations in buildings with very low air infiltration rates; (4) acid rain from the combustion of fossil fuels; (5) expolosions of liquified natural gas (LNG); and (6) ozone in the stratosphere.

  5. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    PubMed

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  6. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Fuel economy label-special requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  7. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Fuel economy label-special requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  8. 40 CFR 600.306-12 - Fuel economy label-special requirements for compressed natural gas vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Fuel economy label-special requirements for compressed natural gas vehicles. 600.306-12 Section 600.306-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Labeling §...

  9. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Amount of water in an ideal gas. 1065.645 Section 1065.645 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.645 Amount of water in an ideal gas. This section describes how to...

  10. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Amount of water in an ideal gas. 1065.645 Section 1065.645 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.645 Amount of water in an ideal gas. This section describes how to...

  11. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Amount of water in an ideal gas. 1065.645 Section 1065.645 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.645 Amount of water in an ideal gas. This section describes how to...

  12. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  13. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  14. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  15. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  16. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  17. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  18. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  19. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  20. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  1. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  2. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  3. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  4. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  6. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  7. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  9. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  10. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  11. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  12. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  13. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  14. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  15. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  16. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  17. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  18. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  19. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  20. 40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...

  1. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  2. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  3. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  4. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...

  6. 40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...

  7. 40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...

  8. 40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...

  9. 40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...

  10. 40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...

  11. 40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...

  12. The Lepanto Cu–Au deposit, Philippines: A fossil hyperacidic volcanic lake complex

    USGS Publications Warehouse

    Berger, Byron R.; Henley, Richard W.; Lowers, Heather; Pribil, Michael

    2014-01-01

    Hyperacidic lakes and associated solfatara in active volcanoes are the expression of magmatic gas expansion from source to surface. Here we show for the first time, that the vein system that comprises the ~ 2 Ma high-sulfidation, Lepanto copper–gold deposit in the Mankayan district (Philippines) was associated with a contemporary hyperacidic volcanic lake complex—possibly the first such lake recognized in the geological record. A 15–20‰ difference in sulfur isotopic composition between barite and sulfides and sulfosalts in the vent fumarole encrustations supports the interpretation that SO2-rich volcanic gas vented into the base of the lake and marginal to it and ties the mineralization directly to magmatic gas expansion, fracture propagation, and mineralization that occurred through a series of decompression steps within the feeder fracture network. These data confirm that crater lake environments such as Kawah Ijen (Java, Indonesia) provide modern day analogs of the Lepanto and other high sulfidation Cu–Au depositing environments.We also provide extensive analysis of sulfosalt–sulfide reactions during vein formation within the hyperacidic lake complex. Pyrite ±  silica deposited first at high temperature followed by enargite that preserves the vapor–solid diffusion of, for example, antimony, tin, and tellurium into the vapor from the crystallizing solid. Subsolidus, intra-crystalline diffusion continued as temperature declined. Pyrite and enargite are replaced by Fe-tennantite in the lodes which initially has low Sb/(Sb + As) atomic ratios around 13.5% close to the ideal tennantite formula, but evolves to higher ratios as crystallization proceeds. Fumarole encrustation clasts and sulfosalts in the lake sediment are more highly evolved with a larger range of trace element substitutions, including antimony. Substitution of especially Zn, Te, Ag, and Sn into tennantite records metal and semi-metal fractionation between the expanding magmatic gas and deposited sulfide sublimates provides a rare insight into the fate of metals and semi-metals in the shallower parts of fracture arrays that feed modern hyperacidic lakes.These data support a growing understanding of the formation of high-sulfidation gold deposits as the consequence of single-phase expansion of gas from magmatic-gas reservoirs beneath the surface of active volcanoes without the intervention of a later aqueous fluid including groundwater. Aggressive sulfide–sulfosalt reactions, including pitting and the almost complete dissolution of earlier minerals, are persistent characteristics of the vein assemblages and precious metals typically occur late in pits or along brittle fractures. These characteristics support a hypothesis of mineral deposition at temperatures of the order of 600 °C in contrast to available fluid inclusion data from enargite that record temperatures following phase transitions in the sulfosalt during the retrograde devolution of the deposit in the presence of groundwater.

  13. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    PubMed

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  14. High altitude cognitive performance and COPD interaction

    PubMed Central

    Kourtidou-Papadeli, C; Papadelis, C; Koutsonikolas, D; Boutzioukas, S; Styliadis, C; Guiba-Tziampiri, O

    2008-01-01

    Introduction: Thousands of people work and perform everyday in high altitude environment, either as pilots, or shift workers, or mountaineers. The problem is that most of the accidents in this environment have been attributed to human error. The objective of this study was to assess complex cognitive performance as it interacts with respiratory insufficiency at altitudes of 8000 feet and identify the potential effect of hypoxia on safe performance. Methods: Twenty subjects participated in the study, divided in two groups: Group I with mild asymptomatic chronic obstructive pulmonary disease (COPD), and Group II with normal respiratory function. Altitude was simulated at 8000 ft. using gas mixtures. Results: Individuals with mild COPD experienced notable hypoxemia with significant performance decrements and increased number of errors at cabin altitude, compared to normal subjects, whereas their blood pressure significantly increased. PMID:19048098

  15. Design for Oxidation Resistance

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, Jon C.; Barrett, Charles A.

    1997-01-01

    Alloys intended for use in high-temperature environment rely on the formation of a continuous, compact, slow-growing oxide layer for oxidation and hot corrosion resistance. To be protective, this oxide layer must be chemically, thermodynamically stable. Successful alloy design for oxidative environment is best achieved by developing alloys that are capable of forming adherent scales of either alumina (Al2O3), chromia (Cr2O3), or silica (SiO2). In this article, emphasis has been placed on the issue related to high-temperature oxidation of superalloys used in gas turbine engine application. Despite the complexity of these alloys, optimal performance has been associated with protective alumina scale formation. As will be described below, both compositional makeup and protective coatings play key role in providing oxidation protection. Other high-temperature materials described include nickel and titanium aluminide intermetallics, refractory metal, and ceramics.

  16. A Technique for Murine Irradiation in a Controlled Gas Environment

    PubMed Central

    Walb, M. C.; Moore, J. E.; Attia, A.; Wheeler, K. T.; Miller, M. S.; Munley, M. T.

    2013-01-01

    NASA’s extra-vehicular activities (EVAs) involve exposure to high energy photons while breathing 100% oxygen. Using previously verified mouse models, our laboratory is studying whether low dose irradiation under these hyperoxic conditions could lead to an increase in carcinogenic potential. To simulate the environment astronauts encounter during an EVA, enclosed chambers were constructed that allowed for mouse movement, controlled gas conditions, and uniform radiation dose delivery. Custom-built gas chambers with input/output gas valves and dividers that allowed for uniform gas flow were used to keep 6 unanesthetized mice separated while they were irradiated. The chambers were supplied with 100% oxygen or air using ball valves linked together with T-splitters. A calibrated ion chamber was used to verify the radiation dose distribution across an entire chamber. Mice were placed in the gas environments for 0.5 h, irradiated with a 10 or 18 MV photon beam from a medical linear accelerator, and left in their gas environment for 2 h post-irradiation. We irradiated 200 mice (5 different doses between 0–1000 mGy) under normoxic or 100% oxygen conditions. For the next step of this research, these mice will be euthanized 9 months post-irradiation, and lung tumors will be counted and sized to determine if hyperoxia increases the carcinogenic effect for this model. PMID:22846321

  17. Gas-analytic measurement complexes of Baikal atmospheric-limnological observatory

    NASA Astrophysics Data System (ADS)

    Pestunov, D. A.; Shamrin, A. M.; Shmargunov, V. P.; Panchenko, M. V.

    2015-11-01

    The paper presents the present-day structure of stationary and mobile hardware-software gas-analytical complexes of Baikal atmospheric-limnological observatory (BALO) Siberian Branch Russian Academy of Sciences (SB RAS), designed to study the processes of gas exchange of carbon-containing gases in the "atmosphere-water" system, which are constantly updated to include new measuring and auxiliary instrumentation.

  18. Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments

    NASA Astrophysics Data System (ADS)

    Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander

    2018-03-01

    This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.

  19. Acentric 2-D ensembles of D-br-A electron-transfer chromophores via vectorial orientation within amphiphilic n-helix bundle peptides for photovoltaic device applications.

    PubMed

    Koo, Jaseung; Park, Jaehong; Tronin, Andrey; Zhang, Ruili; Krishnan, Venkata; Strzalka, Joseph; Kuzmenko, Ivan; Fry, H Christopher; Therien, Michael J; Blasie, J Kent

    2012-02-14

    We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially orient a linearly extended donor-bridge-acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle's interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle's exterior was employed to vectorially orient the peptide-chromophore complex at a liquid-gas interface, and its ends were tailored for subsequent covalent attachment to an inorganic surface, via a "directed assembly" approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrate that densely packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200 Å(2) offer unique potential as active layers in binary heterojunction photovoltaic devices.

  20. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?

    PubMed

    Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms.

  1. Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?

    PubMed Central

    Hernandez Bennetts, Victor; Lilienthal, Achim J.; Neumann, Patrick P.; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully “translated” into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493

  2. Design optimization of single mixed refrigerant LNG process using a hybrid modified coordinate descent algorithm

    NASA Astrophysics Data System (ADS)

    Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong

    2018-01-01

    Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.

  3. Resolving the Circumgalactic Medium in the NEPHTHYS Simulations

    NASA Astrophysics Data System (ADS)

    Richardson, Mark Lawrence Albert; Devriendt, Julien; Slyz, Adrianne; Rosdahl, Karl Joakim; Kimm, Taysun

    2018-01-01

    NEPHTHYS is a RAMSES Cosmological-zoom galaxy simulation suite investigating the impact of stellar feedback (winds, radiation, and type Ia and II SNe) on z > 1 ~L* galaxies and their environments. NEPHTHYS has ~10 pc resolution in the galaxy, where the scales driving star formation and the interaction of stellar feedback with the ISM can begin to be resolved. As outflows, winds, and radiation permeate through the circumgalactic medium (CGM) they can heat or cool gas, and deposit metals throughout the CGM. Such material in the CGM is seen by spectroscopic studies of distant quasars, where CGM gas of foreground galaxies is observed in absorption. It is still unclear what the origin and evolution of this gas is. To help answer this, NEPHTHYS includes additional refinement in the CGM, refining it to an unrivaled 80 pc resolution. I will discuss how this extra resolution is crucial for resolving the complex structure of outflows and accretion in the CGM. Specifically, the metal mass and covering fraction of metals and high energy ions is increased, while the better resolved outflows leads to a decrease in the overall baryon content of galaxy halos, and individual outflow events can have larger velocities. Our results suggest that absorption observations of CGM are tracing a clumpy column of gas with multiple kinematic components.

  4. Fluid and gas expulsion on the northern Gulf of Mexico continental slope: Mud-prone to mineral-prone responses

    NASA Astrophysics Data System (ADS)

    Roberts, Harry H.

    In the northern Gulf of Mexico slope province, complex structural relationships resulting from dynamic adjustments between large volumes of sediments and salt provide numerous faulted pathways for deep subsurface fluids and gases to be transported to the modern seafloor. Geological response at the seafloor to these hydrocarbon-rich fluids and gases is highly variable and dependent largely on rate and duration of delivery as well as fluid and gas composition. In a qualitative framework, rapid expulsions of fluids (including fluidized sediment) and gases generally result in buildups of sediment in the form of cones (mud volcanoes) that vary from a few meters to several kilometers in diameter and/or sheet-like flows that may extend tens of kilometers downslope. Conversely, slow seepage promotes lithification of the seafloor through precipitation of a variety of mineral species. Most important is the microbial utilization of hydrocarbons and precipitation of 13C-depleted Ca-Mg carbonates as by-products. These carbonates have δ 13C values that range between -18% to -55% (PDB), suggesting mixed carbon sources from crude oil to biogenic methane. The 13C-depleted carbonates form mounds and hardgrounds that occur over the full depth range of the slope. Mounded carbonates can have relief of up to 30 m, but mounds of 5-10 m relief are most common at sites thus far investigated. Mound-building carbonates are mixed mineral phases of aragonite, Mg-calcite, and dolomite with Mg-calcite being the most common. Barite is another product that is precipitated from mineral-rich fluids that arrive at the seafloor in low-to-moderate seep rate settings. However, barite precipitation is not as pervasive as that of 13C-depleted carbonates. The Gulf's intermediate flux settings seem best exemplified by areas where gas hydrates occur at the seafloor or in the very shallow subsurface. Intermediate flux environments display considerable variability with regard to surficial geology and on a local scale have elements of both rapid and slow flux settings. However, the intermediate flux environments appear to have the unique set of conditions necessary to support and sustain densely populated communities of chemosynthetic organisms. Since most of these areas are associated with faulting at the edges of intraslope basins, surficial or shallow subsurface gas hydrates (accessible by piston coring) are oriented along these faults and not in broad areas characterized by distinct bottom simulating reflectors (BSRs) as is the case in many simpler geologic settings. These shallow gas hydrates are composed of a complex mixture of biogenic-thermogenic methane and other thermogenic gases. Slight variations in near-bottom water temperature resulting from a variety of natural oceanographic processes cause gas hydrate dissociation and out-gassing resulting in the degradation to disappearnace of surficial gas hydrate mounds.

  5. Failure of ESI Spectra to Represent Metal-Complex Solution Composition: A Study of Lanthanide-Carboxylate Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Luther W.; Campbell, James A.; Clark, Sue B.

    2014-01-21

    Electrospray ionization - mass spectrometry (ESI-MS) was used for the characterization of uranyl complexed to tributyl phosphate (TBP) and dibutyl phosphate (DBP). The stoichiometry of uranyl with TBP and DBP was determined, and the gas phase speciation was found to be dependent on the cone voltage applied to induce fragmentation on the gas phase complexes. To quantitatively compare the gas phase distribution of species to solution, apparent stability constants were calculated. With a cone voltage of 80V, the apparent stability constants for the complexes UO2(NO3)2•2TBP, UO2(NO3)2(H2O)•2TBP, and UO2(DBP)+ were determined. With a lower cone voltage applied, larger complexes were observedmore » and stability constants for the complexes UO2(NO3)2•3TBP and UO2(DBP)42- were determined.« less

  6. Tightly Coupled Mechanistic Study of Materials in the Extreme Space Environment

    DTIC Science & Technology

    2016-10-11

    to examine spacecraft contamination issues from the perspective of non- equilibrium gas dynamics (Levin), material response at the atomistic level...Space Environment Group has worked to examine spacecraft contamination issues from the perspective of non- equilibrium gas dynamics (Levin...material response at the atomistic level (Rajan), high fidelity gas -surface chemistry models (van Duin), and experiments to characterize and test

  7. MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha.

    PubMed

    Jones, Victor A S; Dolan, Liam

    2017-04-15

    The colonisation of the land by plants was accompanied by the evolution of complex tissues and multicellular structures comprising different cell types as morphological adaptations to the terrestrial environment. Here, we show that the single WIP protein in the early-diverging land plant Marchantia polymorpha L. is required for the development of the multicellular gas exchange structure: the air pore complex. This 16-cell barrel-shaped structure surrounds an opening between epidermal cells that facilitates the exchange of gases between the chamber containing the photosynthetic cells inside the plant and the air outside. Mp WIP is expressed in cells of the developing air pore complex and the morphogenesis of the complex is defective in plants with reduced Mp WIP function. The role of WIP proteins in the control of different multicellular structures in M. polymorpha and the flowering plant Arabidopsis thaliana suggests that these proteins controlled the development of multicellular structures in the common ancestor of land plants. We hypothesise that WIP genes were subsequently co-opted in the control of morphogenesis of novel multicellular structures that evolved during the diversification of land plants. © 2017. Published by The Company of Biologists Ltd.

  8. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1996-01-01

    A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

  9. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene sigma donates, and subsequent back-bonding occurs into a pi* antibonding orbital. This is a different type of interaction not seen in the three existing classes of metal-carbene complexes, namely Fischer, Schrock, and Grubbs. Finally, the virtual engineering of enhanced chemical warfare agent (CWA) detection systems is discussed. As part of a U.S. Department of Defense supported research project, in silico chemical modifications to a previously synthesized zinc-porphyrin, ZnCS1, were made to attempt to achieve preferential binding of the nerve agent sarin versus its simulant, DIMP (diisopropyl methylphosphonate). Upon modification, a combination of steric effects and induced hydrogen bonding allowed for the selective binding of sarin. The success of this work demonstrates the role that high performance computing can play in national security research, without the associated costs and high security required for experimentation.

  10. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  11. Environment control system

    DOEpatents

    Sammarone, Dino G.

    1978-01-01

    A system for controlling the environment of an enclosed area in nuclear reactor installations. The system permits the changing of the environment from nitrogen to air, or from air to nitrogen, without the release of any radioactivity or process gas to the outside atmosphere. In changing from a nitrogen to an air environment, oxygen is inserted into the enclosed area at the same rate which the nitrogen-oxygen gas mixture is removed from the enclosed area. The nitrogen-oxygen gas mixture removed from the enclosed area is mixed with hydrogen, the hydrogen recombining with the oxygen present in the gas to form water. The water is then removed from the system and, if it contains any radioactive products, can be utilized to form concrete, which can then be transferred to a licensed burial site. The process gas is purified further by stripping it of carbon dioxide and then distilling it to remove any xenon, krypton, and other fission or non-condensable gases. The pure nitrogen is stored as either a cryogenic liquid or a gas. In changing from an air to nitrogen environment, the gas is removed from the enclosed area, mixed with hydrogen to remove the oxygen present, dried, passed through adsorption beds to remove any fission gases, and reinserted into the enclosed area. Additionally, the nitrogen stored during the nitrogen to air change, is inserted into the enclosed area, the nitrogen from both sources being inserted into the enclosed area at the same rate as the removal of the gas from the containment area. As designed, the amount of nitrogen stored during the nitrogen to air change substantially equals that required to replace oxygen removed during an air to nitrogen change.

  12. Perfect gas effects in compressible rapid distortion theory

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Myers, M. R.

    1987-01-01

    The governing equations presented for small amplitude unsteady disturbances imposed on steady, compressible mean flows that are two-dimensional and nearly uniform have their basis in the perfect gas equations of state, and therefore generalize previous results based on tangent gas theory. While these equations are more complex, this complexity is required for adequate treatment of high frequency disturbances, especially when the base flow Mach number is large; under such circumstances, the simplifying assumptions of tangent gas theory are not applicable.

  13. Functional microporous materials of metal carboxylate: Gas-occlusion properties and catalytic activities

    NASA Astrophysics Data System (ADS)

    Mori, Wasuke; Sato, Tomohiko; Ohmura, Tesushi; Nozaki Kato, Chika; Takei, Tohru

    2005-08-01

    Copper(II) terephthalate is the first transition metal complex found capable of adsorbing gases. This complex has opened the new field of adsorbent complex chemistry. It is recognized as the lead complex in the construction of microporous complexes. This specific system has been expanded to a systematic series of derivatives of other isomorphous transition metals, molybdenum(II), ruthenium(II, III), and rhodium(II). These complexes with open frameworks are widely recognized as very useful materials for applications to catalysis, separation at molecular level, and gas storage.

  14. Can organic matter hide from decomposers in the labyrinth of soil aggregates? Micro-engineered Soil Chips challenging foraging fungi

    NASA Astrophysics Data System (ADS)

    Hammer, Edith C.; Aleklett, Kristin; Arellano Caicedo, Carlos G.; Bengtsson, Martin; Micaela Mafla Endara, Paola; Ohlsson, Pelle

    2017-04-01

    From the point of view of microorganisms, the soil environment is an enormously complex labyrinth with paths and dead-end streets, where resources and shelters are unevenly distributed. We study foraging strategies of soil organisms, especially fungi, and the possibility of physio-spatial stabilization of organic matter by "hiding" in occluded soil spaces. We manipulate growth habitat microstructure with lab-on-a-chip techniques, where we designed complex environments with channels and obstacle at dimensions of the size of hyphae, and construct them in the transparent, gas-permeable polymer PDMS. We fill those with different nutrient solutions or combine with mineral nutrient gradients, and inoculate them with soil organisms. We analyze organisms and substrates with microscopy, fluorescence microscopy and analytical chemistry. We compared different soil litter decomposers and an arbuscular mycorrhizal fungus for their ability to forage through complex air-gap structures and attempt to classify them into functional traits concerning their mycelium directionality, space-exploring approach and ability to grow through acute angles and narrow constrictions. We identified structures which are very difficult to penetrate for most species, and compounds located behind such features may thus be spatially unavailable for decomposers. We discuss our approach in comparison to soil pore space tomographic analyses and findings we made in the pore space of colonized wood biochar.

  15. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  16. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  17. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  18. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  19. 40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...

  20. Tendency towards maximum complexity in a nonequilibrium isolated system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calbet, Xavier; Lopez-Ruiz, Ricardo

    2001-06-01

    The time evolution equations of a simplified isolated ideal gas, the {open_quotes}tetrahedral{close_quotes} gas, are derived. The dynamical behavior of the Lopez-Ruiz{endash}Mancini{endash}Calbet complexity [R. Lopez-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A >209, 321 (1995)] is studied in this system. In general, it is shown that the complexity remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions when the isolated {open_quotes}tetrahedral{close_quotes} gas evolves towards equilibrium. In addition to the well-known increase in entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of the system in phase space approach themore » maximum complexity path as it evolves toward equilibrium.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.; Patchen, D.G.; Heald, M.

    Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less

  2. Close contacts at the interface: Experimental-computational synergies for solving complexity problems

    NASA Astrophysics Data System (ADS)

    Torras, Juan; Zanuy, David; Bertran, Oscar; Alemán, Carlos; Puiggalí, Jordi; Turón, Pau; Revilla-López, Guillem

    2018-02-01

    The study of material science has been long devoted to the disentanglement of bulk structures which mainly entails finding the inner structure of materials. That structure is accountable for a major portion of materials' properties. Yet, as our knowledge of these "backbones" enlarged so did the interest for the materials' boundaries properties which means the properties at the frontier with the surrounding environment that is called interface. The interface is thus to be understood as the sum of the material's surface plus the surrounding environment be it in solid, liquid or gas phase. The study of phenomena at this interface requires both the use of experimental and theoretical techniques and, above all, a wise combination of them in order to shed light over the most intimate details at atomic, molecular and mesostructure levels. Here, we report several cases to be used as proof of concept of the results achieved when studying interface phenomena by combining a myriad of experimental and theoretical tools to overcome the usual limitation regardind atomic detail, size and time scales and systems of complex composition. Real world examples of the combined experimental-theoretical work and new tools, software, is offered to the readers.

  3. H2-rich fluids from serpentinization: geochemical and biotic implications.

    PubMed

    Sleep, N H; Meibom, A; Fridriksson, Th; Coleman, R G; Bird, D K

    2004-08-31

    Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the serpentinite minerals are Fe-rich. Olivine with the current mantle Fe/Mg ratio was oxidized during serpentinization after the Moon-forming impact. This process formed some of the ferric iron in the Earth's mantle. For the rest of Earth's history, serpentinites covered only a small fraction of the Earth's surface but were an important prebiotic and biotic environment. Extant methanogens react H2 with CO2 to form methane. This is a likely habitable environment on large silicate planets. The catalytic properties of FeNi3 allow complex organic compounds to form within serpentinite and, when mixed with atmospherically produced complex organic matter and waters that circulated through basalts, constitutes an attractive prebiotic substrate. Conversely, inorganic catalysis of methane by FeNi3 competes with nascent and extant life. Copyright 2004 The National Academy of Sciencs of the USA

  4. Laboratory Formation of Fullerenes from PAHs: Top-down Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Zhen, Junfeng; Castellanos, Pablo; Paardekooper, Daniel M.; Linnartz, Harold; Tielens, Alexander G. G. M.

    2014-12-01

    Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some photodissociation regions, its abundance increases close to strong UV-sources. In this Letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large polycyclic aromatic hydrocarbons (PAHs). Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.

  5. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  6. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    PubMed

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-02

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking.

  7. Performance assessment and optimisation of a large information system by combined customer relationship management and resilience engineering: a mathematical programming approach

    NASA Astrophysics Data System (ADS)

    Azadeh, A.; Foroozan, H.; Ashjari, B.; Motevali Haghighi, S.; Yazdanparast, R.; Saberi, M.; Torki Nejad, M.

    2017-10-01

    ISs and ITs play a critical role in large complex gas corporations. Many factors such as human, organisational and environmental factors affect IS in an organisation. Therefore, investigating ISs success is considered to be a complex problem. Also, because of the competitive business environment and the high amount of information flow in organisations, new issues like resilient ISs and successful customer relationship management (CRM) have emerged. A resilient IS will provide sustainable delivery of information to internal and external customers. This paper presents an integrated approach to enhance and optimise the performance of each component of a large IS based on CRM and resilience engineering (RE) in a gas company. The enhancement of the performance can help ISs to perform business tasks efficiently. The data are collected from standard questionnaires. It is then analysed by data envelopment analysis by selecting the optimal mathematical programming approach. The selected model is validated and verified by principle component analysis method. Finally, CRM and RE factors are identified as influential factors through sensitivity analysis for this particular case study. To the best of our knowledge, this is the first study for performance assessment and optimisation of large IS by combined RE and CRM.

  8. Simulating the formation of carbon-rich molecules on an idealized graphitic surface

    NASA Astrophysics Data System (ADS)

    Marshall, David W.; Sadeghpour, H. R.

    2016-01-01

    There is accumulating evidence for the presence of complex molecules, including carbon-bearing and organic molecules, in the interstellar medium. Much of this evidence comes to us from studies of chemical composition, photo- and mass spectroscopy in cometary, meteoritic and asteroid samples, indicating a need to better understand the surface chemistry of astrophysical objects. There is also considerable interest in the origins of life-forming and life-sustaining molecules on the Earth. Here, we perform reactive molecular dynamics simulations to probe the formation of carbon-rich molecules and clusters on carbonaceous surfaces resembling dust grains and meteoroids. Our results show that large chains form on graphitic surfaces at low temperatures (100-500 K) and smaller fullerene-like molecules form at higher temperatures (2000-3000 K). The formation is faster on the surface than in the gas at low temperatures but slower at high temperatures as surface interactions prevent small clusters from coagulation. We find that for efficient formation of molecular complexity, mobility about the surface is important and helps to build larger carbon chains on the surface than in the gas phase at low temperatures. Finally, we show that the temperature of the surface strongly determines what kind of structures forms and that low turbulent environments are needed for efficient formation.

  9. The effect of accretion environment at large radius on hot accretion flows

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Hong; Bu, De-Fu

    2018-05-01

    We study the effects of accretion environment (gas density, temperature, and angular momentum) at large radii (˜10 pc) on luminosity of hot accretion flows. The radiative feedback effects from the accretion flow on the accretion environment are also self-consistently taken into account. We find that the slowly rotating flows at large radii can significantly deviate from Bondi accretion when radiation heating and cooling are considered. We further find that when the temperature of environment gas is low (e.g. T = 2 × 107 K), the luminosity of hot accretion flows is high. When the temperature of gas is high (e.g. T ≥ 4 × 107 K), the luminosity of hot accretion flow significantly deceases. The environment gas density can also significantly influence the luminosity of accretion flows. When density is higher than ˜4 × 10-22 g cm-3 and temperature is lower than 2 × 107 K, hot accretion flow with luminosity lower than 2 per cent LEdd is not present. Therefore, the parsec-scale environment density and temperature are two important parameters to determine the luminosity. The results are also useful for the subgrid models adopted by the cosmological simulations.

  10. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  11. Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides.

    PubMed

    Kondratiuk, Mykola; Blagaia, Anna; Pelo, Ihor

    2018-01-01

    Introduction: The quality of the air environment significantly affects the health of the population. Chemical plant protection products in the spring and summer time may be the main pollutants of the air environment in rural areas. Chemical plant protection products are dangerous substances of anthropogenic origin. If applying pesticides in high concentrations, the risk of poisoning by active ingredients of pesticide preparations in workers directly contacting with it increases. The aim: Comparative hygienic assessment of active ingredients content in the air environment after treatment of cereal spiked crops by combined fungicides was the aim of the work. Materials and methods: Active ingredients of the studied combined fungicides, samples of air, and swabs from workers' skin and stripes from overalls were materials of the research. Methods of full-scale in-field hygienic experiment, gas-liquid chromatography, high-performance liquid chromatography, as well as statistical and bibliographic methods were used in the research. Results and conclusions: Active ingredients of the studied combined fungicides were not detected in the working zone air and atmospheric air at the levels exceeding the limits of its detection by appropriate chromatography methods. Findings confirmed the air environment safety for agricultural workers and rural population if studied combined fungicides are applied following the hygienically approved suggested application rates and in accordance of good agricultural practice rules. However the possible complex risk for workers after certain studied fungicides application may be higher than acceptable due to the elevated values for dermal effects. The complex risk was higher than acceptable in еру case of aerial spraying of both studied fungicides, meanwhile only one combination of active ingredients revealed possible risk for workers applying fungicides by rod method of cereal spiked crops treatment.

  12. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    NASA Astrophysics Data System (ADS)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  13. Gas-Phase Molecular Structure of Nopinone and its Water Complexes Studied by Microwave Fourier Transform Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Neeman, Elias M.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2016-06-01

    Several monoterpenes and terpenoids are biogenic volatile organic compounds which are emitted in the atmosphere, where they react with OH, O_3 and NO_x etc. to give rise to several oxidation and degradation products. Their decomposition products are a major source of secondray organic aerosol (SOA). Spectroscopic information on these atmospheric species is still very scarce. The rotational spectrum of nopinone (C_9H14O) one of the major oxidation products of β-pinene, and of its water complexes were recorded in a supersonic jet expansion with a Fourier transform microwave spectrometer over the range 2-20 GHz. The structure of the unique stable conformer of the nopinone was optimized using density functional theory and ab initio calculations. Signals from the parent species and from the 13C and 18O isotopomers were observed in natural abundance. A magnetic hyperfine structure associated with the pairs of hydrogen nuclei in the methylene groups was observed and modeled. The structures of several conformers of the nopinone-water complexes with up to three molecules of water were optimized using density functional theory and ab initio calculations. The energetically most stable of calculated conformers were observed and anlyzed. The rotational and centrifugal distortion parameters were fitted to a Watson's Hamiltonian in the A-reduction. The present work provides the first spectroscopic characterization of nopinone and its water complexes in the gas phase. A. Calogirou, B.R. Larsen, and D. Kotzias, Atmospheric Environment, 33, 1423-1439, (1999) P. Paasonen et al., Nat. Geosci., 6, 438-442 (2013) D. Zhang and R. Zhang The Journal of Chemical Physics, 122, 114308, (2005) R. Winterhalter et al. Journal of Atmospheric Chemistry, 35, 165-197, (2000)

  14. The environmental impact of the Glostavent® anesthetic machine.

    PubMed

    Eltringham, Roger J; Neighbour, Robert C

    2015-06-01

    Because anesthetic machines have become more complex and more expensive, they have become less suitable for use in the many isolated hospitals in the poorest countries in the world. In these situations, they are frequently unable to function at all because of interruptions in the supply of oxygen or electricity and the absence of skilled technicians for maintenance and servicing. Despite these disadvantages, these machines are still delivered in large numbers, thereby expending precious resources without any benefit to patients. The Glostavent was introduced primarily to enable an anesthetic service to be delivered in these difficult circumstances. It is smaller and less complex than standard anesthetic machines and much less expensive to produce. It combines a drawover anesthetic system with an oxygen concentrator and a gas-driven ventilator. It greatly reduces the need for the purchase and transport of cylinders of compressed gases, reduces the impact on the environment, and enables considerable savings. Cylinder oxygen is expensive to produce and difficult to transport over long distances on poor roads. Consequently, the supply may run out. However, when using the Glostavent, oxygen is normally produced at a fraction of the cost of cylinders by the oxygen concentrator, which is an integral part of the Glostavent. This enables great savings in the purchase and transport cost of oxygen cylinders. If the electricity fails and the oxygen concentrator ceases to function, oxygen from a reserve cylinder automatically provides the pressure to drive the ventilator and oxygen for the breathing circuit. Consequently, economy is achieved because the ventilator has been designed to minimize the amount of driving gas required to one-seventh of the patient's tidal volume. Additional economies are achieved by completely eliminating spillage of oxygen from the breathing system and by recycling the driving gas into the breathing system to increase the Fraction of Inspired Oxygen (FIO2) at no extra cost. Savings also are accrued when using the drawover breathing system as the need for nitrous oxide, compressed air, and soda lime are eliminated. The Glostavent enables the administration of safe anesthesia to be continued when standard machines are unable to function and can do so with minimal harm to the environment.

  15. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio significantly increased after injecting He gas. We demonstrated that the analytical strategy was achieved improved sensitivity for the determination of various arsenic species in the landfill leachate as one of the complex matrices.

  16. A literature review and inventory of the effects of environment on the fatigue behavior of metals

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Seward, S. K.

    1976-01-01

    The current state of knowledge of the effects of gas environments (at atmospheric pressure and below) on the fatigue behavior of metals is reviewed. Among the topics considered are the mechanisms proposed to explain the differences observed in the fatigue behavior of vacuum- and air-tested specimens, the effects of environment on the surface topography of fatigue cycled specimens, the effect of environment on the various phases of the fatigue phenomenon, the effect of prolonged exposure to vacuum on fatigue life, the variation of fatigue life with decreasing gas pressure, and gas evolution during fatigue cycling. Analysis of the findings of this review indicates that hydrogen embrittlement is primarily responsible for decreased fatigue resistance in humid environments, and that dislocations move more easily during tests in vacuum than during test in air. It was found that fatigue cracks generally initiated and propagated more rapidly in air than in vacuum. Prolonged exposure to vacuum does not adversely affect fatigue resistance. The variation of fatigue life with decreasing gas pressure is sometimes stepped and sometimes continuous.

  17. Dynamics of Supercritical Flows

    DTIC Science & Technology

    2012-08-26

    to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA...Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA...Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA, Washington, DC, 11-14 Jan. 1999. 26Chehroudi

  18. Probing the chemical environments of early star formation: A multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Emily Elizabeth

    Chemical compositions of prestellar and protostellar environments in the dense interstellar medium are best quantified using a multidisciplinary approach. For my dissertation, I completed two projects to measure molecular abundances during the earliest phases of star formation. The first project investigates gas phase CO depletion in molecular cloud cores, the progenitors of star systems, using infrared photometry and molecular line spectroscopy at radio wavelengths. Hydrogenation of CO depleted onto dust is an important first step toward building complex organic molecules. The second project constrains polycyclic aromatic hydrocarbon (PAH) abundances toward young stellar objects (YSO). Band strengths measured from laboratory spectroscopy of pyrene/water ice mixtures were applied to estimate abundances from features attributed to PAHs in observational YSO spectra. PAHs represent a distinct but important component of interstellar organic material that is widely observed but not well quantified in star-forming regions.

  19. Significance of independent radon entry rate and air exchange rate assessment for the purpose of radon mitigation effectiveness proper evaluation: case studies.

    PubMed

    Froňka, A; Jílek, K; Moučka, L; Brabec, M

    2011-05-01

    Two new single-family houses identified as insufficient with regard to existing radon barrier efficiency, have been selected for further examination. A complex set of radon diagnosis procedures has been applied in order to localise and quantify radon entry pathways into the indoor environment. Independent assessment of radon entry rate and air exchange rate has been carried out using the continuous indoor radon measurement and a specific tracer gas application. Simultaneous assessment of these key determining factors has turned out to be absolutely crucial in the context of major cause identification of elevated indoor radon concentration.

  20. Analysis of a fuel cell on-site integrated energy system for a residential complex

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    Declining supplies of domestic oil and gas and the increased cost of energy resulted in a renewed emphasis in utilizing available resources in the most efficient manner possible. This, in turn, brought about a reassessment of a number of methods for converting fossil fuels to end uses at the highest practical efficiency. One of these is the on-site integrated energy system (OS/IES). This system provides electric power from an on-site power plant and recovers heat from the power plant that would normally be rejected to the environment. An OS/IES is potentially useful in any application that requires both electricity and heat. Several OS/IES are analyzed for a residential complex. The paper is divided into two sections; the first compares three energy supply systems, the second compares various designs for fuel cell OS/IES.

  1. Molecular processes from the AGB to the PN stage

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. Anibal

    2012-08-01

    Many complex organic molecules and inorganic solid-state compounds have been observed in the circumstellar shell of stars (both C-rich and O-rich) in the transition phase between Asymptotic Giant Branch (AGB) stars and Planetary Nebulae (PNe). This short (~102-104 years) phase of stellar evolution represents a wonderful laboratory for astrochemistry and provides severe constraints on any model of gas-phase and solid-state chemistry. One of the major challenges of present day astrophysics and astrochemistry is to understand the formation pathways of these complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene in the case of a C-rich chemistry and oxides and crystalline silicates in O-rich environments) in space. In this review, I present an observational review of the molecular processes in the late stages of stellar evolution with a special emphasis on the first detections of fullerenes and graphene in PNe.

  2. Heated-Atmosphere Airship for the Titan Environment: Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Heller, R. S.; Landis, G. A.; Hepp, A. F.; Colozza, A. J.

    2012-01-01

    Future exploration of Saturn's moon Titan can be carried out by airships. Several lighter-than-atmosphere gas airships and passive drifting heated-atmosphere balloon designs have been studied, but a heated-atmosphere airship could combine the best characteristics of both. This work analyses the thermal design of such a heated-atmosphere vehicle, and compares the result with a lighter-than-atmosphere (hydrogen) airship design. A design tool was created to enable iteration through different design parameters of a heated-atmosphere airship (diameter, number of layers, and insulating gas pocket thicknesses) and evaluate the feasibility of the resulting airship. A baseline heated-atmosphere airship was designed to have a diameter of 6 m (outer diameter of 6.2 m), three-layers of material, and an insulating gas pocket thickness of 0.05 m between each layer. The heated-atmosphere airship has a mass of 161.9 kg. A similar mission making use of a hydrogen-filled airship would require a diameter of 4.3 m and a mass of about 200 kg. For a long-duration mission, the heated-atmosphere airship appears better suited. However, for a mission lifetime under 180 days, the less complex hydrogen airship would likely be a better option.

  3. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.

    PubMed

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-02-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.

  4. Efficiency Evaluation of Handling of Geologic-Geophysical Information by Means of Computer Systems

    NASA Astrophysics Data System (ADS)

    Nuriyahmetova, S. M.; Demyanova, O. V.; Zabirova, L. M.; Gataullin, I. I.; Fathutdinova, O. A.; Kaptelinina, E. A.

    2018-05-01

    Development of oil and gas resources, considering difficult geological, geographical and economic conditions, requires considerable finance costs; therefore their careful reasons, application of the most perspective directions and modern technologies from the point of view of cost efficiency of planned activities are necessary. For ensuring high precision of regional and local forecasts and modeling of reservoirs of fields of hydrocarbonic raw materials, it is necessary to analyze huge arrays of the distributed information which is constantly changing spatial. The solution of this task requires application of modern remote methods of a research of the perspective oil-and-gas territories, complex use of materials remote, nondestructive the environment of geologic-geophysical and space methods of sounding of Earth and the most perfect technologies of their handling. In the article, the authors considered experience of handling of geologic-geophysical information by means of computer systems by the Russian and foreign companies. Conclusions that the multidimensional analysis of geologicgeophysical information space, effective planning and monitoring of exploration works requires broad use of geoinformation technologies as one of the most perspective directions in achievement of high profitability of an oil and gas industry are drawn.

  5. Low-pressure clathrate-hydrate formation in amorphous astrophysical ice analogs

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Allamandola, L. J.; Sandford, S.; Hudgins, D.; Freund, F.

    1991-01-01

    In modeling cometary ice, the properties of clathrate hydrates were used to explain anomalous gas release at large radial distances from the Sun, and the retention of particular gas inventories at elevated temperatures. Clathrates may also have been important early in solar system history. However, there has never been a reasonable mechanism proposed for clathrate formation under the low pressures typical of these environments. For the first time, it was shown that clathrate hydrates can be formed by warming and annealing amorphous mixed molecular ices at low pressures. The complex microstructures which occur as a result of clathrate formation from the solid state may provide an explanation for a variety of unexplained phenomena. The vacuum and imaging systems of an Hitachi H-500H Analytical Electron Microscope was modified to study mixed molecular ices at temperatures between 12 and 373 K. The resulting ices are characterized by low-electron dose Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED). The implications of these results for the mechanical and gas release properties of comets are discussed. Laboratory IR data from similar ices are presented which suggest the possibility of remotely observing and identifying clathrates in astrophysical objects.

  6. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport

    PubMed Central

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-01-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores’ deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles. PMID:29487906

  7. A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1997-01-01

    This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.

  8. Gas-liquid two-phase flow behaviors and performance characteristics of proton exchange membrane fuel cells in a short-term microgravity environment

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang

    2017-06-01

    In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.

  9. ESI-MS of Cucurbituril Complexes Under Negative Polarity.

    PubMed

    Rodrigues, Maria A A; Mendes, Débora C; Ramamurthy, Vaidhyanathan; Da Silva, José P

    2017-11-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to study host-guest supramolecular interactions. ESI-MS can be used for detailed gas-phase reactivity studies, to clarify the structure, or simply to verify the formation of complexes. Depending on the structure of the host and of the guest, negative and/or positive ESI are used. Here we report the unexpected formation of host-guest complexes between cucurbit[n]urils (n = 7, 8, CB[n]) and amine, styryl pyridine, and styryl pyridine dimer cations, under negative ESI. Non-complexed CB[n] form double charged halide (Br - , Cl - , F - ) adducts. Under negative ESI, halide ions interact with CB[n] outer surface hydrogen atoms. One to one host-guest complexes (1:1) of CB[n] with positive charged guests were also observed as single and double charged ions under negative ESI. The positive charge of guests is neutralized by ion-pairing with halide anions. Depending on the number of positive charges guests retain in the gas phase, one or two additional halide ions are required for neutralization. Complexes 1:2 of CB[8] with styryl pyridines retain two halide ions in the gas phase, one per guest. Styryl pyridine dimers form 1:1 complexes possessing a single extra halide ion and therefore a single positive charge. Negative ESI is sensitive to small structural differences between complexes, distinguishing between 1:2 complexes of styryl pyridine-CB[8] and corresponding 1:1 complexes with the dimer. Negative ESI gives simpler spectra than positive ESI and allows the determination of guest charge state of CB[n] complexes in the gas phase. Graphical Abstract ᅟ.

  10. High resolution wetland mapping in West Siberian taiga zone for methane emission inventory

    NASA Astrophysics Data System (ADS)

    Terentieva, I. E.; Glagolev, M. V.; Lapshina, E. D.; Sabrekov, A. F.; Maksyutov, S. S.

    2015-12-01

    High latitude wetlands are important for understanding climate change risks because these environments sink carbon and emit methane. Fine scale heterogeneity of wetland landscapes pose challenges for producing the greenhouse gas flux inventories based on point observations. To reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of West Siberia on a scene-by-scene basis using a supervised classification of Landsat imagery. The training dataset was based on high-resolution images and field data that were collected at 28 test areas. Classification scheme was aimed at methane inventory applications and included 7 wetland ecosystem types composing 9 wetland complexes in different proportions. Accuracy assessment based on 1082 validation polygons of 10 × 10 pixels indicated an overall map accuracy of 79 %. The total area of the wetlands and water bodies was estimated to be 52.4 Mha or 4-12 % of the global wetland area. Ridge-hollow complexes prevail in WS's taiga, occupying 33 % of the domain, followed by forested bogs or "ryams" (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among the wetland ecosystems, while fens cover only 14 % of the area. Because of the significant update in the wetland ecosystem coverage, a considerable revaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WS's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland datasets in high latitudes.

  11. SELMA mission: revealing the origin of lunar water

    NASA Astrophysics Data System (ADS)

    Barabash, Stas; Selma Team

    2013-04-01

    We propose a very low cost lunar mission to cover a poorly investigated inter-disciplinary area in the lunar science. The mission SELMA (Surface, Environment, and Lunar Magnetic Anomalies) investigates the interaction of the neutral and plasma environment with the lunar surface and the impact of this interaction on the surface composition, in the first hand, on the presence of water. The mission focuses on the fundamental question: What is the origin of the water in the lunar soil? The mission also addresses the questions: What are the lunar exosphere content and composition and how does the exosphere interact with the surface? How do the lunar magnetic anomalies interact with the solar wind and affect the surface? SELMA investigates the origin of the water in the lunar soil via simultaneous measurements of the OH/H2O abundance in the soil, the proton flux deposited to the surface, and transient changes in the exospheric gas content and composition. The water content in the surface is mapped via measurements of the 2700 - 3300 nm OH/H2O/ice absorption lines. The proton flux at the surface is measured remotely via backscattered hydrogen flux (energetic neutral atoms, ENAs). The exospheric gas content and composition and possible transient changes due to micrometeoroid influx or outgassing are monitored by a neutral gas mass spectrometer. Little is known about the tenuous lunar exosphere, its composition, structure, and relation to the plasma environment. The reasons for the present poor knowledge of the lunar exosphere is the difficulty of observations due to the low number densities, and the complexity of models due to the multiplicity of the mechanisms responsible for the input and loss of exospheric species. To investigate the lunar exosphere SELMA is equipped with state-of-the-art time-of-flight neutral gas mass spectrometer with unprecedented sensitivity and mass resolution. The Moon does not have a global magnetic field but possesses local magnetizations. The magnetizations interact with the solar wind plasma creating highly variable mini-magnetospheres affecting, through an as yet unknown mechanism, the surface visible albedo. The electrodynamical interaction is very complex being one of the fundamental solar wind interactions in the solar system. SELMA studies how the magnetic anomaly interact with the solar wind and surface via simultaneous measurements of 3D ion and electron distribution functions, the local magnetic field, solar wind flux variations on the surface through ENA imaging of the backscattered hydrogen flux, imaging in the visible range, and measuring the surface IR spectrum. The SELMA results will be of critical importance for the interpretation of data from Mercury to be collected by the ESA BepiColombo mission in 2020 - 2022. To address its scientific objectives SELMA carries a highly focused suite of instruments including an IR spectrometer, an ENA telescope, an ion and electron spectrometer, a neutral gas mass spectrometer, a magnetometer, and a visible camera. SELMA is a spinning platform to be inserted on a low maintenance quasi-frozen polar orbit of 30 km x 216 km by a dedicated launch and a solid state fuel kick stage. SELMA was proposed to ESA as a candidate for the S-class mission.

  12. Urban Typologies: Towards an ORNL Urban Information System (UrbIS)

    NASA Astrophysics Data System (ADS)

    KC, B.; King, A. W.; Sorokine, A.; Crow, M. C.; Devarakonda, R.; Hilbert, N. L.; Karthik, R.; Patlolla, D.; Surendran Nair, S.

    2016-12-01

    Urban environments differ in a large number of key attributes; these include infrastructure, morphology, demography, and economic and social variables, among others. These attributes determine many urban properties such as energy and water consumption, greenhouse gas emissions, air quality, public health, sustainability, and vulnerability and resilience to climate change. Characterization of urban environments by a single property such as population size does not sufficiently capture this complexity. In addressing this multivariate complexity one typically faces such problems as disparate and scattered data, challenges of big data management, spatial searching, insufficient computational capacity for data-driven analysis and modelling, and the lack of tools to quickly visualize the data and compare the analytical results across different cities and regions. We have begun the development of an Urban Information System (UrbIS) to address these issues, one that embraces the multivariate "big data" of urban areas and their environments across the United States utilizing the Big Data as a Service (BDaaS) concept. With technological roots in High-performance Computing (HPC), BDaaS is based on the idea of outsourcing computations to different computing paradigms, scalable to super-computers. UrbIS aims to incorporate federated metadata search, integrated modeling and analysis, and geovisualization into a single seamless workflow. The system includes web-based 2D/3D visualization with an iGlobe interface, fast cloud-based and server-side data processing and analysis, and a metadata search engine based on the Mercury data search system developed at Oak Ridge National Laboratory (ORNL). Results of analyses will be made available through web services. We are implementing UrbIS in ORNL's Compute and Data Environment for Science (CADES) and are leveraging ORNL experience in complex data and geospatial projects. The development of UrbIS is being guided by an investigation of urban heat islands (UHI) using high-dimensional clustering and statistics to define urban typologies (types of cities) in an investigation of how UHI vary with urban type across the United States.

  13. Laboratory Simulation of Frozen Methanol Under X-ray Radiation Field: Relevancies to Astrophysical Ices

    NASA Astrophysics Data System (ADS)

    Andrade, Diana; Rocco, Maria Luiza M.; Boechat-Roberty, Heloisa Maria

    The origin of complex organic molecules detected in comets, meteorites, star-forming regions and other environments are currently subject of discussion. Depending on the environment, it is dominated by X-rays, UV photons as well as by charged particles, electrons and ions with high or low energies. Every particle will promote a different fragmentation in the molecule and different phenomena in the ice, favoring the formation of an ion species rather than another. To predict the chemical evolution and to quantify the complex organics incorporated into grains or desorbed to the gas phase, it is necessary to establish the main formation route, which can be tested in the laboratories. In this way, the study of the effects of different ionization agents on the ices becomes crucial. Methanol (CH3 OH), the simplest organic alcohol, is an important precursor of more complex prebiotic species and is found abundantly in icy mantles on interstellar and protostellar dust grains. This molecule has been detected through infrared spectroscopy in some astrophysics environments as W33A and RAFGL 7009. Additionally, methanol has been found in comets, as Hale-Bopp, and other solar system bodies, such as the centaur 5145 Pholus. All of these astronomical environments are subjected to some form of ionizing agents such as cosmic rays, electrons and photons (e.g. stellar radiation field). In this work, synchrotron radiation from the Brazilian Synchrotron Light Laboratory at the O 1s-edge was employed to perform desorption experiments on the frozen methanol. The desorp-tion rates (desorbed ion per incident photon) of the most intense ions desorbed from methanol due soft X-ray bombardment are estimated. The desorption rates are critical parameters for modeling the chemistry of interstellar clouds. Moreover, a comparison among our results and literature using different ionization agents and different phases (photons at 292 eV and elec-trons at 70 eV in gaseous phase and heavy ions around 65 MeV on methanol ice) is given and discussed.

  14. Revealing the origin of the cold ISM in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Alatalo, K.; Bureau, M.; Young, L.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; Duc, P.-A.; de Zeeuw, P. T.; Emsellem, E.; Falcon-Barroso, J.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.

    2013-07-01

    Recently, massive early-type galaxies have shed their red-and-dead moniker, thanks to the discovery that many host residual star formation. As part of the ATLAS-3D project, we have conducted a complete, volume-limited survey of the molecular gas in 260 local early-type galaxies with the IRAM-30m telescope and the CARMA interferometer, in an attempt to understand the fuel powering this star formation. We find that around 22% of early-type galaxies in the local volume host molecular gas reservoirs. This detection rate is independent of galaxy luminosity and environment. Here we focus on how kinematic misalignment measurements and gas-to-dust ratios can be used to put constraints on the origin of the cold ISM in these systems. The origin of the cold ISM seems to depend strongly on environment, with misaligned, dust poor gas (indicative of externally acquired material) being common in the field but completely absent in rich groups and in the Virgo cluster. Very massive galaxies also appear to be devoid of accreted gas. This suggests that in the field mergers and/or cold gas accretion dominate the gas supply, while in clusters internal secular processes become more important. This implies that environment has a strong impact on the cold gas properties of ETGs.

  15. Theoretical description of protein field effects on electronic excitations of biological chromophores.

    PubMed

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-11

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.

  16. Theoretical description of protein field effects on electronic excitations of biological chromophores

    NASA Astrophysics Data System (ADS)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.

  17. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements...

  18. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements...

  19. 40 CFR 1065.267 - Gas chromatograph with a flame ionization detector.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gas chromatograph with a flame ionization detector. 1065.267 Section 1065.267 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Hydrocarbon Measurements...

  20. Gas chromatography in space

    NASA Technical Reports Server (NTRS)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  1. Quantifying Hydrate Formation in Gas-rich Environments Using the Method of Characteristics

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.; DiCarlo, D. A.

    2015-12-01

    Methane hydrates hold a vast amount of methane globally, and have huge energy potential. Methane hydrates in gas-rich environments are the most promising production targets. We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation in such environments (Figure 1). Our solution shows that hydrate saturation is constant with time and space in a homogeneous system. Hydrate saturation is controlled by the initial thermodynamic condition of the system, and changed by the gas fractional flow. Hydrate saturation increases with the initial distance from the hydrate phase boundary. Different gas fractional flows behind the hydrate solidification front lead to different gas saturations at the hydrate solidification front. The higher the gas saturation at the front, the less the volume available to be filled by hydrate, and hence the lower the hydrate saturation. The gas fractional flow depends on the relative permeability curves, and the forces that drive the flow. Viscous forces (the drive for flow induced from liquid pressure gradient) dominate the flow, and hydrate saturation is independent on the gas supply rates and the flow directions at high gas supply rates. Hydrate saturation can be estimated as one minus the ratio of the initial to equilibrium salinity. Gravity forces (the drive for flow induced from the gravity) dominate the flow, and hydrate saturation depends on the flow rates and the flow directions at low gas supply rates. Hydrate saturation is highest for upward flow, and lowest for downward flow. Hydrate saturation decreases with the flow rate for upward flow, and increases with the flow rate for downward flow. This analytical solution illuminates how hydrate is formed by gas (methane, CO2, ethane, propane) flowing into brine-saturated sediments at both the laboratory and geological scales (Figure 1). It provides an approach to generalize the understanding of hydrate solidification in gas-rich environments, although complicated numerical models have been developed previously. Examples of gas expulsion into hydrate stability zones and the associated hydrate formation in both laboratory and geological scales, and CO2 sequestration into CO2-hydrates near the seafloor and under the permafrost will be presented.

  2. Scales of Star Formation: Does Local Environment Matter?

    NASA Astrophysics Data System (ADS)

    Bittle, Lauren

    2018-01-01

    I will present my work on measuring molecular gas properties in local universe galaxies to assess the impact of local environment on the gas and thus star formation. I will also discuss the gas properties on spatial scales that span an order of magnitude to best understand the layers of star formation processes. Local environments within these galaxies include external mechanisms from starburst supernova shells, spiral arm structure, and superstar cluster radiation. Observations of CO giant molecular clouds (GMC) of ~150pc resolution in IC 10, the Local Group dwarf starburst, probe the large-scale diffuse gas, some of which are near supernova bubble ridges. We mapped CO clouds across the spiral NGC 7793 at intermediate scales of ~20pc resolution with ALMA. With the clouds, we can test theories of cloud formation and destruction in relation to the spiral arm pattern and cluster population from the HST LEGUS analysis. Addressing the smallest scales, I will show results of 30 Doradus ALMA observations of sub-parsec dense molecular gas clumps only 15pc away from a superstar cluster R136. Though star formation occurs directly from the collapse of densest molecular gas, we test theories of scale-free star formation, which suggests a constant slope of the mass function from ~150pc GMCs to sub-parsec clumps. Probing environments including starburst supernova shells, spiral arm structure, and superstar cluster radiation shed light on how these local external mechanisms affect the molecular gas at various scales of star formation.

  3. Similar Scaling Relations for the Gas Content of Galaxies Across Environments to z ∼ 3.5

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Scoville, Nick Z.; Martin, Christopher; Mobasher, Bahram; Diaz-Santos, Tanio; Shen, Lu

    2018-06-01

    We study the effects of the local environment on the molecular gas content of a large sample of log(M */M ⊙) ≳ 10 star-forming and starburst galaxies with specific star formation rates (sSFRs) on and above the main sequence (MS) to z ∼ 3.5. ALMA observations of the dust continuum in the COSMOS field are used to estimate molecular gas masses at z ≈ 0.5–3.5. We also use a local universe sample from the ALFALFA H I survey after converting it into molecular masses. The molecular mass (M ISM) scaling relation shows a dependence on z, M *, and sSFR relative to the MS, but no dependence on environmental overdensity Δ(M ISM ∝ Δ0.03). Similarly, gas mass fraction (f gas) and depletion timescale (τ) show no environmental dependence to z ∼ 3.5. At < z> ∼ 1.8, the average < {M}ISM}> , < {f}gas}> , and < τ > in densest regions is (1.6 ± 0.2) × 1011 M ⊙, 55 ± 2%, and 0.8 ± 0.1 Gyr, respectively, similar to those in the lowest density bin. Independent of the environment, f gas decreases and τ increases with increasing cosmic time. Cosmic molecular mass density (ρ) in the lowest density bins peaks at z ∼ 1–2, and this peak happens at z < 1 in densest bins. This differential evolution of ρ across environments is likely due to the growth of the large-scale structure with cosmic time. Our results suggest that the molecular gas content and the subsequent star formation activity of log(M */M ⊙) ≳ 10 star-forming and starburst galaxies is primarily driven by internal processes, and not by their local environment since z ∼ 3.5.

  4. High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network

    PubMed Central

    Yavari, Fazel; Chen, Zongping; Thomas, Abhay V.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2011-01-01

    Nanostructures are known to be exquisitely sensitive to the chemical environment and offer ultra-high sensitivity for gas-sensing. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. By contrast, conventional solid-state and conducting-polymer sensors offer excellent reliability but suffer from reduced sensitivity at room-temperature. Here we report a macro graphene foam-like three-dimensional network which combines the best of both worlds. The walls of the foam are comprised of few-layer graphene sheets resulting in high sensitivity; we demonstrate parts-per-million level detection of NH3 and NO2 in air at room-temperature. Further, the foam is a mechanically robust and flexible macro-scale network that is easy to contact (without Lithography) and can rival the durability and affordability of traditional sensors. Moreover, Joule-heating expels chemisorbed molecules from the foam's surface leading to fully-reversible and low-power operation. PMID:22355681

  5. Preliminary Analysis of Pyrite Reactivity Under Venusian Temperature and Atmosphere

    NASA Technical Reports Server (NTRS)

    Radoman-Shaw, B. G.; Harvey, R. P.; Jacobson, N. S.; Costa, G. C. C.

    2015-01-01

    Measurements of Venus surface chemistry suggest a basaltic composition with a predominantly CO2 atmosphere. In order to understand the reactivity of certain possible mineral species on the surface, previous simulation chambers conduct experiments at 1 atmosphere with a simplified CO2 atmosphere. Following this procedure, pyrite (FeS2) samples are used to estimate the reactivity of sulfide minerals under a Venusian atmosphere and climate. Sulfurous gas species have been identified and quantified in the Venusian atmosphere, and sulfurous gas and mineral species are known to be created through volcanism, which is suggested to still occur on the surface of Venus. This experimentation is necessary to constrain reactions that could occur between the surface and atmosphere of Venus to understand terrestrial geology in a thick and hot greenhouse atmosphere. Quantifying this reaction can lead to approximations necessary for further experimentation in more complex environments such as those in the GEER chamber at Glenn Research Center that can simulate pressure along with temperature and a more inclusive and representative Venusian atmosphere.

  6. Advanced online control mode selection for gas turbine aircraft engines

    NASA Astrophysics Data System (ADS)

    Wiseman, Matthew William

    The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.

  7. Massive Stars and the Energy Balance of the Interstellar Medium. 1; The Impact of an Isolated 60 M. Star

    NASA Technical Reports Server (NTRS)

    Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.

    2003-01-01

    We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.

  8. Biogeochemical interactions between of coal mine water and gas well cement

    NASA Astrophysics Data System (ADS)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  9. Carbon sequestration potential of coastal wetland soils of Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Fuentes-Romero, Elisabeth; García-Calderón, Norma Eugenia; Ikkonen, Elena; García-Varela, Kl

    2014-05-01

    Tropical coastal wetlands, including rainforests and mangrove ecosystems play an increasingly important ecological and economic role in the tropical coastal area of the State of Veracruz /Mexico. However, soil processes in these environments, especially C-turnover rates are largely unknown until today. Therefore, we investigated CO2 and CH4 emissions together with gains and losses of organic C in the soils of two different coastal ecosystems in the "Natural Protected Area Cienaga del Fuerte (NPACF)" near Tecolutla, in the State of Veracruz. The research areas were an artificially introduced grassland (IG) and a wetland rainforest (WRF). The gas emissions from the soil surfaces were measured by a static chamber array, the soil organic C was analysed in soil profiles distributed in the two areas, humic substances were characterized and C budget was calculated. The soils in both areas acted as carbon sinks, but the soils of the WRF sequestered more C than those of the IG, which showed a higher gas emission rate and produced more dissolved organic carbon. The gas emission measurements during the dry and the rainy seasons allowed for estimating the possible influence of global warming on gas fluxes from the soils of the two different ecological systems, which show in the WRF a quite complex spatial emission pattern during the rainy season in contrast to a more continuous emission pattern in the IG plots

  10. Supramolecular reactivity in the gas phase: investigating the intrinsic properties of non-covalent complexes.

    PubMed

    Cera, Luca; Schalley, Christoph A

    2014-03-21

    The high vacuum inside a mass spectrometer offers unique conditions to broaden our view on the reactivity of supramolecules. Because dynamic exchange processes between complexes are efficiently suppressed, the intrinsic and intramolecular reactivity of the complexes of interest is observed. Besides this, the significantly higher strength of non-covalent interactions in the absence of competing solvent allows processes to occur that are unable to compete in solution. The present review highlights a series of examples illustrating different aspects of supramolecular gas-phase reactivity ranging from the dissociation and formation of covalent bonds in non-covalent complexes through the reactivity in the restricted inner phase of container molecules and step-by-step mechanistic studies of organocatalytic reaction cycles to cage contraction reactions, processes induced by electron capture, and finally dynamic molecular motion within non-covalent complexes as unravelled by hydrogen-deuterium exchange processes performed in the gas phase.

  11. Gas Turbines for the Production of Electrical and Thermal Energy,

    DTIC Science & Technology

    1983-01-28

    location 1 (in the position circle) and exhaust of the smoke gases from the gas turbines at position 4. The thermodynamic level of the operation is... combustion turbines, in which the working substance (air - exhaust gases) is continu- ously renewed, or the fresh working substance (air) is sucked out... of the environment and the exhausted working substance (the exhaust gases) is emitted into the environment; 4 3 7.. 7.7:7 -closed-cycle gas turbines

  12. 40 CFR 65.111 - Standards: Pressure relief devices in gas/vapor service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 65.111 Section 65.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.111 Standards...

  13. 40 CFR 98.231 - Reporting threshold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Reporting threshold. 98.231 Section 98.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.231 Reporting threshold. (a) You must report GHG emissions under this...

  14. 40 CFR 98.121 - Reporting threshold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Reporting threshold. 98.121 Section 98.121 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Fluorinated Gas Production § 98.121 Reporting threshold. You must report GHG emissions under this subpart if your...

  15. 40 CFR 98.231 - Reporting threshold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Reporting threshold. 98.231 Section 98.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.231 Reporting threshold. (a) You must report GHG emissions under this...

  16. 40 CFR 98.231 - Reporting threshold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Reporting threshold. 98.231 Section 98.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.231 Reporting threshold. (a) You must report GHG emissions under this...

  17. 40 CFR 98.121 - Reporting threshold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Reporting threshold. 98.121 Section 98.121 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Fluorinated Gas Production § 98.121 Reporting threshold. You must report GHG emissions under this subpart if your...

  18. 40 CFR 98.121 - Reporting threshold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Reporting threshold. 98.121 Section 98.121 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Fluorinated Gas Production § 98.121 Reporting threshold. You must report GHG emissions under this subpart if your...

  19. Identification of Guest-Host Inclusion Complexes in the Gas Phase by Electrospray Ionization-Mass Spectrometry

    ERIC Educational Resources Information Center

    Mendes, De´bora C.; Ramamurthy, Vaidhyanathan; Da Silva, Jose´ P.

    2015-01-01

    In this laboratory experiment, students follow a step-by-step procedure to prepare and study guest-host complexes in the gas phase using electrospray ionization-mass spectrometry (ESI-MS). Model systems are the complexes of hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) with the guest 4-styrylpyridine (SP). Aqueous solutions of CB7 or CB8…

  20. Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Griffith, David W. T.; Pöhler, Denis; Schmitt, Stefan; Hammer, Samuel; Vardag, Sanam N.; Platt, Ulrich

    2018-03-01

    In complex and urban environments, atmospheric trace gas composition is highly variable in time and space. Point measurement techniques for trace gases with in situ instruments are well established and accurate, but do not provide spatial averaging to compare against developing high-resolution atmospheric models of composition and meteorology with resolutions of the order of a kilometre. Open-path measurement techniques provide path average concentrations and spatial averaging which, if sufficiently accurate, may be better suited to assessment and interpretation with such models. Open-path Fourier transform spectroscopy (FTS) in the mid-infrared region, and differential optical absorption spectroscopy (DOAS) in the UV and visible, have been used for many years for open-path spectroscopic measurements of selected species in both clean air and in polluted environments. Near infrared instrumentation allows measurements over longer paths than mid-infrared FTS for species such as greenhouse gases which are not easily accessible to DOAS.In this pilot study we present the first open-path near-infrared (4000-10 000 cm-1, 1.0-2.5 µm) FTS measurements of CO2, CH4, O2, H2O and HDO over a 1.5 km path in urban Heidelberg, Germany. We describe the construction of the open-path FTS system, the analysis of the collected spectra, several measures of precision and accuracy of the measurements, and the results a four-month trial measurement period in July-November 2014. The open-path measurements are compared to calibrated in situ measurements made at one end of the open path. We observe significant differences of the order of a few ppm for CO2 and a few tens of ppb for CH4 between the open-path and point measurements which are 2 to 4 times the measurement repeatability, but we cannot unequivocally assign the differences to specific local sources or sinks. We conclude that open-path FTS may provide a valuable new tool for investigations of atmospheric trace gas composition in complex, small-scale environments such as cities.

  1. Advanced instrumental methods for analyzing organics in solid waste: The use of gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR) and supercritical fluid chromatography (SFC) for waste characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raphaelian, L.A.; Boparai, A.S.; Schneider, J.F.

    1987-01-01

    Objectives of this research project were: (1) to enhance the capabilities of analyzing the complex mixtures found in coal wastes by using gas chromatography/matrix isolation infrared spectroscopy (GC/MIIR); (2) to separate, by supercritical fluid chromatography (SFC), the complex mixtures found in coal wastes into a few, less-complex mixtures so that analysis by gas chromatography (GC/MS) and GC/MIIR would be simplified. Preliminary results are presented for the mass spectra and infrared spectra of xylene isomers, gas chromatogram of 12 C/sub 2/-Napthalenes, averaged IR spectrum and a comparison of matrix isolation with light-pipe infrared spectra. A SFC chromatogram of polynuclear aromatic hydrocarbonsmore » is also presented. 2 refs., 5 figs.« less

  2. The MUSE view of QSO PG 1307+085: an elliptical galaxy on the MBH-σ* relation interacting with its group environment

    NASA Astrophysics Data System (ADS)

    Husemann, B.; Bennert, V. N.; Scharwächter, J.; Woo, J.-H.; Choudhury, O. S.

    2016-01-01

    We report deep optical integral-field spectroscopy with the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope of the luminous radio-quiet quasi-stellar object (QSO) PG 1307+085 obtained during commissioning. Given the high sensitivity and spatial resolution delivered by MUSE, we are able to resolve the compact (re ˜ 1.3 arcsec) elliptical host galaxy. After spectroscopic deblending of the QSO and host galaxy emission, we infer a stellar velocity dispersion of σ* = 155 ± 19 km s-1. This places PG 1307+085 on the local MBH-σ* relation within its intrinsic scatter but offset towards a higher black hole mass with respect to the mean relation. The MUSE observations reveal a large extended narrow-line region (ENLR) around PG 1307+085 reaching out to ˜30 kpc. In addition, we detect a faint ionized gas bridge towards the most massive galaxy of the galaxy group at 50 kpc distance. The ionized gas kinematics does not show any evidence for gas outflows on kpc scales despite the high QSO luminosity of Lbol > 1046 erg s-1. Based on the ionized gas distribution, kinematics and metallicity we discuss the origin of the ENLR with respect to its group environments including minor mergers, ram-pressure stripping or gas accretion as the likely scenarios. We conclude that PG 1307+085 is a normal elliptical host in terms of the scaling relations, but that the gas is likely affected by the environment through gravity or ambient pressure. It is possible that the interaction with the environment, seen in the ionized gas, might be responsible for driving sufficient gas to the black hole.

  3. Gas hydrates in the ocean environment

    USGS Publications Warehouse

    Dillon, William P.

    2002-01-01

    A GAS HYDRATE, also known as a gas clathrate, is a gas-bearing, icelike material. It occurs in abundance in marine sediments and stores immense amounts of methane, with major implications for future energy resources and global climate change. Furthermore, gas hydrate controls some of the physical properties of sedimentary deposits and thereby influences seafloor stability.

  4. Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-01-01

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance. PMID:25325339

  5. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  6. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao

    2000-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering, sinter-HIPing, and Encapsulation-HIPing. It is important to note that each process involves the addition of secondary elements, which later were shown to dramatically influence oxidation and corrosion behavior. As dense bodies of silicon-based ceramics became more readily available, their desirable high temperature properties were confirmed. These materials retained strength to very high temperatures (i.e. 1300-1400 C). Further, they were lightweight and made from abundant materials. SiC and Si3N4 therefore emerged as leading ceramic candidates for components in heat engines, designed to operate at higher temperatures for better performance and fuel efficiency. The first US programs for ceramics in heat engines have been reviewed [6]. Selected programs on ceramic engine parts are summarized here in regard to their contributions to understanding the corrosion behavior of a heat engine environment.

  7. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions

    NASA Astrophysics Data System (ADS)

    Evgenievna Terentieva, Irina; Vladimirovich Glagolev, Mikhail; Dmitrievna Lapshina, Elena; Faritovich Sabrekov, Alexandr; Maksyutov, Shamil

    2016-08-01

    High-latitude wetlands are important for understanding climate change risks because these environments sink carbon dioxide and emit methane. However, fine-scale heterogeneity of wetland landscapes poses a serious challenge when generating regional-scale estimates of greenhouse gas fluxes from point observations. In order to reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of The West Siberia Lowland (WSL) on a scene-by-scene basis using a supervised classification of Landsat imagery. Training data consist of high-resolution images and extensive field data collected at 28 test areas. The classification scheme aims at supporting methane inventory applications and includes seven wetland ecosystem types comprising nine wetland complexes distinguishable at the Landsat resolution. To merge typologies, mean relative areas of wetland ecosystems within each wetland complex type were estimated using high-resolution images. Accuracy assessment based on 1082 validation polygons of 10 × 10 pixel size indicated an overall map accuracy of 79 %. The total area of the WSL wetlands and water bodies was estimated to be 52.4 Mha or 4-12 % of the global wetland area. Ridge-hollow complexes prevail in WSL's taiga zone accounting for 33 % of the total wetland area, followed by pine bogs or "ryams" (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among wetland ecosystems, while poor fens cover only 14 % of the area. Because of the significant change in the wetland ecosystem coverage in comparison to previous studies, a considerable reevaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WSL's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland data sets in high latitudes.

  8. Flow-based ammonia gas analyzer with an open channel scrubber for indoor environments.

    PubMed

    Ohira, Shin-Ichi; Heima, Minako; Yamasaki, Takayuki; Tanaka, Toshinori; Koga, Tomoko; Toda, Kei

    2013-11-15

    A robust and fully automated indoor ammonia gas monitoring system with an open channel scrubber (OCS) was developed. The sample gas channel dimensions, hydrophilic surface treatment to produce a thin absorbing solution layer, and solution flow rate of the OCS were optimized to connect the OCS as in-line gas collector and avoid sample humidity effects. The OCS effluent containing absorbed ammonia in sample gas was injected into a derivatization solution flow. Derivatization was achieved with o-phthalaldehyde and sulfite in pH 11 buffer solution. The product, 1-sulfonateisoindole, is detected with a home-made fluorescence detector. The limit of detection of the analyzer based on three times the standard deviation of baseline noise was 0.9 ppbv. Sample gas could be analyzed 40 times per hour. Furthermore, relative humidity of up to 90% did not interfere considerably with the analyzer. Interference from amines was not observed. The developed gas analysis system was calibrated using a solution-based method. The system was used to analyze ammonia in an indoor environment along with an off-site method, traditional impinger gas collection followed by ion chromatographic analysis, for comparison. The results obtained using both methods agreed well. Therefore, the developed system can perform on-site monitoring of ammonia in indoor environments with improved time resolution compared with that of other methods. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  9. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larriba, Carlos, E-mail: clarriba@umn.edu; Hogan, Christopher J.

    2013-10-15

    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission ismore » largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas molecule collisions (gas molecules with altered trajectories by the potential interaction) without tracking grazing trajectories are further discussed. The presented calculation techniques should enable more accurate collision cross section predictions under experimentally relevant conditions than pre-existing approaches, and should enhance the ability of collision cross section measurement schemes to discern the structures of gas phase entities.« less

  10. Clamp and Gas Nozzle for TIG Welding

    NASA Technical Reports Server (NTRS)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  11. Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1976-01-01

    The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.

  12. Recommendations on the choice of gas analysis equipment for systems of continuous monitoring and accounting of emissions from thermal power plants

    NASA Astrophysics Data System (ADS)

    Kondrat'eva, O. E.; Roslyakov, P. V.; Burdyukov, D. A.; Khudolei, O. D.; Loktionov, O. A.

    2017-10-01

    According to Federal Law no. 219-FZ, dated July 21, 2014, all enterprises that have a significant negative impact on the environment shall continuously monitor and account emissions of harmful substances into the atmospheric air. The choice of measuring equipment that is included in continuous emission monitoring and accounting systems (CEM&ASs) is a complex technical problem; in particular, its solution requires a comparative analysis of gas analysis systems; each of these systems has its advantages and disadvantages. In addition, the choice of gas analysis systems for CEM&ASs should be maximally objective and not depend on preferences of separate experts and specialists. The technique of choosing gas analysis equipment that was developed in previous years at Moscow Power Engineering Institute (MPEI) has been analyzed and the applicability of the mathematical tool of a multiple criteria analysis to choose measuring equipment for the continuous emission monitoring and accounting system have been estimated. New approaches to the optimal choice of gas analysis equipment for systems of the continuous monitoring and accounting of harmful emissions from thermal power plants have been proposed, new criteria of evaluation of gas analysis systems have been introduced, and weight coefficients have been determined for these criteria. The results of this study served as a basis for the Preliminary National Standard of the Russian Federation "Best Available Technologies. Automated Systems of Continuous Monitoring and Accounting of Emissions of Harmful (Polluting) Substances from Thermal Power Plants into the Atmospheric Air. Basic Requirements," which was developed by the Moscow Power Engineering Institute, National Research University, in cooperation with the Council of Power Producers and Strategic Electric Power Investors Association and the All-Russia Research Institute for Materials and Technology Standardization.

  13. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    PubMed

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  14. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalcin Martins, Paula; Hoyt, David W.; Bansal, Sheel

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxesmore » to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR, and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations, or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield non-competitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.« less

  15. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    USGS Publications Warehouse

    Martins, Paula; Hoyt, David W.; Bansal, Sheel; Mills, Christopher T.; Tfaily, Malak; Tangen, Brian; Finocchiaro, Raymond; Johnston, Michael D.; McAdams, Brandon C.; Solensky, Matthew J.; Smith, Garrett J.; Chin, Yu-Ping; Wilkins, Michael J.

    2017-01-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  16. Quenching of the Star Formation Activity of Galaxies in Dense Environments

    NASA Astrophysics Data System (ADS)

    Boselli, A.

    2017-12-01

    The nearby Universe is an ideal laboratory to study the effects of the environments on galaxy evolution. We have analysed the multifrequency properties of galaxies in the nearby clusters Virgo, Coma, and A1367. We have shown that the HI gas content and the activity of star formation of the late-type galaxies start to gradually decrease inwards ˜ one virial radius. We have also shown that late-type galaxies in these clusters have truncated HI, H_2, dust, and star forming discs once the HI gas content is removed by the harsh environment. Some of these galaxies also exibit spectacular tails of atomic neutral, ionised, or hot gas without any counterpart in the stellar component. All this evidence favors ram pressure stripping as the dominant mechanism responsible for the gas removal from the disc, and for the following quenching of the star formation activity.

  17. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  18. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  19. The census of complex organic molecules in the solar-type protostar IRAS16293-2422

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C.

    2014-08-10

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (≳30-40 K) and released in the gas phase at dust temperatures of ≳100 K. However, recent detections of COMs in ≲20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we presentmore » a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (≲30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10{sup –10}. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.« less

  20. The Census of Complex Organic Molecules in the Solar-type Protostar IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C.; Caux, E.

    2014-08-01

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (gsim30-40 K) and released in the gas phase at dust temperatures of gsim100 K. However, recent detections of COMs in lsim20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (lsim30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10-10. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  1. Application of open-path Fourier transform infrared spectroscopy for atmospheric monitoring of a CO2 back-production experiment at the Ketzin pilot site (Germany).

    PubMed

    Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C

    2018-02-03

    During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.

  2. Cross-Correlations and Structures of Aero-Engine Gas Path System Based on DCCA Coefficient and Rooted Tree

    NASA Astrophysics Data System (ADS)

    Dong, Keqiang; Fan, Jie; Gao, You

    2015-12-01

    Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in complex system. We here focus on aero-engine dynamic as an example of complex system. By applying the detrended cross-correlation analysis (DCCA) coefficient method to aero-engine gas path system, we find that the low-spool rotor speed (N1) and high-spool rotor speed (N2) fluctuation series exhibit cross-correlation characteristic. Further, we employ detrended cross-correlation coefficient matrix and rooted tree to investigate the mutual interactions of other gas path variables. The results can infer that the exhaust gas temperature (EGT), N1, N2, fuel flow (WF) and engine pressure ratio (EPR) are main gas path parameters.

  3. Gas-Phase Ion Chemistry in Interstellar, Circumstellar, and Planetary Environments

    NASA Astrophysics Data System (ADS)

    Demarais, Nicholas J.

    In the last century, astronomers, physicists, and chemists have shown that the environments of space are complex. Although we have learned a great amount about the interstellar medium, circumstellar medium, and atmospheres of other planets and moons, many mysteries still remain unsolved. The cooperation of astronomers, modelers, and chemists has lead to the detection of over 180 molecules in the interstellar and circumstellar medium, and the evolution of the new scientific field of astrochemistry. Gas-phase ion chemistry can determine the stability of ions in these complex environments, provide chemical networks, and guide searches for new interstellar molecules. Using the flowing afterglow-selected ion flow tube (FA-SIFT), we have characterized the reactions of positive and negative ions that are important in a variety of astrochemical environments. The detection of CF+ in photodissociation regions highlights the importance of fluorinated species in the interstellar medium. The viability of CF+ as a possible diffuse interstellar band (DIB) carrier is discussed as related to reactions with neutral molecules in various interstellar conditions; the reactions of CF+ with twenty-two molecules of interstellar relevance were investigated. The chemical reactions of HCNH+ with H2, CH 4, C2H2, and C2H4 were reexamined to provide insight into the overprediction of HCNH+ in Titan's ionosphere by current astrochemical models. In addition, this work suggests other chemical reactions that should be included in the current models to fully describe the destruction rates of HCNH+ in Titan's ionosphere. The reactions of polycyclic aromatic hydrocarbon (PAH) ions with H atoms and other small molecules were carried out to determine the stability of these species. In diffuse regions, where the photon flux is high, PAH cations are the dominant ionization state. This work continues our previous research to include PAHs of differing geometries as well as nitrogen-containing PAHs. Extension to larger PAH cations was made possible by the integration of the laser induced acoustic desorption (LIAD) source with the FA-SIFT. In addition, in dense environments, where the photon flux is low, anionic PAHs may exist. The detection of negative ions in the past 10 years has highlighted the importance of their inclusion in astrochemical models. We have investigated the chemistry of deprotonated PAHs with molecules of interstellar relevance to determine their chemical stability in dense regions of the interstellar and circumstellar medium. In addition to PAH anions, H- is an important species in dense interstellar environments. While the reaction of hydride anion has been recognized as a critical mechanism in the initial cooling immediately after the Big Bang, H- + H → H2 + e-, chemistry with neutral molecules was largely unknown. The chemistry of H- with various classes of organic molecules was investigated and conclusions are drawn based on reaction mechanisms.

  4. Production, management, and environment symposium: Environmental footprint of livestock production - Greenhouse gas emissions and climate change

    USDA-ARS?s Scientific Manuscript database

    This manuscript is the introduction to the 2015 Production, Management, and Environment symposium titled “Environmental Footprint of Livestock Production – Greenhouse Gas Emissions and Climate Change” that was held at the Joint Annual Meeting of the ASAS and ADSA at the Rosen Shingle Creek Resort in...

  5. 30 CFR 250.807 - Additional requirements for subsurface safety valves and related equipment installed in high...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... valves and related equipment installed in high pressure high temperature (HPHT) environments. 250.807... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... installed in high pressure high temperature (HPHT) environments. (a) If you plan to install SSSVs and...

  6. 30 CFR 250.807 - Additional requirements for subsurface safety valves and related equipment installed in high...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... valves and related equipment installed in high pressure high temperature (HPHT) environments. 250.807... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... installed in high pressure high temperature (HPHT) environments. (a) If you plan to install SSSVs and...

  7. 30 CFR 250.807 - Additional requirements for subsurface safety valves and related equipment installed in high...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... valves and related equipment installed in high pressure high temperature (HPHT) environments. 250.807... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... installed in high pressure high temperature (HPHT) environments. (a) If you plan to install SSSVs and...

  8. 78 FR 54417 - Oil and Gas and Sulphur Operations on the Outer Continental Shelf-Oil and Gas Production Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... for subsurface related equipment installed in high safety valves (SSSVs) and pressure high temperature (HPHT) related equipment installed in environments. high pressure high temperature (HPHT) environments... flammable liquids (other than produced hydrocarbons) stored on the facility in containers other than bulk...

  9. The Thermochemical Degradation of Hot Section Materials for Gas Turbine Engines in Alternative-Fuel Combustion Environments

    NASA Astrophysics Data System (ADS)

    Montalbano, Timothy

    Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced destabilization and coarsening in the humid aging environment is explained mechanistically by water-derived species being incorporated into the YSZ structure and altering the anion sublattice. The characterization of the metal alloy and ceramic coatings exposed in these alternative environments allows for a deeper understanding of the mechanisms behind the material evolution in these environments.

  10. Anomalous Current-Voltage Characteristics in Suspended Carbon Nanotubes in Various Gas Environments

    NASA Astrophysics Data System (ADS)

    Amer, Moh; Bushmaker, Adam; Cronin, Steve

    2011-03-01

    Electrically-heated suspended, carbon nanotubes (CNTs) exhibiting negative differential conductance in the high bias regime experience a sudden drop in current (or ``kink'') in various gaseous environments. We study the effect of different gas molecules on these I - V characteristics while simultaneously monitoring the changes in the nanotube vibrational structure under high bias voltages using Raman spectroscopy. When the nanotube is electrically biased at the kink, the G band Raman mode is observed to downshift, as is typical of electrically heated devices. However, the G band frequency at the kink (ωGkink) lies in the narrow range between 1575 and 1579 cm-1 for all samples measured, regardless of gas environment. The voltage at which the kink occurs depends on the type of the gas environment with the following dependence: VkinkAr

  11. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system

    NASA Astrophysics Data System (ADS)

    Grasset, O.; Dougherty, M. K.; Coustenis, A.; Bunce, E. J.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L. N.; Hussmann, H.; Jaumann, R.; Krupp, N.; Lebreton, J.-P.; Prieto-Ballesteros, O.; Tortora, P.; Tosi, F.; Van Hoolst, T.

    2013-04-01

    Past exploration of Jupiter's diverse satellite system has forever changed our understanding of the unique environments to be found around gas giants, both in our solar system and beyond. The detailed investigation of three of Jupiter's Galilean satellites (Ganymede, Europa, and Callisto), which are believed to harbour subsurface water oceans, is central to elucidating the conditions for habitability of icy worlds in planetary systems in general. The study of the Jupiter system and the possible existence of habitable environments offer the best opportunity for understanding the origins and formation of the gas giants and their satellite systems. The JUpiter ICy moons Explorer (JUICE) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015-2025, will perform detailed investigations of Jupiter and its system in all their inter-relations and complexity with particular emphasis on Ganymede as a planetary body and potential habitat. The investigations of the neighbouring moons, Europa and Callisto, will complete a comparative picture of the Galilean moons and their potential habitability. Here we describe the scientific motivation for this exciting new European-led exploration of the Jupiter system in the context of our current knowledge and future aspirations for exploration, and the paradigm it will bring in the study of giant (exo) planets in general.

  12. Network challenges for cyber physical systems with tiny wireless devices: a case study on reliable pipeline condition monitoring.

    PubMed

    Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Khan, Muhammad Farhan; Naeem, Muhammad; Anpalagan, Alagan

    2015-03-25

    The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.

  13. Fluid Phase Separation (FPS) experiment for flight on the shuttle in a Get Away Special (GAS) canister: Design and fabrication

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid that will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The phase separation experiment is totally self-contained, with three levels of containment on all fluids, and provides all necessary electrical power and control. The controller regulates the temperature of the fluid and controls data logging and sampling. An astronaut-activated switch will initiate the experiment and an unmaskable interrupt is provided for shutdown. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS 42 in April 1991. Presented here are the design and the production of a fluid phase separation experiment for rapid implementation at low cost.

  14. Network Challenges for Cyber Physical Systems with Tiny Wireless Devices: A Case Study on Reliable Pipeline Condition Monitoring

    PubMed Central

    Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Farhan Khan, Muhammad; Naeem, Muhammad; Anpalagan, Alagan

    2015-01-01

    The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed. PMID:25815444

  15. Gradient complex protective coatings for single-crystal turbine blades of high-heat gas turbine engines

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. P.; Lesnikov, V. P.; Muboyadzhyan, S. A.; Repina, O. V.

    2007-05-01

    Complex diffusion-condensation protective coatings characterized by gradient distribution of alloying elements over the thickness due to formation of a diffusion barrier layer on the surface of blades followed by deposition of condensation alloyed layers based on the Ni-Co-Cr-Al-Y system and an external layer based on a NiAl alloyed β-phase and a ZrO2: Y2O3 ceramics are presented. A complex gradient coating possessing unique protective properties at t = 1100-1200°C for single-crystal blades from alloy ZhS36VI for advanced gas turbine engines with gas temperature of 1550°C at the inlet to the turbine is described.

  16. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  17. 40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls applicable to natural gas... Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After... feet of natural gas per month shall equip each pump from which natural gas is introduced into natural...

  18. Risk Management at NASA and Its Applicability to the Oil and Gas Industry

    NASA Technical Reports Server (NTRS)

    Kaplan, David

    2018-01-01

    NASA has a world-class capability for quantitatively assessing the risk of highly-complex, isolated engineering structures operated in extremely hostile environments. In particular, the International Space Station (ISS) represents a reasonable risk analog for High Pressure, High Temperature drilling and production operations on deepwater rigs. Through a long-term U.S. Government Interagency Agreement, BSEE has partnered with NASA to modify NASA's Probabilistic Risk Assessment (PRA) capabilities for application to deepwater drilling and production operations. The immediate focus of the activity will be to modify NASA PRA Procedure Guides and Methodology Documents to make them applicable to the Oil &Gas Industry. The next step will be for NASA to produce a PRA for a critical drilling system component, such as a Blowout Preventer (BOP). Subsequent activities will be for NASA and industry partners to jointly develop increasingly complex PRA's that analyze other critical drilling and production system components, including both hardware and human reliability. In the presentation, NASA will provide the objectives, schedule, and current status of its PRA activities for BSEE. Additionally, NASA has a Space Act Agreement with Anadarko Petroleum Corporation to develop a PRA for a generic 20K BOP. NASA will summarize some of the preliminary insights gained to date from that 20K BOP PRA as an example of the distinction between quantitative versus qualitative risk assessment.

  19. 40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Controls applicable to natural gas... Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After... feet of natural gas per month shall equip each pump from which natural gas is introduced into natural...

  20. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-01

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.

  1. Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM.

    PubMed

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-18

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.

  2. Outbreak of invasive group A streptococcus: investigations using agar settle plates detect perineal shedding from a healthcare worker.

    PubMed

    Mahida, N; Prescott, K; Yates, C; Spencer, F; Weston, V; Boswell, T

    2018-03-29

    Outbreaks of group A streptococcus (GAS) infections may occur in healthcare settings. Transmission to patients is sometimes linked to colonized healthcare workers (HCWs) and/or a contaminated environment. To describe the investigation and control of an outbreak of healthcare-associated GAS on an elderly care medical ward, over six months. Four patients developed septicaemia due to GAS infection without a clinically obvious site of infection. The outbreak team undertook an investigation involving a retrospective review of GAS cases, prospective case finding, HCW screening and environmental sampling using both swabs and settle plates. Immediate control measures included source isolation and additional cleaning of the ward environment with a chlorine disinfectant and hydrogen peroxide. Prospective patient screening identified one additional patient with throat GAS carriage. Settle plate positivity for GAS was strongly associated with the presence of one individual HCW on the ward, who was subsequently found to have GAS perineal carriage. Contamination of a fabric-upholstered chair in an office adjacent to the ward, used by the HCW, was also detected. In total, three asymptomatic HCWs had throat GAS carriage and one HCW had both perineal and throat carriage. All isolates were typed as emm 28. This is the first outbreak report demonstrating the use of settle plates in a GAS outbreak investigation on a medical ward, to identify the likely source of the outbreak. Based on this report we recommend that both throat and perineal sites should be sampled if HCW screening is undertaken during an outbreak of GAS. Fabric, soft furnishings should be excluded from clinical areas as well as any adjacent offices because pathogenic bacteria such as GAS may contaminate this environment. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Sensor validation and fusion for gas turbine vibration monitoring

    NASA Astrophysics Data System (ADS)

    Yan, Weizhong; Goebel, Kai F.

    2003-08-01

    Vibration monitoring is an important practice throughout regular operation of gas turbine power systems and, even more so, during characterization tests. Vibration monitoring relies on accurate and reliable sensor readings. To obtain accurate readings, sensors are placed such that the signal is maximized. In the case of characterization tests, strain gauges are placed at the location of vibration modes on blades inside the gas turbine. Due to the prevailing harsh environment, these sensors have a limited life and decaying accuracy, both of which impair vibration assessment. At the same time bandwidth limitations may restrict data transmission, which in turn limits the number of sensors that can be used for assessment. Knowing the sensor status (normal or faulty), and more importantly, knowing the true vibration level of the system all the time is essential for successful gas turbine vibration monitoring. This paper investigates a dynamic sensor validation and system health reasoning scheme that addresses the issues outlined above by considering only the information required to reliably assess system health status. In particular, if abnormal system health is suspected or if the primary sensor is determined to be faulted, information from available "sibling" sensors is dynamically integrated. A confidence expresses the complex interactions of sensor health and system health, their reliabilities, conflicting information, and what the health assessment is. Effectiveness of the scheme in achieving accurate and reliable vibration evaluation is then demonstrated using a combination of simulated data and a small sample of a real-world application data where the vibration of compressor blades during a real time characterization test of a new gas turbine power system is monitored.

  4. Resolving the Circumstellar Environment of the Galactic B[e] Supergiant Star MWC 137 from Large to Small Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Michaela; Nickeler, Dieter H.; Liimets, Tiina

    The Galactic object MWC 137 has been suggested to belong to the group of B[e] supergiants. However, with its large-scale optical bipolar ring nebula and high-velocity jet and knots, it is a rather atypical representative of this class. We performed multiwavelength observations spreading from the optical to the radio regimes. Based on optical imaging and long-slit spectroscopic data, we found that the northern parts of the large-scale nebula are predominantly blueshifted, while the southern regions appear mostly redshifted. We developed a geometrical model consisting of two double cones. Although various observational features can be approximated with such a scenario, themore » observed velocity pattern is more complex. Using near-infrared integral-field unit spectroscopy, we studied the hot molecular gas in the vicinity of the star. The emission from the hot CO gas arises in a small-scale disk revolving around the star on Keplerian orbits. Although the disk itself cannot be spatially resolved, its emission is reflected by the dust arranged in arc-like structures and the clumps surrounding MWC 137 on small scales. In the radio regime, we mapped the cold molecular gas in the outskirts of the optical nebula. We found that large amounts of cool molecular gas and warm dust embrace the optical nebula in the east, south, and west. No cold gas or dust was detected in the north and northwestern regions. Despite the new insights into the nebula kinematics gained from our studies, the real formation scenario of the large-scale nebula remains an open issue.« less

  5. [Anesthesia simulators and training devices].

    PubMed

    Hartmannsgruber, M; Good, M; Carovano, R; Lampotang, S; Gravenstein, J S

    1993-07-01

    Simulators and training devices are used extensively by educators in 'high-tech' occupations, especially those requiring an understanding of complex systems and co-ordinated psychomotor skills. Because of advances in computer technology, anaesthetised patients can now be realistically simulated. This paper describes several training devices and a simulator currently being employed in the training of anaesthesia personnel at the University of Florida. This Gainesville Anesthesia Simulator (GAS) comprises a patient mannequin, anaesthesia gas machine, and a full set of normally operating monitoring instruments. The patient can spontaneously breathe, has audible heart and breath sounds, and palpable pulses. The mannequin contains a sophisticated lung model that consumes and eliminates gas according to physiological principles. Interconnected computers controlling the physical signs of the mannequin enable the presentation of a multitude of clinical signs. In addition, the anaesthesia machine, which is functionally intact, has hidden fault activators to challenge the user to correct equipment malfunctions. Concealed sensors monitor the users' actions and responses. A robust data acquisition and control system and a user-friendly scripting language for programming simulation scenarios are key features of GAS and make this system applicable for the training of both the beginning resident and the experienced practitioner. GAS enhances clinical education in anaesthesia by providing a non-threatening environment that fosters learning by doing. Exercises with the simulator are supported by sessions on a number of training devices. These present theoretical and practical interactive courses on the anaesthesia machine and on monitors. An extensive system, for example, introduces the student to the physics and clinical application of transoesophageal echocardiography.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy evolution.

  7. Exploring the Minispiral at the Milky Way's Center

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    An image of the continuum emission from the galactic center minispiral, previously taken by ALMA at 100 GHz. This image labels the structures of the minispiral: a bar and multiple arcing arms, andthe black hole Sgr A* near the center. [Tsuboi et al. 2017]The region around Sgr A*, the 4-million-solar-mass black hole at the heart of our galaxy, is a complex and dynamic place. New Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Milky Ways center now reveal more about this harsh, inhospitable environment.A New ViewOne of the prominent structures at the heart of the Milky Way is a bundle of ionized gas streams located surrounding Sgr A* within the close distance of 6.5 light-years. These streams take the form of a bar and a series of arms that make it look much like a tiny spiral galaxy earning it the name of the galactic center minispiral.Where did this gas come from? Whats happening to it now? And what can it tell us about the environment about Sgr A*? A team of scientists led by Masato Tsuboi (Japan Aerospace Exploration Agency) has now obtained new ALMA images of the minispiral that are helping us to answer these questions.Electron temperature in K (numbers in yellow) and density in cm-3 (numbers in red) from the new ALMA observations of the ionized gas streamers. [Tsuboi et al. 2017]Clues from GasTsuboi and collaborators imaged the gas within the galactic center minispiral and its surroundings as part of the first ALMA observation cycle. This powerful telescopes images allowed the team to observe the streamers of ionized gas within the arms of the minispiral and determine their velocities. The authors were then able to use these measurements to identify which gas components are related and the speeds and directions of motion for the different components.Besides tracking the dynamics of the ionized gas in the minispiral, the team also confirmed that the electron temperatures and densities in the streamers increase with proximity to Sgr A*. We would expect these increases to cause the arms to expand laterally closer to the black hole but thats not whats observed. Instead, the arms remain closely confined.This discrepancy tells us something about the environment around the minispiral: there must be surrounding, ambient ionized gas thats pushing on the streamers, providing the external pressure to keep them confined.An Explanation for ProplydsThe ALMA observations of ionized gas (top panel) line up nicely with the JVLA detections of candidate proplyds near Sgr A* (bottom panel, with the ionized gas emission from the top panel shown as contours). [Tsuboi et al. 2017]Lastly, Tsuboi and collaborators compare their ALMA observations of the ionized gas in the minispiral with previous observations of the galactic center made with the Jansky Very Large Array. The JVLA observations revealed the presence of compact half-shell-like structures that may be proplyds protostars being photoevaporated by the hot radiation coming from the central star cluster around Sgr A*.These candidate proplyds have posed an astronomical puzzle: between Sgr A*s strong tidal forces and the radiation being emitted from the central star cluster, conditions are extremely inhospitable to star formation. So how did these proplyds get there?Tsuboi and collaborators observations may shed some light on this. Lining up the new ALMA images with the old JVLA ones, its clear that the proplyds are all concentrated along the ionized gas streamer of the northeastern arm in the minispiral. This suggests that the protostars may have formed further away from Sgr A*, and they were brought to their present-day location as the streamer fell inwards toward the black hole.CitationMasato Tsuboi et al 2017 ApJ 842 94. doi:10.3847/1538-4357/aa74e3

  8. Biological removal of NOx from flue gas.

    PubMed

    Kumaraswamy, R; Muyzer, G; Kuenen, J G; Loosdrecht, M C M

    2004-01-01

    BioDeNOx is a novel integrated physico-chemical and biological process for the removal of nitrogen oxides (NOx) from flue gas. Due to the high temperature of flue gas the process is performed at a temperature between 50-55 degrees C. Flue gas containing CO2, O2, SO2 and NOx, is purged through Fe(II)EDTA2- containing liquid. The Fe(II)EDTA2- complex effectively binds the NOx; the bound NOx is converted into N2 in a complex reaction sequence. In this paper an overview of the potential microbial reactions in the BioDeNOx process is discussed. It is evident that though the process looks simple, due to the large number of parallel potential reactions and serial microbial conversions, it is much more complex. There is a need for a detailed investigation in order to properly understand and optimise the process.

  9. Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport

    DOE PAGES

    Yoon, Hongkyu; Kang, Qinjun; Valocchi, Albert J.

    2015-07-29

    Here an important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport,more » which can strongly influence larger-scale properties such as permeability and dispersion.« less

  10. Greenhouse Gases

    MedlinePlus

    ... Gas and Biogas Biomass & the Environment See also: Biofuels Biofuels: Ethanol & Biodiesel Ethanol Use of Ethanol Ethanol & the Environment Biodiesel Use of Biodiesel Biodiesel & the Environment Wind Electricity ...

  11. Topology optimization of a gas-turbine engine part

    NASA Astrophysics Data System (ADS)

    Faskhutdinov, R. N.; Dubrovskaya, A. S.; Dongauzer, K. A.; Maksimov, P. V.; Trufanov, N. A.

    2017-02-01

    One of the key goals of aerospace industry is a reduction of the gas turbine engine weight. The solution of this task consists in the design of gas turbine engine components with reduced weight retaining their functional capabilities. Topology optimization of the part geometry leads to an efficient weight reduction. A complex geometry can be achieved in a single operation with the Selective Laser Melting technology. It should be noted that the complexity of structural features design does not affect the product cost in this case. Let us consider a step-by-step procedure of topology optimization by an example of a gas turbine engine part.

  12. Effects of Mars Atmosphere on Arc Welds: Phase 2

    NASA Technical Reports Server (NTRS)

    Courtright, Z. S.

    2018-01-01

    Gas tungsten arc welding (GTAW) is a vital fusion welding process widely used throughout the aerospace industry. Its use may be critical for the repair or manufacture of systems, rockets, or facilities on the Martian surface. Aluminum alloy AA2219-T87 and titanium alloy Ti-6Al-4V butt welds have been investigated for weldability and weld properties in a simulated Martian gas environment. The resulting simulated Martian welds were compared to welds made in a terrestrial atmosphere, all of which used argon shielding gas. It was found that GTAW is a process that may be used in a Martian gas environment, not accounting for pressure and gravitational effects, as long as adequate argon shielding gas is used to protect the weld metal. Simulated Martian welds exhibited higher hardness in all cases and higher tensile strength in the case of AA2219-T87. This has been attributed to the absorption of carbon into the fusion zone, causing carbide precipitates to form. These precipitates may act to pin dislocations upon tensile testing of AA2219-T87. Dissolved carbon may have also led to carburization, which may have caused the increase in hardness within the fusion zone of the welds. Based on the results of this experiment and other similar experiments, GTAW appears to be a promising process for welding in a Martian gas environment. Additional funding and experimentation is necessary to determine the effects of the low pressure and low gravity environment found on Mars on GTAW.

  13. Experimental and computational study of the effect of 1 atm background gas on nanoparticle generation in femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Wu, Han; Wu, Chengping; Zhang, Nan; Zhu, Xiaonong; Ma, Xiuquan; Zhigilei, Leonid V.

    2018-03-01

    Laser ablation of metal targets is actively used for generation of chemically clean nanoparticles for a broad range of practical applications. The processes involved in the nanoparticle formation at all relevant spatial and temporal scales are still not fully understood, making the precise control of the size and shape of the nanoparticles challenging. In this paper, a combination of molecular dynamics simulations and experiments is applied to investigate femtosecond laser ablation of aluminum targets in vacuum and in 1 atm argon background gas. The results of the simulations reveal a strong effect of the background gas environment on the initial plume expansion and evolution of the nanoparticle size distribution. The suppression of the generation of small/medium-size Al clusters and formation of a dense layer at the front of the expanding ablation plume, observed during the first nanosecond of the plume expansion in a simulation performed in the gas environment, have important implications on the characteristics of the nanoparticles deposited on a substrate and characterized in the experiments. The nanoparticles deposited in the gas environment are found to be more round-shaped and less flattened as compared to those deposited in vacuum. The nanoparticle size distributions exhibit power-law dependences with similar values of exponents obtained from fitting experimental and simulated data. Taken together, the results of this study suggest that the gas environment may be effectively used to control size and shape of nanoparticles generated by laser ablation.

  14. A time fractional convection-diffusion equation to model gas transport through heterogeneous soil and gas reservoirs

    NASA Astrophysics Data System (ADS)

    Chang, Ailian; Sun, HongGuang; Zheng, Chunmiao; Lu, Bingqing; Lu, Chengpeng; Ma, Rui; Zhang, Yong

    2018-07-01

    Fractional-derivative models have been developed recently to interpret various hydrologic dynamics, such as dissolved contaminant transport in groundwater. However, they have not been applied to quantify other fluid dynamics, such as gas transport through complex geological media. This study reviewed previous gas transport experiments conducted in laboratory columns and real-world oil-gas reservoirs and found that gas dynamics exhibit typical sub-diffusive behavior characterized by heavy late-time tailing in the gas breakthrough curves (BTCs), which cannot be effectively captured by classical transport models. Numerical tests and field applications of the time fractional convection-diffusion equation (fCDE) have shown that the fCDE model can capture the observed gas BTCs including their apparent positive skewness. Sensitivity analysis further revealed that the three parameters used in the fCDE model, including the time index, the convection velocity, and the diffusion coefficient, play different roles in interpreting the delayed gas transport dynamics. In addition, the model comparison and analysis showed that the time fCDE model is efficient in application. Therefore, the time fractional-derivative models can be conveniently extended to quantify gas transport through natural geological media such as complex oil-gas reservoirs.

  15. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  16. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  17. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  18. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  19. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  20. 40 CFR 1065.715 - Natural gas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet the...

  1. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Treesearch

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  2. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    NASA Astrophysics Data System (ADS)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  3. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin

    1998-01-01

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.

  4. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  5. Effect of top-down nanomachining on electrical conduction properties of TiO2 nanostructure-based chemical sensors.

    PubMed

    Francioso, L; De Pascali, C; Capone, S; Siciliano, P

    2012-03-09

    The present research was motivated by the growing interest of the scientific community towards the understanding of basic gas-surface interaction mechanisms in 1D nanostructured metal oxide semiconductors, whose significantly enhanced chemical detection sensitivity is known. In this work, impedance spectroscopy (IS) was used to evaluate how a top-down patterning of the sensitive layer can modulate the electrical properties of a gas sensor based on a fully integrated nanometric array of TiO(2) polycrystalline strips. The aim of the study was supported by comparative experimental activity carried out on different thin film gas sensors based on identical TiO(2) polycrystalline sensitive thin films. The impedance responses of the investigated devices under dry air (as the reference environment) and ethanol vapors (as the target gas) were fitted by a complex nonlinear least-squares method using LEVM software, in order to find an appropriate equivalent circuit describing the main conduction processes involved in the gas/semiconductor interactions. Two different equivalent circuit models were identified as completely representative of the TiO(2) thin film and the TiO(2) nanostructure-based gas sensors, respectively. All the circuit parameters were quantified and the related standard deviations were evaluated. The simulated results well approximated the experimental data as indicated by the small mean errors of the fits (in the range of 10(-4)) and the small standard deviations of the circuit parameters. In addition to the substrate capacitance, three different contributions to the overall conduction mechanism were identified for both equivalent circuits: bulk conductivity, intergrain contact and semiconductor-electrode contact, electrically represented by an ideal resistor R(g), a parallel R(gb)C(gb) block and a parallel R(c)-CPE(c) combination, respectively. In terms of equivalent circuit modeling, the sensitive layer patterning introduced an additional parameter in parallel connection with the whole circuit block. Such a circuit element (an ideal inductor, L) has an average value of about 125 μH and exhibits no direct dependence on the analyte gas concentration. Its presence could be due to complex mutual inductance effects occurring both between all the adjacent nanostrips (10 µm spaced) and between the nanostrips and the n-type-doped silicon substrate underneath the thermal oxide (wire/plate effect), where a two order of magnitude higher magnetic permeability of silicon can give L values comparable with those estimated by the fitting procedure. Slightly modified experimental models confirmed that the theoretical background, regulating thin film devices based on metal oxide semiconductors, is also valid for nanopatterned devices.

  6. 40 CFR 98.232 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false GHGs to report. 98.232 Section 98.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.232 GHGs to report. (a) You must report CO2, CH4, and N2O emissions from each...

  7. 40 CFR 98.232 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false GHGs to report. 98.232 Section 98.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.232 GHGs to report. (a) You must report CO2, CH4, and N2O emissions from each...

  8. 40 CFR 98.232 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false GHGs to report. 98.232 Section 98.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.232 GHGs to report. (a) You must report CO2, CH4, and N2O emissions from each...

  9. 40 CFR 98.232 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false GHGs to report. 98.232 Section 98.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.232 GHGs to report. (a) You must report CO2, CH4, and N2O emissions from each...

  10. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units E Appendix E to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION...

  11. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units E Appendix E to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION...

  12. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds.

    PubMed

    Bennetts, Victor Hernandez; Schaffernicht, Erik; Pomareda, Victor; Lilienthal, Achim J; Marco, Santiago; Trincavelli, Marco

    2014-09-17

    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources.

  13. Energy in perspective: an orientation conference for educators. [28 presentations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKlveen, J.W.

    An awareness of energy and the pertinent economic, environmental, and risk/benefit consideration must be presented to the public. A logical beginning point is in the classroom, through knowledgeable and motivated educators. Ms. Carolyn Warner, Superintendent of Public Instruction, State of Arizona, presented the first paper, Energy and the Educator. Papers on all aspects of energy were presented at the conference by experts from throughout the United States. The papers were: Energy Resources: World and U.S.A.; Coal Technology: Mining, Energy Generation, Wastes, and Environmental Considerations; Energy Conservation; Arizona's Energy Resources and Development; Gas and Oil: Natural Gas, S.N.G., Oil, Oil Shale,more » and Tar Sands; Geothermal Energy Perspective; Solar Energy; Solar Technology; Natural Radiation Environment; Fission Theory; Arizona's Palo Verde Nuclear Generation Complex; Gas Cooled Reactors, Liquid Metal Reactors and Alternatives; Radioactive Wastes: Disposal Alternatives; Reactor Safety; Nuclear Safeguards; Fusion Power; Genetic and Somatic Radiation Effects; Energy Economics; Religion, Philosophy, and Energy; Nuclear Studies in Fine Arts and Archeology; Nuclear Methods Applied to Agriculture and Food Preservation; Nuclear Methods in Criminology; Environmental Impact of Energy Generation; and Risk and Insurance Consideration--Energy for Tomorrow. The tours to energy installations conducted during the conference and demonstration related to energy are cited. (MCW)« less

  14. The U.S. Geological Survey’s Gas Hydrates Project

    USGS Publications Warehouse

    Ruppel, Carolyn D.

    2018-01-17

    The Gas Hydrates Project at the U.S. Geological Survey (USGS) focuses on the study of methane hydrates in natural environments. The project is a collaboration between the USGS Energy Resources and the USGS Coastal and Marine Geology Programs and works closely with other U.S. Federal agencies, some State governments, outside research organizations, and international partners. The USGS studies the formation and distribution of gas hydrates in nature, the potential of hydrates as an energy resource, and the interaction between methane hydrates and the environment. The USGS Gas Hydrates Project carries out field programs and participates in drilling expeditions to study marine and terrestrial gas hydrates. USGS scientists also acquire new geophysical data and sample sediments, the water column, and the atmosphere in areas where gas hydrates occur. In addition, project personnel analyze datasets provided by partners and manage unique laboratories that supply state-of-the-art analytical capabilities to advance national and international priorities related to gas hydrates.

  15. Coordination of ScO+ and YO+ by multiple Ar, Kr, and Xe atoms in noble gas matrixes: a matrix isolation infrared spectroscopic and theoretical study.

    PubMed

    Zhao, Yanying; Gong, Yu; Chen, Mohua; Ding, Chuanfan; Zhou, Mingfei

    2005-12-29

    The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.

  16. Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1979-01-01

    Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.

  17. Herschel Observations of Extraordinary Sources: Analysi sof the HIFI 1.2 THz Wide Spectral Survey toward Orion KL II. Chemical Implications

    NASA Astrophysics Data System (ADS)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Favre, C.; Blake, G. A.; Herbst, E.; Anderson, D. E.; Hassel, G. E.

    2015-06-01

    We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH3CN, C2H3CN, C2H5CN, and NH2CHO systematically trace hotter gas than the oxygen bearing organics CH3OH, C2H5OH, CH3OCH3, and CH3OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (Tkin ∼ 300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales ≳105 years, with several species being underpredicted by less than 3σ. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules that also contain oxygen (i.e., SO, SO2, and OCS) tend to probe the hottest gas toward Orion KL, indicating the formation pathways for these species are most efficient at high temperatures. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.

    PubMed

    Li, Ying; Yang, Da-Jian; Chen, Shi-Lin; Chen, Si-Bao; Chan, Albert Sun-Chi

    2008-07-09

    The aim of the study was to develop and evaluate a new method for the production of puerarin phospholipids complex (PPC) microparticles. The advanced particle formation method, solution enhanced dispersion by supercritical fluids (SEDS), was used for the preparation of puerarin (Pur), phospholipids (PC) and their complex particles for the first time. Evaluation of the processing variables on PPC particle characteristics was also conducted. The processing variables included temperature, pressure, solution concentration, the flow rate of supercritical carbon dioxide (SC-CO2) and the relative flow rate of drug solution to CO2. The morphology, particle size and size distribution of the particles were determined. Meanwhile Pur and phospholipids were separately prepared by gas antisolvent precipitation (GAS) method and solid characterization of particles by the two supercritical methods was also compared. Pur formed by GAS was more orderly, purer crystal, whereas amorphous Pur particles between 0.5 and 1microm were formed by SEDS. The complex was successfully obtained by SEDS exhibiting amorphous, partially agglomerated spheres comprised of particles sized only about 1microm. SEDS method may be useful for the processing of other pharmaceutical preparations besides phospholipids complex particles. Furthermore adopting a GAS process to recrystallize pharmaceuticals will provide a highly versatile methodology to generate new polymorphs of drugs in addition to conventional techniques.

  19. Unfinished business in the regulation of shale gas production in the United States.

    PubMed

    Centner, Terence J; O'Connell, Laura Kathryn

    2014-04-01

    With increased drilling for natural gas, toxic chemicals used to fracture wells have been introduced into the environment accompanied by allegations of injuries. This article evaluates laws and regulations governing shale gas production to disclose ideas for offering further protection to people and the environment. The aim of the study is to offer state governments ideas for addressing contractual obligations of drilling operators, discerning health risks, disclosing toxic chemicals, and reporting sufficient information to detect problems and enforce regulations. The discussion suggests opportunities for state regulators to become more supportive of public health through greater oversight of shale gas extraction. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian

    2018-05-01

    We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.

  1. Investigating the Effect of Complexity Factors in Gas Law Problems

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Kirk, John; Pienta, Norbert J.; Tang, Hui

    2012-01-01

    Undergraduate students were asked to complete gas law questions using a Web-based tool as a first step in our understanding of the role of cognitive load in chemistry word questions and in helping us assess student problem-solving. Each question contained five different complexity factors, which were randomly assigned by the tool so that a…

  2. NATURE OF UNRESOLVED COMPLEX MIXTURE IN SIZE-DISTRIBUTED EMISSIONS FROM RESIDENTIAL WOOD COMBUSTION AS MEASURED BY THERMAL DESORPTION-GAS CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    In this study, the unresolved complex mixture (UCM) in size resolved fine aerosol emissions from residential wood combustion (RWC) is examined. The aerosols are sorted by size in an electrical low-pressure impactor (ELPI) and subsequently analyzed by thermal desorbtion/gas chroma...

  3. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas sampling system. 86.1509... Procedures § 86.1509 Exhaust gas sampling system. (a) The exhaust gas sampling system shall transport the... sample (i.e., water removed) to the analysis system. (c) A CVS sampling system with bag or continuous...

  4. 40 CFR 86.509-90 - Exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system. 86.509-90... 1978 and Later New Motorcycles; Test Procedures § 86.509-90 Exhaust gas sampling system. (a)(1) General. The exhaust gas sampling system is designed to measure the true mass emissions of vehicle exhaust. In...

  5. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...

  6. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...

  7. 40 CFR 86.509-90 - Exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system. 86.509-90... 1978 and Later New Motorcycles; Test Procedures § 86.509-90 Exhaust gas sampling system. (a)(1) General. The exhaust gas sampling system is designed to measure the true mass emissions of vehicle exhaust. In...

  8. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied petroleum... liquefied petroleum gas retailer and wholesale purchaser- consumer. Any dispensing pump shown to be... petroleum gas retailers and wholesale purchaser-consumers. 80.32 Section 80.32 Protection of Environment...

  9. 40 CFR 80.32 - Controls applicable to liquefied petroleum gas retailers and wholesale purchaser-consumers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... petroleum gas retailers and wholesale purchaser-consumers. 80.32 Section 80.32 Protection of Environment... Controls and Prohibitions § 80.32 Controls applicable to liquefied petroleum gas retailers and wholesale...,660 gallons of liquefied petroleum gas per month shall equip each pump from which liquefied petroleum...

  10. Computing gas solubility in reservoir waters for environmental chemistry applications: the role of satellite observations

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Lima, I.; Ramos, F.; Bambace, L.; Assireu, A.; Stech, J.; Novo, E.; Lorenzeti, L.

    Atmospheric greenhouse gases concentration has increased during the past centuries basically due to biogenic and pyrogenic anthopogenic emissions Recent investigations have shown that gas emission methane as an important example from tropical hydroelectric reservoirs may comprise a considerable fraction of the total anthropogenic bulk In order to evaluate the concentration of gases of potential importance in environmental chemistry the solubility of such gases have been collected and converted into a uniform format using the Henry s law which states that the solubility of a gas in a liquid is directly proportional to its partial pressure However the Henry s law can be derived as a function of temperature density molar mixing ratio in the aqueous phase and molar mass of water In this paper we show that due to the complex temperature variation and water composition measured in brazilian tropical reservoirs as Serra da Mesa and Manso expressive secular variation on the traditional solubility constants concentration of a species in the aqueous phase by the partial pressure of that species in the gas phase can change in a rate of approximately 30 in 6 decades This estimation comes from a computational analysis of temperature variation measured during 6 months in Serra da Mesa and Manso reservoirs taking into account a simulated density and molar mass variation of the aqueous composition in these environments As an important global change issue from this preliminary analysis we discuss its role in the current estimations on the concentration emission rates

  11. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  12. The early stages of massive star formation: tracing the physical and chemical conditions in hot cores

    NASA Astrophysics Data System (ADS)

    Calcutt, Hannah

    2015-04-01

    Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.

  13. Sample Analysis at Mars Instrument Simulator

    NASA Technical Reports Server (NTRS)

    Benna, Mehdi; Nolan, Tom

    2013-01-01

    The Sample Analysis at Mars Instrument Simulator (SAMSIM) is a numerical model dedicated to plan and validate operations of the Sample Analysis at Mars (SAM) instrument on the surface of Mars. The SAM instrument suite, currently operating on the Mars Science Laboratory (MSL), is an analytical laboratory designed to investigate the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. SAMSIM was developed using Matlab and Simulink libraries of MathWorks Inc. to provide MSL mission planners with accurate predictions of the instrument electrical, thermal, mechanical, and fluid responses to scripted commands. This tool is a first example of a multi-purpose, full-scale numerical modeling of a flight instrument with the purpose of supplementing or even eliminating entirely the need for a hardware engineer model during instrument development and operation. SAMSIM simulates the complex interactions that occur between the instrument Command and Data Handling unit (C&DH) and all subsystems during the execution of experiment sequences. A typical SAM experiment takes many hours to complete and involves hundreds of components. During the simulation, the electrical, mechanical, thermal, and gas dynamics states of each hardware component are accurately modeled and propagated within the simulation environment at faster than real time. This allows the simulation, in just a few minutes, of experiment sequences that takes many hours to execute on the real instrument. The SAMSIM model is divided into five distinct but interacting modules: software, mechanical, thermal, gas flow, and electrical modules. The software module simulates the instrument C&DH by executing a customized version of the instrument flight software in a Matlab environment. The inputs and outputs to this synthetic C&DH are mapped to virtual sensors and command lines that mimic in their structure and connectivity the layout of the instrument harnesses. This module executes, and thus validates, complex command scripts prior to their up-linking to the SAM instrument. As an output, this module generates synthetic data and message logs at a rate that is similar to the actual instrument.

  14. Low Reynolds Number Droplet Combustion In CO2 Enriched Atmospheres In Microgravity

    NASA Technical Reports Server (NTRS)

    Hicks, M. C.

    2003-01-01

    The effect of radiative feedback from the gas phase in micro-gravity combustion processes has been of increasing concern because of the implications in the selection and evaluation of appropriate fire suppressants. The use of CO2, an optically thick gas in the infrared region of the electromagnetic spectrum, has garnered widespread acceptance as an effective fire suppressant for most ground based applications. Since buoyant forces often dominate the flow field in 1-g environments the temperature field between the flame front and the fuel surface is not significantly affected by gas phase radiative absorption and re-emission as these hot gases are quickly swept downstream. However, in reduced gravity environments where buoyant-driven convective flows are negligible and where low-speed forced convective flows may be present at levels where gas phase radiation becomes important, then changes in environment that enhance gas phase radiative effects need to be better understood. This is particularly true in assessments of flammability limits and selection of appropriate fire suppressants for future space applications. In recognition of this, a ground-based investigation has been established that uses a droplet combustion configuration to systematically study the effects of enhanced gas phase radiation on droplet burn rates, flame structure, and radiative output from the flame zone.

  15. Distribution, vertical position and ecological implications of shallow gas in Bahía Blanca estuary (Argentina)

    NASA Astrophysics Data System (ADS)

    Bravo, M. E.; Aliotta, S.; Fiori, S.; Ginsberg, S.

    2018-03-01

    There has been a growing interest in the study of shallow gas due its importance in relation to the marine environment, climate change and human activities. In Bahía Blanca estuary, Argentina, shallow gas has a wide distribution. Acoustic turbidity and blanking are the main seismic evidence for the presence of shallow gas in the estuary. The former prevails in the inner sector of the estuary where gas is either near or in contact with the seabed. Gas deposits are generally associated with paleochannels corresponding to the Holocene paleodeltaic environment. Distribution studies of shallow gas in this estuary are necessary because its presence implies not only a geological risk for harbor activities but also because it may have noxious effects on the marine ecosystem, mainly on benthic communities. The comparison of benthic communities at a gas site (GS) with those at a control site (CS) indicated that gas could generate impoverishment in terms of individuals' abundance (GS: N = 357; CS: N = 724). Also, diversity indices showed great differences in the community structure at each site. This indicates that methane gas may act as a natural disturbance agent in estuarine ecosystems. The presence of gas in seabed sediments must therefore be taken into account when distribution studies are conducted of estuarine benthic communities.

  16. The MICE facility - a new tool to study plant-soil C cycling with a holistic approach.

    PubMed

    Studer, Mirjam S; Künzli, Roland; Maier, Reto; Schmidt, Michael W I; Siegwolf, Rolf T W; Woodhatch, Ivan; Abiven, Samuel

    2017-06-01

    Plant-soil interactions are recognized to play a crucial role in the ecosystem response to climate change. We developed a facility to disentangle the complex interactions behind the plant-soil C feedback mechanisms. The MICE ('Multi-Isotope labelling in a Controlled Environment') facility consists of two climate chambers with independent control of the atmospheric conditions (light, CO 2 , temperature, humidity) and the soil environment (temperature, moisture). Each chamber holds 15 plant-soil systems with hermetical separation of the shared above ground (shoots) from the individual belowground compartments (roots, rhizosphere, soil). Stable isotopes (e.g. 13 C, 15 N, 2 H, 18 O) can be added to either compartment and traced within the whole system. The soil CO 2 efflux rate is monitored, and plant material, leached soil water and gas samples are taken frequently. The facility is a powerful tool to improve our mechanistic understanding of plant-soil interactions that drive the C cycle feedback to climate change.

  17. Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric

    NASA Astrophysics Data System (ADS)

    Ghoneim, M. T.; Hussain, M. M.

    2015-08-01

    Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.

  18. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.

    1996-01-01

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  19. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, R.J.; Basel, R.A.

    1996-03-12

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  20. Uv Spectroscopy on Gas Phase Cu(I)-BIPYRIDYL Complexes

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Christopher, Casey; Weber, J. Mathias

    2015-06-01

    Transition metal complexes with bipyridine ligands are of great interest in metal-organic chemistry, since they are prototypes for many applications in photochemistry and homogeneous catalysis. Under-coordinated bipyridyl complexes are elusive species in the condensed phase, and the ligand-induced changes in electronic structure are of fundamental interest. We present UV photodissociation spectra of mass-selected monocationic copper(I)-bipyridyl complexes [bpy-Cu-L]+ with different ligands (L = H2O, D2, N2, MeOH, Cl). Complexes were prepared via electrospray ionization of copper/bipyridine solutions followed by accumulation and buffer gas cooling in a cryogenic Paul trap. In addition, we show spectra of similar species based on copper oxide, [bpy-CuO-L]+.

  1. Experimental determination of methane dissolution from simulated subsurface oil leakages

    NASA Astrophysics Data System (ADS)

    Sauthoff, W.; Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2013-12-01

    Subsurface oil leakages and increased offshore drilling efforts have raised concern over the fate of hydrocarbon mixtures of oil and gas in ocean environments. Recent wellhead and pipeline failures in the Gulf of Mexico are extreme examples of this problem. Understanding the mechanism and rate of vertical transport of hydrocarbon chemical species is necessary to predict the environmental impact of subsurface leakages. In a series of controlled experiments, we carried out a deep-sea field experiment in Monterey Canyon to investigate the behavior of a gas-saturated liquid hydrocarbon mass rising from the seafloor. Aboard the R/V Rachel Carson, we used the ROV Ventana to transport a laboratory prepared volume of decane (C10H22) saturated with methane gas (CH4) to mimic a subsurface seafloor discharge. We released the oil and gas mixture into a vertically oriented open bottom glass tube followed by methane loss rate measurements both at discrete depths, and during rapid, continuous vehicle ascent from 800 to 100 m water depth to monitor changes in dissolution and bubble nucleation. Using laser Raman techniques and HD video we quantified the chemical state of the hydrocarbon fluid, including rate of methane gas dissolution. The primary methane Raman peak was readily observable within the decane C-H stretching complex. Variation in the amount of gas dissolved in the oil greatly influences oil plume density and in turn oil plume vertical rise rate. Our results show that the rise rate of the hydrocarbon mass significantly exceeds the rate at which the excess methane was lost by dissolution. This result implies that vertical transport of methane in the saturated hydrocarbon liquid phase can greatly exceed a gas bubble plume ascending the water column from a seafloor source. These results and observations may be applicable to improved understanding of the composition, distribution, and environmental fate of leaked hydrocarbon mixtures and inform remediation efforts.

  2. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    NASA Astrophysics Data System (ADS)

    Johnson, M. T.

    2010-10-01

    The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest). Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone), such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases), but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility) are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.

  3. A new MODIS based approach for gas flared volumes estimation: the case of the Val d'Agri Oil Center (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Lacava, T.; Faruolo, M.; Coviello, I.; Filizzola, C.; Pergola, N.; Tramutoli, V.

    2014-12-01

    Gas flaring is one of the most controversial energetic and environmental issues the Earth is facing, moreover contributing to the global warming and climate change. According to the World Bank, each year about 150 Billion Cubic Meter of gas are being flared globally, that is equivalent to the annual gas use of Italy and France combined. Besides, about 400 million tons of CO2 (representing about 1.2% of global CO2 emissions) are added annually into the atmosphere. Efforts to evaluate the impact of flaring on the surrounding environment are hampered by lack of official information on flare locations and volumes. Suitable satellite based techniques could offers a potential solution to this problem through the detection and subsequent mapping of flare locations as well as gas emissions estimation. In this paper a new methodological approach, based on the Robust Satellite Techniques (RST), a multi-temporal scheme of satellite data analysis, was developed to analyze and characterize the flaring activity of the largest Italian gas and oil pre-treatment plant (ENI-COVA) located in Val d'Agri (Basilicata) For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring), being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the RST approach was implemented on 13 years of EOS-MODIS (Earth Observing System - Moderate Resolution Imaging Spectroradiometer) infrared data to detect COVA-related thermal anomalies and to develop a regression model for gas flared volume estimation. The methodological approach, the whole processing chain and the preliminarily achieved results will be shown and discussed in this paper. In addition, the possible implementation of the proposed approach on the data acquired by the SUOMI NPP - VIIRS (National Polar-orbiting Partnership - Visible Infrared Imaging Radiometer Suite) and the expected improvements will be also discussed.

  4. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    PubMed

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Electron attachment to trinitrotoluene (TNT) embedded in He droplets: complete freezing of dissociation intermediates in an extended range of electron energies.

    PubMed

    Mauracher, Andreas; Schöbel, Harald; Ferreira da Silva, Filipe; Edtbauer, Achim; Mitterdorfer, Christian; Denifl, Stephan; Märk, Tilmann D; Illenberger, Eugen; Scheier, Paul

    2009-10-01

    Electron attachment to the explosive trinitrotoluene (TNT) embedded in Helium droplets (TNT@He) generates the non-decomposed complexes (TNT)(n)(-), but no fragment ions in the entire energy range 0-12 eV. This strongly contrasts the behavior of single TNT molecules in the gas phase at ambient temperatures, where electron capture leads to a variety of different fragmentation products via different dissociative electron attachment (DEA) reactions. Single TNT molecules decompose by attachment of an electron at virtually no extra energy reflecting the explosive nature of the compound. The complete freezing of dissociation intermediates in TNT embedded in the droplet is explained by the particular mechanisms of DEA in nitrobenzenes, which is characterized by complex rearrangement processes in the transient negative ion (TNI) prior to decomposition. These mechanisms provide the condition for effective energy withdrawal from the TNI into the dissipative environment thereby completely suppressing its decomposition.

  6. Particles, environments and possible ecologies in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Salpeter, E. E.

    1976-01-01

    The eddy diffusion coefficient is estimated as a function of altitude, separately for the Jovian troposphere and mesosphere. Complex organic molecules produced by the Ly alpha photolysis of methane may possibly be the absorbers in the lower mesosphere which account for the low reflectivity of Jupiter in the near ultraviolet. The optical frequency chromophores are localized at or just below the Jovian tropopause. Candidate chromophore molecules must satisfy the condition that they are produced sufficiently rapidly that convective pyrolysis maintains the observed chromophore optical depth. The condition is satisfied if complex organic chromophores are produced with high quantum yield by NH3 photolysis at less than 2,300 A. Jovian photoautotrophs in the upper troposphere satisfy this condition well, even with fast circulation, assuming only biochemical properties of comparable terrestrial organisms. An organism in the form of a thin, gas filled balloon can grow fast enough to replicate if (1) it can survive at the low mesospheric temperatures, or if (2) photosynthesis occurs in the troposphere.

  7. ECO and RESOLVE: Morphology and Disk Growth in Environmental Context

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Kannappan, Sheila; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David; Hendel, David; Norris, Mark A.; Grogin, Norman A.; RESOLVE Team

    2016-01-01

    We present the first data release of the Environmental COntext (ECO) catalog, which was designed to surround and complement the RESOLVE survey with matched photometry, gas and stellar mass estimates, and environment metrics for ~13,000 galaxies in a >500,000 cubic Mpc volume. In the first results from ECO, we study the phenomenon of galaxy disk growth by considering by-eye and quantitative morphological classifications as well as galaxy environments quantified using group identifications and halo abundance matching (on integrated r-band luminosity) as well as smoothed galaxy density fields. Additionally, we derive HI gas masses and upper limits from ALFALFA data and HI mass estimates from the photometric gas fraction technique. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜10^11.5 Msun, implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early types can regrow late-type disks. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments have more early types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites. This work has been supported through NSF grant AST-0955368.

  8. Reexamination of METMAN, Recommendations on Enhancement of LCVG, and Development of New Concepts for EMU Heat Sink

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1990-01-01

    METMAN is a 41-node transient metabolic computer code developed in 1970 and revised in 1989 by Lockheed Engineering and Sciences, Inc. This program relies on a mathematical model to predict the transient temperature distribution in a body influenced by metabolic heat generation and thermal interaction with the environment. A more complex 315-node model is also available that not only simulates the thermal response of a body exposed to a warm environment, but is also capable of describing the thermal response resulting from exposure to a cold environment. It is important to compare the two models for the prediction of the body's thermal response to metabolic heat generation and exposure to various environmental conditions. Discrepancies between the twi models may warrant an investigation of METMAN to ensure its validity for describing the body's thermal response in space environment. The Liquid Cooling and Ventilation Garment is a subsystem of the Extravehicular Mobility Unit (EMU). This garment, worn under the pressure suit, contains the liquid cooling tubing and gas ventilation manifolds; its purpose is to alleviate or reduce thermal stress resulting from metabolic heat generation. There is renewed interest in modifying this garment through identification of the locus of maximum heat transfer at body-liquid cooled tubing interface. The sublimator is a vital component of the Primary Life Support System (PLSS) in the EMU. It acts as a heat sink to remove heat and humidity from the gas ventilating circuit and the liquid cooling loop of the LCVG. The deficiency of the sublimator is that the ice, used as the heat sink, sublimates into space. There is an effort to minimize water losses in the feedwater circuit of the EMU. This requires developing new concepts to design an alternative heat sink system. Efforts are directed to review and verify the heat transfer formulation of the analytical model employed by METMAN. A conceptual investigation of regenerative non-venting heat-sink subsystem for the EMU is recommended.

  9. Enabling the identification, quantification, and characterization of organics in complex mixtures to understand atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Isaacman, Gabriel Avram

    Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with vacuum ultraviolet (VUV) photo-ionization. Chapters 3 and 4 describe this new analytical technique and its initial application to determine the structures of unknown compounds and formerly unresolvable mixtures, including a complete description of the chemical composition of two common petroleum products related to anthropogenic emissions: diesel fuel and motor oil. The distribution of hydrocarbon isomers in these mixtures - found to be mostly of branched, cyclic, and saturated -- is described with unprecedented detail. Instead of measuring average bulk aerosol properties, the methods developed and applied in this work directly measure the polarity, volatility, and structure of individual components to allow a mechanistic understanding of oxidation processes. Novel characterizations of these complex mixtures are used to elucidate the role of structure and functionality in particle-phase oxidation, including in Chapter 4 the first measurements of relative reaction rates in a complex hydrocarbon particle. Molecular structure is observed to influence particle-phase oxidation in unexpected and important ways, with cyclization decreasing reaction rates by ~30% and branching increasing reaction rates by ~20-50%. The observed structural dependence is proposed to result in compositional changes in anthropogenic organic aerosol downwind of urban areas, which has been confirmed in subsequent work by applying the techniques described here. Measurement of organic aerosol components is extended to ambient environments through the development of instrumentation with the unprecedented capability to measure hourly concentrations and gas/particle partitioning of individual highly oxygenated organic compounds in the atmosphere. Chapters 5 and 6 describe development of new procedures and hardware for the calibration and analysis of oxygenates using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG), a custom instrument for in situ quantification of gas- and particle-phase organic compounds in the atmosphere. High time resolution measurement of oxygenated compounds is achieved through a reproducible and quantitative methodology for in situ "derivatization" -- replacing highly polar functional groups that cannot be analyzed by traditional gas chromatography with less polar groups. Implementation of a two-channel sampling system for the simultaneous collection of particle-phase and total gas-plus-particle phase samples allows for the first direct measurements of gas/particle partitioning in the atmosphere, significantly advancing the study of atmospheric composition and variability, as well as the processes governing condensation and re-volatilization. This work presents the first in situ measurements of a large suite of highly oxygenated biogenic oxidation products in both the gas- and particle-phase. Isoprene, the most ubiquitous biogenic emission, oxidizes to form 2-methyltetrols and C5 alkene triols, while α-pinene, the most common monoterpene, forms pinic, pinonic, hydroxyglutaric, and other acids. These compounds are reported in Chapter 7 with unprecedented time resolution and are shown for the first time to have a large gas-phase component, contrary to typical assumptions. Hourly comparisons of these products with anthropogenic aerosol components elucidate the interaction of human and natural emissions at two rural sites: the southeastern, U.S. and Amazonia, Brazil. Anthropogenic influence on SOA formation is proposed to occur through the increase in liquid water caused by anthropogenic sulfate. Furthermore, these unparalleled observations of gas/particle partitioning of biogenic oxidation products demonstrate that partitioning of oxygenates is unexpectedly independent of volatility: many volatile, highly oxygenated compounds have a large particle-phase component that is poorly described by traditional models. These novel conclusions are reached in part by applying the new frameworks developed in previous chapters to understand the properties of unidentified compounds, demonstrating the importance of detailed characterization of atmospheric organic mixtures. Comprehensive analysis of anthropogenic and biogenic emissions and oxidation product mixtures is coupled in this work with high time-resolution measurement of individual organic components to yield significant insights into the transformations of organic aerosols. Oxidation chemistry is observed in both laboratory and field settings to depend on molecular properties, volatility, and atmospheric composition. However, this work demonstrates that these complex processes can be understood through the quantification of individual known and unidentified compounds, combined with their classification into descriptive frameworks.

  10. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing somore » using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.« less

  11. Modeling radionuclide migration from underground nuclear explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Dylan Robert; Stauffer, Philip H.; Viswanathan, Hari S.

    2017-03-06

    The travel time of radionuclide gases to the ground surface in fracture rock depends on many complex factors. Numerical simulators are the most complete repositories of knowledge of the complex processes governing radionuclide gas migration to the ground surface allowing us to verify conceptualizations of physical processes against observations and forecast radionuclide gas travel times to the ground surface and isotopic ratios

  12. Crustal fingering: solidification on a viscously unstable interface

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Jimenez-Martinez, Joaquin; Cueto-Felgueroso, Luis; Porter, Mark; Juanes, Ruben

    2017-11-01

    Motivated by the formation of gas hydrates in seafloor sediments, here we study the volumetric expansion of a less viscous gas pocket into a more viscous liquid when the gas-liquid interfaces readily solidify due to hydrate formation. We first present a high-pressure microfluidic experiment to study the depressurization-controlled expansion of a Xenon gas pocket in a water-filled Hele-Shaw cell. The evolution of the pocket is controlled by three processes: (1) volumetric expansion of the gas; (2) rupturing of existing hydrate films on the gas-liquid interface; and (3) formation of new hydrate films. These result in gas fingering leading to a complex labyrinth pattern. To reproduce these observations, we propose a phase-field model that describes the formation of hydrate shell on viscously unstable interfaces. We design the free energy of the three-phase system to rigorously account for interfacial effects, gas compressibility and phase transitions. We model the hydrate shell as a highly viscous fluid with shear-thinning rheology to reproduce shell-rupturing behavior. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex crustal fingering patterns as a result of gas expansion dynamics modulated by hydrate growth at the interface.

  13. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  14. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  15. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  16. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  17. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  18. Water use in forest canopy black cherry trees and its relationship to leaf gas exchange and environment

    Treesearch

    B. J. Joyce; K. C. Steiner; J. M. Skelly

    1996-01-01

    Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.

  19. Analysis of mesoscopic attenuation in gas-hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Rubino, J. G.; Ravazzoli, C. L.; Santos, J. E.

    2007-05-01

    Several authors have shown that seismic wave attenuation combined with seismic velocities constitute a useful geophysical tool to infer the presence and amounts of gas hydrates lying in the pore space of the sediments. However, it is still not fully understood the loss mechanism associated to the presence of the hydrates, and most of the works dealing with this problem focuse on macroscopic fluid flow, friction between hydrates and sediment matrix and squirt flow. It is well known that an important cause of the attenuation levels observed in seismic data from some sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths. In order to analyze this effect in heterogeneous gas-hydrate bearing sediments, we developed a finite-element procedure to obtain the effective complex modulus of an heterogeneous porous material containing gas hydrates in its pore space using compressibility tests at different oscillatory frequencies in the seismic range. The complex modulus were obtained by solving Biot's equations of motion in the space-frequency domain with appropriate boundary conditions representing a gedanken laboratory experiment measuring the complex volume change of a representative sample of heterogeneous bulk material. This complex modulus in turn allowed us to obtain the corresponding effective phase velocity and quality factor for each frequency and spatial gas hydrate distribution. Physical parameters taken from the Mallik 5L-38 Gas Hydrate Research well (Mackenzie Delta, Canada) were used to analyze the mesoscopic effects in realistic hydrated sediments.

  20. The role of meat in strategies to achieve a sustainable diet lower in greenhouse gas emissions: A review.

    PubMed

    Hyland, John J; Henchion, Maeve; McCarthy, Mary; McCarthy, Sinéad N

    2017-10-01

    Food consumption is responsible for a considerable proportion of greenhouse gas emissions (GHGE). Hence, individual food choices have the potential to substantially influence both public health and the environment. Meat and animal products are relatively high in GHGE and therefore targeted in efforts to reduce dietary emissions. This review first highlights the complexities regarding sustainability in terms of meat consumption and thereafter discusses possible strategies that could be implemented to mitigate its climatic impact. It outlines how sustainable diets are possible without the elimination of meat. For instance, overconsumption of food in general, beyond our nutritional requirements, was found to be a significant contributor of emissions. Non-voluntary and voluntary mitigation strategies offer potential to reduce dietary GHGE. All mitigation strategies require careful consideration but on-farm sustainable intensification perhaps offers the most promise. However, a balance between supply and demand approaches is encouraged. Health should remain the overarching principle for policies and strategies concerned with shifting consumer behaviour towards sustainable diets. Copyright © 2017. Published by Elsevier Ltd.

  1. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    PubMed

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Low-energy electron-induced dissociation in gas-phase nicotine, pyridine, and methyl-pyrrolidine

    NASA Astrophysics Data System (ADS)

    Ryszka, Michal; Alizadeh, Elahe; Li, Zhou; Ptasińska, Sylwia

    2017-09-01

    Dissociative electron attachment to nicotine, pyridine, and N-methyl-pyrrolidine was studied in the gas phase in order to assess their stability with respect to low-energy electron interactions. Anion yield curves for different products at electron energies ranging from zero to 15 eV were measured, and the molecular fragmentation pathways were proposed. Nicotine does not form a stable parent anion or a dehydrogenated anion, contrary to other biological systems. However, we have observed complex dissociation pathways involving fragmentation at the pyrrolidine side accompanied by isomerization mechanisms. Combining structure optimization and enthalpy calculations, performed with the Gaussian09 package, with the comparison with a deuterium-labeled N-methyl-d3-pyrrolidine allowed for the determination of the fragmentation pathways. In contrast to nicotine and N-methylpyrrolidine, the dominant pathway in dissociative electron attachment to pyridine is the loss of hydrogen, leading to the formation of an [M—H]- anion. The presented results provide important new information about the stability of nicotine and its constituent parts and contribute to a better understanding of the fragmentation mechanisms and their effects on the biological environment.

  3. Simulate different environments TDLAS On the analysis of the test signal strength

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Tao; Jia, Xiaodong

    2014-12-01

    TDLAS system is the use of the wavelength tuning characteristics of the laser diode, for detecting the absorption spectrum of the gas absorption line. Detecting the gas space, temperature, pressure and flow rate and concentration. The use of laboratory techniques TDLAS gas detection, experimental simulation engine combustion water vapor and smoke. using an optical lens system receives the signal acquisition and signal interference test analysis. Analog water vapor and smoke in two different environments in the sample pool interference. In both experiments environmental interference gas absorption in the optical signal acquisition, signal amplitude variation analysis, and records related to the signal data. In order to study site conditions in the engine combustion process for signal acquisition provides an ideal experimental data .

  4. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, D.K.; Bechinger, C.S.; Tracy, C.E.

    1998-01-13

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.

  5. Gas tungsten arc welding in a microgravity environment: Work done on GAS payload G-169

    NASA Technical Reports Server (NTRS)

    Welcher, Blake A.; Kolkailah, Faysal A.; Muir, Arthur H., Jr.

    1987-01-01

    GAS payload G-169 is discussed. G-169 contains a computer-controlled Gas Tungsten Arc Welder. The equipment design, problem analysis, and problem solutions are presented. Analysis of data gathered from other microgravity arc welding and terrestrial Gas Tungsten Arc Welding (GTAW) experiments are discussed in relation to the predicted results for the GTAW to be performed in microgravity with payload G-169.

  6. Exploring the Photoreduction of Au(III) Complexes in the Gas-Phase

    NASA Astrophysics Data System (ADS)

    Marcum, Jesse C.; Kaufman, Sydney H.; Weber, J. Mathias

    2010-06-01

    We have used photodissociation spectroscopy to probe the electronic structure and photoreduction of Au(III) in gas-phase complexes containing Cl- and OH-. The gas-phase electronic spectrum of [AuCl_4]- closely resembles the aqueous solution spectrum, showing a lack of strong solvatochromic shifts. Substitution of Cl- ligands with OH- results in a strong blue shift, in agreement with ligand-field theory. Upon excitation, [AuCl_4]- can dissociate by loss of either one or two neutral Cl atoms, resulting in the reduction of gold from Au(III) to Au(II) and Au(I) respectively. The hydroxide substituted complex, [AuCl_2(OH)_2]-, demonstrates similar behavior but the only observable fragment channel is the loss of two neutral OH ligands, leading only to Au(I).

  7. Translations on USSR Resources, Number 763

    DTIC Science & Technology

    1978-01-06

    supplying gas pumping units, pipes, and other equipment. 33 Shatlyk . Complex Gas Preparation Unit i 1 * Medvezhe. Gas Prepara- tion Block. Thus...handled satisfactorily. . Shatlyk . Turkmengazprom. Central Control Station Combine with Head Facilities Operating Room. By means of the Impul’s-2 remote

  8. Unravelling the chemical characteristics of YSOs

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine F.

    1999-10-01

    The formation of stars is accompanied by orders of magnitude changes in the physical conditions, with densities in the envelopes and disks increasing from 104 cm-3 to > 1013 cm-3 and temperatures from ~ 10 K in the cold quiescent gas to 10,000 K in shocked regions. The abundances and excitation of the various molecules respond to these changes, and are therefore excellent probes of the physical evolution of YSOs. Moreover, a comprehensive inventory of the chemical composition of envelopes and disks at different evolutionary stages is essential to study the chemistry of matter as it is incorporated into new solar systems. Recent observations of the envelopes of YSOs using single-dish telescopes and millimeter interferometers clearly reveal the potential of submillimeter lines to probe these physical and chemical changes. However, the existing data generally lack the spatial resolution to separate the different physical components, such as the warm inner envelope or `hot core', the region of interaction of the outflow with the envelope and any possible circumstellar disk. ALMA will be essential to provide an `unblurred' view of the YSO environment and unravel the chemical evolution during star formation. In this talk, an overview will be given of recent single-dish and interferometer results of the chemistry in the envelopes and disks around low- and high-mass young stellar objects. Together with ISO data on solid-state material, these observations lead to a chemical scenario in which both gas-phase and gas-grain chemistry (in particular freeze-out and evaporation) play an important role. The evaporated molecules drive a rich chemistry in the warm gas, which can result in complex organic molecules. The potential of ALMA to test chemical theories and determine the composition of gas and dust as it enters forming planetary systems will be illustrated.

  9. Ambient air/near-field measurements of methane and Volatile Organic Compounds (VOCs) from a natural gas facility in Northern Europe

    NASA Astrophysics Data System (ADS)

    Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod

    2015-04-01

    Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.

  10. The Keck OSIRIS Nearby AGN Survey: Tracing Inflow within the Central 200 pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    2016-08-01

    In an effort to identify the fundamental processes driving feeding and feedback in AGN we turn to local Seyfert galaxies and rely on a multi-wavelength approach. With the integral field unit OSIRIS and adaptive optics we characterize the nuclear stars and gas down to scales of 5-30 parsecs in a sample of 40 Seyfert galaxies with the Keck OSIRIS Nearby AGN (KONA) survey. The complex gas kinematics in these near-IR data are interpreted using an integrative approach through comparison with data available at a range of wavelengths. We present first results from the survey with a focus on work aimed at constraining the mechanism(s) driving inflow of material within the central 200 pc. Particularly useful in the identification of inflow mechanisms (e.g. nuclear spiral, external accretion) is spatial correlation of the molecular gas distribution and kinematics with dust features revealed in HST imaging (optical and near-IR). Also informative is comparison with X-ray emission to identify locations likely influenced by interactions with outflows. The stellar kinematics in the sample galaxies (traced by CO bandheads at 2.3 microns) indicate a stellar population within the central few 100 parsecs in circular rotation, and in the majority of the galaxies the molecular gas (traced by H2 emission at 2.1218 microns) is found to have a rotating component co-spatial with the stellar disk. A significant fraction of the galaxies also exhibit kinematic signatures of inflow superimposed on this disk rotation, with inflow driven by secular and non-secular processes identified. We explore statistical trends of the nuclear stellar and molecular gas properties, including primary fueling mechanism, with Seyfert type, AGN luminosity, and host environment with the goal of disentangling which properties are fundamental to the nature of the AGN.

  11. A tiered observational system for anthropogenic methane emissions

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual methane point sources associated with oil and gas production and distribution, feedlots, and urban landfills in California.

  12. A Complex Organic Slushy Bathing Low-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Drozdovskaya, Maria; Walsh, Catherine; Visser, Ruud; Harsono, Daniel; van Dishoeck, Ewine

    2015-08-01

    Complex organic molecules are ubiquitous companions of young forming stars. They were first observed in hot cores surrounding high-mass protostars [e.g., 1], but have since also been detected in the environs of several low-mass counterparts [e.g., 2]. Recent studies have shown that colder envelopes and positions with impinging outflows may also glow with emission from complex organic species [e.g., 3, 4]. For this meeting, I would like to present physicochemical modeling results on the synthesis of complex organics in an envelope-cavity system that is subject to non-thermal processing. This includes wavelength-dependent radiative transfer calculations with RADMC [5] and a comprehensive gas-grain chemical network [6]. The results show that the morphology of such a system delineates three distinct regions: the cavity wall layer with time-dependent and species-variant enhancements; a torus rich in complex organic ices, but not reflected in gas-phase abundances; and the remaining outer envelope abundant in simpler solid and gaseous molecules. Within the adopted paradigm, complex organic molecules are demonstrated to have unique lifetimes and be grouped into early and late species [7]. Key chemical processes for forming and destroying complex organic molecules will be discussed. In addition, the results of adding newly experimentally verified routes [8] into the existing chemical networks will be shown.[1] Blake G. A., Sutton E. C., Masson C. R., Phillips T. G., 1987, ApJ, 315, 621[2] Jørgensen J. K., Favre C., Bisschop S. E., Bourke T. L., van Dishoeck E. F., Schmalzl M., 2012, ApJ, 757, L4[3] Arce H. G., Santiago-García J., Jørgensen J. K., Tafalla M., Bachiller R., 2008, ApJ, 681, L21[4] Öberg K. I., Bottinelli S., Jørgensen J. K., van Dishoeck E. F., 2010, ApJ, 716, 825[5] Dullemond C. P., Dominik C., 2004, A&A, 417, 159[6] Walsh C., Millar T. J., Nomura H., Herbst E., Widicus Weaver S., Aikawa Y., Laas J. C., Vasyunin A. I., 2014, A&A, 563, A33[7] Drozdovskaya M. N., Walsh C., Visser R., Harsono D., van Dishoeck E. F., MNRAS, subm.[8] Fedoseev G., Cuppen H. M., Ioppolo S., Lamberts T., Linnartz H., 2015, MNRAS, 448, 128

  13. Four-fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumov-Gerasimenko near perihelion

    NASA Astrophysics Data System (ADS)

    Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas I.; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael R.; Bieler, Andre; Hansen, Kenneth C.; Shou, Yinsi; Altwegg, Kathrin

    2016-05-01

    The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination-driven neutral gas outflow, and comet CG with a realistic shape model and illumination-driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination-driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.

  14. 40 CFR 600.314-86 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-86 Section 600.314-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...

  15. 40 CFR 600.314-01 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economies for comparable automobiles. 600.314-01 Section 600.314-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...

  16. 40 CFR 600.314-08 - Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Updating label values, annual fuel cost, Gas Guzzler Tax, and range of fuel economy for comparable automobiles. 600.314-08 Section 600.314-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR...

  17. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel, and natural gas dual fuel vehicle configurations. 600.206-93 Section 600.206-93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY ...

  18. 40 CFR 65.115 - Standards: Closed vent systems and control devices; or emissions routed to a fuel gas system or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Closed vent systems and control devices; or emissions routed to a fuel gas system or process. 65.115 Section 65.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.115 Standards:...

  19. Atmospheric photochemistry at a fatty acid-coated air-water interface

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  20. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

Top