Sample records for complex geologic setting

  1. A multiple-point geostatistical approach to quantifying uncertainty for flow and transport simulation in geologically complex environments

    NASA Astrophysics Data System (ADS)

    Cronkite-Ratcliff, C.; Phelps, G. A.; Boucher, A.

    2011-12-01

    In many geologic settings, the pathways of groundwater flow are controlled by geologic heterogeneities which have complex geometries. Models of these geologic heterogeneities, and consequently, their effects on the simulated pathways of groundwater flow, are characterized by uncertainty. Multiple-point geostatistics, which uses a training image to represent complex geometric descriptions of geologic heterogeneity, provides a stochastic approach to the analysis of geologic uncertainty. Incorporating multiple-point geostatistics into numerical models provides a way to extend this analysis to the effects of geologic uncertainty on the results of flow simulations. We present two case studies to demonstrate the application of multiple-point geostatistics to numerical flow simulation in complex geologic settings with both static and dynamic conditioning data. Both cases involve the development of a training image from a complex geometric description of the geologic environment. Geologic heterogeneity is modeled stochastically by generating multiple equally-probable realizations, all consistent with the training image. Numerical flow simulation for each stochastic realization provides the basis for analyzing the effects of geologic uncertainty on simulated hydraulic response. The first case study is a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. The SNESIM algorithm is used to stochastically model geologic heterogeneity conditioned to the mapped surface geology as well as vertical drill-hole data. Numerical simulation of groundwater flow and contaminant transport through geologic models produces a distribution of hydraulic responses and contaminant concentration results. From this distribution of results, the probability of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary. The second case study considers a characteristic lava-flow aquifer system in Pahute Mesa, Nevada. A 3D training image is developed by using object-based simulation of parametric shapes to represent the key morphologic features of rhyolite lava flows embedded within ash-flow tuffs. In addition to vertical drill-hole data, transient pressure head data from aquifer tests can be used to constrain the stochastic model outcomes. The use of both static and dynamic conditioning data allows the identification of potential geologic structures that control hydraulic response. These case studies demonstrate the flexibility of the multiple-point geostatistics approach for considering multiple types of data and for developing sophisticated models of geologic heterogeneities that can be incorporated into numerical flow simulations.

  2. Βedrock instability of underground storage systems in the Czech Republic, Central Europe

    NASA Astrophysics Data System (ADS)

    Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir

    2016-06-01

    Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.

  3. New Age of 3D Geological Modelling or Complexity is not an Issue Anymore

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Aleksandr

    2017-04-01

    Geological model has a significant value in almost all types of researches related to regional mapping, geodynamics and especially to structural and resource geology of mineral deposits. Well-developed geological model must take into account all vital features of modelling object without over-simplification and also should adequately represent the interpretation of the geologist. In recent years with the gradual exhaustion deposits with relatively simple morphology geologists from all over the world are faced with the necessity of building the representative models for more and more structurally complex objects. Meanwhile, the amount of tools used for that has not significantly changed in the last two-three decades. The most widespread method of wireframe geological modelling now was developed in 1990s and is fully based on engineering design set of instruments (so-called CAD). Strings and polygons representing the section-based interpretation are being used as an intermediate step in the process of wireframes generation. Despite of significant time required for this type of modelling, it still can provide sufficient results for simple and medium-complexity geological objects. However, with the increasing complexity more and more vital features of the deposit are being sacrificed because of fundamental inability (or much greater time required for modelling) of CAD-based explicit techniques to develop the wireframes of the appropriate complexity. At the same time alternative technology which is not based on sectional approach and which uses the fundamentally different mathematical algorithms is being actively developed in the variety of other disciplines: medicine, advanced industrial design, game and cinema industry. In the recent years this implicit technology started to being developed for geological modelling purpose and nowadays it is represented by very powerful set of tools that has been integrated in almost all major commercial software packages. Implicit modelling allows to develop geological models that really correspond with complicated geological reality. Models can include fault blocking, complex structural trends and folding; can be based on excessive input dataset (like lots of drilling on the mining stage) or, on the other hand, on a quite few drillholes intersections with significant input from geological interpretation of the deposit. In any case implicit modelling, if is used correctly, allows to incorporate the whole batch of geological data and relatively quickly get the easily adjustable, flexible and robust geological wireframes that can be used as a reliable foundation on the following stages of geological investigations. In SRK practice nowadays almost all the wireframe models used for structural and resource geology are developed with implicit modelling tools which significantly increased the speed and quality of geological modelling.

  4. Measuring novices' field mapping abilities using an in-class exercise based on expert task analysis

    NASA Astrophysics Data System (ADS)

    Caulkins, J. L.

    2010-12-01

    We are interested in developing a model of expert-like behavior for improving the teaching methods of undergraduate field geology. Our aim is to assist students in mastering the process of field mapping more efficiently and effectively and to improve their ability to think creatively in the field. To examine expert-mapping behavior, a cognitive task analysis was conducted with expert geologic mappers in an attempt to define the process of geologic mapping (i.e. to understand how experts carry out geological mapping). The task analysis indicates that expert mappers have a wealth of geologic scenarios at their disposal that they compare against examples seen in the field, experiences that most undergraduate mappers will not have had. While presenting students with many geological examples in class may increase their understanding of geologic processes, novices still struggle when presented with a novel field situation. Based on the task analysis, a short (45-minute) paper-map-based exercise was designed and tested with 14 pairs of 3rd year geology students. The exercise asks students to generate probable geologic models based on a series of four (4) data sets. Each data set represents a day’s worth of data; after the first “day,” new sheets simply include current and previously collected data (e.g. “Day 2” data set includes data from “Day 1” plus the new “Day 2” data). As the geologic complexity increases, students must adapt, reject or generate new geologic models in order to fit the growing data set. Preliminary results of the exercise indicate that students who produced more probable geologic models, and produced higher ratios of probable to improbable models, tended to go on to do better on the mapping exercises at the 3rd year field school. These results suggest that those students with more cognitively available geologic models may be more able to use these models in field settings than those who are unable to draw on these models for whatever reason. Giving students practice at generating geologic models to explain data may be useful in preparing our students for field mapping exercises.

  5. Southern California Earthquake Center Geologic Vertical Motion Database

    NASA Astrophysics Data System (ADS)

    Niemi, Nathan A.; Oskin, Michael; Rockwell, Thomas K.

    2008-07-01

    The Southern California Earthquake Center Geologic Vertical Motion Database (VMDB) integrates disparate sources of geologic uplift and subsidence data at 104- to 106-year time scales into a single resource for investigations of crustal deformation in southern California. Over 1800 vertical deformation rate data points in southern California and northern Baja California populate the database. Four mature data sets are now represented: marine terraces, incised river terraces, thermochronologic ages, and stratigraphic surfaces. An innovative architecture and interface of the VMDB exposes distinct data sets and reference frames, permitting user exploration of this complex data set and allowing user control over the assumptions applied to convert geologic and geochronologic information into absolute uplift rates. Online exploration and download tools are available through all common web browsers, allowing the distribution of vertical motion results as HTML tables, tab-delimited GIS-compatible text files, or via a map interface through the Google Maps™ web service. The VMDB represents a mature product for research of fault activity and elastic deformation of southern California.

  6. Geoscience techniques for engineering assessment of Oman to India pipeline route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baerenwald, P.D.; Mullee, J.E.; Campbell, K.J.

    1996-12-31

    A variety of geoscience techniques were used to define soil conditions and evaluate geologic processes in order to develop design criteria for complex segments of the proposed Oman to Indian pipeline route. Geophysical survey data, seafloor cores, ROV observation of the seafloor, and oceanographic measurements were the principal field data collected. Geotechnical soil testing, and X-ray radiography, detailed geologic logging, and C-14 age dating of cores were carried out. The diverse sets of field data and lab test results were integrated by a multi-disciplined team of geoscientists and engineers to develop geologic and soil models, soil design criteria, a turbidmore » flow model, and seafloor stability models. The integrated approach used here is applicable to other complex areas where seafloor stability needs to be assessed or design criteria need to be developed for active geologic processes.« less

  7. Importance of geology to fisheries management: Examples from the northeastern Gulf of Mexico

    USGS Publications Warehouse

    Scanlon, Kathryn M.; Koenig, C.C.; Coleman, F.C.; Miller, M.

    2003-01-01

    Seafloor mapping of shelf-edge habitats in the northeastern Gulf of Mexico demonstrates how sidescan-sonar imagery, seismic-reflection profiling, video data, geologic mapping, sediment sampling, and understanding the regional geologic history can enhance, support, and guide traditional fisheries research and management. New data from the Madison Swanson and Steamboat Lumps Marine Reserves reveal complex benthic habitats consisting of high-relief calcareous pinnacles, low-relief karstic hardbottom, rocky outcrops several kilometers in length, and variable thickness of fine-grained and apparently mobile coarse-grained sediments. Our data also show that certain fish alter the landscape by clearing sediment from hardbottom areas (e.g., red grouper Epinephelus morio) and by burrowing extensively in fine-grained sediment (e.g., tilefish Lopholatilus chamaeleonticeps). The seafloor imagery and geologic maps show that (a) sea level fluctuations played a dominant role in the development of the present-day regional geology, and (b) habitats (and benthic communities) are tied closely to geologic character. Understanding the geologic setting allowed for efficient and representative sampling of the biology. The geologic data can be used to set meaningful boundaries for fishery reserves and to help predict habitats in areas that are not well mapped. This interdisciplinary work added value to traditional research disciplines by providing management with integrated tools to make better decisions. 

  8. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  9. The topology of geology 1: Topological analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Ogarko, Vitaliy; Wellmann, J. Florian; Pakyuz-Charrier, Evren

    2016-10-01

    Topology has been used to characterise and quantify the properties of complex systems in a diverse range of scientific domains. This study explores the concept and applications of topological analysis in geology. We have developed an automatic system for extracting first order 2D topological information from geological maps, and 3D topological information from models built with the Noddy kinematic modelling system, and equivalent analyses should be possible for other implicit modelling systems. A method is presented for describing the spatial and temporal topology of geological models using a set of adjacency relationships that can be expressed as a topology network, thematic adjacency matrix or hive diagram. We define three types of spatial topology (cellular, structural and lithological) that allow us to analyse different aspects of the geology, and then apply them to investigate the geology of the Hamersley Basin, Western Australia.

  10. Genetic approach to reconstruct complex regional geological setting of the Baltic basin in 3D geological model

    NASA Astrophysics Data System (ADS)

    Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.

    2012-04-01

    Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.

  11. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  12. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 2: A simulated case study in the North German Basin

    NASA Astrophysics Data System (ADS)

    Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target variables can be considered, such as the volumetric leakage rate into shallow aquifers or the pressure buildup in the injection horizon. Our results show that simplified models, which neglect variable-density salt transport, can reach an acceptable agreement with more complex models.

  13. A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings

    USGS Publications Warehouse

    Borrok, D.; Turner, B.F.; Fein, J.B.

    2005-01-01

    Adsorption onto bacterial cell walls can significantly affect the speciation and mobility of aqueous metal cations in many geologic settings. However, a unified thermodynamic framework for describing bacterial adsorption reactions does not exist. This problem originates from the numerous approaches that have been chosen for modeling bacterial surface protonation reactions. In this study, we compile all currently available potentiometric titration datasets for individual bacterial species, bacterial consortia, and bacterial cell wall components. Using a consistent, four discrete site, non-electrostatic surface complexation model, we determine total functional group site densities for all suitable datasets, and present an averaged set of 'universal' thermodynamic proton binding and site density parameters for modeling bacterial adsorption reactions in geologic systems. Modeling results demonstrate that the total concentrations of proton-active functional group sites for the 36 bacterial species and consortia tested are remarkably similar, averaging 3.2 ?? 1.0 (1??) ?? 10-4 moles/wet gram. Examination of the uncertainties involved in the development of proton-binding modeling parameters suggests that ignoring factors such as bacterial species, ionic strength, temperature, and growth conditions introduces relatively small error compared to the unavoidable uncertainty associated with the determination of cell abundances in realistic geologic systems. Hence, we propose that reasonable estimates of the extent of bacterial cell wall deprotonation can be made using averaged thermodynamic modeling parameters from all of the experiments that are considered in this study, regardless of bacterial species used, ionic strength, temperature, or growth condition of the experiment. The average site densities for the four discrete sites are 1.1 ?? 0.7 ?? 10-4, 9.1 ?? 3.8 ?? 10-5, 5.3 ?? 2.1 ?? 10-5, and 6.6 ?? 3.0 ?? 10-5 moles/wet gram bacteria for the sites with pKa values of 3.1, 4.7, 6.6, and 9.0, respectively. It is our hope that this thermodynamic framework for modeling bacteria-proton binding reactions will also provide the basis for the development of an internally consistent set of bacteria-metal binding constants. 'Universal' constants for bacteria-metal binding reactions can then be used in conjunction with equilibrium constants for other important metal adsorption and complexation reactions to calculate the overall distribution of metals in realistic geologic systems.

  14. Interactive Visualization to Advance Earthquake Simulation

    NASA Astrophysics Data System (ADS)

    Kellogg, Louise H.; Bawden, Gerald W.; Bernardin, Tony; Billen, Magali; Cowgill, Eric; Hamann, Bernd; Jadamec, Margarete; Kreylos, Oliver; Staadt, Oliver; Sumner, Dawn

    2008-04-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.

  15. Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas

    2017-12-01

    Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.

  16. NACSN, note 67--Application for revision of Articles 36 and 37, Lithodemic units of the North American stratigraphic code

    USGS Publications Warehouse

    Easton, Robert M.; Edwards, Lucy E.; Orndorff, Randall C.; Duguet, Manuel; Ferrusquia-Villafranca, Ismael

    2015-01-01

    Currently the North American Stratigraphic Code, (NACSN 2005, Article 37) sets restrictions on the use of the term “complex” for lithodemic units. With exceptions for “volcanic complex” and “structural complex,” a complex must consist of more than one genetic class of rock (i.e., sedimentary, igneous or metamorphic). Thus, the use of the term “complex” to describe masses of intrusive rocks is not allowed. Asimilar restriction is also included in a recent British Geological Survey proposal for using lithodemic units to classify igneous rocks (Gillespie et al. 2008).Currently the North American Stratigraphic Code, (NACSN 2005, Article 37) sets restrictions on the use of the term “complex” for lithodemic units. With exceptions for “volcanic complex” and “structural complex,” a complex must consist of more than one genetic class of rock (i.e., sedimentary, igneous or metamorphic). Thus, the use of the term “complex” to describe masses of intrusive rocks is not allowed. Asimilar restriction is also included in a recent British Geological Survey proposal for using lithodemic units to classify igneous rocks (Gillespie et al. 2008).

  17. A multiple-point geostatistical method for characterizing uncertainty of subsurface alluvial units and its effects on flow and transport

    USGS Publications Warehouse

    Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.

    2012-01-01

    This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.

  18. Strabo: An App and Database for Structural Geology and Tectonics Data

    NASA Astrophysics Data System (ADS)

    Newman, J.; Williams, R. T.; Tikoff, B.; Walker, J. D.; Good, J.; Michels, Z. D.; Ash, J.

    2016-12-01

    Strabo is a data system designed to facilitate digital storage and sharing of structural geology and tectonics data. The data system allows researchers to store and share field and laboratory data as well as construct new multi-disciplinary data sets. Strabo is built on graph database technology, as opposed to a relational database, which provides the flexibility to define relationships between objects of any type. This framework allows observations to be linked in a complex and hierarchical manner that is not possible in traditional database topologies. Thus, the advantage of the Strabo data structure is the ability of graph databases to link objects in both numerous and complex ways, in a manner that more accurately reflects the realities of the collecting and organizing of geological data sets. The data system is accessible via a mobile interface (iOS and Android devices) that allows these data to be stored, visualized, and shared during primary collection in the field or the laboratory. The Strabo Data System is underlain by the concept of a "Spot," which we define as any observation that characterizes a specific area. This can be anything from a strike and dip measurement of bedding to cross-cutting relationships between faults in complex dissected terrains. Each of these spots can then contain other Spots and/or measurements (e.g., lithology, slickenlines, displacement magnitude.) Hence, the Spot concept is applicable to all relationships and observation sets. Strabo is therefore capable of quantifying and digitally storing large spatial variations and complex geometries of naturally deformed rocks within hierarchically related maps and images. These approaches provide an observational fidelity comparable to a traditional field book, but with the added benefits of digital data storage, processing, and ease of sharing. This approach allows Strabo to integrate seamlessly into the workflow of most geologists. Future efforts will focus on extending Strabo to other sub-disciplines as well as developing a desktop system for the enhanced collection and organization of microstructural data.

  19. Tectono-Magmatic Cycles and Geodynamic Settings of Ore-Bearing System Formation in the Southern Cis-Argun Region

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Andreeva, O. V.; Poluektov, V. V.; Kovalenko, D. V.

    2017-11-01

    The ore-bearing geological structural units of the southern Cis-Argun region are considered in the context of varying geodynamic regimes related to the Proterozoic, Caledonian, and Hercynian tectono-magmatic cycles, as well as during the Late Mesozoic within-plate tectono-magmatic activity, which give rise to the formation of subalkaline igneous rocks of the Shakhtama Complex with Au, Cu-Mo, Pb-Zn-Ag metallogenic specialization; volcano-plutonic complexes of calderas with Mo-U, Pb-Zn, and fluorite ores; and rare-metal granite of the Kukulbei Complex with a Sn-W-Li-Ta spectrum of mineralization. The comparative geochemical characteristics inherent to Mesozoic ore-bearing felsic igneous rocks are considered, as well as geodynamic settings of ore-bearing fluido-magmatic systems, taking into consideration new data on geochemistry of bimodal trachybasalt-trachydacite series and rhyolite of the Turga Series, which fill the Strel'tsovka Caldera, whose trend of evolution is defined as a reference for geological history of the studied territory. The geodynamic conditions, phase composition, and geochemistry of rocks along with metallogenic specialization of Mesozoic volcano-plutonic complexes of southern Cis-Argun region are close to those of the Great Khingan Belt in northeastern China and eastern Mongolia.

  20. Joint and constrained inversions in a complex geological setting, example from the Skellefte District

    NASA Astrophysics Data System (ADS)

    Garcia Juanatey, M. A.; Lelievre, P. G.; Juhlin, C.; Farquharson, C. G.

    2015-12-01

    The Skellefte District is a very rich metallogenic province in northern Sweden. It is of Paleoproterozoic age and consists of mainly metavolcanic rocks. Even though the district has been intensively studied, many questions still remain about its emplacement. The complicated structural setting, and the great extension of post-glacial sediments, pose a challenge for geophysical and geological investigations. Most recent research efforts in the area have been directed at the construction of 3D geological models through the combined interpretation of independently modeled geophysical and geological data. Our aim is to take these studies further and derive, through joint and constraint inversions, a common 3D earth model consistent with all the available data. By integrating the datasets already at the modelling stage we intend to reduce significantly the uncertainties associated to the constructed 3D models.The available geophysics in the district includes regional gravity and magnetic data acquired by the Geological Survey of Sweden in the 1970s, four lines of seismic reflection data totalling approximately 70 km, and more than 60 magnetotelluric sites spread across the area. The existing geological data (from surface, borehole, and in-mine observations) is condensed on interpreted surfaces representing the most important lithological boundaries. Additionally, there are density and susceptibility values obtained from samples across the whole district. We are looking for the best way to integrate the different geophysical datasets with geologically-constrained joint and cooperative inversions.

  1. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively smaller gains in geologic knowledge.

  2. Exploring the Martian Highlands using a Rover-Deployed Ground Penetrating Radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schutz, A. E.; Campbell, B. A.

    2001-01-01

    The Martian highlands record a long and often complex history of geologic activity that has shaped the planet over time. Results of geologic mapping and new data from the Mars Global Surveyor spacecraft reveal layered surfaces created by multiple processes that are often mantled by eolian deposits. Knowledge of the near-surface stratigraphy as it relates to evolution of surface morphology will provide critical context for interpreting rover/lander remote sensing data and for defining the geologic setting of a highland lander. Rover-deployed ground penetrating radar (GPR) can directly measure the range and character of in situ radar properties, thereby helping to constrain near-surface geology and structure. As is the case for most remote sensing instruments, a GPR may not detect water unambiguously on Mars. Nevertheless, any local, near-surface occurrence of liquid water will lead to large, easily detected dielectric contrasts. Moreover, definition of stratigraphy and setting will help in evaluating the history of aqueous activity and where any water might occur and be accessible. GPR data can also be used to infer the degree of any post-depositional pedogenic alteration or weathering, thereby enabling assessment of pristine versus secondary morphology. Most importantly perhaps, GPR can provide critical context for other rover and orbital instruments/data sets. Hence, rover-deployment of a GPR deployment should enable 3-D mapping of local stratigraphy and could guide subsurface sampling.

  3. Localized Smart-Interpretation

    NASA Astrophysics Data System (ADS)

    Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas; Bach, Torben; Pallesen, Tom

    2014-05-01

    The complex task of setting up a geological model consists not only of combining available geological information into a conceptual plausible model, but also requires consistency with availably data, e.g. geophysical data. However, in many cases the direct geological information, e.g borehole samples, are very sparse, so in order to create a geological model, the geologist needs to rely on the geophysical data. The problem is however, that the amount of geophysical data in many cases are so vast that it is practically impossible to integrate all of them in the manual interpretation process. This means that a lot of the information available from the geophysical surveys are unexploited, which is a problem, due to the fact that the resulting geological model does not fulfill its full potential and hence are less trustworthy. We suggest an approach to geological modeling that 1. allow all geophysical data to be considered when building the geological model 2. is fast 3. allow quantification of geological modeling. The method is constructed to build a statistical model, f(d,m), describing the relation between what the geologists interpret, d, and what the geologist knows, m. The para- meter m reflects any available information that can be quantified, such as geophysical data, the result of a geophysical inversion, elevation maps, etc... The parameter d reflects an actual interpretation, such as for example the depth to the base of a ground water reservoir. First we infer a statistical model f(d,m), by examining sets of actual interpretations made by a geological expert, [d1, d2, ...], and the information used to perform the interpretation; [m1, m2, ...]. This makes it possible to quantify how the geological expert performs interpolation through f(d,m). As the geological expert proceeds interpreting, the number of interpreted datapoints from which the statistical model is inferred increases, and therefore the accuracy of the statistical model increases. When a model f(d,m) successfully has been inferred, we are able to simulate how the geological expert would perform an interpretation given some external information m, through f(d|m). We will demonstrate this method applied on geological interpretation and densely sampled airborne electromagnetic data. In short, our goal is to build a statistical model describing how a geological expert performs geological interpretation given some geophysical data. We then wish to use this statistical model to perform semi automatic interpretation, everywhere where such geophysical data exist, in a manner consistent with the choices made by a geological expert. Benefits of such a statistical model are that 1. it provides a quantification of how a geological expert performs interpretation based on available diverse data 2. all available geophysical information can be used 3. it allows much faster interpretation of large data sets.

  4. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data.

    PubMed

    Martinot, M; Besse, S; Flahaut, J; Quantin-Nataf, C; Lozac'h, L; van Westrenen, W

    2018-02-01

    Moon Mineralogy Mapper (M 3 ) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M 3 data, using a custom-made method for M 3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  5. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data

    NASA Astrophysics Data System (ADS)

    Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.

    2018-02-01

    Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  6. Development of the Philippine Mobile Belt in northern Luzon from Eocene to Pliocene

    NASA Astrophysics Data System (ADS)

    Suzuki, Shigeyuki; Peña, Rolando E.; Tam, Tomas A.; Yumul, Graciano P.; Dimalanta, Carla B.; Usui, Mayumi; Ishida, Keisuke

    2017-07-01

    The origin of the Philippine Archipelago is characterized by the combination of the oceanic Philippine Mobile Belt (PMB) and the Palawan Continental Block (PCB). This paper is focused on the geologic evolution of the PMB in northern Luzon from Eocene to Pliocene. The study areas (northern Luzon) are situated in the central part of the PMB which is occupied by its typical components made up of a pre-Paleocene ophiolitic complex, Eocene successions, Eocene to Oligocene igneous complex and late Oligocene to Pliocene successions. Facies analysis of the middle Eocene and late Oligocene to early Pliocene successions was carried out to understand the depositional environment of their basins. Modal sandstone compositions, which reflect the basement geology of the source area, were analyzed. Major element geochemistry of sediments was considered to reconstruct the tectonic settings. The following brief history of the PMB is deduced. During the middle Eocene, the PMB was covered by mafic volcanic rocks and was a primitive island arc. In late Eocene to late Oligocene time, the intermediate igneous complex was added to the mafic PMB crust. By late Oligocene to early Miocene time, the PMB had evolved into a volcanic island arc setting. Contributions from alkalic rocks are detected from the rock fragments in the sandstones and chemical composition of the Zigzag Formation. During the middle Miocene to Pliocene, the tectonic setting of the PMB remained as a mafic volcanic island arc.

  7. Geophysical-geological studies of possible extensions of the New Madrid Fault Zone. Annual report for 1983. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinze, W.J.; Braile, L.W.; Keller, G.R.

    1985-04-01

    Recent geophysical investigations have shown that the seismicity of the New Madrid, Missouri seismogenic region is correlative with an ancient rift complex suggesting that the anomalous seismicity is the result of the localization of the regional compressive stress pattern by basement structures. Preliminary evidence indicates that this inferred basement rift complex extends beyond the immediate realm of the intense New Madrid region microseismicity. An integrated geophysical/geological research program is being conducted to evaluate the rift complex hypothesis as an explanation for the earthquake activity in the New Madrid area and its extensions, to refine our knowledge of the structure andmore » physical properties of the rift complex, and to investigate the possible northern extensions of the New Madrid Fault zone, especially the possible northeastern connection to the Anna, Ohio seismic region. Investigation of the northeast extension of the New Madrid Rift Complex into eastern Indiana, north of 39/sup 0/N latitude, has focused upon the acquisition and preparation of arrays of gravity and magnetic anomaly data sets. Another possible arm of the New Madrid Rift Complex, the St. Louis Arm, which extends northwesterly from southern Illinois along the Mississippi River to St. Louis, Missouri, is being studied by an integrated geophysical, seismicity and geological investigation. However, during 1983, special emphasis was placed upon integration of gravity and magnetic anomaly data from the Anna, Ohio seismogenic region with basement lithologic and seismicity information to investigate the possible relationship of basement geology to the seismicity of the Anna area. Interpretation of these data indicate the occurrence of several major lithologic/structural features in the crust of the Anna area. Current seismicity in this region appears to be related to an ancient rift structure and possibly its contact with a low density pluton. 18 refs., 37 figs.« less

  8. Rare earth element mineralogy, geochemistry, and preliminary resource assessment of the Khanneshin carbonatite complex, Helmand Province, Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.

    2011-01-01

    There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.

  9. Modelling fully-coupled Thermo-Hydro-Mechanical (THM) processes in fractured reservoirs using GOLEM: a massively parallel open-source simulator

    NASA Astrophysics Data System (ADS)

    Jacquey, Antoine; Cacace, Mauro

    2017-04-01

    Utilization of the underground for energy-related purposes have received increasing attention in the last decades as a source for carbon-free energy and for safe storage solutions. Understanding the key processes controlling fluid and heat flow around geological discontinuities such as faults and fractures as well as their mechanical behaviours is therefore of interest in order to design safe and sustainable reservoir operations. These processes occur in a naturally complex geological setting, comprising natural or engineered discrete heterogeneities as faults and fractures, span a relatively large spectrum of temporal and spatial scales and they interact in a highly non-linear fashion. In this regard, numerical simulators have become necessary in geological studies to model coupled processes and complex geological geometries. In this study, we present a new simulator GOLEM, using multiphysics coupling to characterize geological reservoirs. In particular, special attention is given to discrete geological features such as faults and fractures. GOLEM is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for the considered non-linear context. Governing equations in 3D for fluid flow, heat transfer (conductive and advective), saline transport as well as deformation (elastic and plastic) have been implemented into the GOLEM application. Coupling between rock deformation and fluid and heat flow is considered using theories of poroelasticity and thermoelasticity. Furthermore, considering material properties such as density and viscosity and transport properties such as porosity as dependent on the state variables (based on the International Association for the Properties of Water and Steam models) increase the coupling complexity of the problem. The GOLEM application aims therefore at integrating more physical processes observed in the field or in the laboratory to simulate more realistic scenarios. The use of high-level nonlinear solver technology allow us to tackle these complex multiphysics problems in three dimensions. Basic concepts behing the GOLEM simulator will be presented in this study as well as a few application examples to illustrate its main features.

  10. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  11. Influence of geologic setting on ground-water availability in the Lawrenceville area, Gwinnett County, Georgia

    USGS Publications Warehouse

    Williams, Lester J.; Kath, Randy L.; Crawford, Thomas J.; Chapman, Melinda J.

    2005-01-01

    Obtaining large quantities of ground water needed for municipal and industrial supply in the Piedmont and Blue Ridge physiographic provinces can be challenging because of the complex geology and the typically low primary permeability of igneous and metamorphic rocks. Areas of enhanced secondary permeability in the bedrock do occur, however, and 'high-yield' wells are not uncommon, particularly where careful site-selection techniques are used prior to test drilling. The U.S. Geological Survey - in cooperation with the City of Lawrenceville, Georgia - conducted this study from 2000 to 2002 to learn more about how different geologic settings influence the availability of ground water in igneous and metamorphic bedrock with the expectation that this knowledge could be used to help identify additional water resources in the area. In compositionally layered-rock settings, wells derive water almost exclusively from lithologically and structurally controlled water-bearing zones formed parallel to foliation and compositional layering. These high-permeability, water-bearing zones - termed foliation-parallel parting systems -combined with high-angle joint systems, are the primary control for the high-yield wells drilled in the Lawrenceville area; yields range from 100 to several hundred gallons per minute (gal/min). Near Lawrenceville, areas with high ground-water yield are present in sequences of amphibolite, biotite gneiss, and button schist where the structural attitude of the rocks is gently dipping, in areas characterized by abundant jointing, and in topographic settings with a continuous source of recharge along these structures. In massive-rock settings, wells derive water mostly from joint systems, although foliation-parallel parting systems also may be important. Wells deriving water primarily from steeply-dipping joint systems typically have low yields ranging from 1 to 5 gal/min. Joint systems in massive-rock settings can be identified and characterized by using many of the methods described in this report. Geologic mapping was the primary method used to determine the distribution, variability, and relative concentrations (intensity) of joint systems. In the subsurface, joints were characterized by taking orientation measurements in the open boreholes of wells using acoustic and/or optical televiewers. In this investigation, the only practical approach found for locating areas of high ground-water potential was first through detailed geologic mapping followed by test drilling, borehole geophysical logging, and aquifer testing. Geologic methods help characterize both large- and small-scale structures and other lithologic and stratigraphic features that influence development of increased secondary permeability in the bedrock. The rock types, discontinuities, depth of weathering, topographic position, and recharge potential - which were the principal factors assessed through detailed geologic mapping - must be evaluated carefully, in relation to one another, to assess the ground-water potential in a given area.

  12. Preliminary geologic map of the Big Bear City 7.5' Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, Fred K.; Cossette, Digital preparation by Pamela M.

    2004-01-01

    This data set maps and describes the geology of the Big Bear City 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a rock-unit coverage and attribute tables (polygon and arc) containing geologic contacts, units and rock-unit labels as annotation which are also included in a separate annotation coverage, bbc_anno (2) a point coverage containing structural point data and (3) a coverage containing fold axes. In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), an index map, a regional geologic and structure map, and an explanation for point and line symbols; (2) PDF files of the Readme (including the metadata file as an appendix), and a screen graphic of the plot produced by the PostScript plot file. The geologic map describes a geologically complex area on the north side of the San Bernardino Mountains. Bedrock units in the Big Bear City quadrangle are dominated by (1) large Cretaceous granitic bodies ranging in composition from monzogranite to gabbro, (2) metamorphosed sedimentary rocks ranging in age from late Paleozoic to late Proterozoic, and (3) Middle Proterozoic gneiss. These rocks are complexly deformed by normal, reverse, and thrust faults, and in places are tightly folded. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map data was compiled on base-stable cronoflex copies of the Big Bear City 7.5' topographic map, transferred to a scribe-guide and subsequently digitized. Lines, points, and polygons were edited at the USGS using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.

  13. Evidence of Hierarchy in the Complex Fractured System of Geropotamos (Crete, Greece), as Extracted from Transient Electromagnetic Responses

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Kouli, Maria; Kalisperi, Despina

    2018-03-01

    The essential goals of this paper are to test the transient electromagnetic (TEM) response in a fractured geological complex medium and to better understand the physics introduced by associating a roughness parameter β to the geological formation. An anomalous fractional diffusion approach is incorporated to describe the electromagnetic induction in rough multi-scaled geological structures. The multi-scaling characteristics of Geropotamos basin in Crete are revealed through the analysis of transient step-off response of an EM loop antenna. The semi-empirical parameters derived from late-time TEM measurements are correlated with the multi-scale heterogeneities of the medium. Certain interesting properties of the late-time slope γ(β) and the power law of near surface resistivity distribution, as extracted from TEM inversion for different depth, are presented. The analysis of the parameter γ(β) which scales the induced voltage in the loop in the late stage of the electromagnetic response leads to a different view of the EM geophysical data interpretation. We show that it is strongly correlated with areas of high fracture density within the geological formations of the Geropotamos area. For that reason, it is proposed as a local multi-scaling empirical index. The results of this paper suggest that anomalous diffusion could be a viable physical mechanism for the fractal transport of charge carriers, explaining observed late-time TEM responses across a variety of natural geological settings.

  14. Microbial facies distribution and its geological and geochemical controls at the Hanford 300 area

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Nelson, W.; Stegen, J.; Murray, C. J.; Arntzen, E.

    2015-12-01

    Efforts have been made by various scientific disciplines to study hyporheic zones and characterize their associated processes. One way to approach the study of the hyporheic zone is to define facies, which are elements of a (hydrobio) geologic classification scheme that groups components of a complex system with high variability into a manageable set of discrete classes. In this study, we try to classify the hyporheic zone based on the geology, geochemistry, microbiology, and understand their interactive influences on the integrated biogeochemical distributions and processes. A number of measurements have been taken for 21 freeze core samples along the Columbia River bank in the Hanford 300 Area, and unique datasets have been obtained on biomass, pH, number of microbial taxa, percentage of N/C/H/S, microbial activity parameters, as well as microbial community attributes/modules. In order to gain a complete understanding of the geological control on these variables and processes, the explanatory variables are set to include quantitative gravel/sand/mud/silt/clay percentages, statistical moments of grain size distributions, as well as geological (e.g., Folk-Wentworth) and statistical (e.g., hierarchical) clusters. The dominant factors for major microbial and geochemical variables are identified and summarized using exploratory data analysis approaches (e.g., principal component analysis, hierarchical clustering, factor analysis, multivariate analysis of variance). The feasibility of extending the facies definition and its control of microbial and geochemical properties to larger scales is discussed.

  15. Geophysical Studies in the Vicinity of the Warner Mountains and Surprise Valley, Northeast California, Northwest Nevada, and Southern Oregon

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Egger, Anne E.; Bouligand, Claire; Watt, Janet T.; Morin, Robert L.

    2009-01-01

    From May 2006 to August 2007, the U.S. Geological Survey (USGS) collected 793 gravity stations, about 102 line-kilometers of truck-towed and ground magnetometer data, and about 325 physical-property measurements in northeastern California, northwestern Nevada, and southern Oregon. Gravity, magnetic, and physical-property data were collected to study regional crustal structures and geology as an aid to understanding the geologic framework of the Surprise Valley geothermal area and, in general, geothermal systems throughout the Great Basin. The Warner Mountains and Surprise Valley mark the transition from the extended Basin and Range province to the unextended Modoc Plateau. This transition zone, in the northwestern corner of the Basin and Range, is relatively diffuse compared to other, more distinct boundaries, such as the Wasatch front in Utah and the eastern Sierran range front. In addition, this transition zone is the site of a geothermal system with potential for development, and previous studies have revealed a complex structural setting consisting of several obliquely oriented fault sets. As a result, this region has been the subject of several recent geological and geophysical investigations. The gravity and magnetic data presented here support and supplement those studies, and although the study area is composed predominantly of Tertiary volcanic rocks of the Modoc Plateau rocks, the physical properties of these and others rocks create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer subsurface geologic structure.

  16. A field study of the confluence between Negro and Solimões Rivers. Part 2: Bed morphology and stratigraphy

    NASA Astrophysics Data System (ADS)

    Ianniruberto, Marco; Trevethan, Mark; Pinheiro, Arthur; Andrade, Joao Fernando; Dantas, Elton; Filizola, Naziano; Santos, André; Gualtieri, Carlo

    2018-01-01

    The confluence of the Negro and Solimões Rivers is an interesting study area under several points of view: it represents the second largest river confluence of the Amazon Basin; the rivers are characterized by very distinct hydrologic behaviour; and it is situated in a peculiar tectonic setting. A field investigation was undertaken to study the characteristics of this confluence, aiming to better understand the bed morphology and stratigraphy resulting from the complex interaction of geological setting, hydrodynamics, and sediment load. Two field campaigns were carried out, during low- and high-flow conditions, using high-resolution seismic, echosounding, and acoustic Doppler current profiling. A third campaign was carried out just in a limited area of the confluence, with a multi-beam echosounder. The results of these surveys provided a more detailed view of the geology, morphology and sediment distribution about the confluence.

  17. Geology of the Biwabik Iron Formation and Duluth Complex.

    PubMed

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  18. Geology of the Biwabik Iron Formation and Duluth Complex

    USGS Publications Warehouse

    Jirsa, M.A.; Miller, J.D.; Morey, G.B.

    2008-01-01

    The Biwabik Iron Formation is a ???1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by ???1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact. ?? 2007 Elsevier Inc. All rights reserved.

  19. Offshore sand resources for coastal erosion control in Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, K.E.; Penland, S.; McBride, R.A.

    1990-09-01

    An inventory of existing geophysical data supplemented by more than 15,000 km of high-resolution seismic profiles and 400 vibracores collected cooperatively by the Louisiana Geological Survey and US Geological Survey since 1981 indicates that a wide range of aggregate minerals occurs on the continental shelf in a variety of depositional settings. The distribution of these deposits is controlled by the geometry of the preexisting fluvial and deltaic channel systems and the stratigraphic signature of the Holocene Transgression across these features. The geology of coastal and offshore Louisiana is tied to the depositional history of the Mississippi River. Offshore of themore » delta plain, five types of aggregate sources can be identified: inner shelf shoals, submerged barrier islands, tidal inlets, distributary channels, and barrier platforms. This paper describes the geology of offshore Louisiana, the available geophysical data sets, and the distribution of aggregate mineral resources. On the continental shelf of the Mississippi River delta plain, two extensive seismic survey grids have been developed by the Louisiana Geological Survey and US Geological Survey. The most prospective resources found are the huge sand bodies of Ship Shoal and associated distributaries, Cat Island Pass tidal channels and associated tidal deltas, and Barataria Pass/Grand Terre tidal channels and associated tidal deltas. East of the mouth of the Mississippi River are the Chandeleur Islands, where LGS identified seven major sand resource targets, truncated barrier-spit and tidal inlet deposits, submerged beach ridges, and distributaries associated with abandoned St. Bernard delta complexes. Abundant sand resources can be found in offshore Louisiana. Many of the sand bodies contain heavy minerals, but their concentration and distribution is unknown. Other potential sand resources not yet adequately explored include Sabine Bank, the Outer Shoal, and the St. Bernard shoal.« less

  20. Three-dimensional inversion of magnetotelluric data for mineral exploration: An example from the McArthur River uranium deposit, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Farquharson, Colin G.; Craven, James A.

    2009-08-01

    Shallow exploration targets are becoming scarce, meaning interest is turning towards deeper targets. The magnetotelluric method has the necessary depth capability, unlike many of the controlled-source electromagnetic prospecting techniques traditionally used. The geological setting of ore deposits is usually complex, requiring three-dimensional Earth models for their representation. An example of the applicability of three-dimensional inversion of magnetotelluric data to mineral exploration is presented here. Inversions of an audio-magnetotelluric data-set from the McArthur River uranium mine in the Athabasca Basin were carried out. A sub-set comprising data from eleven frequencies distributed over almost three decades was inverted. The form of the data used in the inversion was impedance. All four elements of the tensor were included. No decompositions of the data were done, nor rotation to a preferred strike direction, nor correction for static shifts. The inversions were successful: the observations were adequately reproduced and the main features in the conductivity model corresponded to known geological features. These included the graphitic basement fault along which the McArthur River uranium deposit is located.

  1. Quantifying Conditions for Fault Self-Sealing in Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    McPherson, B. J. O. L.; Patil, V.; Moore, J.; Trujillo, E. M.

    2015-12-01

    Injecting anthropogenic CO2 into a subsurface reservoir for sequestration will impact the reservoir significantly, including its geochemistry, porosity and permeability. If a fault or fracture penetrates the reservoir, CO2-laden brine may migrate into that fault, eventually sealing it via precipitation or opening it up via dissolution. The goal of this study was to identify and quantify such conditions of fault self-sealing or self-enhancing. We found that the dimensionless Damköhler number (Da), the ratio of reaction rate to advection rate, provides a meaningful framework for characterizing the propensity of (fault) systems to seal or open up. We developed our own framework wherein Damköhler numbers evolve spatiotemporally as opposed to the traditional single Da value approach. Our approach enables us to use the Damköhler for characterization of complex multiphase and multimineral reactive transport problems. We applied this framework to 1D fault models with eight conditions derived from four geologic compositions and two reservoir conditions. The four­ geologic compositions were chosen such that three out of them were representative of distinct geologic end-members (sandstone, mudstone and dolomitic limestone) and one was a mixed composition based on an average of three end-member compositions. The two sets of P-T conditions chosen included one set corresponding to CO2 in a gaseous phase ("shallow conditions") and the other corresponding to supercritical phase CO2 ("deep conditions"). Simulation results suggest that fault sealing via carbonate precipitation was a possibility for shallow conditions within limestone and mixed composition settings. The concentration of cations in the water was found to be an important control on the carbonate precipitation. The deep conditions models did not forecast self-sealing via carbonates. Sealing via clay precipitation is a likely possibility, but the 1000 year time-frame may be short for such. Model results indicated a range of Da values within which substantial reductions of fault porosity (meaning self-sealing) could be expected. A key conclusion suggested by the results of this study is that carbonate precipitation in the near-surface (top ~50-100 m) depths of a fault is the most likely mechanism of "self-sealing" for most geological settings.

  2. An ostracode based paleolimnologic and paleohydrologic history of Death Valley: 200 to 0 ka

    USGS Publications Warehouse

    Forester, R.M.; Lowenstein, T.K.; Spencer, R.J.

    2005-01-01

    Death Valley, a complex tectonic and hydrologic basin, was cored from its lowest surface elevation to a depth of 186 m. The sediments range from bedded primary halite to black muds. Continental ostracodes found in the black muds indicate that those sediments were deposited in a variety of hydrologic settings ranging from deep, relatively fresh water to shallow saline lakes to spring discharge supported wetlands. The alkaline-enriched, calcium-depleted paleolake waters indicate extrabasinal streamflow and basin-margin spring discharge. The alkaline-depleted, calcium-enriched paleowetland waters indicate intrabasinal spring discharge. During Marine Isotope Stage 6 (MIS 6, ca. 180-140 ka) the hydrologic settings were highly variable, implying that complex relations existed between climate and basin hydrology. Termination II (MIS 6 to MIS 5E) was a complex multicyclic sequence of paleoenvironments, implying that climates oscillated between high and low effective moisture. MIS 4 (ca. 73-61 ka) was a spring discharge supported wetland complex. During MIS 2 (ca. 20-12 ka) the hydrologic settings were variable, although they are not fully understood because some black muds deposited during that time were lost during coring. ?? 2005 Geological Society of America.

  3. Structural organization of process zones in upland watersheds of central Nevada and its influence on basin connectivity, dynamics, and wet meadow complexes

    Treesearch

    Jerry R. Miller; Mark L. Lord; Lionel F. Villarroel; Dru Germanoski; Jeanne C. Chambers

    2012-01-01

    The drainage network within upland watersheds in central Nevada can be subdivided into distinct zones each dominated by a unique set of processes on the basis of valley form, the geological materials that comprise the valley floor, and the presence or absence of surficial channels. On hillslopes, the type and structure (frequency, length, and spatial arrangement) of...

  4. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE PAGES

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; ...

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  5. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    USGS Publications Warehouse

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-01-01

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.

  6. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  7. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    PubMed

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  8. Practical modeling approaches for geological storage of carbon dioxide.

    PubMed

    Celia, Michael A; Nordbotten, Jan M

    2009-01-01

    The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.

  9. Aggregating todays data for tomorrows science: a geological use case

    NASA Astrophysics Data System (ADS)

    Glaves, H.; Kingdon, A.; Nayembil, M.; Baker, G.

    2016-12-01

    Geoscience data is made up of diverse and complex smaller datasets that, when aggregated together, build towards what is recognised as `big data'. The British Geological Survey (BGS), which acts as a repository for all subsurface data from the United Kingdom, has been collating these disparate small datasets that have been accumulated from the activities of a large number of geoscientists over many years. Recently this picture has been further complicated by the addition of new data sources such as near real-time sensor data, and industry or community data that is increasingly delivered via automatic donations. Many of these datasets have been aggregated in relational databases to form larger ones that are used to address a variety of issues ranging from development of national infrastructure to disaster response. These complex domain-specific SQL databases deliver effective data management using normalised subject-based database designs in a secure environment. However, the isolated subject-oriented design of these systems inhibits efficient cross-domain querying of the datasets. Additionally, the tools provided often do not enable effective data discovery as they have problems resolving the complex underlying normalised structures. Recent requirements to understand sub-surface geology in three dimensions have led BGS to develop new data systems. One such solution is PropBase which delivers a generic denormalised data structure within an RDBMS to store geological property data. Propbase facilitates rapid and standardised data discovery and access, incorporating 2D and 3D physical and chemical property data, including associated metadata. It also provides a dedicated web interface to deliver complex multiple data sets from a single database in standardised common output formats (e.g. CSV, GIS shape files) without the need for complex data conditioning. PropBase facilitates new scientific research, previously considered impractical, by enabling property data searches across multiple databases. Using the Propbase exemplar this presentation will seek to illustrate how BGS has developed systems for aggregating `small datasets' to create the `big data' necessary for the data analytics, mining, processing and visualisation needed for future geoscientific research.

  10. Estimating the Geoelectric Field Using Precomputed EMTFs: Effect of Magnetometer Cadence

    NASA Astrophysics Data System (ADS)

    Grawe, M.; Butala, M.; Makela, J. J.; Kamalabadi, F.

    2017-12-01

    Studies that make use of electromagnetic transfer functions (EMTFs) to calculate the surface electric field from a specified surface magnetic field often use historical magnetometer information for validation and comparison purposes. Depending on the data source, the magnetometer cadence is typically between 1 and 60 seconds. It is often implied that a 60 (and sometimes 10) second cadence is acceptable for purposes of geoelectric field calculation using a geophysical model. Here, we quantitatively assess this claim under different geological settings and using models of varying complexity (using uniform/1D/3D EMTFs) across several different space weather events. Conclusions are made about sampling rate sufficiency as a function of local geology and the spectral content of the surface magnetic field.

  11. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as environmental imprints of groundwater. The highly vulnerable wetlands and groundwater-dependent ecosystems have to be in the focus of water management and natural conservation policy.

  12. Chemical Structure and Molecular Dimension As Controls on the Inherent Stability of Charcoal in Boreal Forest Soil

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; Kane, E. S.; Ohlson, M.; Huang, R.; Von Bargen, J.; Davis, R.

    2014-12-01

    Efforts have been made by various scientific disciplines to study hyporheic zones and characterize their associated processes. One way to approach the study of the hyporheic zone is to define facies, which are elements of a (hydrobio) geologic classification scheme that groups components of a complex system with high variability into a manageable set of discrete classes. In this study, we try to classify the hyporheic zone based on the geology, geochemistry, microbiology, and understand their interactive influences on the integrated biogeochemical distributions and processes. A number of measurements have been taken for 21 freeze core samples along the Columbia River bank in the Hanford 300 Area, and unique datasets have been obtained on biomass, pH, number of microbial taxa, percentage of N/C/H/S, microbial activity parameters, as well as microbial community attributes/modules. In order to gain a complete understanding of the geological control on these variables and processes, the explanatory variables are set to include quantitative gravel/sand/mud/silt/clay percentages, statistical moments of grain size distributions, as well as geological (e.g., Folk-Wentworth) and statistical (e.g., hierarchical) clusters. The dominant factors for major microbial and geochemical variables are identified and summarized using exploratory data analysis approaches (e.g., principal component analysis, hierarchical clustering, factor analysis, multivariate analysis of variance). The feasibility of extending the facies definition and its control of microbial and geochemical properties to larger scales is discussed.

  13. Geoethics and Forensic Geology

    NASA Astrophysics Data System (ADS)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work is required. However, it draws attention to some of the relevant geoethical issues within forensic geology and forensic geoscience. This paper also highlights the need for the development of a set of resources; references and guidelines, standards and protocols, a code of conduct (including for example integrity, accountability, honesty, professional fairness, courtesy, trustworthiness), data sharing and information transparency, education and training, multi-disciplinary collaboration, development of research, fair debate, evaluating uncertainty and risk, regulation and accreditation, effective communication and diplomacy, attendance at crime scenes, presenting evidence in courts of law, dealing with the media and elimination of potential bias. The uptake of Forensic Geoscience brings with it considerable challenges arising from the direct and often very sensitive human interactions. By developing this ethical component to the work that the IUGS-IFG group does, combines technical approaches with sensitive solutions, and also in parallel helps define an ethical framework for forensic geoscientists' research and practice in addressing these challenges.

  14. Approaches for the accurate definition of geological time boundaries

    NASA Astrophysics Data System (ADS)

    Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo

    2015-04-01

    Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age of the ash, therefore masking the true age of deposition. Trace element ratios such as Th/U, Yb/Gd, as well as Hf isotope analysis of dated zircon can be used to decipher the temporal evolution of the magmatic system before the eruption and deposition of the studied ashes, and resolve the complex system behaviour of the zircons. b) Changes in the source of the magma may happen between the deposition of two stratigraphically consecutive ash beds. They result in the modification of the trace element signature of zircon, but also of apatite (Ca5 (F, Cl, OH) (PO4)3). Trace element characteristics in apatite (e.g. Mg, Mn, Fe, F, Cl, Ce, and Y) are a reliable tool for distinguishing chemically similar groups of apatite crystals to unravel the geochemical fingerprint of one single ash bed. By establishing this fingerprint, ash beds of geographically separated geologic sections can be correlated even if they have not all been dated by U-Pb techniques. c) The ultimate goal of quantitative stratigraphy is to establish an age model that predicts the age of a synchronous time line with an associated 95% confidence interval for any such line within a stratigraphic sequence. We show how a Bayesian, non-parametric interpolation approach can be applied to very complex data sets and leads to a well-defined age solution, possibly identifying changes in sedimentation rate. The age of a geological time boundary bracketed by dated samples in such an age model can be defined with an associated uncertainty.

  15. A Review of the Handheld X-Ray Fluorescence Spectrometer as a Tool for Field Geologic Investigations on Earth and in Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, Cynthia A.; Hodges, Kip V.; Bleacher, Jacob E.; Graff, Trevor G.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy is a well-established and commonly used technique in obtaining diagnostic compositional data on geological samples. Recently, developments in X-ray tube and detector technologies have resulted in miniaturized, field-portable instruments that enable new applications both in and out of standard laboratory settings. These applications, however, have not been extensively applied to geologic field campaigns. This study investigates the feasibility of using developing handheld XRF (hXRF) technology to enhance terrestrial field geology, with potential applications in planetary surface exploration missions. We demonstrate that the hXRF is quite stable, providing reliable and accurate data continuously over a several year period. Additionally, sample preparation is proved to have a marked effect on the strategy for collecting and assimilating hXRF data. While the hXRF is capable of obtaining data that are comparable to laboratory XRF analysis for several geologically-important elements (such as Si, Ca, Ti, and K), the instrument is unable to detect other elements (such as Mg and Na) reliably. While this limits the use of the hXRF, especially when compared to laboratory XRF techniques, the hXRF is still capable of providing the field user with significantly improved contextual awareness of a field site, and more work is needed to fully evaluate the potential of this instrument in more complex geologic environments.

  16. Phytoplankton Diversity and Geologically Relevant Carbon: Using metagenomics to determine phytoplankton biomarker production

    NASA Astrophysics Data System (ADS)

    Kodner, R. B.; Armbrust, E.

    2008-12-01

    Phytoplankton play an important role in the global carbon cycle, on short and long time scales. On long time scales, organic carbon, especially recalcitrant forms of biomass such as lipids, can be preserved and thus sequestered in sediments and rocks on geologic time scales. If the preserved lipids have some taxonomic specificity, they can be used as fossil biomarkers to characterize the community of organisms that contributed to ancient carbon sinks. Currently, it is not well understood how well the complex mixture of organic compounds preserved in geological carbon sinks represents the original community that produced those molecules or how the diversity of organism in a community is reflected in the lipid biomarkers they collectively synthesize. We have begun to investigate these questions by characterizing lipid biomarker production in modern phytoplankton communities with metagenomic data sets. Here we evaluate the information on community biomarker biosynthesis gathered from this type of data set using sterols as a case study. We have identified genes involved in sterol biosynthesis in a number of metagenomes and placed these genes in a phylogenetic context using a method designed to deal with short metagenomic sequences. The degree of taxonomic diversity of biomarker production measured with gene sequences can be more specific than lipid analysis alone.

  17. Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana

    USGS Publications Warehouse

    Du Bray, E.A.; Harlan, Stephen S.

    1998-01-01

    The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.

  18. Recent Geologic Mapping Results for the Polar Regions of Mars

    NASA Technical Reports Server (NTRS)

    tanaka, K. L.; Kolb, E. J.

    2008-01-01

    The polar regions of Mars include the densest data coverage for the planet because of the polar orbits of MGS, ODY, and MEX. Because the geology of the polar plateaus has been among the most dynamic on the planet in recent geologic time, the data enable the most detailed and complex geologic investigations of any regions on Mars, superseding previous, even recent, mapping efforts [e.g., 1-3]. Geologic mapping at regional and local scales is revealing that the stratigraphy and modificational histories of polar materials by various processes are highly complex at both poles. Here, we describe some of our recent results in polar geologic mapping and how they address the geologic processes involved and implications for polar climate history.

  19. A multidisciplinary study in the geodynamic active western Eger rift (Central Europe): The Quaternary volcanic complex Mytina and the recent CO2-degassing zone Hartousov

    NASA Astrophysics Data System (ADS)

    Flechsig, C.; Heinicke, J.; Kaempf, H. W.; Nickschick, T.; Mrlina, J.

    2013-12-01

    The Eger rift (Central Europe) belongs to the European Cenozoic rift system and represents an approximately 50 km wide and 300 km long ENE-WSW striking continental rift that formed during the Upper Cretaceous-Tertiary transition. This rift zone is one of the most active seismic regions in Central Europe. Especially, the western part of the Eger rift area is dominated by ongoing hidden magmatic processes in the intra-continental lithospheric mantle. Besides of known quaternary volcanoes, these processes take place in absence of any presently active volcanism at the surface. However, they are expressed by a series of phenomena distributed over a relatively large area, like occurrence of repeated earthquake swarms, surface exhalation of mantle-derived and CO2-enriched fluids at mofettes and mineral springs, and enhanced heat flow. At present this is the only known intra-continental region where such deep-seated, active lithospheric processes currently occur. The aim of the project is to investigate the tectonic/geologic near surface structure and the degassing processes of the mofette field of Hartousov, where soil gas measurements (concentration and flux rate) in an area of appr. 3x2 km traced a permeable NS extended segment of a fault zone and revealed highly permeable Diffuse Degassing Structures (DDS). The second target is volcanic environment of the Quaternary volcanic complex Mytina maar and the cinder cone Zelezna hurka/Eisenbühl. The investigations are intended to clarify: a) the spatio-temporal reconstruction of the maar complex, and the palaeo volcanic scenario (geological model, tectonic settings, distribution of pyroclastica, b) the geological structure and the tectonic control of the recent degassing zone, and c) the comperative interpretation of both regions in the consideration of potential future volcanic risk assessment in sub-regions of the western Eger Rift. To investigate both regions the following methods are used: geoelectrics, geomagnetics, shallow seismics, gravity and CO2-soil gas measurements, petrographic/petrophysical and remote sensing data. The results will be serve as for better understanding of geologic, volcanic and tectonic settings of the two regions as well as for the preparation of the ICDP drilling project 'Drilling the Eger rift' with a multidisciplinary approach consisting of geophysical, geochemical and other disciplines to understand the role of crustal fluid activity for swarm earthquake generation.

  20. Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent

    2017-04-01

    Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary geological maps, we propose to 1) review standardized symbols for planetary maps, and 2) recommend an updated symbol collection for adoption by the planetary mapping community. Within these points, the focus is on the changing of symbology with respect to time and how it effects communication within and between the maps. Two key questions to address are 1) does chapter 25 provides enough variability within the subcategories (e.g., faults) to represent the data within the maps? 2) How recommendations to the mapping community and their steering committees could be delivered to enhance a map's communicability, and convey information succinctly but thoroughly. For determining the most representative symbol collection of existing maps to support future map results (within or outside of USGS mapping program) we defined a stepwise task list: 1) Statistical review of existing symbol sets and collections, 2) Establish a representative symbol set for planetary mapping, 3) Update cartographic symbols, 4) Implementation into GIS-based mapping software (this implementation will mimic the 2010 application of the planetary symbol set into ArcGIS (more information https://planetarymapping.wr.usgs.gov/Project). 6) Platform to provide the symbol set to the mapping community. This project was initiated within an ongoing cooperation work between the USGS ASC and the German Aerospace Center (DLR), Dept. of Planetary Geology.

  1. Digital geologic map and Landsat image map of parts of Loralai, Sibi, Quetta, and Khuzar Divisions, Balochistan Province, west-central Pakistan

    USGS Publications Warehouse

    Maldonado, Florian; Menga, Jan Mohammad; Khan, Shabid Hasan; Thomas, Jean-Claude

    2011-01-01

    This generalized digital geologic map of west-central Pakistan is a product of the Balochistan Coal-Basin Synthesis Study, which was part of a cooperative program of the Geological Survey of Pakistan and the United States Geological Survey. The original nondigital map was published by Maldonado and others (1998). Funding was provided by the Government of Pakistan and the United States Agency for International Development. The sources of geologic map data are primarily 1:253,440-scale geologic maps obtained from Hunting Survey Corporation (1961) and the geologic map of the Muslim Bagh Ophiolite Complex and Bagh Complex area. The geology was modified based on reconnaissance field work and photo interpretation of 1:250,000-scale Landsat Thematic Mapper photo image. The descriptions and thicknesses of map units were based on published and unpublished reports and converted to U.S. Geological Survey format. In the nomenclature of the Geological Survey of Pakistan, there is both an Urak Group and an Urak Formation.

  2. Complete Bouguer gravity anomaly map of the state of Colorado

    USGS Publications Warehouse

    Abrams, Gerda A.

    1993-01-01

    The Bouguer gravity anomaly map is part of a folio of maps of Colorado cosponsored by the National Mineral Resources Assessment Program (NAMRAP) and the National Geologic Mapping Program (COGEOMAP) and was produced to assist in studies of the mineral resource potential and tectonic setting of the State. Previous compilations of about 12,000 gravity stations by Behrendt and Bajwa (1974a,b) are updated by this map. The data was reduced at a 2.67 g/cm3 and the grid contoured at 3 mGal intervals. This map will aid in the mineral resource assessment by indicating buried intrusive complexes, volcanic fields, major faults and shear zones, and sedimentary basins; helping to identify concealed geologic units; and identifying localities that might be hydrothermically altered or mineralized.

  3. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    NASA Astrophysics Data System (ADS)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  4. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  5. Desert wetlands in the geologic record

    USGS Publications Warehouse

    Pigati, Jeff S.; Rech, Jason A.; Quade, Jay; Bright, Jordon; Edwards, L.; Springer, A.

    2014-01-01

    Desert wetlands support flora and fauna in a variety of hydrologic settings, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Over time, eolian, alluvial, and fluvial sediments become trapped in these settings by a combination of wet ground conditions and dense plant cover. The result is a unique combination of clastic sediments, chemical precipitates, and organic matter that is preserved in the geologic record as ground-water discharge (GWD) deposits. GWD deposits contain information on the timing and magnitude of past changes in water-table levels and, therefore, are a potential source of paleohydrologic and paleoclimatic information. In addition, they can be important archeological and paleontological archives because desert wetlands provide reliable sources of fresh water, and thus act as focal points for human and faunal activities, in some of the world's harshest and driest lands. Here, we review some of the physical, sedimentological, and geochemical characteristics common to GWD deposits, and provide a contextual framework that researchers can use to identify and interpret geologic deposits associated with desert wetlands. We discuss several lines of evidence used to differentiate GWD deposits from lake deposits (they are commonly confused), and examine how various types of microbiota and depositional facies aid in reconstructing past environmental and hydrologic conditions. We also review how late Quaternary GWD deposits are dated, as well as methods used to investigate desert wetlands deeper in geologic time. We end by evaluating the strengths and limitations of hydrologic and climatic records derived from GWD deposits, and suggest several avenues of potential future research to further develop and utilize these unique and complex systems.

  6. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan

    NASA Technical Reports Server (NTRS)

    Skiner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2009-01-01

    The highland-lowland boundary (HLB) of Mars is interpreted to be a complex tectonic and erosional transition that may hold evidence for past geologic processes and environments. The HLB-abutting margin of the Libya Montes and the interbasin plains of northern Tyrrhena Terra display an exceptional view of the earliest to middle history of Mars that has yet to be fully characterized. This region contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. However, a full understanding of the regions geologic and stratigraphic evolution is remarkably lacking. Some outstanding questions regarding the geologic evolution of Libya Montes and northern Tyrrhena Terra in-clude: Does combining geomorphology and composition advance our understanding of the region s evolution? Can highland materials be subdivided into stratigraphically discrete rock and sediment sequences? What do major physiographic transitions imply about the balanced tectonism, climate change, and erosion? Where is the erosional origin and what is the post-depositional history of channel and plains units? When and in what types of environments did aqueous mineral signatures arise? This abstract introduces the geologic setting, science rationale, and first year work plan of a recently-funded 4-year geologic mapping proposal (project year = calendar year). The objective is to delineate the geologic evolution of Libya Montes and northern Tyrrhena Terra at 1:1M scale using both classical geomorphological and compositional mapping techniques. The funded quadrangles are MTMs 00282, -05282, -10282, 00277, -05277, and -10277.

  7. Geologic structure of the Yucaipa area inferred from gravity data, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Mendez, Gregory O.; Langenheim, V.E.; Morita, Andrew; Danskin, Wesley R.

    2016-09-30

    In the spring of 2009, the U.S. Geological Survey, in cooperation with the San Bernardino Valley Municipal Water District, began working on a gravity survey in the Yucaipa area to explore the three-dimensional shape of the sedimentary fill (alluvial deposits) and the surface of the underlying crystalline basement rocks. As water use has increased in pace with rapid urbanization, water managers have need for better information about the subsurface geometry and the boundaries of groundwater subbasins in the Yucaipa area. The large density contrast between alluvial deposits and the crystalline basement complex permits using modeling of gravity data to estimate the thickness of alluvial deposits. The bottom of the alluvial deposits is considered to be the top of crystalline basement rocks. The gravity data, integrated with geologic information from surface outcrops and 51 subsurface borings (15 of which penetrated basement rock), indicated a complex basin configuration where steep slopes coincide with mapped faults―such as the Crafton Hills Fault and the eastern section of the Banning Fault―and concealed ridges separate hydrologically defined subbasins.Gravity measurements and well logs were the primary data sets used to define the thickness and structure of the groundwater basin. Gravity measurements were collected at 256 new locations along profiles that totaled approximately 104.6 km (65 mi) in length; these data supplemented previously collected gravity measurements. Gravity data were reduced to isostatic anomalies and separated into an anomaly field representing the valley fill. The ‘valley-fill-deposits gravity anomaly’ was converted to thickness by using an assumed, depth-varying density contrast between the alluvial deposits and the underlying bedrock.To help visualize the basin geometry, an animation of the elevation of the top of the basement-rocks was prepared. The animation “flies over” the Yucaipa groundwater basin, viewing the land surface, geology, faults, and ridges and valleys of the shaded-relief elevation of the top of the basement complex.

  8. Utilizing an Artificial Outcrop to Scaffold Learning Between Laboratory and Field Experiences in a College-Level Introductory Geology Course

    NASA Astrophysics Data System (ADS)

    Wilson, Meredith

    Geologic field trips are among the most beneficial learning experiences for students as they engage the topic of geology, but they are also difficult environments to maximize learning. This action research study explored one facet of the problems associated with teaching geology in the field by attempting to improve the transition of undergraduate students from a traditional laboratory setting to an authentic field environment. Utilizing an artificial outcrop, called the GeoScene, during an introductory college-level non-majors geology course, the transition was studied. The GeoScene was utilized in this study as an intermediary between laboratory and authentic field based experiences, allowing students to apply traditional laboratory learning in an outdoor environment. The GeoScene represented a faux field environment; outside, more complex and tangible than a laboratory, but also simplified geologically and located safely within the confines of an educational setting. This exploratory study employed a mixed-methods action research design. The action research design allowed for systematic inquiry by the teacher/researcher into how the students learned. The mixed-methods approach garnered several types of qualitative and quantitative data to explore phenomena and support conclusions. Several types of data were collected and analyzed, including: visual recordings of the intervention, interviews, analytic memos, student reflections, field practical exams, and a pre/post knowledge and skills survey, to determine whether the intervention affected student comprehension and interpretation of geologic phenomena in an authentic field environment, and if so, how. Students enrolled in two different sections of the same laboratory course, sharing a common lecture, participated in laboratory exercises implementing experiential learning and constructivist pedagogies that focused on learning the basic geological skills necessary for work in a field environment. These laboratory activities were followed by an approximate 15 minute intervention at the GeoScene for a treatment group of students (n=13) to attempt to mitigate potential barriers, such as: self-efficacy, novelty space, and spatial skills, which hinder student performance in an authentic field environment. Comparisons were made to a control group (n=12), who did not participate in GeoScene activities, but completed additional exercises and applications in the laboratory setting. Qualitative data sources suggested that the GeoScene treatment was a positive addition to the laboratory studies and improved the student transition to the field environment by: (1) reducing anxiety and decreasing heightened stimulus associated with the novelty of the authentic field environment, (2) allowing a physical transition between the laboratory and field that shifted concepts learned in the lab to the field environment, and (3) improving critical analysis of geologic phenomena. This was corroborated by the quantitative data that suggested the treatment group may have outperformed the control group in geology content related skills taught in the laboratory, and supported by the GeoScene, while in an authentic field environment (p≤0.01, delta=0.507).

  9. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes: Implications for controls on the distribution of surface strain

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2016-10-01

    Subpixel correlation of preevent and postevent air photos reveal the complete near-field, horizontal surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine ruptures. Total surface displacement values for both earthquakes are systematically larger than "on-fault" displacements from geologic field surveys, indicating significant distributed, inelastic deformation occurred along these ruptures. Comparison of these two data sets shows that 46 ± 10% and 39 ± 22% of the total surface deformation were distributed over fault zones averaging 154 m and 121 m in width for the Landers and Hector Mine events, respectively. Spatial variations of distributed deformation along both ruptures show correlations with the type of near-surface lithology and degree of fault complexity; larger amounts of distributed shear occur where the rupture propagated through loose unconsolidated sediments and areas of more complex fault structure. These results have basic implications for geologic-geodetic rate comparisons and probabilistic seismic hazard analysis.

  10. Pattern-Based Inverse Modeling for Characterization of Subsurface Flow Models with Complex Geologic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.

    2017-12-01

    Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.

  11. A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds

    NASA Astrophysics Data System (ADS)

    Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang

    2017-04-01

    3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.

  12. A geologic atlas of TIMS data

    NASA Technical Reports Server (NTRS)

    Abbott, Elsa

    1986-01-01

    In the three years since the first data were taken, it was well demonstrated that the Thermal Infrared Multispectral Scanner (TIMS), properly used, can be a most valuable tool for the geologist. Compilation of the TIMS data into a geological atlas was felt to be useful. Several data sets were extensively studied to establish TIMS as a geologic tool and to explore the optimum enhancement techniques. It was found that a decorrelation stretch of bands 1, 3, and 5 enhance the data to a form that is very useful and this enhancement will be used in the geologic atlas along with an accompanying geologic map and description. Many data sets are well published and familiar to TIMS users, but there are some sets that, for lack of time and funds, were not thoroughly studied or published. A short description of these least studied sets of data is presented. The images presented along with the many previously studied and published TIMS images constitute an enormously useful set of information for the geologist in the 8 to 10 micron range.

  13. Geologic continuous casting below continental and deep-sea detachment faults and at the striated extrusion of Sacsayhuaman, Peru

    USGS Publications Warehouse

    Spencer, J.E.

    1999-01-01

    In the common type of industrial continuous casting, partially molten metal is extruded from a vessel through a shaped orifice called a mold in which the metal assumes the cross-sectional form of the mold as it cools and solidifies. Continuous casting can be sustained as long as molten metal is supplied and thermal conditions are maintained. I propose that a similar process produced parallel sets of grooves in three geologic settings, as follows: (1) corrugated metamorphic core complexes where mylonized mid-crustal rocks were exhumed by movement along low-angle normal faults known as detachment faults; (2) corrugated submarine surfaces where ultramafic and mafic rocks were exhumed by normal faulting within oceanic spreading centers; and (3) striated magma extrusions exemplified by the famous grooved outcrops at the Inca fortress of Sacsayhuaman in Peru. In each case, rocks inferred to have overlain the corrugated surface during corrugation genesis molded and shaped a plastic to partially molten rock mass as it was extruded from a moderate- to high-temperature reservoir.

  14. Environmental geology of ancient Greek cities

    NASA Astrophysics Data System (ADS)

    Crouch, D. P.

    1996-04-01

    Man-environment relations in the ancient Greek world, as now, were complex interactions. To understand them, we need to study a range of physical features and man's impact on the setting. The underlying geological reality of this area is karst, which is widely distributed, dominating Greece, the southern half of Turkey, and southern Italy and Sicily, where the Greco-Roman cities that we study were located. Year-round water from karst springs was important because of scarce rainfall, intense evaporation, and infertile soil—none under human control. Examples from the Greek mainland (Corinth), an Aegean island (Rhodes), Turkey (Priene), and Sicily (Syracuse) are selected and described to suggest the way that karst water potential played an important role in site selection and development. A wider look at criteria for urban location and a new classification of urban patterns help to revise conventional understandings of these ancient cities. In conclusion, some modern findings about the interaction between city and setting suggest new research agendas for geologists and engineers, ancient historians and archaelogists, and water policy makers—preferrably working together.

  15. Local-scale stratigraphy of grooved terrain on Ganymede

    NASA Technical Reports Server (NTRS)

    Murchie, Scott L.; Head, James W.; Helfenstein, Paul; Plescia, Jeffrey B.

    1987-01-01

    The surface of the Jovian satellite, Ganymede, is divided into two main units, dark terrain cut by arcuate and subradial furrows, and light terrain consisting largely of areas with pervasive U-shaped grooves. The grooved terrain may be subdivided on the basis of pervasive morphology of groove domains into four terrain types: (1) elongate bands of parallel grooves (groove lanes); (2) polygonal domains of parallel grooves (grooved polygons); (3) polygonal domains of two orthogonal groove sets (reticulate terrain); and (4) polygons having two to several complexly cross-cutting groove sets (complex grooved terrain). Reticulate terrain is frequently dark and not extensively resurfaced, and grades to a more hummocky terrain type. The other three grooved terrain types have almost universally been resurfaced by light material during their emplacement. The sequence of events during grooved terrain emplacement has been investigated. An attempt is made to integrate observed geologic and tectonic patterns to better constrain the relative ages and styles of emplacement of grooved terrain types. A revised model of grooved terrain emplacement is proposed and is tested using detailed geologic mapping and measurement of crater density.

  16. A regularization approach to hydrofacies delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlberg, Brendt; Tartakovsky, Daniel

    2009-01-01

    We consider an inverse problem of identifying complex internal structures of composite (geological) materials from sparse measurements of system parameters and system states. Two conceptual frameworks for identifying internal boundaries between constitutive materials in a composite are considered. A sequential approach relies on support vector machines, nearest neighbor classifiers, or geostatistics to reconstruct boundaries from measurements of system parameters and then uses system states data to refine the reconstruction. A joint approach inverts the two data sets simultaneously by employing a regularization approach.

  17. Geophysical techniques applied to urban planning in complex near surface environments. Examples of Zaragoza, NE Spain

    NASA Astrophysics Data System (ADS)

    Pueyo-Anchuela, Ó.; Casas-Sainz, A. M.; Soriano, M. A.; Pocoví-Juan, A.

    Complex geological shallow subsurface environments represent an important handicap in urban and building projects. The geological features of the Central Ebro Basin, with sharp lateral changes in Quaternary deposits, alluvial karst phenomena and anthropic activity can preclude the characterization of future urban areas only from isolated geomechanical tests or from non-correctly dimensioned geophysical techniques. This complexity is here analyzed in two different test fields, (i) one of them linked to flat-bottomed valleys with irregular distribution of Quaternary deposits related to sharp lateral facies changes and irregular preconsolidated substratum position and (ii) a second one with similar complexities in the alluvial deposits and karst activity linked to solution of the underlying evaporite substratum. The results show that different geophysical techniques allow for similar geological models to be obtained in the first case (flat-bottomed valleys), whereas only the application of several geophysical techniques can permit to correctly evaluate the geological model complexities in the second case (alluvial karst). In this second case, the geological and superficial information permit to refine the sensitivity of the applied geophysical techniques to different indicators of karst activity. In both cases 3D models are needed to correctly distinguish alluvial lateral sedimentary changes from superimposed karstic activity.

  18. Changes in Geologic Time Understanding in a Class for Preservice Teachers

    ERIC Educational Resources Information Center

    Teed, Rebecca; Slattery, William

    2011-01-01

    The paradigm of geologic time is built on complex concepts, and students master it in multiple steps. Concepts in Geology is an inquiry-based geology class for preservice teachers at Wright State University. The instructors used the Geoscience Concept Inventory (GCI) to determine if students' understanding of key ideas about geologic time and…

  19. The Archean kalsilite-nepheline syenites of the Awsard intrusive massif (Reguibat Shield, West African Craton, Morocco) and its relationship to the alkaline magmatism of Africa

    NASA Astrophysics Data System (ADS)

    Haissen, Faouziya; Cambeses, Aitor; Montero, Pilar; Bea, Fernando; Dilek, Yildirim; Mouttaqi, Abdellah

    2017-03-01

    More than 40% of the known alkaline complexes are reported from Africa. Most are ring complexes composed of syenites and associated or not, lithotypes as carbonatites, granites and mafic rocks. Radiometric dating indicates the presence of alkaline complexes with ages spanning from Precambrian to the present. In terms of outcrops, alkaline complexes are reported from cratonic zones and from belts embedded between cratonic areas. Because of the high economic potential for associated REE deposits, these alkaline complexes have received much attention from Earth scientists. These studies aim mainly to constrain the role of the mantle and the crust (and the interaction between them) in the genesis of this peculiar magmatism, and also to explain the variability observed in lithotypes and geotectonic settings. Among those alkaline complexes, Precambrian occurrences are rare. Up-to-date only a few Proterozoic examples were cited in Africa. The recently studied Awsard complex in Southern Morocco is a peculiar one with a crystallization age of 2.46 Ga and an unusual rock assemblages. This paper is a first approximation to a comparison of geochemical and isotopic fingerprints of the Awsard magmatism (as the oldest one) with other known different ages African complexes from different geotectonic settings, aiming to detect if there is any evolution in this alkaline magmatism through time. A first conclusion is that magma sources for this alkaline magmatism has been probably evaluating over geological time, from parental magmas compositions close to that of primitive mantle in these early geological time to compositions holding more and more depleted mantle and continental crust components. However, to go further in this debate more modern isotopic, geochemical and geochronological data from all these complexes are needed. Nevertheless, this comparison highlighted the peculiar character of the Awsard magmatism with an isotopic composition very close to that of Primitive mantle (values of εNd(2.46Ga) range from -3.5 to 1.2, Nd model ages range from ca.2.5 Ga to 3.0 Ga (the hosting TTG gneiss crystallization age)); an ultrapotassic composition (K2O/Na2O>>10); the oldest crystallization age 2.46 Ga reported until the date in Africa and the unusual occurrence of kalsilite-rich syenites "synnyrites".

  20. Reconnaissance bedrock geology of the southeastern part of the Kenai quadrangle, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Bradley, Dwight C.; Wilson, Frederic H.

    2000-01-01

    We present a new reconnaissance geologic map of the southeastern part of the Kenai quadrangle that improves on previously published maps. Melange of the McHugh Complex is now known to form a continuous strike belt that can be traced from the Seldovia to the Valdez quadrangle; a problematic 75-km-long gap in the McHugh Complex in the Kenai and Seldovia quadrangles does not exist. An Eocene near-trench pluton underlies a range of nunataks in Harding Icefield.

  1. Geomorphological expression of a complex structural region: San Andreas Fault through the San Gorgonio Pass, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2015-12-01

    The San Gorgonio Pass (SGP) region of southern California is a locus of extensive Quaternary deformation surrounding a complex section of the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complicated history of geologic events in the formation of this structural 'knot'. Critical questions remain in assessing earthquake hazard for this region: What is the likelihood that rupture will propagate through the SGP? If rupture is able to propagate, what pathway will connect the various fault strands? To address these questions, we focus on the geology and geomorphology of the SGP region. We have identified fault-bounded blocks, and focus on three that are developed within crystalline bedrock: the Yucaipa Ridge block (YRB) block, the Kitching Peak block (KPB), and the Pisgah Peak block (PPB). The latter two blocks are positioned south of the YRB, and partially separated from each other by the San Bernardino strand; this strand cannot be mapped at the surface as an active connection between fault strands. Both KPB and PPB are bounded to the south by the San Gorgonio Pass Fault Zone. Morphometric analyses consistently demonstrate distinctions between KPB and PPB, though the bedrock lithologies are the same. Geologic mapping of the region highlights the differences in Quaternary units within the blocks. These geomorphic and geologic distinctions lead to our interpretation that KPB and PPB have experienced markedly different uplift histories that constrain the history of dextral slip on the SAF through SGP. Specifically, although the latest Quaternary geologic setting of SGP raises questions about modern slip transfer through the Pass, the contrasting uplift histories of KPB and PPB strongly suggest that earlier in Quaternary time SGP was not a barrier to slip transfer between the Coachella Valley to the SE and the San Bernardino Basin to the NW.

  2. Experimental methods for the simulation of supercritical CO2 injection at laboratory scale aimed to investigate capillary trapping

    NASA Astrophysics Data System (ADS)

    Trevisan, L.; Illangasekare, T. H.; Rodriguez, D.; Sakaki, T.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.

    2011-12-01

    Geological storage of carbon dioxide in deep geologic formations is being considered as a technical option to reduce greenhouse gas loading to the atmosphere. The processes associated with the movement and stable trapping are complex in deep naturally heterogeneous formations. Three primary mechanisms contribute to trapping; capillary entrapment due to immobilization of the supercritical fluid CO2 within soil pores, liquid CO2 dissolving in the formation water and mineralization. Natural heterogeneity in the formation is expected to affect all three mechanisms. A research project is in progress with the primary goal to improve our understanding of capillary and dissolution trapping during injection and post-injection process, focusing on formation heterogeneity. It is expected that this improved knowledge will help to develop site characterization methods targeting on obtaining the most critical parameters that capture the heterogeneity to design strategies and schemes to maximize trapping. This research combines experiments at the laboratory scale with multiphase modeling to upscale relevant trapping processes to the field scale. This paper presents the results from a set of experiments that were conducted in an intermediate scale test tanks. Intermediate scale testing provides an attractive alternative to investigate these processes under controlled conditions in the laboratory. Conducting these types of experiments is highly challenging as methods have to be developed to extrapolate the data from experiments that are conducted under ambient laboratory conditions to high temperatures and pressures settings in deep geologic formations. We explored the use of a combination of surrogate fluids that have similar density, viscosity contrasts and analogous solubility and interfacial tension as supercritical CO2-brine in deep formations. The extrapolation approach involves the use of dimensionless numbers such as Capillary number (Ca) and the Bond number (Bo). A set of experiments that captures some of the complexities of the geologic heterogeneity and injection scenarios are planned in a 4.8 m long tank. To test the experimental methods and instrumentation, a set of preliminary experiments were conducted in a smaller tank with dimensions 90 cm x 60 cm. The tank was packed to represent both homogeneous and heterogeneous conditions. Using the surrogate fluids, different injection scenarios were tested. Images of the migration plume showed the critical role that heterogeneity plays in stable entrapment. Destructive sampling done at the end of the experiments provided data on the final saturation distributions. Preliminary analysis suggests the entrapment configuration is controlled by the large-scale heterogeneities as well as the pore-scale entrapment mechanisms. The data was used in modeling analysis that is presented in a companion abstract.

  3. Preliminary characterization of an alpine karst aquifer in a complex geological setting using the KARSYS approach. Picos de Europa, North Spain

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Malard, Arnauld; Jeannin, Pierre-Yves; Jiménez-Sánchez, Montserrat; García-Sansegundo, Joaquín; Meléndez, Mónica; Sendra, Gemma

    2013-04-01

    Research applied to karst aquifers linked to a homogeneous limestone in high mountain areas affected by several tectonic events is a hard task, due to methodological constraints and the uncertainties of the geological data. The KARSYS approach (Jeannin et al. 2012) is based on the combination of existing geological data and basic principles of karst hydraulic, allowing for characterizing the geometry of an aquifer considering a smaller amount of data than other methods. The Picos de Europa (North Spain) is an alpine karst massif with a surface area of 700 km2, peaks up to 2,648 m and fluvial gorges up to 2,000 m deep, including about 270 km of cave passage. The bedrock is mainly composed of Ordovician quartzite covered by massive Carboniferous limestone and is affected by two systems of thrusts and other faults. The most of the geological structures are from Variscan orogeny (Carboniferous in age), some of them could be originated or modified during the Permian-Mesozoic extensional episode, and the others were originated or reactivated during the Alpine Orogeny. Therefore, the Picos de Europa can be considered as a complex geological environment in which usual hydrogeological methods are difficult to use. The aim of this study is to characterize the geometry of the Picos de Europa aquifers applying the KARSYS approach. The approach includes: 1) the identification of aquifer and aquiclude formations; 2) the inventory of the main springs; 3) the establishment of a 3D geological model, focused on the aquifer boundaries; 4) the implementation of the hydraulic features within the 3D model and the delineation of the karst system. The main aquifer of the Picos de Europa is developed within the Carboniferous limestone and displays a complex geometry generally limited and divided into several unconfined groundwater bodies by Ordovician to Carboniferous rocks related to the thrusts. The lowest limit of the aquifer is marked by the N-dipping detachment level of the thrusts and the top of the Ordovician rocks, pushing the underground flow paths towards the northern part of the massif. Some boundaries of the saturated part of the groundwater bodies are unknown, although they could be associated to some rocks not considered in the geological model. The main karst springs supply 10 to 5,000 l/s, being located at altitudes ranging from 167 to 1,246 m (western area), and 178 to 440 m (central area) and at 600 m (eastern area). Their elevation is progressively decreasing toward the North, conditioning the regional circulation of karst groundwater. These results suggest that the geometry of the saturated part presents several compartments, resulting from the position of the out-of-sequence thrusts, with a relative elevation descending to the North. The results evidenced by the KARSYS approach provide first outlook of the geometry of the karst aquifers of the Picos de Europa, even if deep geological data are not precise or are scarce. The method has also revealed the main targets for future geological and hydrogeological research in this complex karstic environment. Jeannin et al. 2012. Environmental Earth Sciences DOI10.1007/s12665-012-1983-6.

  4. Use of Library Readings to Augment Conventional Geology Instruction.

    ERIC Educational Resources Information Center

    Nold, John Lloyd

    1989-01-01

    Examples of sets of questions on library readings designed to lead students into articles and emphasize important information and associated literature are presented for introductory geology courses, historical geology, structural geology, mineralogy, and petrology. (Author/CW)

  5. Using geologic maps and seismic refraction in pavement-deflection analysis

    DOT National Transportation Integrated Search

    1999-10-01

    The researchers examined the relationship between three data types -- geologic maps, pavement deflection, and seismic refraction data -- from diverse geologic settings to determine whether geologic maps and seismic data might be used to interpret def...

  6. Feature level fusion for enhanced geological mapping of ophiolile complex using ASTER and Landsat TM data

    NASA Astrophysics Data System (ADS)

    Pournamdari, M.; Hashim, M.

    2014-02-01

    Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.

  7. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    EPA Science Inventory

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  8. Teaching Spatial Thinking in Undergraduate Geology Courses Using Tools and Strategies from Cognitive Science Research

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.

    2015-12-01

    Spatial visualization is an essential skill in the STEM disciplines, including the geological sciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may struggle to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. Using strategies that have emerged from cognitive science research, we developed a set of curricular materials that improve undergraduate geology majors' abilities to reason about 3D concepts and to solve spatially complex geological problems. Cognitive science research on spatial thinking demonstrates that predictive sketching, making visual comparisons, gesturing, and the use of analogy can be used to develop students' spatial thinking skills. We conducted a three-year study of the efficacy of these strategies in strengthening the spatial skills of students in core geology courses at three universities. Our methodology is a quasi-experimental quantitative design, utilizing pre- and post-tests of spatial thinking skills, assessments of spatial problem-solving skills, and a control group comprised of students not exposed to our new curricular materials. Students taught using the new curricular materials show improvement in spatial thinking skills. Further analysis of our data, to be completed prior to AGU, will answer additional questions about the relationship between spatial skills and academic performance, spatial skills and gender, spatial skills and confidence, and the impact of our curricular materials on students who are struggling academically. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate education in the geological sciences by removing one significant barrier to success.

  9. Application of remote sensing to the geological study of the alkaline complex region of Itatiaia. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.

    1980-01-01

    The methodology of remote sensing applied to geological study in a complex area was evaluated. Itatiaia was selected as a test area, which covers the alkaline massives and its precambrian basement. LANDSAT-MSS and radar mosaic of the RADAMBRASIL Project were used for photointerpretation. Previous geological works were consulted and many discrepancies in the distribution of stratigraphic units were found. Moreover, structural lineaments and talus deposits were clearly delineated.

  10. Geology of the Yucca Mountain region

    USGS Publications Warehouse

    Stuckless, J.S.; O'Leary, Dennis W.

    2006-01-01

    Yucca Mountain has been proposed as the site for the nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began ca. 10 Ma and continued as recently as ca. 80 ka with the eruption of cones and flows at Lathrop Wells, ???10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain. ?? 2007 Geological Society of America. All rights reserved.

  11. Distribution of indoor radon concentrations in Pennsylvania, 1990-2007

    USGS Publications Warehouse

    Gross, Eliza L.

    2013-01-01

    Median indoor radon concentrations aggregated according to geologic units and hydrogeologic settings are useful for drawing general conclusions about the occurrence of indoor radon in specific geologic units and hydrogeologic settings, but the associated data and maps have limitations. The aggregated indoor radon data have testing and spatial accuracy limitations due to lack of available information regarding testing conditions and the imprecision of geocoded test locations. In addition, the associated data describing geologic units and hydrogeologic settings have spatial and interpretation accuracy limitations, which are a result of using statewide data to define conditions at test locations and geologic data that represent a broad interpretation of geologic units across the State. As a result, indoor air radon concentration distributions are not proposed for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for indoor radon concentrations at specific property locations.

  12. Subsurface data visualization in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul

    2017-04-01

    Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing can be done in any direction using a 'virtual knife'. Future plans are to further improve performance from 30 up to 90 Hz update rate to reduce possible motion sickness, add more advanced filtering capabilities as well as a multi user setup, annotation capabilities and visualizing of historical data.

  13. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Feyen, Luc; Caers, Jef

    2006-06-01

    In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.

  14. Characterization of Groundwater Quality Based on Regional Geologic Setting in the Piedmont and Blue Ridge Physiographic Provinces, North Carolina

    USGS Publications Warehouse

    Harden, Stephen L.; Chapman, Melinda J.; Harned, Douglas A.

    2009-01-01

    A compilation of groundwater-quality data collected as part of two U.S. Geological Survey studies provides a basis for understanding the ambient geochemistry related to geologic setting in the Piedmont and Blue Ridge Physiographic Provinces (hereafter referred to as Piedmont and Mountains Provinces) of North Carolina. Although the geology is complex, a grouping of the sampled wells into assemblages of geologic units described as 'geozones' provides a basis for comparison across the region. Analyses of these two data sets provide a description of water-quality conditions in bedrock aquifers of the Piedmont and Mountains Provinces of North Carolina. Analyzed data were collected between 1997 and 2008 from a network of 79 wells representing 8 regional geozones distributed throughout the Piedmont and Mountains Provinces. This area has experienced high rates of population growth and an increased demand for water resources. Groundwater was used by about 34 percent of the population in the 65 counties of this region in 2005. An improved understanding of the quality and quantity of available groundwater resources is needed to plan effectively for future growth and development. The use of regional geologic setting to characterize groundwater-quality conditions in the Piedmont and Mountains Provinces is the focus of this investigation. Data evaluation included an examination of selected properties and the ionic composition of groundwater in the geozones. No major differences in overall ionic chemistry of groundwater among the geozones were evident with the data examined. Variability in the cationic and anionic composition of groundwater within a particular geozone appeared to reflect local differences in lithologic setting, hydrologic and geochemical conditions, and(or) land-use effects. The most common exceedances of the drinking-water criteria (in accordance with Federal and State water-quality standards) occurred for radon, pH, manganese, iron, and zinc. Radon had the most exceedances, with groundwater from 61 of the 69 sampled wells having activities higher than the U.S. Environmental Protection Agency's proposed maximum contaminant level of 300 picocuries per liter. Overall, the Milton and the Raleigh and Charlotte geozones had the greatest number, eight each, of water-quality properties or constituents that exceeded applicable drinking-water criteria in at least one well. The Eastern Blue Ridge and Felsic intrusive geozones each had seven properties or constituents that exceeded criteria, and the Carolina slate geozone had six. Based on limited data, initial results of statistical comparison tests identified statistically significant differences in concentrations of some groundwater constituents among the geozones. Statistically significant differences in median values of specific conductance and median concentrations of calcium, potassium, sodium, bicarbonate, chloride, silica, ammonia, aluminum, antimony, cadmium, and uranium were identified between one or more geozone pairs. Overall, the groundwater constituents appear to be influenced most significantly by the Inner Piedmont, Carolina slate, and Felsic intrusive geozones. The study data indicate that grouping and evaluating analytical data on the basis of regional geozone setting can be useful for characterizing water-quality conditions in bedrock aquifers of the Piedmont and Blue Ridge Provinces of North Carolina.

  15. Toward digital geologic map standards: a progress report

    USGS Publications Warehouse

    Ulrech, George E.; Reynolds, Mitchell W.; Taylor, Richard B.

    1992-01-01

    Establishing modern scientific and technical standards for geologic maps and their derivative map products is vital to both producers and users of such maps as we move into an age of digital cartography. Application of earth-science data in complex geographic information systems, acceleration of geologic map production, and reduction of population costs require that national standards be developed for digital geologic cartography and computer analysis. Since December 1988, under commission of the Chief Geologic of the U.S. Geological Survey and the mandate of the National Geologic Mapping Program (with added representation from the Association of American State Geologists), a committee has been designing a comprehensive set of scientific map standards. Three primary issues were: (1) selecting scientific symbology and its digital representation; (2) creating an appropriate digital coding system that characterizes geologic features with respect to their physical properties, stratigraphic and structural relations, spatial orientation, and interpreted mode of origin; and (3) developing mechanisms for reporting levels of certainty for descriptive as well as measured properties. Approximately 650 symbols for geoscience maps, including present usage of the U.S Geological Survey, state geological surveys, industry, and academia have been identified and tentatively adopted. A proposed coding system comprises four-character groupings of major and minor codes that can identify all attributes of a geologic feature. Such a coding system allows unique identification of as many as 105 geologic names and values on a given map. The new standard will track closely the latest developments of the Proposed Standard for Digital Cartographic Data soon to be submitted to the National Institute of Standards and Technology by the Federal Interagency Coordinating Committee on Digital Cartography. This standard will adhere generally to the accepted definitions and specifications for spatial data transfer. It will require separate specifications of digital cartographic quality relating to positional accuracy and ranges of measured and interpreted values such as geologic age and rock composition. Provisional digital geologic map standards will be published for trial implementation. After approximately two years, when comments on the proposed standards have been solicited and modifications made, formal adoption of the standards will be recommended. Widespread acceptance of the new standards will depend on their applicability to the broadest range of earth-science map products and their adaptability to changing cartographic technology.

  16. Preliminary geologic map of the Townsend 30' x 60' quadrangle, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2006-01-01

    The geologic map of the Townsend quadrangle, scale 1:100,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of this geologically complex area in west-central Montana. The quadrangle encompasses about 4,200 square km (1,640 square mi).

  17. Autonomous Segmentation of Outcrop Images Using Computer Vision and Machine Learning

    NASA Astrophysics Data System (ADS)

    Francis, R.; McIsaac, K.; Osinski, G. R.; Thompson, D. R.

    2013-12-01

    As planetary exploration missions become increasingly complex and capable, the motivation grows for improved autonomous science. New capabilities for onboard science data analysis may relieve radio-link data limits and provide greater throughput of scientific information. Adaptive data acquisition, storage and downlink may ultimately hold implications for mission design and operations. For surface missions, geology remains an essential focus, and the investigation of in place, exposed geological materials provides the greatest scientific insight and context for the formation and history of planetary materials and processes. The goal of this research program is to develop techniques for autonomous segmentation of images of rock outcrops. Recognition of the relationships between different geological units is the first step in mapping and interpreting a geological setting. Applications of automatic segmentation include instrument placement and targeting and data triage for downlink. Here, we report on the development of a new technique in which a photograph of a rock outcrop is processed by several elementary image processing techniques, generating a feature space which can be interrogated and classified. A distance metric learning technique (Multiclass Discriminant Analysis, or MDA) is tested as a means of finding the best numerical representation of the feature space. MDA produces a linear transformation that maximizes the separation between data points from different geological units. This ';training step' is completed on one or more images from a given locality. Then we apply the same transformation to improve the segmentation of new scenes containing similar materials to those used for training. The technique was tested using imagery from Mars analogue settings at the Cima volcanic flows in the Mojave Desert, California; impact breccias from the Sudbury impact structure in Ontario, Canada; and an outcrop showing embedded mineral veins in Gale Crater on Mars. These initial results show promising performance in segmenting images, including multi-class scenes with complex boundaries. In particular, the system was able to learn to distinguish between successive layers of volcanic deposits, including massive basalts overlaying lahar materials. It was also able to separate clasts from ground mass in outcrops of impact breccia, and to find veins of hydrated material within a clay-bearing host rock. The tests also reveal initial details about the types of visual information relevant to segmentation of these types of scenes, providing guidance for further development of the technique. Funding for this work was provided in part by the Canadian Astrobiology Training Program. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2013 The University of Western Ontario. All Rights Reserved.

  18. Complexity of Secondary Scientific Data Sources and Students' Argumentative Discourse

    ERIC Educational Resources Information Center

    Kerlin, Steven C.; McDonald, Scott P.; Kelly, Gregory J.

    2010-01-01

    This study examined the learning opportunities provided to students through the use of complex geological data supporting scientific inquiry. Through analysis of argumentative discourse in a high school Earth science classroom, uses of US Geological Survey (USGS) data were contrasted with uses of geoscience textbook data. To examine these…

  19. Determination of Cenozoic sedimentary structures using integrated geophysical surveys: A case study in the Barkol Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua

    2018-01-01

    Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.

  20. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium concentrations were greatest in samples containing indications of reducing conditions and organic matter (dark gray to black claystones and lignite horizons). The Toll Gate Creek watershed is situated in a unique hydrogeologic setting in the west-central part of the Denver Basin such that weathering of Cretaceous- to Tertiary-aged, non-marine, selenium-bearing rocks releases selenium to groundwater and surface water under present-day semi-arid environmental conditions. The Denver Formation contains several known and suspected geologic sources of selenium including: (1) lignite deposits; (2) tonstein partings; (3) organic-rich bentonite claystones; (4) salts formed as secondary weathering products; and possibly (5) the Cretaceous-Tertiary boundary. Organically complexed selenium and/or selenium-bearing pyrite in the enclosing claystones are likely the primary mineral sources of selenium in the Denver Formation, and correlations between concentration of dissolved selenium and dissolved organic carbon in groundwater indicate weathering and dissolution of organically complexed selenium from organic-rich claystone is a primary process mobilizing selenium. Secondary salts accumulated along fractures and bedding planes in the weathered zone are another potential geologic source of selenium, although their composition was not specifically addressed by the solids analyses. Results from this and previous work indicate that shallow groundwater and streams similarly positioned over Denver Formation claystone units at other locations in the Denver Basin also may contain concentrations of dissolved selenium greater than the Colorado aquatic-life standard or the drinking- water standard.

  1. Evidence for a common scale O(0.1) m that controls seabed scattering and reverberation in shallow water.

    PubMed

    Holland, Charles W

    2012-10-01

    Analysis of the spectral content of long-range reverberation yields two observations. First, there is a remarkably similar scale, O(0.1) m, between three diverse continental shelf regions. This is surprising given the complexity and diversity of geologic processes. Second, there is strong evidence that the scale is associated with heterogeneities within the sediment. Thus, sediment volume scattering, not interface scattering, controls long-range reverberation from a few hundred hertz to several kilohertz. This is also unexpected given that at long ranges the vertical grazing angles are less than the critical angle, and hence the penetration of the acoustic field into the sub-bottom is expected to be modest. The consistency of the scale, O(0.1) m, suggests an underlying feature or mechanism that is consistent across many ostensibly diverse geological settings. Neither the feature nor mechanism is known at this time.

  2. Stoichiometry of hydrological C, N, and P losses across climate and geology: An environmental matrix approach across New Zealand primary forests

    NASA Astrophysics Data System (ADS)

    McGroddy, M. E.; Baisden, W. T.; Hedin, L. O.

    2008-03-01

    Hydrologic losses can play a key role in regulating ecosystem nutrient balances, particularly in regions where baseline nutrient cycles are not augmented by industrial deposition. We used first-order streams to integrate hydrologic losses at the watershed scale across unpolluted old-growth forests in New Zealand. We employed a matrix approach to resolve how stream water concentrations of dissolved organic carbon (DOC), organic and inorganic nitrogen (DON and DIN), and organic and inorganic phosphorus (DOP and DIP) varied as a function of landscape differences in climate and geology. We found stream water total dissolved nitrogen (TDN) to be dominated by organic forms (medians for DON, 81.3%, nitrate-N, 12.6%, and ammonium-N, 3.9%). The median stream water DOC:TDN:TDP molar ratio of 1050:21:1 favored C slightly over N and P when compared to typical temperate forest foliage ratios. Using the full set of variables in a multiple regression approach explained approximately half of the variability in DON, DOC, and TDP concentrations. Building on this approach we combined a simplified set of variables with a simple water balance model in a regression designed to predict DON export at larger spatial scales. Incorporating the effects of climate and geologic variables on nutrient exports will greatly aid the development of integrated Earth-climate biogeochemical models which are able to take into account multiple element dynamics and complex natural landscapes.

  3. A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media

    NASA Astrophysics Data System (ADS)

    Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, M. S.

    2018-03-01

    A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the computation of viscoelastic wavefields in complex geological media. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact solution of the heterogeneous Riemann problem. Our implementation offers capabilities for modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial scale with little logistical overhead. It allows the import of external tetrahedral meshes provided by independent meshing software and can be run in a parallel computing environment. Computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical solutions and results from a spectral element method. The capabilities of the NDG method are demonstrated through a 3-D example case taken from tunnel seismics which considers high-frequency elastic wave propagation around a curved underground tunnel cutting through inclined and faulted sedimentary strata. The NDG method was coded into the open-source software package NEXD and is available from GitHub.

  4. Isukasia area: Regional geological setting (includes excursion guide)

    NASA Technical Reports Server (NTRS)

    Nutman, A. P.; Rosing, M.

    1986-01-01

    A brief account of the geology of the Isukasis area is given and is biased toward the main theme of the itinerary for the area: What has been established about the protoliths of the early Archean rocks of the area - the Isua supracrustal belt and the Amitsoq gneisses? The area's long and complex tectonometamorphic history of events can be divided into episodes using a combination of dike chronology, isotopic, and petrological studies. The earliest dikes, the ca 3700 Ma Inaluk dikes, intrude the earliest (tonalitic) components of the Amitsoq gneisses but are themselves cut up by the injection of the younger (granitic and pegmatitic) phases of the Amitsoq gneisses of the area. The areas of low late Archean deformation, strongly deformed early Archean mafic rocks have coarse grained metamorphic segregations and are cut by virtually undeformed mid-Archean Tarssartoq (Ameralik) dikes devoid of metamorphic segregations. The shows that the area was affected by regional amphibolite facies metamorphism in the early Archean. Late Archean and Proterozoic metamorphic imprints are marked to very strong in the area. Much of the early Archean gneiss complex was already highly deformed when the mid-Archean Tarssartoq dikes were intruded.

  5. New zircon U-Pb LA-ICP-MS ages and Hf isotope data from the Central Pontides (Turkey): Geological and geodynamic constraints

    NASA Astrophysics Data System (ADS)

    Çimen, Okay; Göncüoğlu, M. Cemal; Simonetti, Antonio; Sayit, Kaan

    2018-05-01

    The Central Pontides in northern Anatolia is located on the accretionary complex formed by the closure of Neotethyan Intra-Pontide Ocean between the southern Eurasian margin (Istanbul-Zonguldak Terrane) and the Cimmerian Sakarya Composite Terrane. Among other components of the oceanic lithosphere, it comprises not yet well-dated felsic igneous rocks formed in arc-basin as well as continent margin settings. In-situ U-Pb age results for zircons from the arc-basin system (öangaldağ Metamorphic Complex) and the continental arc (Devrekani Metadiorite and Granitoid) yield ages of 176 ± 6 Ma, 163 ± 9 Ma and 165 ± 3 Ma, respectively. Corresponding in-situ average (initial) 176Hf/177Hf initial ratios are 0.28261 ± 0.00003, 0.28267 ± 0.00002 and 0.28290 ± 0.00004 for these units and indicative of a subduction-modified mantle source. The new U-Pb ages and Hf isotope data from these oceanic and continental arc units together with regional geological constraints support the presence of a multiple subduction system within the Intra-Pontide Ocean during the Middle Jurassic.

  6. Quality assurance plan for discharge measurements using broadband acoustic Doppler current profilers

    USGS Publications Warehouse

    Lipscomb, S.W.

    1995-01-01

    The recent introduction of the Acoustic Doppler Current Profiler (ADCP) as an instrument for measuring velocities and discharge in the riverine and estuarine environment promises to revolutionize the way these data are collected by the U.S. Geological Survey. The ADCP and associated software, however, compose a complex system and should be used only by qualifies personnel. Standard procedures should be rigorously followed to ensure that the quality of data collected is commensurate with the standards set by the Water Resources Division for all its varied activities in hydrologic investigations.

  7. Quaternary geology and geomorphology of the lower Deschutes River Canyon, Oregon.

    Treesearch

    Jim E. O' Connor; Janet H. Curran; Robin A. Beebee; Gordon E. Grant; Andrei Sarna-Wojcicki

    2003-01-01

    The morphology of the Deschutes River canyon downstream of the Pelton-Round Butte dam complex is the product of the regional geologic history, the composition of the geologic units that compose the valley walls, and Quaternary processes and events. Geologic units within the valley walls and regional deformation patterns control overall valley morphology. Valley bottom...

  8. Field guide to the Mesozoic accretionary complex along Turnagain Arm and Kachemak Bay, south-central Alaska

    USGS Publications Warehouse

    Bradley, Dwight C.; Kusky, Timothy M.; Karl, Susan M.; Haeussler, Peter J.

    1997-01-01

    Turnagain Arm, just east of Anchorage, provides a readily accessible, world-class cross section through a Mesozoic accretionary wedge. Nearly continuous exposures along the Seward Highway, the Alaska Railroad, and the shoreline of Turnagain Arm display the two main constituent units of the Chugach terrane: the McHugh Complex and Valdez Group. In this paper we describe seven bedrock geology stops along Turnagain Arm, and two others in the Chugach Mountains just to the north (Stops 1-7 and 9), which will be visited as part of the May, 1997 field trip of the Alaska Geological Society. Outcrops along Turnagain Arm have already been described in two excellent guidebook articles (Clark, 1981; Winkler and others 1984), both of which remain as useful and valid today as when first published. Since the early 1980's, studies along Turnagain Arm have addressed radiolarian ages of chert and conodont ages of limestone in the McHugh Complex (Nelson and others, 1986, 1987); geochemistry of basalt in the McHugh Complex (Nelson and Blome, 1991); post-accretion brittle faulting (Bradley and Kusky, 1990; Kusky and others, 1997); and the age and tectonic setting of gold mineralization (Haeussler and others, 1995). Highlights of these newer findings will described both in the text below, and in the stop descriptions.Superb exposures along the southeastern shore of Kachemak Bay show several other features of the McHugh Complex that are either absent or less convincing along Turnagain Arm. While none of these outcrops can be reached via the main road network, they are still reasonably accessible - all are within an hour by motorboat from Homer, seas permitting. Here, we describe seven outcrops along the shore of Kachemak Bay that we studied between 1989 and 1993 during geologic mapping of the Seldovia 1:250,000- scale quadrangle. These outcrops (Stops 61-67) will not be part of the 1997 itinerary, but are included here tor the benefit of those who may wish to visit them later.

  9. Geological control of flow in the Institute and Möller Ice Streams, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Ross, N.; Corr, H.; Bingham, R. G.; Rippin, D. M.; Le Brocq, A.; Siegert, M. J.

    2012-12-01

    The conditions at the base of an ice sheet influence its flow, and reflect the ongoing interaction between moving ice and the underlying geology. Critical influences on ice flow include subglacial topography, bed lithology, and geothermal heat flux. These factors are influenced either directly by local geology, or by the regional tectonic setting. Geophysical methods have been used in many parts of Antarctica, such as the Siple Coast, to reveal the role subglacial geology plays in influencing ice flow. Until recently, however, the Institute and Möller Ice Streams, which drain ~20% of the West Antarctic Ice Sheet into the Weddell Sea, were only covered by sparse airborne radar (~50 km line spacing), and reconnaissance aeromagnetic data, limiting our understanding of the geological template for this sector of the West Antarctic Ice Sheet. Here we present our geological interpretation of the first integrated aerogeophysical survey over the catchments of the Institute and Möller Ice Streams, which collected ~25,000 km of new aerogeophysical data during the 2010/11 field season. These new airborne radar, magnetic and gravity data reveals both the subglacial topography, and the subglacial geology. Our maps show the fastest flowing coastal part of the Institute Ice Stream crosses a sedimentary basin underlain by thinned continental crust. Further inland two distinct ice flow provinces are recognised: the Pagano Ice Flow Province, which follows the newly identified, ~75 km wide, sinistral strike-slip Pagano Fault Zone at the boundary between East and West Antarctica; and the Ellsworth Ice Flow Province, which is controlled by the Permo-Triassic structural grain of folded Middle Cambrian-Permian meta-sediments, and Jurassic granitic rocks which form significant subglacial highlands. Our new data highlight the importance of understanding subglacial geology when explaining the complex pattern of ice flow observed in the ice sheet interior.

  10. How to Make a Virtual Landscape with Outcrops for Use in Geoscience Teaching

    NASA Astrophysics Data System (ADS)

    Houghton, J.; Gordon, C.; Craven, B.; Robinson, A.; Lloyd, G. E. E.; Morgan, D. J.

    2016-12-01

    We are using screen-based virtual reality landscapes to augment the teaching of basic geological field skills and to enhance 3D visualisation skills. Here we focus on the processes of creating these landscapes, both imagined and real, in the Unity 3D game engine. The virtual landscapes are terrains with embedded data for mapping exercises, or draped geological maps for understanding the 3D interaction of the geology with the topography. The nature of the landscapes built depends on the learning outcomes of the intended teaching exercise. For example, a simple model of two hills and a valley over which to drape a series of different geological maps can be used to enhance the understanding of the 3D interaction of the geology with the topography. A more complex topography reflecting the underlying geology can be used for geological mapping exercises. The process starts with a contour image or DEM, which needs to be converted into RAW files to be imported into Unity. Within Unity itself, there are a series of steps needed to create a world around the terrain (the setting of cameras, lighting, skyboxes etc) before the terrain can be painted with vegetation and populated with assets or before a splatmap of the geology can be added. We discuss how additional features such as a GPS unit or compass can be included. We are also working to create landscapes based on real localities, both in response to the demand for greater realism and to support students unable to access the field due to health or mobility issues. This includes adding 3D photogrammetric images of outcrops into the worlds. This process uses the open source/freeware tools VisualSFM and MeshLab to create files suitable to be imported into Unity. This project is a collaboration between the University of Leeds and Leeds College of Art, UK, and all our virtual landscapes are freely available online at www.see.leeds.ac.uk/virtual-landscapes/.

  11. A geologic and mineral exploration spatial database for the Stillwater Complex, Montana

    USGS Publications Warehouse

    Zientek, Michael L.; Parks, Heather L.

    2014-01-01

    This report provides essential spatially referenced datasets based on geologic mapping and mineral exploration activities conducted from the 1920s to the 1990s. This information will facilitate research on the complex and provide background material needed to explore for mineral resources and to develop sound land-management policy.

  12. Geophysical-geological studies of possible extensions of the New Madrid Fault Zone. Annual report, 1982. Vol. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinze, W.J.; Braile, L.W.; Keller, G.R.

    1983-05-01

    An integrated geophysical/geologic program is being conducted to evaluate the rift complex hypothesis as an explanation for the earthquake activity in the New Madrid Seismic Zone and its extensions, to refine our knowledge of the rift complex, and to investigate the possible northern extensions of the New Madrid Fault Zone, especially its possible connection to the Anna, Ohio seismogenic region. Drillhole basement lithologies are being investigated to aid in tectonic analysis and geophysical interpretation, particularly in the Anna, Ohio area. Gravity and magnetic modeling combined with limited seismic reflection studies in southwest Indiana are interpreted as confirming speculation that anmore » arm of the New Madrid Rift Complex extends northeasterly into Indiana. The geologic and geophysical evidence confirm that the basement lithology in the Anna, Ohio area is highly variable reflecting a complex geologic history. The data indicate that as many as three major Late Precambrian tectonic features intersect within the basement of the Anna area suggesting that the seismicity may be related to basement zones of weakness.« less

  13. Preliminary geologic investigation of the Apollo 12 landing site: Part A: Geology of the Apollo 12 Landing Site

    USGS Publications Warehouse

    Shoemaker, E.M.; Batson, R.M.; Bean, A.L.; Conrad, C.; Dahlem, D.H.; Goddard, E.N.; Hait, M.H.; Larson, K.B.; Schaber, G.G.; Schleicher, D.L.; Sutton, R.L.; Swann, G.A.; Waters, A.C.

    1970-01-01

    This report provides a preliminary description of the geologic setting of the lunar samples returned fromt he Apollo 12 mission. A more complete interpretation of the geology of the site will be prepared after thorough analysis of the data.

  14. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...

  15. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...

  16. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...

  17. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...

  18. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...

  19. 10 CFR 960.4-2-7 - Tectonics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...

  20. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...

  1. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...

  2. 10 CFR 960.5-2-11 - Tectonics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...

  3. Geological hazard monitoring system in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  4. Debates—Stochastic subsurface hydrology from theory to practice: A geologic perspective

    NASA Astrophysics Data System (ADS)

    Fogg, Graham E.; Zhang, Yong

    2016-12-01

    A geologic perspective on stochastic subsurface hydrology offers insights on representativeness of prominent field experiments and their general relevance to other hydrogeologic settings. Although the gains in understanding afforded by some 30 years of research in stochastic hydrogeology have been important and even essential, adoption of the technologies and insights by practitioners has been limited, due in part to a lack of geologic context in both the field and theoretical studies. In general, unintentional, biased sampling of hydraulic conductivity (K) using mainly hydrologic, well-based methods has resulted in the tacit assumption by many in the community that the subsurface is much less heterogeneous than in reality. Origins of the bias range from perspectives that are limited by scale and the separation of disciplines (geology, soils, aquifer hydrology, groundwater hydraulics, etc.). Consequences include a misfit between stochastic hydrogeology research results and the needs of, for example, practitioners who are dealing with local plume site cleanup that is often severely hampered by very low velocities in the very aquitard facies that are commonly overlooked or missing from low-variance stochastic models or theories. We suggest that answers to many of the problems exposed by stochastic hydrogeology research can be found through greater geologic integration into the analyses, including the recognition of not only the nearly ubiquitously high variances of K but also the strong tendency for the good connectivity of the high-K facies when spatially persistent geologic unconformities are absent. We further suggest that although such integration may appear to make the contaminant transport problem more complex, expensive and intractable, it may in fact lead to greater simplification and more reliable, less expensive site characterizations and models.

  5. Geology of the Caribbean.

    ERIC Educational Resources Information Center

    Dillon, William P.; And Others

    1988-01-01

    Describes some of the geologic characteristics of the Caribbean region. Discusses the use of some new techniques, including broad-range swath imaging of the sea floor that produces photograph-like images, and satellite measurement of crustal movements, which may help to explain the complex geology of the region. (TW)

  6. Miranda Geologic History Variety of Terrain

    NASA Image and Video Library

    1996-01-29

    Miranda reveals a complex geologic history in this view, acquired by NASA's Voyager 2 on Jan. 24, 1986, around its close approach to the Uranian moon. At least three terrain types of different age and geologic style are evident. http://photojournal.jpl.nasa.gov/catalog/PIA00141

  7. Teaching the geological subsurface with 3D models

    NASA Astrophysics Data System (ADS)

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough along with accompanying education material and a video tutorial guide are currently available to the public on our website www.bgs.ac.uk. 2014 will see the launch of a further 5-6 models, each illustrating different geological locations, rock types and complexities. This poster aims to show the methodology and techniques for generating a 3D geological model. It will provide background information on the project and how these models can be used as a teaching resource, either in a formal classroom setting or as a distance learning tool. The model allows the student to take part in virtual fieldwork, by viewing the landscape in association with the geological structures and processes that have shaped it.

  8. Geoinformatics and Data Fusion in the Southwestern Utah Mineral Belt

    NASA Astrophysics Data System (ADS)

    Kiesel, T.; Enright, R.

    2012-12-01

    Data Fusion is a technique in remote sensing that combines separate geophysical data sets from different platforms to yield the maximum information of each set. Data fusion was employed on multiple sources of data for the purposes of investigating an area of the Utah Mineral Belt known as the San Francisco Mining District. In the past many mineral deposits were expressed in or on the immediate surface and therefore relatively easy to locate. More modern methods of investigation look for evidence beyond the visible spectrum to find patterns that predict the presence of deeply buried mineral deposits. The methods used in this study employed measurements of reflectivity or emissivity features in the infrared portion of the electromagnetic spectrum for different materials, elevation data collected from the Shuttle Radar Topography Mission and indirect measurement of the magnetic or mass properties of deposits. The measurements were collected by various spaceborne remote sensing instruments like Landsat TM, ASTER and Hyperion and ground-based statewide geophysical surveys. ASTER's shortwave infrared bands, that have been calibrated to surface reflectance using the atmospheric correction tool FLAASH, can be used to identify products of hydrothermal alteration like kaolinite, alunite, limonite and pyrophyllite using image spectroscopy. The thermal infrared bands once calibrated to emissivity can be used to differentiate between felsic, mafic and carbonate rock units for the purposes of lithologic mapping. To validate results from the extracted spectral profiles existing geological reports were used for ground truth data. Measurements of electromagnetic spectra can only reveal the composition of surface features. Gravimetric and magnetic information were utilized to reveal subsurface features. Using Bouguer anomaly data provided by the USGS an interpreted geological cross section can be created that indicates the shape of local igneous intrusions and the depth of sedimentary basins. By comparing the digital elevation model with a satellite photo of the area a major high angle fault system was identified that had not been clearly evaluated in previous geologic mapping. For the investigation of the Frisco Mining District, gravity and magnetic data was fused to help differentiate igneous and sedimentary rocks that might have the same density. Data fusion allows for a more thorough analysis rather than viewing each data set separately with the accompanying improvement in ability to understand the complex geology of an area and can be applied to any remote sensing data set regardless of the type of instrument used.

  9. Managers' summary - Ecological studies of the Pryor Mountain Wild Horse Range, 1992-1997

    USGS Publications Warehouse

    Singer, F.J.; Schoenecker, K.A.

    2000-01-01

    Ecological Studies of the Pryor Mountain Wild Horse Range, 1992-1997 provides a synthesis of key findings of landscape-scale, interdisciplinary studies of the effects of wild horses and native ungulates on a rugged, mountain ecosystem. This is perhaps the most comprehensive study of a wild horse herd conducted. This was a complex study and one involving a truly interagency approach. Six agencies either provided input to research priority setting, funding, or both. The agencies included the Bureau of Land Management, National Park Service, U.S. Geological Survey, Montana Department of Fish, Wildlife and Parks, Wyoming Game and Fish Department, and U.S. Forest Service. The major research direction and effort came from the U.S. Geological Survey and Natural Resources Ecology Lab, Colorado State University with Montana State University and the University of Kentucky also participating. Ungulate monitoring was conducted by the U.S. Geological Survey, Biological Resources Division, Bureau of Land Management, Billings Field Office and the Montana Fish and Wildlife Parks, with funding by Bighorn Canyon National Recreation Area. Many other individuals and groups were involved and deserve credit. The report printing was made possible with funds from the Bureau of Land Management, Wild Horse and Burro Program, Washington Office. This report was prepared by the Information Management Project, Midcontinent Ecological Science Center, U.S. Geological Survey.

  10. Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12-14°S)

    NASA Astrophysics Data System (ADS)

    Li, Bing; Shi, Xuefa; Wang, Jixin; Yan, Quanshu; Liu, Chenguang; DY125-21 (Leg 3) Science Party; DY125-22 (Legs 2-5) Science Party; DY125-26 (Leg 3) Science Party

    2018-05-01

    Systematic hydrothermal exploration and multi-beam bathymetry mapping have been conducted along a 220-km-long section of the Southern Mid-Atlantic Ridge (SMAR) from 12°S (Bode Verde Fracture Zone) to 14°S (Cardno Fracture Zone), and previously reported deposits (Tao et al., 2011) are now being thoroughly investigated. Here, we present the characterization of three possible hydrothermal fields, a complete bathymetry data set of the ridge segment, gravity data, and the petrologic characteristics of collected rock samples. The magmatism characteristics, evolution of the ridge segment, and the local geological controls of the possible hydrothermal fields are then discussed. The studied segment can be divided into two segments by a Non-Transform Discontinuity (NTD). Our morphotectonic analysis shows significant along-axis heterogeneity in the surveyed segments: three distinctive cross-axis grabens were identified in the northern segment, and two were identified in the southern segment. Moreover, based on the gravity data (a relatively low spherical Bouguer anomaly) and petrologic data (low Mg# values and relatively low FeO and relatively high Al2O3 and CaO contents compared to nearby seafloor samples), a volcanic feature, the ZouYu seamount, on this segment is considered to be associated with strong magmatic activity, and the magmatic activity of the inside corner at the southern end of the segment has increased and decreased. The three possible hydrothermal fields occur in different local geological settings: a shallow magmatic seamount (ZouYu), an NTD (TaiJi), and an inside-corner high (CaiFan). These potential hydrothermal fields are significantly different from other fields in similar tectonic settings in terms of local geologic controls and products. The ZouYu field is primarily related to a newly formed cone, resulting in the production of sulfides, and differs from other fields on shallow magmatic seamounts. The TaiJi field is largely controlled by the tectonic evolution of the NTD and is based on mafic rocks. The inside corner containing the CaiFan field is a magmatic seamount rather than an Ocean Core Complex, making it strikingly different from other inside corner-related fields.

  11. Stochastic simulation by image quilting of process-based geological models

    NASA Astrophysics Data System (ADS)

    Hoffimann, Júlio; Scheidt, Céline; Barfod, Adrian; Caers, Jef

    2017-09-01

    Process-based modeling offers a way to represent realistic geological heterogeneity in subsurface models. The main limitation lies in conditioning such models to data. Multiple-point geostatistics can use these process-based models as training images and address the data conditioning problem. In this work, we further develop image quilting as a method for 3D stochastic simulation capable of mimicking the realism of process-based geological models with minimal modeling effort (i.e. parameter tuning) and at the same time condition them to a variety of data. In particular, we develop a new probabilistic data aggregation method for image quilting that bypasses traditional ad-hoc weighting of auxiliary variables. In addition, we propose a novel criterion for template design in image quilting that generalizes the entropy plot for continuous training images. The criterion is based on the new concept of voxel reuse-a stochastic and quilting-aware function of the training image. We compare our proposed method with other established simulation methods on a set of process-based training images of varying complexity, including a real-case example of stochastic simulation of the buried-valley groundwater system in Denmark.

  12. Geological modeling of submeter scale heterogeneity and its influence on tracer transport in a fluvial aquifer

    NASA Astrophysics Data System (ADS)

    Ronayne, Michael J.; Gorelick, Steven M.; Zheng, Chunmiao

    2010-10-01

    We developed a new model of aquifer heterogeneity to analyze data from a single-well injection-withdrawal tracer test conducted at the Macrodispersion Experiment (MADE) site on the Columbus Air Force Base in Mississippi (USA). The physical heterogeneity model is a hybrid that combines 3-D lithofacies to represent submeter scale, highly connected channels within a background matrix based on a correlated multivariate Gaussian hydraulic conductivity field. The modeled aquifer architecture is informed by a variety of field data, including geologic core sampling. Geostatistical properties of this hybrid heterogeneity model are consistent with the statistics of the hydraulic conductivity data set based on extensive borehole flowmeter testing at the MADE site. The representation of detailed, small-scale geologic heterogeneity allows for explicit simulation of local preferential flow and slow advection, processes that explain the complex tracer response from the injection-withdrawal test. Based on the new heterogeneity model, advective-dispersive transport reproduces key characteristics of the observed tracer recovery curve, including a delayed concentration peak and a low-concentration tail. Importantly, our results suggest that intrafacies heterogeneity is responsible for local-scale mass transfer.

  13. Mapping spatial variation in rock properties in relationship to scale-dependent structure using spectral curvature

    NASA Astrophysics Data System (ADS)

    Stewart, S. A.; Wynn, T. J.

    2000-08-01

    Maps of the three-dimensional geometry of geologic surfaces show that structural curvature commonly varies with scale of observation: This fact can be viewed as superposition of structures at different wavelengths. Rock properties such as fracture density and orientation reflect the contribution of superimposed structures. For this reason, characterization of geologic surfaces is fundamentally different from purely geometrical characterization, for which local description of surface properties is sufficient. We show that measured curvature decays according to a power law with increasing size of measurement window, so short-wavelength curvatures do not obscure long-wavelength curvatures in the same data set. This property can be taken advantage of in a simple technique for automatically mapping multiwavelength curvatures. At each point on a surface, curvature is measured at a range of wavelengths. This curvature spectrum can be analyzed in map view or collapsed into a single value at each point in space. The results indicate that complex geologic surfaces can be characterized without any prior knowledge of structural wavelengths and orientation. The method should prove useful in applications requiring knowledge of spatial variation in rock properties from remotely sensed data, such as exploration for hydrocarbon reservoirs or nuclear waste repositories.

  14. How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape

    NASA Astrophysics Data System (ADS)

    Küsel, Kirsten; Totsche, Kai; Trumbore, Susan; Lehmann, Robert; Steinhäuser, Christine; Herrmann, Martina

    2016-04-01

    The Earth's Critical Zone (CZ) is a thin living layer connecting atmosphere and geosphere, including aquifers. Humans live in the CZ and benefit from the vital supporting services it provides. However, the CZ is increasingly impacted by human activities including land and resource use, pollution and climate change. Recent interest in uniting the many disciplines studying this complex domain has initiated an international network of research infrastructure platforms that allow access to the CZ in a range of geologic settings. In this paper a new such infrastructure platform associated with the Collaborative Research Center AquaDiva is described, that uniquely seeks to combine CZ research with detailed investigation of the functional biodiversity of the subsurface. Overall, AquaDiva aims to test hypotheses about how water connects surface conditions set by land cover and land management to the biota and biogeochemical functions in the subsurface. With long-term and continuous observations, hypotheses about how seasonal variations and extreme events at the surface impact subsurface processes, community structure and function, are tested. AquaDiva has established the Hainich Critical Zone Exploratory (CZE) in central Germany in an alkaline geological setting of German Triassic Muschelkalk formations. The Hainich CZE includes specialized monitoring wells to access the vadose zone and two main groundwater complexes in limestone and marlstone parent materials along a ~6 km transect spanning forest, pasture and agricultural land uses. Initial results demonstrate fundamental differences in the biota and biogeochemistry of the two aquifer complexes that trace back to the land uses in their respective recharge areas. They also show the importance of antecedent conditions on the impact of precipitation events on responses in terms of groundwater dynamics, chemistry and ecology. Thus we find signals of surface land use and events can be detected in the subsurface CZ. Future research will expand to a second CZE in contrasting siliciclastic parent rock, to evaluate the relative importance of parent material lithology versus surface conditions for the emergent characteristics of the subsurface CZ and biodiversity. The Hainich CZE is open to researchers who bring new questions that the research platform can help answer.

  15. Geologic Mapping in Southern Margaritifer Terra

    NASA Technical Reports Server (NTRS)

    Irwin, R. P., III; Grant, J. A.

    2010-01-01

    Margaritifer Terra records a complex geologic history [1-5], and the area from Holden crater through Ladon Valles, Ladon basin, and up to Morava Valles is no exception [e.g., 6-13]. The 1:500,000 geologic map of MTM quadrangles -15027, -20027, -25027, and -25032 (Figs. 1 and 2 [14]) identifies a range of units that delineate the history of water-related activity and regional geologic context.

  16. Spatial digital database of the geologic map of Catalina Core Complex and San Pedro Trough, Pima, Pinal, Gila, Graham, and Cochise counties, Arizona

    USGS Publications Warehouse

    Dickinson, William R.; digital database by Hirschberg, Douglas M.; Pitts, G. Stephen; Bolm, Karen S.

    2002-01-01

    The geologic map of Catalina Core Complex and San Pedro Trough by Dickinson (1992) was digitized for input into a geographic information system (GIS) by the U.S. Geological Survey staff and contractors in 2000-2001. This digital geospatial database is one of many being created by the U.S. Geological Survey as an ongoing effort to provide geologic information in a geographic information system (GIS) for use in spatial analysis. The resulting digital geologic map database data can be queried in many ways to produce a variety of geologic maps and derivative products. Digital base map data (topography, roads, towns, rivers, lakes, and so forth) are not included; they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:125,000 (for example, 1:100,000 or 1:24,000). The digital geologic map plot files that are provided herein are representations of the database. The map area is located in southern Arizona. This report lists the geologic map units, the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet. The manuscript and digital data review by Lorre Moyer (USGS) is greatly appreciated.

  17. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    NASA Astrophysics Data System (ADS)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  18. A 3D modeling approach to complex faults with multi-source data

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Xu, Hua; Zou, Xukai; Lei, Hongzhuan

    2015-04-01

    Fault modeling is a very important step in making an accurate and reliable 3D geological model. Typical existing methods demand enough fault data to be able to construct complex fault models, however, it is well known that the available fault data are generally sparse and undersampled. In this paper, we propose a workflow of fault modeling, which can integrate multi-source data to construct fault models. For the faults that are not modeled with these data, especially small-scale or approximately parallel with the sections, we propose the fault deduction method to infer the hanging wall and footwall lines after displacement calculation. Moreover, using the fault cutting algorithm can supplement the available fault points on the location where faults cut each other. Increasing fault points in poor sample areas can not only efficiently construct fault models, but also reduce manual intervention. By using a fault-based interpolation and remeshing the horizons, an accurate 3D geological model can be constructed. The method can naturally simulate geological structures no matter whether the available geological data are sufficient or not. A concrete example of using the method in Tangshan, China, shows that the method can be applied to broad and complex geological areas.

  19. Conditioning 3D object-based models to dense well data

    NASA Astrophysics Data System (ADS)

    Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.

    2018-06-01

    Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.

  20. Exploring uncertainty in the Earth Sciences - the potential field perspective

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Blakely, R. J.

    2013-12-01

    Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are possible. The mathematical label of 'non-uniqueness' can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this talk is to present a practical perspective on the theoretical non-uniqueness of potential field interpretation in geology. There are multiple ways to approach and constrain potential field studies to produce significant, robust, and definitive results. For example, a smooth, bell-shaped gravity profile, in theory, could be caused by an infinite set of physical density bodies, ranging from a deep, compact, circular source to a shallow, smoothly varying, inverted bell-shaped source. In practice, however, we can use independent geologic or geophysical information to limit the range of possible source densities and rule out many of the theoretical solutions. We can further reduce the theoretical uncertainty by careful attention to subtle anomaly details. For example, short-wavelength anomalies are a well-known and theoretically established characteristic of shallow geologic sources. The 'non-uniqueness' of potential field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.

  1. Remote sensing of geobotanical relations in Georgia

    NASA Technical Reports Server (NTRS)

    Arden, D. D., Jr.; Westra, R. N.

    1977-01-01

    The application of remote sensing to geological investigations, with special attention to geobotanical factors, was evaluated. The general areas of investigation included: (1) recognition of mineral deposits; (2) geological mapping; (3) delineation of geological structure, including areas of complex tectonics; and (4) limestone areas where ground withdrawal had intensified surface collapse.

  2. Publications - PIR 2002-1C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    fortymile_eaglea1_surficial Shapefile 3.3 M Metadata - Read me Keywords Alaska, State of; Alluvial Deposits; Bison Fossils ; Boundary (Place); Caribou Fossils; Cenozoic; Colluvial Deposits; Complex Deposits; Cretaceous; Devonian ; Fortymile Mining District; Fortymile River; Geologic Map; Geology; Glacial Deposits; Holocene; Horse Fossils

  3. High-resolution geological mapping at 3D Environments: A case study from the fold-and-thrust belt in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.

    2016-12-01

    Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.

  4. Surficial geology mapping of the Arctic Ocean: using subbottom profiling and multibeam echosounding data sets to constrain the subsea north of 64° as a layer for the IBCAO

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Baldwin, K.; Gebhardt, C.

    2016-12-01

    Barriers to data collection such as perennial ice cover, climate, and remoteness have contributed to a paucity of geologic data in the Arctic. The last decade, however, has seen a multi-national push to increase the quantity and extent of data available at high latitudes. With increased availability of geophysical and geological data holdings, we expand on previous mapping initiatives by creating a comprehensive surficial geology map as a layer to the International Bathymetric Chart of the Arctic Ocean (IBCAO), providing a way to collectively analyze physiography, morphology and geology. Acoustic facies derived from subbottom profiles, combined with morphology illuminated from IBCAO and multibeam bathymetric datasets, and ground truth data compiled from cores and samples are used to map surficial geology units. We identified over 25 seismo-acoustic facies leading to interpretation of 12 distinct geologic units for the Arctic Ocean. The largest variety of seismic facies occurs on the shelves, which demonstrate the complex ice-margin history (e.g. chaotic bottom echoes with amorphous subbottom reflections that imply ice scouring processes). Shelf-crossing troughs generally lead to trough mouth fans on the continental margin with characteristic glaciogenic debris flow deposits (acoustically transparent units) comprising the bulk of the sedimentary succession. Other areas of continental slopes show a variety of facies suggesting sediment mass failure and turbidite deposition. Vast areas of the deep water portion of the Arctic are dominated by parallel reflections, indicative of hemi-pelagic and turbidity current deposition. Some deep water parts of the basin, however, show evidence of current reworking (sigmoidal reflections within bedforms), and contain deep sea channels with thalwegs (bright reflections within channels) and levee deposits (reflection pinch-out). These results delineated in the surficial geology map provide a comprehensive database of regional geologic information of the Arctic Ocean that can be applied to a variety of disciplines, including the study of Arctic sedimentary processes, climatologic and oceanographic processes, environmental and geohazard risk assessment, resource management, and Extended Continental Shelf mapping.

  5. Visualizations and Mental Models - The Educational Implications of GEOWALL

    NASA Astrophysics Data System (ADS)

    Rapp, D.; Kendeou, P.

    2003-12-01

    Work in the earth sciences has outlined many of the faulty beliefs that students possess concerning particular geological systems and processes. Evidence from educational and cognitive psychology has demonstrated that students often have difficulty overcoming their na‹ve beliefs about science. Prior knowledge is often remarkably resistant to change, particularly when students' existing mental models for geological principles may be faulty or inaccurate. Figuring out how to help students revise their mental models to include appropriate information is a major challenge. Up until this point, research has tended to focus on whether 2-dimensional computer visualizations are useful tools for helping students develop scientifically correct models. Research suggests that when students are given the opportunity to use dynamic computer-based visualizations, they are more likely to recall the learned information, and are more likely to transfer that knowledge to novel settings. Unfortunately, 2-dimensional visualization systems are often inadequate representations of the material that educators would like students to learn. For example, a 2-dimensional image of the Earth's surface does not adequately convey particular features that are critical for visualizing the geological environment. This may limit the models that students can construct following these visualizations. GEOWALL is a stereo projection system that has attempted to address this issue. It can display multidimensional static geologic images and dynamic geologic animations in a 3-dimensional format. Our current research examines whether multidimensional visualization systems such as GEOWALL may facilitate learning by helping students to develop more complex mental models. This talk will address some of the cognitive issues that influence the construction of mental models, and the difficulty of updating existing mental models. We will also discuss our current work that seeks to examine whether GEOWALL is an effective tool for helping students to learn geological information (and potentially restructure their na‹ve conceptions of geologic principles).

  6. An inventory of undiscovered Canadian mineral resources

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Griffiths, J. C.

    1982-01-01

    Unit regional value (URV) and unit regional weight are area standardized measures of the expected value and quantity, respectively, of the mineral resources of a region. Estimation and manipulation of the URV statistic is the basis of an approach to mineral resource evaluation. Estimates of the kind and value of exploitable mineral resources yet to be discovered in the provinces of Canada are used as an illustration of the procedure. The URV statistic is set within a previously developed model wherein geology, as measured by point counting geologic maps, is related to the historical record of mineral resource production of well-developed regions of the world, such as the 50 states of the U.S.A.; these may be considered the training set. The Canadian provinces are related to this training set using geological information obtained in the same way from geologic maps of the provinces. The desired predictions of yet to be discovered mineral resources in the Canadian provinces arise as a consequence. The implicit assumption is that regions of similar geology, if equally well developed, will produce similar weights and values of mineral resources.

  7. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    USGS Publications Warehouse

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  8. Effects of multi-scale environmental characteristics on agricultural stream biota in eastern Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Scudder, B.C.; Lenz, B.N.; Sullivan, D.J.

    2001-01-01

    The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin to determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed-scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach-scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality. Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.

  9. 10 CFR 60.32 - Conditions of construction authorization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.32 Conditions of construction authorization... changes to the features of the geologic repository and the procedures authorized. The restrictions that... setting as well as measures related to the design and construction of the geologic repository operations...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramdhan, Mohamad; Nugraha, Andri Dian

    Toba area has complex tectonic setting attracting many earth scientists to study and understand tectonic and geological process or setting. The area is affected by oblique subduction zone, Renun Sumatran fault sub segment and some volcanoes that are near it. The earthquake catalogue provided by BMKG from April, 2009 to December, 2011 must be relocated firstly to get the precise hypocenter. We used catalogue data of P and S phase or P phase only and double-difference method to relocate the earthquakes. The results show hypocenter position enhancement that can be interpreted tectonically. The earthquakes after relocation relating to the Sumatranmore » fault, subduction zone, volcanoes and seismic activities beneath Toba caldera can be mapped clearly. The relocated hypocenters in this study are very important to provide information for seismic hazard assessment and disaster mitigation study.« less

  11. Land Treatment Digital Library

    USGS Publications Warehouse

    Pilliod, David S.; Welty, Justin L.

    2013-01-01

    The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey to catalog legacy land treatment information on Bureau of Land Management lands in the western United States. The LTDL can be used by federal managers and scientists for compiling information for data-calls, producing maps, generating reports, and conducting analyses at varying spatial and temporal scales. The LTDL currently houses thousands of treatments from BLM lands across 10 states. Users can browse a map to find information on individual treatments, perform more complex queries to identify a set of treatments, and view graphs of treatment summary statistics.

  12. Anthropogenic sinkholes in the territory of the city of Naples (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Guarino, Paolo M.; Nisio, Stefania

    About 190 anthropogenic sinkholes occurred within the territory of the city of Naples (Southern Italy) between 1915 and 2010. In the study area, the genesis of sinkholes can be ascribed to two major factors, often strongly interacting with each other: the existence of a complex network of underground man-made cavities, and the inadequacy of the sewage disposal system. Rainfall has been identified as the main triggering factor combined with anthropogenic activity. Based on such predisposing factors, in addition to the geological setting, a susceptibility map of the territory has been realised.

  13. A long-living species of the hydrophiloid beetles: Helophorus sibiricus from the early Miocene deposits of Kartashevo (Siberia, Russia)

    PubMed Central

    Fikáček, Martin; Prokin, Alexander; Angus, Robert B.

    2011-01-01

    Abstract The recent hydrophiloid species Helophorus (Gephelophorus) sibiricus (Motschulsky, 1860) is recorded from the early Miocene deposits of Kartashevo assigned to the Ombinsk Formation. A detailed comparison with recent specimens allowed a confident identification of the fossil specimen, which is therefore the oldest record of a recent species for the Hydrophiloidea. The paleodistribution as well as recent distribution of the species is summarized, and the relevance of the fossil is discussed. In addition, the complex geological settings of the Kartashevo area are briefly summarized. PMID:22259280

  14. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    NASA Astrophysics Data System (ADS)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded about each unit includes its rank, parentage, previous and alternative names and usage, geochronological age, lithology, environment of deposition / mode of origin, thickness, boundaries, type and reference localities and sections, geographical distribution, associated landforms, and literature references. BGS geoscientists use a web-based 'sandbox' system to write and revise definitions. The Lexicon currently stores information on approximately 13,400 geological units that BGS considers to be 'current', with cross references to some 6,000 other names that are considered to be obsolete or alternative names. The entries span the entire preserved geological history of the UK from Archaean to Recent, onshore and offshore.

  15. Multidisciplinary approach to evaluate landslide susceptibility along highway in northern Calabria, Italy

    NASA Astrophysics Data System (ADS)

    Muto, Francesco; Conforti, Massimo; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Scarciglia, Fabio; Versace, Pasquale

    2014-05-01

    The interaction of landslides with linear infrastructures is often the cause of disasters. In Italy landslide impact on roads, railways and buildings cause millions of Euro per year in damage and restoration as well. The proposed study is aimed to the landslide susceptibility evaluation using a multidisciplinary approach: geological and geomorphological survey, statistical analysis and GIS technique, along a section of highway "A3 (Salerno-Reggio Calabria)" between Cosenza Sud and Altilia, northern Calabria. This study is included in a wider research project, named: PON01-01503, Landslides Early Warning-Sistemi integrati per il monitoraggio e la mitigazione del rischio idrogeologico lungo le grandi vie di comunicazione - aimed at the hydrogeological risk mitigation and at the early warning along the highways. The work was first based on air-photo interpretations and field investigations, in order to realize the geological map, geomorphological map and landslide inventory map. In the study area the geomorphology is strongly controlled by its bedrock geology and tectonics. The bedrock geology consists of Neogene sedimentary rocks that cover a thick stack of allochthonous nappes. These nappes consist of crystalline rocks mainly gneiss, phyllite and schist. A total of 835 landslides were mapped and the type of movement are represented mainly by slides and complex and subordinately flow. In order to estimate and validate landslide susceptibility the landslides were divided in two group. One group (training set) was used to prepare susceptibility map and the second group (validation set) to validate the map. Then, the selection of predisposing factors was performed, according with the geological and geomorphological settings of the study area: lithology, distance from tectonic elements, land use, slope, aspect, stream power index (SPI) and plan curvature. In order to evaluate landslide susceptibility Conditional Analysis was applied to Unique Conditions Units (UCUs), that are a unique combination of the predisposing factors. Subsequently, the landslide area is determined within each UCU and the landslide density is computed. The outcome of the study was a classification of the study area into four susceptibility classes, ranked from low to very high. The results showed that the 33% of the study area is characterized by a high to very high degree of susceptibility. The validation procedure results, obtained by crossing the group of the landslide of validation set with the susceptibility map, showed that the predictive model is generally satisfactory; therefore, over 75% of the landslide of validation set is correctly classified falling in high and very high susceptibility classes. The consistency of the model is also suggested by computing the seed cell area index (SCAI) because the high and very high susceptibility classes have very low SCAI values, whereas the SCAI values of the very low and low susceptibility classes are very high. Finally, the landslide susceptibility map provides the baseline information for further evaluations of landslide hazards and related risks.

  16. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    NASA Astrophysics Data System (ADS)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These predictions have been compared with InSAR imagery of surface uplift, used as an indicator of fluid pressure and movement in the sub-surface, around the CO2 injection wells. The analysis shows that the permeability tensor with the greatest anisotropy, that for the DFN sub-set of open fractures, matches well with the anisotropy in surface uplift imaged by InSAR. We demonstrate that predicting fracture networks alone does not predict fluid movement in the sub-surface, and that fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our results show that a workflow of fracture network prediction combined with present day stress analysis can be used to successfully predict CO2 movement in the sub-surface at an active injection site.

  17. Arctic-Asian Mobile Belt - Global Structure in the North, Central, and East Asia

    NASA Astrophysics Data System (ADS)

    Shokalsky, Sergey; Petrov, Oleg; Pospelov, Igor; Kashubin, Sergey; Sobolev, Nikolay; Petrov, Evgeny

    2014-05-01

    Over the last decade under the international project of five countries, the geological surveys of Russia, China, Kazakhstan, Mongolia, and the Republic of Korea, with the participation of national academies of sciences in these countries compiled a set of digital maps at 1:2.5 M scale. It includes geological, tectonic, metallogenic maps and map of energy resources with databases for North, Central, and East Asia, area of more than 30 million km2. Map compilation was supervised by the Subcommission for Northern Eurasia and Subcommission for Tectonic Maps of the Commission for the Geological Map of the World under the auspices of UNESCO (CGMW). The set of maps was displayed at the 33rd IGC (Oslo, 2008) and 34th IGC (Brisbane, 2012). One of the largest accretion collages of orogenic belts of different ages on the planet (from the Neoproterozoic to Early Mesozoic) is clearly shown in the tectonic map compiled under the joint project. Extended polychronous mobile belt is bounded in the west by the East European Craton, in the east, by the Siberian Craton, in the south, by a chain of Gondwana cratonic blocks - North China, Tarim, Tajik. In the north it can be traced as a broad band within the Circumpolar Region, where it is limited by the North American Craton. The central part of the accretionary belt is hidden under the Meso-Cenozoic sediments of Western Siberia. Analysis of vast geological material shows that the Arctic-Asian mobile belt was formed on place of an extensive paleo-ocean, which closed with a successive rejuvenation of suture ophiolite zones from the marginal to axial zone and along strike to the north and east of the South Siberian segment towards Paleopacific. Arctic-Asian mobile belt is characterized by a complex combination of accretionary and riftogenic tectonic-magmatic processes. At its early stages, accretionary tectonics with a wide development of volcanic belts dominated; at the late ones (in the Late Paleozoic, Mesozoic, and Cenozoic) stretching, rifting and postrift subsidence were widely shown with the formation of oil and gas sedimentary basins with a thick sedimentary cover (West Siberian, Turan, Caspian, Middle Amur, Songliao), large igneous provinces (South Urals, West and East Siberian, Central Kazakhstan, Trans-Baikal, etc.) and rift systems (Mongol-Transbaikal, Baikal, etc.). The aim of further research under the existing joint projects should be identifying and tracing the boundaries of the Arctic-Asian mobile belt, study and correlation of geological complexes-indicators of major tectonic events, reconstruction of the history of the accretionary belt with superimposed oil and gas bearing sedimentary basins as a tectonic structure of the global level.

  18. On the generation of tangential ground motion by underground explosions in jointed rocks

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis

    2015-03-01

    This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.

  19. Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples

    NASA Astrophysics Data System (ADS)

    Dyar, M. Darby; Giguere, Stephen; Carey, CJ; Boucher, Thomas

    2016-12-01

    This project examines the causes, effects, and optimization of continuum removal in laser-induced breakdown spectroscopy (LIBS) to produce the best possible prediction accuracy of elemental composition in geological samples. We compare prediction accuracy resulting from several different techniques for baseline removal, including asymmetric least squares (ALS), adaptive iteratively reweighted penalized least squares (Air-PLS), fully automatic baseline correction (FABC), continuous wavelet transformation, median filtering, polynomial fitting, the iterative thresholding Dietrich method, convex hull/rubber band techniques, and a newly-developed technique for Custom baseline removal (BLR). We assess the predictive performance of these methods using partial least-squares analysis for 13 elements of geological interest, expressed as the weight percentages of SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O, and the parts per million concentrations of Ni, Cr, Zn, Mn, and Co. We find that previously published methods for baseline subtraction generally produce equivalent prediction accuracies for major elements. When those pre-existing methods are used, automated optimization of their adjustable parameters is always necessary to wring the best predictive accuracy out of a data set; ideally, it should be done for each individual variable. The new technique of Custom BLR produces significant improvements in prediction accuracy over existing methods across varying geological data sets, instruments, and varying analytical conditions. These results also demonstrate the dual objectives of the continuum removal problem: removing a smooth underlying signal to fit individual peaks (univariate analysis) versus using feature selection to select only those channels that contribute to best prediction accuracy for multivariate analyses. Overall, the current practice of using generalized, one-method-fits-all-spectra baseline removal results in poorer predictive performance for all methods. The extra steps needed to optimize baseline removal for each predicted variable and empower multivariate techniques with the best possible input data for optimal prediction accuracy are shown to be well worth the slight increase in necessary computations and complexity.

  20. Semantic Web-based digital, field and virtual geological

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer in the stack assembles a set of polygonal (e.g., formation, member, intrusion), linear (e.g., fault, contact), and/or point (e.g., sample or measurement site) geological elements. These feature classes, represented in domain ontologies by classes, have their own sets of property (attribute, association relation) and topological (e.g., overlap, adjacency, containment), and network (cross-cuttings; connectivity) relationships. Since geological mapping involves describing and depicting different aspects of each feature class (e.g., contact, formation, structure), the same geographic region may be investigated by different communities, for example, for its stratigraphy, rock type, structure, soil type, and isotopic and paleontological age, using sets of ontologies. These data can become interconnected applying the Semantic Web technologies, on the Linked Open Data Cloud, based on their underlying common geographic coordinates. Sets of geological data published on the Cloud will include multiple RDF links to Cloud's geospatial nodes such as GeoNames and Linked GeoData. During mapping, a device such as smartphone, laptop, or iPad, with GPS and GIS capability and a DBpedia Mobile client, can use the current position to discover and query all the geological linked data, and add new data to the thematic layers and publish them to the Cloud.

  1. Book review: New concepts and discoveries: the Geological Society of Nevada 2015 Symposium Proceedings

    USGS Publications Warehouse

    Day, Warren C.

    2016-01-01

    The Nevada Geological Society has a long history of convening meetings and workshops focused on the geology and metallogeny of the western United States relevant to the mineral exploration and mining community across the Great Basin. One outgrowth of the Geological Society of Nevada’s 2015 Symposium is a two-volume set, edited by W.M. Pennell and L.J. Garside, entitled New Concepts and Discoveries. The symposium was held in Sparks, Nevada, May 14–23, 2015, with more than 1,000 attendees, 59 talks in 10 thematic sessions, 7 field trips, and 10 short courses, all focused on serving the geologic, exploration, and mining community. The attractively produced, hardbound, two-volume set includes a CD-ROM containing all the manuscripts as well as numerous abstracts from presentations arranged by the thematic session in which they were presented. The papers range from detailed case study descriptions of individual deposits to important syntheses covering the geologic evolution and resulting metallogeny of the Great Basin and beyond.

  2. Automatic mapping of the base of aquifer — A case study from Morrill, Nebraska

    USGS Publications Warehouse

    Gulbrandsen, Mats Lundh; Ball, Lyndsay B.; Minsley, Burke J.; Hansen, Thomas Mejer

    2017-01-01

    When a geologist sets up a geologic model, various types of disparate information may be available, such as exposures, boreholes, and (or) geophysical data. In recent years, the amount of geophysical data available has been increasing, a trend that is only expected to continue. It is nontrivial (and often, in practice, impossible) for the geologist to take all the details of the geophysical data into account when setting up a geologic model. We have developed an approach that allows for the objective quantification of information from geophysical data and borehole observations in a way that is easy to integrate in the geologic modeling process. This will allow the geologist to make a geologic interpretation that is consistent with the geophysical information at hand. We have determined that automated interpretation of geologic layer boundaries using information from boreholes and geophysical data alone can provide a good geologic layer model, even before manual interpretation has begun. The workflow is implemented on a set of boreholes and airborne electromagnetic (AEM) data from Morrill, Nebraska. From the borehole logs, information about the depth to the base of aquifer (BOA) is extracted and used together with the AEM data to map a surface that represents this geologic contact. Finally, a comparison between our automated approach and a previous manual mapping of the BOA in the region validates the quality of the proposed method and suggests that this workflow will allow a much faster and objective geologic modeling process that is consistent with the available data.

  3. Geologic road guides for the Southern Canadian Cordillera--Viewing geology and tectonics along major highways

    USGS Publications Warehouse

    Nokleberg, Warren J.; Price, Raymond A.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    The Geologic Road Guides for the Southern Canadian Cordillera provide a layperson’s understanding of the major geologic units and their tectonic origins along portions of two sets of major highways corridors, herein termed the Southern Road Guide and the Northern Road Guide. The two routes are shown on the Southern Canadian Cordillera Geologic Map. The first page of each Road Guide is this map that has Hot Spots for each site.

  4. Land status and federal mineral ownership in the Powder River basin, Wyoming and Montana; a digital data set for geographic information systems

    USGS Publications Warehouse

    Biewick, Laura; Urbanowski, Shayne R.; Cain, Sheila; Neasloney, Larry

    1998-01-01

    As the Nation's energy resources continue to be examined for development, it is critical that a digital database exist that contains location data for all Federal land and mineral resources. The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), is collecting these ownership files and compiling them in Environmental Systems Research Institute, Inc. (ESRI) ARC/INFO coverages, to form a standardized data library. A coverage is a digital version of a map in the form of vector data storage. These coverages are combined with models of coal deposits from the USGS National Coal Resource Assessment project, a five-year effort to identify and characterize the coal beds and coal zones that will provide fuel for the Nation’s energy needs during the first quarter of the twenty-first century. Geographic and geologic data layers are integrated in a Geographic Information System (GIS) to answer complex geo-spatial questions concerning coal resource occurrence.

  5. Beam-hardening correction by a surface fitting and phase classification by a least square support vector machine approach for tomography images of geological samples

    NASA Astrophysics Data System (ADS)

    Khan, F.; Enzmann, F.; Kersten, M.

    2015-12-01

    In X-ray computed microtomography (μXCT) image processing is the most important operation prior to image analysis. Such processing mainly involves artefact reduction and image segmentation. We propose a new two-stage post-reconstruction procedure of an image of a geological rock core obtained by polychromatic cone-beam μXCT technology. In the first stage, the beam-hardening (BH) is removed applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. The final BH-corrected image is extracted from the residual data, or the difference between the surface elevation values and the original grey-scale values. For the second stage, we propose using a least square support vector machine (a non-linear classifier algorithm) to segment the BH-corrected data as a pixel-based multi-classification task. A combination of the two approaches was used to classify a complex multi-mineral rock sample. The Matlab code for this approach is provided in the Appendix. A minor drawback is that the proposed segmentation algorithm may become computationally demanding in the case of a high dimensional training data set.

  6. Geological investigation of the Socorro geothermal area. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, C.E.; Sanford, A.R.; White, D.W.

    1979-05-01

    The results of a comprehensive geological and geochemical study of the Socorro geothermal area are presented. The following are discussed: geologic setting, structural controls, stratigraphic controls, an ancient geothermal system, modern magma bodies, geothermal potential of the Socorro area, and the Socorro transverse shear zone. (MHR)

  7. Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives

    PubMed Central

    Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.

    2018-01-01

    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688

  8. ecological geological maps: GIS-based evaluation of the Geo-Ecological Quality Index (GEQUI) in Sicily (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    The condition of landscapes and the ecological communities within them is strongly related to levels of human activity. As a consequence, determining status and trends in the pattern of human-dominated landscapes can be useful for understanding the overall conditions of geo-ecological resources. Ecological geological maps are recent tools providing useful informations about a-biotic and biotic features worldwide. These maps represents a new generation of geological maps and depict the lithospheric components conditions on surface, where ecological dynamics (functions and properties) and human activities develop. Thus, these maps are too a fundamental political tool to plan the human activities management in relationship to the territorial/environmental patterns of a date region. Different types of ecological geological maps can be develop regarding the: conditions (situations), zoning, prognosis and recommendations. The ecological geological conditions maps reflects the complex of parameters or individual characteristics of lithosphere, which characterized the opportunity of the influence of lithosphere components on the biota (man, fauna, flora, and ecosystem). The ecological geological zoning maps are foundamental basis for prognosis estimation and nature defenses measures. Estimation from the position of comfort and safety of human life and function of ecosystem is given on these maps. The ecological geological prognosis maps reflect the spatial-temporary prognoses of ecological geological conditions changing during the natural dynamic of natural surrounding and the main-during the economic mastering of territory and natural technical systems. Finally, the ecological geological recommendation maps are based on the ecological geological and social-economical informations, aiming the regulation of territory by the regulation of economic activities and the defense of bio- and socio-sphere extents. Each of these maps may also be computed or in analytic or in synthetic way. The first, characterized or estimated, prognosticated one or several indexes of geological ecological conditions. In the second type of maps, the whole complex is reflected, which defined the modern or prognosticable ecological geological situation. Regarding the ecological geological zoning maps, the contemporary state of ecological geological conditions may be evaluated by a range of parameters into classes of conditions and, on the basis of these informations, the estimation from the position of comfort and safety of human life and function of ecosystem is given. Otherwise, the concept of geoecological land evaluation has become established in the study of landscape/environmental plannings in recent years. It requires different thematic data-sets, deriving from the natural-, social- and amenity-environmental resources analysis, that may be translate in environmental (vulnerability/quality) indexes. There have been some attempts to develop integrated indices related to various aspects of the environment within the framework of sustainable development (e.g.: United Nations Commission on Sustainable Development, World Economic Forum, Advisory Board on Indicators of Sustainable Development of the International Institute for Sustainable Development, Living Planet Index established by the World Wide Fund for Nature, etc.). So, the ecological geological maps represent the basic tool for the geoecological land evaluation policies and may be computed in terms of index-maps. On these basis, a GIS application for assessing the ecological geological zoning is presented for Sicily (Central Mediterranean). The Geo-Ecological Quality Index (GEQUI) map was computed by considering a lot of variables. Ten variables (lithology, climate, landslide distribution, erosion rate, soil type, land cover, habitat, groundwater pollution, roads density and buildings density) generated from available data, were used in the model, in which weighting values to each informative layer were assigned. An overlay analysis was carried out, allowing to classify the region into five classes: bad, poor, moderate, good and high.

  9. The oceanic islands - Azores. [geological, geophysical and geochemical features

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Watkins, N. D.; Macfarlane, D. J.

    1974-01-01

    A presentation is made of the known geological, geophysical, and geochemical data on the Azores. The regional setting of the islands is described; under the geological heading, surface geology and petrochemistry are discussed; and paleomagnetism, marine magnetic surveys, gravity, seismology, and heat flow are treated in the geophysics category. A model for the origin of the Azores is constructed on the basis of these observations.

  10. Theoretical geology

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same erroneous assumptions and do not solve the very fundamental issue that lies at the base of the problem. This problem is straighforward and obvious: a sedimentary system is inherently four-dimensional (3 spatial dimensions + 1 temporal dimension). Any method using an inferior number or dimensions is bound to fail to describe the evolution of a sedimentary system. It is indicative of the present day geological world that such fundamental issues be overlooked. The only reason for which one can appoint the socalled "rationality" in todays society. Simple "common sense" leads us to the conclusion that in this case the empirical method is bound to fail and the only method that can solve the problem is the theoretical approach. Reasoning that is completely trivial for the traditional exact sciences like physics and mathematics and applied sciences like engineering. However, not for geology, a science that was traditionally descriptive and jumped to empirical science, skipping the stage of theoretical science. I argue that the gap of theoretical geology is left open and needs to be filled. Every discipline in geology lacks a theoretical base. This base can only be filled by the theoretical/inductive approach and can impossibly be filled by the empirical/deductive approach. Once a critical mass of geologists realises this flaw in todays geology, we can start solving the fundamental problems in geology.

  11. Developing Connectivist Schemas for Geological and Geomorphological Education

    NASA Astrophysics Data System (ADS)

    Whalley, B.

    2012-12-01

    Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named 'things' is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from 'known' through 'need to know' to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg's 'thinking styles' and Siemens' connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson's (2006) 'learning for' framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, 'Virtorial' provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of 'Materials' (rock, sediments etc), Processes (slope, glacial processes etc) and 'Geometry' (what it looks like). These components provide basic metadata for any landform in a landscape. Thus, the recognition of a landform means much more than a feature; the metadata provide contexts that can be used for interpretation in the field or laboratory, individually or in discussion groups, distance or field learning environments.

  12. Using airborne geophysical surveys to improve groundwater resource management models

    USGS Publications Warehouse

    Abraham, Jared D.; Cannia, James C.; Peterson, Steven M.; Smith, Bruce D.; Minsley, Burke J.; Bedrosian, Paul A.

    2010-01-01

    Increasingly, groundwater management requires more accurate hydrogeologic frameworks for groundwater models. These complex issues have created the demand for innovative approaches to data collection. In complicated terrains, groundwater modelers benefit from continuous high‐resolution geologic maps and their related hydrogeologic‐parameter estimates. The USGS and its partners have collaborated to use airborne geophysical surveys for near‐continuous coverage of areas of the North Platte River valley in western Nebraska. The survey objectives were to map the aquifers and bedrock topography of the area to help improve the understanding of groundwater‐surface‐water relationships, leading to improved water management decisions. Frequency‐domain heliborne electromagnetic surveys were completed, using a unique survey design to collect resistivity data that can be related to lithologic information to refine groundwater model inputs. To render the geophysical data useful to multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth‐dependent subsurface resistivity model. This inverted model, in conjunction with sensitivity analysis, geological ground truth (boreholes and surface geology maps), and geological interpretation, is used to characterize hydrogeologic features. Interpreted two‐ and three‐dimensional data coverage provides the groundwater modeler with a high‐resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models reflect actual hydrogeology at a level of accuracy not achievable using previous data sets.

  13. Geological, Geophysical, and Stochastic Factors in Nepal's Gorkha Earthquake-Triggered Landslide Distribution

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Shugar, D. H.; Haritashya, U. K.; Leonard, G. J.; Fielding, E. J.; Hudnut, K. W.; Jibson, R.; Collins, B. D.

    2015-12-01

    On 25 April 2015, a magnitude 7.8 earthquake struck Nepal. Subsequently many large aftershocks shook the region, including one of magnitude 7.3. Much damage and over 4300 landslides were triggered. The landslides were mapped by a volunteer group who self organized to undertake an emergency response to the earthquake disaster. The number of landslides is fewer than expected based on total released seismic energy. This may be because of lack of a surface rupture and possibly also because of high surface-wave attenuation due to rugged surface topography or to the geological and geophysical characteristics of the upper crust. The observed landslides were primarily in the southern half of the Himalaya in areas where the steepest slopes occur and where peak ground accelerations were relatively high. The landslides are also concentrated on the tectonically downdropped block. However, the distribution is complex and varies dramatically from valley to valley. Furthermore, different types of landslides are concentrated in different geologic materials, which suggests local factors control the valley-scale attenuation or amplification of seismic waves or the way wave disturbances couple to the local geologic materials. Across the earthquake-affected zone on the regional scale, wave attenuation and also net downdrop and uplift may also explain as much about the distribution of landslides as slopes and distance from large slips on the fault. We will offer the regional distribution results and some specific case studies to illustrate a set of possible controlling factors.

  14. Geologic map of the Seldovia quadrangle, south-central Alaska

    USGS Publications Warehouse

    Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Karl, Susan M.; Donley, D. Thomas

    1999-01-01

    This is a 1:250,000-scale map of the bedrock geology of the Seldovia quadrangle, south-central Alaska. The map area covers the southwestern end of the Kenai Peninsula, including the Kenai Lowlands and Kenai Mountains, on either side of Kachemak Bay. The waters of Cook Inlet cover roughly half of the map area, and a part of the Alaska Peninsula near Iliamna Volcano lies in the extreme northwest corner of the map. The bedrock geology is based on new reconnaissance field work by the U.S. Geological Survey during parts of the 1988-1993 field seasons, and on previous mapping from a number of sources. The new mapping focused on the previously little-known Chugach accretionary complex in the Kenai Mountains. Important new findings include the recognition of mappable subdivisions of the McHugh Complex (a subduction melange of mostly Mesozoic protoliths), more accurate placement of the thrust contact between the McHugh Complex and Valdez Group (Upper Cretaceous trench turbidites), and the recognition of several new near-trench plutons of early Tertiary age.

  15. Modern carbonate mound systems

    NASA Astrophysics Data System (ADS)

    Henriet, J. P.; Dullo, C.

    2003-04-01

    Carbonate mounds are prominent features throughout the geological record. In many hydrocarbon provinces, they form prime reservoir structures. But recent investigations have increasingly reported occurrences of large mound clusters at the surface of the seabed, or buried at shallow depth on modern ocean margins, and in particular in basins rich in hydrocarbons. Such exciting new observations along the West-European margin are promising for elucidating the setting and environment of modern carbonate mounds, but at the same time they confront us with puzzling or sometimes contradictory observations in the quest for their genesis. Spectacular cold-water coral communities have colonized such mounds, but convincing arguments for recognizing them as prime builders are still lacking. The geological record provides ample evidence of microbial mediation in mound build-up and stabilisation, but as long as mound drilling is lacking, we have no opportunity to verify the role of such processes and identify the key actors in the earliest stage of onset and development of modern mounds. Some evidence from the past record and from present very-high resolution observations in the shallow seabed suggest an initial control by fluid venting, and fluid migration pathways have been imaged or are tentatively reconstructed by modelling in the concerned basins, but the ultimate link in the shallow subsurface seems still to elude a large part of our efforts. Surface sampling and analyses of both corals and surface sediments have largely failed in giving any conclusive evidence of present-day or recent venting in the considered basins. But on the other hand, applying rigourously the interpretational keys derived from e.g. Porcupine Seabight settings off NW Ireland on brand new prospective settings e.g. on the Moroccan margin have resulted in the discovery of totally new mound settings, in the middle of a field of giant, active mud volcanoes. Keys are apparently working, but we still do not understand how or why. We are no doubt facing complex systems at the interface between the Biosphere and the Geosphere, owing their genesis and spectacular growth to a complex woven of internal and external controls, feedback and process relay processes.

  16. Using the U.S. Geological Survey National Water Quality Laboratory LT-MDL to Evaluate and Analyze Data

    USGS Publications Warehouse

    Bonn, Bernadine A.

    2008-01-01

    A long-term method detection level (LT-MDL) and laboratory reporting level (LRL) are used by the U.S. Geological Survey?s National Water Quality Laboratory (NWQL) when reporting results from most chemical analyses of water samples. Changing to this method provided data users with additional information about their data and often resulted in more reported values in the low concentration range. Before this method was implemented, many of these values would have been censored. The use of the LT-MDL and LRL presents some challenges for the data user. Interpreting data in the low concentration range increases the need for adequate quality assurance because even small contamination or recovery problems can be relatively large compared to concentrations near the LT-MDL and LRL. In addition, the definition of the LT-MDL, as well as the inclusion of low values, can result in complex data sets with multiple censoring levels and reported values that are less than a censoring level. Improper interpretation or statistical manipulation of low-range results in these data sets can result in bias and incorrect conclusions. This document is designed to help data users use and interpret data reported with the LTMDL/ LRL method. The calculation and application of the LT-MDL and LRL are described. This document shows how to extract statistical information from the LT-MDL and LRL and how to use that information in USGS investigations, such as assessing the quality of field data, interpreting field data, and planning data collection for new projects. A set of 19 detailed examples are included in this document to help data users think about their data and properly interpret lowrange data without introducing bias. Although this document is not meant to be a comprehensive resource of statistical methods, several useful methods of analyzing censored data are demonstrated, including Regression on Order Statistics and Kaplan-Meier Estimation. These two statistical methods handle complex censored data sets without resorting to substitution, thereby avoiding a common source of bias and inaccuracy.

  17. Characteristics of crushed rocks observed in drilled cores in landslide bodies located in accretionary complexes

    NASA Astrophysics Data System (ADS)

    Wakizaka, Yasuhiko

    2013-10-01

    The recent development of high-quality boring, which uses foam surfactants, has made it possible to examine the detailed geological constitution and structure of landslide bodies. However, geological information related to landslides has not been obtained appropriately even from undisturbed high-quality drilled cores. Moreover, it has been difficult to distinguish between rocks crushed by landslide movement and the fault breccia in accretionary complexes. We examined the detailed geology of high-quality drilled cores of landslide bodies on the Shimanto Belt and the Chichibu Belt. The fault breccia near the landslide bodies was found to exhibit planar fabrics while the crushed breccias in the landslide bodies showed a random fabric. We discovered that classifying the degree of crushing and inspecting the planar fabrics of rocks are effective in the geological determination of landslide bodies.

  18. Multiple data sets converge on a geologic structural model for Glass Buttes, Oregon geothermal prospect, Patrick Walsh, et al, 2010 American Geophysical Union Poster Session

    DOE Data Explorer

    Ezra Zemach

    2010-01-01

    Multiple data sets converge on a geologic structural model for Glass Buttes, Oregon geothermal prospect, Patrick Walsh, Brigette Martini, Chet Lide, Darrick Boschmann, John DIlles, Andrew Meigs, 2010 Ormat Nevada, Zonge Geophysical, Oregon State University American Geophysical Union, Poster Session

  19. A catalog of porosity and permeability from core plugs in siliciclastic rocks

    USGS Publications Warehouse

    Nelson, Philip H.; Kibler, Joyce E.

    2003-01-01

    Porosity and permeability measurements on cored samples from siliciclastic formations are presented for 70 data sets, taken from published data and descriptions. Data sets generally represent specific formations, usually from a limited number of wells. Each data set is represented by a written summary, a plot of permeability versus porosity, and a digital file of the data. The summaries include a publication reference, the geologic age of the formation, location, well names, depth range, various geologic descriptions, and core measurement conditions. Attributes such as grain size or depositional environment are identified by symbols on the plots. An index lists the authors and date, geologic age, formation name, sandstone classification, location, basin or structural province, and field name.

  20. Assessment of integrated electrical resistivity data on complex aquifer structures in NE Nuba Mountains - Sudan

    NASA Astrophysics Data System (ADS)

    Mohamed, N. E.; Yaramanci, U.; Kheiralla, K. M.; Abdelgalil, M. Y.

    2011-07-01

    Two geophysical techniques were integrated to map the groundwater aquifers on complex geological settings, in the crystalline basement terrain in northeast Nuba Mountains. The water flow is structurally controlled by the northwest-southeast extensional faults as one of several in-situ deformational patterns that are attributed to the collision of the Pan-African oceanic assemblage of the Nubian shield against the pre-Pan African continental crust to the west. The structural lineaments and drainage systems have been enhanced by the remote sensing technique. The geophysical techniques used are: vertical electrical soundings (VES) and electrical resistivity tomography (ERT), in addition to hydraulic conductivity measurements. These measurements were designed to overlap in order to improve the producibility of the geophysical data and to provide a better interpretation of the hydrogeological setting of the aquifer complex structure. Smooth and Block inversion schemes were attempted for the observed ERT data to study their reliability in mapping the different geometries in the complex subsurface. The VES data was conducted where ERT survey was not accessible, and inverted smoothly and merged with the ERT in the 3D resistivity grid. The hydraulic conductivity was measured for 42 water samples collected from the distributed dug wells in the study area; where extremely high saline zones were recorded and have been compared to the resistivity values in the 3D model.

  1. A geologic guide to Wrangell-Saint Elias National Park and Preserve, Alaska; a tectonic collage of northbound terranes

    USGS Publications Warehouse

    Winkler, Gary R.; with contributions by MacKevett, E. M.; Plafker, George; Richter, D.H.; Rosenkrans, D.S.; Schmoll, H.R.

    2000-01-01

    Wrangell-Saint Elias National Park and Preserve, the largest unit in the U.S. National Park System, encompasses near 13.2 million acres of geological wonderments. This geologic guide presents history of exploration and Earth-science investigation; describes the complex geologic makeup; characterizes the vast college of accretion geologic terranes in this area of Alaska's continental margin; recapitulates the effects of earthquakes, volcanoes, and glaciers; characterizes the copper and gold resources of the parklands; and describes outstanding locales within the park and preserve area. A glossary of geologic terms and a categorized list of additional sources of information complete this report.

  2. Geologic setting of the low-level burial grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, K.A.; Jaeger, G.K.; Slate, J.L.

    1994-10-13

    This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.

  3. Digital geologic map of McAlester-Texarkana quadrangles, southeastern Oklahoma

    USGS Publications Warehouse

    Cederstrand, J.R.

    1997-01-01

    This data set consists of digital data and accompanying documentation of the surficial geology of the 1:250,000-scale McAlester and Texarkana quadrangles, Oklahoma. The original data are from the Geologic Map, sheet 1 of 4, included in Oklahoma Geological Survey publication, Reconnaissance of the water resources of the McAlester and Texarkana quadrangles, southeastern Oklahoma, Hydrologic Atlas 9, Marcher and Bergman, 1983. The geology was compiled by M.V. Marcher and D.L. Bergman, 1971, and revised by R.O. Fay, 1978.

  4. Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process

    NASA Astrophysics Data System (ADS)

    Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.

    2014-12-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.

  5. Data System for Structural Geology and Tectonics

    NASA Astrophysics Data System (ADS)

    Newman, Julie; Walker, J. Douglas; Tikoff, Basil; Good, Jessica; Michels, Zachary; Ash, Jason; Andrew, Joseph; Williams, Randolph

    2016-04-01

    We are prototyping a Data System for Structural Geology and Tectonics (SG&T) data that is platform independent (from mobile device to desktop) to enable collection and sharing of data from field to laboratory settings. The goals of this effort, funded by US National Science Foundation, are to enable recording and sharing data within the geoscience community, to encourage interdisciplinary research, and to facilitate the investigation of scientific questions that cannot currently be addressed. The development of the Data System emphasizes community input in order to build a system that encompasses the needs of researchers, in terms of data and usability. SG&T data is complex for a variety of reasons, including the wide range of temporal and spatial scales (many orders of magnitude each), the complex three-dimensional geometry of some geological structures, inherent spatial nature of the data, and the difficulty of making temporal inferences from spatial observations. To successfully implement the development of a SG&T data system, we must simultaneously solve three problems: 1) How to digitize SG&T data; 2) How to design a software system that is applicable; and 3) How to construct a very flexible user interface. To address the first problem, we introduce the "Spot" concept, which allows tracking of hierarchical and spatial relations between structures at all scales, and will link map scale, mesoscale, and laboratory scale data. A Spot is an observation or relationship with an area of significance. A Spot can be a single measurement, an aggregate of individual measurements, or even relationships between numerous other Spots. We address the second problem of software design through the use of a graph database to better preserve the myriad of potentially complex relationships. In order to construct a flexible user interface that follows a natural workflow and that serves the needs of the community, we are engaging the SG&T community in order to utilize the expertise of a large group of scientists to ensure the quality and usability of this data system. These activities have included Town Halls at GSA and AGU, subdiscipline-specific workshops to develop community standards, and pilot projects to test the data system in the field during the study of a variety of geologic structures.

  6. Imaging Saltwater Intrusion Along the Coast of Monterey Bay Using Long-Offset Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Goebel, M.; Knight, R. J.; Pidlisecky, A.

    2016-12-01

    Coastal regions represent a complex dynamic interface where saltwater intrusion moves seawater landward and groundwater discharge moves freshwater seaward. These processes can have a dramatic impact on water quality, affecting both humans and coastal ecosystems. The ability to map the subsurface distribution of fresh and salt water is a critical step in predicting and managing water quality in coastal regions. This is commonly accomplished using wells, which are expensive and provide point information, which may fail to capture the spatial complexity in subsurface conditions. We present an alternate method for acquiring data, long-offset Electrical Resistivity Tomography (ERT), which is non-invasive, cost effective, and can address the problem of poor spatial sampling. This geophysical method can produce continuous profiles of subsurface electrical resistivity to a depth of 300 m, with spatial resolution on the order of tens of meters. Our research focuses on the Monterey Bay region, where sustained groundwater extraction over the past century has led to significant saltwater intrusion. ERT was acquired along 40 kilometers of the coast using the roll along method, allowing for continuous overlap in data acquisition. Electrodes were spaced every 22.2 m, with a total of 81 electrodes along the 1.8 km active cable length. The data show a complex distribution of fresh and salt water, influenced by geology, groundwater pumping, recharge, and land-use. While the inverted ERT resistivity profiles correspond well with existing data sets and geologic interpretations in the region, the spatial complexity revealed through the ERT data goes beyond what is known from traditional data sources alone. This leads us to conclude that this form of data can be extremely useful in informing and calibrating groundwater flow models, making targeted management decisions, and monitoring changes in subsurface salinities over time.

  7. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing somore » using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.« less

  8. Geologic map of the Khanneshin carbonatite complex, Helmand Province, Afghanistan, modified from the 1976 original map compilation of V.G. Cheremytsin

    USGS Publications Warehouse

    Tucker, Robert D.; Peters, Stephen G.; Schulz, Klaus J.; Renaud, Karine M.; Stettner, Will R.; Masonic, Linda M.; Packard, Patricia H.

    2011-01-01

    This map is a modified version of the Geological map of the Khanneshin carbonatite complex, scale 1:10,000, which was compiled by V.G. Cheremytsin in 1976. Scientists from the U.S. Geological Survey, in cooperation with the Afghan Geological Survey and the Task Force for Business and Stability Operations of the U.S. Department of Defense, studied the original map and also visited the field area in September 2009, August 2010, and February 2011. This modified map, which includes cross sections, illustrates the geologic structure of the Khanneshin carbonatite complex. The map reproduces the topology (contacts, faults, and so forth) of the original Soviet map and cross sections and includes modifications based on our examination of that map and a related report, and based on observations made during our field visits. (Refer to the References section in the Map PDF for complete citations of the original map and related report.) Elevations on the cross section are derived from the original Soviet topography and may not match the newer topography used on the current map. We have attempted to translate the original Russian terminology and rock classification into modern English geologic usage as literally as possible without changing any genetic or process-oriented implications in the original descriptions. We also use the age designations from the original map. The unit colors on the map and cross sections differ from the colors shown on the original version. The units are colored according to the color and pattern scheme of the Commission for the Geological Map of the World (CGMW) (http://www.ccgm.org).

  9. Colorado Late Cenozoic Fault and Fold Database and Internet Map Server: User-friendly technology for complex information

    USGS Publications Warehouse

    Morgan, K.S.; Pattyn, G.J.; Morgan, M.L.

    2005-01-01

    Internet mapping applications for geologic data allow simultaneous data delivery and collection, enabling quick data modification while efficiently supplying the end user with information. Utilizing Web-based technologies, the Colorado Geological Survey's Colorado Late Cenozoic Fault and Fold Database was transformed from a monothematic, nonspatial Microsoft Access database into a complex information set incorporating multiple data sources. The resulting user-friendly format supports easy analysis and browsing. The core of the application is the Microsoft Access database, which contains information compiled from available literature about faults and folds that are known or suspected to have moved during the late Cenozoic. The database contains nonspatial fields such as structure type, age, and rate of movement. Geographic locations of the fault and fold traces were compiled from previous studies at 1:250,000 scale to form a spatial database containing information such as length and strike. Integration of the two databases allowed both spatial and nonspatial information to be presented on the Internet as a single dataset (http://geosurvey.state.co.us/pubs/ceno/). The user-friendly interface enables users to view and query the data in an integrated manner, thus providing multiple ways to locate desired information. Retaining the digital data format also allows continuous data updating and quick delivery of newly acquired information. This dataset is a valuable resource to anyone interested in earthquake hazards and the activity of faults and folds in Colorado. Additional geologic hazard layers and imagery may aid in decision support and hazard evaluation. The up-to-date and customizable maps are invaluable tools for researchers or the public.

  10. The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.

    2010-01-01

    The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).

  11. Geologic map of the San Francisco Bay region

    USGS Publications Warehouse

    Graymer, R.W.; Moring, B.C.; Saucedo, G.J.; Wentworth, C.M.; Brabb, E.E.; Knudsen, K. L.

    2006-01-01

    The rocks and fossils of the San Francisco Bay region reveal that the geology there is the product of millions of years at the active western margin of North America. The result of this history is a complex mosaic of geologic materials and structures that form the landscape. A geologic map is one of the basic tools to understand the geology, geologic hazards, and geologic history of a region.With heightened public awareness about earthquake hazards leading up to the 100th anniversary of the 1906 San Francisco earthquake, the U.S. Geological Survey (USGS) is releasing new maps of the San Francisco Bay Area designed to give residents and others a new look at the geologic history and hazards of the region. The “Geologic Map of the San Francisco Bay region” shows the distribution of geologic materials and structures, demonstrates how geologists study the age and origin of the rocks and deposits that we live on, and reveals the complicated geologic history that has led to the landscape that shapes the Bay Area.

  12. Hydraulic Fracturing Mineback Experiment in Complex Media

    NASA Astrophysics Data System (ADS)

    Green, S. J.; McLennan, J. D.

    2012-12-01

    Hydraulic fracturing (or "fracking") for the recovery of gas and liquids from tight shale formations has gained much attention. This operation which involves horizontal well drilling and massive hydraulic fracturing has been developed over the last decade to produce fluids from extremely low permeability mudstone and siltstone rocks with high organic content. Nearly thirteen thousand wells and about one hundred and fifty thousand stages within the wells were fractured in the US in 2011. This operation has proven to be successful, causing hundreds of billions of dollars to be invested and has produced an abundance of natural gas and is making billions of barrels of hydrocarbon liquids available for the US. But, even with this commercial success, relatively little is clearly known about the complexity--or lack of complexity--of the hydraulic fracture, the extent that the newly created surface area contacts the high Reservoir Quality rock, nor the connectivity and conductivity of the hydraulic fractures created. To better understand this phenomena in order to improve efficiency, a large-scale mine-back experiment is progressing. The mine-back experiment is a full-scale hydraulic fracture carried out in a well-characterized environment, with comprehensive instrumentation deployed to measure fracture growth. A tight shale mudstone rock geologic setting is selected, near the edge of a formation where one to two thousand feet difference in elevation occurs. From the top of the formation, drilling, well logging, and hydraulic fracture pumping will occur. From the bottom of the formation a horizontal tunnel will be mined using conventional mining techniques into the rock formation towards the drilled well. Certain instrumentation will be located within this tunnel for observations during the hydraulic fracturing. After the hydraulic fracturing, the tunnel will be extended toward the well, with careful mapping of the created hydraulic fracture. Fracturing fluid will be traceable, as will injected proppant, in order to demarcate in-situ fracture paths and fluid and proppant progression. This underground experiment is referred to as a "mine-back experiment". Several mine-back experiments have been conducted in the past, and have demonstrated complex, diffuse fracture systems in coals and bundled fracture systems in some sandstones. No mine-back experiment has been conducted in the tight shales; but, economics and environmental considerations dictate that more definitive measurements will be extremely helpful to establish fracture growth patterns and to validate monitoring methods such as micro-seismic measurements. This presentation discusses the mine-back experiment and presents details of geologic setting, hydraulic fracturing, and the excavation required before and after the hydraulic fracture. The mine-back experiment will provide ground-truth assessment of hydraulic fracturing, geologic forecasting, micro-seismicity, and other information.

  13. Identification of different geologic units using fuzzy constrained resistivity tomography

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Sharma, S. P.

    2018-01-01

    Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.

  14. Data set of world phosphate mines, deposits, and occurrences: Part A. geologic data; Part B. location and mineral economic data

    USGS Publications Warehouse

    Chernoff, Carlotta B.; Orris, G.J.

    2002-01-01

    An inventory of more than 1,600 world phosphate mines, deposits, and occurrences was compiled from smaller data sets collected as part of multiple research efforts by Carlotta Chernoff, University of Arizona, and Greta Orris, U.S. Geological Survey. These data have been utilized during studies of black shale depositional environments and to construct phosphate deposit models. The compiled data have been edited for consistency and additional location information has been added where possible. The database of compiled phosphate information is being released in two sections; the geologic data in one section and the location and mineral economic data in the second. This report, U.S. Geological Survey Open-File Report 02–156–A, contains the geologic data and is best used with the complimentary data contained in Open-File Report 02–156–B. U.S. Geological Survey Open-File Report 02–156–B contains commodity data, location and analytical data, a variety of mineral economic data, reference information, and pointers to related records in the U.S. Geological Survey National mineral databases—MASMILS and MRDS.

  15. Investigating the complex structural integrity of the Zeit Bay Field, Gulf of Suez, Egypt, using interpretation of 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Afife, M.; Salem, M.; Aziz, M. Abdel

    2017-07-01

    Zeit Bay Field is one of the most important oil-bearing fields in the Gulf of Suez, Egypt, producing oil from the fractured basement rocks. Due to the complex structural setting of the area and the classical exploration concept that was based mainly on 2D seismic survey data, the area suffered from limited hydrocarbon interest for several years. During this time, most of the drilled wells hit structural highs and resulted in several dry holes. The present study is based on the interpretation of more recently acquired 3D seismic survey data as, matched with the available well logs, used to understand the complex structural setting of the Zeit Bay Field and provide insight into the entrapment style of the implied hydrocarbons. Several selected seismic cross sections were constructed, to extract subsurface geologic information, using available seismic profiles and wells. In addition, structure contour maps (isochronous maps, converted to depth maps) were constructed for the peaks of the basement, Nubian Sandstone, Kareem and Belayim Formations. Folds (anticlines and synclines) and faults (dip-slip) are identified on these maps, both individually and in groups, giving rise to step-like belts, as well as graben and horst blocks.

  16. On the generation of horizontal shear waves by underground explosions in jointed rocks

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; ...

    2015-02-04

    This paper describes computational studies of non-spherical ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation, persistence and properties. Simulations are performed both in 2D for a single joint set to elucidate the basic response mechanisms, and in 3D for multiple joint sets to realistically represent in situ conditions in a realistic geologic setting. The joints are modeled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geologic uncertainties onmore » near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geologic setting of the Source Physics Experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geologic media.« less

  17. Geological remote sensing signatures of terrestrial impact craters

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Schnetzler, C.; Grieve, R. A. F.

    1988-01-01

    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures. In addition, refinement of initial dimensions of extremely recent structures such as Zhamanshin and Bosumtwi is an important objective in order to permit re-evaluation of global Earth system responses associated with these types of events.

  18. Mineral deposit densities for estimating mineral resources

    USGS Publications Warehouse

    Singer, Donald A.

    2008-01-01

    Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.

  19. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  20. Map of surficial deposits and materials in the eastern and central United States (east of 102 degrees West longitude)

    USGS Publications Warehouse

    Fullerton, David S.; Bush, Charles A.; Pennell, Jean N.

    2003-01-01

    This data set contains surficial geologic units in the Eastern and Central United States, as well as a glacial limit line showing the position of maximum glacial advance during various geologic time periods. The geologic units represent surficial deposits and other surface materials that accumulated or formed during the past 2+ million years, such as soils, alluvium, and glacial deposits. These surface materials are referred to collectively by many geologists as regolith, the mantle of fragmented and generally unconsolidated material that overlies the bedrock foundation of a continent. This data set and the printed map produced from it, U.S. Geological Survey (USGS) Geologic Investigation Series I-2789, were based on 31 published maps in the USGS's Quaternary Geologic Atlas of the United States map series (USGS Miscellaneous Investigations Series I-1420). The data were compiled at 1:1,000,000 scale, to be viewed as a digital map at 1:2,000,000 nominal scale and to be printed as a conventional paper map at 1:2,500,000 scale.

  1. Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives.

    PubMed

    Badgley, Catherine; Smiley, Tara M; Terry, Rebecca; Davis, Edward B; DeSantis, Larisa R G; Fox, David L; Hopkins, Samantha S B; Jezkova, Tereza; Matocq, Marjorie D; Matzke, Nick; McGuire, Jenny L; Mulch, Andreas; Riddle, Brett R; Roth, V Louise; Samuels, Joshua X; Strömberg, Caroline A E; Yanites, Brian J

    2017-03-01

    Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Application of geologic-mathematical 3D modeling for complex structure deposits by the example of Lower- Cretaceous period depositions in Western Ust - Balykh oil field (Khanty-Mansiysk Autonomous District)

    NASA Astrophysics Data System (ADS)

    Perevertailo, T.; Nedolivko, N.; Prisyazhnyuk, O.; Dolgaya, T.

    2015-11-01

    The complex structure of the Lower-Cretaceous formation by the example of the reservoir BC101 in Western Ust - Balykh Oil Field (Khanty-Mansiysk Autonomous District) has been studied. Reservoir range relationships have been identified. 3D geologic- mathematical modeling technique considering the heterogeneity and variability of a natural reservoir structure has been suggested. To improve the deposit geological structure integrity methods of mathematical statistics were applied, which, in its turn, made it possible to obtain equal probability models with similar input data and to consider the formation conditions of reservoir rocks and cap rocks.

  3. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  4. The Geologic Story of Yellowstone National Park

    USGS Publications Warehouse

    Keefer, William Richard

    1971-01-01

    In the aftermath of the Civil War, the United States expanded the exploration of her western frontiers to gain a measure of the vast lands and natural resources in the region now occupied by our Rocky Mountain States. As part of this effort, the Geological and Geographical Survey of the Territories was organized within the Department of the Interior, and staffed by a group of hardy, pioneering scientists under the leadership of geologist F. V. Hayden. During the summer of 1871, these men, accompanied by photographer William H. Jackson and artist Thomas Moran, made a reconnaissance geological study of the legendary and mysterious 'Yellowstone Wonderland' in remote northwestern Wyoming Territory. The scientific reports and illustrations prepared by Hayden and his colleagues, supplementing the startling accounts that had been published by members of the famous Washburn-Doane Expedition a year earlier, erased all doubts that this unique land was eminently worthy of being set aside 'for the benefit and enjoyment of the people.' By Act of Congress on March 1, 1872, our first National Park was established. During the past century, 50 million people have toured Yellowstone National Park, marveling at its never-ending display of natural wonders. No doubt many have paused to wonder about the origin of these unusual and complex geological features - a question, needless to say, that has intrigued and challenged scientists from the very first days of the Hayden Survey. During the past decade a group of U. S. Geological Survey scientists, in cooperation with the National Park Service and aided by the interest of the National Aeronautics and Space Administration in remote sensing of the geologic phenomena, has been probing the depths and farthest corners of the Park seeking more of the answers. Some of the results of this work, and those of earlier studies, are described in this book to provide a better understanding and enjoyment of this great National Park.

  5. Geologic constraints on the setting and dynamics of subduction initiation

    NASA Astrophysics Data System (ADS)

    Encarnacion, John; Keenan, Timothy

    2017-04-01

    Understanding where and how subduction zones have and can initiate is important because, besides being a critical step in the plate tectonic system, it can provide insight into the complex interactions of crust and mantle rheology, forces acting on the plates, strain, metamorphic reactions, and erosional and depositional processes at the surface. Insight into the possibilities of where and how subduction zones start has been provided by numerical and analog modeling. All sites for subduction initiation are potential weak zones in the lithosphere and include the continent-ocean boundary, oceanic arc-oceanic crust boundary, oceanic transform faults and fracture zones, oceanic detachment faults, and active or recently extinct oceanic ridges/spreading centers. Within the constraints of modeling, it has also been shown that the forces involved in the initiation of subduction can be largely horizontal (induced by a collision, say, or through 'ridge push') or vertical (driven by density contrasts). The latter scenario is often referred to as "spontaneous" subduction initiation, whereas the former situation may be called "forced"or "induced" subduction initiation. It is prudent, however, not to assume that "what can happen, did happen." So, the challenge for geologists is to infer from the rock record, through structural mapping, thermochronology, thermobarometry, geochemistry, paleomagnetics, and sedimentological studies, how any given subduction zone began. Even with a complete data set, it is not always possible to fully constrain the specific geologic setting or dynamics involved in the initiation of a given subduction zone. One can, however, often rule out certain scenarios, increasing the probability of others. Part of the geologic record of subduction initiation preserved at some subduction zones are so-called "metamorphic soles," which include high-temperature (T) and high-pressure (P) metamorphosed oceanic crust that was underthrust to asthenospheric mantle depths, metamorphosed, and then preserved in the hanging wall of the eventual subduction zone. These metamorphic soles may preserve important information bearing on the timing of subduction initiation, the evolving P and T conditions during subduction initiation, and, importantly, the protolith age of the initially subducted crust. The latter parameter—the age of the initially subducted oceanic crust at the time of subduction initiation—is an important constraint that has been lacking in many previous geologic studies of subduction initiation. Recent work on metamorphic soles has provided new information on subduction initiation, including the possibility of rapidly converting oceanic divergent boundaries into subduction zones.

  6. Geology and land use in the western part of the Gulf Coast coal-bearing region

    USGS Publications Warehouse

    Warwick, Peter D.; Aubourg, C.E.; Hook, R.W.; SanFilipo, John R.

    2002-01-01

    This map series is a compilation of the outcrop geology in the U.S. Gulf Coast coal region. The maps show the regional geologic setting for primary coal occurrences and detailed geology and historic mining areas.The CD contains ESRI ArcView SHP files of cities, urban areas, historical mines (points and polygons), counties, current mines, 1:100,000 quadrangle outlines of the study area, fossil fuel powerplants, nuclear powerplants, political boundaries, federally managed lands, roads and railroads in the study area, hydrology in the study area (polygons and arcs), geology nomenclature breaks, geological features (faults), and geology. ArcExplorer is included on the CD.

  7. Fluid and gas expulsion on the northern Gulf of Mexico continental slope: Mud-prone to mineral-prone responses

    NASA Astrophysics Data System (ADS)

    Roberts, Harry H.

    In the northern Gulf of Mexico slope province, complex structural relationships resulting from dynamic adjustments between large volumes of sediments and salt provide numerous faulted pathways for deep subsurface fluids and gases to be transported to the modern seafloor. Geological response at the seafloor to these hydrocarbon-rich fluids and gases is highly variable and dependent largely on rate and duration of delivery as well as fluid and gas composition. In a qualitative framework, rapid expulsions of fluids (including fluidized sediment) and gases generally result in buildups of sediment in the form of cones (mud volcanoes) that vary from a few meters to several kilometers in diameter and/or sheet-like flows that may extend tens of kilometers downslope. Conversely, slow seepage promotes lithification of the seafloor through precipitation of a variety of mineral species. Most important is the microbial utilization of hydrocarbons and precipitation of 13C-depleted Ca-Mg carbonates as by-products. These carbonates have δ 13C values that range between -18% to -55% (PDB), suggesting mixed carbon sources from crude oil to biogenic methane. The 13C-depleted carbonates form mounds and hardgrounds that occur over the full depth range of the slope. Mounded carbonates can have relief of up to 30 m, but mounds of 5-10 m relief are most common at sites thus far investigated. Mound-building carbonates are mixed mineral phases of aragonite, Mg-calcite, and dolomite with Mg-calcite being the most common. Barite is another product that is precipitated from mineral-rich fluids that arrive at the seafloor in low-to-moderate seep rate settings. However, barite precipitation is not as pervasive as that of 13C-depleted carbonates. The Gulf's intermediate flux settings seem best exemplified by areas where gas hydrates occur at the seafloor or in the very shallow subsurface. Intermediate flux environments display considerable variability with regard to surficial geology and on a local scale have elements of both rapid and slow flux settings. However, the intermediate flux environments appear to have the unique set of conditions necessary to support and sustain densely populated communities of chemosynthetic organisms. Since most of these areas are associated with faulting at the edges of intraslope basins, surficial or shallow subsurface gas hydrates (accessible by piston coring) are oriented along these faults and not in broad areas characterized by distinct bottom simulating reflectors (BSRs) as is the case in many simpler geologic settings. These shallow gas hydrates are composed of a complex mixture of biogenic-thermogenic methane and other thermogenic gases. Slight variations in near-bottom water temperature resulting from a variety of natural oceanographic processes cause gas hydrate dissociation and out-gassing resulting in the degradation to disappearnace of surficial gas hydrate mounds.

  8. Intelligent Decisions Need Intelligent Choice of Models and Data - a Bayesian Justifiability Analysis for Models with Vastly Different Complexity

    NASA Astrophysics Data System (ADS)

    Nowak, W.; Schöniger, A.; Wöhling, T.; Illman, W. A.

    2016-12-01

    Model-based decision support requires justifiable models with good predictive capabilities. This, in turn, calls for a fine adjustment between predictive accuracy (small systematic model bias that can be achieved with rather complex models), and predictive precision (small predictive uncertainties that can be achieved with simpler models with fewer parameters). The implied complexity/simplicity trade-off depends on the availability of informative data for calibration. If not available, additional data collection can be planned through optimal experimental design. We present a model justifiability analysis that can compare models of vastly different complexity. It rests on Bayesian model averaging (BMA) to investigate the complexity/performance trade-off dependent on data availability. Then, we disentangle the complexity component from the performance component. We achieve this by replacing actually observed data by realizations of synthetic data predicted by the models. This results in a "model confusion matrix". Based on this matrix, the modeler can identify the maximum model complexity that can be justified by the available (or planned) amount and type of data. As a side product, the matrix quantifies model (dis-)similarity. We apply this analysis to aquifer characterization via hydraulic tomography, comparing four models with a vastly different number of parameters (from a homogeneous model to geostatistical random fields). As a testing scenario, we consider hydraulic tomography data. Using subsets of these data, we determine model justifiability as a function of data set size. The test case shows that geostatistical parameterization requires a substantial amount of hydraulic tomography data to be justified, while a zonation-based model can be justified with more limited data set sizes. The actual model performance (as opposed to model justifiability), however, depends strongly on the quality of prior geological information.

  9. The idea of magma mixing: History of a struggle for acceptance

    USGS Publications Warehouse

    Wilcox, R.E.

    1999-01-01

    In 1851, chemist Robert Bunsen suggested that the mixing of two magmas, one mafic and the other felsic, in various proportions might account for the wide range of chemical compositions of igneous rocks. Based on flaws in several of its secondary provisions, the whole hypothesis was rejected by a succession of influential critics and remained in disrepute for a hundred years. Meanwhile, studies of composite dikes and sills indicated that, indeed, mafic and felsic magmas had coexisted at close quarters and had been emplaced in quick succession. This interpretation was also used by some investigators to explain the intimate association of mafic and felsic rock types in the commonly occurring igneous complexes. Others believed that the mafic components of these complexes were derived from geologically older mafic formations. By the early 1900s it had become apparent that mafic magmas crystallized at higher temperatures than felsic magmas. This knowledge was not immediately applied to the problem of magma mixing, however, due in part to the popularity of the newly validated process of fractional crystallization and to the implication that the diversity of igneous rocks could be accounted for by that process alone. Not until the 1950s was the attention of the geological community drawn to the fact that disparate magmas mix in a special manner: they mingle, the mafic magma being quenched to a fracturable solid upon contact with the cooler felsic magma. This explanation set in motion a series of studies of other igneous complexes, confirming the concept and adding other identifying features of the process.

  10. Geochemistry and field geology of shoshonitic magmas in the Late Cretaceous foreland fold and thrust belt of southwestern Montana: Results from the North Doherty Mountain Intrusive Complex

    NASA Astrophysics Data System (ADS)

    Beranek, L. P.; Burton, B. R.; Ihinger, P. D.

    2002-12-01

    The North Doherty Mountain Intrusive Complex (NDMIC) is one of several satellite plutons related to the areally extensive Boulder batholith of southwestern Montana. The Boulder batholith comprises multiple plutons and intrusive phases, and the magmatism has long been thought to be the result of subduction due to its calc-alkaline granodioritic composition. The batholith is situated in the Helena salient, which differs from other parts of the North American Cordilleran foreland because there, magmatism spatially and temporally overlaps with deformation in the foreland fold and thrust belt. The North Doherty Mountain Intrusive Complex (NDMIC) is one of several satellite plutons related to the Boulder batholith and represents an ideal microcosm of the batholith for petrogenetic and structural studies because it exposes both mafic and felsic units and was emplaced in the limb of a major thrust related fold. We present new geologic mapping and detailed trace element geochemical analyses to show that the entire mafic-to-felsic suite of rocks in the NDMIC are cogenetic and shoshonitic in character. Shoshonites are unusual magmas that are distinguished by their high concentrations of K, Rb, Sr, Ba, Zr, and Th contents, and are thought to represent partial melting at great depths within the mantle wedge above a subducting slab. The presence of shoshonitic magma in the Cordilleran foreland fold and thrust belt provides important clues into the nature of the formation of this unusual magma type and can provide insights into our understanding of magmatism in foreland structural settings.

  11. Multiphase modeling of geologic carbon sequestration in saline aquifers.

    PubMed

    Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C

    2015-01-01

    Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. © 2015, National Ground Water Association.

  12. Three-Dimensional Geologic Model of Complex Fault Structures in the Upper Seco Creek Area, Medina and Uvalde Counties, South-Central Texas

    USGS Publications Warehouse

    Pantea, Michael P.; Cole, James C.; Smith, Bruce D.; Faith, Jason R.; Blome, Charles D.; Smith, David V.

    2008-01-01

    This multimedia report shows and describes digital three-dimensional faulted geologic surfaces and volumes of the lithologic units of the Edwards aquifer in the upper Seco Creek area of Medina and Uvalde Counties in south-central Texas. This geologic framework model was produced using (1) geologic maps and interpretations of depositional environments and paleogeography; (2) lithologic descriptions, interpretations, and geophysical logs from 31 drill holes; (3) rock core and detailed lithologic descriptions from one drill hole; (4) helicopter electromagnetic geophysical data; and (5) known major and minor faults in the study area. These faults were used because of their individual and collective effects on the continuity of the aquifer-forming units in the Edwards Group. Data and information were compared and validated with each other and reflect the complex relationships of structures in the Seco Creek area of the Balcones fault zone. This geologic framework model can be used as a tool to visually explore and study geologic structures within the Seco Creek area of the Balcones fault zone and to show the connectivity of hydrologic units of high and low permeability between and across faults. The software can be used to display other data and information, such as drill-hole data, on this geologic framework model in three-dimensional space.

  13. Digital geologic and geophysical data of Bangladesh

    USGS Publications Warehouse

    Persits, Feliks M.; Wandrey, C.J.; Milici, R.C.; Manwar, Abdullah

    1997-01-01

    The data set for these maps includes arcs, polygons, and labels that outline and describe the general geologic age and geophysical fields of Bangladesh. Political boundaries are provided to show the general location of administrative regions and state boundaries. Major base topographic data like cities, rivers, etc. were derived from the same paper map source as the geology.

  14. The importance of topographic corrections on magnetotelluric response data from rugged regions of Anatolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerer, A.; Ilkisik, O.M.

    1997-01-01

    Topographic irregularities cause some distortions of magnetotelluric (MT) fields. In the vicinity of a topographic feature, the TM-mode distortion increases with the height and inclination of the slope. It is well-known that TM-mode topographic effects are much greater than TE-mode distortions. The authors have made a study of MT anomalies in TM-mode due to two-dimensional topography. In order to reduce these effects, the distortion tensor stripping technique was used. After corrections, the resulting data can be interpreted as if they were obtained over a flat surface and depend only on the subsurface structure. However, this technique sometimes causes some geometricalmore » distortions of the real subsurface structure. One of the aims is to overcome this failure. The authors have modified the correction coefficients by considering the actual one-dimensional geology. Model studies showed that this approach is especially useful in removing the terrain effects on complex 2D subsurface structures. The other purpose of this study is to emphasize the importance of a proper terrain correction for data from sites having mountainous topography over complex geology, e.g., strike-slip faults, suture zones and rift valleys. Some examples of MT data sets collected from the North Anatolian Fault Zone and from the thrust regions of the Western Taurides will be presented.« less

  15. Pressure prediction in non-uniaxial settings based on field data and geomechanical modeling: a well example

    NASA Astrophysics Data System (ADS)

    Lockhart, L. P.; Flemings, P. B.; Nikolinakou, M. A.; Heidari, M.

    2016-12-01

    We apply a new pressure prediction approach that couples sonic velocity data, geomechanical modeling, and a critical state soil model to estimate pore pressure from wellbore data adjacent to a salt body where the stress field is complex. Specifically, we study pressure and stress in front of the Mad Dog salt body, in the Gulf of Mexico. Because of the loading from the salt, stresses are not uniaxial; the horizontal stress is elevated, leading to higher mean and shear stresses. For the Mad Dog field, we develop a relationship between velocity and equivalent effective stress, in order to account for both the mean and shear stress effect on pore pressure. We obtain this equivalent effective stress using a geomechanical model of the Mad Dog field. We show that the new approach improves pressure prediction in areas near salt where mean and shear stress are different than the control well. Our methodology and results show that pore pressure is driven by a combination of mean stress and shear stress, and highlight the importance of shear-induced pore pressures. Furthermore, the impact of our study extends beyond salt bodies; the methodology and gained insights are applicable to geological environments around the world with a complex geologic history, where the stress state is not uniaxial (fault zones, anticlines, synclines, continental margins, etc.).

  16. Alaska geology revealed

    USGS Publications Warehouse

    Wilson, Frederic H.; Labay, Keith A.

    2016-11-09

    This map shows the generalized geology of Alaska, which helps us to understand where potential mineral deposits and energy resources might be found, define ecosystems, and ultimately, teach us about the earth history of the State. Rock units are grouped in very broad categories on the basis of age and general rock type. A much more detailed and fully referenced presentation of the geology of Alaska is available in the Geologic Map of Alaska (http://dx.doi.org/10.3133/sim3340). This product represents the simplification of thousands of individual rock units into just 39 broad groups. Even with this generalization, the sheer complexity of Alaskan geology remains evident.

  17. Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.

    NASA Astrophysics Data System (ADS)

    Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane

    2017-04-01

    The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.

  18. Discovering Volcanoes in the Azores - A Field Trip

    NASA Astrophysics Data System (ADS)

    Brandão, Susana; Fernandes, Fátima

    2013-04-01

    The Azores islands are located in the North Atlantic Ocean near a triple junction, between the African, Eurasian and North American plates, at about 1500 km from the European continent and 3900 km from the North America east coast. It is formed by nine volcanic islands and a few islets dispersed along a 600 km NW-SE direction axis. The complex geological and geodynamic setting of the Azores explains its significant seismic and volcanic activity, including eruptions and degassing processes. Important landslides triggered either by earthquakes, volcanic eruptions, extreme meteorological conditions and/or coastal erosion processes frequently affect the islands, and tsunamis related with earthquakes and landslides were reported to have occurred in the past. The national curriculum for the school subject of Biology and Geology sees the Azores as a laboratory for the earth sciences and many topics revolve around it. For these reasons, we organised a field trip to the island of São Miguel, with pupils of the 11th grade who live in the Portuguese mainland, in a region that is geologically very different. During the six days of this trip, we attended training sessions in the Centre for Volcanology and Geological Risks Assessment (CVARG) of the Azores University. This multidisciplinary research unit organises activities around the prediction and prevention of disasters and natural hazards in the fields of volcanology and correlated phenomena, including volcanic eruptions, earthquakes, volcanic fumes, air pollution and water contaminants, landslides, floods and tsunamis, among others. The pupils explored volcanic calderas, lava caves, fumaroles and hot springs. They also collected and analysed extremophile bacteria that live in local hot springs.

  19. Methods for Adjusting U.S. Geological Survey Rural Regression Peak Discharges in an Urban Setting

    USGS Publications Warehouse

    Moglen, Glenn E.; Shivers, Dorianne E.

    2006-01-01

    A study was conducted of 78 U.S. Geological Survey gaged streams that have been subjected to varying degrees of urbanization over the last three decades. Flood-frequency analysis coupled with nonlinear regression techniques were used to generate a set of equations for converting peak discharge estimates determined from rural regression equations to a set of peak discharge estimates that represent known urbanization. Specifically, urban regression equations for the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year return periods were calibrated as a function of the corresponding rural peak discharge and the percentage of impervious area in a watershed. The results of this study indicate that two sets of equations, one set based on imperviousness and one set based on population density, performed well. Both sets of equations are dependent on rural peak discharges, a measure of development (average percentage of imperviousness or average population density), and a measure of homogeneity of development within a watershed. Average imperviousness was readily determined by using geographic information system methods and commonly available land-cover data. Similarly, average population density was easily determined from census data. Thus, a key advantage to the equations developed in this study is that they do not require field measurements of watershed characteristics as did the U.S. Geological Survey urban equations developed in an earlier investigation. During this study, the U.S. Geological Survey PeakFQ program was used as an integral tool in the calibration of all equations. The scarcity of historical land-use data, however, made exclusive use of flow records necessary for the 30-year period from 1970 to 2000. Such relatively short-duration streamflow time series required a nonstandard treatment of the historical data function of the PeakFQ program in comparison to published guidelines. Thus, the approach used during this investigation does not fully comply with the guidelines set forth in U.S. Geological Survey Bulletin 17B, and modifications may be needed before it can be applied in practice.

  20. Geology and geochemistry of samples from Los Alamos National Laboratory HDR Well EE-2, Fenton Hill, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, R.; Laughlin, A.W.; Aldrich, M.J. Jr.

    1981-07-01

    Petrologic, geochemical, and structural analyses of cores and cuttings obtained from 3000 to 4389-m true vertical depth in drill hole EE-2 indicate that this deeper part of the Precambrian section at Fenton Hill, New Mexico is composed primarily of a very heterogeneous and structurally anisotropic metamorphic complex, locally intruded by dikes and sills of granodioritic and monzogranitic composition. In this borehole none of these igneous bodies approach in size the 335-m-thick biotite-granodiorite body encountered at 2591-m depth beneath Fenton Hill in the other two drill holes. Contacts between the igneous and metamorphic rocks range from sharp and discordant to gradational.more » Analysis of cuttings indicates that clay-rich alteration zones are relatively common in the openhole portion of EE-2. These zones average about 20 m in thickness. Fracture sets in the Precambrian basement rock intersected by the EE-2 well bore mostly trend northeast and are steeply dipping to vertical; however, one of the sets dips gently to the northwest. Slickensided fault planes are present in a core (No.5) taken from a true vertical depth of 4195 m. Available core orientation data and geologic inference suggest that the faults dip steeply and trend between N.42/sup 0/ and 59/sup 0/E.« less

  1. Research of Helium Isotopes in Taiwan: The Legacy of Dr. Tsanyao Frank Yang

    NASA Astrophysics Data System (ADS)

    Yang, Tsanyao Frank; Lan, Tefang; Lee, Hsiao-Fen; Fu, Ching-Chou; Chuang, Pei-Chuan; Hong, Wei-Li; Walia, Vivek; Chen, Hsuan-Wen; Wen, Hsin-Yi; Chen, Ai-Ti; Chen, Hsiao-Chi; Chiu, Chun-Ming; Cheng, Chun-Yuan; Wu, Nian-Ru; Cheng, Yu-Chen; Chuang, Jin-Lun; Kao, Li-Hsin; Chen, Cheng-Hong; Sano, Yuji

    2016-04-01

    Helium isotope systematics is a powerful proxy to distinguish fluid origins and conveys fruitful geological information. In the past several decades, this robust isotope systematics had offered pivotal knowledge on many key issues in Earth and planetary sciences. It revealed essential geological information of Taiwan as well. Taiwan is located on the junction of two subduction systems-Ryukyu Arc and Luzon Arc. The geotectonic setting is complex and intriguing. Dr. Tsanyao Frank Yang was the pioneer of gas geochemistry studies in Taiwan. He established the first gas geochemistry laboratory in National Taiwan University in 1998 and started exploring all possible research topics on and around this tectonic-active island. In the past two decades, his research covered volcanic/hydrothermal gas studies, volcanic activity monitoring, gas hydrate exploration, soil gas as a tool to locate fault traces, soil gas flux measurement, earthquake precursory, mud volcanoes, low-temperature geochronology and many more. He died of pancreas cancer in March 2015. He was a warm and enthusiastic mentor, a prolific scientist and a great friend. He will always be remembered. Here we present Dr. Yang's achievement on helium isotopes studies in Taiwan throughout his research career. We integrate all the research results from his team and summarize the observations. We will show the distribution of helium isotope ratios in Taiwan and its implications on tectonic settings.

  2. Scales of columnar jointing in igneous rocks: field measurements and controlling factors

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Taisne, Benoît; Garel, Fanny; Médard, Étienne; Bosshard, Sonja; Mattsson, Hannes B.

    2012-03-01

    Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons' average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava flows), chemistry plays the major role, resulting in stouter columns in felsic lavas and slenderer columns in mafic lavas.

  3. International Project - Atlas of Geological Maps of Central Asia and Adjacent Territories 1:2 500 000 Scale - the Status and the Development Prospects

    NASA Astrophysics Data System (ADS)

    Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.

    2011-12-01

    This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the geological survey of China Dr. Wang Min, in two last years we are going to put into practice the following directions: 1. Study of deep processes and metallogeny of the northern passive and eastern active continental margins of Asia with using of new isotopic data along geotransects and the reprocessing of 3-component seismic data and 3D modeling of the region deep structure. 2. Correlation of the tectonic evolution of the Tibetan Plateau and Baikal rift system in Cenozoic, which is of great importance for understanding the geodynamic evolution of the Central Asia and seismic predictions. 3. Comparison of Siberian and Emeishan major volcanic provinces, accompanied with unique ore deposits. Last VSEGEI isotopic studies revealed the significant role of assimilation of metasedimentary upper crust rocks by mantle magma in the formation of unique Norilsk copper-nickel deposits. The results of the next stage of joint studies under the project will be presented at the 34th IGC, at which a scientific symposium "Geological and Metallogenic Responses to Deep Processes in Eastern Asia and Continental Margins" is to be held.

  4. Aeromagnetic data in the UK: a study of the information content of baseline and modern surveys across Anglesey, North Wales

    NASA Astrophysics Data System (ADS)

    Beamish, David; White, James C.

    2011-01-01

    A number of modern, multiparameter, high resolution airborne geophysical surveys (termed HiRES) have been conducted over the past decade across onshore UK. These were undertaken, in part, as a response to the limited resolution of the existing UK national baseline magnetic survey data set acquired in the late 1950s and early 1960s. Modern magnetic survey data, obtained with higher precision and reduced line spacing and elevation, provide an improved data set; however the distinctions between the two available resources, existing and new, are rarely quantified. In this contribution we demonstrate and quantify the improvements that can be anticipated using the new data. The information content of the data sets is examined using a series of modern processing and modelling procedures that provide a full assessment of their resolution capabilities. The framework for the study involves two components. The first relates to the definition of the shallow magnetic structure in relation to an ongoing 1:10 k and 1:50 k geological map revision. The second component relates to the performance of the datasets in defining maps of magnetic basement and assisting with larger scale geological and structural interpretation. One of the smaller HiRES survey areas, the island of Anglesey (Ynys Môn), off the coast of NW Wales is used to provide a series of comparative studies. The geological setting here is both complex and debated and cultural interference is prevalent in the low altitude modern survey data. It is demonstrated that successful processing and interpretation can be carried out on data that have not been systematically corrected (decultured) for non-geological perturbations. Across the survey area a wide number of near-surface magnetic features are evident and are dominated by a reversely magnetized Palaeogene dyke swarm that extends offshore. The average depth to the upper surfaces of the dykes is found to be 44 m. The existing baseline data are necessarily limited in resolving features <1 km in scale; however a detailed comparison of the existing and new data reveals the extent to which these quasi-linear features can be resolved and mapped. The precise limitations of the baseline data in terms of detection, location and estimated depth are quantified. The spectral content of both data sets is examined and the longest wavelength information is extracted to estimate the resolution of magnetic basement features in the two data sets. A significant finding is the lack of information in the baseline data set across wavelengths of between 1 and ˜10 km. Here the HiRES data provide a detailed mapping of shallow magnetic basement features (1-3 km) that display a relevance to current understanding of the fault-bounded terranes that cross the survey area. Equally, the compact scale of the modern survey does not provide deeper (>3 km to upper surface) assessments of magnetic basement. This further assessment is successfully provided by the larger scale baseline data which locates and defines a mid-crustal magnetic basement feature, centred beneath the Snowdon Massif, and illustrates that basement of similar characteristic extends beneath much of Anglesey.

  5. Research and implementation on 3D modeling of geological body

    NASA Astrophysics Data System (ADS)

    Niu, Lijuan; Li, Ligong; Zhu, Renyi; Huang, Man

    2017-10-01

    This study based on GIS thinking explores the combination of the mixed spatial data model and GIS model to build three-dimensional(3d) model of geological bodies in the Arc Engine platform, describes the interface and method used in the construction of 3d geological body in Arc Engine component platform in detail, and puts forward an indirect method which constructs a set of geological grid layers through Rigging interpolation by the borehole data and then converts it into the geological layers of TIN, which improves the defect in building the geological layers of TIN directly and makes it better to complete the simulation of the real geological layer. This study makes a useful attempt to build 3d model of the geological body based on the GIS, and provides a certain reference value for simulating geological bodies in 3d and constructing the digital system of underground space.

  6. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, S; Larsen, S; Wagoner, J

    Seismic imaging and tracking methods have intelligence and monitoring applications. Current systems, however, do not adequately calibrate or model the unknown geological heterogeneity. Current systems are also not designed for rapid data acquisition and analysis in the field. This project seeks to build the core technological capabilities coupled with innovative deployment, processing, and analysis methodologies to allow seismic methods to be effectively utilized in the applications of seismic imaging and vehicle tracking where rapid (minutes to hours) and real-time analysis is required. The goal of this project is to build capabilities in acquisition system design, utilization of full three-dimensional (3D)more » finite difference modeling, as well as statistical characterization of geological heterogeneity. Such capabilities coupled with a rapid field analysis methodology based on matched field processing are applied to problems associated with surveillance, battlefield management, finding hard and deeply buried targets, and portal monitoring. This project, in support of LLNL's national-security mission, benefits the U.S. military and intelligence community. Fiscal year (FY) 2003 was the final year of this project. In the 2.5 years this project has been active, numerous and varied developments and milestones have been accomplished. A wireless communication module for seismic data was developed to facilitate rapid seismic data acquisition and analysis. The E3D code was enhanced to include topographic effects. Codes were developed to implement the Karhunen-Loeve (K-L) statistical methodology for generating geological heterogeneity that can be utilized in E3D modeling. The matched field processing methodology applied to vehicle tracking and based on a field calibration to characterize geological heterogeneity was tested and successfully demonstrated in a tank tracking experiment at the Nevada Test Site. A three-seismic-array vehicle tracking testbed was installed on site at LLNL for testing real-time seismic tracking methods. A field experiment was conducted over a tunnel at the Nevada Site that quantified the tunnel reflection signal and, coupled with modeling, identified key needs and requirements in experimental layout of sensors. A large field experiment was conducted at the Lake Lynn Laboratory, a mine safety research facility in Pennsylvania, over a tunnel complex in realistic, difficult conditions. This experiment gathered the necessary data for a full 3D attempt to apply the methodology. The experiment also collected data to analyze the capabilities to detect and locate in-tunnel explosions for mine safety and other applications. In FY03 specifically, a large and complex simulation experiment was conducted that tested the full modeling-based approach to geological characterization using E2D, the K-L statistical methodology, and matched field processing applied to tunnel detection with surface seismic sensors. The simulation validated the full methodology and the need for geological heterogeneity to be accounted for in the overall approach. The Lake Lynn site area was geologically modeled using the code Earthvision to produce a 32 million node 3D model grid for E3D. Model linking issues were resolved and a number of full 3D model runs were accomplished using shot locations that matched the data. E3D-generated wavefield movies showed the reflection signal would be too small to be observed in the data due to trapped and attenuated energy in the weathered layer. An analysis of the few sensors coupled to bedrock did not improve the reflection signal strength sufficiently because the shots, though buried, were within the surface layer and hence attenuated. Ability to model a complex 3D geological structure and calculate synthetic seismograms that are in good agreement with actual data (especially for surface waves and below the complex weathered layer) was demonstrated. We conclude that E3D is a powerful tool for assessing the conditions under which a tunnel could be detected in a specific geological setting. Finally, the Lake Lynn tunnel explosion data were analyzed using standard array processing techniques. The results showed that single detonations could be detected and located but simultaneous detonations would require a strategic placement of arrays.« less

  8. Long-term landscape evolution of the Basal Complexes of Fuerteventura and La Gomera Islands, Canary Archipelago

    NASA Astrophysics Data System (ADS)

    Mansour, Sherif; Glasmacher, Ulrich A.; Albinger, Marie; Stoeckli, Daniel F.

    2014-05-01

    The Canarias archipelago consists from seven volcanic islands located at the northwestern African margin. Among them only Fuerteventura and La Gomera islands show distinctive wide exposures of the basal complex (BC) that is characteristic with complex geological history. The basal complex was exposed on the western part of Fuerteventura and northwestern sector of La Gomera because of giant landslide(s) which have removed most of the shield stage volcanic rocks (Ancochea et al., 1996; 2006; Stillman, 1999). Generally, landslides are a common feature in the earlier constructive stages of the entire archipelago and many other volcanic islands (McGuire, 1996). Integration of low temperature thermochronological data, and time-Temperature (t-T) numerical modelling have proven to be a powerful tool for reconstructing the thermal and tectonic history, defining and quantifying long-term landscape evolution in variety of geological settings. Therefore, zircon and apatite fission-track techniques and t-T paths modelling were applied to 36 samples representing the main rock units of the BC on both islands. Fuerteventura BC has experienced two very rapid cooling/exhumation events. While, La Gomera BC shows one long-lived very fast cooling/exhumation event. Interestingly, these very rapid cooling/exhumation events are synchronous with these major landslides. There are many reasons for the major landslides on such a volcanic island (see e.g. McGuire, 1996)., But, the most sufficient triggers for these huge mass wasting/landslides events on Fuerteventura and La Gomera are recommended to be the continuous igneous intrusions and dikes which have the potential to decrease the edifice stability, igneous extrusions which add new materials at the surface leading to over-steeping and overloading (McGuire, 1996), and major climatic changes of the Middle Miocene Climatic Optimum (Herold et al., 2011). References Ancochea, E., Brändle, J.L., Cubas, C.R.,Hernán, F.,Huertas, M.J., 1996. Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the Island of Fuerteventura. Journal of Volcanology and Geothermal Research 70, 183-204. Ancochea, E., Hernán, F., Huertas, M.J., Brändle, J.L., Herrera, R., 2006. A new chronostratigraphical and evolutionary model for La Gomera: implications for the overall evolution of the Canarian Archipelago. Journal of Volcanology and Geothermal Research 157, 271-293. Herold, N., Huber, M., Greenwood, D.R., Müller, R.D., Seton, M., 2011. Early to Middle Miocene monsoon climate in Australia. Geology 39, 3-6. McGuire, W.J., 1996. Volcano instability: a review of contemporary themes. In: McGuire, W.J., Jones, A.P., Neuberg, J. (Eds.), Volcano Instability on the Earth and Terrestrial Planets. Geological Society of London, Special Publication 110, 1-23. Stillman, C.J., 1999. Giant Miocene landslides and the evolution of Fuerteventura, Canary Islands. Journal of Volcanology and Geothermal Research 94, 89-104.

  9. Mapping Arid Vegetation Species Distributions in the White Mountains, Eastern California, Using AVIRIS, Topography, and Geology

    NASA Technical Reports Server (NTRS)

    VandeVen, C.; Weiss, S. B.

    2001-01-01

    Our challenge is to model plant species distributions in complex montane environments using disparate sources of data, including topography, geology, and hyperspectral data. From an ecologist's point of view, species distributions are determined by local environment and disturbance history, while spectral data are 'ancillary.' However, a remote sensor's perspective says that spectral data provide picture of what vegetation is there, topographic and geologic data are ancillary. In order to bridge the gap, all available data should be used to get the best possible prediction of species distributions using complex multivariate techniques implemented on a GIS. Vegetation reflects local climatic and nutrient conditions, both of which can be modeled, allowing predictive mapping of vegetation distributions. Geologic substrate strongly affects chemical, thermal, and physical properties of soils, while climatic conditions are determined by local topography. As elevation increases, precipitation increases and temperature decreases. Aspect, slope, and surrounding topography determine potential insolation, so that south-facing slopes are warmer and north-facing slopes cooler at a given elevation. Topographic position (ridge, slope, canyon, or meadow) and slope angle affect sediment accumulation and soil depth. These factors combine as complex environmental gradients, and underlie many features of plant distributions. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, digital elevation models, digitized geologic maps, and 378 ground control points were used to predictively map species distributions in the central and southern White Mountains, along the western boundary of the Basin and Range province. Minimum Noise Fraction (MNF) bands were calculated from the visible and near-infrared AVIRIS bands, and combined with digitized geologic maps and topographic variables using Canonical Correspondence Analysis (CCA). CCA allows for modeling species 'envelopes' in multidimensional environmental space, which can then be projected across entire landscapes.

  10. Mineral potential for nickel, copper, platinum group elements(PGE), and chromium deposits hosted in ultramafic rocks in the Islamic Republic of Mauritania (phase V, deliverable 67): Chapter G in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Marsh, Erin; Anderson, Eric D.

    2015-01-01

    PRISM-I summary documents mention the presence of mafic-ultramafic igneous intrusive rocks in several areas of Mauritania and a number of chromium (Cr) and copper-nickel (Cu-Ni (±Co, Au)) occurrences associated with them. Permissive geologic settings generally include greenstone belts of any age, layered mafic-ultramafic and unlayered gabbro-anorthosite intrusive complexes in cratonic settings, ophiolite complexes, flood basalt provinces, and fluid-rich shear zones cutting accumulations of mafic-ultramafic rocks. Regions of Mauritania having these characteristics that are discussed in PRISM-I texts include the Mesoarchean greenstone belts of the TasiastTijirit terrane in the southwestern Rgueïbat Shield, two separate layered ultramafic complexes in the Amsaga Complex west of Atar, serpentinized metadunites in Mesoarchean rocks of the Rgueïbat Shield in the Zednes map sheet, several lateritized annular mafic-ultramafic complexes in the Paleoproterozoic northwestern portion of the Rgueïbat Shield, and the serpentinized ophiolitic segments of the Gorgol Noir Complex in the axial portion of the southern Mauritanides. Bureau de Recherches Géologiques et Minières (BRGM) work in the “Extreme Sud” zone also suggests that small copper occurrences associated with the extensive Jurassic microgabbroic intrusive rocks in the Taoudeni Basin of southeastern Mauritania could have potential for magmatic Cu-Ni (PGE, Co, Au) sulfide mineralization. Similarly, Jurassic mafic intrusive rocks in the northeastern Taoudeni Basin may be permissive. Known magmatic Cu-Ni deposits of these types in Mauritania are few in number and some uncertainty exists as to the nature of several of the more important ones.

  11. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  12. Geologic Map of the Utukok River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically.

  13. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major avenues of ground-water flow. Prior to this investigation, the conceptual model of ground-water flow for the region focused primarily on bedding planes and strike-parallel faults and joints as controls on ground-water flow but did not recognize the importance of cross-strike faults and fracture zones that allow ground water to flow downgradient across or through less permeable geologic formations. Results of the ground-water flow simulation indicate that current operations at the Center do not substantially affect either streamflow (less than a 5-percent reduction in annual streamflow) or ground-water levels in the Leetown area under normal climatic conditions but potentially could have greater effects on streamflow during long-term drought (reduction in streamflow of approximately 14 percent). On the basis of simulation results, ground-water withdrawals based on the anticipated need for an additional 150 to 200 gal/min (gallons per minute) of water at the Center also would not seriously affect streamflow (less than 8 to 9 percent reduction in streamflow) or ground-water levels in the area during normal climatic conditions. During drought conditions, however, the effects of current ground-water withdrawals and anticipated additional withdrawals of 150 to 200 gal/min to augment existing supplies result in moderate to substantial declines in water levels of 0.5-1.2 feet (ft) in the vicinity of the Center's springs and production wells. Streamflow was predicted to be reduced locally by approximately 21 percent. Such withdrawals during a drought or prolonged period of below normal ground-water levels would result in substantial declines in the flow of the Center's springs and likely would not be sustainable for more than a few months. The drought simulated in this model was roughly equivalent to the more than 1-year drought that affected the region from November 1998 through February 2000. The potential reduction in streamflow is a result of capture of ground water tha

  14. The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR

    USGS Publications Warehouse

    Soderblom, L.A.; Brown, R.H.; Soderblom, J.M.; Barnes, J.W.; Kirk, R.L.; Sotin, Christophe; Jaumann, R.; MacKinnon, D.J.; Mackowski, D.W.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    Joint Cassini VIMS and RADAR SAR data of ???700-km-wide Hotei Regio reveal a rich collection of geological features that correlate between the two sets of images. The degree of correlation is greater than anywhere else seen on Titan. Central to Hotei Regio is a basin filled with cryovolcanic flows that are anomalously bright in VIMS data (in particular at 5 ??m) and quite variable in roughness in SAR. The edges of the flows are dark in SAR data and appear to overrun a VIMS-bright substrate. SAR-stereo topography shows the flows to be viscous, 100-200 m thick. On its southern edge the basin is ringed by higher (???1 km) mountainous terrain. The mountains show mixed texture in SAR data: some regions are extremely rough, exhibit low and spectrally neutral albedo in VIMS data and may be partly coated with darker hydrocarbons. Around the southern margin of Hotei Regio, the SAR image shows several large, dendritic, radar-bright channels that flow down from the mountainous terrain and terminate in dark blue patches, seen in VIMS images, whose infrared color is consistent with enrichment in water ice. The patches are in depressions that we interpret to be filled with fluvial deposits eroded and transported by liquid methane in the channels. In the VIMS images the dark blue patches are encased in a latticework of lighter bands that we suggest to demark a set of circumferential and radial fault systems bounding structural depressions. Conceivably the circular features are tectonic structures that are remnant from an ancient impact structure. We suggest that impact-generated structures may have simply served as zones of weakness; no direct causal connection, such as impact-induced volcanism, is implied. We also speculate that two large dark features lying on the northern margin of Hotei Regio could be calderas. In summary the preservation of such a broad suite of VIMS infrared color variations and the detailed correlation with features in the SAR image and SAR topography evidence a complex set of geological processes (pluvial, fluvial, tectonic, cryovolcanic, impact) that have likely remained active up to very recent geological time (<104 year). That the cryovolcanic flows are excessively bright in the infrared, particularly at 5 ??m, might signal ongoing geological activity. One study [Nelson, R.M., and 28 colleagues, 2009. Icarus 199, 429-441] reported significant 2-??m albedo changes in VIMS data for Hotei Arcus acquired between 2004 and 2006, that were interpreted as evidence for such activity. However in our review of that work, we do not agree that such evidence has yet been found.

  15. Identifying structural styles in Colombia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.P.; Van Nieuwenhuise, R.E.; Steuer, M.R.

    1996-08-01

    Much of our understanding of the Earth is from the study of surface geology and seismic, but many surface structures are responses to deformation which occurred below sedimentary layers. The practice within the petroleum industry is to use top-down processes of analyzing the surface to understand the subsurface, and observed surface structural styles tend to influence seismic interpretations. Yet many conditions which influenced the structural styles seen at the surface are different at depth. Since seismic is a time representation of the Earth, many interpretation pitfalls may exist within areas of complex geology. Also, its reliability decreases with depth andmore » with increasing geologic complexity. Forward modeling and pre-stack depth migration technologies are used to provide true depth images of the seismic data. Even with these advances in seismic imaging technology, the interpreter needs to incorporate additional data into the interpretation. Accurate structural identification requires the interpreter to integrate seismic with surface geology, remote sensing, gravity, magnetic data, geochemistry, fault-plane solutions from earthquakes, and regional tectonic studies. Incorporating these types of data into the interpretation will help us learn how basement is involved in the deformation of overlying sediments. A study of the Eastern Cordillera of Colombia shows the deformation to be dominantly transpressional in style. Euler deconvolution of the areomagnetic data shows a highly fractured basement, steep fault lineaments, en echelon structures, and complex fault patterns, all of which would be typical of wrench-type deformation. Available surface geology, regional studies, earthquake data, and forward modeling support this interpretation.« less

  16. Geochemistry of Rock Samples Collected from the Iron Hill Carbonatite Complex, Gunnison County, Colorado

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2008-01-01

    A study conducted in 2006 by the U.S. Geological Survey collected 57 surface rock samples from nine types of intrusive rock in the Iron Hill carbonatite complex. This intrusive complex, located in Gunnison County of southwestern Colorado, is known for its classic carbonatite-alkaline igneous geology and petrology. The Iron Hill complex is also noteworthy for its diverse mineral resources, including enrichments in titanium, rare earth elements, thorium, niobium (columbium), and vanadium. This study was performed to reexamine the chemistry and metallic content of the major rock units of the Iron Hill complex by using modern analytical techniques, while providing a broader suite of elements than the earlier published studies. The report contains the geochemical analyses of the samples in tabular and digital spreadsheet format, providing the analytical results for 55 major and trace elements.

  17. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.

  18. Citizen-Scientist Digitization of a Complex Geologic Map of the McDowell Mountains (Scottsdale, Arizona).

    NASA Astrophysics Data System (ADS)

    Gruber, D.; Skotnicki, S.; Gootee, B.

    2016-12-01

    The work of citizen scientists has become very important to researchers doing field work and internet-based projects but has not been widely utilized in digital mapping. The McDowell Mountains - located in Scottsdale, Arizona, at the edge of the basin-and-range province and protected as part of the McDowell Sonoran Preserve - are geologically complex. Until recently, no comprehensive geologic survey of the entire range had been done. Over the last 9 years geologist Steven Skotnicki spent 2000 hours mapping the complex geology of the range. His work, born of personal interest and partially supported by the McDowell Sonoran Conservancy, resulted in highly detailed hand-drawn survey maps. Dr. Skotnicki's work provides important new information and raises interesting research questions about the geology of this range. Citizen scientists of the McDowell Sonoran Conservancy Field Institute digitized Dr. Skotnicki's maps. A team of 10 volunteers, trained in ArcMap digitization techniques and led by volunteer project leader Daniel Gruber, performed the digitization work. Technical oversight of mapping using ArcMap, including provision of USGS-based mapping toolbars, was provided by Arizona Geological Survey (AZGS) research geologist Brian Gootee. The map digitization process identified and helped resolve a number of mapping questions. The citizen-scientist team spent 900 hours on training, digitization, quality checking, and project coordination with support and review by Skotnicki and Gootee. The resulting digital map has approximately 3000 polygons, 3000 points, and 86 map units with complete metadata and unit descriptions. The finished map is available online through AZGS and can be accessed in the field on mobile devices. User location is shown on the map and metadata can be viewed with a tap. The citizen scientist map digitization team has made this important geologic information available to the public and accessible to other researchers quickly and efficiently.

  19. Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

    NASA Astrophysics Data System (ADS)

    Khan, Faisal; Enzmann, Frieder; Kersten, Michael

    2016-03-01

    Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.

  20. Setting up a model intercomparison project for the last deglaciation

    NASA Astrophysics Data System (ADS)

    Ivanovic, R. F.; Gregoire, L. J.; Valdes, P. J.; Roche, D. M.; Kageyama, M.

    2014-12-01

    The last deglaciation (~ 21-9 ka) presents a series of opportunities to study the underlying mechanisms of abrupt climate changes and long-term trends in the Earth System. Most of the forcings are relatively well constrained and geological archives record responses over a range of timescales. Despite this, large uncertainties remain over the feedback loops that culminated in the collapse of the great Northern Hemisphere ice sheets, and a consensus has yet to be reached on the chains of events that led to rapid surface warming and cooling during this period.Climate models are powerful tools for quantitatively assessing these outstanding issues through their ability to temporally resolve cause and effect, as well as break down the contributions from different forcings. This is well demonstrated by pioneering work; for example by Liu et al. (2009), Roche et al. (2011), Gregoire et al. (2012) and Menviel et al. (2011). However, such work is not without challenges; model-geological data mismatches remain unsolved and it is difficult to compare results from different models with unique experiment designs. Therefore, we have established a multidisciplinary Paleoclimate Model Intercomparison Project working group to coordinate transient climate model simulations and geological archive compilations of the last deglaciation. Here, we present the plans and progress of the working group in its first phase of activity; the investigation of Heinrich Stadial 1 and the lead into the Bolling warming event. We describe the set-up of the core deglacial experiment, explain our approach for dealing with uncertain climate forcings and outline our solutions to challenges posed by this research. By defining a common experiment design, we have built a framework to include models of different speeds, complexities and resolution, maximising the reward of this varied approach. One of the next challenges is to compile transient proxy records and develop a methodology for dealing with uncertainty and error in model-geological data comparisons. Through this global and interdisciplinary initiative, we combine multi-proxy records with a suite of different modelling techniques to test hypotheses for abrupt climate changes and reconstruct the chain of events that deglaciated the Earth 21-9 ka.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing jointmore » visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  2. RVA: A Plugin for ParaView 3.14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-04

    RVA is a plugin developed for the 64-bit Windows version of the ParaView 3.14 visualization package. RVA is designed to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed onmore » enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  3. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia.

    PubMed

    Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M

    2013-12-01

    Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago.

  4. Understanding processes affecting mineral deposits in humid environments

    USGS Publications Warehouse

    Seal, Robert R.; Ayuso, Robert A.

    2011-01-01

    Recent interdisciplinary studies by the U.S. Geological Survey have resulted in substantial progress toward understanding the influence that climate and hydrology have on the geochemical signatures of mineral deposits and the resulting mine wastes in the eastern United States. Specific areas of focus include the release, transport, and fate of acid, metals, and associated elements from inactive mines in temperate coastal areas and of metals from unmined mineral deposits in tropical to subtropical areas; the influence of climate, geology, and hydrology on remediation options for abandoned mines; and the application of radiogenic isotopes to uniquely apportion source contributions that distinguish natural from mining sources and extent of metal transport. The environmental effects of abandoned mines and unmined mineral deposits result from a complex interaction of a variety of chemical and physical factors. These include the geology of the mineral deposit, the hydrologic setting of the mineral deposit and associated mine wastes, the chemistry of waters interacting with the deposit and associated waste material, the engineering of a mine as it relates to the reactivity of mine wastes, and climate, which affects such factors as temperature and the amounts of precipitation and evapotranspiration; these factors, in turn, influence the environmental behavior of mineral deposits. The role of climate is becoming increasingly important in environmental investigations of mineral deposits because of the growing concerns about climate change.

  5. Computer vision enhances mobile eye-tracking to expose expert cognition in natural-scene visual-search tasks

    NASA Astrophysics Data System (ADS)

    Keane, Tommy P.; Cahill, Nathan D.; Tarduno, John A.; Jacobs, Robert A.; Pelz, Jeff B.

    2014-02-01

    Mobile eye-tracking provides the fairly unique opportunity to record and elucidate cognition in action. In our research, we are searching for patterns in, and distinctions between, the visual-search performance of experts and novices in the geo-sciences. Traveling to regions resultant from various geological processes as part of an introductory field studies course in geology, we record the prima facie gaze patterns of experts and novices when they are asked to determine the modes of geological activity that have formed the scene-view presented to them. Recording eye video and scene video in natural settings generates complex imagery that requires advanced applications of computer vision research to generate registrations and mappings between the views of separate observers. By developing such mappings, we could then place many observers into a single mathematical space where we can spatio-temporally analyze inter- and intra-subject fixations, saccades, and head motions. While working towards perfecting these mappings, we developed an updated experiment setup that allowed us to statistically analyze intra-subject eye-movement events without the need for a common domain. Through such analyses we are finding statistical differences between novices and experts in these visual-search tasks. In the course of this research we have developed a unified, open-source, software framework for processing, visualization, and interaction of mobile eye-tracking and high-resolution panoramic imagery.

  6. A Narrowing Target for Early Mars Climate Models: Which Models Survive Confrontation with Improved Hydrology Constraints?

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Goldblatt, C.; Gao, P.; Mayer, D. P.; Sneed, J.; Wilson, S. A.

    2016-12-01

    The wettest climates in Mars' geologic history represent habitability optima, and also set the tightest constraints on climate models. For lake-forming climates on Early Mars, geologic data constrain discharge, duration, intermittency, and the number of lake-forming events. We synthesise new and existing data to suggest that post-Noachian lake-forming climates were widely separated in time, lasted >10^4 yr individually, were few in number, but cumulatively lasted <10^7 yr (to allow olivine to survive globally). We compare these data against existing models, set out a new model involving methane bursts, and conclude with future directions for Early Mars geologic analysis and modelling work.

  7. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    NASA Astrophysics Data System (ADS)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration at about 1 s) essentially related to 2D/3D phenomena associated to sharp lateral variations of mechanical properties within the Stracciacappa maar. Our results are relevant to face the assessment of local seismic response in similar volcanic settings in highly urbanised environments elsewhere.

  8. Lithology and aggregate quality attributes for the digital geologic map of Colorado

    USGS Publications Warehouse

    Knepper, Daniel H.; Green, Gregory N.; Langer, William H.

    1999-01-01

    This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map.

  9. Evaluating the effectiveness of the MASW technique in a geologically complex terrain

    NASA Astrophysics Data System (ADS)

    Anukwu, G. C.; Khalil, A. E.; Abdullah, K. B.

    2018-04-01

    MASW surveys carried at a number of sites in Pulau Pinang, Malaysia, showed complicated dispersion curves which consequently made the inversion into soil shear velocity model ambiguous. This research work details effort to define the source of these complicated dispersion curves. As a starting point, the complexity of the phase velocity spectrum is assumed to be due to either the surveying parameters or the elastic properties of the soil structures. For the former, the surveying was carried out using different parameters. The complexities were persistent for the different surveying parameters, an indication that the elastic properties of the soil structure could be the reason. In order to exploit this assumption, a synthetic modelling approach was adopted using information from borehole, literature and geologically plausible models. Results suggest that the presence of irregular variation in the stiffness of the soil layers, high stiffness contrast and relatively shallow bedrock, results in a quite complex f-v spectrum, especially at frequencies lower than 20Hz, making it difficult to accurately extract the dispersion curve below this frequency. As such, for MASW technique, especially in complex geological situations as demonstrated, great care should be taken during the data processing and inversion to obtain a model that accurately depicts the subsurface.

  10. The Oligocene carbonate platform of the Zagros Basin, SW Iran: An assessment of highly-complex geological heritage

    NASA Astrophysics Data System (ADS)

    Habibi, Tahereh; Ruban, Dmitry A.

    2017-05-01

    North Africa and the Middle East possess rich geological heritage, but the latter is yet to be fully identified and described. The Oligocene carbonate platform of the Zagros Basin in southwest Iran, which corresponds to the lower part of the Asmari Formation, has significant potential for geoconservation and geotourism. The types of the geological heritage, their value, and the possible geosites have been assessed. The studied deposits are interesting because of lithology (carbonate rocks), fossils (larger foraminifera, other microfossils, diverse marine invertebrates, fish microremains, and trace fossils), biostratigraphical developments, facies (homoclinal carbonate ramp) and signature of global events (glacioeustatic fluctuations), and outstanding hydrocarbon resources. The five main geological heritage types are sedimentary, palaeontological, stratigraphical, palaeogeographical, and economical, from which the palaeontological, palaeogeographical, and economical types are of global rank. The Khollar and Kavar sections in the Fars Province of Iran are recommended as geosites suitable for research, education, and tourism. The high complexity of the geological heritage linked to the Oligocene carbonate platform of the Zagros Basin implies the phenomenon of geodiversity should be understood with regard to the relationships between types and their values.

  11. The effects of geology and the impact of seasonal correction factors on indoor radon levels: a case study approach.

    PubMed

    Gillmore, Gavin K; Phillips, Paul S; Denman, Antony R

    2005-01-01

    Geology has been highlighted by a number of authors as a key factor in high indoor radon levels. In the light of this, this study examines the application of seasonal correction factors to indoor radon concentrations in the UK. This practice is based on an extensive database gathered by the National Radiological Protection Board over the years (small-scale surveys began in 1976 and continued with a larger scale survey in 1988) and reflects well known seasonal variations observed in indoor radon levels. However, due to the complexity of underlying geology (the UK arguably has the world's most complex solid and surficial geology over the shortest distances) and considerable variations in permeability of underlying materials it is clear that there are a significant number of occurrences where the application of a seasonal correction factor may give rise to over-estimated or under-estimated radon levels. Therefore, the practice of applying a seasonal correction should be one that is undertaken with caution, or not at all. This work is based on case studies taken from the Northamptonshire region and comparisons made to other permeable geologies in the UK.

  12. Physiography, geology, and land cover of four watersheds in Eastern Puerto Rico

    Treesearch

    S.F. Murphy; R.F. Stallard; M.C. Larsen; W.A. Gould

    2012-01-01

    Four watersheds with differing geology and land cover in eastern Puerto Rico have been studied on a long-term basis by the U.S. Geological Survey to evaluate water, energy, and biogeochemical budgets. These watersheds are typical of tropical, island-arc settings found in many parts of the world. Two watersheds are located on coarse-grained granitic rocks that weather...

  13. Structural geology of the proposed site area for a high-level radioactive waste repository, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Dickerson, R.P.

    2004-01-01

    Geologic mapping and fracture studies have documented the fundamental patterns of joints and faults in the thick sequence of rhyolite tuffs at Yucca Mountain, Nevada, the proposed site of an underground repository for high-level radioactive waste. The largest structures are north-striking, block-bounding normal faults (with a subordinate left-lateral component) that divide the mountain into numerous 1-4-km-wide panels of gently east-dipping strata. Block-bounding faults, which underwent Quaternary movement as well as earlier Neogene movement, are linked by dominantly northwest-striking relay faults, especially in the more extended southern part of Yucca Mountain. Intrablock faults are commonly short and discontinuous, except those on the more intensely deformed margins of the blocks. Lithologic properties of the local tuff stratigraphy strongly control the mesoscale fracture network, and locally the fracture network has a strong influence on the nature of intrablock faulting. The least faulted part of Yucca Mountain is the north-central part, the site of the proposed repository. Although bounded by complex normal-fault systems, the 4-km-wide central block contains only sparse intrablock faults. Locally intense jointing appears to be strata-bound. The complexity of deformation and the magnitude of extension increase in all directions away from the proposed repository volume, especially in the southern part of the mountain where the intensity of deformation and the amount of vertical-axis rotation increase markedly. Block-bounding faults were active at Yucca Mountain during and after eruption of the 12.8-12.7 Ma Paintbrush Group, and significant motion on these faults postdated the 11.6 Ma Rainier Mesa Tuff. Diminished fault activity continued into Quaternary time. Roughly half of the stratal tilting in the site area occurred after 11.6 Ma, probably synchronous with the main pulse of vertical-axis rotation, which occurred between 11.6 and 11.45 Ma. Studies of sequential formation of tectonic joints, in the context of regional paleostress studies, indicate that north- and northwest-striking joint sets formed coevally with the main faulting episode during regional east-northeast-west-southwest extension and that a prominent northeast-striking joint set formed later, probably after 9 Ma. These structural analyses contribute to the understanding of several important issues at Yucca Mountain, including potential hydrologic pathways, seismic hazards, and fault-displacement hazards. ?? 2004 Geological Society of America.

  14. Development of the Earth's early crust: Implications from the Beartooth Mountains

    NASA Technical Reports Server (NTRS)

    Mueller, P. A.; Wooden, J. L.; Henry, D. J.; Mogk, D. W.

    1983-01-01

    The Beartooth Mountains of Montana and Wyoming are one of several major uplifts of Precambrian rocks in the northwestern of the Wyoming Province. The range is composed of a wide variety of rock types which record a complex geologic history that extends from early ( 3400 Ma) to late (approx 700 Ma) Precambrian time. The Archean geology of the range is complex and many areas remain unstudied in detail. In this discussion two areas are discussed for which there is considerable structural, geochemical and petrologic information. The easternmost portion of the range (EBT) and the northwesternmost portion, the North Snowy Block (NSB), contain rather extensive records of both early and late Archean geologic activity. These data are used to constrain a petrologic tectonic model for the development of continental crust in this area.

  15. Comparative Investigation of the Geological Histories Among Alba Patera and Syria Planum, Mars

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Dohm, J. M.; Haldemann, A. F. C.; Hare, T.

    2002-01-01

    To better understand the evolution of the Tharsis magmatic complex, we performed a comparative investigation of the geological histories among two of the largest centers observed for Tharsis, Syria Planum and Alba Patera. Additional information is contained in the original extended abstract.

  16. Venus geology and tectonics - Hotspot and crustal spreading models and questions for the Magellan mission

    NASA Technical Reports Server (NTRS)

    Head, James W.; Crumpler, L. S.

    1990-01-01

    Spacecraft and ground-based observations of Venus have revealed a geologically young and active surface - with volcanoes, rift zones, orogenic belts and evidence for hotspots and crustal spreading - yet the processes responsible for these features cannot be identified from the available data. The Magellan spacecraft will acquire an unprecedented global data set which will provide a comprehensive and well resolved view of the planet. This will permit global geological mapping, an assessment of the style and relative importance of geological processes, and will help in the understanding of links between the surface geology and mantle dynamics of this earth-like planet.

  17. The role of climatic and geological events in generating diversity in Ethiopian grass frogs (genus Ptychadena).

    PubMed

    Smith, Megan L; Noonan, Brice P; Colston, Timothy J

    2017-08-01

    Ethiopia is a world biodiversity hotspot and harbours levels of biotic endemism unmatched in the Horn of Africa, largely due to topographic-and thus habitat-complexity, which results from a very active geological and climatic history. Among Ethiopian vertebrate fauna, amphibians harbour the highest levels of endemism, making amphibians a compelling system for the exploration of the impacts of Ethiopia's complex abiotic history on biotic diversification. Grass frogs of the genus Ptychadena are notably diverse in Ethiopia, where they have undergone an evolutionary radiation. We used molecular data and expanded taxon sampling to test for cryptic diversity and to explore diversification patterns in both the highland radiation and two widespread lowland Ptychadena . Species delimitation results support the presence of nine highland species and four lowland species in our dataset, and divergence dating suggests that both geologic events and climatic fluctuations played a complex and confounded role in the diversification of Ptychadena in Ethiopia. We rectify the taxonomy of the endemic P. neumanni species complex, elevating one formally synonymized name and describing three novel taxa. Finally, we describe two novel lowland Ptychadena species that occur in Ethiopia and may be more broadly distributed.

  18. Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting

    NASA Astrophysics Data System (ADS)

    Boettcher, Steven; Merz, Christoph; Lischeid, Gunnar

    2015-04-01

    The water budget of many catchments has vastly changed throughout the last decades. Intensified land use and increased water withdrawal for drinking water production and irrigation are likely to intensify pressure on water resources. According to model predictions, changing rainfall intensity, duration and spatial distribution in conjunction with increasing temperatures will worsen the situation in the future. The current water resources management has to adapt to these negative developments and to account for competing demands and threats. Essential for successful management applications is the identification and the quantification of the cause-and-effect chains driving the hydrological behavior of a catchment on the scale of management. It needs to check direction and magnitude of intended effects of measures taken as well as to identify unintended side effects that interact with natural effects in heterogeneous environments (Wood et al., 1988; Bloschl and Sivapalan, 1995). Therefore, these tools have to be able to distinguish between natural and anthropogenic driven impacts, even in complex geological settings like the Pleistocene landscape of North-East Germany. This study presents an approach that utilizes monitoring data to detect and quantitatively describe the predominant processes or factors of an observed hydrological system. The multivariate data analysis involves a non-linear dimension reduction method called Isometric Feature Mapping (Isomap, Tenenbaum et al., 2000) to extract information about the causes for the observed dynamics. Ordination methods like Isomap are used to derive a meaningful low-dimensional representation of a complex, high-dimensional data set. The approach is based on the hypothesis, that the number of processes which explain the variance of the data is relative low although the intensity of the processes varies in time and space. Therefore, the results can be interpreted in reference to the effective hydrological processes which control the system. The method was applied on a data set of groundwater head and lake water level. Two factors explaining more than 95 percent of the observed spatial variations were identified: (1) the anthropogenic impact of a waterworks in the study area and (2) natural groundwater recharge dynamics of different degrees of dampening at the respective sites of observation. The spatial variation of the identified processes revealed previously unknown hydraulic connections between two aquifers and between surface water bodies and groundwater. The obtained information can be used to reduce model structure uncertainty and a more efficient process-based modeling of hydraulic system behavior. Thus, the approach provides essential information to evaluate and adapt strategies for an integrated water resources management in complex landscapes. Bloschl, G., Sivapalan, M., 1995. Scale Issues in Hydrological Modeling - a Review. Hydrological Processes, 9(3-4): 251-290. Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290: 2319-2323. Wood, E.F., Sivapalan, M., Beven, K., Band, L., 1988. Effects of Spatial Variability and Scale with Implications to Hydrologic Modeling. Journal of Hydrology, 102(1-4): 29-47.

  19. Illuminating Asset Value through New Seismic Technology

    NASA Astrophysics Data System (ADS)

    Brandsberg-Dahl, S.

    2007-05-01

    The ability to reduce risk and uncertainty across the full life cycle of an asset is directly correlated to creating an accurate subsurface image that enhances our understanding of the geology. This presentation focuses on this objective in areas of complex overburden in deepwater. Marine 3D seismic surveys have been acquired in essentially the same way for the past decade. This configuration of towed streamer acquisition, where the boat acquires data in one azimuth has been very effective in imaging areas in fairly benign geologic settings. As the industry has moved into more complicated geologic settings these surveys no longer meet the imaging objectives for risk reduction in exploration through production. In shallow water, we have seen increasing use of ocean bottom cables to meet this challenge. For deepwater, new breakthroughs in technology were required. This will be highlighted through examples of imaging below large salt bodies in the deep water Gulf of Mexico. GoM - Mad Dog: The Mad Dog field is located approximately 140 miles south of the Louisiana coastline in the southern Green Canyon area in water depths between 4100 feet to 6000 feet. The complex salt canopy overlying a large portion of the field results in generally poor seismic data quality. Advanced processing techniques improved the image, but gaps still remained even after several years of effort. We concluded that wide azimuth acquisition was required to illuminate the field in a new way. Results from the Wide Azimuth Towed Streamer (WATS) survey deployed at Mad Dog demonstrated the anticipated improvement in the subsalt image. GoM - Atlantis Field: An alternative approach to wide azimuth acquisition, ocean bottom seismic (OBS) node technology, was developed and tested. In 2001 deepwater practical experience was limited to a few nodes owned by academic institutions and there were no commercial solutions either available or in development. BP embarked on a program of sea trials designed to both evaluate technologies and subsequently encourage vendor activity to develop and deploy a commercial system. The 3D seismic method exploded into general usage in the 1990's. Our industry delivered 3D cheaper and faster, improving quality through improved acquisition specifications and new processing technology. The need to mitigate business risks in highly material subsalt plays led BP to explore the technical limits of the seismic method, testing novel acquisition techniques to improve illumination and signal to noise ratio. These were successful and are applicable to analogue seismic quality problems globally providing breakthroughs in illuminating previously hidden geology and hydrocarbon reservoirs. A focused business challenge, smart risk taking, investment in people and computing capability, partnerships, and rapid implementation are key themes that will be touched on through out the talk.

  20. Neural network analysis for geological interpretation of tomographic images beneath the Japan Islands

    NASA Astrophysics Data System (ADS)

    Kuwatani, T.; Toriumi, M.

    2009-12-01

    Recent advances in methodologies of geophysical observations, such as seismic tomography, seismic reflection method and geomagnetic method, provide us a large amount and a wide variety of data for physical properties of a crust and upper mantle (e.g. Matsubara et al. (2008)). However, it has still been difficult to specify a rock type and its physical conditions, mainly because (1) available data usually have a lot of error and uncertainty, and (2) physical properties of rocks are greatly affected by fluid and microstructures. The objective interpretation and quantitative evaluation for lithology and fluid-related structure require the statistical analyses of integrated geophysical and geological data. Self-Organizing Maps (SOMs) are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data (Kohonen 2001). SOMs are powerful neural network techniques to classify and interpret multiattribute data sets. Results of SOM classifications can be represented as 2D images, called feature maps which illustrate the complexity and interrelationships among input data sets. Recently, some works have used SOM in order to interpret multidimensional, non-linear, and highly noised geophysical data for purposes of geological prediction (e.g. Klose 2006; Tselentis et al. 2007; Bauer et al. 2008). This paper describes the application of SOM to the 3D velocity structure beneath the whole Japan islands (e.g. Matsubara et al. 2008). From the obtained feature maps, we can specify the lithology and qualitatively evaluate the effect of fluid-related structures. Moreover, re-projection of feature maps onto the 3D velocity structures resulted in detailed images of the structures within the plates. The Pacific plate and the Philippine Sea plate subducting beneath the Eurasian plate can be imaged more clearly than the original P- and S-wave velocity structures. In order to understand more precise prediction of lithology and its structure, we will use the additional input data sets, such as tomographic images of random velocity fluctuation (Takahashi et al. 2009) and b-value mapping data. Additionally, different kinds of data sets, including the experimental and petrological results (e.g. Christensen 1991; Hacker et al. 2003) can be applied to our analyses.

  1. Application of remote sensing to the photogeologic mapping of the region of the Itatiaia alkaline complex. M.S. Thesis; [Minas Gerais, Rio De Janeiro, Sao Paulo, and Itatiaia, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.

    1981-01-01

    Remote sensing methods applied to geologically complex areas, through interaction of ground truth and information obtained from multispectral LANDSAT images and radar mosaics were evaluated. The test area covers parts of Minos Gerais, Rio De Janeiro and Sao Paulo states and contains the alkaline complex of Itatiaia and surrounding Precambrian terrains. Geological and structural mapping was satisfactory; however, lithological varieties which form the massif's could not be identified. Photogeological lineaments were mapped, some of which represent the boundaries of stratigraphic units. Automatic processing was used to classify sedimentary areas, which includes the talus deposits of the alkaline massifs.

  2. Summary of the geology and physical properties of the Climax Stock, Nevada Test Site

    USGS Publications Warehouse

    Maldonado, Florian

    1977-01-01

    The Climax stock is a composite stock of Cretaceous age, composed of quartz monzonite and granodiorite, which intrudes sedimentary rocks of Paleozoic and Precambrian age. Tertiary rocks consisting of tuff, welded tuff, and breccia overlie the stock and sedimentary rocks. Hydrothermal alteration of the granodiorite and quartz monzonite is found mainly along the joints and is extensive, but the intensity of alteration varies from place to place. The surrounding sedimentary rocks (carbonates) have been metasomatically altered to tactite and marble as much as 1,500 feet (457 m) from contact with stock; the degree of metamorphism decreasing away from the intrusive. The major faults found in the vicinity of the Climax stock are the Tippinip fault, the Boundary fault, and the Yucca fault. In the stock three prominent joint sets and their average attitudes are N. 32? W., 22? NE.; N 64? W., vertical; and N 35? E., vertical. Two major tunnel complexes have been driven into the Climax stock?the Tiny Tot tunnel complex and Pile Driver-Hard Hat tunnel complex. In the Pile Driver-Hard Hat complex two underground nuclear tests have been conducted.

  3. [The application of spectral geological profile in the alteration mapping].

    PubMed

    Li, Qing-Ting; Lin, Qi-Zhong; Zhang, Bing; Lu, Lin-Lin

    2012-07-01

    Geological section can help validating and understanding of the alteration information which is extracted from remote sensing images. In the paper, the concept of spectral geological profile was introduced based on the principle of geological section and the method of spectral information extraction. The spectral profile can realize the storage and vision of spectra along the geological profile, but the spectral geological spectral profile includes more information besides the information of spectral profile. The main object of spectral geological spectral profile is to obtain the distribution of alteration types and content of minerals along the profile which can be extracted from spectra measured by field spectrometer, especially for the spatial distribution and mode of alteration association. Technical method and work flow of alteration information extraction was studied for the spectral geological profile. The spectral geological profile was set up using the ground reflectance spectra and the alteration information was extracted from the remote sensing image with the help of typical spectra geological profile. At last the meaning and effect of the spectral geological profile was discussed.

  4. Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California

    USGS Publications Warehouse

    Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.

    2008-01-01

    A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.

  5. Geological evolution of the Pietersburg greenstonebelt, South Africa and associated gold mineralization

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Dewit, M. J.

    1986-01-01

    The polyphase history of gold mineralization seen in the Pietersburg greenstone belt is integrated with the geochemical and tectonic evolution of greenstone belts as a whole. The four distinct regional geological settings of gold mineralization are described.

  6. U.S. Geological Survey Groundwater Modeling Software: Making Sense of a Complex Natural Resource

    USGS Publications Warehouse

    Provost, Alden M.; Reilly, Thomas E.; Harbaugh, Arlen W.; Pollock, David W.

    2009-01-01

    Computer models of groundwater systems simulate the flow of groundwater, including water levels, and the transport of chemical constituents and thermal energy. Groundwater models afford hydrologists a framework on which to organize their knowledge and understanding of groundwater systems, and they provide insights water-resources managers need to plan effectively for future water demands. Building on decades of experience, the U.S. Geological Survey (USGS) continues to lead in the development and application of computer software that allows groundwater models to address scientific and management questions of increasing complexity.

  7. Using multifractal modeling as a standard tool in geochemical exploration for predicting mineralized areas

    NASA Astrophysics Data System (ADS)

    Gonçalves, Mario A.

    2015-04-01

    It has been 20 years since the pioneering work of Cheng et al (1994) first proposed a quantitative relationship for the areas enclosing concentration values of an element above given thresholds and their distribution in the field, known as concentration-area (CA) method, which is based in multifractal theory. The method allows the definition of geochemical anomalies in wide set of geological backgrounds but it took nearly 15 years before it became a widely used methodology for mineral exploration. The method was also extended to 1D and 3D data sets. It is worth noting the variety of methods that spanned from the theory of fractals. Building on previous models, including multiplicative cascades and size-grade relationships, increasing evidence points to the powerful tools of fractal theory to describe and model ore deposit distribution and formation. However, while much of these approaches become complex and not easy to use, the CA method is remarkable for its utter simplicity and disarming results obtained when confronted with the geological reality in the field. This is most valued by companies and professionals undertaking geochemical exploration surveys for the characterization or refining of potential ore targets or known mineralized areas. Several approaches have combined the CA method with geostatistic modeling and simulation and other established statistical techniques in order to enhance anomalous threshold identification. Examples are not restricted to geochemical exploration alone, other applications being studies on environmental change. Some of these examples will be addressed as they have been applied to different regions in the world, but particular emphasis will be put on geochemical exploration surveys in different geotectonic units of the Variscan basement in the Iberian Peninsula. These include quartz-vein gold mineralization in Northern Portugal and several surveys for base metals over two wide areas, which served to re-evaluate much of the scattered geochemical data sets that have been accumulating for decades of mining exploration in Southern Portugal. The studied zones include: the tectonic controlled quartz-vein Au-Sb mineralizations, the gabbroic and ultramafic complex of the southern border of the Ossa-Morena Zone, and the rocks belonging to the World-class massive sulfide province, the Iberian Pyrite Belt (IPB). The methodology used the CA method but also variogram analysis and modelling to outline and classify different sets of mineral deposits before confirmation in the field. This diversity of geologic contexts serves to show how effective and powerful the CA method can be, since it not only enhances already known mineralizations, it allowed the screening and identification of several new mineralized spots that have been previously overlooked. This has been of particularly economic importance because a major re-analysis of data and new exploration campaigns are currently under way for the next years in the IPB, with the potential for opening a new paradigm in the exploration for massive sulfide deposits in the region. Cheng et al, 1994, J. Geochem. Explor., 51, 109.

  8. Publications - RI 97-14A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Complex; Mystic Terrane; Ordovician; Ores; Paleocurrent; Paleoenvironment; Paleontology; Paleozoic; Peat ; Tertiary; Triassic; Turbidites; Veleska Lake Volcanic Complex; Volcanic; Yukon-Tanana Terrane Top of Page

  9. Geology and Nonfuel Mineral Deposits of Africa and the Middle East

    USGS Publications Warehouse

    Taylor, Cliff D.; Schulz, Klaus J.; Doebrich, Jeff L.; Orris, Greta; Denning, Paul; Kirschbaum, Michael J.

    2009-01-01

    A nation's endowment of nonfuel mineral resources, relative to the world's endowment, is a fundamental consideration in decisions related to a nation's economic and environmental well being and security. Knowledge of the worldwide abundance, distribution, and general geologic setting of mineral commodities provides a framework within which a nation can make decisions about economic development of its own resources, and the economic and environmental consequences of those decisions, in a global perspective. The information in this report is part of a U.S. Geological Survey (USGS) endeavor to evaluate the global endowment of both identified and undiscovered nonfuel mineral resources. The results will delineate areas of the world that are geologically permissive for the occurrence of undiscovered selected nonfuel mineral resources together with estimates of the quantity and quality of the resources. The results will be published as a series of regional reports; this one provides basic data on the identified resources and geologic setting, together with a brief appraisal of the potential for undiscovered mineral resources in Africa and the Middle East. Additional information, such as production statistics, economic factors that affect the mineral industries of the region, and historical information, is available in U.S. Geological Survey publications such as the Minerals Yearbook and the annual Mineral Commodity Summaries (available at http://minerals.usgs.gov/minerals).

  10. Osmotic generation of 'anomalous' fluid pressures in geological environments

    USGS Publications Warehouse

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  11. A geologic analysis of the Side-Looking Airborne Radar imagery of southern New England

    USGS Publications Warehouse

    Banks, Paul T.

    1975-01-01

    Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.

  12. Geologic map of the Metis Mons quadrangle (V–6), Venus

    USGS Publications Warehouse

    Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.

    2011-01-01

    The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to be the most youthful materials in the map region.

  13. Environmental setting of the upper Illinois River basin and implications for water quality

    USGS Publications Warehouse

    Arnold, Terri L.; Sullivan, Daniel J.; Harris, Mitchell A.; Fitzpatrick, Faith A.; Scudder, Barbara C.; Ruhl, Peter M.; Hanchar, Dorothea W.; Stewart, Jana S.

    1999-01-01

    The upper Illinois River Basin (UIRB) is the 10,949 square mile drainage area upstream from Ottawa, Illinois, on the Illinois River. The UIRB is one of 13 studies that began in 1996 as part of the U.S. Geological Survey?s National Water- Quality Assessment program. A compilation of environmental data from Federal, State, and local agencies provides a description of the environmental setting of the UIRB. Environmental data include natural factors such as bedrock geology, physiography and surficial geology, soils, vegetation, climate, and ecoregions; and human factors such as land use, urbanization trends, and population change. Characterization of the environmental setting is useful for understanding the physical, chemical, and biological characteristics of surface and ground water in the UIRB and the possible implications of that environmental setting for water quality. Some of the possible implications identified include depletion of dissolved oxygen because of high concentrations of organic matter in wastewater, increased flooding because of suburbanization, elevated arsenic concentrations in ground water because of weathering of shale bedrock, and decreasing ground-water levels because of heavy pumping of water from the bedrock aquifers.

  14. TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.

    USGS Publications Warehouse

    Varnes, David J.; Keaton, Jeffrey R.

    1983-01-01

    Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.

  15. The Ultramafic Complex of Reinfjord: from the Magnetic Petrology to the Interpretation of the Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.

    2017-04-01

    A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local effects of serpentinization.

  16. Tectono-stratigraphy and low-grade metamorphism of Late Permian and Early Jurassic accretionary complexes within the Kurosegawa belt, Southwest Japan: Implications for mechanisms of crustal displacement within active continental margin

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kurihara, Toshiyuki; Mori, Hiroshi

    2013-04-01

    We characterize the tectono-stratigraphic architecture and low-grade metamorphism of the accretionary complex preserved in the Kurosegawa belt of the Kitagawa district in eastern Shikoku, Southwest Japan, in order to understand its internal structure, tectono-metamorphic evolution, and assessments of displacement of continental fragments within the complex. We report the first ever documented occurrence of an Early Jurassic radiolarian assemblage within the accretionary complex of the Kurosegawa belt that has been previously classified as the Late Permian accretionary complex, thus providing a revised age interpretation for these rocks. The accretionary complex is subdivided into four distinct tectono-stratigraphic units: Late Permian mélange and phyllite units, and Early Jurassic mélange and sandstone units. The stratigraphy of these four units is structurally repeated due to an E-W striking, steeply dipping regional fault. We characterized low-grade metamorphism of the accretionary complex via illite crystallinity and Raman spectroscopy of carbonaceous material. The estimated pattern of low-grade metamorphism showed pronounced variability within the complex and revealed no discernible spatial trends. The primary thermal structure in these rocks was overprinted by later tectonic events. Based on geological and thermal structure, we conclude that continental fragments within the Kurosegawa belt were structurally translated into both the Late Permian and Early Jurassic accretionary complexes, which comprise a highly deformed zone affected by strike-slip tectonics during the Early Cretaceous. Different models have been proposed to explain the initial structural evolution of the Kurosegawa belt (i.e., micro-continent collision and klippe tectonic models). Even if we presuppose either model, the available geological evidence requires a new interpretation, whereby primary geological structures are overprinted and reconfigured by later tectonic events.

  17. Aeromagnetic Survey in Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.

    2007-01-01

    Afghanistan's geologic setting indicates significant natural resource potential While important mineral deposits and petroleum resources have been identified, much of the country's potential remains unknown. Airborne geophysical surveys are a well accepted and cost effective method for obtaining information of the geological setting of an area without the need to be physically located on the ground. Due to the security situation and the large areas of the country of Afghanistan that has not been covered with geophysical exploration methods a regional airborne geophysical survey was proposed. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan.

  18. Hot as You Like It: Models of the Long-term Temperature History of Earth Under Different Geological Assumptions

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S.; Sheldon, N. D.

    2012-12-01

    The long-term temperature history of the Earth is a subject of continued, vigorous debate. Past models of the climate of early Earth that utilize paleosol contraints on carbon dioxide struggle to maintain temperatures significantly greater than 0°C. In these models, the incoming stellar radiation is much lower than today, consistent with an expectation that the Sun was significantly fainter at that time. In contrast to these models, many proxies for ancient temperatures suggest much warmer conditions. The surface of the planet seems to have been generally free of glaciers throughout this period, other than a brief glaciation at ~2.9 billion years ago and extensive glaciation at ~2.4 billion years ago. Such glacier-free conditions suggest mean surface temperatures greater than 15°C. Measurements of oxygen isotopes in phosphates are consistent with temperatures in the range of 20-30°C; and similar measurements in cherts suggest temperatures over 50°C. This sets up a paradox. Models constrained by one set of geological proxies cannot reproduce the warm temperatures consistent with another set of geological proxies. In this presentation, we explore several potential resolutions to this paradox. First, we model the early Earth under modern-day conditions, but with the lower solar luminosity expected at the time. The next simulation allows carbon dioxide concentrations to increase up to the limits provided by paleosol constraints. Next, we lower the planet's surface albedo in a manner consistent with greater ocean coverage prior to the complete growth of continents. Finally, we remove all constraints on carbon dioxide and attempt to maximize surface temperatures without any geological constraints on model parameters. This set of experiments will allow us to set up potential resolutions to the paradox, and to drive a conversation on which solutions are capable of incorporating the greatest number of geological and geochemical constraints.

  19. Thermal-Hydraulic-Mechanical (THM) Coupled Simulation of a Generic Site for Disposal of High Level Nuclear Waste in Claystone in Germany: Exemplary Proof of the Integrity of the Geological Barrier

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Ziefle, G.; Jobmann, M.

    2016-12-01

    Claystone is investigated as a potential host rock for the disposal of high level nuclear waste (HLW). In Germany, DBE TECHNOLOGY GmbH, the BGR and the "Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)" are developing an integrated methodology for safety assessment within the R&D project "ANSICHT". One part herein is the demonstration of integrity of the geological barrier to ensure safe containment of radionuclides over 1 million years. The mechanical excavation of an underground repository, the ex­po­si­tion of claystone to at­mos­pheric air, the insertion of backfill, buffer, sealing and supporting material as well as the deposition of heat producing waste constitute a sig­nif­i­cant disturbance of the underground system. A complex interacting scheme of thermal, hydraulic and mechanical (THM) processes can be expected. In this work, the finite element software OpenGeoSys, main­ly de­vel­oped at the "Helmholtz Centre for Environmental Research GmbH (UFZ)", is used to simulate and evaluate several THM coupled effects in the repository surroundings up to the surface over a time span of 1 million years. The numerical setup is based on two generic geological models inspired by the representative geology of potentially suitable regions in North- and South Germany. The results give an insight into the evolution of temperature, pore pressure, stresses as well as deformation and enables statements concerning the extent of the significantly influenced area. One important effect among others is the temperature driven change in the densities of the solid and liquid phase and its influence on the stress field. In a further step, integrity criteria have been quantified, based on specifications of the German federal ministry of the environment. The exemplary numerical evaluation of these criteria demonstrates, how numerical simulations can be used to prove the integrity of the geological barrier and detect potential vulnerabilities. Fig.: Calculated zone of increased temperature (blue bubble) around a generic repository of HLW in a representative geological setting, 1000 years after emplacement of HLW

  20. Chapter E. The Loma Prieta, California, Earthquake of October 17, 1989 - Geologic Setting and Crustal Structure

    USGS Publications Warehouse

    Wells, Ray E.

    2004-01-01

    Although some scientists considered the Ms=7.1 Loma Prieta, Calif., earthquake of 1989 to be an anticipated event, some aspects of the earthquake were surprising. It occurred 17 km beneath the Santa Cruz Mountains along a left-stepping restraining bend in the San Andreas fault system. Rupture on the southwest-dipping fault plane consisted of subequal amounts of right-lateral and reverse motion but did not reach the surface. In the area of maximum uplift, severe shaking and numerous ground cracks occurred along Summit Road and Skyland Ridge, several kilometers south of the main trace of the San Andreas fault. The relatively deep focus of the earthquake, the distribution of ground failure, the absence of throughgoing surface rupture on the San Andreas fault, and the large component of uplift raised several questions about the relation of the 1989 Loma Prieta earthquake to the San Andreas fault: Did the earthquake actually occur on the San Andreas fault? Where exactly is the San Andreas fault in the heavily forested Santa Cruz Mountains, and how does the fault relate to ground ruptures that occurred there in 1989 and 1906? What is the geometry of the San Andreas fault system at depth, and how does it relate to the major crustal blocks identified by geologic mapping? Subsequent geophysical and geologic investigations of crustal structure in the Loma Prieta region have addressed these and other questions about the relation of the earthquake to geologic structures observed in the southern Santa Cruz Mountains. The diverse papers in this chapter cover several topics: geologic mapping of the region, potential- field and electromagnetic modeling of crustal structure, and the velocity structure of the crust and mantle in and below the source region for the earthquake. Although these papers were mostly completed between 1992 and 1997, they provide critical documentation of the crustal structure of the Loma Prieta region. Together, they present a remarkably coherent, three-dimensional picture of the earthquake source region--a geologically complex volume of crust with a long history of both right-lateral faulting and fault-normal compression, thrusting, and uplift.

  1. Mantle dynamics in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Faccenna, Claudio; Becker, Thorsten W.

    2016-04-01

    The Mediterranean offers a unique avenue to study the driving forces of tectonic deformation within a complex mobile belt. Lithospheric dynamics are affected by slab rollback and collision of two large, slowly moving plates, forcing fragments of continental and oceanic lithosphere to interact. Here, we review the rich and growing set of constraints from geological reconstructions, geodetic data, and crustal and upper mantle heterogeneity imaged by structural seismology. We discuss a conceptual and quantitative framework for the causes of surface deformations. Exploring existing and newly developed tectonic and numerical geodynamic models, we illustrate the role of mantle convection on surface geology. A coherent picture emerges which can be outlined by two, almost symmetric, upper mantle convection cells. The down-wellings are found in the centre of the Mediterranean, and are associated with the descent of the Tyrrhenian and the Hellenic slabs. During plate convergence, these slabs migrated, driving return flow of the asthenosphere from the backarc regions. These currents can be found at large distance from the subduction zones, and are at present expressed in two upwellings beneath Anatolia and eastern Iberia. This convection system provides an explanation for the general pattern of seismic anisotropy in the Mediterranean, the first-order Anatolia and Adria microplate kinematics, and the positive dynamic topography of Anatolia and Eastern Iberia. More generally, it is an illustration of upper mantle, small-scale convection leading to intraplate deformation and complex plate boundary reconfiguration at the westernmost terminus of the Tethyan collision.

  2. Parametrization study of the land multiparameter VTI elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    He, W.; Plessix, R.-É.; Singh, S.

    2018-06-01

    Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.

  3. Seafloor geology and benthic habitats, San Pedro Shelf, southern California

    USGS Publications Warehouse

    Wong, Florence L.; Dartnell, Peter; Edwards, Brian D.; Phillips, Eleyne L.

    2012-01-01

    Seafloor samples, videography, still photography, and real-time descriptions of geologic and biologic constituents at or near the seafloor of the San Pedro Shelf, southern California, advance the study of natural and man-made processes on this coastal area off the metropolitan Los Angeles area. Multibeam echo-sounder data collected by the U.S. Geological Survey in 1998 and 1999 guided sampling and camera work in 2004 resulting in a new seafloor character map that shows possible benthic habitats in much higher resolution (4- and 16-m pixels) than previously available. The seafloor is characterized by primarily muddy sand and sand with outcrops of Miocene and Pliocene bedrock along the Palos Verdes Fault Zone. Observed benthic populations indicate low abiotic complexity, low biotic complexity, and low biotic coverage. The data are provided for use in geographic information systems (GIS).

  4. Complex Geologic History of Triton

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Part of the complex geologic history of icy Triton, Neptune's largest satellite, is shown in this Voyager 2 photo, which has a resolution of 900 meters (2,700 feet) per picture element. The photo was received as part of a Triton-mapping sequence between 3:30 and 5:30 a.m. (PDT). This view is about 500 kilometers (300 miles) across. It encompasses two depressions, possibly old impact basins, that have been extensively modified by flooding, melting, faulting, and collapse. Several episodes of filling and partial removal of material appear to have occurred. The rough area in the middle of the bottom depression probably marks the most recent eruption of material. Only a few impact craters dot the area, which shows the dominance of internally driven geologic processes on Triton.

    JPL manages the Voyager project for NASA's Office of Space Science.

  5. Airborne remote sensing for geology and the environment; present and future

    USGS Publications Warehouse

    Watson, Ken; Knepper, Daniel H.

    1994-01-01

    In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada (Radarsat), and the United States (EOS). There are currently two national airborne remote sensing programs (photography, radar) with data archived at the USGS' EROS Data Center. Airborne broadband multispectral data (comparable to Landsat MSS and TM but involving several more channels) for limited geographic areas also are available for digital processing and analysis. Narrow-band imaging spectrometer data are available for some NASA experiment sites and can be acquired for other locations commercially. Remote sensing data and derivative images, because of the uniform spatial coverage, availability at different resolutions, and digital format, are becoming important data sets for geographic information system (GIS) analyses. Examples range from overlaying digitized geologic maps on remote sensing images and draping these over topography, to maps of mineral distribution and inferred abundance. A large variety of remote sensing data sets are available, with costs ranging from a few dollars per square mile for satellite digital data to a few hundred dollars per square mile for airborne imaging spectrometry. Computer processing and analysis costs routinely surpass these expenses because of the equipment and expertise necessary for information extraction and interpretation. Effective use requires both an understanding of the current methodology and an appreciation of the most cost-effective solution.

  6. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  7. Granitoids of the Ufalei block (South Urals): Sr-Nd isotope systematics, geodynamic position and genetic reconstructions

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Shardakova, G. Yu.; Maslov, A. V.; Shagalov, E. S.; Lepikhina, O. P.

    2009-04-01

    Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ɛNd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex geological history of the region coupling the Uralian Orogen with the East European Platform in the present-day structure.

  8. Triassic structural and stratigraphic evolution of the Central German North Sea sector

    NASA Astrophysics Data System (ADS)

    Wolf, Marco; Jähne-Klingberg, Fabian

    2017-04-01

    The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures along the major Upper Jurassic to Lower Cretaceous unconformity, which are related to erosion of Triassic evaporitic formations, will be shown.

  9. Scoresum - A technique for displaying and evaluating multi-element geochemical information, with examples of its use in regional mineral assessment programs

    USGS Publications Warehouse

    Chaffee, M.A.

    1983-01-01

    A technique called SCORESUM was developed to display a maximum of multi-element geochemical information on a minimum number of maps for mineral assessment purposes. The technique can be done manually for a small analytical data set or can be done with a computer for a large data set. SCORESUM can be used with highly censored data and can also weight samples so as to minimize the chemical differences of diverse lithologies in different parts of a given study area. The full range of reported analyses for each element of interest in a data set is divided into four categories. Anomaly scores - values of O (background), 1 (weakly anomalous), 2 (moderately anomalous), and 3 (strongly anomalous) - are substituted for all of the analyses falling into each of the four categories. A group of elements based on known or suspected association in altered or mineralized areas is selected for study and the anomaly scores for these elements are summed for each sample site and then plotted on a map. Some of the results of geochemical studies conducted for mineral assessments in two areas are briefly described. The first area, the Mokelumne Wilderness and vicinity, is a relatively small and geologically simple one. The second, the Walker Lake 1?? ?? 2?? quadrangle, is a large area that has extremely complex geology and that contains a number of different mineral deposit environments. These two studies provide examples of how the SCORESUM technique has been used (1) to enhance relatively small but anomalous areas and (2) to delineate and rank areas containing geochemical signatures for specific suites of elements related to certain types of alteration or mineralization. ?? 1983.

  10. Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huftile, G.J.

    1991-08-01

    By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field andmore » 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.« less

  11. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    NASA Technical Reports Server (NTRS)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  12. Geologic Map of the Point Lay Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2008-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  13. Geologic Map of the Ikpikpuk River Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2005-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  14. Geologic Map of the Lookout Ridge Quadrangle, Alaska

    USGS Publications Warehouse

    Mull, Charles G.; Houseknecht, David W.; Pessel, G.H.; Garrity, Christopher P.

    2006-01-01

    This map is a product of the USGS Digital Geologic Maps of Northern Alaska project, which captures in digital format quadrangles across the entire width of northern Alaska. Sources include geologic maps previously published in hardcopy format and recent updates and revisions based on field mapping by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys and Division of Oil and Gas, and the U.S. Geological Survey. Individual quadrangles are digitized at either 1:125,000 or 1:250,000 depending on the resolution of source maps. The project objective is to produce a set of digital geologic maps with uniform stratigraphic nomenclature and structural annotation, and publish those maps electronically. The paper version of this map is available for purchase from the USGS Store.

  15. Field camp: Using traditional methods to train the next generation of petroleum geologists

    USGS Publications Warehouse

    Puckette, J.O.; Suneson, N.H.

    2009-01-01

    The summer field camp experience provides many students with their best opportunity to learn the scientific process by making observations and collecting, recording, evaluating, and interpreting geologic data. Field school projects enhance student professional development by requiring cooperation and interpersonal interaction, report writing to communicate interpretations, and the development of project management skills to achieve a common goal. The field school setting provides students with the opportunity to observe geologic features and their spatial distribution, size, and shape that will impact the student's future careers as geoscientists. The Les Huston Geology Field Camp (a.k.a. Oklahoma Geology Camp) near Ca??on City, Colorado, focuses on time-tested traditional methods of geological mapping and fieldwork to accomplish these goals. The curriculum consists of an introduction to field techniques (pacing, orienteering, measuring strike and dip, and using a Jacob's staff), sketching outcrops, section measuring (one illustrating facies changes), three mapping exercises (of increasing complexity), and a field geophysics project. Accurate rock and contact descriptions are emphasized, and attitudes and contacts are mapped in the field. Mapping is done on topographic maps at 1:12,000 and 1:6000 scales; air photos are provided. Global positioning system (GPS)-assisted mapping is allowed, but we insist that locations be recorded in the field and confirmed using visual observations. The course includes field trips to the Cripple Creek and Leadville mining districts, Floris-sant/Guffey volcano area, Pikes Peak batholith, and the Denver Basin. Each field trip is designed to emphasize aspects of geology that are not stressed in the field exercises. Students are strongly encouraged to accurately describe geologic features and gather evidence to support their interpretations of the geologic history. Concise reports are a part of each major exercise. Students are grouped into teams to (1) introduce the team concept and develop interpersonal skills that are fundamental components of many professions, (2) ensure safety, and (3) mix students with varying academic backgrounds and physical strengths. This approach has advantages and disadvantages. Students with academic strengths in specific areas assist those with less experience, thereby becoming engaged in the teaching process. However, some students contribute less to fi nal map projects than others, and assigning grades to individual team members can be diffi cult. The greatest challenges we face involve group dynamics and student personalities. We continue to believe that traditional fi eld methods, aided by (but not relying upon) new technologies, are the key to constructing and/or interpreting geologic maps. The requirement that students document fi eld evidence using careful observations teaches skills that will be benefi cial throughout their professional careers. ??2009 The Geological Society of America. All rights reserved.

  16. Large Area Scene Selection Interface (LASSI). Methodology of Selecting Landsat Imagery for the Global Land Survey 2005

    NASA Technical Reports Server (NTRS)

    Franks, Shannon; Masek, Jeffrey G.; Headley, Rachel M.; Gasch, John; Arvidson, Terry

    2009-01-01

    The Global Land Survey (GLS) 2005 is a cloud-free, orthorectified collection of Landsat imagery acquired during the 2004-2007 epoch intended to support global land-cover and ecological monitoring. Due to the numerous complexities in selecting imagery for the GLS2005, NASA and the U.S. Geological Survey (USGS) sponsored the development of an automated scene selection tool, the Large Area Scene Selection Interface (LASSI), to aid in the selection of imagery for this data set. This innovative approach to scene selection applied a user-defined weighting system to various scene parameters: image cloud cover, image vegetation greenness, choice of sensor, and the ability of the Landsat 7 Scan Line Corrector (SLC)-off pair to completely fill image gaps, among others. The parameters considered in scene selection were weighted according to their relative importance to the data set, along with the algorithm's sensitivity to that weight. This paper describes the methodology and analysis that established the parameter weighting strategy, as well as the post-screening processes used in selecting the optimal data set for GLS2005.

  17. New Horizons Successful Completes the Historic First Flyby of Pluto and Its Moons

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly

    2015-01-01

    On July 14, 2015, after a 9.5 year trek across the solar system, NASA's New Horizons spacecraft flew by the dwarf planet Pluto and its system of moons, taking imagery, spectra and in-situ particle data. Data from New Horizons will address numerous outstanding questions on the geology and composition of Pluto and Charon, plus measurements of Pluto's atmosphere, and provide revised understanding of the formation and evolution of Pluto and Charon and its smaller moons. This data set is an invaluable glimpse into the outer Third Zone of the solar system. Data from the intense July 14th fly-by sequence will be downlinked to Earth over a period of 16 months, the duration set by the large data set (over 60 GBits) and the limited transmitted bandwidth rates (approx. 1-2 kbps) and sharing the three 70 m DSN assets with our missions. The small fraction (approx. 1%) of data downlinked during the early phase of the flyby has already revealed Pluto and Charon to be very different worlds, with increasing and dynamic complexity.

  18. Upper Triassic limestones from the northern part of Japan: new insights on the Panthalassa Ocean and Hokkaido Island

    NASA Astrophysics Data System (ADS)

    Peyrotty, Giovan; Peybernes, Camille; Ueda, Hayato; Martini, Rossana

    2017-04-01

    In comparison with the well-known Tethyan domain, Upper Triassic limestones from the Panthalassa Ocean are still poorly known. However, these carbonates represent a unique opportunity to have a more accurate view of the Panthalassa Ocean during the Triassic. Their study will allow comparison and correlation of biotic assemblages, biostratigraphy, diagenesis, and depositional settings of different Triassic localities from Tethyan and Panthalassic domains. Moreover, investigation of these carbonates will provide data for taxonomic revisions and helps to better constrain palaeobiogeographic models. One of the best targets for the study of these carbonates is Hokkaido Island (north of Japan). Indeed, this island is a part of the South-North continuity of Jurassic to Paleogene accretionary complexes, going from the Philippines to Sakhalin Island (Far East Russia). Jurassic and Cretaceous accretionary complexes of Japan and Philippines contain Triassic mid-oceanic seamount carbonates from the western Panthalassa Ocean (Onoue & Sano, 2007; Kiessling & Flügel, 2000). They have been accreted either as isolated limestone slabs or as clasts and boulders, and are associated with mudstones, cherts, breccias and basaltic rocks. Two major tectonic units forming Hokkaido Island and containing Triassic limestones have been accurately explored and extensively sampled: the Oshima Belt (west Hokkaido) a Jurassic accretionary complex, and the Cretaceous Sorachi-Yezo Belt (central Hokkaido). The Sorachi-Yezo Belt is composed of Cretaceous accretionary complexes in the east and of Cretaceous clastic basin sediments deposited on a Jurassic basement in the west (Ueda, 2016), both containing Triassic limestones. The origin of this belt is still matter of debate especially because of its western part which is not in continuity with any other accretionary complex known in the other islands of Japan and also due to the lack of data in this region. One of the main goals of this study is to investigate and characterise Triassic limestones, particularly from western part of Sorachi-Yezo, in order to provide new crucial data allowing us to define the origin of this belt. The comparison (i.e., biotic assemblages, preservation, diagnesis, associated lithologies) of the Triassic limestones in Oshima and Sorachi-Yezo belts might highlight differences in their depositional setting as well as in geodynamic evolution of the western part of Sorachi-Yezo Belt. REFERENCES Kiessling, W., & Flügel, E. 2000: Late Paleozoic and Late Triassic Limestones from North Palawan Block (Philippines): Microfacies and Paleogeographical Implications. Facies, 43, 39-78. Onoue, T., & Sano, H. 2007: Triassic mid-oceanic sedimentation in Panthalassa Ocean: Sambosan accretionary complex, Japan. Island Arc, 16(1), 173-190. Ueda H. 2016: Hokkaido in The Geology of Japan, Taira A. Ohara Y. Wallis S. Ishawatari A.Iryu Y. Geological Society, London, 203-223.

  19. Magmatism evolution on the last Neoproterozoic development stage of the western Siberian active continental margin

    NASA Astrophysics Data System (ADS)

    Vernikovskaya, Antonina E.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.; Kadilnikov, Pavel I.; Romanova, Irina V.

    2017-04-01

    Rocks from active continental margin complexes are characterized by a wide variety of chemical compositions from depleted in alkali to alkali differentiates. When addressing issues of geodynamic settings in which such rocks form, it is important to understand the evolution of the host tectonic structure, as well as the chemical affiliation of the various rocks composing it. The Yenisey Ridge orogen located in the south-western framing of Siberia is one of the more studied regions with a long history of Neoproterozoic magmatic events. This orogen was formed during the collision of the Central Angara terrane with Siberia, which took place 761-718 Ma. Subsequent subduction-related events in the orogen have been recorded in the coeval magmatism (711-629 Ma) of two complexes: one is the active continental margin complex (Nb enriched igneous rocks - gabbroids, trachybasalts, A-type granites and carbonatites, including contact metasomatites zones with Nb mineralization), and the other one is an island arc complex (differentiated series volcanics, gabbroids and plagiogranites). The rocks of these complexes are respectively located in two suture zones: the Tatarka-Ishimba zone that formed due to the collision mentioned above, and the Yenisei suture marking the subduction zone [Vernikovsky et al., 2003; 2008]. The final Neoproterozoic stage in the evolution of the active margin of Siberia is manifested as adakite-gabbro-anorthosite magmatism in the 576-546 Ma interval. Our results indicate a genetic relationship between the adakites and their host NEB-type metabasites of the Zimovey massif. These Neoproterozoic adakites could have formed in a setting of transform-strike-slip drift of lithospheric plates after the subduction stopped, both from a crustal and mantle-crustal source, similarly to the Cenozoic magmatic complexes of the transform margin in the eastern framing of Eurasia [Khanchuk et al., 2016]. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal'nikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics, 2003, V. 375, P. 147-168. Vernikovsky V.A., Vernikovskaya A.E., Sal'nikova E.B., Berezhnaya N.G., Larionov A.N., Kotov A.B., Kovach V.P., Vernikovskaya I.V., Matushkin N.Yu., Yasenev A.M. Late Riphean alkaline magmatism in the western margin of the Siberian Craton: A result of continental rifting or accretionary events? // Doklady Earth Sciences, 2008, V. 419, Iss. 1, P. 226-230. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic Data // Journal of Asian Earth Sciences, 2016, V. 120, P. 117-138.

  20. The effect of an outdoor setting on the transfer of earth science concepts

    NASA Astrophysics Data System (ADS)

    Simmons, Jerry Marvin

    The ability of students to transfer concepts learned in school to future learning and employment settings is critical to their academic and career success. Concept transfer can best be studied by defining it as a process rather than an isolated event. Preparation for future learning (PFL) is a process definition of transfer which recognizes the student's ability to draw from past experiences, make assumptions, and generate potential questions and strategies for problem resolution. The purpose of this study was to use the PFL definition of concept transfer to examine whether a knowledge-rich outdoor setting better prepares students for future learning of science concepts than the classroom setting alone does. The research hypothesis was that sixth-grade students experiencing a geology-rich outdoor setting would be better prepared to learn advanced earth science concepts than students experiencing classroom learning only. A quasi-experimental research design was used for this study on two non-equivalent, self-contained sixth-grade rural public school classes. After a pretest was given on prior geology knowledge, the outdoor treatment group was taken on a geology-rich field excursion which introduced them to the concepts of mineral formation and mining. The indoor treatment group received exposure to the same concepts in the classroom setting via color slides and identification of mineral specimens. Subsequently, both groups received direct instruction on advanced concepts about mineral formation and mining. They were then given a posttest, which presented the students with a problem-solving scenario and questions related to concepts covered in the direct instruction. A t-test done on pretest data revealed that the indoor treatment group had previously learned classroom geology material significantly better than the outdoor treatment group had. Therefore an analysis of covariance was performed on posttest data which showed that the outdoor treatment group was better prepared for future learning of advanced geology concepts than the indoor treatment group. Because the environment chosen for this study was by nature one that contained variables outside the control of the researcher, it can only be speculated that the outdoor environment was the agent of transfer. Subsequent studies need to be done to substantiate this hypothesis.

  1. Map showing geology, oil and gas fields, and geologic provinces of the Gulf of Mexico region

    USGS Publications Warehouse

    French, Christopher D.; Schenk, Christopher J.

    2006-01-01

    This map was created as part of a worldwide series of geologic maps for the U.S. Geological Survey's World Energy Project. These products are available on CD-ROM and the Internet. The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world. Two previously published digital geologic data sets (U.S. and Caribbean) were clipped to the map extent, while the dataset for Mexico was digitized for this project. Original attributes for all data layers were maintained, and in some cases, graphically merged with common symbology for presentation purposes. The world has been divided into geologic provinces that are used for allocation and prioritization of oil and gas assessments. For the World Energy Project, a subset of those provinces is shown on this map. Each province has a set of geologic characteristics that distinguish it from surrounding provinces. These characteristics may include dominant lithologies, the age of the strata, and/or structural type. The World Geographic Coordinate System of 1984 is used for data storage, and the data are presented in a Lambert Conformal Conic Projection on the OFR 97-470-L map product. Other details about the map compilation and data sources are provided in metadata documents in the data section on this CD-ROM. Several software packages were used to create this map including: Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 8.3, ArcInfo software, Adobe Photoshop CS, Illustrator CS, and Acrobat 6.0.

  2. Geologic influences on Apache trout habitat in the White Mountains of Arizona

    Treesearch

    Jonathan W. Long; Alvin L. Medina

    2006-01-01

    Geologic variation has important influences on habitat quality for species of concern, but it can be difficult to evaluate due to subtle variations, complex terminology, and inadequate maps. To better understand habitat of the Apache trout (Onchorhynchus apache or O. gilae apache Miller), a threatened endemic species of the White...

  3. Chemical Geology: An Annotated Bibliography. CEGS Programs Publication Number 11.

    ERIC Educational Resources Information Center

    Billings, Gale K.

    The annotated bibliography is intended to aid geologists whose primary background is not in geochemistry. The references thus range from chemistry texts to papers on complex geochemical applications. The emphasis has been on those books and papers concerned with the application of chemical concepts to geology. Citations are arranged topically to…

  4. Physical Modeling in the Geological Sciences: An Annotated Bibliography. CEGS Programs Publication No. 16.

    ERIC Educational Resources Information Center

    Charlesworth, L. J., Jr.; Passero, Richard Nicholas

    The bibliography identifies, describes, and evaluates devices and techniques discussed in the world's literature to demonstrate or stimulate natural physical geologic phenomena in classroom or laboratory teaching or research situations. The aparatus involved ranges from the very simple and elementary to the highly complex, sophisticated, and…

  5. The Spatial Thinking Workbook: A Research-Validated Spatial Skills Curriculum for Geology Majors

    ERIC Educational Resources Information Center

    Ormand, Carol J.; Shipley, Thomas F.; Tikoff, Basil; Dutrow, Barbara; Goodwin, Laurel B.; Hickson, Thomas; Atit, Kinnari; Gagnier, Kristin; Resnick, Ilyse

    2017-01-01

    Spatial visualization is an essential prerequisite for understanding geological features at all scales, such as the atomic structures of minerals, the geometry of a complex fault system, or the architecture of sedimentary deposits. Undergraduate geoscience majors bring a range of spatial skill levels to upper-level courses. Fortunately, spatial…

  6. A Forward Glimpse into Inverse Problems through a Geology Example

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2012-01-01

    This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)

  7. 10 CFR 63.102 - Concepts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...

  8. 10 CFR 63.102 - Concepts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...

  9. High resolution multi-facies realizations of sedimentary reservoir and aquifer analogs

    PubMed Central

    Bayer, Peter; Comunian, Alessandro; Höyng, Dominik; Mariethoz, Gregoire

    2015-01-01

    Geological structures are by nature inaccessible to direct observation. This can cause difficulties in applications where a spatially explicit representation of such structures is required, in particular when modelling fluid migration in geological formations. An increasing trend in recent years has been to use analogs to palliate this lack of knowledge, i.e., exploiting the spatial information from sites where the geology is accessible (outcrops, quarry sites) and transferring the observed properties to a study site deemed geologically similar. While this approach is appealing, it is difficult to put in place because of the lack of access to well-documented analog data. In this paper we present comprehensive analog data sets which characterize sedimentary structures from important groundwater hosting formations in Germany and Brazil. Multiple 2-D outcrop faces are described in terms of hydraulic, thermal and chemical properties and interpolated in 3-D using stochastic techniques. These unique data sets can be used by the wider community to implement analog approaches for characterizing reservoir and aquifer formations. PMID:26175910

  10. Environmental geology and hydrology

    NASA Astrophysics Data System (ADS)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  11. Subsurface exploration using bucket auger borings and down-hole geologic inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullin, C.M.

    1994-03-01

    The down-hole geologic inspection of 24 in. bucket auger borings has been a hands-on technique for collecting valuable geologic structural and lithologic detail in southern California investigations for over 35 yr. Although it has been used for all types of investigations for hillside urban development, it is of particular benefit in landslide investigations and evaluations. The benefits of down-hole geologic inspection during detailed mapping of large landslide complexes with multiple slide planes are discussed in this paper. Many of the geotechnical investigations of these massive landslide complexes have been very limited in their determinations of accurate landslide parameters and verymore » deficient in proper engineering analysis while based upon this limited data. This has resulted in many cases where the geotechnical consultant erroneously concludes that ancient landslides don't move and it is all right to build upon them, even though they have neither justified the landslide parameters, nor the slope stability or safety. Because this author and the many consultants contacted during the preparation of this paper were not aware of other publications regarding this method of collecting detailed geologic data, this author included the safety considerations, safety equipment, the cost and the Cal OSHA requirements for entering exploration shafts.« less

  12. Geology Field Camp at Southern Illinois University: Six weeks exploring four tectonic regimes

    NASA Astrophysics Data System (ADS)

    Friedman, S. A.; Conder, J. A.; Ferre, E. C.; Heij, G.

    2013-12-01

    Field Geology is typically the capstone course for an undergraduate Bachelor of Science degree in Geology. This type of course brings together the varied sub-disciplines and course topics students encounter in their undergraduate experience, and puts these in context of active Earth processes. At the same time, a significant fraction of Geology departments have dropped field geology from their offerings and students must choose from those programs still offering the course. Southern Illinois University has offered field geology for over 40 years, stationed in and around southwestern Montana. This field camp offers experiences with four distinct tectonic settings: thick-skin contractional, thin-skin contractional, extensional, and anorogenic. The most challenging projects of the course involve mapping and interpreting Laramide and Sevier compressionally deformed areas. The major difference between the two types of deformation is that Laramide ('thick-skinned') tectonics encompasses the mid-crust in deformation while Sevier ('thin-skinned') deformation is limited to the uppermost portion of the crust. This difference results in markedly different fold styles and other deformational structures encountered, requiring different approaches to understanding and constructing the deformational histories of the regions. Extensional tectonics are explored with a paleoseismology project at Hebgen Lake, in Grand Teton National Park where the students typically spend two days, and at the Bitterroot Shear Zone - the edge of a metamorphic core complex along the eastern boundary of the Idaho batholith. While recent work from EarthScope and elsewhere casts doubt on Yellowstone as a mantle plume, Yellowstone remains the classic example of a continental hotspot. During visits through the park, students distinguish between the recent volcanics and hydrothermal activity of Yellowstone and the nearby Eocene Absaroka volcanics. Expanding on the story of the Yellowstone hotspot, a visit is made to Craters of the Moon National Monument in the Snake River Plain to examine some of the youngest volcanics in North America. Not only does field camp give students an occasion to put their knowledge-base developed during their undergraduate years into action, but it is also an ideal opportunity to expose students to the varied approaches applicable to distinct tectonic problems and situations. At SIU, we are proud to offer a wide range of experiences drawing from several important tectonic provinces giving students a strong foundation for their future geological careers and continuing scientific development.

  13. Sediment unmixing using detrital geochronology

    USGS Publications Warehouse

    Sharman, Glenn R.; Johnstone, Samuel

    2017-01-01

    Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the influence of environmental forcings (e.g., tectonism, climate) on the earth’s surface. Here we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First we summarize ‘top-down’ mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions (‘parents’) that characterize a derived sample or set of samples (‘daughters’). Second we propose the use of ‘bottom-up’ methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable mixtures over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.

  14. Sediment unmixing using detrital geochronology

    NASA Astrophysics Data System (ADS)

    Sharman, Glenn R.; Johnstone, Samuel A.

    2017-11-01

    Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the effect of environmental forcing (e.g., tectonism, climate) on the Earth's surface. Here, we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First, we summarize 'top-down' mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions ('parents') that characterize a derived sample or set of samples ('daughters'). Second, we propose the use of 'bottom-up' methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable that is well mixed over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has the potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.

  15. Surficial geological tools in fluvial geomorphology: Chapter 2

    USGS Publications Warehouse

    Jacobson, Robert B.; O'Connor, James E.; Oguchi, Takashi

    2016-01-01

    Increasingly, environmental scientists are being asked to develop an understanding of how rivers and streams have been altered by environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored, and how they will respond to future environmental change. These questions present substantive challenges to the discipline of fluvial geomorphology, especially since decades of geomorphologic research have demonstrated the general complexity of fluvial systems. It follows from the concept of complex response that synoptic and short-term historical views of rivers will often give misleading understanding of future behavior. Nevertheless, broadly trained geomorphologists can address questions involving complex natural systems by drawing from a tool box that commonly includes the principles and methods of geology, hydrology, hydraulics, engineering, and ecology.

  16. OneGeology-Europe and the new EC Directive INSPIRE - A matter of semantic subtlety?

    NASA Astrophysics Data System (ADS)

    Asch, K.

    2009-04-01

    The EC INSPIRE Directive which came into force in May 2007 set out how the Member States of the European Union would describe, discover and provide access to spatial environmental data in a harmonised way. Amongst the data sets specified in INSPIRE is geology. A fundamental question is just what is meant by ‘geology'? The question must be answered, and in some detail, if the intentions of the INSPIRE Directive to provide consistency of access are to be realised The Directive itself provides very little constraint on this definition. In it geology is described as "Geology characterised according to composition and structure. Includes bedrock, aquifers and geomorphology". The challenge for the EC and its Member States - more specifically for the geological survey community - is to convert this single line into a precise and practical specification that will deliver the outcomes intended by INSPIRE. The geological survey community is attempting to develop this specification through two complementary routes. Theme Working Groups - a generic procedure adopted by the EC that will start in May 2009 - and a new EC eContentplus project, OneGeology-Europe. Within OneGeology-Europe is a Work Package whose task is to deliver a semantic specification of "geology" at 1:1 million scale. While the initial reaction of some would be to question whether defining geology at this scale poses any significant challenges the reality is somewhat different. Fundamental questionsare: Should we specify the geology at the surface or restrict it to "bedrock" geology? Do we attempt to define the rocks chronostratigraphically, or by their lithology, perhaps even by the more regional lithostratigraphy or by genetic aspect? To what extent do we include tectonic features? How to cope with th ecomplexity of metamorphic rocks etc? These are only some of the high level questions - the devil, however, comes in the detail. How should we deal with the classification of the Pre-Cambrian rocks? What approach should we adopt to hypabyssal rocks? There are many more to approach and of course already existing vocabulararies, definitions and classifications need to be taken into account. Compounding these questions is the fact that in the absence of accepted international standards, almost every national geological survey has adopted different standards; standards which they are reluctant to concede. This presentation will outline the issues and challenges facing the geological community to define the geological classification of the OneGeology-Europe project while considering the future requirements of the EC INSPIRE Directive and provides an update on the progress in meeting those challenges.

  17. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States.

  18. Methodology of the interpretation of remote sensing data and applications in geology

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.

    1981-01-01

    Methods used for interpreting orbital (LANDSAT) data for regional geological mapping in Brazil are examined. Particular attention is given to the levels of analysis used for studying geomorphology, structural geology, lithology, stratigraphy, surface geology, and dynamic processes. Examples of regional mapping described include: (1) rock intrusions in SE Sao Paulo, the southern parts of Minas Gerais, and the states of Rio de Janeiro, and Espiritu Santo; (2) a preliminary survey of Pre-Cambrian geology in the State of Piaui; and (3) the Gondwana Project - surveying Jaguaribe plants. Mineral exploration in Rio Grande do Sul, and the geology of the Alcalino complex of Itatiaia are discussed as well as the use of automatic classifications of rock intrusions and of ilmenite deposits in the Floresta Region. Aerial photography, side looking radar, and thermal infrared scanning are other types of remote sensors also used in prospecting for geothermal anomalies in the city of Caldas Novas-Goias.

  19. Aerial radiometric and magnetic survey: Aztec National Topographic Map, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Aztec National Topographic Map NJ13-10 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included.more » Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.« less

  20. Aerial radiometric and magnetic survey: Lander National Topographic Map, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Lander National Topographic Map NK12-6 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included.more » Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.« less

  1. Geologic Map of the Pueblo of Isleta Tribal Lands and Vicinity, Bernalillo, Torrance, and Valencia Counties, Central New Mexico

    USGS Publications Warehouse

    Maldonado, Florian; Slate, Janet L.; Love, Dave W.; Connell, Sean D.; Cole, James C.; Karlstrom, Karl E.

    2007-01-01

    This 1:50,000-scale map compiles geologic mapping of the Pueblo of Isleta tribal lands and vicinity in the central part of the Albuquerque Basin in central New Mexico. The map synthesizes new geologic mapping and summarizes the stratigraphy, structure, and geomorphology of an area of approximately 2,000 km2 that spans the late Paleogene-Neogene Rio Grande rift south of Albuquerque, N. Mex. The map is part of studies conducted between 1996 and 2001 under the U.S. Geological Survey (USGS) Middle Rio Grande Basin Study by geologists from the USGS, the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the University of New Mexico (UNM). This work was conducted in order to investigate the geologic factors that influence ground-water resources of the Middle Rio Grande Basin, and to provide new insights into the complex geologic history of the Rio Grande rift in this region.

  2. 10 CFR 60.113 - Performance of particular barriers after permanent closure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...

  3. 10 CFR 60.113 - Performance of particular barriers after permanent closure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...

  4. 10 CFR 60.113 - Performance of particular barriers after permanent closure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...

  5. Aeromagnetic surveys in Afghanistan: An updated website for distribution of data

    USGS Publications Warehouse

    Shenwary, Ghulam Sakhi; Kohistany, Abdul Hakim; Hussain, Sardar; Ashan, Said; Mutty, Abdul Salam; Daud, Mohammad Ahmad; Wussow, Michael D.; Sweeney, Ronald E.; Phillips, Jeffrey D.; Lindsay, Charles R.; Kucks, Robert P.; Finn, Carol A.; Drenth, Benjamin J.; Anderson, Eric D.; Abraham, Jared D.; Liang, Robert T.; Jarvis, James L.; Gardner, Joan M.; Childers, Vicki A.; Ball, David C.; Brozena, John M.

    2011-01-01

    Because of its geologic setting, Afghanistan has the potential to contain substantial natural resources. Although valuable mineral deposits and petroleum resources have been identified, much of the country's potential remains unknown. Airborne geophysical surveys are a well accepted and cost effective method for obtaining information about the geological setting of an area without the need to be physically located on the ground. Owing to the current security situation and the large areas of the country that have not been evaluated by geophysical exploration methods, a regional airborne geophysical survey was proposed. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan.

  6. Mars - A planet with a complex surface evolution

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Coradini, M.

    1975-01-01

    The surface of Mars has evolved to its present form through a complex sequence of tectonism and associated volcanism, impact processes, water erosion, mass movements, and wind action. The diversity of geological processes active in past Martian history far exceeded most predictions. By the same token, predictions of processes modifying the satellites of the outer planets may fall far short of the true range of phenomena. A summary of present though with regard to Martian surface evolution is presented to serve as a case in point of the value of imagery and topography data in making interpretations of geological histories.

  7. Alaska Science Center: Providing Timely, Relevant, and Impartial Study of the Landscape, Natural Resources, and Natural Hazards for Alaska and Our Nation

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey (USGS), the Nation's largest water, earth, and biological science and civilian mapping agency, has studied the natural features of Alaska since its earliest geologic expeditions in the 1800s. The USGS Alaska Science Center (ASC), with headquarters in Anchorage, Alaska, studies the complex natural science phenomena of Alaska to provide scientific products and results to a wide variety of partners. The complexity of Alaska's unique landscapes and ecosystems requires USGS expertise from many science disciplines to conduct thorough, integrated research.

  8. Modelling DC responses of 3D complex fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  9. Modelling DC responses of 3D complex fracture networks

    DOE PAGES

    Beskardes, Gungor Didem; Weiss, Chester Joseph

    2018-03-01

    Here, the determination of the geometrical properties of fractures plays a critical role in many engineering problems to assess the current hydrological and mechanical states of geological media and to predict their future states. However, numerical modeling of geoelectrical responses in realistic fractured media has been challenging due to the explosive computational cost imposed by the explicit discretizations of fractures at multiple length scales, which often brings about a tradeoff between computational efficiency and geologic realism. Here, we use the hierarchical finite element method to model electrostatic response of realistically complex 3D conductive fracture networks with minimal computational cost.

  10. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia

    PubMed Central

    Christian, Daniel; Wacey, David; Hazen, Robert M.

    2013-01-01

    Abstract Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago. Key Words: Archean—Biofilms—Microbial mats—Early Earth—Evolution. Astrobiology 13, 1103–1124. PMID:24205812

  11. Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

    NASA Astrophysics Data System (ADS)

    Pakyuz-Charrier, Evren; Lindsay, Mark; Ogarko, Vitaliy; Giraud, Jeremie; Jessell, Mark

    2018-04-01

    Three-dimensional (3-D) geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces) and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization) and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors). Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE), a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than dip vector sampling for planar features and the use of a Bayesian approach to disturbance distribution parameterization is suggested. The influence of incorrect disturbance distributions is discussed and propositions are made and evaluated on synthetic and realistic cases to address the sighted issues. The distribution of the errors of the observed data (i.e., scedasticity) is shown to affect the quality of prior distributions for MCUE. Results demonstrate that the proposed workflows improve the reliability of uncertainty estimation and diminish the occurrence of artifacts.

  12. GEMAS - Soil geochemistry and health implications

    NASA Astrophysics Data System (ADS)

    Ernstsen, Vibeke; Ladenberger, Anna; Wragg, Joanna; Gulan, Aleksandra

    2014-05-01

    The GEMAS Project resulted in a large coherent data set displaying baseline levels of elements in agricultural and grazing land soil, which has a wide variety of applications. Medical geology is an emerging new discipline providing a link between geoscience and medicine by interpreting natural geological factors in relation to human and animal health and their geographical distribution. Medical geology shows not only problems related to harmful health effects of natural geological materials and processes, but also deals with their beneficial aspects. Since the GEMAS project demonstrates the importance of geological factors in geochemical patterns in European soil, this data set can be used in improving our understanding of how the geological processes may affect human health in Europe. The main potential health problems are related to deficiency of nutrients in soil and toxic effects of potentially harmful elements. Deficiency in macro- (e.g., K, Fe, Mg, P) and micro-nutrients (e.g., Se, Zn, Cl) can be responsible for a reduction in crop productivity and certain health issues for livestock and humans. On the other hand, bioavailability of crucial elements depends on soil parameters, e.g., pH; namely, low pH in soil (in northern Europe) makes more micronutrients bioavailable, with the exception of Mo, P and Ca. Rocks underlying the soil layer have a major impact on soil composition, and soil parent material can be a main source of toxic metals, for instance, soil developed on black shale (e.g., Oslo region) shows potentially toxic levels of metals, such as As, Cd, U, Zn and Pb. High content of organic matter is another factor amplifying the toxic levels of metals in soil. Several important topics with health implications can be then addressed using the GEMAS data set, namely, soil properties and element bioavailability, arsenic toxicity, selenium deficiency, potential health effects of liming, uranium in European soil, influence of recent and historical volcanic activity on soil composition and its health consequences. References Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (Editors), 2014. Chemistry of Europe's agricultural soils - Part A: Methodology and interpretation of the GEMAS data set. Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 528 pp. Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (Editors), 2014. Chemistry of Europe's agricultural soils - Part B: General background information and further analysis of the GEMAS data set. Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 352 pp.

  13. Digital atlas of the upper Washita River basin, southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  14. Landscapes with high geotouristic value and impact from the Benguela-Sumbe region (Western Angola): inventory and geological characterization

    NASA Astrophysics Data System (ADS)

    Duarte, Luís V.; Segundo, Januário; Gonçalves, Alberto; Cavita, João R.; Lapão, Luís; Bandeira, Manuel; Callapez, Pedro; Meneses, Luís; Prata, Mendonça E.

    2014-05-01

    The natural beauties and wildlife of Austral Africa are worldwide known, and their related touristic and socioeconomic activities have a strong interregional impact. Angola, one of the larger countries from this region of the Southern Hemisphere, shows a high number of natural landscapes, well testified by the recent election of "7 Natural Wonders of Angola". This contest, the first one of this kind carry out in Africa, means the priority of this country in the promotion of geotourism. Despite the large diversity of landscapes, among deserts, mountains, coastal cliffs, waterfalls, and/or caves, resulting from different geomorphological contexts and age (from Archaean to Recent), the geological knowledge of the territory remains poor, through scientific documents, great part of them published before and around the 70's of last century. Based on this concern, the first goal of this work is the inventory and the geological description of several geosites with natural relevance and touristic potential from the Meso-Cenozoic coastal region of Benguela and Sumbe Provinces (Western Angola). This area, particularly materialized by the sedimentary infill of Benguela Basin, with deposits (carbonates, siliciclastics and evaporites) mainly dated from the Cretaceous, has been recently studied and researched by our team in the domains of sedimentary geology, stratigraphy, geological mapping, resources and geoheritage. On the basinal onshore stand out hundreds of outcrops with good exposure, great part of them never studied, representing and recording a large number of sedimentary units deposited on a complex tectonic setting. Besides the geological characterization of Egito-Praia, Sassa Caves and Binga waterfalls (this one located in the eastern boundary of the basin), three of the twenty seven sites proposed for the reported Angola's natural wonders contest, we present and describe several other distinctive natural sites and coastal landscapes of this region such as the cases of Binge, Tapado, Quicombo, Quissonde and Porto Amboim beaches. All these localities, mainly highlighted by their geomorphological attributes and high geotouristic impact (including history and other leisure aspects), present an exceptional geological record, being important in the stratigraphic knowledge of the Benguela (and Kwanza) Basin. With this work we intend to update and promote the geological knowledge of all these sites, so that this new information could be support future programs of valorization and geoconservation. The authors would like to acknowledge the consortium agreement between the University of Coimbra (Portugal) and Instituto Superior Politécnico da Tundavala (Angola).

  15. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.

  16. Geological implications and controls on the determination of water saturation in shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Hartigan, David; Lovell, Mike; Davies, Sarah

    2014-05-01

    A significant challenge to the petrophysical evaluation of shale gas systems can be attributed to the conductivity behaviour of clay minerals and entrained clay bound waters. This is compounded by centimetre to sub-millimetre vertical and lateral heterogeneity in formation composition and structure. Where despite significant variation in formation geological and therefore petrophysical properties, we routinely rely on conventional resistivity methods for the determination of water saturation (Sw), and hence the free gas saturation (Sg) in gas bearing mudstones. The application of resistivity based methods is the subject of continuing debate, and there is often significant uncertainty in both how they are applied and the saturation estimates they produce. This is partly a consequence of the view that "the quantification of the behaviour of shale conductivity....has only limited geological significance" (Rider 1986). As a result, there is a separation between our geological understanding of shale gas systems and the petrophysical rational and methods employed to evaluate them. In response to this uncertainty, many petrophysicists are moving away from the use of more complex 'shaly-sand' based evaluation techniques and returning to traditional Archie methods for answers. The Archie equation requires various parameter inputs such as porosity and saturation exponents (m and n), as well as values for connate fluid resistivity (Rw). Many of these parameters are difficult to determine in shale gas systems, where obtaining a water sample, or carrying out laboratory experiments on recovered core is often technically impractical. Here we assess the geological implications and controls on variations in pseudo Archie parameters across two geological formations, using well data spanning multiple basinal settings for a prominent shale gas play in the northern Gulf of Mexico basin. The results, of numerical analysis and systematic modification of parameter values to minimise the error between core derived Sw (Dean Stark analysis) and computed Sw, links sample structure with composition, highlighting some unanticipated impacts of clay minerals on the effective bulk fluid resistivity (Rwe) and thus formation resistivity (Rt). In addition, it highlights simple corrective empirical adaptations that can significantly reduce the error in Sw estimation for some wells. Observed results hint at the possibility of developing a predictive capability in selecting Archie parameter values based on geological facies association and log composition indicators (i.e. V Clay), establishing a link between formation depositional systems and their petrophysical properties in gas bearing mudstones. Rider, M.H., 1986. The Geological Interpretation of Well Logs, Blackie.

  17. Field Investigation of a Roof Fall Accident and Large Roadway Deformation Under Geologically Complex Conditions in an Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Xue, Sheng; Jiang, Yaodong; Deng, Daixin; Shi, Suzhen; Zhang, Dengqiang

    2018-06-01

    An investigation was undertaken to study the characteristics of large roadway deformation and driving force of roof fall in a geologically complex zone at Huangyanhui underground coal mine, Shanxi Province, China, and to determine the main factors contributing to a roof fall accident that occurred in this mine. A series of field tests were conducted in the mine to study the geological structures, in situ stress, excavation-damaged zones of the roadway, roof-to-floor and sidewall convergences, roof separation, bolts loading and island coal pillar stress. The results of these tests have revealed that the driving force of the large roadway deformation and roof fall was not the activation of the karst collapsed pillars or concentration stress in island coal pillar, but high levels of horizontal tectonic stress and fault slip were induced by mining activities.

  18. The Geology of Pluto and Charon Through the Eyes of New Horizons

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Howard, A. D.; Schenk, P. M.; Beyer, R. A.; Nimmo, F.; Singer, K. N.; Umurhan, O. M.; White, O. L.; hide

    2016-01-01

    NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that is involved in convection and advection, with a crater retention age no greater than 10 Ma. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic, and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to 4 Ga old that are extensionally fractured and extensively mantled and eroded by glacial or other processes. Charon is not currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest proposed impactor size-frequency distributions.

  19. Assessing the quality of the nation's water resources

    USGS Publications Warehouse

    Hamilton, Pixie A.

    2002-01-01

    This issue of IMPACT highlights findings from the first decade of studies (1991 to 2001) by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The articles also discuss the Program’s approaches and models designed to help understand and estimate the fate and transport of contaminants in different geographic areas and environmental settings and over different time frames. NAWQA was established by Congress in 1991 with a goal of developing long-term, consistent, and comparable science-based information on nationwide water-quality conditions. This information is used to support sound management and policy decisions by decision makers at all levels – local, state, and national – who, every day, face complex regulations and management issues related to water resources.

  20. Dragonfly: Investigating the Surface Composition of Titan

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W. B.; Lawrence, D. J.; Barnes, J. W.; Lorenz, R. D.; Horst, S. M.; Zacny, K.; Freissinet, C.; Parsons, A. M.; Turtle, E. P.; Trainer, M. G.; hide

    2018-01-01

    Dragonfly is a rotorcraft lander mission, selected as a finalist in NASA's New Frontiers Program, that is designed to sample materials and determine the surface composition in different geologic settings on Titan. This revolutionary mission concept would explore diverse locations to characterize the habitability of Titan's environment, to investigate how far prebiotic chemistry has progressed, and to search for chemical signatures that could be indicative of water-based and/or hydrocarbon-based life. Here we describe Dragonfly's capabilities to determine the composition of a variety of surface units on Titan, from elemental components to complex organic molecules. The compositional investigation ncludes characterization of local surface environments and finely sampled materials. The Dragonfly flexible sampling approach can robustly accommodate materials from Titan's most intriguing surface environments.

  1. Surface compositions across Pluto and Charon.

    PubMed

    Grundy, W M; Binzel, R P; Buratti, B J; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Ennico, K; Howett, C J A; Lunsford, A W; Olkin, C B; Parker, A H; Philippe, S; Protopapa, S; Quirico, E; Reuter, D C; Schmitt, B; Singer, K N; Verbiscer, A J; Beyer, R A; Buie, M W; Cheng, A F; Jennings, D E; Linscott, I R; Parker, J Wm; Schenk, P M; Spencer, J R; Stansberry, J A; Stern, S A; Throop, H B; Tsang, C C C; Weaver, H A; Weigle, G E; Young, L A

    2016-03-18

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta. Copyright © 2016, American Association for the Advancement of Science.

  2. Comparing Outcomes from Field and Classroom Based Settings for Undergraduate Geoscience Courses

    NASA Astrophysics Data System (ADS)

    Skinner, M. R.; Harris, R. A.; Flores, J.

    2011-12-01

    Field based learning can be found in nearly every course offered in Geology at Brigham Young University. For example, in our Structural Geology course field studies substitute for labs. Students collect data their own data from several different structural settings of the Wasatch Range. Our curriculum also includes a two-week, sophomore-level field course that introduces students to interpreting field relations themselves and sets the stage for much of what they learn in their upper-division courses. Our senior-level six-week field geology course includes classical field mapping with exercises in petroleum and mineral exploration, environmental geology and geological hazards. Experiments with substituting field-based general education courses for those in traditional classroom settings indicate that student cognition, course enjoyment and recruiting of majors significantly increase in a field-based course. We offer a field-based introductory geology course (Geo 102) that is taught in seven, six-hour field trips during which students travel to localities of geologic interest to investigate a variety of fundamental geological problems. We compare the outcomes of Geo 102 with a traditional classroom-based geology course (Geo 101). For the comparison both courses are taught by the same instructor, use the same text and supplementary materials and take the same exams. The results of 7 years of reporting indicate that test scores and final grades are one-half grade point higher for Geo 102 students versus those in traditional introductory courses. Student evaluations of the course are also 0.8-1.4 points higher on a scale of 1-8, and are consistently the highest in the Department and College. Other observations include increased attendance, attention and curiosity. The later two are measured by the number of students asking questions of other students as well as the instructors, and the total number of questions asked during class time in the field versus the classroom. Normal classroom involvement includes two or three students asking nearly all of the questions, while in Geo 102 it is closer to half the class, and not the same students each time. Not only do more individuals participate in asking questions in Geo 102, but each participant asks more questions as well. Questions asked in class are generally specific to the discussion, while field questions are commonly multidisciplinary in nature. Field-based courses also encourage more students to collaborate with each other and to integrate shared observations due to the many different aspects of the geosciences present at each site. One of the most important pay-offs is the 50% increase in the number of students changing their major to geology in the field-based versus classroom-based courses. Field-based learning increases the depth of student understanding of the subjects they investigate as well as student involvement and enthusiasm in the class. The tradeoff we make for realizing significant individual and group discovery in the field is that more responsibility is placed on the student to understand the broad based geologic concepts found in the text. The field based approach allows the students to immediately apply their learning in real world applications.

  3. The Evolution of Juventae Chasma, Valles Marineris, Mars: Progressive Collapse and Sedimentation

    NASA Astrophysics Data System (ADS)

    Fueten, F.; Novakovic, N.; Stesky, R.; Flahaut, J.; Hauber, E.; Rossi, A. P.

    2017-11-01

    Juventae Chasma is an isolated chasm located north of the interconnected chasms within Valles Marineris. It contains four separate interior layered deposit (ILD) mounds. We have combined layer measurements, as well as mineralogical data of the mounds with topographic data of the remaining chasm and the surrounding plateau. Our observations indicate that the chasm underwent a complex geological history. We suggest that individual ILD mounds are not contemporaneous with each other and a series of progressive collapses enlarged an initially smaller chasm to its current shape. ILDs were deposited in a lacustrine setting, and the time of ILD deposition was limited. Basin collapse and chasm enlargement continued beyond the time of ILD deposition and thus were not driven by sediment load. Glacial processes appear to have played a role in the late, postlacustrine history of the chasm. We present a simplified model that highlights some of the complexity of the chasm evolution, but acknowledge that the true history is undoubtedly more complicated.

  4. Experimental Simulations of Lunar Magma Ocean Crystallization: The Plot (But Not the Crust) Thickens

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Rapp, J. F.; Elardo, S. M.; Shearer, C. K., Jr.; Neal, C. R.

    2016-01-01

    Numerical models of differentiation of a global-scale lunar magma ocean (LMO) have raised as many questions as they have answered. Recent orbital missions and sample studies have provided new context for a large range of lithologies, from the comparatively magnesian "purest anorthosite" reported by to Si-rich domes and spinel-rich clasts with widespread areal distributions. In addition, the GRAIL mission provided strong constraints on lunar crustal density and average thickness. Can this increasingly complex geology be accounted for via the formation and evolution of the LMO? We have in recent years been conducting extensive sets of petrologic experiments designed to fully simulate LMO crystallization, which had not been attempted previously. Here we review the key results from these experiments, which show that LMO differentiation is more complex than initial models suggested. Several important features expected from LMO crystallization models have yet to be reproduced experimentally; combined modelling and experimental work by our group is ongoing.

  5. Geological Structures Mapping of Bukit Bunuh using 2-D Resistivity Imaging Method

    NASA Astrophysics Data System (ADS)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Rahman, Nazrin; Saidin, Mokhtar; Masnan, S. S. K.

    2018-04-01

    The geological area of Bukit Bunuh is very complex due to the meteorite impact that has occurred millions years ago at Lenggong, Perak. The lithology of the study area consists of alluvium, tephra dust, and granitic rock. The geological contact, fault and fracture zone were found at the study area may indicate the geological process that undergoes at a place locally or regionally. These important features have led to the further research on 2-D resistivity imaging method (2-D RIM) to study the geological features. This method can provide the subsurface image that will delineate the geological structures. The surveys include three separate lines of different length which depend on the accessibility. The surveys were done by using Pole-Dipole array and 10 m of electrodes spacing. The objectives of this research are to determine the subsurface geological contact and to determine the existence of fault/fracture zones at the contact zone. The results from 2-D inversion profiles have successfully signified the types of geological structural such as fault, contact, and fractures. Hence, the results from 2-D RIM were used to draw the geological lineaments of Bukit Bunuh. The discontinuity of the lineaments may indicate the structures present.

  6. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol Okhotsk Ocean in central Asia

    NASA Astrophysics Data System (ADS)

    Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.

    2008-04-01

    Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the early Carboniferous, allowing accumulation of a flysch complex in a long-evolving accretionary complex.

  7. Relationships between rare plants of the White Mountains and the late Cenozoic geology of the Colorado Plateau

    Treesearch

    Jonathan W. Long

    2007-01-01

    A complex geologic history has shaped the distribution of Arizona willow (Salix arizonica Dorn) and the Mogollon paintbrush (Castilleja mogollonica Pennell). These subalpine plants do not appear to be strict substrate specialists, but they do seem to favor coarse-textured and well-watered soils. Most of their occupied habitats were...

  8. Overview of the Ground and Its Movement in Part of Northwestern California

    Treesearch

    Stephen D. Ellen; Juan de la Fuente; James N. Falls; Robert J. McLaughlin

    2007-01-01

    The Eureka area of northwestern California is characterized by a variety of terrain forms that reflect a variety of geologic materials, most of which are components of the highly disrupted and heterogeneous Franciscan Complex. Recent regional geologic mapping by McLaughlin and others (2000) has delineated the distribution of contrasting materials within the principal...

  9. Research on Geo-information Data Model for Preselected Areas of Geological Disposal of High-level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Gao, M.; Huang, S. T.; Wang, P.; Zhao, Y. A.; Wang, H. B.

    2016-11-01

    The geological disposal of high-level radioactive waste (hereinafter referred to "geological disposal") is a long-term, complex, and systematic scientific project, whose data and information resources in the research and development ((hereinafter referred to ”R&D”) process provide the significant support for R&D of geological disposal system, and lay a foundation for the long-term stability and safety assessment of repository site. However, the data related to the research and engineering in the sitting of the geological disposal repositories is more complicated (including multi-source, multi-dimension and changeable), the requirements for the data accuracy and comprehensive application has become much higher than before, which lead to the fact that the data model design of geo-information database for the disposal repository are facing more serious challenges. In the essay, data resources of the pre-selected areas of the repository has been comprehensive controlled and systematic analyzed. According to deeply understanding of the application requirements, the research work has made a solution for the key technical problems including reasonable classification system of multi-source data entity, complex logic relations and effective physical storage structures. The new solution has broken through data classification and conventional spatial data the organization model applied in the traditional industry, realized the data organization and integration with the unit of data entities and spatial relationship, which were independent, holonomic and with application significant features in HLW geological disposal. The reasonable, feasible and flexible data conceptual models, logical models and physical models have been established so as to ensure the effective integration and facilitate application development of multi-source data in pre-selected areas for geological disposal.

  10. Macro- and micro- geodynamic of Terebliya-Riksk geodetic man-caused polygon of Ukrainian Carpathians influenced by specificities of structure-geological and hydro-geological conditions

    NASA Astrophysics Data System (ADS)

    Kulchyzkyy, A.; Serebryannyy, Y.; Tretyak, K.; Trevogo, I.; Zadoroznnyy, V.

    2009-04-01

    Terebliya-Riksk diversion power station is located on two levels ( with difference of 180m ) of south mountainside of Ukrainian Carpathians and separate parts of this power station lie inside rock. Therefore influential parameters of it's stability are geological, tectonic and hydrogeological conditions in complex. Monitoring of intensity and nature of displacements of flow ( pressure) pipe and other objects of power station with geoditic methods indicates that fluctuations of water-level in reservoir caused bouth by natural and artificial efects are of great influence on objects mentioned. Based on geodetical high-precision observations made by LeicaTPS 1201 robotic total station short-periodic components of fundamental vibrations which result in their destructive deformation were determined. Mathematical apparatus ( which uses function of Fourie series and theory of cinematic coefficients ) for displacements determinations of pressure pipe was disigned. Complex of engineering-geological surveys gave an opportunity to define the origin of macro- and micro- geodynamics movements of Terebliya-Riksk diversion power station region. Engineering-geological conditions which influence on power station structure most of all were determined as following : small foldings and cleavage areas appearances, also fluctuations of level of underground water (refered to hydrogeological conditions). Periodic micro-displacemets appearances ( which operate on reducing-stretching scheme) fixed on power station structure are turned to be in direct relation on to what exend reservoir is filled up. Permanent macro- displacements appearances ( which operates in north-west direction ) fixed on pressure pipe are the result sum of residual micro-displacements caused by return periodic movements and are determined by structure-geological, engineering-geological and tectonic conditions.

  11. Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics

    USGS Publications Warehouse

    Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K

    2014-01-01

    Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.

  12. Digital data sets for map products produced as part of the Black Hills Hydrology Study, western South Dakota

    USGS Publications Warehouse

    Williamson, Joyce E.; Jarrell, Gregory J.; Clawges, Rick M.; Galloway, Joel M.; Carter, Janet M.

    2000-01-01

    This compact disk contains digital data produced as part of the 1:100,000-scale map products for the Black Hills Hydrology Study conducted in western South Dakota. The digital data include 28 individual Geographic Information System (GIS) data sets: data sets for the hydrogeologic unit map including all mapped hydrogeologic units within the study area (1 data set) and major geologic structure including anticlines and synclines (1 data set); data sets for potentiometric maps including the potentiometric contours for the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers (5 data sets), wells used as control points for each aquifer (5 data sets), and springs used as control points for the potentiometric contours (1 data set); and data sets for the structure-contour maps including the structure contours for the top of each formation that contains major aquifers (5 data sets), wells and tests holes used as control points for each formation (5 data sets), and surficial deposits (alluvium and terrace deposits) that directly overlie each of the major aquifer outcrops (5 data sets). These data sets were used to produce the maps published by the U.S. Geological Survey.

  13. Submarine Landslides: A Multidisciplinary Crossroad

    NASA Astrophysics Data System (ADS)

    Moscardelli, L. G.

    2014-12-01

    The study of submarine landslides has advanced considerably in the last decade. A multitude of geoscience disciplines, including marine, petroleum and planetary geology, as well as geohazard assessments, are concerned with the study of these units. Oftentimes, researchers working in these fields disseminate their findings within their own communities and a multidisciplinary approach seems to lack. This presentation showcases several case studies in which a broader approach has increased our understanding of submarine landslides in a variety of geologic settings. Three-dimensional seismic data from several continental margins (Trinidad, Brazil, Morocco, Canada, GOM), as well as data from outcrop localities are shown to explore geomorphological complexities associated with submarine landslides. Discussion associated with the characterization and classification of submarine landslides is also part of this work. Topics that will be cover include: 1) how data from conventional oil and gas exploration activities can be used to increase our understanding of the dynamic behavior of submarine landslides, 2) analogies between terrestrial submarine landslides and potential Martian counterparts, 3) impact of submarine landslides in margin construction, as well as their economic significance and 4) the importance of quantifying the morphology of submarine landslides in a systematic fashion.

  14. Upper crustal structures beneath Yogyakarta imaged by ambient seismic noise tomography

    NASA Astrophysics Data System (ADS)

    Zulfakriza, Saygin, E.; Cummins, P.; Widiyantoro, S.; Nugraha, Andri Dian

    2013-09-01

    Delineating the upper crustal structures beneath Yogyakarta is necessary for understanding its tectonic setting. The presence of Mt. Merapi, fault line and the alluvial deposits contributes to the complex geology of Yogyakarta. Recently, ambient seismic noise tomography can be used to image the subsurface structure. The cross correlations of ambient seismic noise of pair stations were applied to extract the Green's function. The total of 27 stations from 134 seismic stations available in MERapi Amphibious EXperiment (MERAMEX) covering Yogyakarta region were selected to conduct cross correlation. More than 500 Rayleigh waves of Green's functions could be extracted by cross-correlating available the station pairs of short-period and broad-band seismometers. The group velocities were obtained by filtering the extracted Green's function between 0.5 and 20 s. 2-D inversion was applied to the retrieved travel times. Features in the derived tomographic images correlate with the surface geology of Yogyakarta. The Merapi active volcanoes and alluvial deposit in Yogyakarta are clearly described by lower group velocities. The high velocity anomaly contrasts which are visible in the images obtained from the period range between 1 and 5 s, correspond to subsurface imprints of fault that could be the Opak Fault.

  15. Teaching multidisciplinary environmental science in a wetland setting

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Nuzzo, V.A.

    1998-01-01

    High-school students from across the country came to the Illinois State Geological Survey (ISGS) to assist in field research for two weeks in July, 1994, as part of The Johns Hopkins University Center for Talented Youth Summer Experience Program. During the research project at the ISGS, students were exposed to a multidisciplinary scientific investigation where geology, hydrogeology, ground-water chemistry, and plant biology could be directly observed and used to study the potentially destructive effects of nearby road and house construction on a fen-wetland complex. Experienced researchers provided classroom and field instruction to the students prior to leading the field investigations. Following field work, the students returned to the ISGS laboratories where they assisted with the chemical analysis of ground-water samples and compiled and interpreted their data. The students wrote up their results in standard scientific report format and gave oral presentations covering various aspects of the project to an audience of ISGS scientists and guests. The results of their work, which showed changes in the wetland's plant biodiversity resulting from urban development within the watershed, will provide data needed for the preservation of biodiversity in these and other wetlands.

  16. Geologic Resource Evaluation of Kaloko-Honokohau National Historical Park, Hawai'i: Geology and Coastal Landforms

    USGS Publications Warehouse

    Richmond, Bruce M.; Gibbs, Ann E.; Cochran, Susan A.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues that link the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Kaloko-Honokohau National Historical Park (KAHO) was established in 1978 in order to preserve and protect traditional native Hawaiian culture and cultural sites. The park is the site of an ancient Hawaiian settlement, occupies 469 ha and is considered a locale of considerable cultural and historical significance. Cultural resources include fishponds, petroglyphs and a heiau (religious site). The fishponds are also recognized as exceptional birding areas and are important wetlands for migratory birds. The ocean and reef have been designated as a Marine Area Reserve, where green sea turtles commonly come ashore to rest. The park is also a valuable recreational resource, with approximately 4 km of coastline and a protective cove ideal for snorkeling and swimming. KAHO park boundaries extend beyond the mean high tide line and include the adjacent marine environment. An accompanying report for KAHO presents the results of benthic habitat mapping of the offshore waters, from the shoreline to approximately 40 m water depth. Ground-water quality and potential downslope impacts created by development around the park are of concern to Park management.

  17. A guided inquiry approach to learning the geology of the U.S

    USGS Publications Warehouse

    Leech, M.L.; Howell, D.G.; Egger, A.E.

    2004-01-01

    A guided inquiry exercise has been developed to help teach the geology of the U.S. This exercise is intended for use early in the school term when undergraduate students have little background knowledge of geology. Before beginning, students should be introduced to rock types and have a basic understanding of geologic time. This exercise uses three maps: the U.S. Geological Survey's "A Tapestry of Time and Terrain" and "Landforms of the Conterminous United States" maps, and a geologic map of the United States. Using these maps, groups of 3 to 5 students are asked to identify between 8 and 12 geologic provinces based on topography, the age of rocks, and rock types. Each student is given a blank outline map of the contiguous U.S. and each group is given a set of the three maps and colored pencils; as a group, students work to define regions in the U.S. with similar geology. A goal of 8 to 12 geologic provinces is given to help establish the level of detail being asked of students. One member of each group is asked to present their group's findings to the class, describing their geologic provinces and the reasoning behind their choices.

  18. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record

    USGS Publications Warehouse

    Weems, R.E.; Lewis, W.C.

    2002-01-01

    Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.

  19. AAPG forms environmental unit; Geosat moving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-20

    This paper reports that the American Association of Petroleum Geologists has established a new environmental geology division, while a geology related committee is moving from Oklahoma. AAPG set up a Division of Environmental Geosciences to provide services and information to its members working in environmental geosciences, the Bernold M. Bruno Hanson of Midland, Tex., the DEG's first president. The division will publish a newsletter in October, and plans are being set to solicit technical articles for consideration by the AAPG Bulletin and for a possible future separate DEG technical publication.

  20. Complex pegmatite - apelitic of Cabecinha - strategies appreciation of geological heritage and economic development of the region

    NASA Astrophysics Data System (ADS)

    Nobre, José; Cabral, Tiago; Cabral, João; Gomes, Ana

    2014-05-01

    The Complex pegmatite - apelitic of Cabecinha corresponds to an isolated ridge that reaches 933 meters, located in the middle zone of transition between the Hesperian massif and the Cova da Beira being located in the NE central part of Portugal, more specifically in the Mountainous region of the province of Beira Alta, council of Sabugal. This complex lies embedded in porphyritic granites with terms of switching to a medium-grained granite rich in sodium feldspars in which they are muscovite granite intrusions. The lodes have pegmatites with NE-SW orientation, presenting phases of predominantly quartz crystallization with multiple parageneses. The inclusions observed are veins filonianian secondary. Some veins have structural discontinuity due to further their training tectonics. The apelitico material is basic in nature engaging in descontinuiddes of pegmatite material, showing no preferred orientation. The petrological characteristics of the area in question provide the appearance of motivating exotic landforms of scientific interest. These landforms, over time, have motivated the popular level the emergence of various myths, thus contributing to the enrichment of the local cultural heritage. This study proceeded to the geological and geomorphological mapping an area of about 6945,350 m2 with a maximum length of 182 m. The huge patent mineralogical, petrological and geomorphological level geodiversity, allied to the structural complexity and associated cultural heritage, allow geoconservation strategies and recovery, using new multimedia technologies including use of QR codes and 3D. All this geological framework and environment becomes an asset for the scientific, educational and economic development of the region. On the other hand, it has the vital Importance in the context of the strategy of forming a geological park, in the point of view of tourism, research and interpretation.

  1. Conservation and promotion of the geological heritage in the «Ile-de-France» region (France): Establishment of a decision support-tool based on inventory

    NASA Astrophysics Data System (ADS)

    Auberger, Elise; Gély, Jean-Pierre; De Wever, Patrick; Merle, Didier

    2017-04-01

    Based on an initiative by the "Regional Commission of Geological Patrimony" (CRPG), the French state and the regional government of Ile-de-France co-financed the setting up of an inventory with the aim of safeguarding geological sites of patrimonial interest. This project forms part of larger scale policies, at the national and European level. Geological studies in the Paris region began as early as the 18th century, in the fields of cartography and paleontology. Later on, prominent scientists like G. Cuvier, A. Brongniart and A. d'Orbigny established the first concepts in sedimentology and stratigraphy through the description of Cenozoic fossil sites that rank amongst the richest in the world and geological formations in the Paris Basin. Eventually, later on, five historical stratotypes were established in the Ile-de-France region. Yet, at present, this geological heritage is constantly threatened by expanding urbanisation. To conserve this diverse geological patrimony, we have set up a protocol composed of 4 main actions: i) The exhaustive and objective referencing of geological sites in Ile-de-France. This information is centralised in a database, which currently comprises 639 sites (mainly of anthropic nature such as quarries) ii) The pre-selection of sites (298 out of the initial 639) based on sufficient accessibility and potential geological interest. iii) The use of a method of description and hierarchisation - following the guidelines of the National Geological Heritage Inventory Program (INPG) - on the pre-selected sites. iv) Establishment of a schedule specifying actions of geo-conservation which will take into account the patrimonial value of the sites, but also their threats, their juridical status and the socio-economic context of the region. The purpose of this program is to conserve a collection of geological sites that reflect the totality of the regional geology in Ile-de-France. The results of this study will be released to the general public and thus serving as a decision support-tool for government members, territorial administrations and non-profit organisations in the creation of projects of protection and promotion of the geoheritage. This methodology will represent a reference for the management of the geological heritage in urban and peri-urban contexts.

  2. PropBase Query Layer: a single portal to UK subsurface physical property databases

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham

    2013-04-01

    Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple interface. Data are re-engineered to facilitate easy loading. The query layer structure comprises tables, procedures, functions, triggers, views and materialised views. The structure contains a main table PRB_DATA which contains all of the data with the following attribution: • a unique identifier • the data source • the unique identifier from the parent database for traceability • the 3D location • the property type • the property value • the units • necessary qualifiers • precision information and an audit trail Data sources, property type and units are constrained by dictionaries, a key component of the structure which defines what properties and inheritance hierarchies are to be coded and also guides the process as to what and how these are extracted from the structure. Data types served by the Query Layer include site investigation derived geotechnical data, hydrogeology datasets, regional geochemistry, geophysical logs as well as lithological and borehole metadata. The size and complexity of the data sets with multiple parent structures requires a technically robust approach to keep the layer synchronised. This is achieved through Oracle procedures written in PL/SQL containing the logic required to carry out the data manipulation (inserts, updates, deletes) to keep the layer synchronised with the underlying databases either as regular scheduled jobs (weekly, monthly etc) or invoked on demand. The PropBase Query Layer's implementation has enabled rapid data discovery, visualisation and interpretation of geological data with greater ease, simplifying the parametrisation of 3D model volumes and facilitating the study of intra-unit heterogeneity.

  3. Seismotectonic zoning of Azerbaijan territory

    NASA Astrophysics Data System (ADS)

    Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad

    2017-04-01

    Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep structure of Greater and Lesser Caucasus, detailed description of the deep structure of Caspian zone, Kur and Caspian megadepressions, identification of nappe-folded structure of the Absheron Peninsula and the Absheron threshold at the border of Middle and South Caspian, justification of the possible hydrocarbon concentration at the tectonically stratified substantial complexes of mountain and foothill areas, etc. Based on the outcomes of implemented researches, some general conclusions and schemes were drawn for some parts of the project region within the plate tectonics conceptual frameworks, to include the territories of Lesser Caucasus and South Caspian. Analysis and comparison of these data with macroseismic and instrumental data allowed us to conduct seismotectonic studies in a region and develop a new scheme of seismotectonic map with outlined recent and forecasted seismic activity. There also correlated foci zones of earthquakes with subhorizontal and subvertical borders in earth crust, which shows their structure-dynamic relationship. In the one hand, the earthquake foci zones belong to the faults of the basement which extend to sedimentary cover and their intersection knots. On the other hand, there appearing inner-block seismogenic levels, namely, in seismic generation acts all the earth crust: tectonic stress results on movements along fault zones, as well as lateral displacements along non-stable contacts of the structure-substance complexes of different competency.

  4. Microfossils in the Antarctic cold desert: Possible implications for Mars

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.; Ocampo-Friedmann, R.

    1986-01-01

    In the Ross Desert of Antarctica, the principal life form is the cryptoendolithic microbial community in the near-surface layers of porous sandstone rocks. Biological, geological, and climatic factors interact in a complex and precarious balance, making life possible in an otherwise hostile environment. Once this balance is tipped, fossilization sets in. In the reverse case, new colonization of the rock surface may be initiated. As a result, fossilization is contemporary with modern life and both may be simultaneously present in a mosaic pattern. Also, different stages of fossilization are present. The process of fossilization takes place in a nonaquatic environment. If primitive life ever appeared on Mars, it is possible that with increasing aridity, life withdrew into an endolithic niche similar to that in the Antarctic desert. Fossilization in a nonaquatic environment may have set in with the result that traces of past life could be preserved. If such was the case, the study of the fossilization process in Antarctica may hold useful information for the analysis of Martian samples for microfossils.

  5. Stress and Strain Rates from Faults Reconstructed by Earthquakes Relocalization

    NASA Astrophysics Data System (ADS)

    Morra, G.; Chiaraluce, L.; Di Stefano, R.; Michele, M.; Cambiotti, G.; Yuen, D. A.; Brunsvik, B.

    2017-12-01

    Recurrence of main earthquakes on the same fault depends on kinematic setting, hosting lithologies and fault geometry and population. Northern and central Italy transitioned from convergence to post-orogenic extension. This has produced a unique and very complex tectonic setting characterized by superimposed normal faults, crossing different geologic domains, that allows to investigate a variety of seismic manifestations. In the past twenty years three seismic sequences (1997 Colfiorito, 2009 L'Aquila and 2016-17 Amatrice-Norcia-Visso) activated a 150km long normal fault system located between the central and northern apennines and allowing the recordings of thousands of seismic events. Both the 1997 and the 2009 main shocks were preceded by a series of small pre-shocks occurring in proximity to the future largest events. It has been proposed and modelled that the seismicity pattern of the two foreshocks sequences was caused by active dilatancy phenomenon, due to fluid flow in the source area. Seismic activity has continued intensively until three events with 6.0

  6. Preface

    NASA Astrophysics Data System (ADS)

    Taran, Yuri; Tassi, Franco; Varekamp, Johan; Inguaggiato, Salvatore; Kalacheva, Elena

    2017-10-01

    Many volcanoes at any tectonic settings host hydrothermal systems. Volcano-hydrothermal systems (VHS) are result of interaction of the upper part of plumbing systems of active volcanoes with crust, hydrosphere and atmosphere. They are heated by magma, fed by magmatic fluids and meteoric (sea) water, transport and re-distribute magmatic and crustal material. VHS are sensitive to the activity of a host volcano. VHS may have specific features depending on the regional and local tectonic, geologic and geographic settings. The studies reported in this volume help to illustrate the diversity of the approaches and investigations that are being conducting at different volcano-hydrothermal systems over the world and the results of which will be of important value in furthering our understanding of the complex array of the processes accompanying hydrothermal activity of volcanoes. About 60 papers were submitted to a special session of "Volcano-Hydrothermal Systems" at the 2015 fall meeting of the American Geophysical Union. The papers in this special issue of the Journal of Volcanology and Geothermal Research were originally presented at that session.

  7. Sources of shaking and flooding during the Tohoku-Oki earthquake: a mixture of rupture styles

    USGS Publications Warehouse

    Wei, Shengji; Graves, Robert; Helmberger, Don; Avouac, Jean-Philippe; Jiang, Junle

    2012-01-01

    Modeling strong ground motions from great subduction zone earthquakes is one of the great challenges of computational seismology. To separate the rupture characteristics from complexities caused by 3D sub-surface geology requires an extraordinary data set such as provided by the recent Mw9.0 Tohoku-Oki earthquake. Here we combine deterministic inversion and dynamically guided forward simulation methods to model over one thousand high-rate GPS and strong motion observations from 0 to 0.25 Hz across the entire Honshu Island. Our results display distinct styles of rupture with a deeper generic interplate event (~Mw8.5) transitioning to a shallow tsunamigenic earthquake (~Mw9.0) at about 25 km depth in a process driven by a strong dynamic weakening mechanism, possibly thermal pressurization. This source model predicts many important features of the broad set of seismic, geodetic and seafloor observations providing a major advance in our understanding of such great natural hazards.

  8. Terrain types and local-scale stratigraphy of grooved terrain on ganymede

    NASA Technical Reports Server (NTRS)

    Murchie, Scott L.; Head, James W.; Helfenstein, Paul; Plescia, Jeffrey B.

    1986-01-01

    Grooved terrain is subdivided on the basis of pervasive morphology into: (1) groove lanes - elongate parallel groove bands, (2) grooved polygons - polygonal domains of parallel grooves, (3) reticulate terrain - polygonal domains of orthogonal grooves, and (4) complex grooved terrain - polygons with several complexly cross-cutting groove sets. Detailed geologic mapping of select areas, employing previously established conventions for determining relative age relations, reveals a general three-stage sequence of grooved terrain emplacement: first, dissection of the lithosphere by throughgoing grooves, and pervasive deformation of intervening blocks; second, extensive flooding and continued deformation of the intervening blocks; third, repeated superposition of groove lanes concentrated at sites of initial throughgoing grooves. This sequence is corroborated by crater-density measurements. Dominant orientations of groove sets are parallel to relict zones of weakness that probably were reactivated during grooved terrain formation. Groove lane morphology and development consistent with that predicted for passive rifts suggests a major role of global expansion in grooved terrain formation.

  9. SIR-A imagery in geologic studies of the Sierra Madre Oriental, northeastern Mexico. Part 1 (Regional stratigraphy): The use of morphostratigraphic units in remote sensing mapping

    NASA Technical Reports Server (NTRS)

    Longoria, J. F.; Jimenez, O. H.

    1985-01-01

    SIR-A imaging was used in geological studies of sedimentary terrains in the Sierra Madre Oriental, northeastern Mexico. Geological features such as regional strike and dip, bedding, folding and faulting were readily detected on the image. The recognition of morphostructural units in the imagery, coupled with field verification, enabled geological mapping of the region at the scale of 1:250 000. Structural profiling lead to the elaboration of a morphostructural map allowing the recognition of an echelon folds and field trends which were used to postulate the ectonic setting of the region.

  10. Subsurface site conditions and geology in the San Fernando earthquake area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, C.M.; Johnson, J.A.; Kharraz, Y.

    1971-12-01

    The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less

  11. A direct correlation among indoor Rn, soil gas Rn and geology in the Reading Prong near Boyertown, Pennsylvania

    USGS Publications Warehouse

    Reimer, G.M.; Gundersen, L.C.S.

    1989-01-01

    We feel that this study suggests a relationship among geology, soil gas Rn and the potential for indoor Rn accumulation in this portion of the Reading Prong. There are deviations from a perfect correlation but these are related to inhomogeneities in the geologic environment and perhaps variations in construction techniques of homes in the area. This study also demonstrates that several analyses in a small area may be necessary to adequately determine the Rn distribution for a particular geologic unit. That scale would be determined by the complexity of the local geology. Where no discrete source of elevated Rn supply is found for dwellings having a significant Rn accumulation, the implication is that overall gross permeability may be sufficient to supply Rn from a larger volume of soil and rock.

  12. Iterative refinement of implicit boundary models for improved geological feature reproduction

    NASA Astrophysics Data System (ADS)

    Martin, Ryan; Boisvert, Jeff B.

    2017-12-01

    Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.

  13. Earth science photographs from the U.S. Geological Survey Library

    USGS Publications Warehouse

    McGregor, Joseph K.; Abston, Carl C.

    1995-01-01

    This CD-ROM set contains 1,500 scanned photographs from the U.S. Geological Survey Library for use as a photographic glossary of elementary geologic terms. Scholars are encouraged to copy these public domain images into their reports or databases to enhance their presentations. High-quality prints and (or) slides are available upon request from the library. This CD-ROM was produced in accordance with the ISO 9660 standard; however, it is intended for use on DOS-based computer systems only.

  14. Volcanism on Io: Results from Global Geologic Mapping

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.

    2010-01-01

    We have completed a new 1:15,000,000 global geologic map of Jupiter's volcanic moon, Io, based on a set of 1 km/pixel combined Galileo- Voyager mosaics produced by the U.S. Geological Survey. The map was produced over the last three years using ArcGIS(TM) software, and has undergone peer-review. Here we report some of the key results from our global mapping efforts, and how these results relate to questions regarding the volcano-tectonic evolution of Io.

  15. Geologic and Seismologic Investigation

    DTIC Science & Technology

    1988-12-01

    Descriptions, Hidden and Buchanan Dams 4 1.6.1 Hidden Dam 4 1.6.2 Buchanan Dam 5 2 TECTONIC SETTING 2.1 General 7 2.2 Cretaceous-Cenozoic Tectonic ...Activity 7 2.2.1 Cretaceous-Paleogene 8 2.2.2 Neogene 9 2.2.3 Late Cenozoic Tectonic Model 9 3 REGIONAL GEOLOGY 3.1 General 11 3.2 Geologic Units 11...detected by the imagery analysis which indicates there has been no tectonic movement from about 100,000 to 400,000 years ago to the present. The field

  16. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    EPA Science Inventory

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  17. Mapping three-dimensional geological features from remotely-sensed images and digital elevation models

    NASA Astrophysics Data System (ADS)

    Morris, Kevin Peter

    Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line thinning and extraction) and manual interpretation techniques are used to identify a set of 'geological primitives' (linear or arc features representing lithological boundaries) within these data. Inclusion of the DEM data provides the three-dimensional co-ordinates of these primitives enabling a least-squares fit to be employed to calculate dip and strike values, based, initially, on the assumption of a simple, linearly dipping structural model. A very large number of scene 'primitives' is identified using these procedures, only some of which have geological significance. Knowledge-based rules are therefore used to identify the relevant. For example, rules are developed to identify lake edges, forest boundaries, forest tracks, rock-vegetation boundaries, and areas of geomorphological interest. Confidence in the geological significance of some of the geological primitives is increased where they are found independently in both the DEM and remotely sensed data. The dip and strike values derived in this way are compared to information taken from the published geological map for this area, as well as measurements taken in the field. Many results are shown to correspond closely to those taken from the map and in the field, with an error of < 1°. These data and rules are incorporated into an expert system which, initially, produces a simple model of the geological structure. The system also provides a graphical user interface for manual control and interpretation, where necessary. Although the system currently only allows a relatively simple structural model (linearly dipping with faulting), in the future it will be possible to extend the system to model more complex features, such as anticlines, synclines, thrusts, nappes, and igneous intrusions.

  18. Sublake geologic structure from high-resolution seismic-reflection data from four sinkhole lakes in the Lake Wales Ridge, Central Florida

    USGS Publications Warehouse

    Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.

    1996-01-01

    Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where confining units appear to remain intact and unaffected by nearby subsidence activity. Each lake likely is underlain by several piping features rather than one large subsidence feature.

  19. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Knepper, D. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.

  20. Conflation and integration of archived geologic maps and associated uncertainties

    USGS Publications Warehouse

    Shoberg, Thomas G.

    2016-01-01

    Old, archived geologic maps are often available with little or no associated metadata. This creates special problems in terms of extracting their data to use with a modern database. This research focuses on some problems and uncertainties associated with conflating older geologic maps in regions where modern geologic maps are, as yet, non-existent as well as vertically integrating the conflated maps with layers of modern GIS data (in this case, The National Map of the U.S. Geological Survey). Ste. Genevieve County, Missouri was chosen as the test area. It is covered by six archived geologic maps constructed in the years between 1928 and 1994. Conflating these maps results in a map that is internally consistent with these six maps, is digitally integrated with hydrography, elevation and orthoimagery data, and has a 95% confidence interval useful for further data set integration.

  1. Planetary geology and terrestrial analogs in Asia

    NASA Astrophysics Data System (ADS)

    Komatsu, Goro; Namiki, Noriyuki

    2012-04-01

    2011 PERC Planetary Geology Field Symposium;Kitakyushu City, Japan, 5-6 November 2011 In spite of the extremely diverse geological settings that exist in Asia, relatively little attention has previously been paid to this region in terms of terrestrial analog studies for planetary application. Asia is emerging as a major center of studies in planetary geology, but no attempt had been made in the past to organize a broadly based meeting that would allow planetary geologists in Asia to meet with ones from more advanced centers, such as the United States and Europe, and that would include the participation of many geologists working primarily on terrestrial research. The Planetary Exploration Research Center (PERC) of the Chiba Institute of Technology hosted the first planetary geology field symposium in Asia to present results from recent planetary geology studies and to exchange ideas regarding terrestrial analogs (http://www.perc.it-chiba.ac.jp/meetings/pgfs2011/index.html).

  2. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  3. Late Mesoproterozoic to Early Paleozoic history of metamorphic basement from the southeastern Chiapas Massif Complex, Mexico, and implications for the evolution of NW Gondwana

    NASA Astrophysics Data System (ADS)

    Weber, Bodo; González-Guzmán, Reneé; Manjarrez-Juárez, Román; Cisneros de León, Alejandro; Martens, Uwe; Solari, Luigi; Hecht, Lutz; Valencia, Victor

    2018-02-01

    In this paper, U-Pb zircon geochronology, Lu-Hf and Sm-Nd isotope systematics, geochemistry and geothermobarometry of metaigneous basement rocks exposed in the southeastern Chiapas Massif Complex are presented. Geologic mapping of the newly defined "El Triunfo Complex" located at the southeastern edge of the Chiapas Massif reveals (1) partial melting of a metamorphic basement mainly constituted by mafic metaigneous rocks (Candelaria unit), (2) an Ediacaran metasedimentary sequence (Jocote unit), and (3) occurrence of massif-type anorthosite. All these units are intruded by undeformed Ordovician plutonic rocks of the Motozintla suite. Pressure and temperature estimates using Ca-amphiboles, plagioclase and phengite revealed prograde metamorphism that reached peak conditions at 650 °C and 6 kbar, sufficient for partial melting under water saturated conditions. Relict rutile in titanite and clinopyroxene in amphibolite further indicate a previous metamorphic event at higher P-T conditions. U-Pb zircon ages from felsic orthogneiss boudins hosted in deformed amphibolite and migmatite yield crystallization ages of 1.0 Ga, indicating that dry granitic protoliths represent remnants of Rodinia-type basement. Additionally, a mid-Tonian ( 920 Ma) metamorphic overprint is suggested by recrystallized zircon from a banded gneiss. Zircon from folded amphibolite samples yield mainly Ordovician ages ranging from 457 to 444 Ma that are indistinguishable from the age of the undeformed Motozintla plutonic suite. Similar ages between igneous- and metamorphic- zircon suggest a coeval formation during a high-grade metamorphic event, in which textural discrepancies are explained in terms of differing zircon formation mechanisms such as sub-solidus recrystallization and precipitation from anatectic melts. In addition, some amphibolite samples contain inherited zircon yielding Stenian-Tonian ages around 1.0 Ga. Lu-Hf and Sm-Nd isotopes and geochemical data indicate that the protoliths of the amphibolite have E-MORB characteristics and were derived from a depleted mantle source younger than the Rodinia-type basement. Inasmuch as similar amphibolites also occur in the Ediacaran metasedimentary rocks as dykes or lenses, Late Neoproterozoic magmatism in a rift setting is suggested. Hence, the geologic record of the El Triunfo Complex includes evidences for Rodinia assemblage, Tonian circum-Rodinia subduction, and breakup during the Late Neoproterozoic. Metamorphism, and partial melting are interpreted in terms of a convergent margin setting during the Ordovician. The results place the southern Chiapas Massif along with Oaxaquia and similar Northern Andes terranes on the NW margin of Gondwana interpreted as the extension of the Famatinian orogen that evolved during the closure of the Iapetus Ocean.

  4. Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification

    NASA Astrophysics Data System (ADS)

    Gao, Hui

    2018-04-01

    The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.

  5. Chemical analyses (raw laboratory data) and locality index maps of the Confederate Gulch area, Broadwater and Meagher Counties, Montana

    USGS Publications Warehouse

    ,

    1975-01-01

    Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.

  6. Seismic-reflection studies, offshore Santa Maria Province, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, K.J.; Childs, J.R.; Taylor, D.J.

    1991-02-01

    Well data and seismic-reflection records are being analyzed to provide a subsurface geologic framework for the US Geological Survey's Santa Maria Province project. This project, jointly sponsored by the Evolution of Sedimentary Basins and Onshore Oil and Gas Investigations Programs, in a basin-evolution and petroleum geology study focusing on the geologically complex and tectonically active south-central California margin. The area embraces several basins and basin fragments including the onshore Santa Maria, offshore Santa Maria, Pismo, Huasna, Sur, Santa Lucia, and western Santa Barbara-Ventura. These basins have many similarities, including generally synchronous formation at about the end of the Oligocene, developmentmore » on a complex assemblage of Mesozoic tectonostratigraphic terranes, and basin fill consisting of Neogene clastic marine and nonmarine deposits, minor volcanic rocks, and organic-rich biogenous deposits of the Monterey Formation. Despite these similarities, basin origins are controversial and paleogeographies uncertain. In 1990, the US Geological Survey collected approximately 130 line-mi of multichannel seismic reflection data in seven profiles off-shore California from Morro Bay south to the western Santa Barbara Channel. These are the first US Geological Survey seismic data collected in this area since the early 1980s exploratory drilling began in the offshore Santa Maria basin. Profiles were generally oriented perpendicular to structural grain and located to intersect as many well-sites and pre-existing seismic profiles as possible. Profile orientation and spacing were designed to provide the offshore extensions of onshore well-correlation profiles currently under construction. With synthetic seismograms the authors are integrating the stratigraphy of the wells with these seismic-reflection records.« less

  7. Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources

    USGS Publications Warehouse

    Williams, S. Jeffress; Kulp, Mark; Penland, Shea; Kindinger, Jack L.; Flocks, James G.; Buster, Noreen A.; Holmes, Charles W.

    2009-01-01

    Extending nearly 400 km from Sabine Pass on the Texas-Louisiana border east to the Chandeleur Islands, the Louisiana coastal zone (Fig. 11.1) along the north-central Gulf of Mexico is the southern terminus of the largest drainage basin in North America (>3.3 million km2), which includes the Mississippi River delta plain where approximately 6.2 million kilograms per year of sediment is delivered to the Gulf of Mexico (Coleman 1988). The Mississippi River, active since at least Late Jurassic time (Mann and Thomas 1968), is the main distributary channel of this drainage system and during the Holocene has constructed one of the largest delta plains in the world, larger than 30,000 km2 (Coleman and Prior 1980; Coleman 1981; Coleman et al. 1998). The subsurface geology and geomorphology of the Louisiana coastal zone reffects a complex history of regional tectonic events and fluvial, deltaic, and marine sedimentary processes affected by large sea-level fluctuations. Despite the complex geology of the north-central Gulf basin, a long history of engineering studies and Scientific research investigations (see table 11.1) has led to substantial knowledge of the geologic framework and evolution of the delta plain region (see also Bird et al., chapter 1 in this volume). Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources. Available from: https://www.researchgate.net/publication/262802561_Mississippi_River_delta_plain_Louisiana_coast_and_inner_shelf_Holocene_geologic_framework_processes_and_resources [accessed Sep 13, 2017].

  8. Controls on Water Storage, Mixing and Release in a Nested Catchment Set-up with Clean and Mixed Physiographic Characteristics

    NASA Astrophysics Data System (ADS)

    Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.

    2015-12-01

    With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year, regardless of their bedrock geology, permeability and winter season storage filling ratios. Ultimately, catchment organisation in our area of interest (i.e. geology, permeability, flowpath length) appeared to have a strong control on winter runoff coefficients, catchment storage and subsequently baseflow dD.

  9. CONSIDERATIONS FOR A REGULATORY FRAMEWORK FOR LARGE-SCALE GEOLOGIC SEQUESTRATION OF CARBON DIOXIDE: A NORTH AMERICAN PERSPECTIVE

    EPA Science Inventory

    Large scale geologic sequestration (GS) of carbon dioxide poses a novel set of challenges for regulators. This paper focuses on the unique needs of large scale GS projects in light of the existing regulatory regimes in the United States and Canada and identifies several differen...

  10. Influences of watershed geomorphology on extent and composition of riparian vegetation

    Treesearch

    Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers

    2011-01-01

    Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...

  11. The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China

    USGS Publications Warehouse

    Drew, Lawrence J.; Qingrun, Meng; Weijun, Sun

    1990-01-01

    The plate tectonic setting, regional geology and certain aspects of the economic geology of the iron-rare-earth-niobium ore bodies at Bayan Obo, Inner Mongolia, China, were studied by a team of geologists from the Tianjin Geologic Research Academy and the U.S. Geological Survey between 1987 and 1989. These ore bodies were formed by hydrothermal replacement of Middle Proterozoic dolomite in an intra-continental rift setting. A variety of veins and/or dikes that have a carbonatitelike mineralogy cut the footwall clastic rocks and migmatites. A stockwork of veins occurs at several locations in the footwall. The hanging wall is a shale that has been converted to a K-metasomatite and has microcrystalline potassium feldspar as its principal constituent. This shale served as a sealing caprock that contained the chemical solutions that reacted with the dolomite and created the enormous concentration of mineralized rock in an 18-kilometer-long syncline. The rocks that host these ore bodies and the associated mineralized areas occur today as roof pendants in granitoid rocks of Permian age that were emplaced during a continent-to-continent collision during that period.

  12. Geology of Chryse Planitia

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Theilig, E.; Guest, J. E.; Carr, M. H.; Masursky, H.; Cutts, J. A.

    1977-01-01

    Chryse Planitia, the site of the first successful landing on Mars by Viking 1, is an asymmetrical basin, centered at 45 deg W and 24 deg N, about 2000 km northeast of Valles Marineris. High-resolution Viking orbiter images show Chryse Planitia to be much more complex than had been suspected from Mariner 9 images. On the basis of a study of the Viking pictures it is concluded that the geological history of Chryse Planitia involves a complex sequence of impact cratering, mantling by extensive deposits of unknown origin, redistribution of mantling and crater materials by erosion and deposition with concurrent eruptions of flood-type basalts, and aeolian activity.

  13. Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal

    2017-09-01

    The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.

  14. A constrained Delaunay discretization method for adaptively meshing highly discontinuous geological media

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo

    2017-12-01

    A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.

  15. Dzhida Ore District: Geology, Structural and Metallogenic Regionalization, Genetic Types of Ore Deposits, Geodynamic Conditions of Their Formation, Forecast, and Outlook for Development

    NASA Astrophysics Data System (ADS)

    Gordienko, I. V.; Gorokhovsky, D. V.; Smirnova, O. K.; Lantseva, V. S.; Badmatsyrenova, R. A.; Orsoev, D. A.

    2018-01-01

    Based on complex structural, rheological, and metallogenic studies, taking into account the results of earlier subject-specific, prospecting, mapping, and exploration works, it has been established that the geological structure of the district was caused by the ensimatic evolution of the Vendian-Early Paleozoic Dzhida island-arc system, in which oceanic and island-arc complexes served as a melanocratic basement for Late Paleozoic-Mesozoic active within-plate (riftogenic) processes, which gave rise to the formation of ore deposits and occurrences of strategic mineral commodities (Mo, W, Au, Pt, Ag, and rare elements, including REE). Mantle plumes and flows of deep-seated transmagmatic solutions (ore-forming fluids) played a critical role in these processes, the significance of which increases in upper crustal swarms of dikes and fault systems. The forecasts and development prospects of the Dzhida ore district envisage the expansion of geological prospecting and exploration, scientific research, and technological testing of ore for insight into strategic mineral commodities, as well as reanimation of mining within the areas of the Dzhida's large territorial and industrial complex (TIC) in eastern Siberia.

  16. Overview of radiometric ages in three allochthonous belts of Northern Venezuela: Old ones, new ones, and their impact on regional geology

    USGS Publications Warehouse

    Sisson, V.B.; Ave Lallemant, H.G.; Ostos, M.; Blythe, A.E.; Snee, L.W.; Copeland, Peter; Wright, J.E.; Donelick, R.A.; Guth, L.R.

    2005-01-01

    The margin of northern Venezuela is a complex zone representing the orogenic events from basement formation to subsequent subduction and exhumation during transpressional collision. This boundary zone has six east-west-trending belts that each record a different segment of its development. This geologic complexity requires radiometric ages to unravel, and we herein provide 48 new ages including U-Pb (4), Rb-Sr (2), 40Ar/39Ar (24), zircon and apatite fission-track (17), and 14C (1) ages to constrain the evolution of three of these belts. These three belts are the Cordillera de la Costa, Caucagua-El Tinaco, and Serran??a del Interior belts. In the Cordillera de la Costa belt, U-Pb geochronologic data indicate portions of the basement igneous and metaigneous rocks formed in the Cambro-Ordovician (513-471 Ma). New 40Ar/39Ar data from Margarita Island indicate that some of the subduction complex was rapidly cooled and exhumed, whereas other portions indicate slower cooling. This contrasts with new 40Ar/39Ar data from the Puerto Cabello. ?? 2005 Geological Society of America.

  17. U.S. Geological Survey applied research studies of the Cheyenne River System, South Dakota; description and collation of data, water years 1987-88

    USGS Publications Warehouse

    Goddard, K. E.

    1990-01-01

    The Cheyenne River System in western South Dakota has been impacted by the discharge of about 100 million metric tons of gold-mill tailings to Whitewood Creek near Lead, South Dakota. In April 1985, the U.S. Geological Survey initiated an extensive series of research studies to investigate the magnitude of the impact and to define important processes acting on the contaminated sediments present in the system. The report presents all data collected during the 1987 and 1988 water years for these research studies. Some of the data included have been published previously. Data collected in the 1985 and 1986 water years have been published in a companion report (U.S. Geological Survey Open-File Report 88-484). Hydrologic, geochemical, and biologic data are available for sites on Whitewood Creek, and the Belle Fourche and Cheyenne Rivers. Data complexity varies from routine discharge and water-quality to very complex energy-dispersive x-ray analysis. Methods for sample collection, handling and preservation, and laboratory analysis are also presented. No interpretations or complex statistical summaries are included. (See also W89-08390) (USGS)

  18. Tectonic constraints on a deep-seated rock slide in weathered crystalline rocks

    NASA Astrophysics Data System (ADS)

    Borrelli, Luigi; Gullà, Giovanni

    2017-08-01

    Deep-seated rock slides (DSRSs), recognised as one of the most important mass wasting processes worldwide, involve large areas and cause several consequences in terms of environmental and economic damage; they result from a complex of controlling features and processes. DSRSs are common in Calabria (southern Italy) where the complex geo-structural setting plays a key role in controlling the geometry of the failure surface and its development. This paper describes an integrated multi-disciplinary approach to investigate a DSRS in Palaeozoic high-grade metamorphic rocks of the Sila Massif; it focuses on the definition of the internal structure and the predisposing factors of the Serra di Buda landslide near the town of Acri, which is a paradigm for numerous landslides in this area. An integrated interdisciplinary study based on geological, structural, and geomorphological investigations-including field observations of weathering grade of rocks, minero-petrographic characterisations, geotechnical investigations and, in particular, fifteen years of displacement monitoring-is presented. Stereoscopic analysis of aerial photographs and field observations indicate that the Serra di Buda landslide consists of two distinct compounded bodies: (i) an older and dormant body ( 7 ha) and (ii) a more recent and active body ( 13 ha) that overlies the previous one. The active landslide shows movement linked to a deep-seated translational rock slide (block slide); the velocity scale ranges from slow (1.6 m/year during paroxysmal stages) to extremely slow (< 16 mm/year during stable creep stages). The geological structures and rock weathering have played a key role in the landslide's initiation and further development. Steep slope angles, rugged topography, river deepening and erosion at the toe of the slope are also responsible for the formation of this landslide. In particular, the landslide shows a strongly tectonic constraint: the flanks are bounded by high-angle faults, and the main basal failure surface developed inside an E-W southward-dipping thrust fault zone. The entire active rock mass (total volume of approximately 6 Mm3) slid at one time on a failure surface that dipped < 27°, and the maximum depth, as determined by inclinometer measurements, was approximately 58 m. Petrographic and mineralogical analyses suggest that the rocks in the thrust zones, where the failure surfaces develop, are highly affected by weathering processes that significantly reduce the rock strength and facilitate the extensive failure of the Serra di Buda landslide. Finally, the landslide's internal structure, according to geotechnical investigations and displacement monitoring, is proposed. The proposed approach and the obtained results can be generalised to typify other deep landslides in similar geological settings.

  19. Development of a 3D VHR seismic reflection system for lacustrine settings - a case study in Lake Geneva, Switzerland

    NASA Astrophysics Data System (ADS)

    Scheidhauer, M.; Dupuy, D.; Marillier, F.; Beres, M.

    2003-04-01

    For better understanding of geologic processes in complex lacustrine settings, detailed information on geologic features is required. In many cases, the 3D seismic method may be the only appropriate approach. The aim of this work is to develop an efficient very high-resolution 3D seismic reflection system for lake studies. In Lake Geneva, Switzerland, near the city of Lausanne, past high-resolution investigations revealed a complex fault zone, which was subsequently chosen for testing our new system of three 24-channel streamers and integrated differential GPS (dGPS) positioning. A survey, carried out in 9 days in August 2001, covered an area of 1500^om x 675^om and comprised 180 CMP lines sailed perpendicular to the fault strike always updip, since otherwise the asymmetric system would result in different stacks for opposite directions. Accurate navigation and shot spacing of 5^om is achieved with a specially developed navigation and shot-triggering software that uses differential GPS onboard and a reference base close to the lake shore. Hydrophone positions could be accurately (<^o0.5^om) calculated with the aid of three additional dGPS antennas mounted on rafts attached to the streamer tails. Towed at a distance of only 75^om behind the vessel, they allowed determination of possible feathering due to cross-line currents or small course variations. The multi-streamer system uses two retractable booms deployed on each side of the boat and rest on floats. They separate the two outer streamers from the one in the center by a distance of 7.5^om. Combined with a receiver spacing of 2.5^om, the bin dimension of the 3D data becomes 3.75^om in cross-line and 1.25^om in inline direction. Potential aliasing problems from steep reflectors up to 30^o within the fault zone motivated the use of a 15/15 cu. in. double-chamber bubble-canceling Mini G.I. air gun (operated at 80^obars and 1^om depth). Although its frequencies do not exceed 650^o Hz, it combines a penetration of non-aliased signal to depths of 400^om with a best vertical resolution of 1.15^om. The multi-streamer system allows acquisition of high quality data, which already after conventional 3D processing show particularly clear images of the fault zone and the overlying sediments in all directions. Prestack depth migration can further improve data quality and is more appropriate for subsequent geologic interpretation.

  20. Tectonics of East Siberian Sea Basin and its influence on petroleum systems

    NASA Astrophysics Data System (ADS)

    Karpov, Yury; Antonina, Stoupakova; Anna, Suslova; Mariia, Agasheva

    2016-04-01

    The East Siberian Sea basin (ESSB) is the largest part of the Siberian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. Nowadays East Siberian Sea margin is considered as a region with probable high petroleum potential. This part of Russian Arctic shelf is the least studied. The major problems in geological investigation of East Siberian Sea shelf are absence of deep wells in area and low seismic exploration maturity. Only general conclusions on its geology and hydrocarbon systems can be drawn based on limited seismic, gravity and magnetic data, supported by projection of onshore geological data to offshore. So, that's why now only complex geological and seismic stratigraphy interpretations are provided. Today we have several concepts and can summarize the tectonic history of the basin. The basin is filled with siliclastic sediments. In the deepest depocentres sediments thickness exceed 8 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Stratigraphic interpretation was possible to achieve because seismic reflections follow chronostratigraphic correlations. Finally, main seismic horizons were indicated. Each indicated horizon follows regional stratigraphic unconformity. In case of absence of deep wells in ESSB, we can only prove possible source rocks by projection of data about New Siberian Islands archipelago source rocks on offshore. The petroleum potential of these rocks was investigated by several authors [1, 2, 3]. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other Russian and foreign onshore and offshore basins. The majority of structures could be connected with stratigraphic and fault traps. New data on possible petroleum plays was analyzed, large massif of data on geology and tectonic history of the region was collected, so now we can use method of basin modelling to evaluate hydrocarbon saturation in most perspective prospects. Factors of tectonic history, high thickness of sediments in basin, founded possible oil and gas source rocks promise success in future exploration, but in ESSB we also recommend further geophysical investigations (seismic, gravy and magnetic) and well testing of some most perspective prospects, despite of high cost of these activities. We suppose, that investigations of ESSB should be continued to receive positive effects for Russian national economy in the nearest future. References [1] Kirillova (eds) [2013] Geological setting and petroleum potential of sedimentary basins of East Siberian Sea continental margin, v. 1, (in Russian) 249. [2] Sobolev (eds) [2012] Investigation of main sequences of Paleozoic and Meso-Cenozoic sedimentary and magmatic complexes of New Siberian Islands Archipelago, (in Russian), 143. [3] Suprunenko (eds) [2005] Petroleum zoning of Russian East Arctic shelf, Comparative analysis of petroleum potential of this aquatories with definition of perspective prospects and choise of most perspective objects for future projects, v. 1, (in Russian), 264.

  1. Geologic map of the Reyes Peak quadrangle, Ventura County, California

    USGS Publications Warehouse

    Minor, Scott A.

    2004-01-01

    New 1:24,000-scale geologic mapping in the Cuyama 30' x 60' quadrangle, in support of the USGS Southern California Areal Mapping Project (SCAMP), is contributing to a more complete understanding of the stratigraphy, structure, and tectonic evolution of the complex junction area between the NW-trending Coast Ranges and EW-trending western Transverse Ranges. The 1:24,000-scale geologic map of the Reyes Peak quadrangle, located in the eastern part of the Cuyama map area, is the final of six contiguous 7 ?' quadrangle geologic maps compiled for a more detailed portrayal and reevaluation of geologic structures and rock units shown on previous maps of the region (Carman, 1964; Dibblee, 1972; Vedder and others, 1973). SCAMP digital geologic maps of the five other contiguous quadrangles have recently been published (Minor, 1999; Kellogg, 1999, 2003; Stone and Cossette, 2000; Kellogg and Miggins, 2002). This digital compilation presents a new geologic map database for the Reyes Peak 7?' quadrangle, which is located in southern California about 75 km northwest of Los Angeles. The map database is at 1:24,000-scale resolution.

  2. Chemical and oxygen isotope zonings in garnet from subducted continental crust record mineral replacement and metasomatism

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Rubatto, Daniela; Regis, Daniele; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2017-04-01

    Garnet is a key mineral in metamorphic petrology for constraining pressure, temperature and time paths. Garnet can preserve multiple growth stages due to its wide P-T stability field and the relatively slow diffusivity for major and trace elements at sub-solidus temperatures. Pressure-temperature-time-fluid paths of the host rock may be reconstructed by combining metamorphic petrology with microscale trace element and oxygen isotope measurements in garnet. Subduction zones represent relevant geological settings for geochemical investigation of element exchanges during aqueous fluid-rock interactions. The Sesia Zone consists of a complex continental sequence containing a variety of mono-metamorphic and poly-metamorphic lithologies such as metagranitoids, sediments and mafic boudins. The precursor Varisican-Permian amphibolite-facies basement (6-9 kbar 650-850°C; Lardeaux and Spalla, 1991; Robyr et al., 2013) experienced high pressure metamorphism (15-22 kbar 500-550°C; Regis, et al. 2014; Robyr et al., 2013) during Alpine subduction. In different lithologies of the Internal Complex (Eclogitic Micaschist Complex), including metabasites from the Ivozio Complex, Ti-rich metasediments from Val Malone and pre-Alpine Mn-quartzites associated to metagabbros from Cima Bonze, garnet is abundant and shows a variety of complex textures that cannot be reconciled with typical growth zoning, but indicate resorption and replacement processes and possible metasomatism. In-situ, microscale oxygen isotopes analysis of garnet zones was performed by ion microprobe with the SwissSIMS Cameca IMS 1280-HR at University of Lausanne and SHRIMP-SI at the Australian National University. Each sample has a distinct δ18O composition, and the δ18O values show different degrees of variation between domains. Homogeneously low values of < 5‰ are measured in the garnets from the Ivozio Complex metagabbro. Intragrain variations of up to 3.5‰ in the porphyroblasts from Val Malone metasediments, and variations up to 6.5‰ in Cima Bonze garnets suggest significant metasomatic replacement from external fluids. The combination of oxygen isotopes, trace element geochemistry and P-T modelling allows reconstructing the major stages of metasomatism, as well as identifying the nature of the fluid interacting with the rock at each metamorphic stage. REFERENCES Lardeaux, J. M., & Spalla, M. I. (1991). From granulites to eclogites in the Sesia zone (Italian Western Alps): A record of the opening and closure of the Piedmont ocean. Journal of Metamorphic Geology, 9, 35-59. Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., & Engi, M. (2014). Multiple metamorphic stages within an eclogite-facies terrane (Sesia Zone, Western Alps) revealed by Th-U-Pb petrochronology. Journal of Petrology, 55(7), 1429-1456. Robyr, M., Darbellay, B., & Baumgartner, L. P. (2014). Matrix-dependent garnet growth in polymetamorphic rocks of the Sesia zone, Italian Alps. Journal of Metamorphic Geology, 32(1), 3-24.

  3. Internet-based information system of digital geological data providing

    NASA Astrophysics Data System (ADS)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.

  4. Delineation of karst terranes in complex environments: Application of modern developments in the wavelet theory and data mining

    NASA Astrophysics Data System (ADS)

    Alperovich, Leonid; Averbuch, Amir; Eppelbaum, Lev; Zheludev, Valery

    2013-04-01

    Karst areas occupy about 14% of the world land. Karst terranes of different origin have caused difficult conditions for building, industrial activity and tourism, and are the source of heightened danger for environment. Mapping of karst (sinkhole) hazards, obviously, will be one of the most significant problems of engineering geophysics in the XXI century. Taking into account the complexity of geological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient. Wavelet methodology as whole has a significant impact on cardinal problems of geophysical signal processing such as: denoising of signals, enhancement of signals and distinguishing of signals with closely related characteristics and integrated analysis of different geophysical fields (satellite, airborne, earth surface or underground observed data). We developed a three-phase approach to the integrated geophysical localization of subsurface karsts (the same approach could be used for following monitoring of karst dynamics). The first phase consists of modeling devoted to compute various geophysical effects characterizing karst phenomena. The second phase determines development of the signal processing approaches to analyzing of profile or areal geophysical observations. Finally, at the third phase provides integration of these methods in order to create a new method of the combined interpretation of different geophysical data. In the base of our combine geophysical analysis we put modern developments in the wavelet technique of the signal and image processing. The development of the integrated methodology of geophysical field examination will enable to recognizing the karst terranes even by a small ratio of "useful signal - noise" in complex geological environments. For analyzing the geophysical data, we used a technique based on the algorithm to characterize a geophysical image by a limited number of parameters. This set of parameters serves as a signature of the image and is to be utilized for discrimination of images containing karst cavity (K) from the images non-containing karst (N). The constructed algorithm consists of the following main phases: (a) collection of the database, (b) characterization of geophysical images, (c) and dimensionality reduction. Then, each image is characterized by the histogram of the coherency directions. As a result of the previous steps we obtain two sets K and N of the signatures vectors for images from sections containing karst cavity and non-karst subsurface, respectively.

  5. Digital data sets that describe aquifer characteristics of the Vamoosa-Ada aquifer in east-central Oklahoma

    USGS Publications Warehouse

    Abbott, Marvin M.; Runkle, D.L.; Rea, Alan

    1997-01-01

    Nonproprietary format files This diskette contains digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Vamoosa-Ada aquifer in east-central Oklahoma. The Vamoosa-Ada aquifer is an important source of water that underlies about 2,320-square miles of parts of Osage, Pawnee, Payne, Creek, Lincoln, Okfuskee, and Seminole Counties. Approximately 75 percent of the water withdrawn from the Vamoosa-Ada aquifer is for municipal use. Rural domestic use and water for stock animals account for most of the remaining water withdrawn. The Vamoosa-Ada aquifer is defined in a ground-water report as consisting principally of the rocks of the Late Pennsylvanian-age Vamoosa Formation and overlying Ada Group. The Vamoosa-Ada aquifer consists of a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate interbedded with very thin limestones. The water-yielding capabilities of the aquifer are generally controlled by lateral and vertical distribution of the sandstone beds and their physical characteristics. The Vamoosa-Ada aquifer is unconfined where it outcrops in about an 1,700-square-mile area. Most of the lines in the aquifer boundary, hydraulic conductivity, and recharge data sets were extracted from published digital surficial geology data sets based on a scale of 1:250,000, and represent geologic contacts. Some of lines in the data sets were interpolated in areas where the Vamoosa-Ada aquifer is overlain by alluvial and terrace deposits near streams and rivers. These data sets include only the outcrop area of the Vamoosa-Ada aquifer and where the aquifer is overlain by alluvial and terrace deposits. The hydraulic conductivity value and recharge rate are from a ground-water report about the Vamoosa-Ada aquifer. The water-level elevation contours were digitized from a mylar map, at a scale of 1:250,000, used to publish a plate in a ground-water report about the Vamoosa-Ada aquifer. The water-level elevation contours in this data set extend west of the aquifer outcrop area to areas where Vanoss Group rocks overlie the Ada Group. The data set also includes a water-level elevation contour for a terrace deposit east of the aquifer outcrop near the North Canadian River.

  6. Mantle dynamics in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Faccenna, Claudio; Becker, Thorsten W.; Auer, Ludwig; Billi, Andrea; Boschi, Lapo; Brun, Jean Pierre; Capitanio, Fabio A.; Funiciello, Francesca; Horvåth, Ferenc; Jolivet, Laurent; Piromallo, Claudia; Royden, Leigh; Rossetti, Federico; Serpelloni, Enrico

    2014-09-01

    The Mediterranean offers a unique opportunity to study the driving forces of tectonic deformation within a complex mobile belt. Lithospheric dynamics are affected by slab rollback and collision of two large, slowly moving plates, forcing fragments of continental and oceanic lithosphere to interact. This paper reviews the rich and growing set of constraints from geological reconstructions, geodetic data, and crustal and upper mantle heterogeneity imaged by structural seismology. We proceed to discuss a conceptual and quantitative framework for the causes of surface deformation. Exploring existing and newly developed tectonic and numerical geodynamic models, we illustrate the role of mantle convection on surface geology. A coherent picture emerges which can be outlined by two, almost symmetric, upper mantle convection cells. The downwellings are found in the center of the Mediterranean and are associated with the descent of the Tyrrhenian and the Hellenic slabs. During plate convergence, these slabs migrated backward with respect to the Eurasian upper plate, inducing a return flow of the asthenosphere from the back-arc regions toward the subduction zones. This flow can be found at large distance from the subduction zones and is at present expressed in two upwellings beneath Anatolia and eastern Iberia. This convection system provides an explanation for the general pattern of seismic anisotropy in the Mediterranean, first-order Anatolia, and Adria microplate kinematics and may contribute to the high elevation of scarcely deformed areas such as Anatolia and eastern Iberia. More generally, the Mediterranean is an illustration of how upper mantle, small-scale convection leads to intraplate deformation and complex plate boundary reconfiguration at the westernmost terminus of the Tethyan collision.

  7. Instrument Correction and Dynamic Site Profile Validation at the Central United States Seismic Observatory, New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Brengman, C.; Woolery, E. W.; Wang, Z.; Carpenter, S.

    2016-12-01

    The Central United States Seismic Observatory (CUSSO) is a vertical seismic array located in southwestern Kentucky within the New Madrid seismic zone. It is intended to describe the effects of local geology, including thick sediment overburden, on seismic-wave propagation, particularly strong-motion. The three-borehole array at CUSSO is composed of seismic sensors placed on the surface, and in the bedrock at various depths within the 585 m thick sediment overburden. The array's deep borehole provided a unique opportunity in the northern Mississippi embayment for the direct geological description and geophysical measurement of the complete late Cretaceous-Quaternary sediment column. A seven layer, intra-sediment velocity model is interpreted from the complex, inhomogeneous stratigraphy. The S- and P-wave sediment velocities range between 160 and 875 m/s and between 1000 and 2300 m/s, respectively, with bedrock velocities of 1452 and 3775 m/s, respectively. Cross-correlation and direct comparisons were used to filter out the instrument response and determine the instrument orientation, making CUSSO data ready for analysis, and making CUSSO a viable calibration site for other free-field sensors in the area. The corrected bedrock motions were numerically propagated through the CUSSO soil profile (transfer function) and compared, in terms of both peak acceleration and amplitude spectra, to the recorded surface observations. Initial observations reveal a complex spectral mix of amplification and de-amplification across the array, indicating the site effect in this deep sediment setting is not simply generated by the shallowest layers.

  8. Geology of the Smythii and Marginis Region of the Moon: Using Integrated Remotely Sensed Data

    NASA Technical Reports Server (NTRS)

    Gillis, Jeffrey J.; Spudis, Paul D.

    2000-01-01

    We characterized the diverse and complex geology of the eastern limb region of the Moon using a trio of remote-sensing data sets: Clementine, Lunar Prospector, and Apollo. On the basis of Clementine-derived iron and titanium maps we classify the highlands into low-iron (3-6 wt % FeO) and high-iron (6-9 wt % FeO) units. The association of the latter with basalt deposits west of Smythii basin suggests that the highland chemical variation is the result of mixing between basalt and highland lithologies. Mare Smythii and Mare Marginis soils are compositionally similar, containing moderate iron (15-18 wt % FeO) and titanium (2.5-3.5 wt % TiO2). Smythii basin, in addition to the basalt deposits, contains an older, moderate-albedo plains unit. Our investigation reveals that the dark basin plains unit has a distinct albedo, chemistry, and surface texture and formed as a result of impact-mixing between highland and mare lithologies in approximately equal proportions. Clementine iron and maturity maps show that swirls along the northern margin of Mare Marginis have the same iron composition as the surrounding nonswirl material and indicate that the swirl material is bright because of its low agglutinate content. Gravity data for the eastern limb show high, positive Bouguer gravity anomalies for areas of thin basalt cover (e.g., Smythii basin and complex craters Joliot, Lomonosov, and Neper). We deduce that the uplift of dense mantle material is the primary (and mare basaltic fill the secondary) source for generating the concentration of mass beneath large craters and basins.

  9. Application of flowmeter and depth-dependent water quality data for improved production well construction.

    PubMed

    Gossell, M A; Nishikawa, T; Hanson, R T; Izbicki, J A; Tabidian, M A; Bertine, K

    1999-01-01

    Ground water production wells commonly are designed to maximize well yield and, therefore, may be screened over several water-bearing zones. These water-bearing zones usually are identified, and their hydrogeologic characteristics and water quality are inferred, on the basis of indirect data such as geologic and geophysical logs. Production well designs based on these data may result in wells that are drilled deeper than necessary and are screened through zones having low permeability or poor-quality ground water. In this study, we examined the application of flowmeter logging and depth-dependent water quality samples for the improved design of production wells in a complex hydrogeologic setting. As a demonstration of these techniques, a flowmeter log and depth-dependent water quality data were collected from a long-screened production well within a multilayered coastal aquifer system in the Santa Clara-Calleguas Basin, Ventura County, California. Results showed that the well yields most of its water from four zones that constitute 58% of the screened interval. The importance of these zones to well yield was not readily discernible from indirect geologic or geophysical data. The flowmeter logs and downhole water quality data also show that small quantities of poor-quality water could degrade the overall quality of water from the well. The data obtained from one well can be applied to other proposed wells in the same hydrologic basin. The application of flowmeter and depth-dependent water quality data to well design can reduce installation costs and improve the quantity and quality of water produced from wells in complex multiple-aquifer systems.

  10. Application of flowmeter and depth-dependent water quality data for improved production well construction

    USGS Publications Warehouse

    Gossell, M.A.; Nishikawa, Tracy; Hanson, Randall T.; Izbicki, John A.; Tabidian, M.A.; Bertine, K.

    1999-01-01

    Ground water production wells commonly are designed to maximize well yield and, therefore, may be screened over several water-bearing zones. These water-bearing zones usually are identified, and their hydrogeologic characteristics and water quality are inferred, on the basis of indirect data such as geologic and geophysical logs. Production well designs based on these data may result in wells that are drilled deeper than necessary and are screened through zones having low permeability or poor-quality ground water. In this study, we examined the application of flowmeter logging and depth-dependent water quality samples for the improved design of production wells in a complex hydrogeologic setting. As a demonstration of these techniques, a flowmeter log and depth-dependent water quality data were collected from a long-screened production well within a multilayered coastal aquifer system in the Santa Clara-Calleguas Basin, Ventura County, California. Results showed that the well yields most of its water from four zones that constitute 58% of the screened interval. The importance of these zones to well yield was not readily discernible from indirect geologic or geophysical data. The flowmeter logs and downhole water quality data also show that small quantities of poor-quality water could degrade the overall quality of water from the well. The data obtained from one well can be applied to other proposed wells in the same hydrologic basin. The application of flowmeter and depth-dependent water quality data to well design can reduce installation costs and improve the quantity and quality of water produced from wells in complex multiple-aquifer systems.

  11. Prestack depth migration for complex 2D structure using phase-screen propagators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, P.; Huang, Lian-Jie; Burch, C.

    1997-11-01

    We present results for the phase-screen propagator method applied to prestack depth migration of the Marmousi synthetic data set. The data were migrated as individual common-shot records and the resulting partial images were superposed to obtain the final complete Image. Tests were performed to determine the minimum number of frequency components required to achieve the best quality image and this in turn provided estimates of the minimum computing time. Running on a single processor SUN SPARC Ultra I, high quality images were obtained in as little as 8.7 CPU hours and adequate images were obtained in as little as 4.4more » CPU hours. Different methods were tested for choosing the reference velocity used for the background phase-shift operation and for defining the slowness perturbation screens. Although the depths of some of the steeply dipping, high-contrast features were shifted slightly the overall image quality was fairly insensitive to the choice of the reference velocity. Our jests show the phase-screen method to be a reliable and fast algorithm for imaging complex geologic structures, at least for complex 2D synthetic data where the velocity model is known.« less

  12. Ice cover, landscape setting, and geological framework of Lake Vostok, East Antarctica

    USGS Publications Warehouse

    Studinger, M.; Bell, R.E.; Karner, G.D.; Tikku, A.A.; Holt, J.W.; Morse, D.L.; David, L.; Richter, T.G.; Kempf, S.D.; Peters, M.E.; Blankenship, D.D.; Sweeney, R.E.; Rystrom, V.L.

    2003-01-01

    Lake Vostok, located beneath more than 4 km of ice in the middle of East Antarctica, is a unique subglacial habitat and may contain microorganisms with distinct adaptations to such an extreme environment. Melting and freezing at the base of the ice sheet, which slowly flows across the lake, controls the flux of water, biota and sediment particles through the lake. The influx of thermal energy, however, is limited to contributions from below. Thus the geological origin of Lake Vostok is a critical boundary condition for the subglacial ecosystem. We present the first comprehensive maps of ice surface, ice thickness and subglacial topography around Lake Vostok. The ice flow across the lake and the landscape setting are closely linked to the geological origin of Lake Vostok. Our data show that Lake Vostok is located along a major geological boundary. Magnetic and gravity data are distinct east and west of the lake, as is the roughness of the subglacial topography. The physiographic setting of the lake has important consequences for the ice flow and thus the melting and freezing pattern and the lake's circulation. Lake Vostok is a tectonically controlled subglacial lake. The tectonic processes provided the space for a unique habitat and recent minor tectonic activity could have the potential to introduce small, but significant amounts of thermal energy into the lake. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Surficial Geology

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of surficial geology types in square meters compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999).The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. Map showing locations of mines, prospects, and patented mining claims, and classification of mineral deposits in the Silver City 7 1/2-minute Quadrangle, Black Hills, South Dakota

    USGS Publications Warehouse

    DeWitt, Ed; Buscher, David; Wilson, A.B.; Johnson, Thomas

    1988-01-01

    This map is one in a set of 26 maps (see index map) at 1:24,000 scale of the Black Hills region of South Dakota and Wyoming om which are shown a geologic classification of mines, a bibliography of mineral deposits, and locations of active and inactive mines, prospects, and patented mining claims. Some of these maps are published as U. S. Geological Survey Miscellaneous Field Studies Maps (MF series) and some as U.S. Geological Survey Open-File Reports (QF series); see index map. An earlier unpublished version of this set of maps was the data base from which plate 4 (scale 1:250,000) of DeWitt and others (1986) was compiled. Subsequent to that publication, the set has been revised and updated, and prospects and patented claims have been added. These revised and more detailed 1:24,000-scale maps should be used for the equivalent areas of plate 4 of DeWitt and others (1986).

  15. Investigation of the geologic setting and geomorphic processes that control the formation and preservation of precarious rock zones

    NASA Astrophysics Data System (ADS)

    Haddad, D.; Arrowsmith, R.

    2008-12-01

    Zones of precariously balanced rocks have been used as negative indicators of previous strong ground motion in seismically active regions of Southern California and Nevada (e.g. Brune 1996). Understanding the geologic context and the geomorphic framework that control the formation and preservation of precarious rocks is essential to testing their fidelity for extreme ground motion analyses. In this study we assess the geologic settings and the geomorphic processes nested within them using precarious rock zones (Granite Dells, Texas Canyon, and Granite Pediment) in low-seismicity regions of Arizona and Southern California. The Granite Dells locality is a ~20 km2 Proterozoic granite field that is ~5 km from the Prescott Valley graben faults (<0.2 mm/yr of Quaternary slip). The Texas Canyon locality is a ~132 km2 Mesozoic granite field that is ~23 km from the Little Rincon Mountains fault (<0.2 mm/yr of Quaternary slip). The Granite Pediment locality is a ~12 km2 Mesozoic granite pediment located ~96 km from the eastern section of the Garlock fault (<5 mm/yr of Quaternary slip). Characterization of the geologic context of each site included assembling a digital geologic database for Arizona, Southern California, and southern Nevada. The geologic database was queried for granitic bodies and Quaternary deposits. Active faults were categorized by their Quaternary slip rates, and a 20 km zone of no precarious rocks was created around each active fault based on the field surveys of Brune (1996). Aerial photographs were used to map the spatial distribution and geometry of joint sets within each site. Ground surveys using hand-held GPS units and digital photography were conducted to document the characteristics (lithology, size, fragility, weathering characteristics) and spatial density of precariously balanced rocks. Morphometric analyses of digital elevation data may indicate if there is a slope or relief range which the precarious rocks are optimally produced and/or preserved.

  16. How much can we trust a geological model underlying a subsurface hydrological investigation?

    NASA Astrophysics Data System (ADS)

    Wellmann, Florian; de la Varga, Miguel; Schaaf, Alexander; Burs, David

    2017-04-01

    Geological models often provide an important basis for subsequent hydrological investigations. As these models are generally built with a limited amount of information, they can contain significant uncertainties - and it is reasonable to assume that these uncertainties can potentially influence subsequent hydrological simulations. However, the investigation of uncertainties in geological models is not straightforward - and, even though recent advances have been made in the field, there is no out-of-the-box implementation to analyze uncertainties in a standard geological modeling package. We present here results of recent developments to address this problem with an efficient implementation of a geological modeling method for complex structural models, integrated in a Bayesian inference framework. The implemented geological modeling approach is based on a full 3-D implicit interpolation that directly respects interface positions and orientation measurements, as well as the influence of faults. In combination, the approach allows us to generate ensembles of geological model realizations, constrained by additional information in the form of likelihood functions to ensure consistency with additional geological aspects (e.g. sequence continuity, topology, fault network consistency), and we demonstrate the potential of the method in an exemplified case study. With this approach, we aim to contribute to a better understanding of the influence of geological uncertainties on subsurface hydrological investigations.

  17. Adaptive Conditioning of Multiple-Point Geostatistical Facies Simulation to Flow Data with Facies Probability Maps

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, M.; Jafarpour, B.

    2013-12-01

    Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.

  18. Territories typification technique with use of statistical models

    NASA Astrophysics Data System (ADS)

    Galkin, V. I.; Rastegaev, A. V.; Seredin, V. V.; Andrianov, A. V.

    2018-05-01

    Territories typification is required for solution of many problems. The results of geological zoning received by means of various methods do not always agree. That is why the main goal of the research given is to develop a technique of obtaining a multidimensional standard classified indicator for geological zoning. In the course of the research, the probabilistic approach was used. In order to increase the reliability of geological information classification, the authors suggest using complex multidimensional probabilistic indicator P K as a criterion of the classification. The second criterion chosen is multidimensional standard classified indicator Z. These can serve as characteristics of classification in geological-engineering zoning. Above mentioned indicators P K and Z are in good correlation. Correlation coefficient values for the entire territory regardless of structural solidity equal r = 0.95 so each indicator can be used in geological-engineering zoning. The method suggested has been tested and the schematic map of zoning has been drawn.

  19. Selected literature on water-resources investigations in New Jersey by the U.S. Geological Survey, through 1986

    USGS Publications Warehouse

    Schaefer, F. L.

    1987-01-01

    Because of the importance and complexity of the water resources of New Jersey today, there is a need for a current bibliography to serve as a basis for future water resources studies. This report lists about 400 book reports, map reports, and articles that deal with the water resources of New Jersey published through 1986. The publications are grouped under three major headings: (1) publications of the U.S. Geological Survey, (2) publications of State agencies prepared by or in cooperation with the U.S. Geological Survey, and (3) other publications, such as technical journals prepared by or co-authored by U.S. Geological Survey personnel. Most of the publications are available for inspection at the West Trenton office of the U.S. Geologic Survey and at large public and university libraries. Ordering information is given for those publications that are for sale. (USGS)

  20. [Recent advances in analysis of petroleum geological samples by comprehensive two-dimensional gas chromatography].

    PubMed

    Gao, Xuanbo; Chang, Zhenyang; Dai, Wei; Tong, Ting; Zhang, Wanfeng; He, Sheng; Zhu, Shukui

    2014-10-01

    Abundant geochemical information can be acquired by analyzing the chemical compositions of petroleum geological samples. The information obtained from the analysis provides scientifical evidences for petroleum exploration. However, these samples are complicated and can be easily influenced by physical (e. g. evaporation, emulsification, natural dispersion, dissolution and sorption), chemical (photodegradation) and biological (mainly microbial degradation) weathering processes. Therefore, it is very difficult to analyze the petroleum geological samples and they cannot be effectively separated by traditional gas chromatography/mass spectrometry. A newly developed separation technique, comprehensive two-dimensional gas chromatography (GC x GC), has unique advantages in complex sample analysis, and recently it has been applied to petroleum geological samples. This article mainly reviews the research progres- ses in the last five years, the main problems and the future research about GC x GC applied in the area of petroleum geology.

  1. Integration of Field Geophysics and Geology in an International Setting: Multidisciplinary Geoscience Field Experience at the University of Western Ontario

    NASA Astrophysics Data System (ADS)

    Brenders, A. J.; Banerjee, N.; Pratt, R. G.

    2010-12-01

    The pedagogical value of the field experience is unequaled: students, teaching assistants, and professors alike return with a renewed sense of purpose, community, and the context in which to place classroom education. It is widely regarded as valuable to personal development, and is required by the Canadian Council of Professional Geoscientists for professional registration. As part of our ongoing International Geoscience Field Experience Initiative, Earth Sciences students at the University of Western Ontario have the opportunity to enhance their education through a study abroad program. The focus is on a residential field experience to world-class localities, offered with the collaboration of internationally recognized academic researchers, government survey personnel, and industry leaders. Recent trips have included the Sn-W mineralization in the Cornwall district of the U.K., the Iberian Pyrite Belt (IPB) in Portugal and Spain, and the metallogenic belts of Western Turkey. The integration of geological knowledge with geophysical data was one of the key organizing principles of our recent field trips to the IPB and Western Turkey. This integration is a foundation of modern Earth Sciences, and common practice in industry, it is relatively rare in classroom settings. Lectures before departure and evening exercises during the field trip supplemented the core undergraduate curriculum in geophysics, reviewing gravity, DC resistivity, induced polarization (IP), and magnetotelluric methods, focusing on application to mineral exploration. During our trip to the IPB, partnership with industry allowed students the opportunity to work with state of the art geophysical data, acquired on an exploration prospect visited during the field trip. Multi-parameter geophysical inversions of the IP and MT data produced cross-sections in depth - results interpretable by the students in the complex geological environment of the Iberian Pyrite Belt. Although the students gained valuable geological insight, the lack of practical experience in the acquisition and processing of geophysical data was identified in course evaluations. To address this, in Western Turkey, students had the opportunity to design and acquire total magnetic field surveys using a walking magnetometer, combining a GPS receiver and proton-precession magnetometer. Using this instrument, students identified the geophysical response of subsurface features, visible in both outcrop and during traverse through open pit mines. A transect across a buried basalt - limestone contact was made, and the strike of the contact identified during subsequent data processing. Students also had the opportunity to visit an active IP-resistivity survey, observing the acquisition of this data in the field, and learn how project geologists integrate this data with geological drill cores. Finally, students designed and acquired a total magnetic field survey over an archaeological site: the Acropolis at Pergamon. By integrating data acquisition, processing, and interpretation with field visits to sites of both geological and archaeological interest, students acquired field and technical skills that ideally prepared them for a future in research or industry.

  2. Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus

    NASA Technical Reports Server (NTRS)

    Hurwitz, D. M.; Head, J. W.

    2010-01-01

    Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our interpretations of the volcanic history of the region surrounding the north pole of Venus and explore how analysis of new data support our interpretations

  3. Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste

    USGS Publications Warehouse

    Levich, R.A.; Stuckless, J.S.

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.

  4. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  5. Sets of spectral lines for spectrographic thermometry and manometry in d.c. arcs of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.

    1977-01-01

    Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.

  6. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    PubMed

    Müller, R Dietmar; Qin, Xiaodong; Sandwell, David T; Dutkiewicz, Adriana; Williams, Simon E; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  7. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser

    PubMed Central

    Müller, R. Dietmar; Qin, Xiaodong; Sandwell, David T.; Dutkiewicz, Adriana; Williams, Simon E.; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of ‘big data’ and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth’s gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. PMID:26960151

  8. Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida

    USGS Publications Warehouse

    Lidz, B.H.

    2004-01-01

    Major coral reef complexes rim many modern and ancient carbonate platforms. Their role in margin evolution is not fully understood, particularly when they border a margin atypical of the classic model. Classic windward margins are steeply inclined. The windward margin of southeast Florida is distinct with a very low-gradient slope and a shelf edge ringed with 30-m-high Quaternary outlier reefs on a shallow upper-slope terrace. A newly developed synthesis of temporally well-constrained geologic events is used with surface and subsurface seismic-reflection contours to construct morphogenetic models of four discontinuous reef-complex sequences. The models show uneven subsurface topography, upward and landward buildups, and a previously unreported, rapid, Holocene progradation. The terms backstepped reef-complex margin, backfilled prograded margin, and coalesced reef-complex margin are proposed for sections exhibiting suitable signatures in the stratigraphic record. The models have significant implications for interpretation of ancient analogues. The Florida record chronicles four kinds of geologic events. (1) Thirteen transgressions high enough for marine deposition occurred between ca. 325 ka and the present. Six gave rise to stratigraphically successive coral reef complexes between ca. 185 and ca. 77.8 ka. The seventh reef ecosystem is Holocene. (2) Two primary coral reef architectures built the outer shelf and margin, producing respective ridge-and-swale and reef-and-trough geometries of very different scales. (3) Massive outlier reefs developed on an upper-slope terrace between ca. 106.5 and ca. 80 ka and are inferred to contain corals that would date to highstands at ca. 140 and 125 ka. (4) Sea level remained below elevation of the shelf between ca. 77.8 and ca. 9.6 ka. ?? 2004 Geological Society of America.

  9. Ross Ice Shelf, Antarctica: Bathymetry, Structural Geology and Ocean Circulation from New IcePod Airborne Geophysical Data

    NASA Astrophysics Data System (ADS)

    Siddoway, C. S.; Tinto, K. J.; Bell, R. E.; Padman, L.; Fricker, H. A.; Springer, S. R.

    2016-12-01

    Rock exposures in the Ford Ranges, Marie Byrd Land (MBL), on the eastern margin of the Ross Embayment, contain direct evidence of the geological processes that led to formation of West Antarctica's continental lithosphere. Processes include wide regional extension, volcanism, and thermal reequilibration, with creation of crustal structures that are prone to reactivation today. Marie Byrd Land is tectonically active, as is evident from Late Pleistocene to Holocene eruptive centers, englacial volcanic tephra as young as 2200 years, a site of magma propagation inferred from POLEnet seismic records, and the occurrence of a 2012 earthquake cluster of magnitude M4.4 to M5.5 north of Edward VII Peninsula. However, the lithosphere underlying the Ross Ice Shelf (RIS) is poorly known due to the thick cover of shelf ice floating on the ocean, difficult to penetrate by satellite remote sensing or other methods. Airborne geophysical data for the Ford Ranges and the Ross Ice Shelf (RIS) suggest that the rock formations and structures that underlie MBL continue beneath the RIS. Notable features known in outcrop and detected/inferred from potential fields data are Pleistocene or younger mafic volcanic centers and Cretaceous core complexes, both likely associated with wrench faults. The Ford Ranges legacy dataset that now provides a fundamental basis for sub-RIS geological interpretation is a product of research in coastal MBL led by B.P. Luyendyk from 1989 - 2006. To improve our knowledge of lithospheric evolution, identify active faults and prospective zones of volcanism/heat flow, and to determine the sub-RIS bathymetry, the RIS sector is being explored via new Icepod aerogeophysics acquisition during the ROSETTA-Ice project (Ross Ocean and ice Shelf Environment, and Tectonic setting Through Aerogeophysical surveys and modeling), now underway over this vast under-explored sector of the Ross Embayment. ROSETTA-Ice collects and employs new gravity data with magnetics to delineate sediments, bedrock geological units, and faults beneath the RIS, then model bathymetry. This poster will share preliminary results and interpretations. The improved characterization of the subglacial geology and bathymetry will aid in refinement of the tectonic framework and models of oceanographic circulation, with bearing on RIS stability.

  10. Laboratory Modelling of Volcano Plumbing Systems: a review

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to understand the distinct key features of volcanic plumbing systems: dykes, cone sheets, sills, laccoliths, caldera-related structures, ground deformation, magma/fault interactions, and explosive vents. Barenblatt, G.I., 2003. Scaling. Cambridge University Press, Cambridge. Galland, O., Holohan, E.P., van Wyk de Vries, B., Burchardt, S., Accepted. Laboratory modelling of volcanic plumbing systems: A review, in: Breitkreuz, C., Rocchi, S. (Eds.), Laccoliths, sills and dykes: Physical geology of shallow level magmatic systems. Springer.

  11. Transforming Spatial Reasoning Skills in the Upper-Level Undergraduate Geoscience Classroom Through Curricular Materials Informed by Cognitive Science Research

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Shipley, T. F.; Dutrow, B. L.; Goodwin, L. B.; Hickson, T. A.; Tikoff, B.; Atit, K.; Gagnier, K. M.; Resnick, I.

    2014-12-01

    Spatial visualization is an essential skill in the STEM disciplines, including the geosciences. Undergraduate students, including geoscience majors in upper-level courses, bring a wide range of spatial skill levels to the classroom. Students with weak spatial skills may be unable to understand fundamental concepts and to solve geological problems with a spatial component. However, spatial thinking skills are malleable. As a group of geoscience faculty members and cognitive psychologists, we have developed a set of curricular materials for Mineralogy, Sedimentology & Stratigraphy, and Structural Geology courses. These materials are designed to improve students' spatial skills, and in particular to improve students' abilities to reason about spatially complex 3D geological concepts and problems. Teaching spatial thinking in the context of discipline-based exercises has the potential to transform undergraduate STEM education by removing one significant barrier to success in the STEM disciplines. The curricular materials we have developed are based on several promising teaching strategies that have emerged from cognitive science research on spatial thinking. These strategies include predictive sketching, making visual comparisons, gesturing, and the use of analogy. We have conducted a three-year study of the efficacy of these materials in strengthening the spatial skills of students in upper-level geoscience courses at three universities. Our methodology relies on a pre- and post-test study design, with several tests of spatial thinking skills administered at the beginning and end of each semester. In 2011-2012, we used a "business as usual" approach to gather baseline data, measuring how much students' spatial thinking skills improved in response to the existing curricula. In the two subsequent years we have incorporated our new curricular materials, which can be found on the project website: http://serc.carleton.edu/spatialworkbook/activities.html Structural Geology students exposed to the new curricular materials are better able to solve some spatially challenging structural geological problems than students from the baseline year. We are continuing to analyze data from the Mineralogy and Sedimentology/Stratigraphy courses and will have completed the analysis by AGU.

  12. Digital data to support development of a pesticide management plan for the Standing Rock Indian Reservation, Sioux County, North Dakota, and Corson County, South Dakota

    USGS Publications Warehouse

    Schaap, Bryan D.

    2004-01-01

    As part of a program to support development of pesticide management plans for Indian Reservations, the U.S. Geological Survey has been working in cooperation with the U.S. Environmental Protection Agency to make selected information available to the Tribes or in a format easier for the Tribes to use.As a result of this program, four digital data sets related to the geology or hydrology of the Standing Rock Indian Reservation were produced as part of this report. The digital data sets are based on maps published in 1982 at the 1:250,000 scale in "Geohydrology of the Standing Rock Indian Reservation, North and South Dakota," U.S. Geological Survey Hydrologic Investigations Atlas HA-644 by L.W. Howells. The digital data sets were created by 1) scanning the appropriate map to create an image file, 2) registering the image file to real-world coordinates, 3) creating a new image file rectified to real-world coordinates, and 4) digitizing of the features of interest using the rectified image as a guide. As digital data sets, the information can be used in a geographic information system in combination with other information to help develop a pesticide management plan.

  13. Large Crater Clustering tool

    NASA Astrophysics Data System (ADS)

    Laura, Jason; Skinner, James A.; Hunter, Marc A.

    2017-08-01

    In this paper we present the Large Crater Clustering (LCC) tool set, an ArcGIS plugin that supports the quantitative approximation of a primary impact location from user-identified locations of possible secondary impact craters or the long-axes of clustered secondary craters. The identification of primary impact craters directly supports planetary geologic mapping and topical science studies where the chronostratigraphic age of some geologic units may be known, but more distant features have questionable geologic ages. Previous works (e.g., McEwen et al., 2005; Dundas and McEwen, 2007) have shown that the source of secondary impact craters can be estimated from secondary impact craters. This work adapts those methods into a statistically robust tool set. We describe the four individual tools within the LCC tool set to support: (1) processing individually digitized point observations (craters), (2) estimating the directional distribution of a clustered set of craters, back projecting the potential flight paths (crater clusters or linearly approximated catenae or lineaments), (3) intersecting projected paths, and (4) intersecting back-projected trajectories to approximate the local of potential source primary craters. We present two case studies using secondary impact features mapped in two regions of Mars. We demonstrate that the tool is able to quantitatively identify primary impacts and supports the improved qualitative interpretation of potential secondary crater flight trajectories.

  14. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Treesearch

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  15. A Numerical and Theoretical Study of Seismic Wave Diffraction in Complex Geologic Structure

    DTIC Science & Technology

    1989-04-14

    element methods for analyzing linear and nonlinear seismic effects in the surficial geologies relevant to several Air Force missions. The second...exact solution evaluated here indicates that edge-diffracted seismic wave fields calculated by discrete numerical methods probably exhibits significant...study is to demonstrate and validate some discrete numerical methods essential for analyzing linear and nonlinear seismic effects in the surficial

  16. Geologic Setting of Mosul Dam and Its Engineering Implications

    DTIC Science & Technology

    2007-09-01

    thought that an increase in vol- ume, produced during alteration of interbedded anhydrite to gypsum, generated sufficient pressure to fracture the...construction.. ..................................................................23 Figure 8. Geologic sections with water- pressure test values and...contains fragments or clasts of limestone, dolomite , or larger pieces of insoluble rocks of collapsed material. The upper portion of the accumulation

  17. Geology and deposits of the lunar Nectaris basin

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Hawke, B. R.; Lucey, P. G.

    1989-01-01

    The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.

  18. Geology and deposits of the lunar Nectaris basin

    NASA Astrophysics Data System (ADS)

    Spudis, P. D.; Hawke, B. R.; Lucey, P. G.

    The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.

  19. Geologic map of the Callville Bay Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    USGS Publications Warehouse

    Anderson, R. Ernest

    2003-01-01

    Report: 139 Map Scale: 1:24,000 Map Type: colored geologic map A 1:24,000-scale, full-color geologic map and four cross sections of the Callville Bay 7-minute quadrangle in Clark County, Nevada and Mohave County, Arizona. An accompanying text describes 21 stratigraphic units of Paleozoic and Mesozoic sedimentary rocks and 40 units of Cenozoic sedimentary, volcanic, and intrusive rocks. It also discusses the structural setting, framework, and history of the quadrangle and presents a model for its tectonic development.

  20. Sequential decision making in computational sustainability via adaptive submodularity

    USGS Publications Warehouse

    Krause, Andreas; Golovin, Daniel; Converse, Sarah J.

    2015-01-01

    Many problems in computational sustainability require making a sequence of decisions in complex, uncertain environments. Such problems are generally notoriously difficult. In this article, we review the recently discovered notion of adaptive submodularity, an intuitive diminishing returns condition that generalizes the classical notion of submodular set functions to sequential decision problems. Problems exhibiting the adaptive submodularity property can be efficiently and provably near-optimally solved using simple myopic policies. We illustrate this concept in several case studies of interest in computational sustainability: First, we demonstrate how it can be used to efficiently plan for resolving uncertainty in adaptive management scenarios. Secondly, we show how it applies to dynamic conservation planning for protecting endangered species, a case study carried out in collaboration with the US Geological Survey and the US Fish and Wildlife Service.

  1. Integration of Geomatics Techniques for Digitizing Highly Relevant Geological and Cultural Heritage Sites: the Case of San Leo (italy)

    NASA Astrophysics Data System (ADS)

    Girelli, V. A.; Borgatti, L.; Dellapasqua, M.; Mandanici, E.; Spreafico, M. C.; Tini, M. A.; Bitelli, G.

    2017-08-01

    The research activities described in this contribution were carried out at San Leo (Italy). The town is located on the top of a quadrangular rock slab affected by a complex system of fractures and has a wealth of cultural heritage, as evidenced by the UNESCO's nomination. The management of this fragile set requires a comprehensive system of geometrical information to analyse and preserve all the geological and cultural features. In this perspective, the latest Geomatics techniques were used to perform some detailed surveys and to manage the great amount of acquired geometrical knowledge of both natural (the cliff) and historical heritage. All the data were also georeferenced in a unique reference system. In particular, high accurate terrestrial laser scanner surveys were performed for the whole cliff, in order to obtain a dense point cloud useful for a large number of geological studies, among others the analyses of the last rockslide by comparing pre- and post-event data. Moreover, the geometrical representation of the historical centre was performed using different approaches, in order to generate an accurate DTM and DSM of the site. For these purposes, a large scale numerical map was used, integrating the data with GNSS and laser surveys of the area. Finally, many surveys were performed with different approaches on some of the most relevant monuments of the town. In fact, these surveys were performed by terrestrial laser scanner, light structured scanner and photogrammetry, the last mainly applied with the Structure from Motion approach.

  2. Water, land, fire, and forest: Multi-scale determinants of rainforests in the Australian monsoon tropics.

    PubMed

    Ondei, Stefania; Prior, Lynda D; Williamson, Grant J; Vigilante, Tom; Bowman, David M J S

    2017-03-01

    The small rainforest fragments found in savanna landscapes are powerful, yet often overlooked, model systems to understand the controls of these contrasting ecosystems. We analyzed the relative effect of climatic variables on rainforest density at a subcontinental level, and employed high-resolution, regional-level analyses to assess the importance of landscape settings and fire activity in determining rainforest density in a frequently burnt Australian savanna landscape. Estimates of rainforest density (ha/km 2 ) across the Northern Territory and Western Australia, derived from preexisting maps, were used to calculate the correlations between rainforest density and climatic variables. A detailed map of the northern Kimberley (Western Australia) rainforests was generated and analyzed to determine the importance of geology and topography in controlling rainforests, and to contrast rainforest density on frequently burnt mainland and nearby islands. In the northwestern Australian, tropics rainforest density was positively correlated with rainfall and moisture index, and negatively correlated with potential evapotranspiration. At a regional scale, rainforests showed preference for complex topographic positions and more fertile geology. Compared with mainland areas, islands had significantly lower fire activity, with no differences between terrain types. They also displayed substantially higher rainforest density, even on level terrain where geomorphological processes do not concentrate nutrients or water. Our multi-scale approach corroborates previous studies that suggest moist climate, infrequent fires, and geology are important stabilizing factors that allow rainforest fragments to persist in savanna landscapes. These factors need to be incorporated in models to predict the future extent of savannas and rainforests under climate change.

  3. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre,more » and drill site geologic maps and cross-sections from most of the holes.« less

  4. Preliminary Integrated Geologic Map Databases for the United States: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, Rhode Island and Vermont

    USGS Publications Warehouse

    Nicholson, Suzanne W.; Dicken, Connie L.; Horton, John D.; Foose, Michael P.; Mueller, Julia A.L.; Hon, Rudi

    2006-01-01

    The rapid growth in the use of Geographic Information Systems (GIS) has highlighted the need for regional and national scale digital geologic maps that have standardized information about geologic age and lithology. Such maps can be conveniently used to generate derivative maps for manifold special purposes such as mineral-resource assessment, metallogenic studies, tectonic studies, and environmental research. Although two digital geologic maps (Schruben and others, 1994; Reed and Bush, 2004) of the United States currently exist, their scales (1:2,500,000 and 1:5,000,000) are too general for many regional applications. Most states have digital geologic maps at scales of about 1:500,000, but the databases are not comparably structured and, thus, it is difficult to use the digital database for more than one state at a time. This report describes the result for a seven state region of an effort by the U.S. Geological Survey to produce a series of integrated and standardized state geologic map databases that cover the entire United States. In 1997, the United States Geological Survey's Mineral Resources Program initiated the National Surveys and Analysis (NSA) Project to develop national digital databases. One primary activity of this project was to compile a national digital geologic map database, utilizing state geologic maps, to support studies in the range of 1:250,000- to 1:1,000,000-scale. To accomplish this, state databases were prepared using a common standard for the database structure, fields, attribution, and data dictionaries. For Alaska and Hawaii new state maps are being prepared and the preliminary work for Alaska is being released as a series of 1:250,000 scale quadrangle reports. This document provides background information and documentation for the integrated geologic map databases of this report. This report is one of a series of such reports releasing preliminary standardized geologic map databases for the United States. The data products of the project consist of two main parts, the spatial databases and a set of supplemental tables relating to geologic map units. The datasets serve as a data resource to generate a variety of stratigraphic, age, and lithologic maps. This documentation is divided into four main sections: (1) description of the set of data files provided in this report, (2) specifications of the spatial databases, (3) specifications of the supplemental tables, and (4) an appendix containing the data dictionaries used to populate some fields of the spatial database and supplemental tables.

  5. Concordant paleolatitudes for Neoproterozoic ophiolitic rocks of the Trinity Complex, Klamath Mountains, California

    USGS Publications Warehouse

    Mankinen, E.A.; Lindsley-Griffin, N.; Griffin, J.R.

    2002-01-01

    New paleomagnetic results from the eastern Klamath Mountains of northern California show that Neoproterozoic rocks of the Trinity ophiolitic complex and overlying Middle Devonian volcanic rocks are latitudinally concordant with cratonal North America. Combining paleomagnetic data with regional geologic and faunal evidence suggests that the Trinity Complex and related terranes of the eastern Klamath plate were linked in some fashion to the North American craton throughout that time, but that distance between them may have varied considerably. A possible model that is consistent with our paleomagnetic results and the geologic evidence is that the Trinity Complex formed and migrated parallel to paleolatitude in the basin between Laurasia and Australia-East Antarctica as the Rodinian supercontinent began to break up. It then continued to move parallel to paleolatitude at least through Middle Devonian time. Although the eastern Klamath plate served as a nucleus against which more western components of the Klamath Mountains province amalgamated, the Klamath superterrane was not accreted to North America until Early Cretaceous time.

  6. OneGeology - improving access to geoscience globally

    NASA Astrophysics Data System (ADS)

    Jackson, Ian; Asch, Kristine; Tellez-Arenas, Agnès.; Komac, Marko; Demicheli, Luca

    2010-05-01

    The OneGeology concept originated in early 2006. With the potential stimulus of the International Year of Planet Earth (IYPE) very much in mind, the challenge was: could we use IYPE to begin the creation of an interoperable digital geological dataset of the planet? Fourteen months later on the concept was unanimously endorsed by 83 representatives of the international geoscience community at a meeting in Brighton, UK, and goals were set to for a global launch at the 33rd IGC in Oslo in August 2008. The goals that the Brighton meeting agreed for OneGeology were deceptively simple. They were to: • improve the accessibility of geological map data • exchange know-how and skills so that all nations could participate • accelerate interoperability in the geosciences and the take up of a new "standard" (GeoSciML) At the time of writing (January 2010) there are 113 countries participating in OneGeology, more than 40 of which are serving data using a web map portal and protocols, registries and technology to "harvest" and serve data from around the world. An essential part of the development of OneGeology has been the exchange of know-how and provision of guidance and support so that any geological survey can participate and serve their data. The team have also moved forward and raised the profile of a crucial data model and interoperability standard - GeoSciML, which will allow geoscience data to be shared across the globe. OneGeology is coordinated through a two-part "hub" - a Secretariat based at the British Geological Survey (BGS), and the portal technology and servers provided by the French geological survey (BRGM). The "hub" is guided and supported by two international groups - the Operational Management Group (OMG) and the Technical Working Group (TWG). A Steering Group to provide strategic guidance for OneGeology and comprising geological survey directors representing the six continents was formed at the end of 2008. The Steering Group are now looking at options to incorporate Onegeology and consolidate its governance and sustainability. Two regional initiatives have been spawned which are strongly linked to OneGeology. OneGeology-Europe and the US project Geoscience Information Network (GIN) are progressing OneGeology goals in Europe and the USA. Additionally, in south-east Asia, CCOP members are making sure that OneGeology goals are progressed in their region. Each of these initiatives reinforces the other. A set of Success Criteria for the next 3 years, up to the 34 IGC in Brisbane, are providing new goals for the OneGeology work programme. Within these major aims are increasing the number of participants, increasing the number of those participants serving data, and increasing the number of participants moving from a web map service to a web feature service, which will offer significantly improved functionality. Communication and outreach have always been a priority for OneGeology; nonetheless the volume of global media coverage the project has received has been astounding. A dynamic website with rich and regularly updated content is a strong factor in that outreach. The audiences for these presentations range from geoscientists, to informatics and spatial data specialists, to environmental scientists, politicians and not least the general public. OneGeology has proved to be a project that has much broader appeal (and thus more opportunity to communicate the relevance of geology to society) than was ever envisaged. This external appeal has served to strengthen geoscience interest in the project, which has in turn given a higher profile and impetus to the interoperability standards OneGeology uses.

  7. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.

    2015-01-01

    Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

  8. Integrating aeromagnetic and Landsat™ 8 data into subsurface structural mapping of Precambrian basement complex

    NASA Astrophysics Data System (ADS)

    Kayode, John Stephen; Nawawi, M. N. M.; Abdullah, Khiruddin B.; Khalil, Amin E.

    2017-01-01

    The integration of Aeromagnetic data and remotely sensed imagery with the intents of mapping the subsurface geological structures in part of the South-western basement complex of Nigeria was developed using the PCI Geomatica Software. 2013. The data obtained from the Nigerian Geological Survey Agency; was corrected using Regional Residual Separation of the Total Magnetic field anomalies enhanced, and International Geomagnetic Reference Field removed. The principal objective of this study is, therefore, to introduce a rapid and efficient method of subsurface structural depth estimate and structural index evaluation through the incorporation of the Euler Deconvolution technique into PCI Geomatica 2013 to prospect for subsurface geological structures. The shape and depth of burial helped to define these structures from the regional aeromagnetic map. The method enabled various structural indices to be automatically delineated for an index of between 0.5 SI and 3.0 SI at a maximum depth of 1.1 km that clearly showed the best depths estimate for all the structural indices. The results delineate two major magnetic belts in the area; the first belt shows an elongated ridge-like structure trending mostly along the NorthNortheast-SouthSouthwest and the other anomalies trends primarily in the Northeast, Northwest, Northeast-Southwest parts of the study area that could be attributed to basement complex granitic intrusions from the tectonic history of the area. The majority of the second structures showed various linear structures different from the first structure. Basically, a significant offset was delineated at the core segment of the study area, suggesting a major subsurface geological feature that controls mineralisation in this area.

  9. Synthesis of geophysical data with space-acquired imagery: a review

    USGS Publications Warehouse

    Hastings, David A.

    1983-01-01

    Statistical correlation has been used to determine the applicability of specific data sets to the development of geologic or exploration models. Various arithmetic functions have proven useful in developing models from such data sets.

  10. Quantitative and qualitative assessment of the groundwater system behavior to support Brownfield regeneration of Hunedoara (Romania) former steel production site

    NASA Astrophysics Data System (ADS)

    Gogu, R.; Gaitanaru, D.; Ciugulea, O.; Boukhemacha, M. A.; Bica, I.

    2012-04-01

    Located in the Western part of Romania, the study area is the Hunedoara former steel industry site. The current contamination status of the subsurface shows a real threat due to the contribution of more than 100 years of steel production, ironworks operations, coke products generation, and recovery of recycling materials. Analyses performed in 2007 indicated high contaminations with heavy metals like copper, lead, cadmium, manganese, and chromium. As the contamination of the soil and groundwater severe, brownfield regeneration of this site is essential for a sustainable land management. Intelligent remediation techniques with regard to phytoremediation and soil washing with recycled solutions could be applied. However, these techniques could be correctly chosen and applied if a reliable image of the hydrological, geological, hydrogeological, pedological settings exits and after a deep understanding of the contamination mechanisms. As consequence the development of a groundwater flow and contaminant transport model for this area is compulsory. Hunedoara County has a complex geological structure, made by crystalline-Mesozoic units belonging to Southern Carpathians and by sedimentary-volcanic units of Western Carpathians. The site area is shaped by the presence of alluvial deposits from the Superior Holocene. From the lithologic point of view, covered by a thick layer of clay a sandy formation is located at depths bellow 10 m. The two strata are covering an extended carbonate media. The main aquifer is represented by a groundwater body located under the clay layer. The groundwater table of the superficial aquifer is located at about 10 m depth. The one layer groundwater flow model simulating aquifer behavior covers about 1,2 km2. Its conceptual model relies on a 3D geological model made by using 7 accurate geological cross-sections of the studied domain. Detailed geological data was provided by direct-push core sampling correlated with the penetration time and with electrical conductivity tests. One important role in the spatial distribution of the contaminants is played by the hydro-stratigraphical features of the site. In situ testing of hydraulic conductivity has been performed by injecting water under a specified pressure (4-5 bar) into the aquifer. The interpretation provides in a preliminary stage a relative profile of hydraulic conductivity. By means of several slug tests, the results are translated into absolute values of hydraulic conductivity. The calibrated flow model represents the first step for the quantitative assessment of the groundwater parameters. Correlating the surface and soil distribution of the pollutants, a multi-component transport model is currently set-up in order to quantify the spatial distribution of the contaminated area.

  11. Assessment of undiscovered conventional oil and gas resources, onshore Claiborne Group, United Statespart of the northern Gulf of Mexico Basin

    USGS Publications Warehouse

    Hackley, P.C.; Ewing, T.E.

    2010-01-01

    The middle Eocene Claiborne Group was assessed for undiscovered conventional hydrocarbon resources using established U.S. Geological Survey assessment methodology. This work was conducted as part of a 2007 assessment of Paleogene-Neogene strata of the northern Gulf of Mexico Basin, including the United States onshore and state waters (Dubiel et al., 2007). The assessed area is within the Upper Jurassic-CretaceousTertiary composite total petroleum system, which was defined for the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich, downdip, shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources, including the Jurassic Smackover Formation and the Haynesville and Bossier shales, the Cretaceous Eagle Ford and Pearsall (?) formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is currently ongoing. Primary reservoir sandstones in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. A geologic model, supported by spatial analysis of petroleum geology data, including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AUs) with three distinctive structural and depositional settings. The three structural and depositional settings are (1) stable shelf, (2) expanded fault zone, and (3) slope and basin floor; the seven AUs are (1) lower Claiborne stable-shelf gas and oil, (2) lower Claiborne expanded fault-zone gas, (3) lower Claiborne slope and basin-floor gas, (4) lower Claiborne Cane River, (5) upper Claiborne stable-shelf gas and oil, (6) upper Claiborne expanded fault-zone gas, and (7) upper Claiborne slope and basin-floor gas. Based on Monte Carlo simulation of justified input parameters, the total estimated mean undiscovered conventional hydrocarbon resources in the seven AUs combined are 52 million bbl of oil, 19.145 tcf of natural gas, and 1.205 billion bbl of natural gas liquids. This article describes the conceptual geologic model used to define the seven Claiborne AUs, the characteristics of each AU, and the justification behind the input parameters used to estimate undiscovered resources for each AU. The great bulk of undiscovered hydrocarbon resources are predicted to be nonassociated gas and natural gas liquids contained in deep (mostiy >12,000-ft [3658 m], present-day drilling depths), overpressured, structurally complex outer shelf or slope and basin-floor Claiborne reservoirs. The continuing development of these downdip objectives is expected to be the primary focus of exploration activity for the onshore middle Eocene Gulf Coast in the coming decades. ?? 2010 U.S. Geological Survey. All rights reserved.

  12. Hydrology of and Current Monitoring Issues for the Chicago Area Waterway System, Northeastern Illinois

    USGS Publications Warehouse

    Duncker, James J.; Johnson, Kevin K.

    2015-10-28

    The Chicago Area Waterway System (CAWS) consists of a combination of natural and manmade channels that form an interconnected navigable waterway of approximately 90-plus miles in the metropolitan Chicago area of northeastern Illinois. The CAWS serves the area as the primary drainage feature, a waterway transportation corridor, and recreational waterbody. The CAWS was constructed by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). Completion of the Chicago Sanitary and Ship Canal (initial portion of the CAWS) in 1900 breached a low drainage divide and resulted in a diversion of water from the Lake Michigan Basin. A U.S. Supreme Court decree (Consent Decree 388 U.S. 426 [1967] Modified 449 U.S. 48 [1980]) limits the annual diversion from Lake Michigan. While the State of Illinois is responsible for the diversion, the MWRDGC regulates and maintains water level and water quality within the CAWS by using several waterway control structures. The operation and control of water levels in the CAWS results in a very complex hydraulic setting characterized by highly unsteady flows. The complexity leads to unique gaging requirements and monitoring issues. This report provides a general discussion of the complex hydraulic setting within the CAWS and quantifies this information with examples of data collected at a range of flow conditions from U.S. Geological Survey streamflow gaging stations and other locations within the CAWS. Monitoring to address longstanding issues of waterway operation, as well as current (2014) emerging issues such as wastewater disinfection and the threat from aquatic invasive species, is included in the discussion.

  13. Litho-structural analysis of eastern part of Ilesha schist belt, Southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Fagbohun, Babatunde Joseph; Adeoti, Blessing; Aladejana, Olabanji Odunayo

    2017-09-01

    The Ilesha schist belt is an excellent example of high strain shear belt within basement complex of southwestern Nigeria which is part of the larger West African Shield. The Ilesha schist belt is characterised by metasediment-metavolcanic, migmatite-gneiss and older granite rocks and the occurrence of a Shear zone which has been traced to and correlated with the central Hoggar Neoproterozoic shear zone as part of the Trans-Saharan Belt. Although the area is interesting in terms of geologic-tectonic setting, however, detailed geological assessment and structural interpretation of features in this area is lacking due accessibility problem. For these reasons we applied principal component analysis (PCA) and band ratio (BR) techniques on Landsat 8 OLI data for lithological discrimination while for structural interpretation, filtering techniques of edge enhancement and edge detection was applied on digital elevation model (DEM) acquired by shuttle radar topographic mission (SRTM) sensor. The PCA outperform BR for discrimination between quartzite and granite which are the most exposed rock units in the area. For structural interpretation, DEM was used to generate shaded relief model and edge maps which enable detailed structural interpretation. Geologic fieldwork was further conducted to validate structures and units identified from image processing. Based image interpretation, three deformation events were identified. The first event (D1) which is majorly a ductile deformation produced foliations and folds whose axial planes trend in NNE-SSW. The second event (D2) resulted in reactivation and rotation of the D1 structures particularly the folds in the NE-SW. The third event (D3) produced a transgressive deformation starting with the ductile deformation resulting in the development of sigmoidal structures oriented in NE-SW to E-W direction and the brittle deformation occurring at later stages producing fractures oriented in the E-W to NE-SW directions. These results have important implications in terms of regional tectonics and geological mapping as well as in land-use planning and other areas such as hydrogeology or geotechnics.

  14. Folding and Fracturing of Rocks: the background

    NASA Astrophysics Data System (ADS)

    Ramsay, John G.

    2017-04-01

    This book was generated by structural geology teaching classes at Imperial College. I was appointed lecturer during 1957 and worked together with Dr Gilbert Wilson teaching basic structural geology at B.Sc level. I became convinced that the subject, being essentially based on geometric field observations, required a firm mathematical basis for its future development. In particular it seemed to me to require a very sound understanding of stress and strain. My field experience suggested that a knowledge of two- and three-demensional strain was critical in understanding natural tectonic processes. I found a rich confirmation for this in early publications of deformed fossils, oolitic limestones and spotted slates made by several geologists around the beginning of the 20th century (Sorby, Philips, Haughton, Harker) often using surprisingly sophisticated mathematical methods. These methods were discussed and elaborated in Folding and Fracturing of Rocks in a practical way. The geometric features of folds were related to folding mechanisms and the fold related small scale structures such as cleavage, schistosity and lineation explained in terms of rock strain. My work in the Scottish Highlands had shown just how repeated fold superposition could produce very complex geometric features, while further work in other localities suggested that such geometric complications are common in many orogenic zones. From the development of structural geological studies over the past decades it seems that the readers of this book have found many of the ideas set out are still of practical application. The mapping of these outcrop-scale structures should be emphasised in all field studies because they can be seen as ''fingerprints'' of regional scale tectonic processes. My own understanding of structural geology has been inspired by field work and I am of the opinion that future progress in understanding will be likewise based on careful observation and measurement of the features of naturally deformed rocks mathematically analysed using the concepts of three-dimensional continuum mechanics.

  15. The value of DCIP geophysical surveys for contaminated site investigations

    NASA Astrophysics Data System (ADS)

    Balbarini, N.; Rønde, V.; Maurya, P. K.; Møller, I.; McKnight, U. S.; Christiansen, A. V.; Binning, P. J.; Bjerg, P. L.

    2017-12-01

    Geophysical methods are increasingly being used in contaminant hydrogeology to map lithology, hydraulic properties, and contaminant plumes with a high ionic strength. Advances in the Direct Current resistivity and Induced Polarization (DCIP) method allow the collection of high resolution three dimensional (3D) data sets. The DC resistivity can describe both soil properties and the water electrical conductivity, while the IP can describe the lithology and give information on hydrogeological properties. The aim of the study was to investigate a large contaminant plume discharging to a stream from an old factory site by combining traditional geological, hydrological, and contaminant concentration data with DCIP surveys. The plume consisted of xenobiotic organic compounds and inorganics. The study assesses benefits and limitations of DCIP geophysics for contaminated site investigations. A 3D geological model was developed from borehole logs and DCIP data as framework for the complex transport pathways near the meandering stream. IP data were useful in indicating the continuity and the changes in thickness of local clay layers between the borehole logs. The geological model was employed to develop a groundwater flow model describing groundwater flows to the stream. The hydraulic conductivity distribution was based on IP data, slug tests and grain size analysis. The distribution of contaminant concentrations revealed two chemically distinct plumes, separated by a clay layer, with different transport paths to the stream. The DC resistivity was useful in mapping ionic compounds, but also organic compounds whose spatial distribution coincided with the ionic compounds. A conceptual model describing the contaminant plume was developed, and it matched well with contaminant concentrations in stream water and below the streambed. Surface DCIP surveys supported the characterization of the spatial variability in geology, hydraulic conductivity and contaminant concentration. Though DCIP data interpretation required additional borehole data, the DCIP survey reduced the number of boreholes required and helped design field campaigns. The results suggest DCIP surveys are useful and inexpensive tools, which has potential as an integrated part of contaminated site investigations.

  16. Interpretation of high resolution airborne magnetic data (HRAMD) of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method

    NASA Astrophysics Data System (ADS)

    Olurin, Oluwaseun Tolutope

    2017-12-01

    Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.

  17. Environmental geology of the Wilcox Group Lignite Belt, east Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, C.D.; Basciano, J.M.

    This report provides a data base for decisions about lignite mining and reclamation in the Wilcox Group of East Texas. A set of environmental geologic maps, which accompanies this report, depicts the character of the land that will be affected by mining. The environmental geologic maps of the East Texas lignite belt provide an accurate inventory of land resources. The maps identify areas where mining is most likely to occur, areas of critical natural resources that could be affected by mining, such as aquifer recharge areas, and areas of natural hazards, such as floodplains. Principal areas of both active andmore » planned surface mining are also located. The seven environmental geologic maps cover the outcrop area of the Wilcox Group, the major lignite host, and adjacent geologic units from Bastrop County to Texarkana. This report begins with a discussion of various physical aspects of the lignite belt, including geology, hydrology, soils, climate, and land use, to aid in understanding the maps. The criteria and methodology used to delineate the environmental geologic units are discussed. Varied applications of the environmental geologic maps are considered. 23 references, 9 figures, 3 tables.« less

  18. Factors related to well yield in the fractured-bedrock aquifer of New Hampshire

    USGS Publications Warehouse

    Moore, Richard Bridge; Schwartz, Gregory E.; Clark, Stewart F.; Walsh, Gregory J.; Degnan, James R.

    2002-01-01

    The New Hampshire Bedrock Aquifer Assessment was designed to provide information that can be used by communities, industry, professional consultants, and other interests to evaluate the ground-water development potential of the fractured-bedrock aquifer in the State. The assessment was done at statewide, regional, and well field scales to identify relations that potentially could increase the success in locating high-yield water supplies in the fractured-bedrock aquifer. statewide, data were collected for well construction and yield information, bedrock lithology, surficial geology, lineaments, topography, and various derivatives of these basic data sets. Regionally, geologic, fracture, and lineament data were collected for the Pinardville and Windham quadrangles in New Hampshire. The regional scale of the study examined the degree to which predictive well-yield relations, developed as part of the statewide reconnaissance investigation, could be improved by use of quadrangle-scale geologic mapping. Beginning in 1984, water-well contractors in the State were required to report detailed information on newly constructed wells to the New Hampshire Department of Environmental Services (NHDES). The reports contain basic data on well construction, including six characteristics used in this study?well yield, well depth, well use, method of construction, date drilled, and depth to bedrock (or length of casing). The NHDES has determined accurate georeferenced locations for more than 20,000 wells reported since 1984. The availability of this large data set provided an opportunity for a statistical analysis of bedrock-well yields. Well yields in the database ranged from zero to greater than 500 gallons per minute (gal/min). Multivariate regression was used as the primary statistical method of analysis because it is the most efficient tool for predicting a single variable with many potentially independent variables. The dependent variable that was explored in this study was the natural logarithm (ln) of the reported well yield. One complication with using well yield as a dependent variable is that yield also is a function of demand. An innovative statistical technique that involves the use of instrumental variables was implemented to compensate for the effect of demand on well yield. Results of the multivariate-regression model show that a variety of factors are either positively or negatively related to well yields. Using instrumental variables, well depth is positively related to total well yield. Other factors that were found to be positively related to well yield include (1) distance to the nearest waterbody; (2) size of the drainage area upgradient of a well; (3) well location in swales or valley bottoms in the Massabesic Gneiss Complex and Breakfast Hill Granite; (4) well proximity to lineaments, identified using high-altitude (1:80,000-scale) aerial photography, which are correlated with the primary fracture direction (regional analysis); (5) use of a cable tool rig for well drilling; and (6) wells drilled for commercial or public supply. Factors negatively related to well yields include sites underlain by foliated plutons, sites on steep slopes sites at high elevations, and sites on hilltops. Additionally, seven detailed geologic map units, identified during the detailed geologic mapping of the Pinardville and Windham quadrangles, were found to be positively or negatively related to well yields. Twenty-four geologic map units, depicted on the Bedrock Geologic Map of New Hampshire, also were found to be positively or negatively related to well yields. Maps or geographic information system (GIS) data sets identifying areas of various yield probabilities clearly display model results. Probability criteria developed in this investigation can be used to select areas where other techniques, such as geophysical techniques, can be applied to more closely identify potential drilling sites for high-yielding

  19. Airborne Gravity Survey and Ground Gravity in Afghanistan: A Website for Distribution of Data

    USGS Publications Warehouse

    Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.

    2008-01-01

    Afghanistan?s geologic setting suggests significant natural resource potential. Although important mineral deposits and petroleum resources have been identified, much of the country?s potential remains unknown. Airborne geophysical surveys are a well- accepted and cost-effective method for remotely obtaining information of the geological setting of an area. A regional airborne geophysical survey was proposed due to the security situation and the large areas of Afghanistan that have not been covered using geophysical exploration methods. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the U.S. Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan. Data collected during this survey will provide basic information for mineral and petroleum exploration studies that are important for the economic development of Afghanistan. Additionally, use of these data is broadly applicable in the assessment of water resources and natural hazards, the inventory and planning of civil infrastructure and agricultural resources, and the construction of detailed maps. The U.S. Geological Survey is currently working in cooperation with the U.S. Agency of International Development to conduct resource assessments of the country of Afghanistan for mineral, energy, coal, and water resources, and to assess geologic hazards. These geophysical and remote sensing data will be used directly in the resource and hazard assessments.

  20. Database of the Geologic Map of North America - Adapted from the Map by J.C. Reed, Jr. and others (2005)

    USGS Publications Warehouse

    Garrity, Christopher P.; Soller, David R.

    2009-01-01

    The Geological Society of America's (GSA) Geologic Map of North America (Reed and others, 2005; 1:5,000,000) shows the geology of a significantly large area of the Earth, centered on North and Central America and including the submarine geology of parts of the Atlantic and Pacific Oceans. This map is now converted to a Geographic Information System (GIS) database that contains all geologic and base-map information shown on the two printed map sheets and the accompanying explanation sheet. We anticipate this map database will be revised at some unspecified time in the future, likely through the actions of a steering committee managed by the Geological Society of America (GSA) and staffed by scientists from agencies including, but not limited to, those responsible for the original map compilation (U.S. Geological Survey, Geological Survey of Canada, and Woods Hole Oceanographic Institute). Regarding the use of this product, as noted by the map's compilers: 'The Geologic Map of North America is an essential educational tool for teaching the geology of North America to university students and for the continuing education of professional geologists in North America and elsewhere. In addition, simplified maps derived from the Geologic Map of North America are useful for enlightening younger students and the general public about the geology of the continent.' With publication of this database, the preparation of any type of simplified map is made significantly easier. More important perhaps, the database provides a more accessible means to explore the map information and to compare and analyze it in conjunction with other types of information (for example, land use, soils, biology) to better understand the complex interrelations among factors that affect Earth resources, hazards, ecosystems, and climate.

  1. Analysis of deep seismic reflection and other data from the southern Washington Cascades. Final report, September 15, 1992--December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, W.D.; Johnson, S.Y.; Nuccio, V.F.

    1993-12-01

    This report describes results of a synthesis of geological, geological, geophysical and geochemical data from a largely volcanic rock covered region in southwestern Washington that has been identified as a underlain by thick marine sedimentary rocks. The work was funded by the Deep Source Gas projects at the Morgantown Energy Technology Center (METC). The subproject which resulted in this report is centered in the Branch of Geophysics, US Geological Survey (USGS) has involved one task focused on the application of geophysical methods to the study of phenomena associated with fossil and active subduction zones and non-subduction suture zones that maymore » have deeply emplaced sedimentary rocks. This report represents a summary synthesis of several geophysical and geological data sets. The Southern Washington Cascades Conductor (SWCC) has been examined using several types of data in addition to MT, seismic, magnetic, and gravity Specific geological mapping tasks have been completed trough funding by the Department of Energy and the USGS in the western part of the proposed basin near Morton, WA. Other regional geological studies using wells and outcrops done as part of the USGS Evolution of Sedimentary Basins programs have added information that constraint the possible nature of the SWCC rocks and their tectonic setting. Recently, evaluation of patterns of seismicity in the SWCC region has demonstrated the likelihood of several parallel and step-over strike-slip faults that may have produced the proposed basin or altered its geometry. In addition, the seismicity patterns trace the axis of key anticlinal structures and thrusts.« less

  2. 2D Potential Theory using Complex Algebra: New Perspectives for Interpretation of Marine Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Le Maire, P.; Munschy, M.

    2017-12-01

    Interpretation of marine magnetic anomalies enable to perform accurate global kinematic models. Several methods have been proposed to compute the paleo-latitude of the oceanic crust as its formation. A model of the Earth's magnetic field is used to determine a relationship between the apparent inclination of the magnetization and the paleo-latitude. Usually, the estimation of the apparent inclination is qualitative, with the fit between magnetic data and forward models. We propose to apply a new method using complex algebra to obtain the apparent inclination of the magnetization of the oceanic crust. For two dimensional bodies, we rewrite Talwani's equations using complex algebra; the corresponding complex function of the complex variable, called CMA (complex magnetic anomaly) is easier to use for forward modelling and inversion of the magnetic data. This complex equation allows to visualize the data in the complex plane (Argand diagram) and offers a new way to interpret data (curves to the right of the figure (B), while the curves to the left represent the standard display of magnetic anomalies (A) for the model displayed (C) at the bottom of the figure). In the complex plane, the effect of the apparent inclination is to rotate the curves, while on the standard display the evolution of the shape of the anomaly is more complicated (figure). This innovative method gives the opportunity to study a set of magnetic profiles (provided by the Geological Survey of Norway) acquired in the Norwegian Sea, near the Jan Mayen fracture zone. In this area, the age of the oceanic crust ranges from 40 to 55 Ma and the apparent inclination of the magnetization is computed.

  3. To evaluate ERTS-1 data for usefulness as a geological sensor in the diverse geological terranes of New York State

    NASA Technical Reports Server (NTRS)

    Isachsen, Y. W. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. In the present imagery, obtained during the full foliage of summer and fall, the greatest amount of spectral geology is displayed in the Adirondack region where bedrock geology is strongly linked to topography. Of the four spectral bands imaged, band 5 and 7 provide the most geological information. The boundary between the basement rocks of the Adirondack Dome and the surrounding Lower Paleozoic rocks is well delineated except in the Northwest Lowlands and along parts of the eastern Adirondacks. Within the basement complex, the most prominently displayed features are numerous north-northeast trending faults and topographic lineaments, and arcuate east-west valleys developed in some of the weaker metasedimentary rocks. The majority of the faults and lineaments shown on the geologic map of New York appear in the ERTS-1 imagery. In addition, many new linears were detected, as well as a number of anomalous curvilinear elements, some circular in plan and measuring up to 25 km in diameter, which do not bear any clear relationship to mapped geological contacts. The possibility that it is an astrobleme will be investigated after snow melts in the spring.

  4. Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.

    2017-11-01

    Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.

  5. Spectral-element simulations of wave propagation in complex exploration-industry models: Mesh generation and forward simulations

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, T.; Luo, Y.; Morency, C.; Tromp, J.

    2008-12-01

    Seismic-wave propagation in exploration-industry settings has seen major research and development efforts for decades, yet large-scale applications have often been limited to 2D or 3D finite-difference, (visco- )acoustic wave propagation due to computational limitations. We explore the possibility of including all relevant physical signatures in the wavefield using the spectral- element method (SPECFEM3D, SPECFEM2D), thereby accounting for acoustic, (visco-)elastic, poroelastic, anisotropic wave propagation in meshes which honor all crucial discontinuities. Mesh design is the crux of the problem, and we use CUBIT (Sandia Laboratories) to generate unstructured quadrilateral 2D and hexahedral 3D meshes for these complex background models. While general hexahedral mesh generation is an unresolved problem, we are able to accommodate most of the relevant settings (e.g., layer-cake models, salt bodies, overthrusting faults, and strong topography) with respectively tailored workflows. 2D simulations show localized, characteristic wave effects due to these features that shall be helpful in designing survey acquisition geometries in a relatively economic fashion. We address some of the fundamental issues this comprehensive modeling approach faces regarding its feasibility: Assessing geological structures in terms of the necessity to honor the major structural units, appropriate velocity model interpolation, quality control of the resultant mesh, and computational cost for realistic settings up to frequencies of 40 Hz. The solution to this forward problem forms the basis for subsequent 2D and 3D adjoint tomography within this context, which is the subject of a companion paper.

  6. USGS Capabilities to Study the Impacts of Drought and Climate Change in the Southeastern United States

    USGS Publications Warehouse

    ,

    2009-01-01

    In the Southeast, U.S. Geological Survey (USGS) scientists are researching issues through technical studies of water availability and quality, geologic processes (marine, coastal, and terrestrial), geographic complexity, and biological resources. The USGS is prepared to tackle multifaceted questions associated with global climate change and resulting weather patterns such as drought through expert scientific skill, innovative research approaches, and accurate information technology.

  7. Strategic Planning Implementation in Indonesia’s Transmigration Plan.

    DTIC Science & Technology

    1984-06-01

    archipelago has a highly complex geolog - ical history . This effected the nation’s volcanic soil conditicns, numerous mountain systems, and a variety of...distinctive area caused by its geological structure. The islands of Java, Sumatra, and Kalimantan , together with the small islands in between, stand on the...continents, that of Asia and Australia. This formation has made the straits between the islands strategically important throughout history . because of

  8. Application of Microtremor Array Analysis to Estimate the Bedrock Depth in the Beijing Plain area

    NASA Astrophysics Data System (ADS)

    Xu, P.; Ling, S.; Liu, J.; Su, W.

    2013-12-01

    With the rapid expansion of large cities around the world, urban geological survey provides key information regarding resource development and urban construction. Among the major cities of the world, China's capital city Beijing is among the largest cities possessing complex geological structures. The urban geological survey and study in Beijing involves the following aspects: (1) estimating the thickness of the Cenozoic deposit; (2) mapping the three-dimensional structure of the underlying bedrock, as well as its relations to faults and tectonic settings; and (3) assessing the capacity of the city's geological resources in order to support its urban development and operation safety. The geological study of Beijing in general was also intended to provide basic data regarding the urban development and appraisal of engineering and environment geological conditions, as well as underground space resources. In this work, we utilized the microtremor exploration method to estimate the thickness of the bedrock depth, in order to delineate the geological interfaces and improve the accuracy of the bedrock depth map. The microtremor observation sites were located in the Beijing Plain area. Traditional geophysical or geological survey methods were not effective in these areas due to the heavy traffic and dense buildings in the highly-populated urban area. The microtremor exploration method is a Rayleigh-wave inversion technique which extracts its phase velocity dispersion curve from the vertical component of the microtremor array records using the spatial autocorrelation (SPAC) method, then inverts the shear-wave velocity structure. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in ranging from 40 to 300 m, properly adjusted depending on the geological conditions (depth of the bedrock). The collected microtremor data are used to: (1) estimation of phase velocities of Rayleigh-wave from the vertical components of the microtremor records using the SPAC method, and (2) inversion to establish the S-wave velocity structure. Our inversion results show a thick Cenozoic sedimentation in the Fengtai Sag. The bedrock depth is 1510 m at C04-1 and 1575 m at D04-1. In contrast, the Cenozoic sediments are only 193 m thick at E12-1 and 236 m thick at E12-3, indicating very thin Cenozoic sedimentation in the Laiguangying High structural unit. The bedrock at the Houshayu Sag with a depth of 691 m at E16-1 and 875 m at F16-1, respectively, seems to fall somewhere in the middle. The difference between the bedrock depth at the Fengtai Sag and that at the Laiguangying High is as high as 1300 m. This was interpreted as a resulting of a slip along the Taiyanggong fault. On the other hand, the Nankou-Sunhe faulting resulted in a bedrock depth difference of approximately 500 m between the Laiguangying High and Houshayu Sag to the northeast. These results of the bedrock surface depth and its difference in various tectonic units in the Beijing plain area outlined by this article are consistent with both the existing geological data and previous interpretations. The information is deemed very useful for understanding the geological structures, regional tectonics and practical geotechnical problems involved in civil geological engineering in and around Beijing City.

  9. Three-dimensional geologic mapping of the Cenozoic basin fill, Amargosa Desert basin, Nevada and California

    USGS Publications Warehouse

    Taylor, Emily M.; Sweetkind, Donald S.

    2014-01-01

    Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.

  10. The Aegean/Cycladic and the Basin and Range Extensional Provinces - A Tectonic and Geochronologic Perspective

    NASA Astrophysics Data System (ADS)

    Stockli, D. F.

    2017-12-01

    The Aegean/Cycladic region (AC) and the Basin and Range Province (B&R) are two of the most famous Cenozoic extensional provinces and have greatly influenced our thinking about syn-convergent back-arc extension, core complex formation, syn-extensional magmatism, and kinematic transitions. They share numerous tectonic and structural similarities, such as a syn-convergent setting, previous contractional deformation, and core complex formation, but fundamental geological ambiguities remain, mainly centering around timing. The B&R affected a previously contractional belt (Sevier) and voluminous continental magmatic arc that created a pre-extensional orogenic highland. Extension was long-lived and complex, driven by both gravitational collapse and temporally distinct kinematic boundary condition changes. The B&R was also affected by massive, largely pre-extensional regional magmatic flare-ups that modified both the thermal and crustal composition. As the B&R occupies an elevated interior plateau, syn-extensional basin deposits are exclusively continental in character. In contrast, the AC is a classic marine back-arc extensional province that affected an active subduction margin with numerous accreted oceanic and continental ribbons, exhuming an early Cenozoic HP-LT subduction complex. Exhumation of the HP-LT complex, however, was accommodated both by vertical extrusion and crustal extension. Late Cenozoic extensional faulting was contemporaneous with S-ward sweeping arc magmatism and affected by little to no kinematic changes. As both the AC and B&R experienced contractional deformation during K-Cz subduction and J-K shortening, respectively, it is critical to differentiate between contractional and extensional structures and fabrics. The lack of temporal constraints hampers the reconstructions of pre-extensional structural anatomies and extensional strain magnitudes or even the attribution of structures to specific geodynamic settings. Novel methodologies in petrochronology, detrital geochronology, and high- and low-T thermochronometry allow us to elucidate pre-extensional crustal geometries, differentiate contractional from extensional fabrics, and understand the thermal and rheological evolution of these extensional provinces in a more holistic fashion.

  11. Resolving Large Pre-glacial Valleys Buried by Glacial Sediment Using Electric Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.

    2004-05-01

    Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI results were obtained along the Sand Coulee and Onoway transects where the contrast between the bedrock and valley-fill was large and the surficial sediment was homogeneous. The effects of decreasing reliability with depth, 3-D anomalies, principles of equivalence and suppression, and surface inhomogeneity on the image quality are discussed.

  12. Tidal Simulations of an Incised-Valley Fluvial System with a Physics-Based Geologic Model

    NASA Astrophysics Data System (ADS)

    Ghayour, K.; Sun, T.

    2012-12-01

    Physics-based geologic modeling approaches use fluid flow in conjunction with sediment transport and deposition models to devise evolutionary geologic models that focus on underlying physical processes and attempt to resolve them at pertinent spatial and temporal scales. Physics-based models are particularly useful when the evolution of a depositional system is driven by the interplay of autogenic processes and their response to allogenic controls. This interplay can potentially create complex reservoir architectures with high permeability sedimentary bodies bounded by a hierarchy of shales that can effectively impede flow in the subsurface. The complex stratigraphy of tide-influenced fluvial systems is an example of such co-existing and interacting environments of deposition. The focus of this talk is a novel formulation of boundary conditions for hydrodynamics-driven models of sedimentary systems. In tidal simulations, a time-accurate boundary treatment is essential for proper imposition of tidal forcing and fluvial inlet conditions where the flow may be reversed at times within a tidal cycle. As such, the boundary treatment at the inlet has to accommodate for a smooth transition from inflow to outflow and vice-versa without creating numerical artifacts. Our numerical experimentations showed that boundary condition treatments based on a local (frozen) one-dimensional approach along the boundary normal which does not account for the variation of flow quantities in the tangential direction often lead to unsatisfactory results corrupted by numerical artifacts. In this talk, we propose a new boundary treatment that retains all spatial and temporal terms in the model and as such is capable to account for nonlinearities and sharp variations of model variables near boundaries. The proposed approach borrows heavily from the idea set forth by J. Sesterhenn1 for compressible Navier-Stokes equations. The methodology is successfully applied to a tide-influenced incised valley fluvial system and the resulting stratigraphy is shown and discussed for different tide amplitudes. 1 Sesterhenn, J.: "A characteristic-type formulation of the Navier-Stokes equations for high-order upwind schemes", Computers & Fluids 30 (1) 37-67, 2001.;

  13. Geologic controls on submarine slope failure along the central U.S. Atlantic margin: Insights from the Currituck Slide Complex

    USGS Publications Warehouse

    Hill, Jenna C.; Brothers, Daniel S.; Craig, Bradley K.; ten Brink, Uri S.; Chaytor, Jason D.; Flores, Claudia

    2017-01-01

    Multiple styles of failure, ranging from densely spaced, mass transport driven canyons to the large, slab-type slope failure of the Currituck Slide, characterize adjacent sections of the central U.S. Atlantic margin that appear to be defined by variations in geologic framework. Here we use regionally extensive, deep penetration multichannel seismic (MCS) profiles to reconstruct the influence of the antecedent margin physiography on sediment accumulation along the central U.S. Atlantic continental shelf-edge, slope, and uppermost rise from the Miocene to Present. These data are combined with high-resolution sparker MCS reflection profiles and multibeam bathymetry data across the Currituck Slide Complex. Pre-Neogene allostratigraphic horizons beneath the slope are generally characterized by low gradients and convex downslope profiles. This is followed by the development of thick, prograded deltaic clinoforms during the middle Miocene. Along-strike variations in morphology of a regional unconformity at the top of this middle Miocene unit appear to have set the stage for differing styles of mass transport along the margin. Areas north and south of the Currituck Slide are characterized by oblique margin morphology, defined by an angular shelf-edge and a relatively steep (> 8°), concave slope profile. Upper slope sediment bypass, closely spaced submarine canyons, and small, localized landslides confined to canyon heads and sidewalls characterize these sectors of the margin. In contrast, the Currituck region is defined by a sigmoidal geometry, with a rounded shelf-edge rollover and gentler slope gradient (< 6°). Thick (> 800 m), regionally continuous stratified slope deposits suggest the low gradient Currituck region was a primary depocenter for fluvial inputs during multiple sea level lowstands. These results imply that the rounded, gentle slope physiography developed during the middle Miocene allowed for a relatively high rate of subsequent sediment accumulation, thus providing a mechanism for compaction–induced overpressure that preconditioned the Currituck region for failure. Detailed examination of the regional geological framework illustrates the importance of both sediment supply and antecedent slope physiography in the development of large, potentially unstable depocenters along passive margins.

  14. What can hafnium isotope ratios arrays tell us about orogenic processes? An insight into geodynamic processes operating in the Alpine/Mediterranean region

    NASA Astrophysics Data System (ADS)

    Henderson, B.; Murphy, J.; Collins, W. J.; Hand, M. P.

    2013-12-01

    Over the last decade, technological advances in laser-ablation sampling techniques have resulted in an increase in the number of combined U-Pb-Hf zircon isotope studies used to investigate crustal evolution on a local, regional and global scale. Hafnium isotope arrays over large time scales (>500 myr) have been interpreted to track evolving plate tectonic configurations, and the geological outputs associated with changing plate boundaries. We use the Alpine-Mediterranean region as an example of how hafnium isotope arrays record the geodynamic processes associated with the complex geological evolution of a region. The geology of Alpine-Mediterranean region preserves a complex, semi-continuous tectonic history that extends from the Neoproterozoic to the present day. Major components of the Variscan and Alpine orogens are microcontinental ribbons derived from the northern Gondwanan margin, which were transferred to the Eurasian plate during the opening and closing of the Rheic and Paleo-Tethys Oceans. Convergence of the Eurasian and African plates commenced in the Mid-Late Cretaceous, following the destruction of the Alpine-Tethys Ocean during the terminal breakup of Pangea. In general, convergence occurred slowly and is characterised by northward accretion of Gondwanan fragments, interspersed with subduction of African lithosphere and intermittent roll-back events. A consequence of this geodynamic scenario was periods of granite-dominated magmatism in an arc-backarc setting. New Hf isotope data from the peri-Gondwanan terranes (Iberia, Meguma and Avalonia) and a compilation of existing Phanerozoic data from the Alpine-Mediterranean region, indicate ~500 myr (Cambrian-Recent) of reworking of peri-Gondwanan crust. The eHf array follows a typical crustal evolution pattern (Lu/Hf=0.015) and is considered to reflect reworking of juvenile peri-Gondwanan (Neoproterozoic) crust variably mixed with an older (~1.8-2.0 Ga) source component, probably Eburnian crust from the West Africa Craton. The Phanerozoic Hf isotopic data from Variscan and Alpine Europe suggest that slow translation of continental fragments from one continent to another produces a characteristic, long-term crustal reworking eHf array, which strongly contrasts with the Hf array defined by Phanerozoic circum-Pacific orogens.

  15. Storm Observations of Persistent Three-Dimensional Shoreline Morphology and Bathymetry Along a Geologically Influenced Shoreface Using X-Band Radar (BASIR)

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; McNinch, J. E.

    2008-12-01

    Accurate predictions of shoreline response to storms are contingent upon coastal-morphodynamic models effectively synthesizing the complex evolving relationships between beach topography, sandbar morphology, nearshore bathymetry, underlying geology, and the nearshore wave-field during storm events. Analysis of "pre" and "post" storm data sets have led to a common theory for event response of the nearshore system: pre-storm three-dimensional bar and shoreline configurations shift to two-dimensional, linear forms post- storm. A lack of data during storms has unfortunately left a gap in our knowledge of how the system explicitly changes during the storm event. This work presents daily observations of the beach and nearshore during high-energy storm events over a spatially extensive field site (order of magnitude: 10 km) using Bar and Swash Imaging Radar (BASIR), a mobile x-band radar system. The field site contains a complexity of features including shore-oblique bars and troughs, heterogeneous sediment, and an erosional hotspot. BASIR data provide observations of the evolution of shoreline and bar morphology, as well as nearshore bathymetry, throughout the storm events. Nearshore bathymetry is calculated using a bathymetry inversion from radar- derived wave celerity measurements. Preliminary results show a relatively stable but non-linear shore-parallel bar and a non-linear shoreline with megacusp and embayment features (order of magnitude: 1 km) that are enhanced during the wave events. Both the shoreline and shore-parallel bar undulate at a similar spatial frequency to the nearshore shore- oblique bar-field. Large-scale shore-oblique bars and troughs remain relatively static in position and morphology throughout the storm events. The persistence of a three-dimensional shoreline, shore-parallel bar, and large-scale shore-oblique bars and troughs, contradicts the idea of event-driven shifts to two- dimensional morphology and suggests that beach and nearshore response to storms may be location specific. We hypothesize that the influence of underlying geology, defined by (1) the introduction of heterogeneous sediment and (2) the possible creation of shore-oblique bars and troughs in the nearshore, may be responsible for the persistence of three-dimensional forms and the associated shoreline hotspots during storm events.

  16. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.

    2009-01-01

    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best…

  17. Facies dimensions within carbonate reservoirs - guidelines from satellite images of modern analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, P.M.; Kowalik, W.S.

    1995-08-01

    Modern analogs illustrate the distribution of carbonate facies within an overall depositional setting and can be an integral part of a subsurface geologic model in indicating the dimensions, trend, and interrelationships of facies that might be related to reservoir and non-reservoir distribution. Satellite images from several modern carbonate areas depict the geologic characteristics that can be expected in ancient shallow-water settings. Isolated carbonate platforms- the Bahamas, Caicos Platform in the British West Indies, Chinchorro Bank offshore of Yucatan, and portions of the Belize area; Ramp-style shelf-to-basin transitions - Abu Dhabi and northern Yucatan; Rimmed shelf margins - South Florida, portionsmore » of Belize, and the Great Barrier Reef of Australia; Broad, deep shelf lagoons - the Great Barrier Reef and Belize; Reef variability - South Florida, the Bahamas, Caicos, Northern Yucatan, and Abu Dhabi; Shallow lagoon/tidal flat settings - South Florida, the Bahamas, Caicos, Northern Yucatan, Shark Bay in Western Australia, Abu Dhabi; Mixed carbonate and siliciclastic depostion - South Florida, Belize, the Great Barrier Reef, Shark Bay and Abu Dhabi. The geologic framework as illustrated by these areas is important at the development scale where lateral variation of porosity and permeability, i.e. reservoir quality, is commonly tied to facies changes and facies dimensions are required as input to reservoir models. The geologic framework is essential at the exploration scale for reservoir facies prediction and stratigraphic play concepts which are related directly to depositional facies patterns.« less

  18. Geologic map of Ophir and central Candor Chasmata (MTM -05072) of Mars

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1999-01-01

    The geologic map of Ophir and central Candor Chasmata is one of a series of 1:500,000 scale maps prepared for areas on Mars that are of particular scientific interest and may serve as potential future landing sites. This map is also part of a set that includes east Candor Chasma, west Candor Chasma, and Melas Chasma. The geologic interpretations are based dominantly on medium- and high-resolution Viking images, many of them stereoscopic, and supplemented by lower resolution apoapsis and other color images. A strip of very high resolution stereoscopic images (~20 m/pixel) crosses the central part of the quadrangle from northwest to southeast and served to clarify detailed relations not obvious on other images. A topographic map with contour intervals of 200 m was also used, as were multidirectional oblique images derived from merged image mosaics and topography (see fig. 1) (Bertolini and McEwen, 1990). Geologic relations and interpretations are based on the entire central Valles Marineris map set. The map area is included in the Valles Marineris map of Witbeck and others (1991), but units were defined independently. Age assignments, however, were integrated with those by Witbeck and others and Scott and Tanaka (1986).

  19. Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Herkenhoff, K.

    2010-01-01

    The 1:500K-scale geologic map of MTM 85200 - the Olympia Cavi region of Mars - has been submitted for peer review [1]. Physiographically, the quadrangle includes portions of Olympia Rupes, a set of sinuous scarps which elevate Planum Boreum 800 meters above Olympia Planum. The region includes the high-standing, spiral troughs of Boreales Scopuli, the rugged and deep depressions of Olympia Cavi, and the vast dune fields of Olympia Undae. Geologically, the mapped units and landforms reflect the recent history of repeated accumulation and degradation. The widespread occurrence of both weakly and strongly stratified units implicates the drape-like accumulation of ice, dust, and sand through climatic variations. Similarly, the occurrence of layer truncations, particularly at unit boundaries, implicates punctuated periods of both localized and regional erosion and surface deflation whereby underlying units were exhumed and their material transported and re-deposited. Herein, we focus on the iterative mapping approaches that allowed not only the accommodation of the burgeoning variety and volume of data sets, but also facilitated the efficient presentation of map information. Unit characteristics and their geologic history are detailed in past abstracts [2-3].

  20. Lateral variations in geologic structure and tectonic setting from remote sensing data

    NASA Astrophysics Data System (ADS)

    Alexander, S. S.

    1983-05-01

    The principal objective of this study was: (1) to assess the usefulness of remote sensing digital imagery, principally LANDSAT multispectral scanning (MSS) data, for inferring lateral variations in geologic structure and tectonic setting; and (2) to determine the extent to which these inferred variations correlate with observed variations in seismic excitation from underground nuclear explosion test sites in the Soviet Union. Soviet, French and U.S. test sites have been investigated to compare their geologic and tectonic responses as seen by LANDSAT. The characteristics of "granite' intrusive bodies exposed at Semipalatinsk (Degelen), North Africa (Hoggar), NTS (Climax stock), and an analog site in Maine (Mt. Katahdin), have been studied in detail. The tectonic stress field inferred from the tectonic release portion of seismic signatures of explosions in these three areas is compared with local and regional fracture patterns discernable from imagery. The usefulness of satellite synthetic aperture radar (SAR) to determine geologic conditions and delineate fault (fracture) patterns is demonstrated by the analysis of SEASAT data for an area in the eastern United States. Algorithms to enhance structural boundaries and to use textures to identify rock types were developed and applied to several test sites.

  1. Tiny timekeepers witnessing high-rate exhumation processes.

    PubMed

    Zhong, Xin; Moulas, Evangelos; Tajčmanová, Lucie

    2018-02-02

    Tectonic forces and surface erosion lead to the exhumation of rocks from the Earth's interior. Those rocks can be characterized by many variables including peak pressure and temperature, composition and exhumation duration. Among them, the duration of exhumation in different geological settings can vary by more than ten orders of magnitude (from hours to billion years). Constraining the duration is critical and often challenging in geological studies particularly for rapid magma ascent. Here, we show that the time information can be reconstructed using a simple combination of laser Raman spectroscopic data from mineral inclusions with mechanical solutions for viscous relaxation of the host. The application of our model to several representative geological settings yields best results for short events such as kimberlite magma ascent (less than ~4,500 hours) and a decompression lasting up to ~17 million years for high-pressure metamorphic rocks. This is the first precise time information obtained from direct microstructural observations applying a purely mechanical perspective. We show an unprecedented geological value of tiny mineral inclusions as timekeepers that contributes to a better understanding on the large-scale tectonic history and thus has significant implications for a new generation of geodynamic models.

  2. Regionalization of low-flow characteristics of Tennessee streams

    USGS Publications Warehouse

    Bingham, R.H.

    1986-01-01

    Procedures for estimating 3-day 2-year, 3-day 10-year, 3-day 20-year, and 7-day 10-year low flows at ungaged stream sites in Tennessee are based on surface geology and drainage area size. One set of equations applies to west Tennessee streams, and another set applies to central and east Tennessee streams. The equations do not apply to streams where flow is significantly altered by activities of man. Standard errors of estimate of equations for west Tennessee are 24 to 32% and for central and east Tennessee 31 to 35%. Streamflow recession indexes, in days/log cycle, are used to account for effects of geology of the drainage basin on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that sustain streamflows during periods of no surface runoff. Streamflow recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)

  3. GeoWall use in an Introductory Geology laboratory: Impacts in Student Understanding of Field Mapping Concepts

    NASA Astrophysics Data System (ADS)

    Ross, L. E.; Kelly, M.; Springer, A. E.

    2003-12-01

    In the Fall semester of 2003, Northern Arizona University will introduce the GeoWall to its introductory geology courses. This presents an opportunity to assess the impact of this new technology on students' understanding of basic topographic concepts and the spatial relationships between geology, topography, and hydrology on a field trip. Introductory Geology fulfills the Lab Science component of the Liberal Studies Program at Northern Arizona University. The class is open to all Northern Arizona University students, and is most commonly taken by non-science majors. In this class students learn to: locate their position using maps, identify common minerals and rocks, recognize the relationship between geology and geomorphology, visualize how rocks exposed at the surface continue into the subsurface, and to draw conclusions about possible geologic hazards in different settings. In this study we will report how a GeoWall 3D visualization technology was used in a field study of a graben south of Flagstaff. The goal of the field exercise is to improve students' ability to synthesize data collected at field stops into a conceptual model of the graben, linking geology, geomorphology and hydrology. We plan to present a quantitative assessment of the GeoWall learning objectives from data collected from a paired test and control group of students. Teaching assistants (TAs) with two or more lab classes have been identified; these TAs will participate in both GeoWall and non-GeoWall lab exercises. The GeoWall use will occur outside of normal lab hours to avoid disrupting the lab schedule during the eighth week of lab. This field preparation exercise includes a 3D visualization of the Lake Mary graben rendered with the ROMA software. The following week, all students attend the graben field trip; immediately following the trip, students will interviewed about their gain in understanding of the geologic features illustrated during the field trip. The results of the post-fieldtrip interviews will also be presented to quantitatively assess how students perceive the use of the GeoWall in this introductory geology setting, and how it affected their understanding.

  4. Cooperative Educational Project - The Southern Appalachians: A Changing World

    NASA Astrophysics Data System (ADS)

    Clark, S.; Back, J.; Tubiolo, A.; Romanaux, E.

    2001-12-01

    The Southern Appalachian Mountains, a popular recreation area known for its beauty and rich biodiversity, was chosen by the U.S. Geological Survey as the site to produce a video, booklet, and teachers guide to explain basic geologic principles and how long-term geologic processes affect landscapes, ecosystems, and the quality of human life. The video was produced in cooperation with the National Park Service and has benefited from the advice of the Southern Appalachian Man and Biosphere Cooperative, a group of 11 Federal and three State agencies that works to promote the environmental health, stewardship, and sustainable development of the resources of the region. Much of the information in the video is included in the booklet. A teachers guide provides supporting activities that teachers may use to reinforce the concepts presented in the video and booklet. Although the Southern Appalachians include some of the most visited recreation areas in the country, few are aware of the geologic underpinnings that have contributed to the beauty, biological diversity, and quality of human life in the region. The video includes several animated segments that show paleogeographic reconstructions of the Earth and movements of the North American continent over time; the formation of the Ocoee sedimentary basin beginning about 750 million years ago; the collision of the North American and African continents about 270 million years ago; the formation of granites and similar rocks, faults, and geologic windows; and the extent of glaciation in North America. The animated segments are tied to familiar public-access localities in the region. They illustrate geologic processes and time periods, making the geologic setting of the region more understandable to tourists and local students. The video reinforces the concept that understanding geologic processes and settings is an important component of informed land management to sustain the quality of life in a region. The video and a teachers guide will be distributed by the Southern Appalachian Man and Biosphere to local middle and high schools, libraries, and visitors centers in the region. It will be distributed by the U.S. Geological Survey and sold in Park Service and Forest Service gift shops in the region.

  5. Seeking Signs of Life on Mars: The Importance of Sedimentary Suites as Part of Mars Sample Return

    NASA Astrophysics Data System (ADS)

    iMOST Team; Mangold, N.; McLennan, S. M.; Czaja, A. D.; Ori, G. G.; Tosca, N. J.; Altieri, F.; Amelin, Y.; Ammannito, E.; Anand, M.; Beaty, D. W.; Benning, L. G.; Bishop, J. L.; Borg, L. E.; Boucher, D.; Brucato, J. R.; Busemann, H.; Campbell, K. A.; Carrier, B. L.; Debaille, V.; Des Marais, D. J.; Dixon, M.; Ehlmann, B. L.; Farmer, J. D.; Fernandez-Remolar, D. C.; Fogarty, J.; Glavin, D. P.; Goreva, Y. S.; Grady, M. M.; Hallis, L. J.; Harrington, A. D.; Hausrath, E. M.; Herd, C. D. K.; Horgan, B.; Humayun, M.; Kleine, T.; Kleinhenz, J.; Mackelprang, R.; Mayhew, L. E.; McCubbin, F. M.; McCoy, J. T.; McSween, H. Y.; Moser, D. E.; Moynier, F.; Mustard, J. F.; Niles, P. B.; Raulin, F.; Rettberg, P.; Rucker, M. A.; Schmitz, N.; Sefton-Nash, E.; Sephton, M. A.; Shaheen, R.; Shuster, D. L.; Siljestrom, S.; Smith, C. L.; Spry, J. A.; Steele, A.; Swindle, T. D.; ten Kate, I. L.; Usui, T.; Van Kranendonk, M. J.; Wadhwa, M.; Weiss, B. P.; Werner, S. C.; Westall, F.; Wheeler, R. M.; Zipfel, J.; Zorzano, M. P.

    2018-04-01

    Sedimentary, and especially lacustrine, depositional environments are high-priority geological/astrobiological settings for Mars Sample Return. We review the detailed investigations, measurements, and sample types required to evaluate such settings.

  6. Ghana watershed prototype products

    USGS Publications Warehouse

    ,

    2007-01-01

    A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  7. Connecting onshore and offshore near-surface geology: Delaware's sand inventory project

    USGS Publications Warehouse

    Ramsey, K.W.; Jordan, R.R.; Talley, J.H.

    1999-01-01

    Beginning in 1988, the Delaware Geological Survey began a program to inventory on-land sand resources suitable for beach nourishment. The inventory included an assessment of the native beach textures using existing data and developing parameters of what would be considered suitable sand textures for Delaware's Atlantic beaches. An assessment of the economics of on-land sand resources was also conducted, and it was determined that the cost of the sand was competitive with offshore dredging costs. In addition, the sand resources were put into a geologic context for purposes of predicting which depositional environments and lithostratigraphic units were most likely to produce suitable sand resources. The results of the work identified several suitable on-land sand resource areas in the Omar and Beaverdam formations that were deposited in barrier-tidal delta and fluvial-estuarine environments, respectively. The identified on-land resources areas have not been utilized due to difficulties of truck transport and development pressures in the resource areas. The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from Cape Henlopen to Fenwick. This cross section identified the geologic units and potential sand resource bodies as found immediately along the coast. These units and resources are currently being extended offshore and tied to known and potential sand resources as part of the continuing cooperative effort between the Delaware Geological Survey and the Minerals Management Service's INTERMAR office as sand resources are identified in federal waters off Delaware. Offshore sand resources are found in the Pliocene Beaverdam Formation offshore where overlying Quaternary units have been stripped, in the tidal delta complexes of several Quaternary units likely equivalent to the onshore Omar Formation, and in late Pleistocene- and Holocene-age shoal complexes. Onshore lithostratigraphic units can be traced offshore and show another reason for continued geologic mapping both onshore and offshore.The Delaware Geological Survey's participation in years 8, 9, and 10 of the Continental Margins Program was developed to extend the known resource areas onshore to offshore Delaware in order to determine potential offshore sand resources for beach nourishment. Years 8 and 9 involved primarily the collection of all available data on the offshore geology. These data included all seismic lines, surface grab samples, and cores. The data were filtered for those that had reliable locations and geologic information that could be used for geologic investigations. Year 10 completed the investigations onshore by construction of a geologic cross-section from data along the coast of Delaware from cape Henlopen to Fenwick.

  8. U.S. Geological Survey offshore program of resource and geo-environmental studies and topical investigations, Pacific-Arctic region

    USGS Publications Warehouse

    Scholl, David William

    1978-01-01

    The Geological Survey 's marine geology investigations in the Pacific-Arctic area are presented in this report in the context of the underlying socio-economic problem of expanding the domestic production of oil and gas and other mineral and hard- and soft-rock resources while maintaining acceptable standards in the marine environment. The primary mission of the Survey 's Pacific-Arctic Branch of Marine Geology is to provide scientifically interpreted information about the (1) resource potential, (2) geo-environmental setting, and (3) overall geologic characteristics of the continental margins (that is, the continental shelf, slope and rise) and adjacent deeper water and shallower coastal areas off California, Oregon, Washington, Alaska and Hawaii and also, where it is of interest to the U.S. Government, more remote deep-sea areas of the Pacific-Arctic realm. (Sinha-OEIS)

  9. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  10. Geologic map of the Jasper Quadrangle, Newton and Boone counties, Arkansas

    USGS Publications Warehouse

    Hudson, M.R.; Murray, K.E.; Pezzutti, Deborah

    2001-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Jasper 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Jasper quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Jasper quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  11. Lessons Learned for Geologic Data Collection and Sampling: Insights from the Desert RATS 2010 Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Hurtado, J. M., Jr.; Bleacher, J. E.; Rice, J.; Young, K.; Garry, W. B.; Eppler, D.

    2011-01-01

    Since 1997, Desert Research and Technology Studies (D-RATS) has conducted hardware and operations tests in the Arizona desert that advance human and robotic planetary exploration capabilities. D-RATS 2010 (8/31-9/13) simulated geologic traverses through a terrain of cinder cones, lava flows, and underlying sedimentary units using a pair of crewed rovers and extravehicular activities (EVAs) for geologic fieldwork. There were two sets of crews, each consisting of an engineer/commander and an experienced field geologist drawn from the academic community. A major objective of D-RATS was to examine the functions of a science support team, the roles of geologist crewmembers, and protocols, tools, and technologies needed for effective data collection and sample documentation. Solutions to these problems must consider how terrestrial field geology must be adapted to geologic fieldwork during EVAs

  12. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    USGS Publications Warehouse

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  13. Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for Tectonic and Volcanic History of the North Polar Region of Venus

    NASA Technical Reports Server (NTRS)

    Hurwitz, D. M.; Head, J. W.

    2009-01-01

    Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our progress in mapping the spatial and stratigraphic relationships of material units and our initial interpretations of the tectonic and volcanic history of the region surrounding the north pole of Venus

  14. Erosion-tectonics feedbacks in shaping the landscape: An example from the Mekele Outlier (Tigray, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Dramis, Francesco; Faccenna, Claudio; Abebe, Bekele

    2017-05-01

    An outlier consists of an area of younger rocks surrounded by older ones. Its formation is mainly related to the erosion of surrounding rocks which causes the interruption of the original continuity of the rocks. Because of its origin, an outlier is an important witness of the paleogeography of a region and, therefore, essential to understand its topographic and geological evolution. The Mekele Outlier (N Ethiopia) is characterized by poorly incised Mesozoic marine sediments and dolerites (∼2000 m in elevation), surrounded by strongly eroded Precambrian and Paleozoic rocks and Tertiary volcanic deposits in a context of a mantle supported topography. In the past, studies about the Mekele outlier focused mainly in the mere description of the stratigraphic and tectonic settings without taking into account the feedback between surface and deep processes in shaping such peculiar feature. In this study we present the geological and geomorphometric analyses of the Mekele Outlier taking into account the general topographic features (slope map, swath profiles, local relief), the river network and the principal tectonic lineaments of the outlier. The results trace the evolution of the study area as related not only to the mere erosion of the surrounding rocks but to a complex interaction between surface and deep processes where the lithology played a crucial role.

  15. Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming

    USGS Publications Warehouse

    McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.

    2004-01-01

    As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCollum, L.B.; Buchanan, J.P.; McCollum, M.B.

    The Antler orogeny is a textbook example of a Paleozoic mountain building and crustal shortening event in western North America. A relatively complex geologic history of the type Antler at Battle Mountain, Nevada, is interpreted as distinct thrust plates of Lower Cambrian Scott Canyon Formation, Upper Cambrian Harmony Sandstone, and Ordovician Valmy Formation, overlain unconformably by the Middle Pennsylvanian Battle Formation. Mississippian crustal deformation and emplacement of the Roberts Mountain thrust have previously been thought to characterize the Antler orogen. Detailed sedimentology studies of the Scott Canyon and Harmony, and the relationship with the overlying Battle Formation at the typemore » section of the Antler orogeny, cast doubt on the previously accepted geologic history. The Scott Canyon is an interbedded sequence of pillow basalts, Late Devonian radiolarian cherts, and mudstone debris flows with numerous limestone olistoliths, many containing undescribed archaeocyathid fauna. The contact of the Harmony with the Battle Formation appears channeled, but otherwise conformable, and the Battle has been interpreted as an alluvial fan facies. The paleoenvironmental interpretation of these sediments is that the Scott Canyon was deposited upon a Late Devonian active continental margin setting, with prograding fan deposits of the Harmony Sandstone, overlain by Middle Pennsylvanian fanglomerates of the Battle Formation. This conformable sequence appears to preclude any major uplift within the type Antler orogen.« less

  17. A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect

    NASA Astrophysics Data System (ADS)

    Lepper, Kenneth; Buell, Alex W.; Fisher, Timothy G.; Lowell, Thomas V.

    2013-07-01

    Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880-1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.

  18. Role of natural analogs in performance assessment of nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, B.; Wittmeyer, G.W.

    1995-09-01

    Mathematical models of the flow of water and transport of radionuclides in porous media will be used to assess the ability of deep geologic repositories to safely contain nuclear waste. These models must, in some sense, be validated to ensure that they adequately describe the physical processes occurring within the repository and its geologic setting. Inasmuch as the spatial and temporal scales over which these models must be applied in performance assessment are very large, validation of these models against laboratory and small-scale field experiments may be considered inadequate. Natural analogs may provide validation data that are representative of physico-chemicalmore » processes that occur over spatial and temporal scales as large or larger than those relevant to repository design. The authors discuss the manner in which natural analog data may be used to increase confidence in performance assessment models and conclude that, while these data may be suitable for testing the basic laws governing flow and transport, there is insufficient control of boundary and initial conditions and forcing functions to permit quantitative validation of complex, spatially distributed flow and transport models. The authors also express their opinion that, for collecting adequate data from natural analogs, resources will have to be devoted to them that are much larger than are devoted to them at present.« less

  19. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  20. Simulating the evolution of coastal morphology and stratigraphy with a new morphological-behaviour model (GEOMBEST)

    USGS Publications Warehouse

    Stolper, D.; List, J.H.; Thieler, E.R.

    2005-01-01

    A new morphological-behaviour model is used to simulate evolution of coastal morphology associated with cross-shore translations of the shoreface, barrier, and estuary. The model encapsulates qualitative principles drawn from established geological concepts that are parameterized to provide quantitative predictions of morphological change on geological time scales (order 10 3 years), as well as shorter time scales applicable for long-term coastal management (order 101 to 102 years). Changes in sea level, and sediment volume within the shoreface, barrier, and estuary, drive the model behaviour. Further parameters, defining substrate erodibility, sediment composition, and time-dependent shoreface response, constrain the evolution of the shoreface towards an equilibrium profile. Results from numerical experiments are presented for the low-gradient autochthonous setting of North Carolina and the steep allochthonous setting of the Washington shelf. Simulations in the Currituck region of North Carolina examined the influence of sediment supply, substrate composition, and substrate erodibility on barrier transgression. Results demonstrate that the presence of a lithified substrate reduces the rate of barrier transgression compared to scenarios where an erodible, sand-rich substrate exists. Simulations of the Washington coast, 20 km north of the Columbia River, confirmed that the model can reproduce complex stratigraphy involving regressive and transgressive phases of coastal evolution. Results suggest that the first major addition of sediment to the shelf occurred around 12 900 years ago and resulted from the rapid addition of sediment volume from the Columbia River attributed to the Missoula floods. This was followed by a period where little or no sediment was added (12 400-9100 BP) and a third period when most sediment was added to the shelf (9100 BP to present) from the Columbia River. Comparing results from each setting demonstrates an indirect control that substrate slope has on shoreface transgression rates. Shoreface transgression is shown to be sensitive to the rate of estuarine sedimentation, with the sensitivity increasing as substrate slope decreases. 

Top