Advanced Techniques for Ultrasonic Imaging in the Presence of Material and Geometrical Complexity
NASA Astrophysics Data System (ADS)
Brath, Alexander Joseph
The complexity of modern engineering systems is increasing in several ways: advances in materials science are leading to the design of materials which are optimized for material strength, conductivity, temperature resistance etc., leading to complex material microstructure; the combination of additive manufacturing and shape optimization algorithms are leading to components with incredibly intricate geometrical complexity; and engineering systems are being designed to operate at larger scales in ever harsher environments. As a result, at the same time that there is an increasing need for reliable and accurate defect detection and monitoring capabilities, many of the currently available non-destructive evaluation techniques are rendered ineffective by this increasing material and geometrical complexity. This thesis addresses the challenges posed by inspection and monitoring problems in complex engineering systems with a three-part approach. In order to address material complexities, a model of wavefront propagation in anisotropic materials is developed, along with efficient numerical techniques to solve for the wavefront propagation in inhomogeneous, anisotropic material. Since material and geometrical complexities significantly affect the ability of ultrasonic energy to penetrate into the specimen, measurement configurations are tailored to specific applications which utilize arrays of either piezoelectric (PZT) or electromagnetic acoustic transducers (EMAT). These measurement configurations include novel array architectures as well as the exploration of ice as an acoustic coupling medium. Imaging algorithms which were previously developed for isotropic materials with simple geometry are adapted to utilize the more powerful wavefront propagation model and novel measurement configurations.
NASA Astrophysics Data System (ADS)
Kang, Sung Hoon; Shan, Sicong; Košmrlj, Andrej; Noorduin, Wim L.; Shian, Samuel; Weaver, James C.; Clarke, David R.; Bertoldi, Katia
2014-03-01
Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David
1997-01-01
An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat complete configuration designs subject to multiple design points and geometric constraints. Examples are presented for both transonic and supersonic configurations ranging from wing alone designs to complex configuration designs involving wing, fuselage, nacelles and pylons.
Verification of the CFD simulation system SAUNA for complex aircraft configurations
NASA Astrophysics Data System (ADS)
Shaw, Jonathon A.; Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.
1994-04-01
This paper is concerned with the verification for complex aircraft configurations of an advanced CFD simulation system known by the acronym SAUNA. A brief description of the complete system is given, including its unique use of differing grid generation strategies (structured, unstructured or both) depending on the geometric complexity of the addressed configuration. The majority of the paper focuses on the application of SAUNA to a variety of configurations from the military aircraft, civil aircraft and missile areas. Mesh generation issues are discussed for each geometry and experimental data are used to assess the accuracy of the inviscid (Euler) model used. It is shown that flexibility and accuracy are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Vanderburg, J. D.
1977-01-01
A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.
Pagiatakis, Catherine; Tardif, Jean-Claude; L'Allier, Philippe L; Mongrain, Rosaire
2017-12-01
Interventional cardiologists still rely heavily on angiography for the evaluation of coronary lesion severity, despite its poor correlation with the presence of ischemia. In order to improve the accuracy of the current diagnostic procedures, an understanding of the relative influence of geometric characteristics on the induction of ischemia is required. This idea is especially important for coronary bifurcation lesions (CBLs), whose treatment is complex and is associated with high rates of peri- and post-procedural clinical events. Overall, it is unclear which geometric and morphological parameters of CBLs influence the onset of ischemia. More specifically, the effect of stenosis eccentricity is unknown. Computational fluid dynamic simulations, under a geometric multiscale framework, were executed for seven CBL configurations within the left main coronary artery bifurcation. Both concentric and eccentric stenosis profiles of mild to severe constriction were considered. By using a geometric multiscale framework, the fractional flow reserve, which is the gold-standard clinical diagnostic index, could be calculated and was compared between the eccentric and concentric profiles for each case. The results suggested that for configurations where the supplying vessel is stenosed, eccentricity could have a notable effect on and therefore be an important factor that influences configuration functionality.
NASA Astrophysics Data System (ADS)
Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.; Shaw, Jonathon A.
1994-04-01
This paper is concerned with the flow modelling capabilities of an advanced CFD simulation system known by the acronym SAUNA. This system is aimed primarily at complex aircraft configurations and possesses a unique grid generation strategy in its use of block-structured, unstructured or hybrid grids, depending on the geometric complexity of the addressed configuration. The main focus of the paper is in demonstrating the recently developed multi-grid, block-structured grid, viscous flow capability of SAUNA, through its evaluation on a number of configurations. Inviscid predictions are also presented, both as a means of interpreting the viscous results and with a view to showing more completely the capabilities of SAUNA. It is shown that accuracy and flexibility are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
Tracked robot controllers for climbing obstacles autonomously
NASA Astrophysics Data System (ADS)
Vincent, Isabelle
2009-05-01
Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.
Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.
1998-01-01
This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.
1997-01-01
A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.
Hybrid space-airborne bistatic SAR geometric resolutions
NASA Astrophysics Data System (ADS)
Moccia, Antonio; Renga, Alfredo
2009-09-01
Performance analysis of Bistatic Synthetic Aperture Radar (SAR) characterized by arbitrary geometric configurations is usually complex and time-consuming since system impulse response has to be evaluated by bistatic SAR processing. This approach does not allow derivation of general equations regulating the behaviour of image resolutions with varying the observation geometry. It is well known that for an arbitrary configuration of bistatic SAR there are not perpendicular range and azimuth directions, but the capability to produce an image is not prevented as it depends only on the possibility to generate image pixels from time delay and Doppler measurements. However, even if separately range and Doppler resolutions are good, bistatic SAR geometries can exist in which imaging capabilities are very poor when range and Doppler directions become locally parallel. The present paper aims to derive analytical tools for calculating the geometric resolutions of arbitrary configuration of bistatic SAR. The method has been applied to a hybrid bistatic Synthetic Aperture Radar formed by a spaceborne illuminator and a receiving-only airborne forward-looking Synthetic Aperture Radar (F-SAR). It can take advantage of the spaceborne illuminator to dodge the limitations of monostatic FSAR. Basic modeling and best illumination conditions have been detailed in the paper.
WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1994-01-01
WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.
NASA Astrophysics Data System (ADS)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul
2015-09-01
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.
A multiblock multigrid three-dimensional Euler equation solver
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.
1990-01-01
Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id
2015-09-30
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less
Niu, Ye; Zhang, Xu; Si, Ting; Zhang, Yuntian; Qi, Lin; Zhao, Gang; Xu, Ronald X; He, Xiaoming; Zhao, Yi
2017-12-01
Geometric and mechanical characterizations of hydrogel materials at the microscale are attracting increasing attention due to their importance in tissue engineering, regenerative medicine, and drug delivery applications. Contemporary approaches for measuring the these properties of hydrogel microbeads suffer from low-throughput, complex system configuration, and measurement inaccuracy. In this work, a continuous-flow device is developed to measure geometric and viscoelastic properties of hydrogel microbeads by flowing the microbeads through a tapered microchannel with an array of interdigitated microelectrodes patterned underneath the channel. The viscoelastic properties are derived from the trajectories of microbeads using a quasi-linear viscoelastic model. The measurement is independent of the applied volumetric flow rate. The results show that the geometric and viscoelastic properties of Ca-alginate hydrogel microbeads can be determined independently and simultaneously. The bulky high-speed optical systems are eliminated, simplifying the system configuration and making it a truly miniaturized device. A throughput of up to 394 microbeads min -1 is achieved. This study may provide a powerful tool for mechanical profiling of hydrogel microbeads to support their wide applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aerodynamic Characterization of New Parachute Configurations for Low-Density Deceleration
NASA Technical Reports Server (NTRS)
Tanner, Christopher L.; Clark, Ian G.; Gallon, John C.; Rivellini, Tommaso P.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator project performed a wind tunnel experiment on the structural design and geometric porosity of various sub-scale parachutes in order to inform the design of the 110ft nominal diameter flight test canopy. Thirteen different parachute configurations, including disk-gap-band, ring sail, disk sail, and star sail canopies, were tested at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at NASA Ames Research Center. Canopy drag load, dynamic pressure, and canopy position data were recorded in order to quantify there lative drag performance and stability of the various canopies. Desirable designs would yield increased drag above the disk-gap-band with similar, or improved, stability characteristics. Ring sail parachutes were tested at geometric porosities ranging from 10% to 22% with most of the porosity taken from the shoulder region near the canopy skirt. The disk sail canopy replaced the rings lot portion of the ring sail canopy with a flat circular disk and wastested at geometric porosities ranging from 9% to 19%. The star sail canopy replaced several ringsail gores with solid gores and was tested at 13% geometric porosity. Two disk sail configurations exhibited desirable properties such as an increase of 6-14% in the tangential force coefficient above the DGB with essentially equivalent stability. However, these data are presented with caveats including the inherent differences between wind tunnel and flight behavior and qualitative uncertainty in the aerodynamic coefficients.
Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry
2015-01-01
Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health. PMID:26213417
NASA Astrophysics Data System (ADS)
Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry
2015-10-01
Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Tq Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health.
NASA Astrophysics Data System (ADS)
Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie
2018-03-01
The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.
Nonlinear ordinary difference equations
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1979-01-01
Future space vehicles will be relatively large and flexible, and active control will be necessary to maintain geometrical configuration. While the stresses and strains in these space vehicles are not expected to be excessively large, their cumulative effects will cause significant geometrical nonlinearities to appear in the equations of motion, in addition to the nonlinearities caused by material properties. Since the only effective tool for the analysis of such large complex structures is the digital computer, it will be necessary to gain a better understanding of the nonlinear ordinary difference equations which result from the time discretization of the semidiscrete equations of motion for such structures.
Femtosecond pulse shaping using the geometric phase.
Gökce, Bilal; Li, Yanming; Escuti, Michael J; Gundogdu, Kenan
2014-03-15
We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.
Validation and evaluation of the advanced aeronautical CFD system SAUNA: A method developer's view
NASA Astrophysics Data System (ADS)
Shaw, J. A.; Peace, A. J.; Georgala, J. M.; Childs, P. N.
1993-09-01
This paper is concerned with a detailed validation and evaluation of the SAUNA CFD system for complex aircraft configurations. The methodology of the complete system is described in brief, including its unique use of differing grid generation strategies (structured, unstructured or both) depending on the geometric complexity of the configuration. A wide range of configurations and flow conditions are chosen in the validation and evaluation exercise to demonstrate the scope of SAUNA. A detailed description of the results from the method is preceded by a discussion on the philosophy behind the strategy followed in the exercise, in terms of equality assessment and the differing roles of the code developer and the code user. It is considered that SAUNA has grown into a highly usable tool for the aircraft designer, in combining flexibility and accuracy in an efficient manner.
An installed nacelle design code using a multiblock Euler solver. Volume 2: User guide
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
This is a user manual for the general multiblock Euler design (GMBEDS) code. The code is for the design of a nacelle installed on a geometrically complex configuration such as a complete airplane with wing/body/nacelle/pylon. It consists of two major building blocks: a design module developed by LaRC using directive iterative surface curvature (DISC); and a general multiblock Euler (GMBE) flow solver. The flow field surrounding a complex configuration is divided into a number of topologically simple blocks to facilitate surface-fitted grid generation and improve flow solution efficiency. This user guide provides input data formats along with examples of input files and a Unix script for program execution in the UNICOS environment.
Characteristics of Pre-Service Primary School Teachers' Configural Reasoning
ERIC Educational Resources Information Center
Llinares, Salvador; Clemente, Francisco
2014-01-01
The goal of this study is to identify the characteristics of pre-service primary teachers' configural reasoning, understood as the relationships between concepts and figures set to solve geometrical proof problems. Ninety-seven primary teachers were asked to solve two geometrical proof problems in which a geometrical figure was provided. The…
Informational Entropy and Bridge Scour Estimation under Complex Hydraulic Scenarios
NASA Astrophysics Data System (ADS)
Pizarro, Alonso; Link, Oscar; Fiorentino, Mauro; Samela, Caterina; Manfreda, Salvatore
2017-04-01
Bridges are important for society because they allow social, cultural and economic connectivity. Flood events can compromise the safety of bridge piers up to the complete collapse. The Bridge Scour phenomena has been described by empirical formulae deduced from hydraulic laboratory experiments. The range of applicability of such models is restricted by the specific hydraulic conditions or flume geometry used for their derivation (e.g., water depth, mean flow velocity, pier diameter and sediment properties). We seek to identify a general formulation able to capture the main dynamic of the process in order to cover a wide range of hydraulic and geometric configuration, allowing to extend our analysis in different contexts. Therefore, exploiting the Principle of Maximum Entropy (POME) and applying it on the recently proposed dimensionless Effective flow work, W*, we derived a simple model characterized by only one parameter. The proposed Bridge Scour Entropic (BRISENT) model shows good performances under complex hydraulic conditions as well as under steady-state flow. Moreover, the model was able to capture the evolution of scour in several hydraulic configurations even if the model contains only one parameter. Furthermore, results show that the model parameter is controlled by the geometric configurations of the experiment. This offers a possible strategy to obtain a priori model parameter calibration. The BRISENT model represents a good candidate for estimating the time-dependent scour depth under complex hydraulic scenarios. The authors are keen to apply this idea for describing the scour behavior during a real flood event. Keywords: Informational entropy, Sediment transport, Bridge pier scour, Effective flow work.
Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections
NASA Technical Reports Server (NTRS)
Cha, Gene; Schultz, Marc R.
2013-01-01
Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.
On-board multispectral classification study
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.
Modelling and optimization of a wellhead gas flowmeter using concentric pipes
NASA Astrophysics Data System (ADS)
Nec, Yana; Huculak, Greg
2017-09-01
A novel configuration of a landfill wellhead was analysed to measure the flow rate of gas extracted from sanitary landfills. The device provides access points for pressure measurement integral to flow rate computation similarly to orifice and Venturi meters, and has the advantage of eliminating the problem of water condensation often impairing the accuracy thereof. It is proved that the proposed configuration entails comparable computational complexity and negligible sensitivity to geometric parameters. Calibration for the new device was attained using a custom optimization procedure, operating on a quadri-dimensional parameter surface evincing discontinuity and non-smoothness.
Crash-Energy Absorbing Composite Structure and Method of Fabrication
NASA Technical Reports Server (NTRS)
Kellas, Sotiris (Inventor); Carden, Huey D. (Inventor)
1998-01-01
A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The geometric configuration of cells is integrated by means of continuous fibers wrapped thereabout in order to maintain the cells in the geometric configuration. The cured part results in a net shape, stable structure that can function on its own with no additional reinforcement and can withstand combined loading while crushing in a desired direction.
Numerical implementation of multiple peeling theory and its application to spider web anchorages.
Brely, Lucas; Bosia, Federico; Pugno, Nicola M
2015-02-06
Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations.
Numerical implementation of multiple peeling theory and its application to spider web anchorages
Brely, Lucas; Bosia, Federico; Pugno, Nicola M.
2015-01-01
Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations. PMID:25657835
Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa
2012-06-01
A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.
Design of Off-Axis PIAACMC Mirrors
NASA Technical Reports Server (NTRS)
Pluzhnik, Eugene; Guyon, Olivier; Belikov, Ruslan; Kern, Brian; Bendek, Eduardo
2015-01-01
The Phase-Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC) provides an efficient way to control diffraction propagation effects caused by the central obstruction/segmented mirrors of the telescope. PIAACMC can be optimized in a way that takes into account both chromatic diffraction effects caused by the telescope obstructed aperture and tip/tilt sensitivity of the coronagraph. As a result, unlike classic PIAA, the PIAACMC mirror shapes are often slightly asymmetric even for an on-axis configuration and require more care in calculating off-axis shapes when an off-axis configuration is preferred. A method to design off-axis PIAA mirror shapes given an on-axis mirror design is presented. The algorithm is based on geometrical ray tracing and is able to calculate off-axis PIAA mirror shapes for an arbitrary geometry of the input and output beams. The method is demonstrated using the third generation PIAACMC design for WFIRST-AFTA (Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets) telescope. Geometrical optics design issues related to the off-axis diffraction propagation effects are also discussed.
Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin
This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.
Structural analysis of the coordination of dinitrogen to transition metal complexes.
Peigné, Benjamin; Aullón, Gabriel
2015-06-01
Transition-metal complexes show a wide variety of coordination modes for the nitrogen molecule. A structural database study has been undertaken for dinitrogen complexes, and geometrical parameters around the L(n)M-N2 unit are retrieved from the Cambridge Structural Database. These data were classified in families of compounds, according to metal properties, to determine the degree of lengthening for the dinitrogen bonding. The importance of the nature of the metal center, such as coordination number and electronic configuration, is reported. Our study reveals poor activation by coordination of dinitrogen in mononuclear complexes, always having end-on coordination. However, partial weakening of nitrogen-nitrogen bonding is found for end-on binuclear complexes, whereas side-on complexes can be completely activated.
Terhune, Claire E
2013-08-01
Functional shape analyses have long relied on the use of shape ratios to test biomechanical hypotheses. This method is powerful because of the ease with which results are interpreted, but these techniques fall short in quantifying complex morphologies that may not have a strong biomechanical foundation but may still be functionally informative. In contrast, geometric morphometric methods are continually being adopted for quantifying complex shapes, but they tend to prove inadequate in functional analyses because they have little foundation in an explicit biomechanical framework. The goal of this study was to evaluate the intersection of these two methods using the great ape temporomandibular joint as a case study. Three-dimensional coordinates of glenoid fossa and mandibular condyle shape were collected using a Microscribe digitizer. Linear distances extracted from these landmarks were analyzed using a series of one-way ANOVAs; further, the landmark configurations were analyzed using geometric morphometric techniques. Results suggest that the two methods are broadly similar, although the geometric morphometric data allow for the identification of shape differences among taxa that were not immediately apparent in the univariate analyses. Furthermore, this study suggests several new approaches for translating these shape data into a biomechanical context by adjusting the data using a biomechanically relevant variable. Copyright © 2013 Wiley Periodicals, Inc.
Computed Tomography Inspection and Analysis for Additive Manufacturing Components
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.
2017-01-01
Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws and geometric features were inspected using a 2-megavolt linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed to determine the impact of additive manufacturing on inspectability of objects with complex geometries.
Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure
NASA Astrophysics Data System (ADS)
Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.
2014-08-01
Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver hfodd that is based on the harmonic-oscillator basis expansion. Several examples are considered, including the self-consistent HFB problem for spin-polarized trapped cold fermions and the Skyrme-Hartree-Fock (+BCS) problem for triaxial deformed nuclei. Conclusions: The new madness-hfb framework has many attractive features when applied to nuclear and atomic problems involving many-particle superfluid systems. Of particular interest are weakly bound nuclear configurations close to particle drip lines, strongly elongated and dinuclear configurations such as those present in fission and heavy-ion fusion, and exotic pasta phases that appear in neutron star crust.
USDA-ARS?s Scientific Manuscript database
Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...
A general multiblock Euler code for propulsion integration. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.
Aerothermal modeling program, phase 1
NASA Technical Reports Server (NTRS)
Srinivasan, R.; Reynolds, R.; Ball, I.; Berry, R.; Johnson, K.; Mongia, H.
1983-01-01
The combustor performance submodels for complex flows are evaluated. The benchmark test cases for complex nonswirling flows are identified and analyzed. The introduction of swirl into the flow creates much faster mixing, caused by radial pressure gradients and increase in turbulence generation. These phenomena are more difficult to predict than the effects due to geometrical streamline curvatures, like the curved duct, and sudden expansion. Flow fields with swirl, both confined and unconfined are studied. The role of the dilution zone to achieve the turbine inlet radial profile plays an important part, therefore temperature field measurements were made in several idealized dilution zone configurations.
Crash-Energy Absorbing Composite Structure and Method of Fabrication
NASA Technical Reports Server (NTRS)
Kellas, Sotiris (Inventor); Carden, Huey D. (Inventor)
1996-01-01
A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The fiber reinforcement can be in the form of a fabric or braided fibers wrapped about a core that is either left in place or removed from the ultimate cured structure. The geometric configuration of cells is held together with more fiber reinforcement (in the form of fabric or braided fibers) in order to integrate the cells in the geometric configuration. The additional fiber reinforcement is resin-cured to the cells. Curing of the cells and ultimate structure can occur in a single step. In applications where post-crash integrity is necessary, ductile fibers can be used to integrate the cells in the geometric configuration. The novelty of the present invention is that simple fabrication techniques are used to create structures that can be formed in a variety of net stable shapes without additional reinforcement and can withstand combined loading while crushing in a desired direction.
On designing low pressure loss working spaces for a planar Stirling micromachine
NASA Astrophysics Data System (ADS)
Hachey, M.-A.; Léveillé, É.; Fréchette, L. G.; Formosa, F.
2015-12-01
In this paper, research was undertaken with the objective to design low pressure loss working spaces for a Stirling cycle micro heat engine operating from low temperature waste heat. This planar free-piston heat engine is anticipated to operate at the kHz level with mm3 displacement. Given the resonant nature of the free-piston configuration, the complexity of its working gas’ flow geometry and its projected high operating frequency, flow analysis is relatively complex. Design considerations were thus based on fast prototyping and experimentation. Results show that geometrical features, such as a sharp 90° corner between the regenerator and working spaces, are strong contributors to pressure losses. This research culminated into a promising revised working space configuration for engine start-up, as it considerably reduced total pressure losses, more than 80% at Re = 700, from the original design.
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1970-01-01
The theory used in FASTER-III, a Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries, is outlined. The program includes the treatment of geometric regions bounded by quadratic and quadric surfaces with multiple radiation sources which have specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors. It can also calculate minimum weight shield configuration meeting a specified dose rate constraint. Results are presented for sample problems involving primary neutron, and primary and secondary photon, transport in a spherical reactor shield configuration.
NASA Astrophysics Data System (ADS)
Anderson, T. J.; Zhou, H.; Xie, L.; Podkaminer, J. P.; Patzner, J. J.; Ryu, S.; Pan, X. Q.; Eom, C. B.
2017-09-01
The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111) and non-polar (001) SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111) interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001) interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111) perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.
Didier, P; Piotrowski, B; Fischer, M; Laheurte, P
2017-05-01
The advent of new manufacturing technologies such as additive manufacturing deeply impacts the approach for the design of medical devices. It is now possible to design custom-made implants based on medical imaging, with complex anatomic shape, and to manufacture them. In this study, two geometrical configurations of implant devices are studied, standard and anatomical. The comparison highlights the drawbacks of the standard configuration, which requires specific forming by plastic strain in order to be adapted to the patient's morphology and induces stress field in bones without mechanical load in the implant. The influence of low elastic modulus of the materials on stress distribution is investigated. Two biocompatible alloys having the ability to be used with SLM additive manufacturing are considered, commercial Ti-6Al-4V and Ti-26Nb. It is shown that beyond the geometrical aspect, mechanical compatibility between implants and bones can be significantly improved with the modulus of Ti-26Nb implants compared with the Ti-6Al-4V. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimal domain decomposition strategies
NASA Technical Reports Server (NTRS)
Yoon, Yonghyun; Soni, Bharat K.
1995-01-01
The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.
NASA Astrophysics Data System (ADS)
Newman, James Charles, III
1997-10-01
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.
Set-theoretic estimation of hybrid system configurations.
Benazera, Emmanuel; Travé-Massuyès, Louise
2009-10-01
Hybrid systems serve as a powerful modeling paradigm for representing complex continuous controlled systems that exhibit discrete switches in their dynamics. The system and the models of the system are nondeterministic due to operation in uncertain environment. Bayesian belief update approaches to stochastic hybrid system state estimation face a blow up in the number of state estimates. Therefore, most popular techniques try to maintain an approximation of the true belief state by either sampling or maintaining a limited number of trajectories. These limitations can be avoided by using bounded intervals to represent the state uncertainty. This alternative leads to splitting the continuous state space into a finite set of possibly overlapping geometrical regions that together with the system modes form configurations of the hybrid system. As a consequence, the true system state can be captured by a finite number of hybrid configurations. A set of dedicated algorithms that can efficiently compute these configurations is detailed. Results are presented on two systems of the hybrid system literature.
Composite Configuration Interventional Therapy Robot for the Microwave Ablation of Liver Tumors
NASA Astrophysics Data System (ADS)
Cao, Ying-Yu; Xue, Long; Qi, Bo-Jin; Jiang, Li-Pei; Deng, Shuang-Cheng; Liang, Ping; Liu, Jia
2017-11-01
The existing interventional therapy robots for the microwave ablation of liver tumors have a poor clinical applicability with a large volume, low positioning speed and complex automatic navigation control. To solve above problems, a composite configuration interventional therapy robot with passive and active joints is developed. The design of composite configuration reduces the size of the robot under the premise of a wide range of movement, and the robot with composite configuration can realizes rapid positioning with operation safety. The cumulative error of positioning is eliminated and the control complexity is reduced by decoupling active parts. The navigation algorithms for the robot are proposed based on solution of the inverse kinematics and geometric analysis. A simulation clinical test method is designed for the robot, and the functions of the robot and the navigation algorithms are verified by the test method. The mean error of navigation is 1.488 mm and the maximum error is 2.056 mm, and the positioning time for the ablation needle is in 10 s. The experimental results show that the designed robot can meet the clinical requirements for the microwave ablation of liver tumors. The composite configuration is proposed in development of the interventional therapy robot for the microwave ablation of liver tumors, which provides a new idea for the structural design of medical robots.
Plasmon resonances on opto-capacitive nanostructures
NASA Astrophysics Data System (ADS)
Shahcheraghi, N.; Dowd, A.; Arnold, M. D.; Cortie, M. B.
2015-12-01
Silver is considered as one of the most desirable materials for plasmonic devices due to it having low loss, low epsilon2, across the visible spectrum. In addition, silver nanotriangles can self-assemble into complex structures that can include tip-totip or base-to-base arrangements. While the optical properties of tip-to-tip dimers of nanotriangles have been quite intensively studied, the geometric inverse, the base-to-base configuration, has received much less attention. Here we report the results of a computational study of the optical response of this latter configuration. Calculations were performed using the discrete dipole approximation. The effect of gap size and substrate are considered. The results indicate that the base-to-base configuration can sustain a strong coupled dipole and various multimode resonances. The pairing of the parallel triangle edges produces a strongly capacitive configuration and very intense electric fields over an extended volume of space. Therefore, the base-to-base configuration could be suitable for a range of plasmonic applications that require a strong and uniform concentration of electric field. Examples include refractometeric sensing or metal-enhanced fluorescence.
Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems
NASA Astrophysics Data System (ADS)
Chopdekar, R. V.; Li, B.; Wynn, T. A.; Lee, M. S.; Jia, Y.; Liu, Z. Q.; Biegalski, M. D.; Retterer, S. T.; Young, A. T.; Scholl, A.; Takamura, Y.
2017-07-01
We have used soft x-ray photoemission electron microscopy to image the magnetization of single-domain L a0.7S r0.3Mn O3 nanoislands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon thermal randomization, ensembles of nanoislands with strong interisland magnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (TC=338 K ) allows for a much greater probability of achieving low-energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nanoislands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nanoislands at temperatures modestly above room temperature.
Self-equilibrated Tapered Three-stage Tensegrity Mast
NASA Astrophysics Data System (ADS)
Oh, C. L.; Choong, K. K.; Nishimura, T.; Lee, S. W.
2018-04-01
Investigation of tensegrity structures for the space application is ongoing owing to the characteristics of being lightweight and flexible. Tensegrity structures consist of struts and cables are self-stressed and stable under gravitational loading. Form-finding is an important process to obtain the configuration of tensegrity structures that are in self-equilibrated state. Form-finding of tensegrity structures involves a complex computational strategy in solving the geometrical and forces of the structures. This paper aims to form-finding for a tapered three-stage tensegrity mast. The form-finding strategy involves the assemblage of the tensegrity mast, establishment of equilibrium equations and determination of one possible set of coefficient beta. Several cases of configurations with various twist angles with range of 20°-40° are investigated. A configuration with 9 struts and 42 cables satisfying the material elastic conditions was successfully found. The scalable self-equilibrated tensegrity mast is recommended for space applications.
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1993-01-01
The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.
High Density Aerial Image Matching: State-Of and Future Prospects
NASA Astrophysics Data System (ADS)
Haala, N.; Cavegn, S.
2016-06-01
Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.
Applicability of geometrical optics to in-plane liquid-crystal configurations.
Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G
2010-02-15
We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.
NASA Astrophysics Data System (ADS)
Zhou, Yingfang; Helland, Johan Olav; Hatzignatiou, Dimitrios G.
2014-07-01
We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe - Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.
Selected computations of transonic cavity flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1993-01-01
An efficient diagonal scheme implemented in an overset mesh framework has permitted the analysis of geometrically complex cavity flows via the Reynolds averaged Navier-Stokes equations. Use of rapid hyperbolic and algebraic grid methods has allowed simple specification of critical turbulent regions with an algebraic turbulence model. Comparisons between numerical and experimental results are made in two dimensions for the following problems: a backward-facing step; a resonating cavity; and two quieted cavity configurations. In three-dimensions the flow about three early concepts of the stratospheric Observatory For Infrared Astronomy (SOFIA) are compared to wind-tunnel data. Shedding frequencies of resolved shear layer structures are compared against experiment for the quieted cavities. The results demonstrate the progress of computational assessment of configuration safety and performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.
In this study several aspects of simulating hydrogen distribution in geometric configurations relevant to reactor containment structures were investigated using the TEMPEST computer code. Of particular interest was the performance of the TEMPEST turbulence model in a density-stratified environment. Computed results illustrated that the TEMPEST numerical procedures predicted the measured phenomena with good accuracy under a variety of conditions and that the turbulence model used is a viable approach in complex turbulent flow simulation.
La Marca, Floriana; Moroni, Monica; Cherubini, Lorenzo; Lupo, Emanuela; Cenedese, Antonio
2012-07-01
The recovery of high-quality plastic materials is becoming an increasingly challenging issue for the recycling sector. Technologies for plastic recycling have to guarantee high-quality secondary raw material, complying with specific standards, for use in industrial applications. The variability in waste plastics does not always correspond to evident differences in physical characteristics, making traditional methodologies ineffective for plastic separation. The Multidune separator is a hydraulic channel allowing the sorting of solid particles on the basis of differential transport mechanisms by generating particular fluid dynamic conditions due to its geometric configuration and operational settings. In this paper, the fluid dynamic conditions were investigated by an image analysis technique, allowing the reconstruction of velocity fields generated inside the Multidune, considering two different geometric configurations of the device, Configuration A and Configuration B. Furthermore, tests on mono- and bi-material samples were completed with varying operational conditions under both configurations. In both series of experiments, the bi-material samples were composed of differing proportions (85% vs. 15%) to simulate real conditions in an industrial plant for the purifying of a useful fraction from a contaminating fraction. The separation results were evaluated in terms of grade and recovery of the useful fraction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ahmadivand, Arash; Karabiyik, Mustafa; Pala, Nezih
2015-05-01
In this study, we investigated numerically the plasmon response of a dimer configuration composed of a couple of split and concentric Au nanoshells in a complex orientation. We showed that an isolated composition of two concentric split nanoshells could be tailored to support strong plasmon resonant modes in the visible wavelengths. After determining the accurate geometric dimensions for the presented antisymmetric nanostructure, we designed a dimer array that shows complex behavior during exposure to different incident polarizations. We verified that the examined dimer was able to support destructive interference between dark and bright plasmon modes, which resulted in a pronounced Fano-like dip. Observation of a Fano minimum in such a simple molecular orientation of subwavelength particles opens new avenues for employing this structure in designing various practical plasmonic devices. Depositing the final dimer in a strong coupling condition on a semiconductor metasurface and measuring the effective refractive index at certain wavelengths, we demonstrate that each one of dimer units can be considered a meta-atom due to the high aspect ratio in the geometric parameters. Using this method, by extending the number of dimers periodically and illuminating the structure, we examined the isotropic, polarization-dependent, and transmission behavior of the metamaterial configuration. Using numerical methods and calculating the effective refractive indices, we computed and sketched corresponding figure of merit over the transmission window, where the maximum value obtained was 42.3 for Si and 54.6 for gallium phosphide (GaP) substrates.
NASA Astrophysics Data System (ADS)
Kacem, I.; Jacquey, C.; Génot, V.; Lavraud, B.; Vernisse, Y.; Marchaudon, A.; Le Contel, O.; Breuillard, H.; Phan, T. D.; Hasegawa, H.; Oka, M.; Trattner, K. J.; Farrugia, C. J.; Paulson, K.; Eastwood, J. P.; Fuselier, S. A.; Turner, D.; Eriksson, S.; Wilder, F.; Russell, C. T.; Øieroset, M.; Burch, J.; Graham, D. B.; Sauvaud, J.-A.; Avanov, L.; Chandler, M.; Coffey, V.; Dorelli, J.; Gershman, D. J.; Giles, B. L.; Moore, T. E.; Saito, Y.; Chen, L.-J.; Penou, E.
2018-03-01
The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region.
All-digital precision processing of ERTS images
NASA Technical Reports Server (NTRS)
Bernstein, R. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Digital techniques have been developed and used to apply precision-grade radiometric and geometric corrections to ERTS MSS and RBV scenes. Geometric accuracies sufficient for mapping at 1:250,000 scale have been demonstrated. Radiometric quality has been superior to ERTS NDPF precision products. A configuration analysis has shown that feasible, cost-effective all-digital systems for correcting ERTS data are easily obtainable. This report contains a summary of all results obtained during this study and includes: (1) radiometric and geometric correction techniques, (2) reseau detection, (3) GCP location, (4) resampling, (5) alternative configuration evaluations, and (6) error analysis.
Dynamics and Control of a Quadrotor with Active Geometric Morphing
NASA Astrophysics Data System (ADS)
Wallace, Dustin A.
Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.
Modeling of Radiative Heat Transfer in an Electric Arc Furnace
NASA Astrophysics Data System (ADS)
Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen
2017-12-01
Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.
Effect of Ice Shape Fidelity on Swept-Wing Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Camello, Stephanie C.; Bragg, Michael B.; Broeren, Andy P.; Lum, Christopher W.; Woodard, Brian S.; Lee, Sam
2017-01-01
Low-Reynolds number testing was conducted at the 7 ft. x 10 ft. Walter H. Beech Memorial Wind Tunnel at Wichita State University to study the aerodynamic effects of ice shapes on a swept wing. A total of 17 ice shape configurations of varying geometric detail were tested. Simplified versions of an ice shape may help improve current ice accretion simulation methods and therefore aircraft design, certification, and testing. For each configuration, surface pressure, force balance, and fluorescent mini-tuft data were collected and for a selected subset of configurations oil-flow visualization and wake survey data were collected. A comparison of two ice shape geometries and two configurations with simplified geometric detail for each ice shape geometry is presented in this paper.
NASA Astrophysics Data System (ADS)
Volkov, V. F.
2017-03-01
The author gives results of parametric calculations of shock-boom levels in the case of flow with a free-stream Mach number of 2.03 past configurations of a supersonic aircraft. The calculations are aimed at investigating the influence of the relative position of basic elements and their geometric shape on the aerodynamic quality of the configuration and on the parameters of shock boom at great distances from the perturbation source. The geometric models of the configurations were formed by combining and joining component elements: the body, the front wing, and the rear tapered wing with root dogtooth extension. From an analysis of all the considered models of tandem configurations with account of the resolvability of shock waves in a perturbed profile compared to the monoplane configuration, the optimum configuration has been singled out that ensures a reduction of 24% in the intensity level of shock boom with an increase of 0.24% in its aerodynamic quality.
Portable, space-saving medical patient support system
Bzorgi,; Fariborz, [Knoxville, TN
2011-02-01
A support platform having a stowed configuration and a deployed configuration on a floor. The support platform is related to stretcher devices that are used for transporting, confining, or conducting medical procedures on medical patients in medical emergencies. The support platform typically includes a work surface that has a geometric extent. A base that typically includes a plurality of frame members is provided, and the frame members are disposed across the geometric extent of, and proximal to, the work surface in the stowed configuration. The frame members are typically disposed on the floor in the deployed configuration. There is a foldable bracing system engaged with the work surface and engaged with the base. At least a portion of the foldable bracing system is disposed substantially inside at least a portion of the plurality of frame members in the stowed configuration. Further, the foldable bracing system is configured for translocation of the work surface distal from the base in the deployed configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.; Jang, H.; Kang, B. Y.
The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration ( i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the TbB 4 compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon coolingmore » down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Here, our results and their implications would further shed a light on the search for possible realization of QSL.« less
Huang, H.; Jang, H.; Kang, B. Y.; ...
2018-05-05
The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration ( i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the TbB 4 compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon coolingmore » down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Here, our results and their implications would further shed a light on the search for possible realization of QSL.« less
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)
1998-01-01
Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.
NASA Technical Reports Server (NTRS)
Dash, S.; Delguidice, P. D.
1975-01-01
A parametric numerical procedure permitting the rapid determination of the performance of a class of scramjet nozzle configurations is presented. The geometric complexity of these configurations ruled out attempts to employ conventional nozzle design procedures. The numerical program developed permitted the parametric variation of cowl length, turning angles on the cowl and vehicle undersurface and lateral expansion, and was subject to fixed constraints such as the vehicle length and nozzle exit height. The program required uniform initial conditions at the burner exit station and yielded the location of all predominant wave zones, accounting for lateral expansion effects. In addition, the program yielded the detailed pressure distribution on the cowl, vehicle undersurface and fences, if any, and calculated the nozzle thrust, lift and pitching moments.
Overset grid applications on distributed memory MIMD computers
NASA Technical Reports Server (NTRS)
Chawla, Kalpana; Weeratunga, Sisira
1994-01-01
Analysis of modern aerospace vehicles requires the computation of flowfields about complex three dimensional geometries composed of regions with varying spatial resolution requirements. Overset grid methods allow the use of proven structured grid flow solvers to address the twin issues of geometrical complexity and the resolution variation by decomposing the complex physical domain into a collection of overlapping subdomains. This flexibility is accompanied by the need for irregular intergrid boundary communication among the overlapping component grids. This study investigates a strategy for implementing such a static overset grid implicit flow solver on distributed memory, MIMD computers; i.e., the 128 node Intel iPSC/860 and the 208 node Intel Paragon. Performance data for two composite grid configurations characteristic of those encountered in present day aerodynamic analysis are also presented.
NASA Astrophysics Data System (ADS)
Tohsaki, Akihiro; Itagaki, Naoyuki
2018-01-01
We study α -cluster structure based on the geometric configurations with a microscopic framework, which takes full account of the Pauli principle, and which also employs an effective internucleon force including finite-range three-body terms suitable for microscopic α -cluster models. Here, special attention is focused upon the α clustering with a hollow structure; all the α clusters are put on the surface of a sphere. All the platonic solids (five regular polyhedra) and the fullerene-shaped polyhedron coming from icosahedral structure are considered. Furthermore, two configurations with dual polyhedra, hexahedron-octahedron and dodecahedron-icosahedron, are also scrutinized. When approaching each other from large distances with these symmetries, α clusters create certain local energy pockets. As a consequence, we insist on the possible existence of α clustering with a geometric shape and hollow structure, which is favored from Coulomb energy point of view. Especially, two configurations, that is, dual polyhedra of dodecahedron-icosahedron and fullerene, have a prominent hollow structure compared with the other six configurations.
Strong coupling in F-theory and geometrically non-Higgsable seven-branes
NASA Astrophysics Data System (ADS)
Halverson, James
2017-06-01
Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O (1) in the vicinity of the brane; that it sources nilpotent SL (2 , Z) monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU (3) and SU (2) seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany-Witten moves on (p , q) string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres-Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.
Unsteady transonic flow calculations for realistic aircraft configurations
NASA Technical Reports Server (NTRS)
Batina, John T.; Seidel, David A.; Bland, Samuel R.; Bennett, Robert M.
1987-01-01
A transonic unsteady aerodynamic and aeroelasticity code has been developed for application to realistic aircraft configurations. The new code is called CAP-TSD which is an acronym for Computational Aeroelasticity Program - Transonic Small Disturbance. The CAP-TSD code uses a time-accurate approximate factorization (AF) algorithm for solution of the unsteady transonic small-disturbance equation. The AF algorithm is very efficient for solution of steady and unsteady transonic flow problems. It can provide accurate solutions in only several hundred time steps yielding a significant computational cost savings when compared to alternative methods. The new code can treat complete aircraft geometries with multiple lifting surfaces and bodies including canard, wing, tail, control surfaces, launchers, pylons, fuselage, stores, and nacelles. Applications are presented for a series of five configurations of increasing complexity to demonstrate the wide range of geometrical applicability of CAP-TSD. These results are in good agreement with available experimental steady and unsteady pressure data. Calculations for the General Dynamics one-ninth scale F-16C aircraft model are presented to demonstrate application to a realistic configuration. Unsteady results for the entire F-16C aircraft undergoing a rigid pitching motion illustrated the capability required to perform transonic unsteady aerodynamic and aeroelastic analyses for such configurations.
Collar grids for intersecting geometric components within the Chimera overlapped grid scheme
NASA Technical Reports Server (NTRS)
Parks, Steven J.; Buning, Pieter G.; Chan, William M.; Steger, Joseph L.
1991-01-01
A method for overcoming problems with using the Chimera overset grid scheme in the region of intersecting geometry components is presented. A 'collar grid' resolves the intersection region and provides communication between the component grids. This approach is validated by comparing computed and experimental data for a flow about a wing/body configuration. Application of the collar grid scheme to the Orbiter fuselage and vertical tail intersection in a computation of the full Space Shuttle launch vehicle demonstrates its usefulness for simulation of flow about complex aerospace vehicles.
Critical configurations (determinantal loci) for range and range difference satellite networks
NASA Technical Reports Server (NTRS)
Tsimis, E.
1973-01-01
The observational modes of Geometric Satellite Geodesy are discussed. The geometrical analysis of the problem yielded a regression model for the adjustment of the observations along with a suitable and convenient metric for the least-squares criterion. The determinantal loci (critical configurations) for range networks are analyzed. An attempt is made to apply elements of the theory of variants for this purpose. The use of continuously measured range differences for loci determination is proposed.
Fiberoptic probe and system for spectral measurements
Dai, Sheng; Young, Jack P.
1998-01-01
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
NASA Astrophysics Data System (ADS)
Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana
2016-10-01
A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.
NASA Astrophysics Data System (ADS)
Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel
2014-11-01
It is well known that the controlled production of monodisperse simple and composite emulsions possesses uncountable applications in medicine, pharmacy, materials science and industry. Here we present both experiments and slender-body theory regarding the generation of simple emulsions using a configuration that we have called Confined Selective Withdrawal, since it is an improved configuration of the classical Selective Withdrawal. We consider two different situations, namely, the cases when the outer flow Reynolds number is high and low, respectively. Several geometrical configurations and a wide range of viscosity ratios are analyzed so that the physics behind the phenomenon can be fully understood. In addition, we present both experiments and theory regarding the generation of composite emulsions. This phenomenon is only feasible when the outer flow Reynolds number is low enough. In this case, we propose a more complex theory which requires the simultaneous resolution of two interfaces in order to predict the shape of the jet and the sizes of the drops formed. The excellent agreement between our slender-body approximation and the experimental evidence fully validates our theories.
NASA Astrophysics Data System (ADS)
Nilsson, Karl-Fredrik; Jakšić, Nikola; Vokál, Vratko
2010-01-01
This paper describes a finite element based fracture mechanics model to assess how hydrides affect the integrity of zircaloy cladding tubes. The hydrides are assumed to fracture at a low load whereas the propagation of the fractured hydrides in the matrix material and failure of the tube is controlled by non-linear fracture mechanics and plastic collapse of the ligaments between the hydrides. The paper quantifies the relative importance of hydride geometrical parameters such as size, orientation and location of individual hydrides and interaction between adjacent hydrides. The paper also presents analyses for some different and representative multi-hydride configurations. The model is adaptable to general and complex crack configurations and can therefore be used to assess realistic hydride configurations. The mechanism of cladding failure is by plastic collapse of ligaments between interacting fractured hydrides. The results show that the integrity can be drastically reduced when several radial hydrides form continuous patterns.
Aerodynamic Stability and Performance of Next-Generation Parachutes for Mars Descent
NASA Technical Reports Server (NTRS)
Gonyea, Keir C.; Tanner, Christopher L.; Clark, Ian G.; Kushner, Laura K.; Schairer, Edward T.; Braun, Robert D.
2013-01-01
The Low Density Supersonic Decelerator Project is developing a next-generation supersonic parachute for use on future Mars missions. In order to determine the new parachute configuration, a wind tunnel test was conducted at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center. The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability and performance of various canopy configurations in order to help select the design to be flown on the Supersonic Flight Dynamics tests. Parachute configurations included the diskgap- band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During the wind tunnel test, digital cameras captured synchronized image streams of the parachute from three directions. Stereo hotogrammetric processing was performed on the image data to track the position of the vent of the canopy throughout each run. The position data were processed to determine the geometric angular history of the parachute, which were then used to calculate the total angle of attack and its derivatives at each instant in time. Static and dynamic moment coefficients were extracted from these data using a parameter estimation method involving the one-dimensional equation of motion for a rotation of parachute. The coefficients were calculated over all of the available canopy states to reconstruct moment coefficient curves as a function of total angle of attack. From the stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the trim angle could be determined. These stability metrics were assessed in the context of the parachute's drag load and geometric porosity. While there was generally an inverse relationship between the drag load and the stability of the canopy, the data showed that it was possible to obtain similar stability properties as the disk-gap-band with slightly higher drag loads by appropriately tailoring the geometric porosity distribution.
Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects
NASA Astrophysics Data System (ADS)
Kuster, Martin; de Vries, Diemer
2006-12-01
It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.
Fiberoptic probe and system for spectral measurements
Dai, S.; Young, J.P.
1998-10-13
A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.
SPACEBAR: Kinematic design by computer graphics
NASA Technical Reports Server (NTRS)
Ricci, R. J.
1975-01-01
The interactive graphics computer program SPACEBAR, conceived to reduce the time and complexity associated with the development of kinematic mechanisms on the design board, was described. This program allows the direct design and analysis of mechanisms right at the terminal screen. All input variables, including linkage geometry, stiffness, and applied loading conditions, can be fed into or changed at the terminal and may be displayed in three dimensions. All mechanism configurations can be cycled through their range of travel and viewed in their various geometric positions. Output data includes geometric positioning in orthogonal coordinates of each node point in the mechanism, velocity and acceleration of the node points, and internal loads and displacements of the node points and linkages. All analysis calculations take at most a few seconds to complete. Output data can be viewed at the scope and also printed at the discretion of the user.
Full range line-field parallel swept source imaging utilizing digital refocusing
NASA Astrophysics Data System (ADS)
Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.
2015-12-01
We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.
Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion
NASA Technical Reports Server (NTRS)
Lane, Christopher; Axelrad, Penina
2004-01-01
Geometrical methods for formation flying design based on the analytical solution to Hill's equations have been previously developed and used to specify desired relative motions in near circular orbits. By generating relationships between the vehicles that are intuitive, these approaches offer valuable insight into the relative motion and allow for the rapid design of satellite configurations to achieve mission specific requirements, such as vehicle separation at perigee or apogee, minimum separation, or a specific geometrical shape. Furthermore, the results obtained using geometrical approaches can be used to better constrain numerical optimization methods; allowing those methods to converge to optimal satellite configurations faster. This paper presents a set of geometrical relationships for formations in eccentric orbits, where Hill.s equations are not valid, and shows how these relationships can be used to investigate formation designs and how they evolve with time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poad, Berwyck L. J.; Zheng, Xueyun; Mitchell, Todd W.
One of the most significant challenges in contemporary lipidomics lies in the separation and identification of lipid isomers that differ only in site(s) of unsaturation or geometric configuration of the carbon-carbon double bonds. While analytical separation techniques including ion mobility spectrometry (IMS) and liquid chromatography (LC) can separate isomeric lipids under appropriate conditions, conventional tandem mass spectrometry cannot provide unequivocal identification. To address this challenge, we have implemented ozone-induced dissociation (OzID) in-line with LC, IMS and high resolution mass spectrometry. Modification of an IMS- capable quadrupole time-of-flight mass spectrometer was undertaken to allow the introduction of ozone into the high-pressuremore » trapping ion funnel region preceding the IMS cell. This enabled the novel LC-OzID-IMS-MS configuration where ozonolysis of ionized lipids occurred rapidly (10 ms) without prior mass-selection. LC-elution time alignment combined with accurate mass and arrival time extraction of ozonolysis products facilitated correlation of precursor and product ions without mass-selection (and associated reductions in duty cycle). Unsaturated lipids across 11 classes were examined using this workflow in both positive and negative ion modalities and in all cases the positions of carbon-carbon double bonds were unequivocally assigned based on predictable OzID transitions. Under these conditions geometric isomers exhibited different IMS arrival time distributions and distinct OzID product ion ratios providing a means for discrimination of cis/trans double bonds in complex lipids. The combination of OzID with multidimensional separations shows significant promise for facile profiling of unsaturation patterns within complex lipidomes.« less
ELF field in the proximity of complex power line configuration measurement procedures.
Benes, M; Comelli, M; Villalta, R
2006-01-01
The issue of how to measure magnetic induction fields generated by various power line configurations, when there are several power lines that run across the same exposure area, has become a matter of interest and study within the Regional Environment Protection Agency of Friuli Venezia Giulia. In classifying the various power line typologies the definition of double circuit line was given: in this instance the magnetic field is determined by knowing the electrical and geometric parameters of the line. In the case of independent lines instead, the field is undetermined. It is therefore pointed out how, in the latter case, extracting previsional information from a set of measurements of the magnetic field alone is impossible. Making measurements throughout the territory of service has in several cases offered the opportunity to define standard operational procedures.
Research of the (E/Z)-isomerization of carotenoids in Pécs since the 1970s.
Molnár, Péter
2009-03-15
Geometrical configuration of the polyene chain of approximately 40 mono- and di-cis carotenoids was determined from 1970 through 1990. Subsequently, the kinetic, equilibrium and thermodynamic parameters (k, K, A, E(A), DeltaH(#), DeltaG(#), DeltaS(#)) of the reversible thermal isomerization of several symmetrical and unsymmetrical carotenoids were calculated. The rate of the iodine-catalyzed photoisomerization of (all-E)-, (9Z)- and (13Z)-zeaxanthin was compared and the 'specific rate' (per unit light energy at given wavelengths) of the iodine-catalyzed photoisomerization for several (13Z)-carotenoids was investigated. As the missing links of the biosynthetic pathway of paprika-carotenoids, carotenoids containing new end groups were isolated; their sterically unhindered mono-cis isomers were also prepared and their geometrical configuration was determined. The investigation concentrated on the substrate specificity of the enzyme violaxanthin-deepoxidase, the light-induced formation of (13Z)-violaxanthin in green leaves, the binding of xanthophylls to the bulk light-harvesting complex (LHC) of photosystem II in higher plants, the biochemical basis of color as an aesthetic quality in Citrus-fruits and the (9Z)-epoxycarotenoid cleavage enzyme activity for ABA biosynthesis. Recently (9Z)-capsanthin-5,6-epoxide and capsoneoxanthin, two novel carotenoids have been isolated from natural sources.
Unidimensional games, propitious environments, and maximum diversity
NASA Astrophysics Data System (ADS)
Sales, Tasso R. M.
1993-10-01
Cellular automata have been extensively used in the modeling of complexity. In biological phenomena complexity is directly related to the intuitive concept of diversity, which manifests itself in several forms. Particularly, the game Life [E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays (Academic, New York, 1982), Vol. 2] may be viewed as a picture of nonlinear open biological systems acting cooperatively. However, it has been shown that, in Life, diversity (defined in terms of different clusters) decreases with time. We derive an alternative game introducing the concept of a propitious environment which confers longevity to live sites in time evolution. It is shown that the game self-organizes in a configuration of maximum diversity exhibiting a high geometrical complexity. This game is considered in one dimension and has some connections with the unidimensional Life.
New narrow-beam neutron spectrometer in complex monitoring system
NASA Astrophysics Data System (ADS)
Mikhalko, Evgeniya; Balabin, Yuriy; Maurchev, Evgeniy; Germanenko, Aleksey
2018-03-01
In the interaction of cosmic rays (CRs) with Earth's atmosphere, neutrons are formed in a wide range of energies: from thermal (E≈0.025 eV) to ultrarelativistic (E>1 GeV). To detect and study CRs, Polar Geophysical Institute (PGI) uses a complex monitoring system containing detectors of various configurations. The standard neutron monitor (NM) 18-NM-64 is sensitive to neutrons with energies E>50 MeV. The lead-free section of the neutron monitor (BSRM) detects neutrons with energies E≈(0.1/1) MeV. Also, for sharing with standard detectors, the Apatity NM station has developed and installed a neutron spectrometer with three energy channels and a particle reception angle of 15 degrees. The configuration of the device makes it possible to study the degree of anisotropy of the particle flux from different directions. We have obtained characteristics of the detector (response function and particle reception angle), as well as geometric dimensions through numerical simulation using the GEANT4 toolkit [Agostinelli et al., 2003]. During operation of the device, we collected database of observations and received preliminary results.
NASA Technical Reports Server (NTRS)
Anderson, Brian P.; Greathouse, James S.; Powell, Jessica M.; Ross, James C.; Schairer, Edward T.; Kushner, Laura; Porter, Barry J.; Goulding, Patrick W., II; Zwicker, Matthew L.; Mollmann, Catherine
2017-01-01
A two-week test campaign was conducted in the National Full-Scale Aerodynamics Complex 80 x 120-ft Wind Tunnel in support of Orion parachute pendulum mitigation activities. The test gathered static aerodynamic data using an instrumented, 3-tether system attached to the parachute vent in combination with an instrumented parachute riser. Dynamic data was also gathered by releasing the tether system and measuring canopy performance using photogrammetry. Several canopy configurations were tested and compared against the current Orion parachute design to understand changes in drag performance and aerodynamic stability. These configurations included canopies with varying levels and locations of geometric porosity as well as sails with increased levels of fullness. In total, 37 runs were completed for a total of 392 data points. Immediately after the end of the testing campaign a down-select decision was made based on preliminary data to support follow-on sub-scale air drop testing. A summary of a more rigorous analysis of the test data is also presented.
Wake Vortex Avoidance System and Method
NASA Technical Reports Server (NTRS)
Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)
2017-01-01
A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.
Capabilities overview of the MORET 5 Monte Carlo code
NASA Astrophysics Data System (ADS)
Cochet, B.; Jinaphanh, A.; Heulers, L.; Jacquet, O.
2014-06-01
The MORET code is a simulation tool that solves the transport equation for neutrons using the Monte Carlo method. It allows users to model complex three-dimensional geometrical configurations, describe the materials, define their own tallies in order to analyse the results. The MORET code has been initially designed to perform calculations for criticality safety assessments. New features has been introduced in the MORET 5 code to expand its use for reactor applications. This paper presents an overview of the MORET 5 code capabilities, going through the description of materials, the geometry modelling, the transport simulation and the definition of the outputs.
Active isotropic slabs: conditions for amplified reflection
NASA Astrophysics Data System (ADS)
Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste
2012-12-01
We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id
2014-01-01
It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.
NASA Technical Reports Server (NTRS)
Leith, Andrew C.; Mckinnon, William B.
1991-01-01
The effective cohesion of the cratered region during crater collapse is determined via the widths of slump terraces of complex craters. Terrace widths are measured for complex craters on Mercury; these generally increase outward toward the rim for a given crater, and the width of the outermost major terrace is generally an increasing function of crater diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the cratered region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex craters by Pearce and Melosh (1986) indicates that the transient strength of cratered Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex crater depth/diameter transition.
NASA Technical Reports Server (NTRS)
Lummus, J. R.; Joyce, G. T.; Omalley, C. D.
1980-01-01
The aerodynamic characteristics of the components of the baseline E205 configuration is presented. Geometric variations from the baseline E205 configuration are also given including a matrix of conrad longitudinal locations and strake shapes.
Payload/orbiter contamination control requirement study, volume 2, exhibit A
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Hooper, V. W.; Rantanen, R. O.; Ress, E. B.
1974-01-01
The computer printout data generated during the Payload/Orbiter Contamination Control Requirement Study are presented. The computer listings of the input surface data matrices, the viewfactor data matrices, and the geometric relationship data matrices for the three orbiter/spacelab configurations analyzed in this study are given. These configurations have been broken up into the geometrical surfaces and nodes necessary to define the principal critical surfaces whether they are contaminant sources, experimental surfaces, or operational surfaces. A numbering scheme was established based upon nodal numbers that relates the various spacelab surfaces to a specific surface material or function. This numbering system was developed for the spacelab configurations such that future extension to a surface mapping capability could be developed as required.
Shape optimization techniques for musical instrument design
NASA Astrophysics Data System (ADS)
Henrique, Luis; Antunes, Jose; Carvalho, Joao S.
2002-11-01
The design of musical instruments is still mostly based on empirical knowledge and costly experimentation. One interesting improvement is the shape optimization of resonating components, given a number of constraints (allowed parameter ranges, shape smoothness, etc.), so that vibrations occur at specified modal frequencies. Each admissible geometrical configuration generates an error between computed eigenfrequencies and the target set. Typically, error surfaces present many local minima, corresponding to suboptimal designs. This difficulty can be overcome using global optimization techniques, such as simulated annealing. However these methods are greedy, concerning the number of function evaluations required. Thus, the computational effort can be unacceptable if complex problems, such as bell optimization, are tackled. Those issues are addressed in this paper, and a method for improving optimization procedures is proposed. Instead of using the local geometric parameters as searched variables, the system geometry is modeled in terms of truncated series of orthogonal space-funcitons, and optimization is performed on their amplitude coefficients. Fourier series and orthogonal polynomials are typical such functions. This technique reduces considerably the number of searched variables, and has a potential for significant computational savings in complex problems. It is illustrated by optimizing the shapes of both current and uncommon marimba bars.
Extrinsic curvature, geometric optics, and lamellar order on curved substrates
NASA Astrophysics Data System (ADS)
Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo
2009-11-01
When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.
Multi-Fault Rupture Scenarios in the Brawley Seismic Zone
NASA Astrophysics Data System (ADS)
Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.
2017-12-01
Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger event. For that reason, we are investigating scenarios of a moderate rupture on a cross fault, and determining conditions under which the rupture will propagate onto the adjacent SSAF. Our investigation will provide fundamental insights that may help us interpret faulting behaviors in other areas, such as the complex Mw 7.8 2016 Kaikoura (New Zealand) earthquake.
Stoner, D. L.; Watson, S. M.; Stedtfeld, R. D.; Meakin, P.; Griffel, L. K.; Tyler, T. L.; Pegram, L. M.; Barnes, J. M.; Deason, V. A.
2005-01-01
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices. PMID:16332867
Stoner, D L; Watson, S M; Stedtfeld, R D; Meakin, P; Griffel, L K; Tyler, T L; Pegram, L M; Barnes, J M; Deason, V A
2005-12-01
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbial colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Stoner; S. M. Watson; R. D. Stedtfeld
Here we introduce the use of transparent experimental models fabricated by stereolithography for studying the impacts of biomass accumulation, minerals precipitation, and physical configuration of flow paths on liquid flow in fracture apertures. The internal configuration of the models ranged in complexity from simple geometric shapes to those that incorporate replicated surfaces of natural fractures and computationally derived fracture surfaces. High-resolution digital time-lapse imaging was employed to qualitatively observe the migration of colloidal and soluble dyes through the flow models. In this study, a Sphingomonas sp. and Sporosarcina (Bacillus) pasteurii influenced the fluid dynamics by physically altering flow paths. Microbialmore » colonization and calcite deposition enhanced the stagnant regions adjacent to solid boundaries. Microbial growth and calcite precipitation occurred to a greater extent in areas behind the fabricated obstacles and less in high-velocity orifices.« less
NASA Astrophysics Data System (ADS)
Tarafdar, Pratik; Das, Tapas K.
Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity κ with the Kerr parameter a. The κ-a relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the κ-a relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.
Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang
2015-01-01
A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721
Development of a Novel Synthetic Drug for Osteoporosis and Fracture Healing
2013-09-01
and geometric isomers, both individually and in any and all possible mixtures. In each of the foregoing and following embodiments, it is also to be...including mixtures of stereochemical configuration at one or more other chiral centers. Similarly, the compounds described herein may be include geometric ...limited to any particular geometric isomer requirement, and 5 that the compounds, and compositions, methods, uses, and medicaments that include them may
Soloshonok*, Vadim A.; Cai, Chaozhong; Yamada, Takeshi; Ueki, Hisanori; Ohfune, Yasufumi; Hruby, Victor J.
2006-01-01
This paper describes a systematic study of addition reactions between the chiral Ni(II) complex of the Schiff base of glycine with (S)-o-[N-(N-benzylprolyl)amino]benzophenone and (S)- or (R)-3-[(E)-enoyl]-4-phenyl-1,3-oxazolidin-2-ones as a general and synthetically efficient approach to β-substituted pyroglutamic acids and relevant compounds. These reactions were shown to occur at room temperature in the presence of nonchelating organic bases and, most notably, with very high (>98% diastereomeric excess (de)) stereoselectivity at both newly formed stereogenic centers. The stereochemical outcome of the reactions was found to be overwhelmingly controlled by the stereochemical preferences of the Michael acceptors, and the chirality of the glycine complex influenced only the reaction rate. Thus, in the reactions of both the (S)-configured Ni(II) complex and the Michael acceptors, the reaction rates were exceptionally high, allowing preparation of the corresponding products with virtually quantitative (>98%) chemical and stereochemical yields. In contrast, reactions of the (S)-configured Ni(II) complex and (R)-configured Michael acceptors proceeded at noticeably lower rates, but the addition products were obtained in high diastereo-and enantiomeric purity. To rationalize the remarkably high and robust stereoselectivity observed in these reactions, we consider an enzyme–substrate-like mode of interaction involing a topographical match or mismatch of two geometric figures. Excellent chemical and stereochemical yields, combined with the simplicity and operational convenience of the experimental procedures, render the present method of immediate use for preparing various β-substituted pyroglutamic acids and related compounds. PMID:16248672
Soloshonok, Vadim A; Cai, Chaozhong; Yamada, Takeshi; Ueki, Hisanori; Ohfune, Yasufumi; Hruby, Victor J
2005-11-02
This paper describes a systematic study of addition reactions between the chiral Ni(II) complex of the Schiff base of glycine with (S)-o-[N-(N-benzylprolyl)amino]benzophenone and (S)- or (R)-3-[(E)-enoyl]-4-phenyl-1,3-oxazolidin-2-ones as a general and synthetically efficient approach to beta-substituted pyroglutamic acids and relevant compounds. These reactions were shown to occur at room temperature in the presence of nonchelating organic bases and, most notably, with very high (>98% diastereomeric excess (de)) stereoselectivity at both newly formed stereogenic centers. The stereochemical outcome of the reactions was found to be overwhelmingly controlled by the stereochemical preferences of the Michael acceptors, and the chirality of the glycine complex influenced only the reaction rate. Thus, in the reactions of both the (S)-configured Ni(II) complex and the Michael acceptors, the reaction rates were exceptionally high, allowing preparation of the corresponding products with virtually quantitative (>98%) chemical and stereochemical yields. In contrast, reactions of the (S)-configured Ni(II) complex and (R)-configured Michael acceptors proceeded at noticeably lower rates, but the addition products were obtained in high diastereo- and enantiomeric purity. To rationalize the remarkably high and robust stereoselectivity observed in these reactions, we consider an enzyme-substrate-like mode of interaction involving a topographical match or mismatch of two geometric figures. Excellent chemical and stereochemical yields, combined with the simplicity and operational convenience of the experimental procedures, render the present method of immediate use for preparing various beta-substituted pyroglutamic acids and related compounds.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Huffman, J. K.
1979-01-01
An investigation conducted in the Langley 7 by 10 foot tunnel to determine the influence of an optimized leading-edge deflection on the low speed aerodynamic performance of a configuration with a low aspect ratio, highly swept wing. The sensitivity of the lateral stability derivative to geometric anhedral was also studied. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to spanwise variation of unwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16 deg at the side of body to 50 deg at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved. The results of tests conducted to determine the sensitivity of the lateral stability derivative to geometric anhedral indicate values which are in reasonable agreement with estimates provided by simple vortex-lattice theories.
A novel algorithm for fast grasping of unknown objects using C-shape configuration
NASA Astrophysics Data System (ADS)
Lei, Qujiang; Chen, Guangming; Meijer, Jonathan; Wisse, Martijn
2018-02-01
Increasing grasping efficiency is very important for the robots to grasp unknown objects especially subjected to unfamiliar environments. To achieve this, a new algorithm is proposed based on the C-shape configuration. Specifically, the geometric model of the used under-actuated gripper is approximated as a C-shape. To obtain an appropriate graspable position, this C-shape configuration is applied to fit geometric model of an unknown object. The geometric model of unknown object is constructed by using a single-view partial point cloud. To examine the algorithm using simulations, a comparison of the commonly used motion planners is made. The motion planner with the highest number of solved runs, lowest computing time and the shortest path length is chosen to execute grasps found by this grasping algorithm. The simulation results demonstrate that excellent grasping efficiency is achieved by adopting our algorithm. To validate this algorithm, experiment tests are carried out using a UR5 robot arm and an under-actuated gripper. The experimental results show that steady grasping actions are obtained. Hence, this research provides a novel algorithm for fast grasping of unknown objects.
Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc
2009-11-04
The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C(60) heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C(60) complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C(60)-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C(60) interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C(60) bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices.
Escobedo, R.; Muro, C.; Spector, L.; Coppinger, R. P.
2014-01-01
The emergence of cooperation in wolf-pack hunting is studied using a simple, homogeneous, particle-based computational model. Wolves and prey are modelled as particles that interact through attractive and repulsive forces. Realistic patterns of wolf aggregation readily emerge in numerical simulations, even though the model includes no explicit wolf–wolf attractive forces, showing that the form of cooperation needed for wolf-pack hunting can take place even among strangers. Simulations are used to obtain the stationary states and equilibria of the wolves and prey system and to characterize their stability. Different geometric configurations for different pack sizes arise. In small packs, the stable configuration is a regular polygon centred on the prey, while in large packs, individual behavioural differentiation occurs and induces the emergence of complex behavioural patterns between privileged positions. Stable configurations of large wolf-packs include travelling and rotating formations, periodic oscillatory behaviours and chaotic group behaviours. These findings suggest a possible mechanism by which larger pack sizes can trigger collective behaviours that lead to the reduction and loss of group hunting effectiveness, thus explaining the observed tendency of hunting success to peak at small pack sizes. They also explain how seemingly complex collective behaviours can emerge from simple rules, among agents that need not have significant cognitive skills or social organization. PMID:24694897
INVESTIGATION OF SEISMIC PERFORMANCE AND DESIGN OF TYPICAL CURVED AND SKEWED BRIDGES IN COLORADO
DOT National Transportation Integrated Search
2018-01-15
This report summarizes the analytical studies on the seismic performance of typical Colorado concrete bridges, particularly those with curved and skewed configurations. A set of bridge models with different geometric configurations derived from a pro...
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Capone, Francis J.
1989-01-01
An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.
Multi-function diamond film fiberoptic probe and measuring system employing same
Young, Jack P.
1998-01-01
A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.
NASA Astrophysics Data System (ADS)
Du, Shihong; Guo, Luo; Wang, Qiao; Qin, Qimin
The extended 9-intersection matrix is used to formalize topological relations between uncertain regions while it is designed to satisfy the requirements at a concept level, and to deal with the complex regions with broad boundaries (CBBRs) as a whole without considering their hierarchical structures. In contrast to simple regions with broad boundaries, CBBRs have complex hierarchical structures. Therefore, it is necessary to take into account the complex hierarchical structure and to represent the topological relations between all regions in CBBRs as a relation matrix, rather than using the extended 9-intersection matrix to determine topological relations. In this study, a tree model is first used to represent the intrinsic configuration of CBBRs hierarchically. Then, the reasoning tables are presented for deriving topological relations between child, parent and sibling regions from the relations between two given regions in CBBRs. Finally, based on the reasoning, efficient methods are proposed to compute and derive the topological relation matrix. The proposed methods can be incorporated into spatial databases to facilitate geometric-oriented applications.
Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere
2014-11-24
Clifford Algebra to Geometric Calculus , Reidel, 1984. Hirschfelder, J.O., Curtiss, C.F. & Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, 1954...are made explicit in a Poincaré sphere and geometric (Clifford) algebra representation. Section 5.0 of this report provides the evidence supporting...MEDIA 4.0 LABORATORY TEST CONFIGURATIONS 5.0 TEST RESULTS 5.1 DATA ANALYSIS METHODS 5.2 DATA ANALYSIS 6.0 GEOMETRIC ALGEBRA 6.1 INTRODUCTION
NASA Astrophysics Data System (ADS)
Ali-Bey, Mohamed; Moughamir, Saïd; Manamanni, Noureddine
2011-12-01
in this paper a simulator of a multi-view shooting system with parallel optical axes and structurally variable configuration is proposed. The considered system is dedicated to the production of 3D contents for auto-stereoscopic visualization. The global shooting/viewing geometrical process, which is the kernel of this shooting system, is detailed and the different viewing, transformation and capture parameters are then defined. An appropriate perspective projection model is afterward derived to work out a simulator. At first, this latter is used to validate the global geometrical process in the case of a static configuration. Next, the simulator is used to show the limitations of a static configuration of this shooting system type by considering the case of dynamic scenes and then a dynamic scheme is achieved to allow a correct capture of this kind of scenes. After that, the effect of the different geometrical capture parameters on the 3D rendering quality and the necessity or not of their adaptation is studied. Finally, some dynamic effects and their repercussions on the 3D rendering quality of dynamic scenes are analyzed using error images and some image quantization tools. Simulation and experimental results are presented throughout this paper to illustrate the different studied points. Some conclusions and perspectives end the paper. [Figure not available: see fulltext.
Geometric structure of percolation clusters.
Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin
2014-01-01
We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).
Bim-Based Indoor Path Planning Considering Obstacles
NASA Astrophysics Data System (ADS)
Xu, M.; Wei, S.; Zlatanova, S.; Zhang, R.
2017-09-01
At present, 87 % of people's activities are in indoor environment; indoor navigation has become a research issue. As the building structures for people's daily life are more and more complex, many obstacles influence humans' moving. Therefore it is essential to provide an accurate and efficient indoor path planning. Nowadays there are many challenges and problems in indoor navigation. Most existing path planning approaches are based on 2D plans, pay more attention to the geometric configuration of indoor space, often ignore rich semantic information of building components, and mostly consider simple indoor layout without taking into account the furniture. Addressing the above shortcomings, this paper uses BIM (IFC) as the input data and concentrates on indoor navigation considering obstacles in the multi-floor buildings. After geometric and semantic information are extracted, 2D and 3D space subdivision methods are adopted to build the indoor navigation network and to realize a path planning that avoids obstacles. The 3D space subdivision is based on triangular prism. The two approaches are verified by the experiments.
Fluid Transient Analysis during Priming of Evacuated Line
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok K.; Holt, Kimberley
2017-01-01
Water hammer analysis in pipe lines, in particularly during priming into evacuated lines is important for the design of spacecraft and other in-space application. In the current study, a finite volume network flow analysis code is used for modeling three different geometrical configurations: the first two being straight pipe, one with atmospheric air and other with evacuated line, and the third case is a representation of a complex flow network system. The numerical results show very good agreement qualitatively and quantitatively with measured data available in the literature. The peak pressure and impact time in case of straight pipe priming in evacuated line shows excellent agreement.
Applications of digital image processing techniques to problems of data registration and correlation
NASA Technical Reports Server (NTRS)
Green, W. B.
1978-01-01
An overview is presented of the evolution of the computer configuration at JPL's Image Processing Laboratory (IPL). The development of techniques for the geometric transformation of digital imagery is discussed and consideration is given to automated and semiautomated image registration, and the registration of imaging and nonimaging data. The increasing complexity of image processing tasks at IPL is illustrated with examples of various applications from the planetary program and earth resources activities. It is noted that the registration of existing geocoded data bases with Landsat imagery will continue to be important if the Landsat data is to be of genuine use to the user community.
Lunar Surface Habitat Configuration Assessment: Methodology and Observations
NASA Technical Reports Server (NTRS)
Carpenter, Amanda
2008-01-01
The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.
Assured crew return vehicle post landing configuration design and test
NASA Technical Reports Server (NTRS)
1992-01-01
The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-fifth scale model for the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study. Section 1 describes in detail the design of a one-fifth scale model of the Apollo Command Module Derivative (ACMD) ACRV. The objective of the ACMD Configuration Model Team was to use geometric and dynamic constraints to design a one-fifth scale working model of the Apollo Command Module Derivative (ACMD) configuration with a Lift Attachment Point (LAP) System. This model was required to incorporate a rigidly mounted flotation system and the egress system designed the previous academic year. The LAP system was to be used to determine the dynamic effects of locating the lifting points at different locations on the vehicle. The team was then to build and test the model; however, due to priorities, this did not occur. To better simulate the ACMD after a water landing, the nose cone section was removed and the deck area exposed. The areas researched during the design process were construction, center of gravity and moment of inertia, and lift attachment points.
Design of the Hybrid Wing Body with Nacelle: N3-X Propulsion-Airframe Configuration
NASA Technical Reports Server (NTRS)
Kim, Hyoungjin; Harding, David; Gronstal, David T.; Liou, May-Fun; Liou, Meng-Sing
2016-01-01
The Hybrid Wing Body (HWB) aircraft is of great interest for future transport concepts due to itspromises of reduced aircraft noise, nitrous-oxide emissions, and fuel consumption. A design parameterizationmethod for HWB configurations with mail slot nacelle has been developed for a fast exploration of designspace in conceptual and preliminary design phases of a HWB configuration. A HWB planform model byLaughlin [11] was implemented, and the Class Shape Transformation (CST) airfoil generation method byKulfan [10] was utilized to construct the needed geometry for computational high fidelity aerodynamicsimulations. Geometric constraints for the parameterization such as internal cabin and cargo hold layoutswere imposed on the geometry generation. A CFD simulation was performed for a HWB configurationgenerated by the current geometric modeler, clearly showing a significant effect of the installed nacelle on theflowfield.
Dragging in a Dynamic Geometry Environment through the Lens of Variation
ERIC Educational Resources Information Center
Leung, Allen
2008-01-01
What makes Dynamic Geometry Environment (DGE) a powerful mathematical knowledge acquisition microworld is its ability to visually make explicit the implicit dynamism of thinking about mathematical geometrical concepts. One of DGE's powers is to equip us with the ability to retain the background of a geometrical configuration while we can…
ERIC Educational Resources Information Center
Widder, Mirela; Gorsky, Paul
2013-01-01
In schools, learning spatial geometry is usually dependent upon a student's ability to visualize three dimensional geometric configurations from two dimensional drawings. Such a process, however, often creates visual obstacles which are unique to spatial geometry. Useful software programs which realistically depict three dimensional geometric…
NASA Astrophysics Data System (ADS)
Xu, Sheng; Yan, Zheng; Jang, Kyung-In; Huang, Wen; Fu, Haoran; Kim, Jeonghyun; Wei, Zijun; Flavin, Matthew; McCracken, Joselle; Wang, Renhan; Badea, Adina; Liu, Yuhao; Xiao, Dongqing; Zhou, Guoyan; Lee, Jungwoo; Chung, Ha Uk; Cheng, Huanyu; Ren, Wen; Banks, Anthony; Li, Xiuling; Paik, Ungyu; Nuzzo, Ralph G.; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2015-01-01
Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations.
An Analysis of Performance Enhancement Techniques for Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, J. J.; Biswas, R.; Potsdam, M.; Strawn, R. C.; Biegel, Bryan (Technical Monitor)
2002-01-01
The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement techniques on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
Implicit Multibody Penalty-BasedDistributed Contact.
Xu, Hongyi; Zhao, Yili; Barbic, Jernej
2014-09-01
The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time.
NASA Astrophysics Data System (ADS)
Demasi, L.; Livne, E.
2009-07-01
Two different time domain formulations of integrating commonly used frequency-domain unsteady aerodynamic models based on a modal approach with full order finite element models for structures with geometric nonlinearities are presented. Both approaches are tailored to flight vehicle configurations where geometric stiffness effects are important but where deformations are moderate, flow is attached, and linear unsteady aerodynamic modeling is adequate, such as low aspect ratio wings or joined-wing and strut-braced wings at small to moderate angles of attack. Results obtained using the two approaches are compared using both planar and non-planar wing configurations. Sub-critical and post-flutter speeds are considered. It is demonstrated that the two methods lead to the same steady solution for the sub-critical case after the transients subside. It is also shown that the two methods predict the amplitude and frequency of limit cycle oscillation (when present) with the same accuracy.
Computer program analyzes and designs supersonic wing-body combinations
NASA Technical Reports Server (NTRS)
Woodward, F. A.
1968-01-01
Computer program formulates geometric description of the wing body configuration, optimizes wing camber shape, determines wing shape for a given pressure distribution, and calculates pressures, forces, and moments on a given configuration. The program consists of geometry definition, transformation, and paneling, and aerodynamics, and flow visualization.
ERIC Educational Resources Information Center
Nika, G. Gerald; Parameswaran, R.
1997-01-01
Describes a visual approach for explaining the filling of electrons in the shells, subshells, and orbitals of the chemical elements. Enables students to apply the principles of atomic electron configuration while using manipulatives to model the building up of electron configurations as the atomic numbers of elements increase on the periodic…
Multi-function diamond film fiber optic probe and measuring system employing same
Young, J.P.
1998-11-24
A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.
Instability thresholds for flexible rotors in hydrodynamic bearings
NASA Technical Reports Server (NTRS)
Allaire, P. E.; Flack, R. D.
1980-01-01
Two types of fixed pad hydrodynamic bearings (multilobe and pressure dam) were considered. Optimum and nonoptimum geometric configurations were tested. The optimum geometric configurations were determined by using a theoretical analysis and then the bearings were constructed for a flexible rotor test rig. It was found that optimizing bearings using this technique produces a 100% or greater increase in rotor stability. It is shown that this increase in rotor stability is carried out in the absence of certain types of instability mechanisms such as aerodynamic crosscoupling. However, the increase in rotor stability should greatly improve rotating machinery performance in the presence of such forces as well.
Geometrical contribution to the anomalous Nernst effect in TbFeCo thin films
NASA Astrophysics Data System (ADS)
Ando, Ryo; Komine, Takashi
2018-05-01
The geometrical contribution to the anomalous Nernst effect in magnetic thin films was experimentally investigated by varying the aspect ratios and electrode configurations. The bar-type electrode configuration induces a short-circuit current near both edges of electrodes and decreases the effective Nernst voltage, while the point-contact (PC) electrode exploits the intrinsic Nernst voltage. In a sample with PC electrodes, as the sample width along the transverse direction of the thermal flow increases, the Nernst voltage increases monotonically. Thus, a much wider element with PC electrodes enables us to bring out a larger Nernst voltage by utilizing perpendicularly magnetized thin films.
NASA Astrophysics Data System (ADS)
Battisacco, Elena; Franca, Mário J.; Schleiss, Anton J.
2016-04-01
Dams interrupt the longitudinal continuity of river reaches since they store water and trap sediment in the upstream reservoir. By the interruption of the sediment continuum, the transport capacity of downstream stretch exceeds the sediment supply, thus the flow becomes "hungry". Sediment replenishment is an increasingly used method for restoring the continuity in rivers and for re-establishing the sediment regime of such disturbed river reaches. This research evaluates the effect of different geometrical configurations of sediment replenishment on the evolution of the bed morphology by systematic laboratory experiments. A typical straight armoured gravel reach is reproduced in a laboratory flume in terms of slope, grain size and cross section. The total amount of replenished sediment is placed in four identical volumes on both channel banks, forming six different geometrical configurations. Both alternated and parallel combinations are studied. Preliminary studies demonstrate that a complete submergence condition of the replenishment deposits is most adequate for obtaining a complete erosion and a high persistence of the replenished material in the channel. The response of the channel bed morphology to replenishment is documented by camera and laser scanners installed on a moveable carriage. The parallel configurations create an initially strong narrowing of the channel section. The transport capacity is thus higher and most of the replenished sediments exit the channel. The parallel configurations result in a more spread distribution of grains but with no clear morphological pattern. Clear bed form patterns can be observed when applying alternated configurations. Furthermore, the wavelength of depositions correspond to the replenishment deposit length. These morphological forms can be assumed as mounds. In order to enhance channel bed morphology on an armoured bed by sediment replenishment, alternated deposit configurations are more favourable and effective. The present study is supported by FOEN (Federal Office for the Environment, Switzerland).
A computer program for obtaining airplane configuration plots from digital Datcom input data
NASA Technical Reports Server (NTRS)
Roy, M. L.; Sliwa, S. M.
1983-01-01
A computer program is described which reads the input file for the Stability and Control Digital Datcom program and generates plots from the aircraft configuration data. These plots can be used to verify the geometric input data to the Digital Datcom program. The program described interfaces with utilities available for plotting aircraft configurations by creating a file from the Digital Datcom input data.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
NASA Astrophysics Data System (ADS)
Wrześniewski, Kacper; Weymann, Ireneusz
2015-07-01
We analyze the spin-resolved transport properties of a triangular quantum dot molecule weakly coupled to external ferromagnetic leads. The calculations are performed by using the real-time diagrammatic technique up to the second-order of perturbation theory, which enables a description of both the sequential and cotunneling processes. We study the behavior of the current and differential conductance in the parallel and antiparallel magnetic configurations, as well as the tunnel magnetoresistance (TMR) and the Fano factor in both the linear and nonlinear response regimes. It is shown that the transport characteristics depend greatly on how the system is connected to external leads. Two specific geometrical configurations of the device are considered—the mirror one, which possesses the reflection symmetry with respect to the current flow direction and the fork one, in which this symmetry is broken. In the case of first configuration we show that, depending on the bias and gate voltages, the system exhibits both enhanced TMR and super-Poissonian shot noise. On the other hand, when the system is in the second configuration, we predict a negative TMR and a negative differential conductance in certain transport regimes. The mechanisms leading to those effects are thoroughly discussed.
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
Advanced multilateration theory, software development, and data processing: The MICRODOT system
NASA Technical Reports Server (NTRS)
Escobal, P. R.; Gallagher, J. F.; Vonroos, O. H.
1976-01-01
The process of geometric parameter estimation to accuracies of one centimeter, i.e., multilateration, is defined and applications are listed. A brief functional explanation of the theory is presented. Next, various multilateration systems are described in order of increasing system complexity. Expected systems accuracy is discussed from a general point of view and a summary of the errors is listed. An outline of the design of a software processing system for multilateration, called MICRODOT, is presented next. The links of this software, which can be used for multilateration data simulations or operational data reduction, are examined on an individual basis. Functional flow diagrams are presented to aid in understanding the software capability. MICRODOT capability is described with respect to vehicle configurations, interstation coordinate reduction, geophysical parameter estimation, and orbit determination. Numerical results obtained from MICRODOT via data simulations are displayed both for hypothetical and real world vehicle/station configurations such as used in the GEOS-3 Project. These simulations show the inherent power of the multilateration procedure.
Evaluation of seismic spatial interaction effects through an impact testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.D.; Driesen, G.E.
The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous ``sources`` and ``targets`` requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to ``calibrate`` the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less
Evaluation of seismic spatial interaction effects through an impact testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, B.D.; Driesen, G.E.
The consequences of non-seismically qualified objects falling and striking essential, seismically qualified objects is an analytically difficult problem to assess. Analytical solutions to impact problems are conservative and only available for simple situations. In a nuclear facility, the numerous sources'' and targets'' requiring evaluation often have complex geometric configurations, which makes calculations and computer modeling difficult. Few industry or regulatory rules are available for this specialized assessment. A drop test program was recently conducted to calibrate'' the judgment of seismic qualification engineers who perform interaction evaluations and to further develop seismic interaction criteria. Impact tests on varying combinations of sourcesmore » and targets were performed by dropping the sources from various heights onto targets that were connected to instruments. This paper summarizes the scope, test configurations, and some results of the drop test program. Force and acceleration time history data and general observations are presented on the ruggedness of various targets when subjected to impacts from different types of sources.« less
Models and observations of Arctic melt ponds
NASA Astrophysics Data System (ADS)
Golden, K. M.
2016-12-01
During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of five geometric design parameters on the internal performance of single-expansion-ramp nozzles were investigated at nozzle pressure ratios up to 10 in the static-test facility of the Langley 16-Foot Transonic Tunnel. The geometric variables on the expansion-ramp surface of the upper flap consisted of ramp chordal angle, ramp length, and initial ramp angle. On the lower flap, the geometric variables consisted of flap angle and flap length. Both internal performance and static-pressure distributions on the centerlines of the upper and lower flaps were obtained for all 43 nozzle configurations tested.
A grid generation system for multi-disciplinary design optimization
NASA Technical Reports Server (NTRS)
Jones, William T.; Samareh-Abolhassani, Jamshid
1995-01-01
A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.
NASA Technical Reports Server (NTRS)
Kaiser, Mary Kister; Remington, Roger
1988-01-01
Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.
Performance of a Prototype Stationary Catadioptric Concentrating Photovoltaic Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, John V.; Kozodoy, Peter; Gladden, Christopher
A stationary catadioptric concentrating photovoltaic module with aperture area over 100 cm2, geometric concentration of 180x, and collection within 60° of polar incidence was designed, prototyped, and characterized. The module performance followed modeling closely with a peak power conversion efficiency of 26% for direct irradiance. Tracking of the sun is accomplished via translational micro-tracking completely internal to the module, avoiding the cost and complexity of mechanical two-axis trackers that point towards the sun. This study demonstrates the potential for concentrating photovoltaic modules with significantly higher efficiency than industry standard silicon photovoltaic modules that could be installed in stationary configurations onmore » rooftops.« less
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Brogan, F. A.
1978-01-01
Basic information about the computer code STAGS (Structural Analysis of General Shells) is presented to describe to potential users the scope of the code and the solution procedures that are incorporated. Primarily, STAGS is intended for analysis of shell structures, although it has been extended to more complex shell configurations through the inclusion of springs and beam elements. The formulation is based on a variational approach in combination with local two dimensional power series representations of the displacement components. The computer code includes options for analysis of linear or nonlinear static stress, stability, vibrations, and transient response. Material as well as geometric nonlinearities are included. A few examples of applications of the code are presented for further illustration of its scope.
Transonic analysis of canted winglets
NASA Technical Reports Server (NTRS)
Rosen, B. S.
1984-01-01
A computational method developed to provide a transonic analysis for upper/lower surface wing-tip mounted winglets is described. Winglets with arbitrary planform, cant and toe angle, and airfoil section can be modeled. The embedded grid approach provides high flow field resolution and the required geometric flexibility. In particular, coupled Cartesian/cylindrical grid systems are used to model the complex geometry presented by canted upper/lower surface winglets. A new rotated difference scheme is introduced in order to maintain the stability of the small-disturbance formulation in the presence of large spanwise velocities. Wing and winglet viscous effects are modeled using a two-dimensional 'strip' boundary layer analysis. Correlations with wind tunnel and flight test data for three transport configurations are included.
Performance of a Prototype Stationary Catadioptric Concentrating Photovoltaic Module
Lloyd, John V.; Kozodoy, Peter; Gladden, Christopher; ...
2018-03-28
A stationary catadioptric concentrating photovoltaic module with aperture area over 100 cm2, geometric concentration of 180x, and collection within 60° of polar incidence was designed, prototyped, and characterized. The module performance followed modeling closely with a peak power conversion efficiency of 26% for direct irradiance. Tracking of the sun is accomplished via translational micro-tracking completely internal to the module, avoiding the cost and complexity of mechanical two-axis trackers that point towards the sun. This study demonstrates the potential for concentrating photovoltaic modules with significantly higher efficiency than industry standard silicon photovoltaic modules that could be installed in stationary configurations onmore » rooftops.« less
Modeling Electronic Quantum Transport with Machine Learning
Lopez Bezanilla, Alejandro; von Lilienfeld Toal, Otto A.
2014-06-11
We present a machine learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test data sets to the machine. The system’s representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to capture the complexity of interference phenomena lends further support to its viability inmore » dealing with transport problems of undulatory nature.« less
Surface operators from M -strings
NASA Astrophysics Data System (ADS)
Mori, Hironori; Sugimoto, Yuji
2017-01-01
It has been found that surface operators have a significant role in Alday-Gaiotto-Tachikawa (AGT) relation. This duality is an outstanding consequence of M -theory, but it is actually encoded into the brane web for which the topological string can work. From this viewpoint, the surface defect in AGT relation is geometrically engineered as a toric brane realization. Also, there is a class of the brane configuration in M -theory called M -strings which can be translated into the language of the topological string. In this work, we propose a new M -string configuration which can realize AGT relation in the presence of the surface defect by utilizing the geometric transition in the refined topological string.
ERIC Educational Resources Information Center
Contreras, José
2015-01-01
In this paper I describe classroom experiences with pre-service secondary mathematics teachers (PSMTs) investigating and extending patterns embedded in the Pythagorean configuration. This geometric figure is a fruitful source of mathematical tasks to help students, including PSMTs, further develop habits of mind such as visualization,…
Using the NASA GRC Sectored-One-Dimensional Combustor Simulation
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Mehta, Vishal R.
2014-01-01
The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.
Pottecher, Pierre; Engelke, Klaus; Duchemin, Laure; Museyko, Oleg; Moser, Thomas; Mitton, David; Vicaut, Eric; Adams, Judith; Skalli, Wafa; Laredo, Jean Denis; Bousson, Valérie
2016-09-01
Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r(2) = 0.66, P < .001; r(2) = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r(2) = 0.73, P < .001) and trochanteric BMD (r(2) = 0.80, P < .001). For quantitative CT, in both configurations, the best model combined volumetric BMD and a moment of inertia (r(2) = 0.78, P < .001; r(2) = 0.85, P < .001). FEM explained 87% (P < .001) and 83% (P < .001) of bone strength, respectively. By combining (a) radiography and DXA and (b) quantitative CT and DXA, correlations with mechanical failure load increased to 0.82 (P < .001) and 0.84 (P < .001), respectively, for radiography and DXA and to 0.80 (P < .001) and 0.86 (P < .001) , respectively, for quantitative CT and DXA. Conclusion Quantitative CT-based FEM was the best method with which to predict the experimental failure load; however, combining quantitative CT and DXA yielded a performance as good as that attained with FEM. The quantitative CT DXA combination may be easier to use in fracture prediction, provided standardized software is developed. These findings also highlight the major influence on femoral failure load, particularly in the trochanteric region, of a densitometric parameter combined with a geometric parameter. (©) RSNA, 2016 Online supplemental material is available for this article.
Experimental and computational fluid dynamics studies of mixing of complex oral health products
NASA Astrophysics Data System (ADS)
Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team
2017-11-01
Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).
Stanford, T; Pollack, R H
1984-09-01
A cross-sectional study comparing response time and the percentage of items correctly identified in three color vision tests (Pflügertrident, HRR-AO pseudoisochromatic plates, and AO pseudoisochromatic plates) was carried out on 72 women (12 in each decade) ranging from ages 20 to 79 years. Overall, time scores increased across the age groups. Analysis of the correctness scores indicated that the AO pseudoisochromatic plates requiring the identification of numbers was more difficult than the other tests which consisted of geometric forms or the letter E. This differential difficulty increased as a function of age. There was no indication of color defect per se which led to the conclusion that figure complexity may be the key variable determining performance. The results were similar to those obtained by Lee and Pollack (1978) in their study of the Embedded Figures Test.
Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machinc. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
Xu, Sheng; Yan, Zheng; Jang, Kyung-In; Huang, Wen; Fu, Haoran; Kim, Jeonghyun; Wei, Zijun; Flavin, Matthew; McCracken, Joselle; Wang, Renhan; Badea, Adina; Liu, Yuhao; Xiao, Dongqing; Zhou, Guoyan; Lee, Jungwoo; Chung, Ha Uk; Cheng, Huanyu; Ren, Wen; Banks, Anthony; Li, Xiuling; Paik, Ungyu; Nuzzo, Ralph G; Huang, Yonggang; Zhang, Yihui; Rogers, John A
2015-01-09
Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations. Copyright © 2015, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Rosen, Bruce S.
1991-01-01
An upwind three-dimensional volume Navier-Stokes code is modified to facilitate modeling of complex geometries and flow fields represented by proposed National Aerospace Plane concepts. Code enhancements include an equilibrium air model, a generalized equilibrium gas model and several schemes to simplify treatment of complex geometric configurations. The code is also restructured for inclusion of an arbitrary number of independent and dependent variables. This latter capability is intended for eventual use to incorporate nonequilibrium/chemistry gas models, more sophisticated turbulence and transition models, or other physical phenomena which will require inclusion of additional variables and/or governing equations. Comparisons of computed results with experimental data and results obtained using other methods are presented for code validation purposes. Good correlation is obtained for all of the test cases considered, indicating the success of the current effort.
The pentagon relation and incidence geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doliwa, Adam, E-mail: doliwa@matman.uwm.edu.pl; Sergeev, Sergey M., E-mail: Sergey.Sergeev@canberra.edu.au
2014-06-01
We define a map S:D²×D²→D²×D², where D is an arbitrary division ring (skew field), associated with the Veblen configuration, and we show that such a map provides solutions to the functional dynamical pentagon equation. We explain that fact in elementary geometric terms using the symmetry of the Veblen and Desargues configurations. We introduce also another map of a geometric origin with the pentagon property. We show equivalence of these maps with recently introduced Desargues maps which provide geometric interpretation to a non-commutative version of Hirota's discrete Kadomtsev–Petviashvili equation. Finally, we demonstrate that in an appropriate gauge the (commutative version ofmore » the) maps preserves a natural Poisson structure—the quasiclassical limit of the Weyl commutation relations. The corresponding quantum reduction is then studied. In particular, we discuss uniqueness of the Weyl relations for the ultra-local reduction of the map. We give then the corresponding solution of the quantum pentagon equation in terms of the non-compact quantum dilogarithm function.« less
2016-01-01
The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel. PMID:27493559
Construction concepts and validation of the 3D printed UST_2 modular stellarator
NASA Astrophysics Data System (ADS)
Queral, V.
2015-03-01
High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.
Experimental and Numerical Study of Ammonium Perchlorate Counterflow Diffusion Flames
NASA Technical Reports Server (NTRS)
Smooke, M. D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.
1999-01-01
Many solid rocket propellants are based on a composite mixture of ammonium perchlorate (AP) oxidizer and polymeric binder fuels. In these propellants, complex three-dimensional diffusion flame structures between the AP and binder decomposition products, dependent upon the length scales of the heterogeneous mixture, drive the combustion via heat transfer back to the surface. Changing the AP crystal size changes the burn rate of such propellants. Large AP crystals are governed by the cooler AP self-deflagration flame and burn slowly, while small AP crystals are governed more by the hot diffusion flame with the binder and burn faster. This allows control of composite propellant ballistic properties via particle size variation. Previous measurements on these diffusion flames in the planar two-dimensional sandwich configuration yielded insight into controlling flame structure, but there are several drawbacks that make comparison with modeling difficult. First, the flames are two-dimensional and this makes modeling much more complex computationally than with one-dimensional problems, such as RDX self- and laser-supported deflagration. In addition, little is known about the nature, concentration, and evolution rates of the gaseous chemical species produced by the various binders as they decompose. This makes comparison with models quite difficult. Alternatively, counterflow flames provide an excellent geometric configuration within which AP/binder diffusion flames can be studied both experimentally and computationally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minjeaud, Sebastian; INRIA project CASTOR; Pasquetti, Richard, E-mail: richard.pasquetti@unice.fr
Due to the extreme conditions required to produce energy by nuclear fusion in tokamaks, simulating the plasma behavior is an important but challenging task. We focus on the edge part of the plasma, where fluid approaches are probably the best suited, and our approach relies on the Braginskii ion–electron model. Assuming that the electric field is electrostatic, this yields a set of 10 strongly coupled and non-linear conservation equations that exhibit multiscale and anisotropy features. The computational domain is a torus of complex geometrical section, that corresponds to the divertor configuration, i.e. with an “X-point” in the magnetic surfaces. Tomore » capture the complex physics that is involved, high order methods are used: The time-discretization is based on a Strang splitting, that combines implicit and explicit high order Runge–Kutta schemes, and the space discretization makes use of the spectral element method in the poloidal plane together with Fourier expansions in the toroidal direction. The paper thoroughly describes the algorithms that have been developed, provides some numerical validations of the key algorithms and exhibits the results of preliminary numerical experiments. In particular, we point out that the highest frequency of the system is intermediate between the ion and electron cyclotron frequencies.« less
Tran, Huan; Lee, Adrian; Hanany, Shaul; Milligan, Michael; Renbarger, Tom
2008-01-10
We compare the geometric and physical-optics performance of two configurations of offset dual-reflector antennas that obey the Mizuguchi-Dragone condition. The traditional Gregorian configuration is compared with the larger crossed configuration. These configurations are candidates for experiments that measure the polarization of the cosmic microwave background. Particular attention is given to wide-field performance and polarization fidelity. Both a ray tracer and a physical optics simulation package are used to conclude that the crossed configuration has a larger diffraction-limited field of view, but within this limit both configurations have roughly the same instrumental polarization and both show excellent cross-polarization levels, with the crossed configuration showing approximately 10 dB better performance.
NASA Astrophysics Data System (ADS)
Tran, Huan; Lee, Adrian; Hanany, Shaul; Milligan, Michael; Renbarger, Tom
2008-01-01
We compare the geometric and physical-optics performance of two configurations of offset dual-reflector antennas that obey the Mizuguchi-Dragone condition. The traditional Gregorian configuration is compared with the larger crossed configuration. These configurations are candidates for experiments that measure the polarization of the cosmic microwave background. Particular attention is given to wide-field performance and polarization fidelity. Both a ray tracer and a physical optics simulation package are used to conclude that the crossed configuration has a larger diffraction-limited field of view, but within this limit both configurations have roughly the same instrumental polarization and both show excellent cross-polarization levels, with the crossed configuration showing ~10 dB better performance.
NASA Astrophysics Data System (ADS)
Brcka, Jozef
2016-07-01
A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of this work is to incorporate the technological, computational, dimensional scaling, and reaction chemistry aspects of the plasma under one computational framework. The 3D simulation is utilized to geometrically scale up the reactive plasma that is produced by multiple ICP sources.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ahmed, Saad; Masters, Sarah; Ounaies, Zoubeida; Frecker, Mary
2017-10-01
The incorporation of smart materials such as electroactive polymers and magnetoactive elastomers in origami structures can result in active folding using external electric and magnetic stimuli, showing promise in many origami-inspired engineering applications. In this study, 3D finite element analysis (FEA) models are developed using COMSOL Multiphysics software for three configurations that incorporate a combination of active and passive material layers, namely: (1) a single-notch unimorph folding configuration actuated using only external electric field, (2) a double-notch unimorph folding configuration actuated using only external electric field, and (3) a bifold configuration which is actuated using multi-field (electric and magnetic) stimuli. The objectives of the study are to verify the effectiveness of the FEA models to simulate folding behavior and to investigate the influence of geometric parameters on folding quality. Equivalent mechanical pressure and surface stress are used as external loads in the FEA to simulate electric and magnetic fields, respectively. Compared quantitatively with experimental data, FEA captured the folding performance of electric actuation well for notched configurations and magnetic actuation for a bifold structure, but underestimated electric actuation for the bifold structure. By investigating the impact of geometric parameters and locations to place smart materials, FEA can be used in design, avoiding trial-and-error iterations of experiments.
System and method for manufacture of airfoil components
Moors, Thomas Michael
2016-11-29
Embodiments of the present disclosure relate generally to systems and methods for manufacturing an airfoil component. The system can include: a geometrical mold; an elongated flexible sleeve having a closed-off interior and positioned within the geometrical mold, wherein the elongated flexible sleeve is further positioned to have a desired geometry; an infusing channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to communicate a resinous material thereto; a vacuum channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to vacuum seal the closed-off interior of the elongated flexible sleeve; and a glass fiber layer positioned within the closed-off interior of the elongated flexible sleeve.
NASA Astrophysics Data System (ADS)
Kamla, Youcef; Bouzit, Mohamed; Ameur, Houari; Arab, Mohammed Ilies; Hadjeb, Abdessalam
2017-07-01
The role of baffles in mechanically stirred tanks is to promote the stability of power drawn by the impeller and to avoid the fluid swirling, thus enhancing mixing. The present paper numerically investigates the baffles effects in a vessel stirred by a Rushton turbine. The geometric factor of interest is the baffle inclination which is varying between 25°, 32.5°, 45°, 70° and 90° at different impeller rotational speeds. The impeller rotational direction has also been varied. The vortex size and power consumption were evaluated for each geometrical configuration. It was found that the best configuration is the baffle inclination by α = 70° at a negative angular velocity.
NASA Astrophysics Data System (ADS)
Geints, Yu E.; Zemlyanov, A. A.; Minin, O. V.; Minin, I. V.
2018-06-01
We present the systematic study of key characteristics (field intensity enhancement, spatial extents) of the 2D- and 3D-photonic nanojets (PNJs) produced by geometrically-regular micron-sized dielectric particles illuminated by a plane laser wave. By means of the finite-difference time-domain calculations, we highlight the differences and similarities between PNJs in these two spatial configurations for curved- (sphere, circular cylinder) and rectangle-shaped scatterers (cube, square bar). Our findings can be useful, for example, for the design of particle-based high-resolution imaging because the spatial resolution by such systems might be further controlled by the optimization of refractive index contrast and geometrical shape of the particle-lens.
Assured crew return vehicle post landing configuration design and test
NASA Technical Reports Server (NTRS)
Anderson, Loren A.; Armitage, Pamela Kay
1992-01-01
The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined effort to design a one-fifth scale model of the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study.
From Geometry to Diagnosis: Experiences of Geomatics in Structural Engineering
NASA Astrophysics Data System (ADS)
Riveiro, B.; Arias, P.; Armesto, J.; Caamaño, J. C.; Solla, M.
2012-07-01
Terrestrial photogrammetry and laser scanning are technologies that have been successfully used for metric surveying and 3D modelling in many different fields (archaeological and architectural documentation, industrial retrofitting, mining, structural monitoring, road surveying, etc.). In the case of structural applications, these techniques have been successfully applied to 3D modelling and sometimes monitoring; but they have not been sufficiently implemented to date, as routine tools in infrastructure management systems, in terms of automation of data processing and integration in the condition assessment procedures. In this context, this paper presents a series of experiences in the usage of terrestrial photogrammetry and laser scanning in the context of dimensional and structural evaluation of structures. These experiences are particularly focused on historical masonry structures, but modern prestressed concrete bridges are also investigated. The development of methodological procedures for data collection, and data integration in some cases, is tackled for each particular structure (with access limitations, geometrical configuration, range of measurement, etc.). The accurate geometrical information provided by both terrestrial techniques motivates the implementation of such results in the complex, and sometimes slightly approximated, geometric scene that is frequently used in structural analysis. In this sense, quantitative evaluating of the influence of real and accurate geometry in structural analysis results must be carried out. As main result in this paper, a series of experiences based on the usage of photogrammetric and laser scanning to structural engineering are presented.
NASA Technical Reports Server (NTRS)
Braden, J. A.; Hancock, J. P.; Burdges, K. P.; Hackett, J. E.
1979-01-01
The work to develop a wing-nacelle arrangement to accommodate a wide range of upper surface blown configuration is reported. Pertinent model and installation details are described. Data of the effects of a wide range of nozzle geometric variations are presented. Nozzle aspect ratio, boattail angle, and chordwise position are among the parameters investigated. Straight and swept wing configurations were tested across a range of nozzle pressure ratios, lift coefficients, and Mach numbers.
NASA Astrophysics Data System (ADS)
Khairnasov, K. Z.
2018-04-01
The paper presents a mathematical model for solving the problem of behavior of shell configurations under the action of static and dynamic impacts. The problem is solved in geometrically nonlinear statement with regard to the finite element method. The composite structures with different material layers are considered. The obtained equations are used to study the behavior of shell configurations under the action of dynamic loads. The results agree well with the experimental data.
NASA Astrophysics Data System (ADS)
Liu, Yang; D'Angelo, Ralph M.; Choi, Gloria; Zhu, Lingchen; Bose, Sandip; Zeroug, Smaine
2018-04-01
Once an oil and gas wellbore has been drilled, steel casings and cement slurry are placed to ensure structural support, protection from fluid invasion, and most importantly to provide zonal isolation. The actual wellbore and string structure is rarely concentric but rather is often an eccentric one, especially in deviated boreholes. The term "eccentricity" is used to describe how off-center a casing string is within another pipe or the open-hole. In a typical double-string configuration, the inner casing is eccentered with respect to the outer string which itself is also eccentered within the cylindrical hole. The annuli may or may not be filled with solid cement, and the cement may have liquid-filled channels or be disbonded over localized azimuthal ranges. The complexity of wave propagation along axial intervals is significant in that multiple modes can be excited and detected with characteristics that are affected by the various parameters, including eccentering, in a non-linear fashion. A successful diagnosis of cement flaws largely relies on a thorough understanding of the complex acoustic modal information. The present study employs both modeling and experiments to fully understand the acoustic wave propagation in the complex, fluid-solid nested, cylindrically layered structures, with geometric eccentricities. The experimental results show excellent agreement with the theoretical predictions from newly developed, borehole acoustic modeling approaches. As such, it provides the basis for better understanding the operative wave physics and providing the means for effective inspection methodologies to assess well integrity and zonal isolation of oil wells.
Ionospheric range-rate effects in satellite-to-satellite tracking
NASA Technical Reports Server (NTRS)
Lipofsky, J. R.; Bent, R. B.; Llewellyn, S. K.; Schmid, P. E.
1977-01-01
Investigation of ionospheric range and range-rate corrections in satellite-to-satellite tracking were investigated. Major problems were cited and the magnitude of errors that have to be considered for communications between satellites and related experiments was defined. The results point to the need of using a sophisticated modeling approach incorporating daily solar data, and where possible actual ionospheric measurements as update information, as a simple median model cannot possibly account for the complex interaction of the many variables. The findings provide a basis from which the residual errors can be estimated after ionospheric modeling is incorporated in the reduction. Simulations were performed for satellites at various heights: Apollo, Geos, and Nimbus tracked by ATS-6; and in two different geometric configurations: coplanar and perpendicular orbits.
Conventional and modified Schwarzschild objective for EUV lithography: design relations
NASA Astrophysics Data System (ADS)
Bollanti, S.; di Lazzaro, P.; Flora, F.; Mezi, L.; Murra, D.; Torre, A.
2006-12-01
The design criteria of a Schwarzschild-type optical system are reviewed in relation to its use as an imaging system in an extreme ultraviolet lithography setup. Both the conventional and the modified reductor imaging configurations are considered, and the respective performances, as far as the geometrical resolution in the image plane is concerned, are compared. In this connection, a formal relation defining the modified configuration is elaborated, refining a rather naïve definition presented in an earlier work. The dependence of the geometrical resolution on the image-space numerical aperture for a given magnification is investigated in detail for both configurations. So, the advantages of the modified configuration with respect to the conventional one are clearly evidenced. The results of a semi-analytical procedure are compared with those obtained from a numerical simulation performed by an optical design program. The Schwarzschild objective based system under implementation at the ENEA Frascati Center within the context of the Italian FIRB project for EUV lithography has been used as a model. Best-fit functions accounting for the behaviour of the system parameters vs. the numerical aperture are reported; they can be a useful guide for the design of Schwarzschild objective type optical systems.
NASA Technical Reports Server (NTRS)
Henderson, W. P.
1978-01-01
An investigation was conducted to determine the effects of wing leading-edge flap deflections on the subsonic longitudinal aerodynamic characteristics of a wing-fuselage configuration with a 44 deg swept wing. The tests were conducted at Mach numbers from 0.40 to 0.85, corresponding to Reynolds numbers (based on wing mean geometric chord) of 2.37 x 1,000,000 to 4.59 x 1,000,000 and at angles of attack from -3 deg to 22 deg. The configurations under study included a wing-fuselage configuration and a wing-fuselage-strake configuration. Each configuration had multisegmented, constant-chord leading-edge flaps which could be deflected independently or in various combinations.
Geometric modeling of subcellular structures, organelles, and multiprotein complexes
Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei
2013-01-01
SUMMARY Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multi-protein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes. PMID:23212797
Hypersonic separated flows about "tick" configurations with sensitivity to model design
NASA Astrophysics Data System (ADS)
Moss, J. N.; O'Byrne, S.; Gai, S. L.
2014-12-01
This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.
Relational evolution of effectively interacting group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi
2017-03-01
We study the impact of effective interactions onto relationally evolving group field theory (GFT) condensates based on real-valued fields. In a first step we show that a free condensate configuration in an isotropic restriction settles dynamically into a low-spin configuration of the quantum geometry. This goes hand in hand with the accelerated and exponential expansion of its volume, as well as the vanishing of its relative uncertainty which suggests the classicalization of the quantum geometry. The dynamics of the emergent space can then be given in terms of the classical Friedmann equations. In contrast to models based on complex-valued fields, solutions avoiding the singularity problem can only be found if the initial conditions are appropriately chosen. We then turn to the analysis of the influence of effective interactions on the dynamics by studying in particular the Thomas-Fermi regime. In this context, at the cost of fine-tuning, an epoch of inflationary expansion of quantum geometric origin can be implemented. Finally, and for the first time, we study anisotropic GFT condensate configurations and show that such systems tend to isotropize quickly as the value of the relational clock grows. This paves the way to a more systematic investigation of anisotropies in the context of GFT condensate cosmology.
Hypersonic Separated Flows About "Tick" Configurations With Sensitivity to Model Design
NASA Technical Reports Server (NTRS)
Moss, J. N.; O'Byrne, S.; Gai, S. L.
2014-01-01
This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.
heat transfer, mass transfer, and chemical reaction kinetics in order to analyze the performance and optimize the geometric configuration of a solar receiver used for high-temperature solar-thermal reaction
NASA Astrophysics Data System (ADS)
Li, Xiao-Tian; Yang, Xiao-Bao; Zhao, Yu-Jun
2017-04-01
We have developed an extended distance matrix approach to study the molecular geometric configuration through spectral decomposition. It is shown that the positions of all atoms in the eigen-space can be specified precisely by their eigen-coordinates, while the refined atomic eigen-subspace projection array adopted in our approach is demonstrated to be a competent invariant in structure comparison. Furthermore, a visual eigen-subspace projection function (EPF) is derived to characterize the surrounding configuration of an atom naturally. A complete set of atomic EPFs constitute an intrinsic representation of molecular conformation, based on which the interatomic EPF distance and intermolecular EPF distance can be reasonably defined. Exemplified with a few cases, the intermolecular EPF distance shows exceptional rationality and efficiency in structure recognition and comparison.
The geometry of discombinations and its applications to semi-inverse problems in anelasticity
Yavari, Arash; Goriely, Alain
2014-01-01
The geometrical formulation of continuum mechanics provides us with a powerful approach to understand and solve problems in anelasticity where an elastic deformation is combined with a non-elastic component arising from defects, thermal stresses, growth effects or other effects leading to residual stresses. The central idea is to assume that the material manifold, prescribing the reference configuration for a body, has an intrinsic, non-Euclidean, geometrical structure. Residual stresses then naturally arise when this configuration is mapped into Euclidean space. Here, we consider the problem of discombinations (a new term that we introduce in this paper), that is, a combined distribution of fields of dislocations, disclinations and point defects. Given a discombination, we compute the geometrical characteristics of the material manifold (curvature, torsion, non-metricity), its Cartan's moving frames and structural equations. This identification provides a powerful algorithm to solve semi-inverse problems with non-elastic components. As an example, we calculate the residual stress field of a cylindrically symmetric distribution of discombinations in an infinite circular cylindrical bar made of an incompressible hyperelastic isotropic elastic solid. PMID:25197257
NASA Astrophysics Data System (ADS)
Nadzharyan, T. A.; Makarova, L. A.; Kazimirova, E. G.; Perov, N. S.; Kramarenko, E. Yu
2018-03-01
We study the effects the geometric configuration has on magnetic interactions between a magnetoactive elastomer (MAE) sample and various systems of permanent magnets for problems with both flat and curved geometry. MAEs consist of a silicone polymer matrix and iron filler microparticles embedded in it. Permanent magnets are cylindrical neodymium magnets arranged in a line on a flat or curved solid surfaces. We use computer simulations, namely the finite element method, in order to study the interaction force and magnetic pressure in a system with an MAE sample and permanent magnets. The model is based on classical Maxwell magnetostatics and two factors taking into account field dependence of MAE’s magnetic properties and inhomogeneities caused by local demagnetization. We calculate magnetic pressure dependences on various geometric parameters of the system, namely, the diameter and the height of permanent magnets, the distance between the magnets and dimensions of MAE samples. This research aims to create a set of guidelines for choosing the geometric configuration of a retina fixator based on MAE seals to be used in eye surgery for retinal detachment treatment.
Monte-Carlo Simulation for Accuracy Assessment of a Single Camera Navigation System
NASA Astrophysics Data System (ADS)
Bethmann, F.; Luhmann, T.
2012-07-01
The paper describes a simulation-based optimization of an optical tracking system that is used as a 6DOF navigation system for neurosurgery. Compared to classical system used in clinical navigation, the presented system has two unique properties: firstly, the system will be miniaturized and integrated into an operating microscope for neurosurgery; secondly, due to miniaturization a single camera approach has been designed. Single camera techniques for 6DOF measurements show a special sensitivity against weak geometric configurations between camera and object. In addition, the achievable accuracy potential depends significantly on the geometric properties of the tracked objects (locators). Besides quality and stability of the targets used on the locator, their geometric configuration is of major importance. In the following the development and investigation of a simulation program is presented which allows for the assessment and optimization of the system with respect to accuracy. Different system parameters can be altered as well as different scenarios indicating the operational use of the system. Measurement deviations are estimated based on the Monte-Carlo method. Practical measurements validate the correctness of the numerical simulation results.
Geometric decompositions of collective motion
NASA Astrophysics Data System (ADS)
Mischiati, Matteo; Krishnaprasad, P. S.
2017-04-01
Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes-including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots.
Geometric decompositions of collective motion
Krishnaprasad, P. S.
2017-01-01
Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes—including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots. PMID:28484319
Direct numerical simulations of an arc-powered heater for used in a hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Kim, Pilbum; Panesi, Marco; Freund, Jonathan
2017-11-01
We study a model arc-heater using direct numerical simulations, in a configuration motivated by its used to generated inflow of a high-speed wind tunnel for hypersonics research. The flow is assumed to be in local thermal equilibrium (LTE) and is modeled with with 11 species (N2, O2, NO, N, O, N2+,O2+,NO+, N+, O+, e-). The flow equations are solved in conjunction with an electrostatic field solver and the gas electric conductivity in LTE. The flow rate and the mean arc power are set to be 50.42 g/s and 84.7 kW with 214.0 V of the mean arc voltage , respectively. We study the flow details, the heading and thrust mechanisms, and make general comparisons with a corresponding, though geometrically more complex, experimental configuration. We particularly interested in the radical species it produces and will potentially be present in the wind-tunnel test section. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.
Design of Multistable Origami Structures
NASA Astrophysics Data System (ADS)
Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip
Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.
Effect of Geometric Parameters on the Performance of Second Throat Annular Steam Ejectors
1991-07-01
Cell Pressure versus Rake Average Exit Pitot Pressure . . . . . . . . . . . 42 15. Baseline Wall Pressure Profiles...diffuser exit plane pitot pressure rake . 2.5.2 Alternate Configurations Six alternate ejector diffuser configurations were tested. A summary of...along the walls of the diffusers to help characterize the flow. The ejector diffuser exit pitot pressure was measured with a 6-probe pitot pressure rake
The Barrett-Crane model: asymptotic measure factor
NASA Astrophysics Data System (ADS)
Kamiński, Wojciech; Steinhaus, Sebastian
2014-04-01
The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few troubling issues. In the simple examples of the vertex amplitude they can be summarized as the existence of contributions to the asymptotics from non-geometric configurations. Even restricted to geometric contributions the amplitude is not completely worked out. While the phase is known to be the Regge action, the so-called measure factor has remained mysterious for a decade. In the toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V-1/2 leading to speculations that a similar interpretation should be possible also in the 4D case. In this paper we provide the first geometric interpretation of the geometric part of the asymptotic for the spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett-Crane model in the large internal spin regime.
A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex
NASA Astrophysics Data System (ADS)
Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.
2015-09-01
The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.
Method for making precisely configured flakes useful in optical devices
Trajkovska-Petkoska, Anka [Rochester, NY; Jacobs, Stephen D [Pittsford, NY; Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY
2007-07-03
Precisely configured, especially of geometric shape, flakes of liquid crystal material are made using a mechanically flexible polymer mold with wells having shapes which are precisely configured by making the mold with a photolithographically manufactured or laser printed master. The polymer liquid crystal is poured into the wells in the flexible mold. When the liquid crystal material has solidified, the flexible mold is bent and the flakes are released and collected for use in making an electrooptical cell utilizing the liquid crystal flakes as the active element therein.
Methodology and method and apparatus for signaling with capacity optimized constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2011-01-01
Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; Otake, Y.; Uneri, A.; Schafer, S.; Mirota, D. J.; Nithiananthan, S.; Stayman, J. W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Taylor, R. H.; Siewerdsen, J. H.
2012-02-01
Conventional surgical tracking configurations carry a variety of limitations in line-of-sight, geometric accuracy, and mismatch with the surgeon's perspective (for video augmentation). With increasing utilization of mobile C-arms, particularly those allowing cone-beam CT (CBCT), there is opportunity to better integrate surgical trackers at bedside to address such limitations. This paper describes a tracker configuration in which the tracker is mounted directly on the Carm. To maintain registration within a dynamic coordinate system, a reference marker visible across the full C-arm rotation is implemented, and the "Tracker-on-C" configuration is shown to provide improved target registration error (TRE) over a conventional in-room setup - (0.9+/-0.4) mm vs (1.9+/-0.7) mm, respectively. The system also can generate digitally reconstructed radiographs (DRRs) from the perspective of a tracked tool ("x-ray flashlight"), the tracker, or the C-arm ("virtual fluoroscopy"), with geometric accuracy in virtual fluoroscopy of (0.4+/-0.2) mm. Using a video-based tracker, planning data and DRRs can be superimposed on the video scene from a natural perspective over the surgical field, with geometric accuracy (0.8+/-0.3) pixels for planning data overlay and (0.6+/-0.4) pixels for DRR overlay across all C-arm angles. The field-of-view of fluoroscopy or CBCT can also be overlaid on real-time video ("Virtual Field Light") to assist C-arm positioning. The fixed transformation between the x-ray image and tracker facilitated quick, accurate intraoperative registration. The workflow and precision associated with a variety of realistic surgical tasks were significantly improved using the Tracker-on-C - for example, nearly a factor of 2 reduction in time required for C-arm positioning, reduction or elimination of dose in "hunting" for a specific fluoroscopic view, and confident placement of the x-ray FOV on the surgical target. The proposed configuration streamlines the integration of C-arm CBCT with realtime tracking and demonstrated utility in a spectrum of image-guided interventions (e.g., spine surgery) benefiting from improved accuracy, enhanced visualization, and reduced radiation exposure.
Azzopardi, George; Petkov, Nicolai
2014-01-01
The remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms. PMID:25126068
The interaction of mercury with halogenated graphene
NASA Astrophysics Data System (ADS)
Kirchofer, Abigail; Sasmaz, Erdem; Wilcox, Jennifer
2011-03-01
The interaction of mercury with halogenated graphene was studied using plane-wave density functional theory. Various configurations of H, Hg, O and Br or Cl on the zigzag edge sites of graphene were investigated. Although Hg-Br (or -Cl) complexes were found to be stable on the surface, the most stable configurations found were those with Hg adjacent to O. The surface atoms Hg, O, and Br tend to repel each other during geometric optimization, moving towards an H atom nearest-neighbor where possible. The strength of the Hg-graphene interaction is very sensitive to the local environment. The Hg-graphene binding energy is strongest when the Hg is located next to a surface O but not immediately next to a bound Br. DOS analysis revealed that Hg adsorption involves a gain in Hg 6 p-states and a loss in Hg 5 s electron density, resulting in an oxidized surface-bound Hg complex. DOS analysis suggests that Br strengthens the Hg-graphene interaction by modifying the surface carbon electron density; however, when Br is adjacent to Hg, a direct Hg-Br interaction weakens the Hg-C bond. These investigations provide insight into the mechanism associated with enhanced Hg adsorption on Br-functionalized carbon materials for Hg emissions reductions from coal-fired power plant applications. The authors acknowledge the financial support by Electric Power Research Institute (EPRI).
Numerical procedure to determine geometric view factors for surfaces occluded by cylinders
NASA Technical Reports Server (NTRS)
Sawyer, P. L.
1978-01-01
A numerical procedure was developed to determine geometric view factors between connected infinite strips occluded by any number of infinite circular cylinders. The procedure requires a two-dimensional cross-sectional model of the configuration of interest. The two-dimensional model consists of a convex polygon enclosing any number of circles. Each side of the polygon represents one strip, and each circle represents a circular cylinder. A description and listing of a computer program based on this procedure are included in this report. The program calculates geometric view factors between individual strips and between individual strips and the collection of occluding cylinders.
Elasticity solutions for a class of composite laminate problems with stress singularities
NASA Technical Reports Server (NTRS)
Wang, S. S.
1983-01-01
A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.
Structure and atomic correlations in molecular systems probed by XAS reverse Monte Carlo refinement
NASA Astrophysics Data System (ADS)
Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela; D'Angelo, Paola; Filipponi, Adriano
2018-03-01
The Reverse Monte Carlo (RMC) algorithm for structure refinement has been applied to x-ray absorption spectroscopy (XAS) multiple-edge data sets for six gas phase molecular systems (SnI2, CdI2, BBr3, GaI3, GeBr4, GeI4). Sets of thousands of molecular replicas were involved in the refinement process, driven by the XAS data and constrained by available electron diffraction results. The equilibrated configurations were analysed to determine the average tridimensional structure and obtain reliable bond and bond-angle distributions. Detectable deviations from Gaussian models were found in some cases. This work shows that a RMC refinement of XAS data is able to provide geometrical models for molecular structures compatible with present experimental evidence. The validation of this approach on simple molecular systems is particularly important in view of its possible simple extension to more complex and extended systems including metal-organic complexes, biomolecules, or nanocrystalline systems.
Synthesis and characterization of tetraacetonitrilolithiumhexafluorophosphate crystal
NASA Astrophysics Data System (ADS)
Li, Xuecong; Li, Xuanli; Zhang, Zhiye; Yang, Lin; Zhong, Benhe; Wang, Xinlong
2015-08-01
Tetraacetonitrilolithiumhexafluorophosphate (Li(CH3CN)4PF6) crystal is an important intermediate in the preparation of high purity lithium hexafluorophosphate electrolyte via a simple transformation method. In this study, the crystal parameters were determined by X-ray powder diffraction analysis, which showed that it belongs to the triclinic system with space group P1. FTIR spectral studies identified the characteristic absorption bands of Ctbnd N and PF6- in the synthesized complex. Chemical analysis, gas chromatography, and ICP-AES results showed that the elementary ratio of Li:P:F: CH3CN in the complex is approximately: 1:1:6:4. Furthermore, the geometric optimization structure of Li(CH3CN)4PF6 was obtained using GAUSSIAN 09 program on a B3LYP/6-31+G(d, p) level. In this structure, two acetonitrile ligands bind strongly with the Li+ ion, whereas the other two are weakly-coordinated with lithium. The results of solid-state 13C-, 31P-, and 19F-NMR spectra confirmed that this configuration is reasonable.
Digital modeling of end-mill cutting tools for FEM applications from the active cutting contour
NASA Astrophysics Data System (ADS)
Salguero, Jorge; Marcos, M.; Batista, M.; Gómez, A.; Mayuet, P.; Bienvenido, R.
2012-04-01
A very current technique in the research field of machining by material removal is the use of simulations using the Finite Element Method (FEM). Nevertheless, and although is widely used in processes that allows approximations to orthogonal cutting, such as shaping, is scarcely used in more complexes processes, such as milling. This fact is due principally to the complex geometry of the cutting tools in these processes, and the need to realize the studi es in an oblique cutting configuration. This paper shows a methodology for the geometrical characterization of commercial endmill cutting tools, by the extraction of the cutting tool contour, making use of optical metrology, and using this geometry to model the active cutting zone with a 3D CAD software. This model is easily exportable to different CAD formats, such as IGES or STEP, and importable from FEM software, where is possible to study the behavior in service of the same ones.
Structural and thermodynamic properties of the Cm III ion solvated by water and methanol
Kelley, Morgan P.; Yang, Ping; Clark, Sue B.; ...
2016-04-27
The geometric and electronic structures of the 9-coordinate Cm 3+ ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller–Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion–solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion–solvent dissociation energy and the ion–solvent distance are shownmore » to be dependent on the solvent-shell composition. Furthermore, this has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.« less
X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems
Sarangi, Ritimukta
2012-01-01
Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635
NASA Technical Reports Server (NTRS)
Enomoto, F.; Keller, P.
1984-01-01
The Computer Aided Design (CAD) system's common geometry database was used to generate input for theoretical programs and numerically controlled (NC) tool paths for wind tunnel part fabrication. This eliminates the duplication of work in generating separate geometry databases for each type of analysis. Another advantage is that it reduces the uncertainty due to geometric differences when comparing theoretical aerodynamic data with wind tunnel data. The system was adapted to aerodynamic research by developing programs written in Design Analysis Language (DAL). These programs reduced the amount of time required to construct complex geometries and to generate input for theoretical programs. Certain shortcomings of the Design, Drafting, and Manufacturing (DDM) software limited the effectiveness of these programs and some of the Calma NC software. The complexity of aircraft configurations suggests that more types of surface and curve geometry should be added to the system. Some of these shortcomings may be eliminated as improved versions of DDM are made available.
Disentangling the Cosmic Web with Lagrangian Submanifold
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Medvedev, Mikhail V.
2016-10-01
The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.
NASA Astrophysics Data System (ADS)
Ginsburger, Kévin; Poupon, Fabrice; Beaujoin, Justine; Estournet, Delphine; Matuschke, Felix; Mangin, Jean-François; Axer, Markus; Poupon, Cyril
2018-02-01
White matter is composed of irregularly packed axons leading to a structural disorder in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin echo sequences have shown that the diffusivity transverse to axons in this extra-axonal space is dependent on the frequency of the employed sequence. In this study, we observe the same frequency-dependence using 3D simulations of the diffusion process in disordered media. We design a novel white matter numerical phantom generation algorithm which constructs biomimicking geometric configurations with few design parameters, and enables to control the level of disorder of the generated phantoms. The influence of various geometrical parameters present in white matter, such as global angular dispersion, tortuosity, presence of Ranvier nodes, beading, on the extra-cellular perpendicular diffusivity frequency dependence was investigated by simulating the diffusion process in numerical phantoms of increasing complexity and fitting the resulting simulated diffusion MR signal attenuation with an adequate analytical model designed for trapezoidal OGSE sequences. This work suggests that angular dispersion and especially beading have non-negligible effects on this extracellular diffusion metrics that may be measured using standard OGSE DW-MRI clinical protocols.
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.; Lock, James A.
1991-01-01
The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented.
Brown, Christina D; Neidig, Michael L; Neibergall, Matthew B; Lipscomb, John D; Solomon, Edward I
2007-06-13
Isopenicillin N synthase (IPNS) is a unique mononuclear nonheme Fe enzyme that catalyzes the four-electron oxidative double ring closure of its substrate ACV. A combination of spectroscopic techniques including EPR, absorbance, circular dichroism (CD), magnetic CD, and variable-temperature, variable-field MCD (VTVH-MCD) were used to evaluate the geometric and electronic structure of the [FeNO]7 complex of IPNS coordinated with the ACV thiolate ligand. Density Function Theory (DFT) calculations correlated to the spectroscopic data were used to generate an experimentally calibrated bonding description of the Fe-IPNS-ACV-NO complex. New spectroscopic features introduced by the binding of the ACV thiolate at 13 100 and 19 800 cm-1 are assigned as the NO pi*(ip) --> Fe dx2-y2 and S pi--> Fe dx2-y2 charge transfer (CT) transitions, respectively. Configuration interaction mixes S CT character into the NO pi*(ip) --> Fe dx2-y2 CT transition, which is observed experimentally from the VTVH-MCD data from this transition. Calculations on the hypothetical {FeO2}8 complex of Fe-IPNS-ACV reveal that the configuration interaction present in the [FeNO]7 complex results in an unoccupied frontier molecular orbital (FMO) with correct orientation and distal O character for H-atom abstraction from the ACV substrate. The energetics of NO/O2 binding to Fe-IPNS-ACV were evaluated and demonstrate that charge donation from the ACV thiolate ligand renders the formation of the FeIII-superoxide complex energetically favorable, driving the reaction at the Fe center. This single center reaction allows IPNS to avoid the O2 bridged binding generally invoked in other nonheme Fe enzymes that leads to oxygen insertion (i.e., oxygenase function) and determines the oxidase activity of IPNS.
Morari, Cristian; Muntean, Cristina M; Tripon, Carmen; Buimaga-Iarinca, Luiza; Calborean, Adrian
2014-04-01
The binding effects of Mg²⁺, Ca²⁺, and Cu²⁺ ions on the vibrational properties of guanine-cytosine base pairs have been performed using density functional theory investigations. Both Watson-Crick and Hoogsteen configurations of the base pairs were investigated. In Watson-Crick configuration, the metal was coordinated at N7 atom of guanine, while in the case of Hoogsteen configuration, the coordination is at N3 atom of guanine. We have pointed out the geometric properties of the metal-GC base pairs structure, as well as the vibrational bands that can be used to detect the presence of metallic ions in the Watson-Crick and Hoogsteen GC structures. For the geometric models used by us, the vibrational amplitudes of metallic atoms were stronger for wavenumbers lower than 500 cm⁻¹. This suggests that in the experimental studies on DNA the presence of the three metallic atoms (Mg, Ca, and Cu) can be explicitly detected at low frequencies.
Spatial Rack Drives Pitch Configurations: Essence and Content
NASA Astrophysics Data System (ADS)
Abadjieva, Emilia; Abadjiev, Valentin; Naganawa, Akihiro
2018-03-01
The practical realization of all types of mechanical motions converters is preceded by solving the task of their kinematic synthesis. In this way, the determination of the optimal values of the constant geometrical parameters of the chosen structure of the created mechanical system is achieved. The searched result is a guarantee of the preliminary defined kinematic characteristics of the synthesized transmission and in the first place, to guarantee the law of motions transformation. The kinematic synthesis of mechanical transmissions is based on adequate mathematical modelling of the process of motions transformation and on the object, realizing this transformation. Basic primitives of the mathematical models for synthesis upon a pitch contact point are geometric and kinematic pitch configurations. Their dimensions and mutual position in space are the input parameters for the processes of design and elaboration of the synthesized mechanical device. The study presented here is a brief review of the theory of pitch configurations. It is an independent scientific branch of the spatial gearing theory (theory of hyperboloid gears). On this basis, the essence and content of the corresponding primitives, applicable to the synthesis of spatial rack drives, are defined.
Longitudinal Laminar Flow Between Cylinders Arranged in Regular Array
NASA Technical Reports Server (NTRS)
Sparrow, E. M.; Loeffler, A. L., Jr.
1959-01-01
The increasing complexity of heat transfer and process situations which involve fluid flow has demanded the frequent use of flow passages of unusual geometrical configuration. The present investigation is concerned with one such novel configuration, namely the longitudinal flow between solid cylindrical rods which are arranged in regular array. A schematic diagram of the situation under study. The rods may be located either in triangular or square array. The flow will be taken to be laminar and fully developed. The aim of this analysis is to determine the pressure drop, shear stress, and velocity-distribution characteristics of the system. The starting point of this study is the basic law of momentum conservation. The resulting differential equation has been solved in an approximate, but almost exact, manner by the use of truncated trigonometric series. Results are obtained over a wide range of porosity values for both the triangular and square arrays. Heat transfer has not been considered. The configuration under investigation has potential application in compact heat exchangers for nuclear reactors and other situations. Further the results should also be of interest in the theory of flow through unconsolidated porous beds (ia, 9a). The only related analytical work known to the authors is that of Emersleben (S), who considered only the square array. His rather involved solution, based on complex zeta functions, appears to be valid only at high porosities. Experiments covering a porosity range of 0.093 to 0.984 have been made by Sullivan (4) using parallel-oriented fibers, most of the tests being for fibers in random array. These previous investigations will be compared with the present theory in a later section.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1987-01-01
Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.
Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A
2018-03-01
Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.
Attenuation analysis of long-haul NLOS atmospheric optical scattering communication
NASA Astrophysics Data System (ADS)
Zhang, Shihua; Wang, Jingyuan; Xu, Zhiyong; Song, Chao; Wang, Rong; Chen, Yiwang; Zhao, Jiyong; Wei, Yimei
2016-06-01
The attenuation characteristics of ultraviolet (UV) and infrared transmitting in the atmosphere is analyzed, when long-haul Non-Line-of-Sight (NLOS) optical scattering communication is considered. The effects of Rayleigh and Mie scattering to link performance are presented. Under given geometric configurations, a critical range RC is found. When communication range is shorter than RC, the attenuation of UV is lower than that of infrared. But the path loss of UV increases rapidly, while the path loss of infrared increases much slower. When communication range is longer than RC, the attenuation of UV is higher than that of infrared. Numerical values of RC under different geometries are analyzed. It is also indicated that, under arbitrary geometric configurations, the impact of the Rayleigh scattering to infrared scattering communication is weak, but to UV scattering, the Rayleigh scattering effect cannot be ignored.
A Parametric Geometry Computational Fluid Dynamics (CFD) Study Utilizing Design of Experiments (DOE)
NASA Technical Reports Server (NTRS)
Rhew, Ray D.; Parker, Peter A.
2007-01-01
Design of Experiments (DOE) was applied to the LAS geometric parameter study to efficiently identify and rank primary contributors to integrated drag over the vehicles ascent trajectory in an order of magnitude fewer CFD configurations thereby reducing computational resources and solution time. SME s were able to gain a better understanding on the underlying flowphysics of different geometric parameter configurations through the identification of interaction effects. An interaction effect, which describes how the effect of one factor changes with respect to the levels of other factors, is often the key to product optimization. A DOE approach emphasizes a sequential approach to learning through successive experimentation to continuously build on previous knowledge. These studies represent a starting point for expanded experimental activities that will eventually cover the entire design space of the vehicle and flight trajectory.
Secondary electron emission from textured surfaces
NASA Astrophysics Data System (ADS)
Huerta, C. E.; Patino, M. I.; Wirz, R. E.
2018-04-01
In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.
Geometric and Algebraic Approaches in the Concept of Complex Numbers
ERIC Educational Resources Information Center
Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.
2006-01-01
This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…
Multi-scale clustering by building a robust and self correcting ultrametric topology on data points.
Fushing, Hsieh; Wang, Hui; Vanderwaal, Kimberly; McCowan, Brenda; Koehl, Patrice
2013-01-01
The advent of high-throughput technologies and the concurrent advances in information sciences have led to an explosion in size and complexity of the data sets collected in biological sciences. The biggest challenge today is to assimilate this wealth of information into a conceptual framework that will help us decipher biological functions. A large and complex collection of data, usually called a data cloud, naturally embeds multi-scale characteristics and features, generically termed geometry. Understanding this geometry is the foundation for extracting knowledge from data. We have developed a new methodology, called data cloud geometry-tree (DCG-tree), to resolve this challenge. This new procedure has two main features that are keys to its success. Firstly, it derives from the empirical similarity measurements a hierarchy of clustering configurations that captures the geometric structure of the data. This hierarchy is then transformed into an ultrametric space, which is then represented via an ultrametric tree or a Parisi matrix. Secondly, it has a built-in mechanism for self-correcting clustering membership across different tree levels. We have compared the trees generated with this new algorithm to equivalent trees derived with the standard Hierarchical Clustering method on simulated as well as real data clouds from fMRI brain connectivity studies, cancer genomics, giraffe social networks, and Lewis Carroll's Doublets network. In each of these cases, we have shown that the DCG trees are more robust and less sensitive to measurement errors, and that they provide a better quantification of the multi-scale geometric structures of the data. As such, DCG-tree is an effective tool for analyzing complex biological data sets.
Hydrogen Epoch of Reinozation Array (HERA) Calibrated FFT Correlator Simulation
NASA Astrophysics Data System (ADS)
Salazar, Jeffrey David; Parsons, Aaron
2018-01-01
The Hydrogen Epoch of Reionization Array (HERA) project is an astronomical radio interferometer array with a redundant baseline configuration. Interferometer arrays are being used widely in radio astronomy because they have a variety of advantages over single antenna systems. For example, they produce images (visibilities) closely matching that of a large antenna (such as the Arecibo observatory), while both the hardware and maintenance costs are significantly lower. However, this method has some complications; one being the computational cost of correlating data from all of the antennas. A correlator is an electronic device that cross-correlates the data between the individual antennas; these are what radio astronomers call visibilities. HERA, being in its early stages, utilizes a traditional correlator system. The correlator cost scales as N2, where N is the number of antennas in the array. The purpose of a redundant baseline configuration array setup is for the use of a more efficient Fast Fourier Transform (FFT) correlator. FFT correlators scale as Nlog2N. The data acquired from this sort of setup, however, inherits geometric delay and uncalibrated antenna gains. This particular project simulates the process of calibrating signals from astronomical sources. Each signal “received” by an antenna in the simulation is given random antenna gain and geometric delay. The “linsolve” Python module was used to solve for the unknown variables in the simulation (complex gains and delays), which then gave a value for the true visibilities. This first version of the simulation only mimics a one dimensional redundant telescope array detecting a small amount of sources located in the volume above the antenna plane. Future versions, using GPUs, will handle a two dimensional redundant array of telescopes detecting a large amount of sources in the volume above the array.
Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1
NASA Technical Reports Server (NTRS)
Mraz, M. R.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.
Improving Jet Reactor Configuration for Production of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Povitsky, Alex
2000-01-01
The jet mixing reactor has been proposed for the industrial production of fullerene carbon nanotubes. Here we study the flowfield of this reactor using the SIMPLER algorithm. Hot peripheral jets are used to enhance heating of the central jet by mixing with the ambiance of reactor. Numerous configurations of peripheral jets with various number of jets, distance between nozzles, angles between the central jet and a peripheral jets, and twisted configuration of nozzles are considered. Unlike the previous studies of jet mixing, the optimal configuration of peripheral jets produces strong non-uniformity of the central jet in a cross-section. The geometrical shape of reactor is designed to obtain a uniform temperature of a catalyst.
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1975-01-01
A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.
Geometric Representations of Condition Queries on Three-Dimensional Vector Fields
NASA Technical Reports Server (NTRS)
Henze, Chris
1999-01-01
Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.
Methods of treating complex space vehicle geometry for charged particle radiation transport
NASA Technical Reports Server (NTRS)
Hill, C. W.
1973-01-01
Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.
Nanoscale control of competing interactions and geometrical frustration in a dipolar trident lattice
Farhan, Alan; Petersen, Charlotte F.; Dhuey, Scott; ...
2017-10-17
Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we provide a first look into an artificial frustrated system, the dipolar trident lattice, where the balance of competing interactions between nearest-neighbor magnetic moments can be directly controlled, thus allowing versatile tuning of geometrical frustration and manipulation of ground state configurations. Our findings not only provide the basis for futuremore » studies on the low-temperature physics of the dipolar trident lattice, but also demonstrate how this frustration-by-design concept can deliver magnetically frustrated metamaterials.« less
Kobayashi, Michikazu; Cugliandolo, Leticia F
2016-12-01
We present a detailed study of the equilibrium properties and stochastic dynamic evolution of the U(1)-invariant relativistic complex field theory in three dimensions. This model has been used to describe, in various limits, properties of relativistic bosons at finite chemical potential, type II superconductors, magnetic materials, and aspects of cosmology. We characterize the thermodynamic second-order phase transition in different ways. We study the equilibrium vortex configurations and their statistical and geometrical properties in equilibrium at all temperatures. We show that at very high temperature the statistics of the filaments is the one of fully packed loop models. We identify the temperature, within the ordered phase, at which the number density of vortex lengths falls off algebraically and we associate it to a geometric percolation transition that we characterize in various ways. We measure the fractal properties of the vortex tangle at this threshold. Next, we perform infinite rate quenches from equilibrium in the disordered phase, across the thermodynamic critical point, and deep into the ordered phase. We show that three time regimes can be distinguished: a first approach toward a state that, within numerical accuracy, shares many features with the one at the percolation threshold; a later coarsening process that does not alter, at sufficiently low temperature, the fractal properties of the long vortex loops; and a final approach to equilibrium. These features are independent of the reconnection rule used to build the vortex lines. In each of these regimes we identify the various length scales of the vortices in the system. We also study the scaling properties of the ordering process and the progressive annihilation of topological defects and we prove that the time-dependence of the time-evolving vortex tangle can be described within the dynamic scaling framework.
Competition between surface chemisorption and cage formation in Fe12O12 clusters
NASA Astrophysics Data System (ADS)
Gutsev, G. L.; Weatherford, C. A.; Jena, P.; Johnson, E.; Ramachandran, B. R.
2013-01-01
The electronic and geometrical structures of the clusters composed of 12 iron and 12 oxygen atoms are obtained using all-electron density functional theory. It is found that the states with geometrical structures corresponding to oxygen chemisorbed on the ground-state Fe12 cluster surface (Fe12O12) are close in total energy to the states whose geometrical configurations are hollow cages (FeO)12. The lowest total energy state is the ferrimagnetic triplet state of Fe12O12. A ferrimagnetic nonet state of (FeO)12 is only marginally higher in total energy. The clusters are rich in nearly degenerate isomers. Oxygen adsorption dramatically quenches the spin of Fe12 clusters.
A computer program for fitting smooth surfaces to three-dimensional aircraft configurations
NASA Technical Reports Server (NTRS)
Craidon, C. B.; Smith, R. E., Jr.
1975-01-01
A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.
NASA Astrophysics Data System (ADS)
Contreras Zazueta, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Sánchez-Alvaro, E.
2013-12-01
The seismic hazard assessment of extended developments, such as a dam, a bridge or a pipeline, needs the strong ground motion simulation taking into account the effects of surface geology. In many cases the incoming wave field can be obtained from attenuation relations or simulations for layered media using Discrete Wave Number (DWN). Sometimes there is a need to include in simulations the seismic source as well. A number of methods to solve these problems have been developed. Among them the Finite Element and Finite Difference Methods (FEM and FDM) are generally preferred because of the facility of use. Nevertheless, the analysis of realistic dynamic loading induced by earthquakes requires a thinner mesh of the entire domain to consider high frequencies. Consequently this may imply a high computational cost. The Indirect Boundary Element Method (IBEM) can also be employed. Here it is used to study the response of a site to historical seismic activity. This method is particularly suited to model wave propagation through wide areas as it requires only the meshing of boundaries. Moreover, it is well suited to represent finely the diffraction that can occur on a fault. However, the IBEM has been applied mainly to simple geometrical configurations. In this communication significant refinements of the formulation are presented. Using IBEM we can simulate wave propagation in complex geometrical configurations such as a stratified medium crossed by thin faults or having a complex topography. Two main developments are here described; one integrates the DWN method inside the IBEM in order to represent the Green's functions of stratified media with relatively low computational cost but assuming unbounded parallel flat layers, and the other is the extension of IBEM to deal with multi-regions in contact which allows more versatility with a higher computational cost compared to the first one but still minor to an equivalent FEM formulation. The two approaches are fully described here and their results compared within the hazard studies of CFE-Las Cruces, Nayarit, Mexico, hydroelectrical project. ACKNOWLEDGEMENTS. This study is partially supported by DGAPA-UNAM under Project IN104712.
Riemannian geometric approach to human arm dynamics, movement optimization, and invariance
NASA Astrophysics Data System (ADS)
Biess, Armin; Flash, Tamar; Liebermann, Dario G.
2011-03-01
We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparametrized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm’s configuration space may provide insights into the emerging properties of the movements generated by the motor system.
Panoramic imaging and virtual reality — filling the gaps between the lines
NASA Astrophysics Data System (ADS)
Chapman, David; Deacon, Andrew
Close range photogrammetry projects rely upon a clear and unambiguous specification of end-user requirements to inform decisions relating to the format, coverage, accuracy and complexity of the final deliverable. Invariably such deliverables will be a partial and incomplete abstraction of the real world where the benefits of higher accuracy and increased complexity must be traded against the cost of the project. As photogrammetric technologies move into the digital era, computerisation offers opportunities for the photogrammetrist to revisit established mapping traditions in order to explore new markets. One such market is that for three-dimensional Virtual Reality (VR) models for clients who have previously had little exposure to the capabilities, and limitations, of photogrammetry and may have radically different views on the cost/benefit trade-offs in producing geometric models. This paper will present some examples of the authors' recent experience of such markets, drawn from a number of research and commercial projects directed towards the modelling of complex man-made objects. This experience seems to indicate that suitably configured digital image archives may form an important deliverable for a wide range of photogrammetric projects and supplement, or even replace, more traditional CAD models.
Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques.
Kishore, Ravi Anant; Sanghadasa, Mohan; Priya, Shashank
2017-12-01
Recent studies have demonstrated that segmented thermoelectric generators (TEGs) can operate over large thermal gradient and thus provide better performance (reported efficiency up to 11%) as compared to traditional TEGs, comprising of single thermoelectric (TE) material. However, segmented TEGs are still in early stages of development due to the inherent complexity in their design optimization and manufacturability. In this study, we demonstrate physics based numerical techniques along with Analysis of variance (ANOVA) and Taguchi optimization method for optimizing the performance of segmented TEGs. We have considered comprehensive set of design parameters, such as geometrical dimensions of p-n legs, height of segmentation, hot-side temperature, and load resistance, in order to optimize output power and efficiency of segmented TEGs. Using the state-of-the-art TE material properties and appropriate statistical tools, we provide near-optimum TEG configuration with only 25 experiments as compared to 3125 experiments needed by the conventional optimization methods. The effect of environmental factors on the optimization of segmented TEGs is also studied. Taguchi results are validated against the results obtained using traditional full factorial optimization technique and a TEG configuration for simultaneous optimization of power and efficiency is obtained.
NASA Technical Reports Server (NTRS)
Funk, Christie J.; Perry, Boyd, III; Silva, Walter A.; Newman, Brett
2014-01-01
A software program and associated methodology to study gust loading on aircraft exists for a classification of geometrically simplified flexible configurations. This program consists of a simple aircraft response model with two rigid and three flexible symmetric degrees-of - freedom and allows for the calculation of various airplane responses due to a discrete one-minus- cosine gust as well as continuous turbulence. Simplifications, assumptions, and opportunities for potential improvements pertaining to the existing software program are first identified, then a revised version of the original software tool is developed with improved methodology to include more complex geometries, additional excitation cases, and additional output data so as to provide a more useful and precise tool for gust load analysis. In order to improve the original software program to enhance usefulness, a wing control surface and horizontal tail control surface is added, an extended application of the discrete one-minus-cosine gust input is employed, a supplemental continuous turbulence spectrum is implemented, and a capability to animate the total vehicle deformation response to gust inputs is included. These revisions and enhancements are implemented and an analysis of the results is used to validate the modifications.
On Certain Wronskians of Multiple Orthogonal Polynomials
NASA Astrophysics Data System (ADS)
Zhang, Lun; Filipuk, Galina
2014-11-01
We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for m! ultiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.
Visualizing the Arithmetic of Complex Numbers
ERIC Educational Resources Information Center
Soto-Johnson, Hortensia
2014-01-01
The Common Core State Standards Initiative stresses the importance of developing a geometric and algebraic understanding of complex numbers in their different forms (i.e., Cartesian, polar and exponential). Unfortunately, most high school textbooks do not offer such explanations much less exercises that encourage students to bridge geometric and…
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Wallace, H. W.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.
Memory effects in soap film arrangements
NASA Astrophysics Data System (ADS)
Vandewalle, Nicolas; Dorbolo, Stephane; Lumay, Geoffroy; Schockmel, Julien; Noirhomme, Martial
2012-02-01
We report experiments on soap film configurations in a triangular prism for which the shape factor can be changed continuously. Two stable configurations can be observed for a range of the shape factor h. A hysteretic behaviour is found, due to the occurence of another local minima in the free energy. Experiments demonstrate that soap films can be trapped in a particular configuration being different from a global surface minimization. This metastability can be evidenced from a geometrical model based on idealized structures. Depending on the configuration, providing clues on the structural relaxations taking place into 3D foams, such as T1 rearrangements. The composition of the liquid is also investigated leading to dynamical picture of the transition. (Phys. Rev. E 83, 021403 (2011))
Stochastic approach for radionuclides quantification
NASA Astrophysics Data System (ADS)
Clement, A.; Saurel, N.; Perrin, G.
2018-01-01
Gamma spectrometry is a passive non-destructive assay used to quantify radionuclides present in more or less complex objects. Basic methods using empirical calibration with a standard in order to quantify the activity of nuclear materials by determining the calibration coefficient are useless on non-reproducible, complex and single nuclear objects such as waste packages. Package specifications as composition or geometry change from one package to another and involve a high variability of objects. Current quantification process uses numerical modelling of the measured scene with few available data such as geometry or composition. These data are density, material, screen, geometric shape, matrix composition, matrix and source distribution. Some of them are strongly dependent on package data knowledge and operator backgrounds. The French Commissariat à l'Energie Atomique (CEA) is developing a new methodology to quantify nuclear materials in waste packages and waste drums without operator adjustment and internal package configuration knowledge. This method suggests combining a global stochastic approach which uses, among others, surrogate models available to simulate the gamma attenuation behaviour, a Bayesian approach which considers conditional probability densities of problem inputs, and Markov Chains Monte Carlo algorithms (MCMC) which solve inverse problems, with gamma ray emission radionuclide spectrum, and outside dimensions of interest objects. The methodology is testing to quantify actinide activity in different kind of matrix, composition, and configuration of sources standard in terms of actinide masses, locations and distributions. Activity uncertainties are taken into account by this adjustment methodology.
Spectral determinants for twist field correlators
NASA Astrophysics Data System (ADS)
Belitsky, A. V.
2018-04-01
Twist fields were introduced a few decades ago as a quantum counterpart to classical kink configurations and disorder variables in low dimensional field theories. In recent years they received a new incarnation within the framework of geometric entropy and strong coupling limit of four-dimensional scattering amplitudes. In this paper, we study their two-point correlation functions in a free massless scalar theory, namely, twist-twist and twist-antitwist correlators. In spite of the simplicity of the model in question, the properties of the latter are far from being trivial. The problem is reduced, within the formalism of the path integral, to the study of spectral determinants on surfaces with conical points, which are then computed exactly making use of the zeta function regularization. We also provide an insight into twist correlators for a massive complex scalar by means of the Lifshitz-Krein trace formula.
SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan
2013-01-01
Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108
NASA Astrophysics Data System (ADS)
Gao, M.; Li, J.
2018-04-01
Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.
Fuel-Air Mixing and Combustion in Scramjets. Chapter 6
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.
2006-01-01
At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.
Modeling Slab-Slab Interactions: Dynamics of Outward Dipping Double-Sided Subduction Systems
NASA Astrophysics Data System (ADS)
Király, Ágnes; Holt, Adam F.; Funiciello, Francesca; Faccenna, Claudio; Capitanio, Fabio A.
2018-03-01
Slab-slab interaction is a characteristic feature of tectonically complex areas. Outward dipping double-sided subduction is one of these complex cases, which has several examples on Earth, most notably the Molucca Sea and Adriatic Sea. This study focuses on developing a framework for linking plate kinematics and slab interactions in an outward dipping subduction geometry. We used analog and numerical models to better understand the underlying subduction dynamics. Compared to a single subduction model, double-sided subduction exhibits more time-dependent and vigorous toroidal flow cells that are elongated (i.e., not circular). Because both the Molucca and Adriatic Sea exhibit an asymmetric subduction configuration, we also examine the role that asymmetry plays in the dynamics of outward dipping double-sided subduction. We introduce asymmetry in two ways; with variable initial depths for the two slabs ("geometric" asymmetry), and with variable buoyancy within the subducting plate ("mechanical" asymmetry). Relative to the symmetric case, we probe how asymmetry affects the overall slab kinematics, whether asymmetric behavior intensifies or equilibrates as subduction proceeds. While initial geometric asymmetry disappears once the slabs are anchored to the 660 km discontinuity, the mechanical asymmetry can cause more permanent differences between the two subduction zones. In the most extreme case, the partly continental slab stops subducting due to the unequal slab pull force. The results show that the slab-slab interaction is most effective when the two trenches are closer than 10-8 cm in the laboratory, which is 600-480 km when scaled to the Earth.
Engine installation effects of four civil transport airplanes : Wallops Flight Facility study
DOT National Transportation Integrated Search
2003-10-31
This report examines the effects of airplane geometrical configuration on the acoustic directivity characteristics and on the propagation of airplane noise. This effect of airplane geometry is referred to in this report as engine installation effe...
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Liscinsky, D. S.; Bain, D. B.
1999-01-01
This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex three-dimensional flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the orifices investigated were often very large (jet-to-mainstream mass-flow ratio > 1 and the ratio of orifices-area-to-mainstream- cross-sectional-area up to 0.5, respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.
NASA Technical Reports Server (NTRS)
Holdeman, James D.; Liscinsky, David S.; Bain, Daniel B.
1997-01-01
This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the offices investigated were often very large (jet-to-mainstream mass-flow ratio greater than 1 and the ratio of orifices-area-to-mainstream-cross-sectional-area up to 0.5 respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.
Minimizing stellarator turbulent transport by geometric optimization
NASA Astrophysics Data System (ADS)
Mynick, H. E.
2010-11-01
Up to now, a transport optimized stellarator has meant one optimized to minimize neoclassical transport,ootnotetextH.E. Mynick, Phys. Plasmas 13, 058102 (2006). while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. However, with the advent of gyrokinetic codes valid for 3D geometries such as GENE,ootnotetextF. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000). and stellarator optimization codes such as STELLOPT,ootnotetextA. Reiman, G. Fu, S. Hirshman, L. Ku, et al, Plasma Phys. Control. Fusion 41 B273 (1999). designing stellarators to also reduce turbulent transport has become a realistic possibility. We have been using GENE to characterize the dependence of turbulent transport on stellarator geometry,ootnotetextH.E Mynick, P.A. Xanthopoulos, A.H. Boozer, Phys.Plasmas 16 110702 (2009). and to identify key geometric quantities which control the transport level. From the information obtained from these GENE studies, we are developing proxy functions which approximate the level of turbulent transport one may expect in a machine of a given geometry, and have extended STELLOPT to use these in its cost function, obtaining stellarator configurations with turbulent transport levels substantially lower than those in the original designs.
Jet engine nozzle exit configurations and associated systems and methods
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor)
2011-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter.
Jet Engine Nozzle Exit Configurations and Associated Systems and Methods
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor)
2013-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter.
Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam
NASA Astrophysics Data System (ADS)
Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.
2018-06-01
We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.
Corrections for the geometric distortion of the tube detectors on SANS instruments at ORNL
He, Lilin; Do, Changwoo; Qian, Shuo; ...
2014-11-25
Small-angle neutron scattering instruments at the Oak Ridge National Laboratory's High Flux Isotope Reactor were upgraded in area detectors from the large, single volume crossed-wire detectors originally installed to staggered arrays of linear position-sensitive detectors (LPSDs). The specific geometry of the LPSD array requires that approaches to data reduction traditionally employed be modified. Here, two methods for correcting the geometric distortion produced by the LPSD array are presented and compared. The first method applies a correction derived from a detector sensitivity measurement performed using the same configuration as the samples are measured. In the second method, a solid angle correctionmore » is derived that can be applied to data collected in any instrument configuration during the data reduction process in conjunction with a detector sensitivity measurement collected at a sufficiently long camera length where the geometric distortions are negligible. Furthermore, both methods produce consistent results and yield a maximum deviation of corrected data from isotropic scattering samples of less than 5% for scattering angles up to a maximum of 35°. The results are broadly applicable to any SANS instrument employing LPSD array detectors, which will be increasingly common as instruments having higher incident flux are constructed at various neutron scattering facilities around the world.« less
An installed nacelle design code using a multiblock Euler solver. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
An efficient multiblock Euler design code was developed for designing a nacelle installed on geometrically complex airplane configurations. This approach employed a design driver based on a direct iterative surface curvature method developed at LaRC. A general multiblock Euler flow solver was used for computing flow around complex geometries. The flow solver used a finite-volume formulation with explicit time-stepping to solve the Euler Equations. It used a multiblock version of the multigrid method to accelerate the convergence of the calculations. The design driver successively updated the surface geometry to reduce the difference between the computed and target pressure distributions. In the flow solver, the change in surface geometry was simulated by applying surface transpiration boundary conditions to avoid repeated grid generation during design iterations. Smoothness of the designed surface was ensured by alternate application of streamwise and circumferential smoothings. The capability and efficiency of the code was demonstrated through the design of both an isolated nacelle and an installed nacelle at various flow conditions. Information on the execution of the computer program is provided in volume 2.
Complex Mapping of Aerofoils--A Different Perspective
ERIC Educational Resources Information Center
Matthews, Miccal T.
2012-01-01
In this article an application of conformal mapping to aerofoil theory is studied from a geometric and calculus point of view. The problem is suitable for undergraduate teaching in terms of a project or extended piece of work, and brings together the concepts of geometric mapping, parametric equations, complex numbers and calculus. The Joukowski…
ERIC Educational Resources Information Center
Primi, Ricardo
2002-01-01
Created two geometric inductive reasoning matrix tests by manipulating four sources of complexity orthogonally. Results for 313 undergraduates show that fluid intelligence is most strongly associated with the part of the central executive component of working memory that is related to controlled attention processing and selective encoding. (SLD)
Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin
2000-01-01
A methodology is presented for determining the fatigue life of bonded composite skin/stringer structures based on delamination fatigue characterization data and geometric nonlinear finite element analyses. Results were compared to fatigue tests on stringer flange/skin specimens to verify the approach.
Differential Kinematics Of Contemporary Industrial Robots
NASA Astrophysics Data System (ADS)
Szkodny, T.
2014-08-01
The paper presents a simple method of avoiding singular configurations of contemporary industrial robot manipulators of such renowned companies as ABB, Fanuc, Mitsubishi, Adept, Kawasaki, COMAU and KUKA. To determine the singular configurations of these manipulators a global form of description of the end-effector kinematics was prepared, relative to the other links. On the basis of this description , the formula for the Jacobian was defined in the end-effector coordinates. Next, a closed form of the determinant of the Jacobian was derived. From the formula, singular configurations, where the determinant's value equals zero, were determined. Additionally, geometric interpretations of these configurations were given and they were illustrated. For the exemplary manipulator, small corrections of joint variables preventing the reduction of the Jacobian order were suggested. An analysis of positional errors, caused by these corrections, was presented
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Devereaux, P. A.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.
CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino
2016-01-01
A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.
NASA Technical Reports Server (NTRS)
Stoll, Frederick; Gurdal, Zafer; Starnes, James H., Jr.
1991-01-01
A method was developed for the geometrically nonlinear analysis of the static response of thin-walled stiffened composite structures loaded in uniaxial or biaxial compression. The method is applicable to arbitrary prismatic configurations composed of linked plate strips, such as stiffened panels and thin-walled columns. The longitudinal ends of the structure are assumed to be simply supported, and geometric shape imperfections can be modeled. The method can predict the nonlinear phenomena of postbuckling strength and imperfection sensitivity which are exhibited by some buckling-dominated structures. The method is computer-based and is semi-analytic in nature, making it computationally economical in comparison to finite element methods. The method uses a perturbation approach based on the use of a series of buckling mode shapes to represent displacement contributions associated with nonlinear response. Displacement contributions which are of second order in the model amplitudes are incorported in addition to the buckling mode shapes. The principle of virtual work is applied using a finite basis of buckling modes, and terms through the third order in the model amplitudes are retained. A set of cubic nonlinear algebraic equations are obtained, from which approximate equilibrium solutions are determined. Buckling mode shapes for the general class of structure are obtained using the VIPASA analysis code within the PASCO stiffened-panel design code. Thus, subject to some additional restrictions in loading and plate anisotropy, structures which can be modeled with respect to buckling behavior by VIPASA can be analyzed with respect to nonlinear response using the new method. Results obtained using the method are compared with both experimental and analytical results in the literature. The configurations investigated include several different unstiffened and blade-stiffening panel configurations, featuring both homogeneous, isotropic materials, and laminated composite material.
Pfannkuch, H.O.; Winter, T.C.
1984-01-01
Distribution of seepage through lakebeds is controlled partly by geometric configuration of the lake and of the groundwater system interacting with the lake. To evaluate the effect of these factors, conductive-paper electric-analog models were used to analyze a number of lake and groundwater settings having different geometric configurations. Most settings analyzed are of lakes that do not penetrate the groundwater system. The width ratio, the ratio of half the lake width to thickness of the groundwater system, is the principal geometric characteristic used in this study. Because the distribution of groundwater seepage into a lake is not uniform across the lakebed, the concept of a streamlinecrowding factor is developed, and is used to determine seepage patterns from geometric characteristics of the lake and its contiguous groundwater system. Analysis of fourteen different width ratios of lake and groundwater systems indicates that lakes can be defined by three general groups of seepage patterns, which include flow patterns, volumes and rates: (1) lakes having width ratios less than ??? 0.6 show relatively uniform distribution of seepage across the lakebed; (2) lakes having width ratios of ??? 0.6 to ??? 2.0 change in absolute and relative streamline crowding in the near-shore region; and (3) lakes having width ratios greater than ??? 2.0 show stable flow patterns near shore; however, with increasing lake width, the relative streamline crowding increases relative to that width. For deep lakes and those in anisotropic media, the crowding effect is decreased, resulting in more uniform seepage across the lakebed. ?? 1984.
Effect of bird maneuver on frequency-domain helicopter EM response
Fitterman, D.V.; Yin, C.
2004-01-01
Bird maneuver, the rotation of the coil-carrying instrument pod used for frequency-domain helicopter electromagnetic surveys, changes the nominal geometric relationship between the bird-coil system and the ground. These changes affect electromagnetic coupling and can introduce errors in helicopter electromagnetic, (HEM) data. We analyze these effects for a layered half-space for three coil configurations: vertical coaxial, vertical coplanar, and horizontal coplanar. Maneuver effect is shown to have two components: one that is purely geometric and another that is inductive in nature. The geometric component is significantly larger. A correction procedure is developed using an iterative approach that uses standard HEM inversion routines. The maneuver effect correction reduces inversion misfit error and produces laterally smoother cross sections than obtained from uncorrected data. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
A super-cusp divertor configuration for tokamaks
NASA Astrophysics Data System (ADS)
Ryutov, D. D.
2015-10-01
> This study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase's cusp divertor. It turns out that the set of remote coils can indeed produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough control that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called `a super-cusp'. General geometrical features of the three-null configurations produced by remote coils are described. Issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.
NASA Technical Reports Server (NTRS)
Braden, J. A.; Hancock, J. P.; Hackett, J. E.; Lyman, V.
1979-01-01
The experimental data encompassing surface pressure measurements, and wake surveys at static and wind-on conditions are analyzed. Cruise performance trends reflecting nacelle geometric variations, and nozzle operating conditions are presented. Details of the modeling process are included.
Reducing lane and shoulder width to permit an additional lane on a freeway : technical report.
DOT National Transportation Integrated Search
2015-03-01
This research effort identified the operational and safety implications of using reduced lane and : shoulder widths for a variety of freeway configurations. The research team used speed, crash, and geometric : data for freeways in Dallas, Houston, an...
System and Method for Modeling the Flow Performance Features of an Object
NASA Technical Reports Server (NTRS)
Jorgensen, Charles (Inventor); Ross, James (Inventor)
1997-01-01
The method and apparatus includes a neural network for generating a model of an object in a wind tunnel from performance data on the object. The network is trained from test input signals (e.g., leading edge flap position, trailing edge flap position, angle of attack, and other geometric configurations, and power settings) and test output signals (e.g., lift, drag, pitching moment, or other performance features). In one embodiment, the neural network training method employs a modified Levenberg-Marquardt optimization technique. The model can be generated 'real time' as wind tunnel testing proceeds. Once trained, the model is used to estimate performance features associated with the aircraft given geometric configuration and/or power setting input. The invention can also be applied in other similar static flow modeling applications in aerodynamics, hydrodynamics, fluid dynamics, and other such disciplines. For example, the static testing of cars, sails, and foils, propellers, keels, rudders, turbines, fins, and the like, in a wind tunnel, water trough, or other flowing medium.
NASA Astrophysics Data System (ADS)
Tao, Y. B.; Liu, Y. W.; Gao, F.; Chen, X. Y.; He, Y. L.
2009-09-01
An anisotropic porous media model for mesh regenerator used in pulse tube refrigerator (PTR) is established. Formulas for permeability and Forchheimer coefficient are derived which include the effects of regenerator configuration and geometric parameters, oscillating flow, operating frequency, cryogenic temperature. Then, the fluid flow and heat transfer performances of mesh regenerator are numerically investigated under different mesh geometric parameters and material properties. The results indicate that the cooling power of the PTR increases with the increases of specific heat capacity and density of the regenerator mesh material, and decreases with the increases of penetration depth and thermal conductivity ratio ( a). The cooling power at a = 0.1 is 0.5-2.0 W higher than that at a = 1. Optimizing the filling scale of different mesh configurations (such as 75% #200 twill and 25% #250 twill) and adopting multi segments regenerator with stainless steel meshes at the cold end can enhance the regenerator's efficiency and achieve better heat transfer performance.
Rezapour, Ehsan; Pettersen, Kristin Y; Liljebäck, Pål; Gravdahl, Jan T; Kelasidi, Eleni
This paper considers path following control of planar snake robots using virtual holonomic constraints. In order to present a model-based path following control design for the snake robot, we first derive the Euler-Lagrange equations of motion of the system. Subsequently, we define geometric relations among the generalized coordinates of the system, using the method of virtual holonomic constraints. These appropriately defined constraints shape the geometry of a constraint manifold for the system, which is a submanifold of the configuration space of the robot. Furthermore, we show that the constraint manifold can be made invariant by a suitable choice of feedback. In particular, we analytically design a smooth feedback control law to exponentially stabilize the constraint manifold. We show that enforcing the appropriately defined virtual holonomic constraints for the configuration variables implies that the robot converges to and follows a desired geometric path. Numerical simulations and experimental results are presented to validate the theoretical approach.
NASA Technical Reports Server (NTRS)
Bledsoe, Jim; Weiss, Lee
1988-01-01
The goal of this project was to develop a system for varying the spacings between soybean plants as they grow to maximize the number of plants grown in a given volume. The project was studied to aid in the development of NASA's Controlled Ecological Life Support System (CELSS). The resulting design consists of plant trays which are three dimensional trapezoids arranged into circles in a compact geometrical configuration. These circles are stacked together in back to back pairs to form a long cylinder. In each growth tray, plants will be housed in individual containers containing a nutrient delivery system and a plant support mechanism. Between the containers, a half trellis has been designed to space the plants for maximum space efficiency. The design allows for localized seeding and harvesting mechanisms due to the chambers' geometrical configuration. In addition, the components have been designed for ease of cleaning and minimal maintenance. Next semester, the individual components will be constructed and tested to determine the success of the design.
Dye-sensitization of CdS nano-cage - A density functional theory approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam
2016-05-23
Quantum dots a few nanometer in size exhibit unique properties in comparison to bulk due to quantum confinement. Their properties can be tuned according to their sizes. Dye sensitized quantum dot (DSQD) solar cells are based on the same principle with surface dangling bonds as a challenge. Researches have shown the existence and stability of nano-cages which are assembled such as to minimize the surface dangling bonds and hence maximize stability. Here, we report a first principles DFT study of optical and electronic properties of CdS-cage (Cd{sub 34}S{sub 34}) sensitized with nkx-2388 dye in three different geometric configurations of dyemore » attachment. A significant distortion is found to occur in the geometric structure of the cage when it interacts strongly with the dye. The relative positioning of dye and cage energy levels is found to be different in different configurations. The absorption spectrum has been analyzed with the help of natural transition orbitals (NTO).« less
Research on complex 3D tree modeling based on L-system
NASA Astrophysics Data System (ADS)
Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li
2018-03-01
L-system as a fractal iterative system could simulate complex geometric patterns. Based on the field observation data of trees and knowledge of forestry experts, this paper extracted modeling constraint rules and obtained an L-system rules set. Using the self-developed L-system modeling software the L-system rule set was parsed to generate complex tree 3d models.The results showed that the geometrical modeling method based on l-system could be used to describe the morphological structure of complex trees and generate 3D tree models.
NASA Technical Reports Server (NTRS)
Mengle, Vinod G. (Inventor); Thomas, Russell H. (Inventor)
2012-01-01
Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter. Projections near a support pylon and/or associated heat shield can have particular configurations, including greater flow immersion than other projections.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
Advances in Distance-Based Hole Cuts on Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; Pandya, Shishir A.
2015-01-01
An automatic and efficient method to determine appropriate hole cuts based on distances to the wall and donor stencil maps for overset grids is presented. A new robust procedure is developed to create a closed surface triangulation representation of each geometric component for accurate determination of the minimum hole. Hole boundaries are then displaced away from the tight grid-spacing regions near solid walls to allow grid overlap to occur away from the walls where cell sizes from neighboring grids are more comparable. The placement of hole boundaries is efficiently determined using a mid-distance rule and Cartesian maps of potential valid donor stencils with minimal user input. Application of this procedure typically results in a spatially-variable offset of the hole boundaries from the minimum hole with only a small number of orphan points remaining. Test cases on complex configurations are presented to demonstrate the new scheme.
Modelling the excitation field of an optical resonator
NASA Astrophysics Data System (ADS)
Romanini, Daniele
2014-06-01
Assuming the paraxial approximation, we derive efficient recursive expressions for the projection coefficients of a Gaussian beam over the Gauss--Hermite transverse electro-magnetic (TEM) modes of an optical cavity. While previous studies considered cavities with cylindrical symmetry, our derivation accounts for "simple" astigmatism and ellipticity, which allows to deal with more realistic optical systems. The resulting expansion of the Gaussian beam over the cavity TEM modes provides accurate simulation of the excitation field distribution inside the cavity, in transmission, and in reflection. In particular, this requires including counter-propagating TEM modes, usually neglected in textbooks. As an illustrative application to a complex case, we simulate reentrant cavity configurations where Herriott spots are obtained at cavity output. We show that the case of an astigmatic cavity is also easily modelled. To our knowledge, such relevant applications are usually treated under the simplified geometrical optics approximation, or using heavier numerical methods.
Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation
Sáenz, P. J.; Wray, A. W.; Che, Z.; Matar, O. K.; Valluri, P.; Kim, J.; Sefiane, K.
2017-01-01
The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications. PMID:28294114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji
2014-09-15
A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understandingmore » the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.« less
Removal of central obscuration and spider arm effects with beam-shaping coronagraphy
NASA Astrophysics Data System (ADS)
Abe, L.; Murakami, N.; Nishikawa, J.; Tamura, M.
2006-05-01
This paper describes a method for removing the effect of a centrally obscured aperture with additional spider arms in arbitrary geometrical configurations. The proposed method is based on a two-stage process where the light beam is first shaped to remove the central obscuration and spider arms, in order to feed a second, highly efficient coronagraph. The beam-shaping stage is a combination of a diffraction mask in the first focal plane and a complex amplitude filter located in the conjugate pupil. This paper specifically describes the case of using Lyot occulting masks and circular phase-shifting masks as diffracting components. The basic principle of the method is given along with an analytical description and numerical simulations. Substantial improvement in the performance of high-contrast coronagraphs can be obtained with this method, even if the beam-shaping filter is not perfectly manufactured.
Time-Dependent Kinematics of Complex Human Structures
NASA Astrophysics Data System (ADS)
Shaibani, Saami J.
2013-03-01
The human body can be arranged in numerous geometrical configurations, including many interesting scenarios from the sport of gymnastics. One particularly challenging analytical example among these is the forward flip with maximum separation from the ground at the apex of the flight. The temporal aspects of this move involve the evaluation of multiple different positions during the trajectory, which adds significantly to the effort required. When a forward flip was executed during a football game, ready access to the recording of this allowed a detailed kinematic examination to be performed. Careful application of highly intricate protocols produces results which are consistent with similar athletic environments. The emphasis in this research is to transcend standard approaches elsewhere, which are severely limited to generic athletes and/or generic circumstances. Pedagogical benefits of the rigorous methodology adopted here are explored beyond what was introduced in a recent related study.
Integrating CFD, CAA, and Experiments Towards Benchmark Datasets for Airframe Noise Problems
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Yamamoto, Kazuomi
2012-01-01
Airframe noise corresponds to the acoustic radiation due to turbulent flow in the vicinity of airframe components such as high-lift devices and landing gears. The combination of geometric complexity, high Reynolds number turbulence, multiple regions of separation, and a strong coupling with adjacent physical components makes the problem of airframe noise highly challenging. Since 2010, the American Institute of Aeronautics and Astronautics has organized an ongoing series of workshops devoted to Benchmark Problems for Airframe Noise Computations (BANC). The BANC workshops are aimed at enabling a systematic progress in the understanding and high-fidelity predictions of airframe noise via collaborative investigations that integrate state of the art computational fluid dynamics, computational aeroacoustics, and in depth, holistic, and multifacility measurements targeting a selected set of canonical yet realistic configurations. This paper provides a brief summary of the BANC effort, including its technical objectives, strategy, and selective outcomes thus far.
TRUMP. Transient & S-State Temperature Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
1992-03-03
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.
Gilbert, Ian; Nisoli, Cristiano; Schiffer, Peter
2016-07-01
Geometrical frustration is a condition that occurs when a material’s lattice geometry precludes minimizing the energy of all the interactions among pairs of neighbors simultaneously. Moreover, the simplest example is three antiferromagnetically coupled Ising spins, pointing up or down, on the corners of an equilateral triangle: It is also impossible to arrange the spins so that each pair is antiparallel. In more complex magnetic lattices, the frustrated state can arise from the combination of lattice geometry and the strength and sign of the interactions among the magnetic dipole moments.1 (See the article by Roderich Moessner and Art Ramirez, Physics Today,more » February 2006, page 24.) A wide variety of exotic and collective phenomena sometimes arises from the competing interactions. One prime example is spin liquids, materials in which the local atomic moments fluctuate down to the lowest accessible temperatures and never settle into a static ground-state configuration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation.
Sáenz, P J; Wray, A W; Che, Z; Matar, O K; Valluri, P; Kim, J; Sefiane, K
2017-03-15
The evaporation of a liquid drop on a solid substrate is a remarkably common phenomenon. Yet, the complexity of the underlying mechanisms has constrained previous studies to spherically symmetric configurations. Here we investigate well-defined, non-spherical evaporating drops of pure liquids and binary mixtures. We deduce a universal scaling law for the evaporation rate valid for any shape and demonstrate that more curved regions lead to preferential localized depositions in particle-laden drops. Furthermore, geometry induces well-defined flow structures within the drop that change according to the driving mechanism. In the case of binary mixtures, geometry dictates the spatial segregation of the more volatile component as it is depleted. Our results suggest that the drop geometry can be exploited to prescribe the particle deposition and evaporative dynamics of pure drops and the mixing characteristics of multicomponent drops, which may be of interest to a wide range of industrial and scientific applications.
NASA Astrophysics Data System (ADS)
Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.
2013-08-01
The Electro-Hydro-Dynamics (EHD) interaction induced by a surface dielectric barrier discharge in the aerodynamic boundary layer at one atmosphere still air has been investigated. Three different geometrical configurations of the actuator have been utilized. In the first configuration, an electrode pair separated by a 2 mm dielectric sheet has been used. The second and the third configurations have been obtained by adding a third electrode on the upper side of the dielectric surface. This electrode has been placed downstream of the upper electrode and has been connected to ground or has been left floating. Three different dielectric materials have been utilized. The high voltage upper electrode was fed by an a.c. electric tension. Measurements of the dielectric surface potential generated by the charge deposition have been done. The discharge has been switched off after positive and negative phases of the plasma current (the current phase was characterized by a positive or a negative value, respectively). The measurements have been carried out after both phases. The charge distribution strongly depended on the switching off phase and was heavily affected by the geometrical configuration. A remarkable decrease of the charge deposited on the dielectric surface has been detected when the third electrode was connected to ground. Velocity profiles were obtained by using a Pitot probe. They showed that the presence of the third electrode limits the fluid dynamics performance of the actuator. A relation between the charge surface distribution and the EHD interaction phenomenon has been found. Imaging of the plasma has been done to evaluate the discharge structure and the extension of the plasma in the configurations investigated.
Hierarchical structures of amorphous solids characterized by persistent homology
Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa
2016-01-01
This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351
Farhan, Alan; Petersen, Charlotte F; Dhuey, Scott; Anghinolfi, Luca; Qin, Qi Hang; Saccone, Michael; Velten, Sven; Wuth, Clemens; Gliga, Sebastian; Mellado, Paula; Alava, Mikko J; Scholl, Andreas; van Dijken, Sebastiaan
2017-10-17
Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we provide a first look into an artificial frustrated system, the dipolar trident lattice, where the balance of competing interactions between nearest-neighbor magnetic moments can be directly controlled, thus allowing versatile tuning of geometrical frustration and manipulation of ground state configurations. Our findings not only provide the basis for future studies on the low-temperature physics of the dipolar trident lattice, but also demonstrate how this frustration-by-design concept can deliver magnetically frustrated metamaterials.Artificial magnetic nanostructures enable the study of competing frustrated interactions with more control over the system parameters than is possible in magnetic materials. Farhan et al. present a two-dimensional lattice geometry where the frustration can be controlled by tuning the unit cell parameters.
The geometric nature of weights in real complex networks
NASA Astrophysics Data System (ADS)
Allard, Antoine; Serrano, M. Ángeles; García-Pérez, Guillermo; Boguñá, Marián
2017-01-01
The topology of many real complex networks has been conjectured to be embedded in hidden metric spaces, where distances between nodes encode their likelihood of being connected. Besides of providing a natural geometrical interpretation of their complex topologies, this hypothesis yields the recipe for sustainable Internet's routing protocols, sheds light on the hierarchical organization of biochemical pathways in cells, and allows for a rich characterization of the evolution of international trade. Here we present empirical evidence that this geometric interpretation also applies to the weighted organization of real complex networks. We introduce a very general and versatile model and use it to quantify the level of coupling between their topology, their weights and an underlying metric space. Our model accurately reproduces both their topology and their weights, and our results suggest that the formation of connections and the assignment of their magnitude are ruled by different processes.
Kinematics, structural mechanics, and design of origami structures with smooth folds
NASA Astrophysics Data System (ADS)
Peraza Hernandez, Edwin Alexander
Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of origami continuum bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards a given three-dimensional goal shape starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided.
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, A. N.; Cubaynes, D.; Heinecke, E.; Hoffmann, P.; Zimmermann, P.; Meyer, M.
2010-10-01
The generalized geometrical model for photoionization from polarized atoms is extended to include mixing of configurations in the initial atomic and/or the final photoion states. The theoretical results for angle-resolved linear and circular magnetic dichroism are in good agreement with new high-resolution photoelectron data for 3p-1 photoionization of potassium atoms polarized in the K 3p64s 2S1/2 ground state by laser optical pumping.
An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations
NASA Astrophysics Data System (ADS)
Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.
2013-12-01
In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations to find which is the closest atom containing an arbitrary point in space. Atom sizes are according to the corresponding van der Waals radii. Restrictions: The geometrical model presented here does not include the chromosome organization level but it could be easily build up by using fragments of the 30 nm chromatin fiber. Unusual features: To our knowledge, this is the first open source atomic-resolution DNA geometrical model developed for DNA-radiation interaction Monte Carlo simulations. In our tests, the current model took into account the explicit position of about 56×106 atoms, although the user may enhance this amount according to the necessities. Running time: This subroutine can process about 2 million points within a few minutes in a typical current computer.
In vivo wear. Part I: The Michigan computer-graphic measuring system.
McDowell, G C; Bloem, T J; Lang, B R; Asgar, K
1988-07-01
Three-dimensional coordinate measuring machines for examining the quality of industrial castings were reviewed. The concept was modified and successfully converted to examine the minute geometric configurations of the surfaces of dental materials. The wear of composites has undoubtedly precipitated this perceptive, thorough study.
Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi
2018-07-30
Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2009-12-15
The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configurationmore » were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)« less
NASA Technical Reports Server (NTRS)
Zilz, D. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.
Automated Parameter Studies Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian
2004-01-01
Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.
Noise characteristics of upper surface blown configurations: Analytical Studies
NASA Technical Reports Server (NTRS)
Reddy, N. N.; Tibbetts, J. G.; Pennock, A. P.; Tam, C. K. W.
1978-01-01
Noise and flow results of upper surface blown configurations were analyzed. The dominant noise source mechanisms were identified from experimental data. From far-field noise data for various geometric and operational parameters, an empirical noise prediction program was developed and evaluated by comparing predicted results with experimental data from other tests. USB aircraft compatibility studies were conducted using the described noise prediction and a cruise performance data base. A final design aircraft was selected and theory was developed for the noise from the trailing edge wake assuming it as a highly sheared layer.
Nonlinear distortion of thin liquid sheets
NASA Astrophysics Data System (ADS)
Mehring, Carsten Ralf
Thin planar, annular and conical liquid sheets or films are analyzed, in a unified manner, by means of a reduced- dimension approach providing governing equations for the nonlinear motion of planar and swirling annular thin inviscid and incompressible liquid sheets in zero gravity and with axial disturbances only. Temporal analyses of periodically disturbed infinite sheets are considered, as well as spatial analyses of semi-infinite sheets modulated at the nozzle exit. Results on planar and swirling annular or conical sheets are presented for a zero density ambient gas. Here, conical sheets are obtained in the nearfield of the nozzle exit by considering sheets or films with swirl in excess of that needed to stabilize the discharging stream in its annular configuration. For nonswirling annular sheets a spatially and/or temporally constant gas-core pressure is assumed. A model extension considering the influence of aerodynamic effects on planar sheets is proposed. For planar and annular sheets, linear analyses of the pure initial- and pure boundary-value problem provide insight into the propagation characteristics of dilational and sinuous waves, the (linear) coupling between both wave modes, the stability limits for the annular configuration, as well as the appearance of particular waves on semi-infinite modulated sheets downstream from the nozzle exit. Nonlinear steady-state solutions for the conical configuration (without modulation) are illustrated. Comparison between nonlinear and linear numerical and linear analytical solutions for temporally or spatially developing sheets provides detailed information on the nonlinear distortion characteristics including nonlinear wave propagation and mode-coupling for all the considered geometric configurations and for a variety of parameter configurations. Sensitivity studies on the influence of Weber number, modulation frequency, annular radius, forcing amplitude and sheet divergence on breakup or collapse length and times are reported for modulated semi-infinite annular and conical sheets. Comparisons between the different geometric configurations are made. For periodically disturbed planar sheets, accuracy of the employed reduced-dimension approach is demonstrated by comparison with more accurate two-dimensional vortex dynamics simulations.
Research on Shock Responses of Three Types of Honeycomb Cores
NASA Astrophysics Data System (ADS)
Peng, Fei; Yang, Zhiguang; Jiang, Liangliang; Ren, Yanting
2018-03-01
The shock responses of three kinds of honeycomb cores have been investigated and analyzed based on explicit dynamics analysis. According to the real geometric configuration and the current main manufacturing methods of aluminum alloy honeycomb cores, the finite element models of honeycomb cores with three different cellular configurations (conventional hexagon honeycomb core, rectangle honeycomb core and auxetic honeycomb core with negative Poisson’s ratio) have been established through FEM parametric modeling method based on Python and Abaqus. In order to highlight the impact response characteristics of the above three honeycomb cores, a 5 mm thick panel with the same mass and material was taken as contrast. The analysis results showed that the peak values of longitudinal acceleration history curves of the three honeycomb cores were lower than those of the aluminum alloy panel in all three reference points under the loading of a longitudinal pulse pressure load with the peak value of 1 MPa and the pulse width of 1 μs. It could be concluded that due to the complex reflection and diffraction of stress wave induced by shock in honeycomb structures, the impact energy was redistributed which led to a decrease in the peak values of the longitudinal acceleration at the measuring points of honeycomb cores relative to the panel.
NASA Technical Reports Server (NTRS)
Funk, Christie J.
2013-01-01
A software program and associated methodology to study gust loading on aircraft exists for a classification of geometrically simplified flexible configurations. This program consists of a simple aircraft response model with two rigid and three flexible symmetric degrees of freedom and allows for the calculation of various airplane responses due to a discrete one-minus-cosine gust as well as continuous turbulence. Simplifications, assumptions, and opportunities for potential improvements pertaining to the existing software program are first identified, then a revised version of the original software tool is developed with improved methodology to include more complex geometries, additional excitation cases, and output data so as to provide a more useful and accurate tool for gust load analysis. Revisions are made in the categories of aircraft geometry, computation of aerodynamic forces and moments, and implementation of horizontal tail mode shapes. In order to improve the original software program to enhance usefulness, a wing control surface and horizontal tail control surface is added, an extended application of the discrete one-minus-cosine gust input is employed, a supplemental continuous turbulence spectrum is implemented, and a capability to animate the total vehicle deformation response to gust inputs in included. These revisions and enhancements are implemented and an analysis of the results is used to validate the modifications.
Evaluation of Airframe Noise Reduction Concepts via Simulations Using a Lattice Boltzmann Approach
NASA Technical Reports Server (NTRS)
Fares, Ehab; Casalino, Damiano; Khorrami, Mehdi R.
2015-01-01
Unsteady computations are presented for a high-fidelity, 18% scale, semi-span Gulfstream aircraft model in landing configuration, i.e. flap deflected at 39 degree and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW® to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. In addition to the baseline geometry, which was presented previously, various noise reduction concepts for the flap and main landing gear are simulated. In particular, care is taken to fully resolve the complex geometrical details associated with these concepts in order to capture the resulting intricate local flow field thus enabling accurate prediction of their acoustic behavior. To determine aeroacoustic performance, the farfield noise predicted with the concepts applied is compared to high-fidelity simulations of the untreated baseline configurations. To assess the accuracy of the computed results, the aerodynamic and aeroacoustic impact of the noise reduction concepts is evaluated numerically and compared to experimental results for the same model. The trends and effectiveness of the simulated noise reduction concepts compare well with measured values and demonstrate that the computational approach is capable of capturing the primary effects of the acoustic treatment on a full aircraft model.
Hard sphere packings within cylinders.
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick
2016-03-07
Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.
Primary chromatic aberration elimination via optimization work with genetic algorithm
NASA Astrophysics Data System (ADS)
Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao
2008-09-01
Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.
NASA Astrophysics Data System (ADS)
Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio
2018-05-01
The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Myers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Kellas, Sotiris; Dixon, Genevieve D.; Krivanek, Thomas M.; Gyekenyesi, Thomas G.
2014-01-01
Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less
Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; ...
2017-05-18
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less
NASA Astrophysics Data System (ADS)
Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; Harman, Todd; Nelson, Matthew A.; Brown, Michael J.; Pardyjak, Eric R.
2017-08-01
Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier-Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H_d/H_u) and street canyon-width to building-width aspect ratio ( S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.
Geometric phase and o -mode blueshift in a chiral anisotropic medium inside a Fabry-Pérot cavity
NASA Astrophysics Data System (ADS)
Timofeev, Ivan V.; Gunyakov, Vladimir A.; Sutormin, Vitaly S.; Myslivets, Sergey A.; Arkhipkin, Vasily G.; Vetrov, Stepan Ya.; Lee, Wei; Zyryanov, Victor Ya.
2015-11-01
Anomalous spectral shift of transmission peaks is observed in a Fabry-Pérot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method, and geometrically using the generalized Mauguin-Poincaré rolling cone method. The o -mode blueshift is measured for a 4-methoxybenzylidene-4 '-n -butylaniline twisted-nematic layer inside the Fabry-Pérot cavity. The twist is electrically induced due to the homeoplanar-twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.
49 CFR Appendix F to Part 229 - Recommended Practices for Design and Safety Analysis
Code of Federal Regulations, 2014 CFR
2014-10-01
... expected order of use; (v) Group similar controls together; (vi) Design for high stimulus-response compatibility (geometric and conceptual); (vii) Design safety-critical controls to require more than one... description of all backup methods of operation; and (s) The configuration/revision control measures designed...
49 CFR Appendix F to Part 229 - Recommended Practices for Design and Safety Analysis
Code of Federal Regulations, 2012 CFR
2012-10-01
... expected order of use; (v) Group similar controls together; (vi) Design for high stimulus-response compatibility (geometric and conceptual); (vii) Design safety-critical controls to require more than one... description of all backup methods of operation; and (s) The configuration/revision control measures designed...
49 CFR Appendix F to Part 229 - Recommended Practices for Design and Safety Analysis
Code of Federal Regulations, 2013 CFR
2013-10-01
... expected order of use; (v) Group similar controls together; (vi) Design for high stimulus-response compatibility (geometric and conceptual); (vii) Design safety-critical controls to require more than one... description of all backup methods of operation; and (s) The configuration/revision control measures designed...
Do Dogs Know the Trammel of Archimedes?
ERIC Educational Resources Information Center
Schwartz, Mark
2011-01-01
The refraction problem, well-known in calculus and physics, continues to reveal new insights. This paper presents a geometric solution in which the trammel of Archimedes plays the prominent role. When properly configured, the trammel generates an ellipse and its family of normal lines. One normal line in particular intersects the boundary…
Hinge specification for a square-faceted tetrahedral truss
NASA Technical Reports Server (NTRS)
Adams, L. R.
1984-01-01
A square-faceted tetrahedral truss is geometrically analyzed. Expressions are developed for single degree of freedom hinges which allow packaging of the structure into a configuration in which all members are parallel and closely packed in a square pattern. Deployment is sequential, thus providing control over the structure during deployment.
Proofs through Exploration in Dynamic Geometry Environments
ERIC Educational Resources Information Center
Christou, Constantinos; Mousoulides, Nikos; Pittalis, Marios; Pitta-Pantazi, Demetra
2004-01-01
The recent development of powerful new technologies such as dynamic geometry software (DGS) with drag capability has made possible the continuous variation of geometric configurations and allows one to quickly and easily investigate whether particular conjectures are true or not. Because of the inductive nature of the DGS, the…
Proofs through Exploration in Dynamic Geometry Environments
ERIC Educational Resources Information Center
Christou, C.; Mousoulides, N.; Pittalis, M.; Pitta-Pantazi, D.
2004-01-01
The recent development of powerful new technologies such as dynamic geometry softwares (DGS) with drag capability has made possible the continuous variation of geometric configurations and allows one to quickly and easily investigate whether particular conjectures are true or not. Because of the inductive nature of the DGS, the…
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Espinosa-Perez, Hugo; Reyes-Rodriguez, Aaron
2008-01-01
Different technological artefacts may offer distinct opportunities for students to develop resources and strategies to formulate, comprehend and solve mathematical problems. In particular, the use of dynamic software becomes relevant to assemble geometric configurations that may help students reconstruct and examine mathematical relationships. In…
The design and development of a two-dimensional adaptive truss structure
NASA Technical Reports Server (NTRS)
Kuwao, Fumihiro; Motohashi, Shoichi; Yoshihara, Makoto; Takahara, Kenichi; Natori, Michihiro
1987-01-01
The functional model of a two dimensional adaptive truss structure which can purposefully change its geometrical configuration is introduced. The details of design and fabrication such as kinematic analysis, dynamic characteristics analysis and some test results are presented for the demonstration of this two dimensional truss concept.
A Qualitative Analogy for Respiratory Mechanics
ERIC Educational Resources Information Center
Baptista, Vander
2010-01-01
The geometric configuration and mechanical properties of the integral elements of the respiratory system, as well as the modus operandi of the interacting parts in the ventilation process, comprise a hard-to-visualize system, making the mechanics of pulmonary ventilation a confusing topic for students and a difficult task for the teacher. To…
NASA Technical Reports Server (NTRS)
Denn, F. M.
1978-01-01
Geometric input plotting to the VORLAX computer program by means of an interactive remote terminal is reported. The software consists of a procedure file and two programs. The programs and procedure file are described and a sample execution is presented.
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
The shape of the hominoid proximal femur: a geometric morphometric analysis
Harmon, Elizabeth H
2007-01-01
As part of the hip joint, the proximal femur is an integral locomotor component. Although a link between locomotion and the morphology of some aspects of the proximal femur has been identified, inclusive shapes of this element have not been compared among behaviourally heterogeneous hominoids. Previous analyses have partitioned complex proximal femoral morphology into discrete features (e.g. head, neck, greater trochanter) to facilitate conventional linear measurements. In this study, three-dimensional geometric morphometrics are used to examine the shape of the proximal femur in hominoids to determine whether femoral shape co-varies with locomotor category. Fourteen landmarks are recorded on adult femora of Homo, Pan, Gorilla, Pongo and Hylobates. Generalized Procrustes analysis (GPA) is used to adjust for position, orientation and scale among landmark configurations. Principal components analysis is used to collapse and compare variation in residuals from GPA, and thin-plate spline analysis is used to visualize shape change among taxa. The results indicate that knucklewalking African apes are similar to one another in femoral shape, whereas the more suspensory Asian apes diverge from the African ape pattern. The shape of the human and orangutan proximal femur converge, a result that is best explained in terms of the distinct requirements for locomotion in each group. These findings suggest that the shape of the proximal femur is brought about primarily by locomotor behaviour. PMID:17310545
Simulation-Based Approach for Site-Specific Optimization of Hydrokinetic Turbine Arrays
NASA Astrophysics Data System (ADS)
Sotiropoulos, F.; Chawdhary, S.; Yang, X.; Khosronejad, A.; Angelidis, D.
2014-12-01
A simulation-based approach has been developed to enable site-specific optimization of tidal and current turbine arrays in real-life waterways. The computational code is based on the St. Anthony Falls Laboratory Virtual StreamLab (VSL3D), which is able to carry out high-fidelity simulations of turbulent flow and sediment transport processes in rivers and streams taking into account the arbitrary geometrical complexity characterizing natural waterways. The computational framework can be used either in turbine-resolving mode, to take into account all geometrical details of the turbine, or with the turbines parameterized as actuator disks or actuator lines. Locally refined grids are employed to dramatically increase the resolution of the simulation and enable efficient simulations of multi-turbine arrays. Turbine/sediment interactions are simulated using the coupled hydro-morphodynamic module of VSL3D. The predictive capabilities of the resulting computational framework will be demonstrated by applying it to simulate turbulent flow past a tri-frame configuration of hydrokinetic turbines in a rigid-bed turbulent open channel flow as well as turbines mounted on mobile bed open channels to investigate turbine/sediment interactions. The utility of the simulation-based approach for guiding the optimal development of turbine arrays in real-life waterways will also be discussed and demonstrated. This work was supported by NSF grant IIP-1318201. Simulations were carried out at the Minnesota Supercomputing Institute.
Mechanics of the scrolling and folding of graphene.
Li, Hao; Li, Ming; Kang, Zhan
2018-06-15
The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.
Mechanics of the scrolling and folding of graphene
NASA Astrophysics Data System (ADS)
Li, Hao; Li, Ming; Kang, Zhan
2018-06-01
The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.
Amalric, Marie; Wang, Liping; Pica, Pierre; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas
2017-01-01
During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a "geometrical language" with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them.
Amalric, Marie; Wang, Liping; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas
2017-01-01
During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them. PMID:28125595
Santos, Sara; Graça, José
2014-01-01
Suberin is a biopolyester responsible for the protection of secondary plant tissues, and yet its molecular structure remains unknown. The C18:1 ω-hydroxyacid and the C18:1 α,ω-diacid are major monomers in the suberin structure, but the configuration of the double bond remains to be elucidated. To unequivocally define the configuration of the C18:1 suberin acids. Pure C18:1 ω-hydroxyacid and C18:1 α,ω-diacid, isolated from cork suberin, and two structurally very close C18:1 model compounds of known stereochemistry, methyl oleate and methyl elaidate, were analysed by NMR spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopy, and GC-MS. The GC-MS analysis showed that both acids were present in cork suberin as only one geometric isomer. The analysis of dimethyloxazoline (DMOX) and picolinyl derivatives proved the double bond position to be at C-9. The FTIR spectra were concordant with a cis-configuration for both suberin acids, but their unambiguous stereochemical assignment came from the NMR analysis: (i) the chemical shifts of the allylic (13) C carbons were shielded comparatively to the trans model compound, and (ii) the complex multiplets of the olefinic protons could be simulated only with (3) JHH and long-range (4) JHH coupling constants typical of a cis geometry. The two C18:1 suberin acids in cork are (Z)-18-hydroxyoctadec-9-enoic acid and (Z)-octadec-9-enedoic acid. Copyright © 2013 John Wiley & Sons, Ltd.
[Effect of object consistency in a spatial contextual cueing paradigm].
Takeda, Yuji
2008-04-01
Previous studies demonstrated that attention can be quickly guided to a target location in a visual search task when the spatial configurations of search items and/or the object identities were repeated in the previous trials. This phenomenon is termed contextual cueing. Recently, it was reported that spatial configuration learning and object identity learning occurred independently, when novel contours were used as search items. The present study examined whether this learning occurred independently even when the search items were meaningful. The results showed that the contextual cueing effect was observed even if the relationships between the spatial locations and object identities were jumbled (Experiment 1). However, it disappeared when the search items were changed into geometric patterns (Experiment 2). These results suggest that the spatial configuration can be learned independent of the object identities; however, the use of the learned configuration is restricted by the learning situations.
The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators
NASA Technical Reports Server (NTRS)
Bailey, R. O.; Maraz, M. R.; Hiley, P. E.
1981-01-01
A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.
Development of gas-to-gas lift pad dynamic seals, volumes 1 and 2
NASA Technical Reports Server (NTRS)
Pope, A. N.; Pugh, D. W.
1987-01-01
Dynamic tests were performed on self acting (hydrodynamic) carbon face rotary shaft seals to assess their potential, relative to presently used labyrinth seals, for improving performance of aircraft gas turbine engines by reducing air leakage flow rate at compressor end seal locations. Three self acting bearing configurations, designed to supply load support at the interface of the stationary carbon seal and rotating seal race, were tested. Two configurations, the shrouded taper and shrouded flat step, were incorporated on the face of the stationary carbon seal element. The third configuration, inward pumping spiral grooves, was incorporated on the hard faced surface of the rotating seal race. Test results demonstrated seal leakage air flow rates from 75 to 95% lower that can be achieved with best state-of-the-art labyrinth designs and led to identification of the need for a more geometrically stable seal design configuration which is presently being manufactured for subsequent test evaluation.
NASA Astrophysics Data System (ADS)
Jha, S. K.; Brockman, R. A.; Hoffman, R. M.; Sinha, V.; Pilchak, A. L.; Porter, W. J.; Buchanan, D. J.; Larsen, J. M.; John, R.
2018-05-01
Principal component analysis and fuzzy c-means clustering algorithms were applied to slip-induced strain and geometric metric data in an attempt to discover unique microstructural configurations and their frequencies of occurrence in statistically representative instantiations of a titanium alloy microstructure. Grain-averaged fatigue indicator parameters were calculated for the same instantiation. The fatigue indicator parameters strongly correlated with the spatial location of the microstructural configurations in the principal components space. The fuzzy c-means clustering method identified clusters of data that varied in terms of their average fatigue indicator parameters. Furthermore, the number of points in each cluster was inversely correlated to the average fatigue indicator parameter. This analysis demonstrates that data-driven methods have significant potential for providing unbiased determination of unique microstructural configurations and their frequencies of occurrence in a given volume from the point of view of strain localization and fatigue crack initiation.
A super-cusp divertor configuration for tokamaks
Ryutov, D. D.
2015-08-26
Our study demonstrates a remarkable flexibility of advanced divertor configurations created with the remote poloidal field coils. The emphasis here is on the configurations with three poloidal field nulls in the divertor area. We are seeking the structures where all three nulls lie on the same separatrix, thereby creating two zones of a very strong flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that the set of remote coils can produce a cusp divertor, with additional advantages of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough controlmore » that these coils exert over the fine features of the configuration. In reference to these additional favourable properties acquired by the cusp divertor, the resulting configuration could be called ‘a super-cusp’. General geometrical features of the three-null configurations produced by remote coils are described. Furthermore, issues on the way to practical applications include the need for a more sophisticated control system and possible constraints related to excessively high currents in the divertor coils.« less
Automatic blocking for complex three-dimensional configurations
NASA Technical Reports Server (NTRS)
Dannenhoffer, John F., III
1995-01-01
A new blocking technique for complex three-dimensional configurations is described. This new technique is based upon the concept of an abstraction, or squared-up representation, of the configuration and the associated grid. By allowing the user to describe blocking requirements in natural terms (such as 'wrap a grid around this leading edge' or 'make all grid lines emanating from this wall orthogonal to it'), users can quickly generate complex grids around complex configurations, while still maintaining a high level of control where desired. An added advantage of the abstraction concept is that once a blocking is defined for a class of configurations, it can be automatically applied to other configurations of the same class, making the new technique particularly well suited for the parametric variations which typically occur during design processes. Grids have been generated for a variety of real-world, two- and three-dimensional configurations. In all cases, the time required to generate the grid, given just an electronic form of the configuration, was at most a few days. Hence with this new technique, the generation of a block-structured grid is only slightly more expensive than the generation of an unstructured grid for the same configuration.
Computer modeling of electromagnetic problems using the geometrical theory of diffraction
NASA Technical Reports Server (NTRS)
Burnside, W. D.
1976-01-01
Some applications of the geometrical theory of diffraction (GTD), a high frequency ray optical solution to electromagnetic problems, are presented. GTD extends geometric optics, which does not take into account the diffractions occurring at edges, vertices, and various other discontinuities. Diffraction solutions, analysis of basic structures, construction of more complex structures, and coupling using GTD are discussed.
NASA Astrophysics Data System (ADS)
Sander, Oliver; Schiela, Anton
2014-12-01
We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.
Douglas, David R [York County, VA
2012-01-10
A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.
NASA Astrophysics Data System (ADS)
Watson, Brett; Yeo, Leslie; Friend, James
2010-06-01
Making use of mechanical resonance has many benefits for the design of microscale devices. A key to successfully incorporating this phenomenon in the design of a device is to understand how the resonant frequencies of interest are affected by changes to the geometric parameters of the design. For simple geometric shapes, this is quite easy, but for complex nonlinear designs, it becomes significantly more complex. In this paper, two novel modeling techniques are demonstrated to extract the axial and torsional resonant frequencies of a complex nonlinear geometry. The first decomposes the complex geometry into easy to model components, while the second uses scaling techniques combined with the finite element method. Both models overcome problems associated with using current analytical methods as design tools, and enable a full investigation of how changes in the geometric parameters affect the resonant frequencies of interest. The benefit of such models is then demonstrated through their use in the design of a prototype piezoelectric ultrasonic resonant micromotor which has improved performance characteristics over previous prototypes.
Observation-Driven Configuration of Complex Software Systems
NASA Astrophysics Data System (ADS)
Sage, Aled
2010-06-01
The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.
Polydopamine-based concentric nanoshells with programmable architectures and plasmonic properties.
Choi, Chun Kit K; Zhuo, Xiaolu; Chiu, Yee Ting Elaine; Yang, Hongrong; Wang, Jianfang; Choi, Chung Hang Jonathan
2017-11-09
Nanoshells, classically comprising gold as the metallic component and silica as the dielectric material, are important for fundamental studies in nanoplasmonics. They also empower a myriad of applications, including sensing, energy harvesting, and cancer therapy. Yet, laborious preparation precludes the development of next-generation nanoshells with structural complexity, compositional diversity, and tailorable plasmonic behaviors. This work presents an efficient approach to the bottom-up assembly of concentric nanoshells. By employing polydopamine as the dielectric material and exploiting its intrinsic adhesiveness and pH-tunable surface charge, the growth of each shell only takes 3-4 hours at room temperature. A series of polydopamine-based concentric nanoshells with programmable nanogap thickness, elemental composition (gold and silver), and geometrical configuration (number of layers) is prepared, followed by extensive structural characterization. Four of the silver-containing nanostructures are newly reported. Systematic investigations into the plasmonic properties of concentric nanoshells as a function of their structural parameters further reveal multiple Fano resonances and local-field "hot spots", infrequently reported plasmonic features for individual nanostructures fabricated using bottom-up wet chemistry. These results establish materials design rules for engineering complex plasmon-based systems originating from the integration of multiple plasmonic elements into defined locations within a compact nanostructure.
The (FHCl)- molecular anion - Structural aspects, global surface, and vibrational eigenspectrum
NASA Technical Reports Server (NTRS)
Klepeis, Neil E.; East, Allan L. L.; Csaszar, Attila G.; Allen, Wesley D.; Lee, Timothy J.; Schwenke, David W.
1993-01-01
State of the art ab initio electronic structure methods have been used to investigate the (FHCl)- molecular anion. It is proposed that the geometric structure and binding energies of the complex are r(e)(H-F) = 0.963 +/- 0.003 A, R(e)(H-Cl) = 1.925 +/- 0.015 A, and D0(HF + Cl(-)) = 21.8 +/- 0.4 kcal/mol. A Morokuma decomposition of the ion-molecular bonding give the following electrostatic, polarization, exchange repulsion, dispersion, and charge-transfer plus higher-order mixing components of the vibrationless complexation energy: -27.3, -5.2, +18.3, -4.5, and -5.0 kcal/mol, respectively. A couples cluster single and doubles global surface is constructed from 208 and 228 energy points for linear and bent configurations, respectively, these being fit to rms errors of only 3.9 and 9.3/cm, respectively, below 8000/cm. Converged J = 0 and J = 1 variational eigenstates of the (FHCl)- surface to near the HF + Cl(-) dissociation threshold are determined. The fundamental vibrational frequencies are found to be nu1 = 247/cm, nu2 = 876/cm, and nu3 = 2884/cm. The complete vibrational eigenspectrum is analyzed.
Flow Simulation of Supersonic Inlet with Bypass Annular Duct
NASA Technical Reports Server (NTRS)
Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.
2011-01-01
A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.
A parametric numerical study of mixing in a cylindrical duct
NASA Astrophysics Data System (ADS)
Oechsle, V. L.; Mongia, H. C.; Holderman, J. D.
1992-07-01
The interaction is described of some of the important parameters affecting the mixing process in a quick mixing region of a rich burn/quick mix/lean burn (RQL) combustor. The performance of the quick mixing region is significantly affected by the geometric designs of both the mixing domain and the jet inlet orifices. Several of the important geometric parameters and operating conditions affecting the mixing process were analytically studied. Parameters such as jet-to-mainstream momentum flux ratio (J), mass flow ratio (MR), orifice geometry, orifice orientation, and number of orifices/row (equally spaced around the circumferential direction were analyzed. Three different sets of orifice shapes were studied: (1) square, (2) elongated slots, and (3) equilateral triangles. Based on the analytical results, the best mixing configuration depends significantly on the penetration depth of the jet to prevent the hot mainstream flow from being entrained behind the orifice. The structure in a circular mixing section is highly weighted toward the outer wall and any mixing structure affecting this area significantly affects the overall results. The increase in the number of orifices per row increases the mixing at higher J conditions. Higher slot slant angles and aspect ratios are generally the best mixing configurations at higher momentum flux ratio (J) conditions. However, the square and triangular shaped orifices were more effective mixing configurations at lower J conditions.
Determination of mechanical properties of excised dog radii from lateral vibration experiments
NASA Technical Reports Server (NTRS)
Thompson, G. A.; Anliker, M.; Young, D. R.
1973-01-01
Experimental data which can be used as a guideline in developing a mathematical model for lateral vibrations of whole bone are reported. The study used wet and dry dog radii mounted in a cantilever configuration. Data are also given on the mechanical, geometric, and viscoelastic properties of bones.
Multiple-bolted joints in wood members : a literature review
Peter James Moss
1997-01-01
This study reviewed the literature on experimental and analytical research for the connection of wood members using multiple laterally loaded bolts. From this, the influence of geometric factors were ascertained, such as staggered and aligned fasteners, optimum fastener configurations, row factors and length-to-diameter bolt ratios, spacing, end and edge distances, and...
Simulation of Fault Tolerance in a Hypercube Arrangement of Discrete Processors.
1987-12-01
Geometric Properties .................... 22 Binary Properties ....................... 26 Intel Hypercube Hardware Arrangement ... 28 IV. Cube-Connected... Properties of the CCC..............35 CCC Redundancy............................... 38 iii 6L V. Re-Configurable Cube-Connected Cycles ....... 40 Global...o........ 74 iv List of Figures Page Figure 1: Hypercubes of Different Dimensions ......... 21 Figure 2: Hypercube Properties
2006-12-01
to perform, but also re- quire substantial amounts of test compound and most rely on selective morphometric analysis (eg, vessel counts, vascular...Several geometric configurations (discoid, spheroid, and so forth) were tested before selecting a cylindrical shape generated by a section of silicone
Decay characteristics of electroadhesive forces by periodic electrodes in dielectric layers
NASA Astrophysics Data System (ADS)
Lee, Junseok; Cha, Youngsu
2017-07-01
Electroadhesive force is the force generated by induced dipoles in the gradient of an electric field. Owing to its benefits of mechanical characteristics and versatility, it is widely used to hold and manipulate objects in robotic applications. So far, most studies in this field have been focused on the maximization of the magnitude of electroadhesive force. In this paper, we focus on the decay characteristics of electroadhesive force depending on the spatial distance from electrodes to employ the force to precisely separate a single layer from stacked dielectric layers. It turns out that all configurations with periodically repeating electrodes' arrangement, have the same decay characteristics which significantly depend on the geometrical period of the electrode patterns. Also, we find that the other parameters including the applied voltage and geometry of electrodes have little effect on the decay characteristics. The electric potential of an arbitrary electrode configuration is expanded in terms of the Fourier series, and we use it to analytically prove the high dependence of decay characteristics on the geometrical period. Numerical analysis is performed using the finite element method.
Effects of Geometric Variations on Lift Augmentation of Simple-plenum-chamber Ground-effect Models
NASA Technical Reports Server (NTRS)
Davenport, Edwin E.
1961-01-01
Considerable interest has been shown during recent years in ground-effect vehicles. Of the various types proposed, the simple-plenum-chamber vehicle has indicated promise because, although the lift augmentation obtainable appears to be less than that of an annular jet, it may be somewhat less complicated structurally. The present investigation was undertaken to study the effects of some geometric variations upon lift augmentation of a simple plenum chamber within ground proximity. The variables included the ratio inlet area to exit area, plenum-chamber depth, and entrance configuration. An optimum plenum-chamber depth appeared to be between 3 and 10 percent of the plenum-chamber diameter with a ratio of inlet diameter to plenum-chamber diameter of 0.15 for the range of plenum-chamber depths investigated. The most important effect of multiple inlets was the elimination of negative lift augmentation, which was experienced with single sharp-edged inlets, at intermediate heights. Installation of a flared inlet and a turning-vane assembly improved lift augmentation of a single-inlet configuration at intermediate heights.
Kinematical line broadening and spatially resolved line profiles from AGN.
NASA Astrophysics Data System (ADS)
Schulz, H.; Muecke, A.; Boer, B.; Dresen, M.; Schmidt-Kaler, T.
1995-03-01
We study geometrical effects for emission-line broadening in the optically thin limit by integrating the projected line emissivity along prespecified lines of sight that intersect rotating or expanding disks or cone-like configurations. Analytical expressions are given for the case that emissivity and velocity follow power laws of the radial distance. The results help to interpret spatially resolved spectra and to check the reliability of numerical computations. In the second part we describe a numerical code applicable to any geometrical configuration. Turbulent motions, atmospheric seeing and effects induced by the size of the observing aperture are simulated with appropriate convolution procedures. An application to narrow-line Hα profiles from the central region of the Seyfert galaxy NGC 7469 is presented. The shapes and asymmetries as well as the relative strengths of the Hα lines from different spatial positions can be explained by emission from a nuclear rotating disk of ionized gas, for which the distribution of Hα line emissivity and the rotation curve are derived. Appreciable turbulent line broadening with a Gaussian σ of ~40% of the rotational velocity has to be included to obtain a satisfactory fit.
Plasmon Geometric Phase and Plasmon Hall Shift
NASA Astrophysics Data System (ADS)
Shi, Li-kun; Song, Justin C. W.
2018-04-01
The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.
Geometric decomposition of the conformation tensor in viscoelastic turbulence
NASA Astrophysics Data System (ADS)
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
NASA Technical Reports Server (NTRS)
Rojas, Roberto G.
1985-01-01
A uniform geometrical theory of diffraction (UTD) solution is developed for the problem of the diffraction by a thin dielectric/ferrite half plane when it is excited by a plane, cylindrical, or surface wave field. Both transverse electric and transverse magnetic cases are considered. The solution of this problem is synthesized from the solutions to the related problems of EM diffraction by configurations involving perfectly conducting electric and magnetic walls covered by a dielectric/ferrite half-plane of one half the thickness of the original half-plane.
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
Electricity generation using electromagnetic radiation
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-08-22
In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.
Geometrical modelling of textile reinforcements
NASA Technical Reports Server (NTRS)
Pastore, Christopher M.; Birger, Alexander B.; Clyburn, Eugene
1995-01-01
The mechanical properties of textile composites are dictated by the arrangement of yarns contained with the material. Thus to develop a comprehensive understanding of the performance of these materials, it is necessary to develop a geometrical model of the fabric structure. This task is quite complex, as the fabric is made form highly flexible yarn systems which experience a certain degree of compressability. Furthermore there are tremendous forces acting on the fabric during densification typically resulting in yarn displacement and misorientation. The objective of this work is to develop a methodology for characterizing the geometry of yarns within a fabric structure including experimental techniques for evaluating these models. Furthermore, some applications of these geometric results to mechanical prediction models are demonstrated. Although more costly than its predecessors, the present analysis is based on the detailed architecture developed by one of the authors and his colleagues and accounts for many of the geometric complexities that other analyses ignore.
Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.
2017-01-01
We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697
Computational analysis of aircraft pressure relief doors
NASA Astrophysics Data System (ADS)
Schott, Tyler
Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft manufacturers with valuable insight into the impact that operating conditions and geometric configurations have on PRD performance and how the information can be used to assist future research and development of PRD design.
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Krueger, Ronald
2001-01-01
Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.
On the Circulation Manifold for Two Adjacent Lifting Sections
NASA Technical Reports Server (NTRS)
Zannetti, Luca; Iollo, Angelo
1998-01-01
The circulation functional relative to two adjacent lifting sections is studied for two cases. In the first case we consider two adjacent circles. The circulation is computed as a function of the displacement of the secondary circle along the axis joining the two centers and of the angle of attack of the secondary circle, The gradient of such functional is computed by deriving a set of elliptic functions with respect both to their argument and to their Period. In the second case studied, we considered a wing-flap configuration. The circulation is computed by some implicit mappings, whose differentials with respect to the variation of the geometrical configuration in the physical space are found by divided differences. Configurations giving rise to local maxima and minima in the circulation manifold are presented.
A new method for recognizing hand configurations of Brazilian gesture language.
Costa Filho, C F F; Dos Santos, B L; de Souza, R S; Dos Santos, J R; Costa, M G F
2016-08-01
This paper describes a new method for recognizing hand configurations of the Brazilian Gesture Language - LIBRAS - using depth maps obtained with a Kinect® camera. The proposed method comprised three phases: hand segmentation, feature extraction, and classification. The segmentation phase is independent from the background and depends only on pixel depth information. Using geometric operations and numerical normalization, the feature extraction process was done independent from rotation and translation. The features are extracted employing two techniques: (2D)2LDA and (2D)2PCA. The classification is made with a novelty classifier. A robust database was constructed for classifier evaluation, with 12,200 images of LIBRAS and 200 gestures of each hand configuration. The best accuracy obtained was 95.41%, which was greater than previous values obtained in the literature.
Hollaus, K; Weiss, B; Magele, Ch; Hutten, H
2004-02-01
The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.
Some basic results on the sets of sequences with geometric calculus
NASA Astrophysics Data System (ADS)
Türkmen, Cengiz; Başar, Feyzi
2012-08-01
As an alternative to the classical calculus, Grossman and Katz [Non-Newtonian Calculus, Lee Press, Pigeon Cove, Massachusetts, 1972] introduced the non-Newtonian calculus consisting of the branches of geometric, anageometric and bigeometric calculus. Following Grossman and Katz, we construct the field C(G) of geometric complex numbers and the concept of geometric metric. Also we give the triangle and Minkowski's inequalities in the sense of geometric calculus. Later we respectively define the sets w(G), ℓ∞(G), c(G), c0(G) and ℓp(G) of all, bounded, convergent, null and p-absolutely summable sequences, in the sense of geometric calculus and show that each of the set forms a complete vector space on the field C(G).
A probabilistic approach to randomness in geometric configuration of scalable origami structures
NASA Astrophysics Data System (ADS)
Liu, Ke; Paulino, Glaucio; Gardoni, Paolo
2015-03-01
Origami, an ancient paper folding art, has inspired many solutions to modern engineering challenges. The demand for actual engineering applications motivates further investigation in this field. Although rooted from the historic art form, many applications of origami are based on newly designed origami patterns to match the specific requirenments of an engineering problem. The application of origami to structural design problems ranges from micro-structure of materials to large scale deployable shells. For instance, some origami-inspired designs have unique properties such as negative Poisson ratio and flat foldability. However, origami structures are typically constrained by strict mathematical geometric relationships, which in reality, can be easily violated, due to, for example, random imperfections introduced during manufacturing, or non-uniform deformations under working conditions (e.g. due to non-uniform thermal effects). Therefore, the effects of uncertainties in origami-like structures need to be studied in further detail in order to provide a practical guide for scalable origami-inspired engineering designs. Through reliability and probabilistic analysis, we investigate the effect of randomness in origami structures on their mechanical properties. Dislocations of vertices of an origami structure have different impacts on different mechanical properties, and different origami designs could have different sensitivities to imperfections. Thus we aim to provide a preliminary understanding of the structural behavior of some common scalable origami structures subject to randomness in their geometric configurations in order to help transition the technology toward practical applications of origami engineering.
NASA Astrophysics Data System (ADS)
Bièvre, Grégory; Oxarango, Laurent; Günther, Thomas; Goutaland, David; Massardi, Michael
2018-06-01
In the framework of earth-filled dykes characterization and monitoring, Electrical Resistivity Tomography (ERT) turns out to be a commonly used method. 2D sections are generally acquired along the dyke crest thus putting forward the question of 3D artefacts in the inversion process. This paper proposes a methodology based on 3D direct numerical simulations of the ERT acquisition using a realistic topography of the study site. It allows computing ad hoc geometrical factors which can be used for the inversion of experimental ERT data. The method is first evaluated on a set of synthetic dyke configurations. Then, it is applied to experimental static and time-lapse ERT data set acquired before and after repair works carried out on a leaking zone of an earth-filled canal dyke in the centre of France. The computed geometric factors are lower than the analytic geometric factors in a range between -8% and - 18% for measurements conducted on the crest of the dyke. They exhibit a maximum under-estimation for intermediate electrode spacings in the Wenner and Schlumberger configurations. In the same way, for measurements conducted on the mid-slope of the dyke, the computed geometric factors are higher for short electrode spacings (+18%) and lower for lower for large electrode spacings (-8%). The 2D inversion of the synthetic data with these computed geometric factors provides a significant improvement of the agreement with the original resistivity. Two experimental profiles conducted on the same portion of the dyke but at different elevations also reveal a better agreement using this methodology. The comparison with apparent resistivity from EM31 profiling along the stretch of the dyke also supports this evidence. In the same way, some spurious effects which affected the time-lapse data were removed and improved the global readability of the time-lapse resistivity sections. The benefit on the structural interpretation of ERT images remains moderate but allows a better delineation of the repair work location. Therefore, and even if the 2D assumption cannot be considered valid in such a context, the proposed methodology could be applied easily to any dyke or strongly 3D-shaped structure using a realistic topographic model. It appears suitable for practical application.
Geometric phase of mixed states for three-level open systems
NASA Astrophysics Data System (ADS)
Jiang, Yanyan; Ji, Y. H.; Xu, Hualan; Hu, Li-Yun; Wang, Z. S.; Chen, Z. Q.; Guo, L. P.
2010-12-01
Geometric phase of mixed state for three-level open system is defined by establishing in connecting density matrix with nonunit vector ray in a three-dimensional complex Hilbert space. Because the geometric phase depends only on the smooth curve on this space, it is formulated entirely in terms of geometric structures. Under the limiting of pure state, our approach is in agreement with the Berry phase, Pantcharatnam phase, and Aharonov and Anandan phase. We find that, furthermore, the Berry phase of mixed state correlated to population inversions of three-level open system.
NASA Astrophysics Data System (ADS)
Haagmans, G. G.; Verhagen, S.; Voûte, R. L.; Verbree, E.
2017-09-01
Since GPS tends to fail for indoor positioning purposes, alternative methods like indoor positioning systems (IPS) based on Bluetooth low energy (BLE) are developing rapidly. Generally, IPS are deployed in environments covered with obstacles such as furniture, walls, people and electronics influencing the signal propagation. The major factor influencing the system performance and to acquire optimal positioning results is the geometry of the beacons. The geometry of the beacons is limited to the available infrastructure that can be deployed (number of beacons, basestations and tags), which leads to the following challenge: Given a limited number of beacons, where should they be placed in a specified indoor environment, such that the geometry contributes to optimal positioning results? This paper aims to propose a statistical model that is able to select the optimal configuration that satisfies the user requirements in terms of precision. The model requires the definition of a chosen 3D space (in our case 7 × 10 × 6 meter), number of beacons, possible user tag locations and a performance threshold (e.g. required precision). For any given set of beacon and receiver locations, the precision, internal- and external reliability can be determined on forehand. As validation, the modeled precision has been compared with observed precision results. The measurements have been performed with an IPS of BlooLoc at a chosen set of user tag locations for a given geometric configuration. Eventually, the model is able to select the optimal geometric configuration out of millions of possible configurations based on a performance threshold (e.g. required precision).
NASA Technical Reports Server (NTRS)
Smith, Ramsey; Reuter, Dennis; Irons, James; Lunsford, Allen; Montanero, Matthew; Tesfaye, Zelalem; Wenny, Brian; Thome, Kurtis
2011-01-01
The preflight calibration testing of TIRS evaluates the performance of the instrument at the component, subsystem and system level, The overall objective is to provide an instrument that is well calibrated and well characterized with specification compliant data that will ensure the data continuity of Landsat from the previous missions to the LDCM, The TIRS flight build unit and the flight instrument were assessed through a series of calibration tests at NASA Goddard Space Flight Center. Instrument-level requirements played a strong role in defining the test equipment and procedures used for the calibration in the thermal/vacuum chamber. The calibration ground support equipment (CGSE), manufactured by MEI and ATK Corporation, was used to measure the optical, radiometric and geometric characteristics of TIRS, The CGSE operates in three test configurations: GeoRad (geometric, radiometric and spatial), flood source and spectral, TIRS was evaluated though the following tests: bright target recovery, radiometry, spectral response, spatial shape, scatter, stray light, focus, and uniformity, Data were obtained for the instrument and various subsystems under conditions simulating those on orbit In the spectral configuration, a monochromator system with a blackbody source is used for in-band and out-of-band relative spectral response characterization, In the flood source configuration the entire focal plane array is illuminated simultaneously to investigate pixel-to-pixel uniformity and dead or inoperable pixels, The remaining tests were executed in the GeoRad configuration and use a NIST calibrated cavity blackbody source, The NIST calibration is transferred to the TIRS sensor and to the blackbody source on-board TIRS, The onboard calibrator will be the primary calibration source for the TIRS sensor on orbit.
Emergent geometric frustration of artificial magnetic skyrmion crystals
Ma, Fusheng; Reichhardt, Charles; Gan, Weiliang; ...
2016-10-05
Magnetic skyrmions have been receiving growing attention as potential information storage and magnetic logic devices since an increasing number of materials have been identified that support skyrmion phases. Explorations of artificial frustrated systems have led to new insights into controlling and engineering new emergent frustration phenomena in frustrated and disordered systems. Here, we propose a skyrmion spin ice, giving a unifying framework for the study of geometric frustration of skyrmion crystals (SCs) in a nonfrustrated artificial geometrical lattice as a consequence of the structural confinement of skyrmions in magnetic potential wells. The emergent ice rules from the geometrically frustrated SCsmore » highlight a novel phenomenon in this skyrmion system: emergent geometrical frustration. We demonstrate how SC topology transitions between a nonfrustrated periodic configuration and a frustrated icelike ordering can also be realized reversibly. The proposed artificial frustrated skyrmion systems can be annealed into different ice phases with an applied current-induced spin-transfer torque, including a long-range ordered ice rule obeying ground state, as-relaxed random state, biased state, and monopole state. In conclusion, the spin-torque reconfigurability of the artificial skyrmion ice states, difficult to achieve in other artificial spin ice systems, is compatible with standard spintronic device fabrication technology, which makes the semiconductor industrial integration straightforward.« less
Emergent geometric frustration of artificial magnetic skyrmion crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Fusheng; Reichhardt, Charles; Gan, Weiliang
Magnetic skyrmions have been receiving growing attention as potential information storage and magnetic logic devices since an increasing number of materials have been identified that support skyrmion phases. Explorations of artificial frustrated systems have led to new insights into controlling and engineering new emergent frustration phenomena in frustrated and disordered systems. Here, we propose a skyrmion spin ice, giving a unifying framework for the study of geometric frustration of skyrmion crystals (SCs) in a nonfrustrated artificial geometrical lattice as a consequence of the structural confinement of skyrmions in magnetic potential wells. The emergent ice rules from the geometrically frustrated SCsmore » highlight a novel phenomenon in this skyrmion system: emergent geometrical frustration. We demonstrate how SC topology transitions between a nonfrustrated periodic configuration and a frustrated icelike ordering can also be realized reversibly. The proposed artificial frustrated skyrmion systems can be annealed into different ice phases with an applied current-induced spin-transfer torque, including a long-range ordered ice rule obeying ground state, as-relaxed random state, biased state, and monopole state. In conclusion, the spin-torque reconfigurability of the artificial skyrmion ice states, difficult to achieve in other artificial spin ice systems, is compatible with standard spintronic device fabrication technology, which makes the semiconductor industrial integration straightforward.« less
Multiscale unfolding of real networks by geometric renormalization
NASA Astrophysics Data System (ADS)
García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles
2018-06-01
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, H.W.; Clarke, J.T.; Spence, M.W.
1982-12-01
The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; deltamore » 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue.« less
Equilibrium shapes of drops on membranes
NASA Astrophysics Data System (ADS)
Sharma, Ishan; Nair, Vineet; Shankar, Viswanathan
2017-11-01
Equilibrium shapes for axisymmetric sessile and pendant drops placed on / attached to geometrically nonlinear elastic membranes, in horizontal as well as inclined configurations, are obtained. The effective contact angle of the drop with the membrane, its contact radius, the maximum membrane displacement, and the volume of the drop is investigated for various values of Bond Number and membrane tension.
Mathematical Modelling with Technology: The Role of Dynamic Representations
ERIC Educational Resources Information Center
Arzarello, Ferdinando; Ferrara, Francesca; Robutti, Ornella
2012-01-01
In this research we present the use of some technologies in problem solving activities (at different secondary school grades), aimed at finding a model for a geometric configuration, and representing this model in various ways: through a construction, through a Cartesian graph, etc. The task is part of a teaching experiment, in which students used…
ERIC Educational Resources Information Center
Keresztenyi, Zoltan; Cesari, Paola; Fazekas, Gabor; Laczko, Jozsef
2009-01-01
Variances of drawing arm movements between patients with Parkinson's disease and healthy controls were compared. The aim was to determine whether differences in joint synergies or individual joint rotations affect the endpoint (hand position) variance. Joint and endpoint coordinates were measured while participants performed drawing tasks.…
A review on fracture prevention of stent in femoropopliteal artery
NASA Astrophysics Data System (ADS)
Atan, Bainun Akmal Mohd; Ismail, Al Emran; Taib, Ishkrizat; Lazim, Zulfaqih
2017-01-01
Heavily calcific lesions, total occlusions, tortuous blood vessels, variable lengths of arteries, various dynamic loads and deformations in the femoropopliteal (FP) arterial segment make stenosis treatments are complicated. The dynamic forces in FP artery including bending, torsion and radial compression may lead to stent fracture (SF) and eventually to in-stent restenosis (ISR). Stent design specifically geometrical configurations are a major factor need to be improved to optimize stent expansion and flexibility both bending and torsion during stent deployment into the diseased FP artery. Previous studies discovered the influence of various stent geometrical designs resulted different structural behaviour. Optimizing stent design can improve stent performances: flexibility and radial strength to prevent SF in FP arterial segment
NASA Technical Reports Server (NTRS)
Couch, L. M.
1975-01-01
An investigation was conducted at Mach 1.80 in the Langley 4-foot supersonic pressure tunnel to determine the effects of variation in reefing ratio and geometric porosity on the drag and stability characteristics of four basic canopy types deployed in the wake of a cone-cylinder forebody. The basic designs included cross, hemisflo, disk-gap-band, and extended-skirt canopies; however, modular cross and standard flat canopies and a ballute were also investigated. An empirical correlation was determined which provides a fair estimation of the drag coefficients in transonic and supersonic flow for parachutes of specified geometric porosity and reefing ratio.
Studies on vibration characteristics of a pear using finite element method*
Song, Hui-zhi; Wang, Jun; Li, Yong-hui
2006-01-01
The variation of the vibration characteristics of a Huanghua pear was investigated using finite element simulations. A new image processing technique was used to obtain the unsymmetrical and un-spherical geometrical model of a pear. The vibration characteristics of this type of pear with the correlation of its behavior with geometrical configurations and material characteristics were investigated using numerical modal analysis. The results showed that the eigenfrequency increased with the increasing pear Young’s modulus, while decreased with increasing pear density, and decreased with increasing pear volume. The results of this study provided foundation for further investigations of the physical characteristics of fruits and vegetables by using finite element simulations. PMID:16691644
T-duality, non-geometry and Lie algebroids in heterotic double field theory
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Sun, Rui
2015-02-01
A number of issues in heterotic double field theory are studied. This includes the analysis of the T-dual configurations of a flat constant gauge flux background, which turn out to be non-geometric. Performing a field redefinition to a non-geometric frame, these T-duals take a very simple form reminiscent of the constant Q- and R-flux backgrounds. In addition, it is shown how the analysis of arXiv:1304.2784 generalizes to heterotic generalized geometry. For every field redefinition specified by an O( D, D + n) transformation, the structure of the resulting supergravity action is governed by the differential geometry of a corresponding Lie algebroid.
Computer studies of baroclinic flow. [Atmospheric General Circulation Experiment
NASA Technical Reports Server (NTRS)
Gall, R.
1985-01-01
Programs necessary for computing the transition curve on the regime diagram for the atmospheric general circulation experiment (AGOE) were completed and used to determine the regime diagram for the rotating annulus and some axisymmetric flows for one possible AGOE configuration. The effect of geometrical constraints on the size of eddies developing from a basic state is being examined. In AGOE, the geometric constraint should be the width of the shear zone or the baroclinic zone. Linear and nonlinear models are to be used to examine both barotropic and baroclinic flows. The results should help explain the scale selection mechanism of baroclinic eddies in the atmosphere experimental models such as AGOE, and the multiple vortex phenomenon in tornadoes.
NASA Astrophysics Data System (ADS)
Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.; Barreto, Rodrigo L. P.; Palazzetti, Federico; Albernaz, Alessandra F.; Lombardi, Andrea; Maciel, Glauciete S.; Aquilanti, Vincenzo
2017-07-01
The spherical-harmonics expansion is a mathematically rigorous procedure and a powerful tool for the representation of potential energy surfaces of interacting molecular systems, determining their spectroscopic and dynamical properties, specifically in van der Waals clusters, with applications also to classical and quantum molecular dynamics simulations. The technique consists in the construction (by ab initio or semiempirical methods) of the expanded potential interaction up to terms that provide the generation of a number of leading configurations sufficient to account for faithful geometrical representations. This paper reports the full general description of the method of the spherical-harmonics expansion as applied to diatomic-molecule - diatomic-molecule systems of increasing complexity: the presentation of the mathematical background is given for providing both the application to the prototypical cases considered previously (O2sbnd O2, N2sbnd N2, and N2sbnd O2 systems) and the generalization to: (i) the COsbnd CO system, where a characteristic feature is the lower symmetry order with respect to the cases studied before, requiring a larger number of expansion terms necessary to adequately represent the potential energy surface; and (ii) the COsbnd HF system, which exhibits the lowest order of symmetry among this class of aggregates and therefore the highest number of leading configurations.
Seeing mathematics: perceptual experience and brain activity in acquired synesthesia.
Brogaard, Berit; Vanni, Simo; Silvanto, Juha
2013-01-01
We studied the patient JP who has exceptional abilities to draw complex geometrical images by hand and a form of acquired synesthesia for mathematical formulas and objects, which he perceives as geometrical figures. JP sees all smooth curvatures as discrete lines, similarly regardless of scale. We carried out two preliminary investigations to establish the perceptual nature of synesthetic experience and to investigate the neural basis of this phenomenon. In a functional magnetic resonance imaging (fMRI) study, image-inducing formulas produced larger fMRI responses than non-image inducing formulas in the left temporal, parietal and frontal lobes. Thus our main finding is that the activation associated with his experience of complex geometrical images emerging from mathematical formulas is restricted to the left hemisphere.
Practical Implementation of Semi-Automated As-Built Bim Creation for Complex Indoor Environments
NASA Astrophysics Data System (ADS)
Yoon, S.; Jung, J.; Heo, J.
2015-05-01
In recent days, for efficient management and operation of existing buildings, the importance of as-built BIM is emphasized in AEC/FM domain. However, fully automated as-built BIM creation is a tough issue since newly-constructed buildings are becoming more complex. To manage this problem, our research group has developed a semi-automated approach, focusing on productive 3D as-built BIM creation for complex indoor environments. In order to test its feasibility for a variety of complex indoor environments, we applied the developed approach to model the `Charlotte stairs' in Lotte World Mall, Korea. The approach includes 4 main phases: data acquisition, data pre-processing, geometric drawing, and as-built BIM creation. In the data acquisition phase, due to its complex structure, we moved the scanner location several times to obtain the entire point clouds of the test site. After which, data pre-processing phase entailing point-cloud registration, noise removal, and coordinate transformation was followed. The 3D geometric drawing was created using the RANSAC-based plane detection and boundary tracing methods. Finally, in order to create a semantically-rich BIM, the geometric drawing was imported into the commercial BIM software. The final as-built BIM confirmed that the feasibility of the proposed approach in the complex indoor environment.
NASA Astrophysics Data System (ADS)
Li, Jun; Zhang, Song Bin; Ye, Bang Jiao; Wang, Jian Guo; Janev, R. K.
2017-09-01
Low-energy electron elastic scattering and impact ionization with hydrogenlike helium in Debye plasmas have been investigated by employing the exterior complex scaling method. The interactions between charged particles in the plasmas have been represented by Debye-Hückel potentials. The 1 s -1 s elastic collision strengths below the n =2 excitation threshold of He+ dominated by resonance structures are calculated for different screening lengths. As the screening strength increases, the resonance peaks studied [2(1,0) 2 +1Se,3Po,1De , and 2(0,1) 2 +1Po] exhibit blueshifts and then redshifts with a further increase of the screening strength, which results in dramatic changes of the collision strengths. It is found that these dynamic variation features of the resonances are related to the changes of energy levels of He+ in the screened potential and geometric configurations of resonances. Triple-differential-ionization cross sections in coplanar geometries at 6-Ry incident electron energy are also reported, significant changes are observed with varying screening length.
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1979-01-01
The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.
Calibration under uncertainty for finite element models of masonry monuments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin
2010-02-01
Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, andmore » there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.« less
Comelli, M; Benes, M; Bampo, A; Villalta, R
2007-01-01
The Regional Environment Protection Agency of Friuli Venezia Giulia (ARPA FVG, Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency's requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Phidel, an innovative software, tackles and works out all the above-mentioned problems. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in the GIS and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 muT bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003.
Radiofrequency-sputtered coatings for lubrication system components and other complex surfaces
NASA Technical Reports Server (NTRS)
Spalvins, T.
1972-01-01
Irregularly shaped surfaces, such as lubrication system components (ball bearings, seals, gears, etc.), can be coated on all surfaces, including irregular shapes, when radiofrequency sputtering is used. When the specimen is properly located with respect to the sputtering target, the sputtered material covers the entire surface of the object irrespective of its geometrical configuration. An adherent, dense film is formed. The film thickness varies from 20 to 50 percent on, for example, a hearing cage or race depending on its geometry. When sputtered solid film lubricants such as molybdenum disulfide are used, a film thickness only of the order of 10 to the minus 7th power m (thousands of angstroms) is required at the contacting areas. It is only essential to determine the required film thickness at the critical areas in need of lubrication. The sections outside the areas to be lubricated fall within the thickness deviation range of 20 to 50 percent, which still constitutes a negligible change respect to tolerance requirements.
Additive-manufactured sandwich lattice structures: A numerical and experimental investigation
NASA Astrophysics Data System (ADS)
Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut
2017-10-01
The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.
García-Isla, Guadalupe; Olivares, Andy Luis; Silva, Etelvino; Nuñez-Garcia, Marta; Butakoff, Constantine; Sanchez-Quintana, Damian; G Morales, Hernán; Freixa, Xavier; Noailly, Jérôme; De Potter, Tom; Camara, Oscar
2018-05-08
The left atrial appendage (LAA) is a complex and heterogeneous protruding structure of the left atrium (LA). In atrial fibrillation patients, it is the location where 90% of the thrombi are formed. However, the role of the LAA in thrombus formation is not fully known yet. The main goal of this work is to perform a sensitivity analysis to identify the most relevant LA and LAA morphological parameters in atrial blood flow dynamics. Simulations were run on synthetic ellipsoidal left atria models where different parameters were individually studied: pulmonary veins and mitral valve dimensions; LAA shape; and LA volume. Our computational analysis confirmed the relation between large LAA ostia, low blood flow velocities and thrombus formation. Additionally, we found that pulmonary vein configuration exerted a critical influence on LAA blood flow patterns. These findings contribute to a better understanding of the LAA and to support clinical decisions for atrial fibrillation patients. Copyright © 2018 John Wiley & Sons, Ltd.
Numerical studies of the fluid and optical fields associated with complex cavity flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1992-01-01
Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.
Field emission characteristics of a small number of carbon fiber emitters
NASA Astrophysics Data System (ADS)
Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim
2016-09-01
This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.
Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.
Deurloo, K E; Holsheimer, J; Boom, H B
1998-01-01
Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of fibres. As well as the usual configurations (monopole, bipole, longitudinal tripole, 'steering' anode), a transverse tripolar configuration (central cathode) is examined. It is found that the transverse tripole is the only configuration giving convex recruitment contours and therefore maximises activation selectivity for a small (cylindrical) bundle of fibres in the periphery of a monofascicular nerve trunk. As the electrode configuration is changed to achieve greater selectivity, the threshold current increases. Therefore threshold currents for fibre excitation with a transverse tripole are relatively high. Inverse recruitment is less extreme than for the other configurations. The influences of several geometrical parameters and model conductivities of the transverse tripole on selectivity and threshold current are analysed. In chronic implantation, when electrodes are encapsulated by a layer of fibrous tissue, threshold currents are low, whereas the shape of the recruitment contours in transverse tripolar stimulation does not change.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Analysis and design of the Multimission Modular Spacecraft hydrazine propulsion module
NASA Technical Reports Server (NTRS)
Etheridge, F. G.; Woodruff, W. L.
1978-01-01
The translational velocity increment, stabilization and control requirements, vehicle weight, and geometric considerations of the Multimission Modular Spacecraft (MMS) provided the basic data on which to initiate the analysis and design of the hydrazine propulsion modules. The Landsat D was used as the mission model. Tradeoff studies were conducted on thrust level, thruster location, and clustering arrangement together with tankage volume and location. The impact of the use of single and dual seat thruster valves on plumbing configuration, reliability, and overall system cost was studied in detail. Conceptual designs of a recommended propulsion module configuration for both the Delta 3910 and Shuttle were prepared.
Reconfigurable and writable magnetic charge crystals
Wang, Yong-Lei; Xiao, Zhi-Li; Kwok, Wai-Kwong
2017-07-18
Artificial ices enable the study of geometrical frustration by design and through direct observation. It has, however, proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. An artificial spin structure design is described that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. A technique is also developed to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multi-functionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice provides a setting for designing magnetic monopole defects, tailoring magnetics and controlling the properties of other two-dimensional materials.
Predicting propagation limits of laser-supported detonation by Hugoniot analysis
NASA Astrophysics Data System (ADS)
Shimamura, Kohei; Ofosu, Joseph A.; Komurasaki, Kimiya; Koizumi, Hiroyuki
2015-01-01
Termination conditions of a laser-supported detonation (LSD) wave were investigated using control volume analysis with a Shimada-Hugoniot curve and a Rayleigh line. Because the geometric configurations strongly affect the termination condition, a rectangular tube was used to create the quasi-one-dimensional configuration. The LSD wave propagation velocity and the pressure behind LSD were measured. Results reveal that the detonation states during detonation and at the propagation limit are overdriven detonation and Chapman-Jouguet detonation, respectively. The termination condition is the minimum velocity criterion for the possible detonation solution. Results were verified using pressure measurements of the stagnation pressure behind the LSD wave.
Rewritable artificial magnetic charge ice
Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; ...
2016-05-20
Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. Here, we designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the propertiesmore » of other two-dimensional materials.« less
Metrics on the relative spacecraft motion invariant manifold.
Gurfil, P; Kholshevnikov, Konstantin V
2005-12-01
This paper establishes a methodology for obtaining the general solution to the spacecraft relative motion problem by utilizing Cartesian configuration space in conjunction with classical orbital elements. The geometry of the relative motion configuration space is analyzed, and the relative motion invariant manifold is determined. Most importantly, the geometric structure of the relative motion problem is used to derive useful metrics for quantification of the minimum, maximum, and mean distance between spacecraft for commensurable and non-commensurable mean motions. A number of analytic solutions, as well as useful examples, are provided, illustrating the calculated bounds. A few particular cases are given that yield simple solutions.
Rewritable artificial magnetic charge ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey
Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. Here, we designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the propertiesmore » of other two-dimensional materials.« less
NASA Astrophysics Data System (ADS)
Lai, William
Inspired by nature, the development of soft actuators has drawn large attention to provide higher flexibility and allow adaptation to more complex environment. This thesis is focused on utilizing electroactive polymers as active materials to develop soft planar dielectric elastomer actuators capable of complex 3D deformation. The potential applications of such soft actuators are in flexible robotic arms and grippers, morphing structures and flapping wings for micro aerial vehicles. The embraces design for a freestanding actuator utilizes the constrained deformation imposed by surface stiffeners on an electroactive membrane to avert the requirement of membrane pre-stretch and the supporting frames. The proposed design increases the overall actuator flexibility and degrees-of-freedom. Actuator design, fabrication, and performance are presented for different arrangement of stiffeners. Digital images correlation technique were utilized to evaluate the in-plane finite strain components, in order to elucidate the role of the stiffeners in controlling the three dimensional deformation. It was found that a key controlling factor was the localized deformation near the stiffeners, while the rest of the membrane would follow through. A detailed finite element modeling framework was developed with a user-material subroutine, built into the ABAQUS commercial finite element package. An experimentally calibrated Neo-Hookean based material model that coupled the applied electrical field to the actuator mechanical deformation was employed. The numerical model was used to optimize different geometrical features, electrode layup and stacking sequence of actuators. It was found that by splitting the stiffeners into finer segments, the force-stroke characteristics of actuator were able to be adjusted with stiffener configuration, while keeping the overall bending stiffness. The efficacy of actuators could also be greatly improved by increasing the stiffener periodicity. The developed framework would aid in designing and optimizing the dielectric elastomer actuator configurations for 3D prescribed deformation configuration. Finally, inspired by the membrane textures of bat wings, a study of utilizing fiber reinforcement on dielectric elastomer actuators were conducted for the mechanical and the coupled electromechanical characteristics. Woven fibers were employed on the surface of actuator membrane with different pre-deformed configurations. Experimentally, actuator stiffness changes were measured for up to four orders of magnitude. The orientation of embedded fibers controlled the level and the triggered phase of stiffness changes. A trade-off between the actuator stiffness and stroke could be controlled during the fabrication stage by the fiber orientation and the prestretch level of the base elastomer membrane. A simplified model using small-strain composite laminate theory was developed and accurately predicted the composite actuator stiffness. Additionally, compliant edge stiffeners were found had to present a marked overall effect on actuator electromechanical response. The developed simplified analytical solutions using Timoshenko-bimaterial laminate solution and composite laminate theory, as well as the developed finite element framework can be utilized in addressing more complex 3D deformation patterns and their electromechanical response.
The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, S. R.; Wilson, P. P. H.; Pawlowski, R. P.
2013-07-01
The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed in a parallel simulation. By repartitioning both domains such that they have the same geometric domain on each parallel process, efficient and load balanced search operations and data transfer can be performed at a desirable algorithmic time complexity with low communication overhead relative to other types of mapping algorithms. With the increased development efforts in multiphysicsmore » simulation and other multiple mesh and geometry problems, generating parallel topology maps for transferring fields and other data between geometric domains is a common operation. The algorithms used to generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK are described with an example using a conjugate heat transfer calculation and thermal coupling with a neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of algorithmic complexity that shows good scaling on 0(1 x 104) cores for topology map generation and excellent scaling on 0(1 x 105) cores for the data transfer operation with meshes of O(1 x 109) elements. (authors)« less
Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen
2018-04-05
Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen
Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less
Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods
NASA Astrophysics Data System (ADS)
Tezduyar, Tayfun E.; Sathe, Sunil; Pausewang, Jason; Schwaab, Matthew; Christopher, Jason; Crabtree, Jason
2008-12-01
The stabilized space-time fluid-structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T★AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid-structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air-fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian-Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air-fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air-fabric interactions of windsocks, sails and ringsail parachutes.
Wind Tunnel Evaluation of a Model Helicopter Main-Rotor Blade With Slotted Airfoils at the Tip
NASA Technical Reports Server (NTRS)
Noonan, Kevin W.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.
2001-01-01
Data for rotors using unconventional airfoils are of interest to permit an evaluation of this technology's capability to meet the U.S. Army's need for increased helicopter mission effectiveness and improved safety and survivability. Thus, an experimental investigation was conducted in the Langley Transonic Dynamics Tunnel (TDT) to evaluate the effect of using slotted airfoils in the rotor blade tip region (85 to 100 percent radius) on rotor aerodynamic performance and loads. Four rotor configurations were tested in forward flight at advance ratios from 0.15 to 0.45 and in hover in-ground effect. The hover tip Mach number was 0.627, which is representative of a design point of 4000-ft geometric altitude and a temperature of 95 F. The baseline rotor configuration had a conventional single-element airfoil in the tip region. A second rotor configuration had a forward-slotted airfoil with a -6 deg slat, a third configuration had a forward-slotted airfoil with a -10 slat, and a fourth configuration had an aft-slotted airfoil with a 3 deg flap (trailing edge down). The results of this investigation indicate that the -6 deg slat configuration offers some performance and loads benefits over the other three configurations.
The joined wing - An overview. [aircraft tandem wings in diamond configurations
NASA Technical Reports Server (NTRS)
Wolkovitch, J.
1985-01-01
The joined wing is a new type of aircraft configuration which employs tandem wings arranged to form diamond shapes in plan view and front view. Wind-tunnel tests and finite-element structural analyses have shown that the joined wing provides the following advantages over a comparable wing-plus-tail system; lighter weight and higher stiffness, higher span-efficiency factor, higher trimmed maximum lift coefficient, lower wave drag, plus built-in direct lift and direct sideforce control capability. A summary is given of research performed on the joined wing. Calculated joined wing weights are correlated with geometric parameters to provide simple weight estimation methods. The results of low-speed and transonic wind-tunnel tests are summarized, and guidelines for design of joined-wing aircraft are given. Some example joined-wing designs are presented and related configurations having connected wings are reviewed.
NASA Astrophysics Data System (ADS)
Kozlov, Alexander; Nikulin, Alexei
2017-01-01
The reliability and accuracy of GPS attitude determination are still the main relevant theoretical questions in this particular field of study. While the first one derives from the probabilistic nature of phase ambiguity resolution algorithms, outlier measurement detection and effectiveness of multipath reduction, the second is additionally affected by geometric properties of the GNSS antenna configuration. Being trivial in two-antenna system, the relation between GPS attitude determination accuracy and antenna spatial layout becomes much less intuitive for multi-antenna configurations, and seems to have been examined analytically in some specific cases only. For example, most of research papers in the field use Euler angles as attitude representation, which have singularity in some cases, and consider the number of antennas of not more than four. We present some further investigation in this area.
Aerodynamic static stability and control effectiveness of a parametric shuttle launch configuration
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1972-01-01
Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel on a 0.004-scale model of the NR ATP baseline Shuttle launch configuration. The test model consisted of the NR ATP baseline orbiter, external tank, and SRB's with nozzles. Six component aerodynamic force and moment data were recorded over an angle of attack range from minus 10 deg to 10 deg at zero degrees sideslip and angle of sideslip range of minus 10 deg to 10 deg at zero angle of attack for a Mach range of 0.6 to 4.96. Rudder flare was constant at 10 deg during the entire test. The purpose of the test was to define the performance, stability, and control characteristics of the launch configuration as well as to investigate the buildup effect of two geometrical parameters.
Statistical properties of a folded elastic rod
NASA Astrophysics Data System (ADS)
Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar
2010-03-01
A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
conditions. 15. SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...associated Laplacian. We use the general theory for approximation of Hilbert complexes and the finite element exterior calculus and introduce some stable mixed
Pragmatic geometric model evaluation
NASA Astrophysics Data System (ADS)
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to calculate basically two model variations that can be seen as geometric extremes of all available input data. This does not lead to a probability distribution for the spatial position of geometric elements but it defines zones of major (or minor resp.) geometric variations due to data uncertainty. Both model evaluations are then analyzed together to give ranges of possible model outcomes in metric units.
NASA Astrophysics Data System (ADS)
Rotenberg, David J.
Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.
A sophisticated cad tool for the creation of complex models for electromagnetic interaction analysis
NASA Astrophysics Data System (ADS)
Dion, Marc; Kashyap, Satish; Louie, Aloisius
1991-06-01
This report describes the essential features of the MS-DOS version of DIDEC-DREO, an interactive program for creating wire grid, surface patch, and cell models of complex structures for electromagnetic interaction analysis. It uses the device-independent graphics library DIGRAF and the graphics kernel system HALO, and can be executed on systems with various graphics devices. Complicated structures can be created by direct alphanumeric keyboard entry, digitization of blueprints, conversion form existing geometric structure files, and merging of simple geometric shapes. A completed DIDEC geometric file may then be converted to the format required for input to a variety of time domain and frequency domain electromagnetic interaction codes. This report gives a detailed description of the program DIDEC-DREO, its installation, and its theoretical background. Each available interactive command is described. The associated program HEDRON which generates simple geometric shapes, and other programs that extract the current amplitude data from electromagnetic interaction code outputs, are also discussed.
ACTOMP - AUTOCAD TO MASS PROPERTIES
NASA Technical Reports Server (NTRS)
Jones, A.
1994-01-01
AutoCAD to Mass Properties was developed to facilitate quick mass properties calculations of structures having many simple elements in a complex configuration such as trusses or metal sheet containers. Calculating the mass properties of structures of this type can be a tedious and repetitive process, but ACTOMP helps automate the calculations. The structure can be modelled in AutoCAD or a compatible CAD system in a matter of minutes using the 3-Dimensional elements. This model provides all the geometric data necessary to make a mass properties calculation of the structure. ACTOMP reads the geometric data of a drawing from the Drawing Interchange File (DXF) used in AutoCAD. The geometric entities recognized by ACTOMP include POINTs, 3DLINEs, and 3DFACEs. ACTOMP requests mass, linear density, or area density of the elements for each layer, sums all the elements and calculates the total mass, center of mass (CM) and the mass moments of inertia (MOI). AutoCAD utilizes layers to define separate drawing planes. ACTOMP uses layers to differentiate between multiple types of similar elements. For example if a structure is made of various types of beams, modeled as 3DLINEs, each with a different linear density, the beams can be grouped by linear density and each group placed on a separate layer. The program will request the linear density of 3DLINEs for each new layer it finds as it processes the drawing information. The same is true with POINTs and 3DFACEs. By using layers this way a very complex model can be created. POINTs are used for point masses such as bolts, small machine parts, or small electronic boxes. 3DLINEs are used for beams, bars, rods, cables, and other similarly slender elements. 3DFACEs are used for planar elements. 3DFACEs may be created as 3 or 4 Point faces. Some examples of elements that might be modelled using 3DFACEs are plates, sheet metal, fabric, boxes, large diameter hollow cylinders and evenly distributed masses. ACTOMP was written in Microsoft QuickBasic (Version 2.0). It was developed for the IBM PC microcomputer and has been implemented on an IBM PC compatible under DOS 3.21. ACTOMP was developed in 1988 and requires approximately 5K bytes to operate.
Configuration complexity assessment of convergent supply chain systems
NASA Astrophysics Data System (ADS)
Modrak, Vladimir; Marton, David
2014-07-01
System designers usually generate alternative configurations of supply chains (SCs) by varying especially fixed assets to satisfy a desired production scope and rate. Such alternatives often vary in associated costs and other facets including degrees of complexity. Hence, a measure of configuration complexity can be a tool for comparison and decision-making. This paper presents three approaches to assessment of configuration complexity and their applications to designing convergent SC systems. Presented approaches are conceptually distinct ways of measuring structural complexity parameters based on different preconditions and circumstances of assembly systems which are typical representatives of convergent SCs. There are applied two similar approaches based on different preconditions that are related to demand shares. Third approach does not consider any special condition relating to character of final product demand. Subsequently, we propose a framework for modeling of assembly SC models, which are dividing to classes.
Polarization ellipse and Stokes parameters in geometric algebra.
Santos, Adler G; Sugon, Quirino M; McNamara, Daniel J
2012-01-01
In this paper, we use geometric algebra to describe the polarization ellipse and Stokes parameters. We show that a solution to Maxwell's equation is a product of a complex basis vector in Jackson and a linear combination of plane wave functions. We convert both the amplitudes and the wave function arguments from complex scalars to complex vectors. This conversion allows us to separate the electric field vector and the imaginary magnetic field vector, because exponentials of imaginary scalars convert vectors to imaginary vectors and vice versa, while exponentials of imaginary vectors only rotate the vector or imaginary vector they are multiplied to. We convert this expression for polarized light into two other representations: the Cartesian representation and the rotated ellipse representation. We compute the conversion relations among the representation parameters and their corresponding Stokes parameters. And finally, we propose a set of geometric relations between the electric and magnetic fields that satisfy an equation similar to the Poincaré sphere equation.
Geometrical families of mechanically stable granular packings
NASA Astrophysics Data System (ADS)
Gao, Guo-Jie; Blawzdziewicz, Jerzy; O'Hern, Corey S.
2009-12-01
We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles (N<16) , we find that the dynamics is deterministic and highly contracting. That is, if the system is initialized in a MS packing at a given shear strain, it will quickly lock into a periodic orbit at subsequent shear strain, and therefore sample only a very small fraction of the possible MS packings in steady state. In studies with N>16 , we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady state. This work is part of our long-term research program to develop a master-equation formalism to describe macroscopic slowly driven granular systems in terms of collections of small subsystems.
Computer-aided diagnosis of mammographic masses using geometric verification-based image retrieval
NASA Astrophysics Data System (ADS)
Li, Qingliang; Shi, Weili; Yang, Huamin; Zhang, Huimao; Li, Guoxin; Chen, Tao; Mori, Kensaku; Jiang, Zhengang
2017-03-01
Computer-Aided Diagnosis of masses in mammograms is an important indicator of breast cancer. The use of retrieval systems in breast examination is increasing gradually. In this respect, the method of exploiting the vocabulary tree framework and the inverted file in the mammographic masse retrieval have been proved high accuracy and excellent scalability. However it just considered the features in each image as a visual word and had ignored the spatial configurations of features. It greatly affect the retrieval performance. To overcome this drawback, we introduce the geometric verification method to retrieval in mammographic masses. First of all, we obtain corresponding match features based on the vocabulary tree framework and the inverted file. After that, we grasps the main point of local similarity characteristic of deformations in the local regions by constructing the circle regions of corresponding pairs. Meanwhile we segment the circle to express the geometric relationship of local matches in the area and generate the spatial encoding strictly. Finally we judge whether the matched features are correct or not, based on verifying the all spatial encoding are whether satisfied the geometric consistency. Experiments show the promising results of our approach.
Interactions of waves on electron streams or plasmas are studied for several geometric configurations of finite cross section in a finite magnetic...velocity parallel to the magnetic field. It is further assumed that either macroscopic neutrality exists or static spacecharge forces are negligible. For...the most part the quasi-static analysis is used. For the case of two drifting streams cyclotron waves act to giveinstabilities which are either
Geometry modeling and grid generation using 3D NURBS control volume
NASA Technical Reports Server (NTRS)
Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin
1995-01-01
The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.
Reduced Dynamics of the Non-holonomic Whipple Bicycle
NASA Astrophysics Data System (ADS)
Boyer, Frédéric; Porez, Mathieu; Mauny, Johan
2018-06-01
Though the bicycle is a familiar object of everyday life, modeling its full nonlinear three-dimensional dynamics in a closed symbolic form is a difficult issue for classical mechanics. In this article, we address this issue without resorting to the usual simplifications on the bicycle kinematics nor its dynamics. To derive this model, we use a general reduction-based approach in the principal fiber bundle of configurations of the three-dimensional bicycle. This includes a geometrically exact model of the contacts between the wheels and the ground, the explicit calculation of the kernel of constraints, along with the dynamics of the system free of any external forces, and its projection onto the kernel of admissible velocities. The approach takes benefits of the intrinsic formulation of geometric mechanics. Along the path toward the final equations, we show that the exact model of the bicycle dynamics requires to cope with a set of non-symmetric constraints with respect to the structural group of its configuration fiber bundle. The final reduced dynamics are simulated on several examples representative of the bicycle. As expected the constraints imposed by the ground contacts, as well as the energy conservation, are satisfied, while the dynamics can be numerically integrated in real time.
Roadway Marking Optics for Autonomous Vehicle Guidance and Other Machine Vision Applications
NASA Astrophysics Data System (ADS)
Konopka, Anthony T.
This work determines optimal planar geometric light source and optical imager configurations and electromagnetic wavelengths for maximizing the reflected signal intensity when using machine vision technology to image roadway markings with embedded spherical glass beads. It is found through a first set of experiments that roadway marking samples exhibiting little or no bead rolling effects are uniformly reflective with respect to the azimuthal angle of observation when measured for retroreflectivity within industry standard 30-meter geometry. A second set of experiments indicate that white roadway markings exhibit higher reflectivity throughout the visible spectrum than yellow roadway markings. A roadway marking optical model capable of being used to determine optimal geometric light source and optical imager configurations for maximizing the reflected signal intensities of roadway marking targets is constructed and simulated using optical engineering software. It is found through a third set of experiments that high signal intensities can be measured when the polar angles of the light source and optical imager along a plane normal to a roadway marking are equal, with the maximum signal intensity being measured when the polar angles of both the light source and optical imager are 90°.
Scaling the Non-linear Impact Response of Flat and Curved Composite Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Chunchu, Prasad B.; Rose, Cheryl A.; Feraboli, Paolo; Jackson, Wade C.
2005-01-01
The application of scaling laws to thin flat and curved composite panels exhibiting nonlinear response when subjected to low-velocity transverse impact is investigated. Previous research has shown that the elastic impact response of structural configurations exhibiting geometrically linear response can be effectively scaled. In the present paper, a preliminary experimental study is presented to assess the applicability of the scaling laws to structural configurations exhibiting geometrically nonlinear deformations. The effect of damage on the scalability of the structural response characteristics, and the effect of scale on damage development are also investigated. Damage is evaluated using conventional methods including C-scan, specimen de-plying and visual inspection of the impacted panels. Coefficient of restitution and normalized contact duration are also used to assess the extent of damage. The results confirm the validity of the scaling parameters for elastic impacts. However, for the panels considered in the study, the extent and manifestation of damage do not scale according to the scaling laws. Furthermore, the results indicate that even though the damage does not scale, the overall panel response characteristics, as indicated by contact force profiles, do scale for some levels of damage.
Freiberger, Manuel; Clason, Christian; Scharfetter, Hermann
2010-01-01
Fluorescence tomography excites a fluorophore inside a sample by light sources on the surface. From boundary measurements of the fluorescent light, the distribution of the fluorophore is reconstructed. The optode placement determines the quality of the reconstructions in terms of, e.g., resolution and contrast-to-noise ratio. We address the adaptation of the measurement setup. The redundancy of the measurements is chosen as a quality criterion for the optodes and is computed from the Jacobian of the mathematical formulation of light propagation. The algorithm finds a subset with minimum redundancy in the measurements from a feasible pool of optodes. This allows biasing the design in order to favor reconstruction results inside a given region. Two different variations of the algorithm, based on geometric and arithmetic averaging, are compared. Both deliver similar optode configurations. The arithmetic averaging is slightly more stable, whereas the geometric averaging approach shows a better conditioning of the sensitivity matrix and mathematically corresponds more closely with entropy optimization. Adapted illumination and detector patterns are presented for an initial set of 96 optodes placed on a cylinder with focusing on different regions. Examples for the attenuation of fluorophore signals from regions outside the focus are given.
Discretization independence implies non-locality in 4D discrete quantum gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Kamiński, Wojciech; Steinhaus, Sebastian
2014-12-01
The 4D Regge action is invariant under 5-1 and 4-2 Pachner moves, which define a subset of (local) changes of the triangulation. Given this fact, one might hope to find a local path integral measure that makes the quantum theory invariant under these moves and hence makes the theory partially triangulation invariant. We show that such a local invariant path integral measure does not exist for the 4D linearized Regge theory. To this end we uncover an interesting geometric interpretation for the Hessian of the 4D Regge action. This geometric interpretation will allow us to prove that the determinant of the Hessian of the 4D Regge action does not factorize over four-simplices or subsimplices. It furthermore allows us to determine configurations where this Hessian vanishes, which only appears to be the case in degenerate backgrounds or if one allows for different orientations of the simplices. We suggest a non-local measure factor that absorbs the non-local part of the determinant of the Hessian under 5-1 moves as well as a local measure factor that is preserved for very special configurations.
NASA Technical Reports Server (NTRS)
Wing, David J.
1998-01-01
The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.
Thermokinetics of heterogeneous droplet nucleation on conically textured substrates.
Singha, Sanat K; Das, Prasanta K; Maiti, Biswajit
2015-11-28
Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.
Electromagnetic backscattering by corner reflectors
NASA Technical Reports Server (NTRS)
Balanis, C. A.; Griesser, T.
1986-01-01
The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.
Chirality in distorted square planar Pd(O,N)2 compounds.
Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi
2013-10-01
Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry. © 2013 Wiley Periodicals, Inc.
A PBOM configuration and management method based on templates
NASA Astrophysics Data System (ADS)
Guo, Kai; Qiao, Lihong; Qie, Yifan
2018-03-01
The design of Process Bill of Materials (PBOM) holds a hinge position in the process of product development. The requirements of PBOM configuration design and management for complex products are analysed in this paper, which include the reuse technique of configuration procedure and urgent management need of huge quantity of product family PBOM data. Based on the analysis, the function framework of PBOM configuration and management has been established. Configuration templates and modules are defined in the framework to support the customization and the reuse of configuration process. The configuration process of a detection sensor PBOM is shown as an illustration case in the end. The rapid and agile PBOM configuration and management can be achieved utilizing template-based method, which has a vital significance to improve the development efficiency for complex products.
NASA Astrophysics Data System (ADS)
Ghikas, Demetris P. K.; Oikonomou, Fotios D.
2018-04-01
Using the generalized entropies which depend on two parameters we propose a set of quantitative characteristics derived from the Information Geometry based on these entropies. Our aim, at this stage, is to construct first some fundamental geometric objects which will be used in the development of our geometrical framework. We first establish the existence of a two-parameter family of probability distributions. Then using this family we derive the associated metric and we state a generalized Cramer-Rao Inequality. This gives a first two-parameter classification of complex systems. Finally computing the scalar curvature of the information manifold we obtain a further discrimination of the corresponding classes. Our analysis is based on the two-parameter family of generalized entropies of Hanel and Thurner (2011).
Residential magnetic fields predicted from wiring configurations: I. Exposure model.
Bowman, J D; Thomas, D C; Jiang, L; Jiang, F; Peters, J M
1999-10-01
A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.
NASA Astrophysics Data System (ADS)
Kobylkin, Konstantin
2016-10-01
Computational complexity and approximability are studied for the problem of intersecting of a set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line embedding of possibly non-planar geometric graph. This problem arises in physical network security analysis for telecommunication, wireless and road networks represented by specific geometric graphs defined by Euclidean distances between their vertices (proximity graphs). It can be formulated in a form of known Hitting Set problem over a set of Euclidean r-neighbourhoods of segments. Being of interest computational complexity and approximability of Hitting Set over so structured sets of geometric objects did not get much focus in the literature. Strong NP-hardness of the problem is reported over special classes of proximity graphs namely of Delaunay triangulations, some of their connected subgraphs, half-θ6 graphs and non-planar unit disk graphs as well as APX-hardness is given for non-planar geometric graphs at different scales of r with respect to the longest graph edge length. Simple constant factor approximation algorithm is presented for the case where r is at the same scale as the longest edge length.
Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices
Congedo, Marco; Afsari, Bijan; Barachant, Alexandre; Moakher, Maher
2015-01-01
We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations. PMID:25919667
Secondary and compound concentrators for parabolic dish solar thermal power systems
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Poon, P. T.
1981-01-01
A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat.
Bahri, A.; Bendersky, M.; Cohen, F. R.; Gitler, S.
2009-01-01
This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley–Reisner ring of a finite simplicial complex, and natural generalizations. PMID:19620727
Bahri, A; Bendersky, M; Cohen, F R; Gitler, S
2009-07-28
This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley-Reisner ring of a finite simplicial complex, and natural generalizations.
Moore, Adrienne; Wozniak, Madeline; Yousef, Andrew; Barnes, Cindy Carter; Cha, Debra; Courchesne, Eric; Pierce, Karen
2018-01-01
The wide range of ability and disability in ASD creates a need for tools that parse the phenotypic heterogeneity into meaningful subtypes. Using eye tracking, our past studies revealed that when presented with social and geometric images, a subset of ASD toddlers preferred viewing geometric images, and these toddlers also had greater symptom severity than ASD toddlers with greater social attention. This study tests whether this "GeoPref test" effect would generalize across different social stimuli. Two hundred and twenty-seven toddlers (76 ASD) watched a 90-s video, the Complex Social GeoPref test, of dynamic geometric images paired with social images of children interacting and moving. Proportion of visual fixation time and number of saccades per second to both images were calculated. To allow for cross-paradigm comparisons, a subset of 126 toddlers also participated in the original GeoPref test. Measures of cognitive and social functioning (MSEL, ADOS, VABS) were collected and related to eye tracking data. To examine utility as a diagnostic indicator to detect ASD toddlers, validation statistics (e.g., sensitivity, specificity, ROC, AUC) were calculated for the Complex Social GeoPref test alone and when combined with the original GeoPref test. ASD toddlers spent a significantly greater amount of time viewing geometric images than any other diagnostic group. Fixation patterns from ASD toddlers who participated in both tests revealed a significant correlation, supporting the idea that these tests identify a phenotypically meaningful ASD subgroup. Combined use of both original and Complex Social GeoPref tests identified a subgroup of about 1 in 3 ASD toddlers from the "GeoPref" subtype (sensitivity 35%, specificity 94%, AUC 0.75.) Replicating our previous studies, more time looking at geometric images was associated with significantly greater ADOS symptom severity. Regardless of the complexity of the social images used (low in the original GeoPref test vs high in the new Complex Social GeoPref test), eye tracking of toddlers can accurately identify a specific ASD "GeoPref" subtype with elevated symptom severity. The GeoPref tests are predictive of ASD at the individual subject level and thus potentially useful for various clinical applications (e.g., early identification, prognosis, or development of subtype-specific treatments).
NASA Astrophysics Data System (ADS)
Ametova, Evelina; Ferrucci, Massimiliano; Chilingaryan, Suren; Dewulf, Wim
2018-06-01
The recent emergence of advanced manufacturing techniques such as additive manufacturing and an increased demand on the integrity of components have motivated research on the application of x-ray computed tomography (CT) for dimensional quality control. While CT has shown significant empirical potential for this purpose, there is a need for metrological research to accelerate the acceptance of CT as a measuring instrument. The accuracy in CT-based measurements is vulnerable to the instrument geometrical configuration during data acquisition, namely the relative position and orientation of x-ray source, rotation stage, and detector. Consistency between the actual instrument geometry and the corresponding parameters used in the reconstruction algorithm is critical. Currently available procedures provide users with only estimates of geometrical parameters. Quantification and propagation of uncertainty in the measured geometrical parameters must be considered to provide a complete uncertainty analysis and to establish confidence intervals for CT dimensional measurements. In this paper, we propose a computationally inexpensive model to approximate the influence of errors in CT geometrical parameters on dimensional measurement results. We use surface points extracted from a computer-aided design (CAD) model to model discrepancies in the radiographic image coordinates assigned to the projected edges between an aligned system and a system with misalignments. The efficacy of the proposed method was confirmed on simulated and experimental data in the presence of various geometrical uncertainty contributors.
Statistical complexity without explicit reference to underlying probabilities
NASA Astrophysics Data System (ADS)
Pennini, F.; Plastino, A.
2018-06-01
We show that extremely simple systems of a not too large number of particles can be simultaneously thermally stable and complex. To such an end, we extend the statistical complexity's notion to simple configurations of non-interacting particles, without appeal to probabilities, and discuss configurational properties.
Geometric Demonstration of the Fundamental Theorems of the Calculus
ERIC Educational Resources Information Center
Sauerheber, Richard D.
2010-01-01
After the monumental discovery of the fundamental theorems of the calculus nearly 350 years ago, it became possible to answer extremely complex questions regarding the natural world. Here, a straightforward yet profound demonstration, employing geometrically symmetric functions, describes the validity of the general power rules for integration and…
Mihut, Adriana M.; Stenqvist, Björn; Lund, Mikael; Schurtenberger, Peter; Crassous, Jérôme J.
2017-01-01
We have seen a considerable effort in colloid sciences to copy Nature’s successful strategies to fabricate complex functional structures through self-assembly. This includes attempts to design colloidal building blocks and their intermolecular interactions, such as creating the colloidal analogs of directional molecular interactions, molecular recognition, host-guest systems, and specific binding. We show that we can use oppositely charged thermoresponsive particles with complementary shapes, such as spherical and bowl-shaped particles, to implement an externally controllable lock-and-key self-assembly mechanism. The use of tunable electrostatic interactions combined with the temperature-dependent size and shape and van der Waals interactions of these building blocks provides an exquisite control over the selectivity and specificity of the interactions and self-assembly process. The dynamic nature of the mechanism allows for reversibly cycling through various structures that range from weakly structured dense liquids to well-defined molecule-shaped clusters with different configurations through variations in temperature and ionic strength. We link this complex and dynamic self-assembly behavior to the relevant molecular interactions, such as screened Coulomb and van der Waals forces and the geometrical complementarity of the two building blocks, and discuss our findings in the context of the concepts of adaptive chemistry recently introduced to molecular systems. PMID:28929133
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
2017-03-27
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO 2-CH 4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this paper, we present a set ofmore » fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. Finally, the mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.« less
NASA Astrophysics Data System (ADS)
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
2017-06-01
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO2-CH4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this work, we present a set of fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. The mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO 2-CH 4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this paper, we present a set ofmore » fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. Finally, the mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.« less
An ice-cream cone model for coronal mass ejections
NASA Astrophysics Data System (ADS)
Xue, X. H.; Wang, C. B.; Dou, X. K.
2005-08-01
In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.
Measurement system and model for simultaneously measuring 6DOF geometric errors.
Zhao, Yuqiong; Zhang, Bin; Feng, Qibo
2017-09-04
A measurement system to simultaneously measure six degree-of-freedom (6DOF) geometric errors is proposed. The measurement method is based on a combination of mono-frequency laser interferometry and laser fiber collimation. A simpler and more integrated optical configuration is designed. To compensate for the measurement errors introduced by error crosstalk, element fabrication error, laser beam drift, and nonparallelism of two measurement beam, a unified measurement model, which can improve the measurement accuracy, is deduced and established using the ray-tracing method. A numerical simulation using the optical design software Zemax is conducted, and the results verify the correctness of the model. Several experiments are performed to demonstrate the feasibility and effectiveness of the proposed system and measurement model.
Geometry in the mechanics of origami
NASA Astrophysics Data System (ADS)
Dias, Marcelo A.; Santangelo, Christian D.
2012-02-01
We present a mechanical model for curved fold origami in which the bending energies of developable regions are balanced with a phenomenological energy for the crease. The latter energy comes into play as a source of geometric frustration, allowing us to study shape formation by prescribing crease patterns. For a single fold annular configuration, we show how geometry forces a symmetry breaking of the ground state by increasing the width of the ribbon. We extend our model to study multiple fold structures, where we derive geometrical constraints that can be written as recursive relations to build the surface from valley to mountain, and so on. We also suggest a mechanical model for single vertex folds, mapping this problem to an elastica on the sphere.
Morita, N; Shibahara, A; Yamamoto, K; Shinkai, K; Kajimoto, G; Okuyama, H
1993-02-01
Vibrio sp. strain ABE-1 was grown in a medium that contained as its stable isotope tracer either [2,2-2H2]cis-9-hexadecenoic or [2,2-2H2]trans-9-hexadecenoic acid. Gas chromatographic-mass spectrometric analysis of the cis-9-hexadecenoic and trans-9-hexadecenoic acid fractions from the cells revealed the formation of an intracellularly isomerized 2,2-2H2-fatty acid which differed from the tracer only in the geometrical configuration of the double bond. This observation shows that cis-trans isomerization without a shift in double-bond position between these two geometric hexadecenoic acid isomers can occur in the cells.
Morita, N; Shibahara, A; Yamamoto, K; Shinkai, K; Kajimoto, G; Okuyama, H
1993-01-01
Vibrio sp. strain ABE-1 was grown in a medium that contained as its stable isotope tracer either [2,2-2H2]cis-9-hexadecenoic or [2,2-2H2]trans-9-hexadecenoic acid. Gas chromatographic-mass spectrometric analysis of the cis-9-hexadecenoic and trans-9-hexadecenoic acid fractions from the cells revealed the formation of an intracellularly isomerized 2,2-2H2-fatty acid which differed from the tracer only in the geometrical configuration of the double bond. This observation shows that cis-trans isomerization without a shift in double-bond position between these two geometric hexadecenoic acid isomers can occur in the cells. PMID:8423164
Probability density cloud as a geometrical tool to describe statistics of scattered light.
Yaitskova, Natalia
2017-04-01
First-order statistics of scattered light is described using the representation of the probability density cloud, which visualizes a two-dimensional distribution for complex amplitude. The geometric parameters of the cloud are studied in detail and are connected to the statistical properties of phase. The moment-generating function for intensity is obtained in a closed form through these parameters. An example of exponentially modified normal distribution is provided to illustrate the functioning of this geometrical approach.
Free-form geometric modeling by integrating parametric and implicit PDEs.
Du, Haixia; Qin, Hong
2007-01-01
Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.
Not so Complex: Iteration in the Complex Plane
ERIC Educational Resources Information Center
O'Dell, Robin S.
2014-01-01
The simple process of iteration can produce complex and beautiful figures. In this article, Robin O'Dell presents a set of tasks requiring students to use the geometric interpretation of complex number multiplication to construct linear iteration rules. When the outputs are plotted in the complex plane, the graphs trace pleasing designs…
Brovarets', O O
2013-01-01
At the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory it was established for the first time, that the Löwdin's G*.C* DNA base pair formed by the mutagenic tautomers can acquire, as the A-T Watson-Crick DNA base pair, four biologically important configurations, namely: Watson-Crick, reverse Watson-Crick, Hoogsteen and reverse Hoogsteen. This fact demonstrates rather unexpected role of the tautomerisation of the one of the Watson-Crick DNA base pairs, in particular, via double proton transfer: exactly the G.C-->G*.C* tautomerisation allows to overcome steric hindrances for the implementation of the above mentioned configurations. Geometric, electron-topological and energetic properties of the H-bonds that stabilise the studied pairs, as well as the energetic characteristics of the latters are presented.
Performance analysis and optimization of high capacity pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Ghahremani, Amir R.; Saidi, M. H.; Jahanbakhshi, R.; Roshanghalb, F.
High capacity pulse tube refrigerator (HCPTR) is a new generation of cryocoolers tailored to provide more than 250 W of cooling power at cryogenic temperatures. The most important characteristics of HCPTR when compared to other types of pulse tube refrigerators are a powerful pressure wave generator, and an accurate design. In this paper the influence of geometrical and operating parameters on the performance of a double inlet pulse tube refrigerator (DIPTR) is studied. The model is validated with the existing experimental data. As a result of this optimization, a new configuration of HCPTR is proposed. This configuration provides 335 W at 80 K cold end temperature with a frequency of 50 Hz and COP of 0.05.
Prediction of recirculation zones in isothermal coaxial jet flows relevant to combustors
NASA Technical Reports Server (NTRS)
Nallasamy, M.
1987-01-01
The characteristics of the recirculation zones in confined coaxial turbulent jets are investigated numerically employing the kappa - epsilon turbulence model. The geometrical arrangement corresponds to the experimental study of Owen (AIAA J. 1976) and the investigation is undertaken to provide information for isothermal flow relevant to combustor flows. For the first time, the shape, size, and location of the recirculation zones for the above experimental configuration are correctly predicted. The processes leading to the observed results are explained. Detailed comparisons of the prediction with measurements are made. It is shown that the recirculation zones are very sensitive to the central jet exit configuration and the velocity ratio of the jets.
Self-amplified optical pattern recognition system
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor)
1994-01-01
A self amplifying optical pattern recognizer includes a geometric system configuration similar to that of a Vander Lugt holographic matched filter configuration with a photorefractive crystal specifically oriented with respect to the input beams. An extraordinarily polarized, spherically converging object image beam is formed by laser illumination of an input object image and applied through a photorefractive crystal, such as a barium titanite (BaTiO.sub.3) crystal. A volume or thin-film dif ORIGIN OF THE INVENTION The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.
Aircraft cockpit vision: Math model
NASA Technical Reports Server (NTRS)
Bashir, J.; Singh, R. P.
1975-01-01
A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.
A hydrophone prototype for ultra high energy neutrino acoustic detection
NASA Astrophysics Data System (ADS)
Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.
2009-06-01
The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.
Developments in blade shape design for a Darrieus vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Ashwill, T. D.; Leonard, T. M.
1986-09-01
A new computer program package has been developed that determines the troposkein shape for a Darrieus Vertical Axis Wind Turbine Blade with any geometrical configuration or rotation rate. This package allows users to interact and develop a buildable blade whose shape closely approximates the troposkein. Use of this package can significantly reduce flatwise mean bending stresses in the blade and increase fatigue life.
NASA Technical Reports Server (NTRS)
Wu, C.; Barkan, B.; Huneycutt, B.; Leang, C.; Pang, S.
1981-01-01
Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described.
Practical application of HgI2 detectors to a space-flight scanning electron microscope
NASA Technical Reports Server (NTRS)
Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.
1989-01-01
Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.
The Relativistic Geometry and Dynamics of Electrons
NASA Astrophysics Data System (ADS)
Atiyah, M. F.; Malkoun, J.
2018-02-01
Atiyah and Sutcliffe (Proc R Soc Lond Ser A 458:1089-1115, 2002) made a number of conjectures about configurations of N distinct points in hyperbolic 3-space, arising from ideas of Berry and Robbins (Proc R Soc Lond Ser A 453:1771-1790, 1997). In this paper we prove all these conjectures, purely geometrically, but we also provide a physical interpretation in terms of Electrons.
A Belief-Space Approach to Integrated Intelligence - Research Area 10.3: Intelligent Networks
2017-12-05
A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks The views , opinions and/or findings contained in this...high dimensionality and multi -modality of their hybrid configuration spaces. Planners that perform a purely geometric search are prohibitively slow...Hamburg, January Paper Title: Hierarchical planning for multi -contact non-prehensile manipulation Publication Type: Conference Paper or Presentation
Korte, Dorota; Franko, Mladen
2015-01-01
In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.
Game Building with Complex-Valued Functions
ERIC Educational Resources Information Center
Dittman, Marki; Soto-Johnson, Hortensia; Dickinson, Scott; Harr, Tim
2017-01-01
In this paper, we describe how we integrated complex analysis into the second semester of a geometry course designed for preservice secondary mathematics teachers. As part of this inquiry-based course, the preservice teachers incorporated their geometric understanding of the arithmetic of complex numbers and complex-valued functions to create a…
Geometrical tile design for complex neighborhoods.
Czeizler, Eugen; Kari, Lila
2009-01-01
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.
Incorporating geometrically complex vegetation in a computational fluid dynamic framework
NASA Astrophysics Data System (ADS)
Boothroyd, Richard; Hardy, Richard; Warburton, Jeff; Rosser, Nick
2015-04-01
Vegetation is known to have a significant influence on the hydraulic, geomorphological, and ecological functioning of river systems. Vegetation acts as a blockage to flow, thereby causing additional flow resistance and influencing flow dynamics, in particular flow conveyance. These processes need to be incorporated into flood models to improve predictions used in river management. However, the current practice in representing vegetation in hydraulic models is either through roughness parameterisation or process understanding derived experimentally from flow through highly simplified configurations of fixed, rigid cylinders. It is suggested that such simplifications inadequately describe the geometric complexity that characterises vegetation, and therefore the modelled flow dynamics may be oversimplified. This paper addresses this issue by using an approach combining field and numerical modelling techniques. Terrestrial Laser Scanning (TLS) with waveform processing has been applied to collect a sub-mm, 3-dimensional representation of Prunus laurocerasus, an invasive species to the UK that has been increasingly recorded in riparian zones. Multiple scan perspectives produce a highly detailed point cloud (>5,000,000 individual data points) which is reduced in post processing using an octree-based voxelisation technique. The method retains the geometric complexity of the vegetation by subdividing the point cloud into 0.01 m3 cubic voxels. The voxelised representation is subsequently read into a computational fluid dynamic (CFD) model using a Mass Flux Scaling Algorithm, allowing the vegetation to be directly represented in the modelling framework. Results demonstrate the development of a complex flow field around the vegetation. The downstream velocity profile is characterised by two distinct inflection points. A high velocity zone in the near-bed (plant-stem) region is apparent due to the lack of significant near-bed foliage. Above this, a zone of reduced velocity is found where the bulk of the vegetation blockage is more evenly distributed. Finally, flow rapidly recovers towards the free-stream region. Analysis of the pressure field demonstrates that drag force is non-linearly distributed over the vegetation. In the downstream direction, the drag force decreases through the vegetation. The experiment is extended to emulate vegetation reconfiguration in the flow, and is achieved through rotation of the vegetation about a fixed position (roots) on the bed. The experiment demonstrates a reduction in the total drag force and a shift in the contribution of different drag mechanisms as the degree of rotation increases. In the upright state, form drag dominates, but with additional rotation, the contribution of viscous drag increases. Consequently, the total drag force is found to decrease by approximately one third between the upright and fully rotated states of reconfiguration. Explicit representation of vegetation geometry therefore enables a re-evaluation of vegetative flow resistance. This presents an opportunity to move away from the conventional methods of representing vegetation in hydraulic models, i.e. roughness parameterisation, in favour of a more physically determined approach.
The effect of perceptual grouping on haptic numerosity perception.
Verlaers, K; Wagemans, J; Overvliet, K E
2015-01-01
We used a haptic enumeration task to investigate whether enumeration can be facilitated by perceptual grouping in the haptic modality. Eight participants were asked to count tangible dots as quickly and accurately as possible, while moving their finger pad over a tactile display. In Experiment 1, we manipulated the number and organization of the dots, while keeping the total exploration area constant. The dots were either evenly distributed on a horizontal line (baseline condition) or organized into groups based on either proximity (dots placed in closer proximity to each other) or configural cues (dots placed in a geometric configuration). In Experiment 2, we varied the distance between the subsets of dots. We hypothesized that when subsets of dots can be grouped together, the enumeration time will be shorter and accuracy will be higher than in the baseline condition. The results of both experiments showed faster enumeration for the configural condition than for the baseline condition, indicating that configural grouping also facilitates haptic enumeration. In Experiment 2, faster enumeration was also observed for the proximity condition than for the baseline condition. Thus, perceptual grouping speeds up haptic enumeration by both configural and proximity cues, suggesting that similar mechanisms underlie perceptual grouping in both visual and haptic enumeration.
Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1997-01-01
A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.
USDA-ARS?s Scientific Manuscript database
In holometabolous insects, larval nutrition affects adult body size, a life history trait with a profound influence on performance and fitness. Individual nutritional components of larval diet are often complex and may interact with one another, necessitating the use of a geometric framework for und...
Clifford support vector machines for classification, regression, and recurrence.
Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy
2010-11-01
This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids.
Propagation of fires along mine workings: criteria and limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pervushin, Yu.V.
1978-01-01
Underground fires account for over 50% of the accidents occuring in Soviet mines. Their prevention therefore occupies a central place in mine rescue practice and accident prevention. The general features of the physical processes occurring during propagation of a flame have been studied in some detail. Attempts have been made to describe underground fires on the basis of experimental data. However, it is not yet possible to make accurate preductions of the behavior of fires in mine workings: very many factors influence their development. The dynamics of spread of a flame along a working involves such diverse phenomena as heatmore » transfer by thermal conduction, radiation, and convection, transfer of oxygen and combustible gaseous components by draughts and diffusion, various chemical reactions on the surface of combustible materials and within the flames, and finally complex surface effects accompanying heat and mass transfer at interfaces between media. In addition, we must take account of the specific conditions prevailing in a mine - the complex geometrical configuration of the workings, the nonuniformity of the combustible materials, and the role of ventilation and its instability during fires. There can be many approaches to the study of such a many-sided process. The most promising lines seem to be those in which experimental models of the complex of possible phenomena are combined with mathematical models of the process, based on the equations of chemical hydrodynamics, in which the alternative variants are realized on a computer.« less
NASA Astrophysics Data System (ADS)
Tomé, Maria; López, Concepción; González, Asensio; Ozay, Bahadir; Quirante, Josefina; Font-Bardía, Mercè; Calvet, Teresa; Calvis, Carme; Messeguer, Ramon; Baldomá, Laura; Badía, Josefa
2013-09-01
The synthesis and characterization of the new 2-phenylindole derivative: C8H3N-2-C6H5-3NOMe-5OMe (3c) and the trans- and cis-isomers of [Pt(3c)Cl2(DMSO)] complexes (4c and 5c, respectively) are described. The crystal structures of 4c·CH2Cl2 and 5c confirm: (a) the existence of a Pt-Nindole bond, (b) the relative arrangement of the Cl- ligands [trans- (in 4c) or cis- (in 5c)] and (c) the anti-(E) configuration of the oxime. The cytotoxic assessment of C8H3N-2-(C6H4-4‧R1)-3NOMe-5R2 [with R1 = R2 = H (3a); R1 = Cl, R2 = H (3b) and R1 = H, R2 = OMe (3c)] and the geometrical isomers of [Pt(L)Cl2(DMSO)] with L = 3a-3c [trans- (4a-4c) and cis- (5a-5c), respectively] against human breast adenocarcinoma cell lines (MDA-MB231 and MCF-7) is also reported and reveals that all the platinum(II) complexes (except 4a) are more cytotoxic than cisplatin in front of the MCF7 cell line. Electrophoretic DNA migration studies of the synthesized compounds in the absence and in the presence of topoisomerase-I have been performed, in order to get further insights into their mechanism of action.
Díaz, Jairo A; Murillo, Mauricio F; Jaramillo, Natalia A
2009-01-01
In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC) in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated into nanomaterial, biomedical devices, and engineered tissues, new therapeutic strategies could be developed for cancer treatment.
Zhao, Zhi; Kong, Xiangtao; Yang, Dong; Yuan, Qinqin; Xie, Hua; Fan, Hongjun; Zhao, Jijun; Jiang, Ling
2017-05-04
The reaction of copper and silver cations with carbon dioxide was studied by mass-selected infrared photodissociation spectroscopy. Quantum chemical calculations were performed on these products, which aided the experimental assignments of the infrared spectra and helped to elucidate the geometrical and electronic structures. The Cu + and Ag + cations bind to an oxygen atom of CO 2 in an end-on configuration via a charge-quadrupole electrostatic interaction in the [M(CO 2 ) n ] + complexes. The formation of oxide-carbonyl and carbonyl-carbonate structures is not favored for the interaction of CO 2 with Cu + and Ag + . For n = 3 and 4, the n + 0 structure is preferred. [Note on the nomenclature: Using i + j, i denotes the number of CO 2 molecules in the first coordination shell, and j denotes the number of CO 2 molecules in the second coordination shell.] The two nearly energy-identical n + 0 and (n - 1) + 1 structures coexist in n = 5 and 6. While the six-coordinated structure is favored for [Cu(CO 2 ) n=7,8 ] + , the n + 0 configuration is dominated in [Ag(CO 2 ) n=7,8 ] + . The reaction of CO 2 with the cationic metal atoms has been compared to that with the neutral and anionic metal atoms, which would have important implications for understanding the interaction of CO 2 with reduction catalysts and rationally designing catalysts for CO 2 reduction based on cost-effective transition metals.
A standalone perfusion platform for drug testing and target validation in micro-vessel networks
Zhang, Boyang; Peticone, Carlotta; Murthy, Shashi K.; Radisic, Milica
2013-01-01
Studying the effects of pharmacological agents on human endothelium includes the routine use of cell monolayers cultivated in multi-well plates. This configuration fails to recapitulate the complex architecture of vascular networks in vivo and does not capture the relationship between shear stress (i.e. flow) experienced by the cells and dose of the applied pharmacological agents. Microfluidic platforms have been applied extensively to create vascular systems in vitro; however, they rely on bulky external hardware to operate, which hinders the wide application of microfluidic chips by non-microfluidic experts. Here, we have developed a standalone perfusion platform where multiple devices were perfused at a time with a single miniaturized peristaltic pump. Using the platform, multiple micro-vessel networks, that contained three levels of branching structures, were created by culturing endothelial cells within circular micro-channel networks mimicking the geometrical configuration of natural blood vessels. To demonstrate the feasibility of our platform for drug testing and validation assays, a drug induced nitric oxide assay was performed on the engineered micro-vessel network using a panel of vaso-active drugs (acetylcholine, phenylephrine, atorvastatin, and sildenafil), showing both flow and drug dose dependent responses. The interactive effects between flow and drug dose for sildenafil could not be captured by a simple straight rectangular channel coated with endothelial cells, but it was captured in a more physiological branching circular network. A monocyte adhesion assay was also demonstrated with and without stimulation by an inflammatory cytokine, tumor necrosis factor-α. PMID:24404058
Chain-Wise Generalization of Road Networks Using Model Selection
NASA Astrophysics Data System (ADS)
Bulatov, D.; Wenzel, S.; Häufel, G.; Meidow, J.
2017-05-01
Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological and semantic aspects. Given a binary image, representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception of what a street is. Further, we propose a two-step approach for chain-wise generalization. First, the chain is pre-segmented using
The effect of emergent features on judgments of quantity in configural and separable displays.
Peebles, David
2008-06-01
Two experiments investigated effects of emergent features on perceptual judgments of comparative magnitude in three diagrammatic representations: kiviat charts, bar graphs, and line graphs. Experiment 1 required participants to compare individual values; whereas in Experiment 2 participants had to integrate several values to produce a global comparison. In Experiment 1, emergent features of the diagrams resulted in significant distortions of magnitude judgments, each related to a common geometric illusion. Emergent features are also widely believed to underlie the general superiority of configural displays, such as kiviat charts, for tasks requiring the integration of information. Experiment 2 tested the extent of this benefit using diagrams with a wide range of values. Contrary to the results of previous studies, the configural display produced the poorest performance compared to the more separable displays. Moreover, the pattern of responses suggests that kiviat users switched from an integration strategy to a sequential one depending on the shape of the diagram. The experiments demonstrate the powerful interaction between emergent visual properties and cognition and reveal limits to the benefits of configural displays for integration tasks. (c) 2008 APA, all rights reserved
Luminescent and thermochromic properties of tellurium(IV) halide complexes with cesium
NASA Astrophysics Data System (ADS)
Sedakova, T. V.; Mirochnik, A. G.
2016-02-01
The spectral-luminescent and thermochromic properties of complex compounds of the composition Cs2TeHal6 (Hal = Cl, Br, I) are studied. The interrelation between the geometric structure and spectral-luminescent properties is studied using the example on complex compounds of tellurium(IV) halides with cesium. The Stokes shift and the luminescence intensity of Te(IV) ions with island octahedral coordination are found to depend on the position of the A band in the luminescence excitation spectra, the diffuse reflection, and the energy of the luminescent 3 P 1 → 1 S 0 transition of the tellurium(IV) ion. The maximum luminescence intensity and the minimum Stokes shift at 77 and 300 K are observed for Cs2TeCl6. The geometrical and electronic factors responsible for luminescence intensification in Te(IV) complexes under study are analyzed.
Method and system for ultra-precision positioning
Montesanti, Richard C.; Locke, Stanley F.; Thompson, Samuel L.
2005-01-11
An apparatus and method is disclosed for ultra-precision positioning. A slide base provides a foundational support. A slide plate moves with respect to the slide base along a first geometric axis. Either a ball-screw or a piezoelectric actuator working separate or in conjunction displaces the slide plate with respect to the slide base along the first geometric axis. A linking device directs a primary force vector into a center-line of the ball-screw. The linking device consists of a first link which directs a first portion of the primary force vector to an apex point, located along the center-line of the ball-screw, and a second link for directing a second portion of the primary force vector to the apex point. A set of rails, oriented substantially parallel to the center-line of the ball-screw, direct movement of the slide plate with respect to the slide base along the first geometric axis and are positioned such that the apex point falls within a geometric plane formed by the rails. The slide base, the slide plate, the ball-screw, and the linking device together form a slide assembly. Multiple slide assemblies can be distributed about a platform. In such a configuration, the platform may be raised and lowered, or tipped and tilted by jointly or independently displacing the slide plates.
Ultra-precision positioning assembly
Montesanti, Richard C.; Locke, Stanley F.; Thompson, Samuel L.
2002-01-01
An apparatus and method is disclosed for ultra-precision positioning. A slide base provides a foundational support. A slide plate moves with respect to the slide base along a first geometric axis. Either a ball-screw or a piezoelectric actuator working separate or in conjunction displaces the slide plate with respect to the slide base along the first geometric axis. A linking device directs a primary force vector into a center-line of the ball-screw. The linking device consists of a first link which directs a first portion of the primary force vector to an apex point, located along the center-line of the ball-screw, and a second link for directing a second portion of the primary force vector to the apex point. A set of rails, oriented substantially parallel to the center-line of the ball-screw, direct movement of the slide plate with respect to the slide base along the first geometric axis and are positioned such that the apex point falls within a geometric plane formed by the rails. The slide base, the slide plate, the ball-screw, and the linking device together form a slide assembly. Multiple slide assemblies can be distributed about a platform. In such a configuration, the platform may be raised and lowered, or tipped and tilted by jointly or independently displacing the slide plates.
Navier-Stokes, flight, and wind tunnel flow analysis for the F/A-18 aircraft
NASA Technical Reports Server (NTRS)
Ghaffari, Farhad
1994-01-01
Computational analysis of flow over the F/A-18 aircraft is presented along with complementary data from both flight and wind tunnel experiments. The computational results are based on the three-dimensional thin-layer Navier-Stokes formulation and are obtained from an accurate surface representation of the fuselage, leading-edge extension (LEX), and the wing geometry. However, the constraints imposed by either the flow solver and/or the complexity associated with the flow-field grid generation required certain geometrical approximations to be implemented in the present numerical model. In particular, such constraints inspired the removal of the empennage and the blocking (fairing) of the inlet face. The results are computed for three different free-stream flow conditions and compared with flight test data of surface pressure coefficients, surface tuft flow, and off-surface vortical flow characteristics that included breakdown phenomena. Excellent surface pressure coefficient correlations, both in terms of magnitude and overall trend, are obtained on the forebody throughout the range of flow conditions. Reasonable pressure agreement was obtained over the LEX; the general correlation tends to improve at higher angles of attack. The surface tuft flow and the off-surface vortex flow structures compared qualitatively well with the flight test results. To evaluate the computational results, a wind tunnel investigation was conducted to determine the effects of existing configurational differences between the flight vehicle and the numerical model on aerodynamic characteristics. In most cases, the geometrical approximations made to the numerical model had very little effect on overall aerodynamic characteristics.
Physical Parameters of Components in Close Binary Systems: IV
NASA Astrophysics Data System (ADS)
Gazeas, K. D.; Baran, A.; Niarchos, P.; Zola, S.; Kreiner, J. M.; Ogloza, W.; Rucinski, S. M.; Zakrzewski, B.; Siwak, M.; Pigulski, A.; Drozdz, M.
2005-03-01
The paper presents new geometric, photometric and absolute parameters, derived from combined spectroscopic and photometric solutions, for ten contact binary systems. The analysis shows that three systems (EF Boo, GM Dra and SW Lac) are of W-type with shallow to moderate contact. Seven systems (V417 Aql, AH Aur, YY CrB, UX Eri, DZ Psc, GR Vir and NN Vir) are of A-type in a deep contact configuration. For six systems (V417 Aql, YY CrB, GM Dra, UX Eri, SW Lac and GR Vir) a spot model is introduced to explain the O'Connell effect in their light curves. The photometric and geometric elements of the systems are combined with the spectroscopic data taken at David Dunlap Observatory to yield the absolute parameters of the components.
Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P
2008-11-01
The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.