Emergent Complex Network Geometry
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra
2015-05-01
Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.
Earthquake cycles in complex geometries
NASA Astrophysics Data System (ADS)
Romanet, Pierre; Bhat, Harsha; Madariaga, Raul
2016-04-01
Our understanding of earthquake cycles, from a modelling perspective, comes mainly from theoretical, and numerical, work on a single straight fault. However, natural fault systems are geometrically complex. Modelling complex fault geometry (bends, kinks and multiple faults) is in itself a challenge as it is computationally intensive. To overcome this difficulty, we appeal to the Fast Multipole Method which was developed in the context of modelling N-body problems. This method is then used to model the quasi-dynamic response of multiple faults, with complex geometries, that are governed by rate and state friction laws. Our preliminary findings tell us that when stress interaction between faults, due to complex geometry, is accounted then even strongly rate-weakening faults (a-b)<0 show a complex spectrum of slow slip and dynamic ruptures.
Documentation for MeshKit - Reactor Geometry (&mesh) Generator
Jain, Rajeev; Mahadevan, Vijay
2015-09-30
This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.
The effect of reactor geometry on frontal polymerization spin modes
NASA Astrophysics Data System (ADS)
Pojman, John A.; Masere, Jonathan; Petretto, Enrico; Rustici, Mauro; Huh, Do-Sung; Kim, Min Suk; Volpert, Vladimir
2002-03-01
Using reactors of different sizes and geometries the dynamics of the frontal polymerization of 1,6-hexanediol diacrylate (HDDA) and pentaerythritol tetraacrylate (PETAC), with ammonium persulfate as the initiator were studied. For this system, the frontal polymerization exhibits complex behavior that depends on the ratio of the monomers. For a particular range of monomers concentration, the polymerization front becomes nonplanar, and spin modes appear. By varying the reactor diameter, we experimentally confirmed the expected shift of the system to a greater number of "hot spots" for larger diameters. For square test tubes a "zig-zag" mode was observed for the first time in frontal polymerization. We confirmed the viscosity-dependence of the spin mode instabilities. We also observed novel modes in cylinder-inside-cylinder reactors. Lastly, using a conical reactor with a continuously varying diameter, we observed what may be evidence for bistability depending on the direction of propagation. We discuss these finding in terms of the standard linear stability analysis for propagating fronts.
Phase distribution in complex geometry conduits
Lahey, R.T. Jr.; Lopez de Bertodano, M.; Jones, O.C. Jr.
1992-12-31
Some of the most important and challenging problems in two-phase flow today have to do with the understanding and prediction of multidimensional phenomena, in particular, lateral phase distribution in both simple and complex geometry conduits. A prior review paper summarized the state-of-the-art in the understanding of phase distribution phenomena, and the ability to perform mechanistic multidimensional predictions. The purpose of this paper is to update that review, with particular emphasis on complex geometry conduit predictive capabilities.
Minimal five dimensional supergravities and complex geometries
Herdeiro, Carlos A. R.
2010-07-28
We discuss the relation between solutions admitting Killing spinors of minimal super-gravities in five dimensions, both timelike and null, and complex geometries. For the timelike solutions the results may be summarised as follows. In the ungauged case (vanishing cosmological constant {Lambda} 0) the solutions are determined in terms of a hyper-Kaehler base space; in the gauged case ({Lambda}<0) the complex geometry is Kaehler; in the de Sitter case ({Lambda}>0) the complex geometry is hyper-Kaehler with torsion (HKT). For the null solutions we shall focus on the de Sitter case, for which the solutions are determined by a constrained Einstein-Weyl 3-geometry called Gauduchon-Tod space. The method for constructing explicit solutions is discussed in each case.
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its
Explosion modelling for complex geometries
NASA Astrophysics Data System (ADS)
Nehzat, Naser
A literature review suggested that the combined effects of fuel reactivity, obstacle density, ignition strength, and confinement result in flame acceleration and subsequent pressure build-up during a vapour cloud explosion (VCE). Models for the prediction of propagating flames in hazardous areas, such as coal mines, oil platforms, storage and process chemical areas etc. fall into two classes. One class involves use of Computation Fluid Dynamics (CFD). This approach has been utilised by several researchers. The other approach relies upon a lumped parameter approach as developed by Baker (1983). The former approach is restricted by the appropriateness of sub-models and numerical stability requirements inherent in the computational solution. The latter approach raises significant questions regarding the validity of the simplification involved in representing the complexities of a propagating explosion. This study was conducted to investigate and improve the Computational Fluid Dynamic (CFD) code EXPLODE which has been developed by Green et al., (1993) for use on practical gas explosion hazard assessments. The code employs a numerical method for solving partial differential equations by using finite volume techniques. Verification exercises, involving comparison with analytical solutions for the classical shock-tube and with experimental (small-scale, medium and large-scale) results, demonstrate the accuracy of the code and the new combustion models but also identify differences between predictions and the experimental results. The project has resulted in a developed version of the code (EXPLODE2) with new combustion models for simulating gas explosions. Additional features of this program include the physical models necessary to simulate the combustion process using alternative combustion models, improvement to the numerical accuracy and robustness of the code, and special input for simulation of different gas explosions. The present code has the capability of
Managing search complexity in linguistic geometry.
Stilman, B
1997-01-01
This paper is a new step in the development of linguistic geometry. This formal theory is intended to discover and generalize the inner properties of human expert heuristics, which have been successful in a certain class of complex control systems, and apply them to different systems. In this paper, we investigate heuristics extracted in the form of hierarchical networks of planning paths of autonomous agents. Employing linguistic geometry tools the dynamic hierarchy of networks is represented as a hierarchy of formal attribute languages. The main ideas of this methodology are shown in the paper on two pilot examples of the solution of complex optimization problems. The first example is a problem of strategic planning for the air combat, in which concurrent actions of four vehicles are simulated as serial interleaving moves. The second example is a problem of strategic planning for the space comb of eight autonomous vehicles (with interleaving moves) that requires generation of the search tree of the depth 25 with the branching factor 30. This is beyond the capabilities of modern and conceivable future computers (employing conventional approaches). In both examples the linguistic geometry tools showed deep and highly selective searches in comparison with conventional search algorithms. For the first example a sketch of the proof of optimality of the solution is considered. PMID:18263105
Multigroup Complex Geometry Neutron Diffusion Code System.
2002-12-18
Version 01 SNAP-3D is based on SNAP2 and is a one- two- or three-dimensional multigroup diffusion code system. It is primarily intended for neutron diffusion calculations, but it can also carry out gamma-ray calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP-3D can solve the multi-group neutron diffusion equations using finite difference methods in (x,y,z), (r,theta,z), (TRI,z), (HEX,z) or (spherical) coordinates.more » The one-dimensional slab and cylindrical geometries and the two-dimensional (x,y), (r,z), (r,theta), (HEX) and (TRI) are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. The problem classes are: 1) eigenvalue search for critical k-effective, 2) eigenvalue search for critical buckling, 3) eigenvalue search for critical time-constant, 4) fixed source problems in which the sources are functions of regions, 5) fixed source problems in which the sources are provided, on disc, for every mesh point and group.« less
Multigroup Complex Geometry Neutron Diffusion Code System.
MCCALLIEN, C. W.J.
2002-12-18
Version 01 SNAP-3D is based on SNAP2 and is a one- two- or three-dimensional multigroup diffusion code system. It is primarily intended for neutron diffusion calculations, but it can also carry out gamma-ray calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP-3D can solve the multi-group neutron diffusion equations using finite difference methods in (x,y,z), (r,theta,z), (TRI,z), (HEX,z) or (spherical) coordinates. The one-dimensional slab and cylindrical geometries and the two-dimensional (x,y), (r,z), (r,theta), (HEX) and (TRI) are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. The problem classes are: 1) eigenvalue search for critical k-effective, 2) eigenvalue search for critical buckling, 3) eigenvalue search for critical time-constant, 4) fixed source problems in which the sources are functions of regions, 5) fixed source problems in which the sources are provided, on disc, for every mesh point and group.
Nodal equivalence theory for hexagonal geometry, thermal reactor analysis
Zika, M.; Downar, T. )
1992-01-01
An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory.
Eddy Current Flexible Probes for Complex Geometries
NASA Astrophysics Data System (ADS)
Gilles-Pascaud, C.; Decitre, J. M.; Vacher, F.; Fermon, C.; Pannetier, M.; Cattiaux, G.
2006-03-01
The inspection of materials used in aerospace, nuclear or transport industry is a critical issue for the safety of components exposed to stress or/and corrosion. The industry claims for faster, more sensitive, and more flexible techniques. Technologies based on Eddy Current (EC) flexible array probe and magnetic sensor with high sensitivity such as giant magneto-resistance (GMR) could be a good solution to detect surface-breaking flaws in complex shaped surfaces. The CEA has recently developed, with support from the French Institute for Radiological Protection and Nuclear Safety (IRSN), a flexible array probe based on micro-coils etched on Kapton. The probe's performances have been assessed for the inspection of reactor residual heat removal pipes, and for aeronautical applications within the framework of the European project VERDICT. The experimental results confirm the very good detection of narrow cracks on plane and curve shaped surfaces. This paper also describes the recent progresses concerning the application of GMR sensors to EC testing, and the results obtained for the detection of small surface breaking flaws.
Surface grid generation for complex three-dimensional geometries
NASA Technical Reports Server (NTRS)
Luh, Raymond Ching-Chung
1988-01-01
An outline is presented for the creation of surface grids from primitive geometry data such as obtained from CAD/CAM systems. The general procedure is applicable to any geometry including full aircraft with wing, nacelle, and empennage. When developed in an interactive graphics environment, a code base on this procedure is expected to substantially improve the turn around time for generating surface grids on complex geometries. Results are shown for a general hypersonic airplane geometry.
Surface grid generation for complex three-dimensional geometries
NASA Technical Reports Server (NTRS)
Luh, Raymond Ching-Chung
1988-01-01
An outline is presented for the creation of surface grids from primitive geometry data such as obtained from CAD/CAM systems. The general procedure is applicable to any geometry including full aircraft with wing, nacelle, and empennage. When developed in an interactive graphics environment, a code based on this procedure is expected to substantially improve the turn around time for generating surface grids on complex geometries. Results are shown for a general hypersonic airplane geometry.
Spectral methods for problems in complex geometries
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1979-01-01
Techniques that permit the efficient application of spectral methods to solve problems in nearly arbitrary geometries are presented. These methods were found to be viable alternatives to finite difference and finite element processes. The spectral methods applied are extensions of the standard techniques of separation of variables to the solution of arbitrarily complicated problems.
An alternative topological field theory of generalized complex geometry
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki; Tokunaga, Tatsuya
2007-09-01
We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is A model in the case that the generalized complex structure depends on only a symplectic structure. Our new model is B model in the case that the generalized complex structure depends on only a complex structure.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
Unstructured Cartesian/prismatic grid generation for complex geometries
NASA Technical Reports Server (NTRS)
Karman, Steve L., Jr.
1995-01-01
The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.
Five Dimensional Minimal Supergravities and Four Dimensional Complex Geometries
Grover, Jai; Gutowski, Jan B.; Herdeiro, Carlos A. R.; Sabra, Wafic
2009-05-01
We discuss the relation between solutions admitting Killing spinors of minimal supergravities in five dimensions and four dimensional complex geometries. In the ungauged case (vanishing cosmological constant {lambda} 0) the solutions are determined in terms of a hyper-Kaehler base space; in the gauged case ({lambda}<0) the complex geometry is Kaehler; in the de Sitter case ({lambda}>0) the complex geometry is hyper-Kaehler with torsion (HKT). In the latter case some details of the derivation are given. The method for constructing explicit solutions is discussed in each case.
Tautges, T. J.; Jain, R.; Mathematics and Computer Science
2010-01-01
Nuclear reactor cores are constructed as rectangular or hexagonal lattices of assemblies, where each assembly is itself a lattice of fuel, control, and instrumentation pins, surrounded by water or other material that moderates neutron energy and carries away fission heat. We describe a system for generating geometry and mesh for these systems. The method takes advantage of information about repeated structures in both assembly and core lattices to simplify the overall process. The system allows targeted user intervention midway through the process, enabling modification and manipulation of models for meshing or other purposes. Starting from text files describing assemblies and core, the tool can generate geometry and mesh for these models automatically as well. Simple and complex examples of tool operation are given, with the latter demonstrating generation of meshes with 12 million hexahedral elements in less than 30 minutes on a desktop workstation, using about 4 GB of memory. The tool is released as open source software as part of the MeshKit mesh generation library.
Complex Geometry Creation and Turbulent Conjugate Heat Transfer Modeling
Bodey, Isaac T; Arimilli, Rao V; Freels, James D
2011-01-01
The multiphysics capabilities of COMSOL provide the necessary tools to simulate the turbulent thermal-fluid aspects of the High Flux Isotope Reactor (HFIR). Version 4.1, and later, of COMSOL provides three different turbulence models: the standard k-{var_epsilon} closure model, the low Reynolds number (LRN) k-{var_epsilon} model, and the Spalart-Allmaras model. The LRN meets the needs of the nominal HFIR thermal-hydraulic requirements for 2D and 3D simulations. COMSOL also has the capability to create complex geometries. The circular involute fuel plates used in the HFIR require the use of algebraic equations to generate an accurate geometrical representation in the simulation environment. The best-estimate simulation results show that the maximum fuel plate clad surface temperatures are lower than those predicted by the legacy thermal safety code used at HFIR by approximately 17 K. The best-estimate temperature distribution determined by COMSOL was then used to determine the necessary increase in the magnitude of the power density profile (PDP) to produce a similar clad surface temperature as compared to the legacy thermal safety code. It was determined and verified that a 19% power increase was sufficient to bring the two temperature profiles to relatively good agreement.
A functional approach to geometry optimization of complex systems
NASA Astrophysics Data System (ADS)
Maslen, P. E.
A quadratically convergent procedure is presented for the geometry optimization of complex systems, such as biomolecules and molecular complexes. The costly evaluation of the exact Hessian is avoided by expanding the density functional to second order in both nuclear and electronic variables, and then searching for the minimum of the quadratic functional. The dependence of the functional on the choice of nuclear coordinate system is described, and illustrative geometry optimizations using Cartesian and internal coordinates are presented for Taxol™.
Quantifying networks complexity from information geometry viewpoint
Felice, Domenico Mancini, Stefano; Pettini, Marco
2014-04-15
We consider a Gaussian statistical model whose parameter space is given by the variances of random variables. Underlying this model we identify networks by interpreting random variables as sitting on vertices and their correlations as weighted edges among vertices. We then associate to the parameter space a statistical manifold endowed with a Riemannian metric structure (that of Fisher-Rao). Going on, in analogy with the microcanonical definition of entropy in Statistical Mechanics, we introduce an entropic measure of networks complexity. We prove that it is invariant under networks isomorphism. Above all, considering networks as simplicial complexes, we evaluate this entropy on simplexes and find that it monotonically increases with their dimension.
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
A Simple Quality Triangulation Algorithm for Complex Geometries
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents a new and simple algorithm for quality triangulation in complex geometries. The proposed algorithm is based on an initial equilateral triangle mesh covering the whole domain. The mesh nodes close to the boundary edges satisfy the so-called non-encroaching criterion: the distance ...
Tips on Creating Complex Geometry Using Solid Modeling Software
ERIC Educational Resources Information Center
Gow, George
2008-01-01
Three-dimensional computer-aided drafting (CAD) software, sometimes referred to as "solid modeling" software, is easy to learn, fun to use, and becoming the standard in industry. However, many users have difficulty creating complex geometry with the solid modeling software. And the problem is not entirely a student problem. Even some teachers and…
Complexity of Shapes and Quantitative Reasoning in Geometry
ERIC Educational Resources Information Center
Stavy, Ruth; Babai, Reuven
2008-01-01
We explored the effects of task-related factors on reasoning processes in geometry focusing on a comparison-of-perimeters task in which the irrelevant feature area interferes with the reasoning process. We studied the effects of congruity, salience, and complexity on participants' accuracy of responses and reaction times. The study shows that…
Configurational analysis of an EBT reactor in various magnetic geometries
Owen, L.W.; Uckan, N.A.
1980-01-01
Optimization of vacuum field particle confinement in an ELMO Bumpy Torus (EBT) reactor has been considered. Several methods of improving the efficient utilization of magnetic fields and the particle confinement characteristics of a reactor have been analyzed. These include the use of (1) magnets with a large mirror ratio, (2) high field Nb/sub 3/Sn or Nb/sub 3/Sn/NbTi hybrid mirror coils, (3) split-wedge mirror coils, (4) aspect ratio enhancement (ARE) coils, and (5) recently developed field symmetrizing (SYM) coils. Of these, particle drift orbits and three-dimensional tensor pressure equilibrium calculations have shown that the ARE and SYM coils used in conjunction with high field magnets offer the most promise of good plasma performance in a smaller size (up to 50%) EBT reactor. The relative merits of each magnetic configuration are discussed, and the design characteristics are given.
Geometric Transitions, Topological Strings, and Generalized Complex Geometry
Chuang, Wu-yen; /SLAC /Stanford U., Phys. Dept.
2007-06-29
Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism.
MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS
Cao, Yan; Gohar, Yousry
2015-11-01
In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate the dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Eddy Current Inspection of Components with Complex Geometries
NASA Astrophysics Data System (ADS)
Plotnikov, Yuri; Wang, Changting; McKnight, William; Suh, Ui
2008-02-01
Eddy current (EC) technique is a common inspection method for the detection of open surface cracks and subsurface anomalies. While manual EC inspection is quite reliable on parts with flat (or large curvature) surfaces and parts with consistent subsurface geometry, EC inspection of parts having more complicated surface and subsurface profiles has to rely on automated scan/data collection and post-processing. Examples of the structures with complex geometries are aircraft engine rotating parts and multi-layer aircraft structures (lap joints). Data collection for such structures, in most cases, can be performed by using multiple scans of a single sensor EC probe with multi-frequency excitation. To improve productivity of the inspection, arrays of EC sensors are applied during inspection for surface flaws. In this work, the flexible ECAP (EC array probe) with sensitivity to the cracks of variable orientations is presented. To resolve the complex subsurface geometry of the aircraft skin, pulsed excitation is employed. This makes for a faster data collection and full post-processing capabilities. Conversion to multi-frequency (multi-layer) image analysis is done after data collection is completed. The subsurface flaws present in a particular layer of a riveted lap joint become evident from several EC images, which cannot be accomplished by manual inspection.
Integrated geometry and grid generation system for complex configurations
NASA Technical Reports Server (NTRS)
Akdag, Vedat; Wulf, Armin
1992-01-01
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.
Numerical Simulations of High-Speed Flows Over Complex Geometries
NASA Astrophysics Data System (ADS)
Greene, Patrick Timothy
The effects of surface roughness on the stability of hypersonic flow are of great importance to hypersonic vehicles. Surface roughness can greatly alter boundary-layer flow and cause transition to turbulence to occur much earlier compared to a smooth wall, which will result in a significant increase of wall heating and skin friction drag. The work presented in this dissertation was motivated by a desire to study the effects of isolated roughness elements on the stability of hypersonic boundary layers. A new code was developed which can perform high-order direct numerical simulations of high-speed flows over arbitrary geometries. A fifth-order hybrid weighted essentially non-oscillatory scheme was implemented to capture any steep gradients in the flow created by the geometries. The simulations are carried out on Cartesian grids with the geometries imposed by a third-order cut-cell method. A multi-zone refinement method is also implemented to provide extra resolution at locations with expected complex physics. The combination results in a globally fourth-order scheme. Results for two-dimensional and three-dimensional test cases show good agreement with previous results and will be presented. Results confirming the code's high order of convergence will also be shown. Two-dimensional simulations of flow over complex geometries will be presented to demonstrate the code's capabilities. Results for Mach 6 flow over a three-dimensional cylindrical roughness element will also be presented. The results will show that the code is a promising tool for the study of hypersonic roughness-induced transition.
Geometry and cooperativity effects in adenosine-carboxylic acid complexes.
Schlund, Sebastian; Mladenovic, Milena; Basílio Janke, Eline M; Engels, Bernd; Weisz, Klaus
2005-11-23
NMR experiments and theoretical investigations were performed on hydrogen bonded complexes of specifically 1- and 7-15N-labeled adenine nucleosides with carboxylic acids. By employing a freonic solvent of CDClF2 and CDF3, NMR spectra were acquired at temperatures as low as 123 K, where the regime of slow hydrogen bond exchange is reached and several higher-order complexes were found to coexist in solution. Unlike acetic acid, chloroacetic acid forms Watson-Crick complexes with the proton largely displaced from oxygen to the nitrogen acceptor in an ion pairing structure. Calculated geometries and chemical shifts of the proton in the hydrogen bridge favorably agree with experimentally determined values if vibrational averaging and solvent effects are taken into account. The results indicate that binding a second acidic ligand at the adenine Hoogsteen site in a ternary complex weakens the hydrogen bond to the Watson-Crick bound carboxylic acid. However, substituting a second adenine nucleobase for a carboxylic acid in the trimolecular complex leads to cooperative binding at Watson-Crick and Hoogsteen faces of adenosine.
Verification of a neutronic code for transient analysis in reactors with Hex-z geometry
Gonzalez-Pintor, S.; Verdu, G.; Ginestar, D.
2012-07-01
Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmark and with the results provided by PARCS code. (authors)
Methods of Information Geometry to model complex shapes
NASA Astrophysics Data System (ADS)
De Sanctis, A.; Gattone, S. A.
2016-09-01
In this paper, a new statistical method to model patterns emerging in complex systems is proposed. A framework for shape analysis of 2- dimensional landmark data is introduced, in which each landmark is represented by a bivariate Gaussian distribution. From Information Geometry we know that Fisher-Rao metric endows the statistical manifold of parameters of a family of probability distributions with a Riemannian metric. Thus this approach allows to reconstruct the intermediate steps in the evolution between observed shapes by computing the geodesic, with respect to the Fisher-Rao metric, between the corresponding distributions. Furthermore, the geodesic path can be used for shape predictions. As application, we study the evolution of the rat skull shape. A future application in Ophthalmology is introduced.
Elliptic Solvers with Adaptive Mesh Refinement on Complex Geometries
Phillip, B.
2000-07-24
Adaptive Mesh Refinement (AMR) is a numerical technique for locally tailoring the resolution computational grids. Multilevel algorithms for solving elliptic problems on adaptive grids include the Fast Adaptive Composite grid method (FAC) and its parallel variants (AFAC and AFACx). Theory that confirms the independence of the convergence rates of FAC and AFAC on the number of refinement levels exists under certain ellipticity and approximation property conditions. Similar theory needs to be developed for AFACx. The effectiveness of multigrid-based elliptic solvers such as FAC, AFAC, and AFACx on adaptively refined overlapping grids is not clearly understood. Finally, a non-trivial eye model problem will be solved by combining the power of using overlapping grids for complex moving geometries, AMR, and multilevel elliptic solvers.
Relevance of saddle-splay elasticity in complex nematic geometries.
Kos, Žiga; Ravnik, Miha
2016-01-28
We demonstrate the relevance of saddle-splay elasticity in nematic liquid crystalline fluids in the context of complex surface anchoring conditions and the complex geometrical confinement. Specifically, nematic cells with patterns of surface anchoring and colloidal knots are shown as examples where saddle-splay free energy contribution can have a notable role which originates from nonhomogeneous surface anchoring and the varying surface curvature. Patterned nematic cells are shown to exhibit various (meta)stable configurations of nematic field, with relative (meta)stability depending on the saddle-splay. We show that for high enough values of saddle-splay elastic constant K24 a previously unstable conformation can be stabilised, more generally indicating that the saddle-splay can reverse or change the (meta)stability of various nematic structures affecting their phase diagrams. Furthermore, we investigate saddle-splay elasticity in the geometry of highly curved boundaries - the colloidal particle knots in nematic - where the local curvature of the particles induces complex spatial variations of the saddle-splay contributions. Finally, a nematic order parameter tensor based saddle-splay invariant is shown, which allows for the direct calculation of saddle-splay free energy from the Q-tensor, a possibility very relevant for multiple mesoscopic modelling approaches, such as Landau-de Gennes free energy modelling.
Looking the World from Inside:. Intrinsic Geometry of Complex Systems
NASA Astrophysics Data System (ADS)
Boi, L.
2012-12-01
In this paper we shall address some meeting points between geometry and biology, in order to show that geometrical things and transformations take part intrinsically in the living systems. We focus on some features of macromolecular structures like DNA-proteins complexes. All things we speak about take place in the 3-dimensional space of a living cell and particularly in its nucleus, which of course interacts in many ways and at different levels with the whole cell, its cytoplasm and the organelles. Ideally, we think we should rather consider, instead of a 3-dimensional space, a configuration space characterized by all its phase spaces, since a living being is a very complex dynamical system, but this would be a too difficult, impossible task. This is of course a very partial view, an oversimplification, of what really happen in our organisms. Nevertheless, We believe that in biology we are today facing the following problem: how small or local changes in a living system do affect the global behaviour and response of the whole organisms? We search for an answer by arguing that mostly overall features of living systems are emergent properties of organization and regulation defined at the macroscopic level of their morphology and physiological behaviours, and also by showing that in complex living systems self-organization ensures robustness without loss of plasticity, in the sense that perturbations in the interactions properties of its single parts generally do not have damaging consequences on the living form as a whole.
Numerical Simulations of Low Pressure Inductively Coupled Plasmas in Geometrically Complex Reactors
NASA Astrophysics Data System (ADS)
Yu, Ben; Wu, Hanming; Krishnan, Anantha
1996-10-01
A two-dimensional fluid model has been developed for simulation of low pressure inductively coupled plasma (ICP) reactors. The model obtains solutions for the plasma density, electron temperature, and electric field for the given operating conditions. The physical phenomena and processes such as ambipolar diffusion, thermal diffusion, quasi-neutrality, ionization, inductive Joule heating, and excitations are considered in the model. A significant feature of the model is its capability of handling complex geometries that are often encountered in industrial reactors. Complex reactor geometries are modeled by a body-fitted-coordinate (BFC) formulation. A series of numerical experiments have been conducted using the model to study effects of various parameters such as chamber pressure, size of the wafer, position of the inductive coil, and the power input into the plasma. Different reactor geometries such as the GEC ICP reference cell and the belljar reactor have been simulated. The results of the parametric experiments are presented to show certain systematic trends in performance parameters such as uniformity and processing rates. The ICP model has been coupled to a computational fluid dynamics (CFD) code (capable of 3D simulations) that obtains the flow and pressure distribution inside the chamber. The ICP model will use pressure predictions (from the CFD model) to compute the local ionization rates. Chemical source/sink terms from the plasma dissociation model will be used by the CFD code to account for local reactant depletion effects.
NASA Astrophysics Data System (ADS)
Broqueville, Axel De; Wilde, Juray De
The new concept of a rotating fluidized bed in a static geometry opens perspectives for fluidized bed nuclear reactor technology and is experimentally and numerically investigated. With conventional fluidized bed technology, the maximum attainable power is rather limited and maximum at a certain fluidization gas flow rate. Using a rotating fluidized bed in a static geometry, the fluidization gas drives both the centrifugal force and the counteracting radial gas-solid drag force in a similar way. This allows operating the reactor at any chosen sufficiently high solids loading over a much wider fluidization gas flow rate range and in particular at much higher fluidization gas flow rates than with conventional fluidized bed reactor technology, offering increased flexibility with respect to cooling via the fluidization gas. Furthermore, the centrifugal force can be a multiple of earth gravity, allowing radial gas-solid slip velocities much higher than in conventional fluidized beds. The latter result in gas-solid heat transfer coefficients one or multiple orders of magnitude higher than in conventional fluidized beds. The combination of dense operation and high fluidization gas flow rates allows process intensification and a more compact reactor design.
Raussi, P.; Kainulainen, S.; Kouhia, J.
1995-09-01
There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.
Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy
NASA Astrophysics Data System (ADS)
Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.
2013-03-01
We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.
High performance ultrasonic field simulation on complex geometries
NASA Astrophysics Data System (ADS)
Chouh, H.; Rougeron, G.; Chatillon, S.; Iehl, J. C.; Farrugia, J. P.; Ostromoukhov, V.
2016-02-01
Ultrasonic field simulation is a key ingredient for the design of new testing methods as well as a crucial step for NDT inspection simulation. As presented in a previous paper [1], CEA-LIST has worked on the acceleration of these simulations focusing on simple geometries (planar interfaces, isotropic materials). In this context, significant accelerations were achieved on multicore processors and GPUs (Graphics Processing Units), bringing the execution time of realistic computations in the 0.1 s range. In this paper, we present recent works that aim at similar performances on a wider range of configurations. We adapted the physical model used by the CIVA platform to design and implement a new algorithm providing a fast ultrasonic field simulation that yields nearly interactive results for complex cases. The improvements over the CIVA pencil-tracing method include adaptive strategies for pencil subdivisions to achieve a good refinement of the sensor geometry while keeping a reasonable number of ray-tracing operations. Also, interpolation of the times of flight was used to avoid time consuming computations in the impulse response reconstruction stage. To achieve the best performance, our algorithm runs on multi-core superscalar CPUs and uses high performance specialized libraries such as Intel Embree for ray-tracing, Intel MKL for signal processing and Intel TBB for parallelization. We validated the simulation results by comparing them to the ones produced by CIVA on identical test configurations including mono-element and multiple-element transducers, homogeneous, meshed 3D CAD specimens, isotropic and anisotropic materials and wave paths that can involve several interactions with interfaces. We show performance results on complete simulations that achieve computation times in the 1s range.
Heterometallic antenna-reactor complexes for photocatalysis.
Swearer, Dayne F; Zhao, Hangqi; Zhou, Linan; Zhang, Chao; Robatjazi, Hossein; Martirez, John Mark P; Krauter, Caroline M; Yazdi, Sadegh; McClain, Michael J; Ringe, Emilie; Carter, Emily A; Nordlander, Peter; Halas, Naomi J
2016-08-01
Metallic nanoparticles with strong optically resonant properties behave as nanoscale optical antennas, and have recently shown extraordinary promise as light-driven catalysts. Traditionally, however, heterogeneous catalysis has relied upon weakly light-absorbing metals such as Pd, Pt, Ru, or Rh to lower the activation energy for chemical reactions. Here we show that coupling a plasmonic nanoantenna directly to catalytic nanoparticles enables the light-induced generation of hot carriers within the catalyst nanoparticles, transforming the entire complex into an efficient light-controlled reactive catalyst. In Pd-decorated Al nanocrystals, photocatalytic hydrogen desorption closely follows the antenna-induced local absorption cross-section of the Pd islands, and a supralinear power dependence strongly suggests that hot-carrier-induced desorption occurs at the Pd island surface. When acetylene is present along with hydrogen, the selectivity for photocatalytic ethylene production relative to ethane is strongly enhanced, approaching 40:1. These observations indicate that antenna-reactor complexes may greatly expand possibilities for developing designer photocatalytic substrates. PMID:27444015
Heterometallic antenna−reactor complexes for photocatalysis
Swearer, Dayne F.; Zhao, Hangqi; Zhou, Linan; Zhang, Chao; Robatjazi, Hossein; Martirez, John Mark P.; Krauter, Caroline M.; Yazdi, Sadegh; McClain, Michael J.; Ringe, Emilie; Carter, Emily A.; Nordlander, Peter; Halas, Naomi J.
2016-01-01
Metallic nanoparticles with strong optically resonant properties behave as nanoscale optical antennas, and have recently shown extraordinary promise as light-driven catalysts. Traditionally, however, heterogeneous catalysis has relied upon weakly light-absorbing metals such as Pd, Pt, Ru, or Rh to lower the activation energy for chemical reactions. Here we show that coupling a plasmonic nanoantenna directly to catalytic nanoparticles enables the light-induced generation of hot carriers within the catalyst nanoparticles, transforming the entire complex into an efficient light-controlled reactive catalyst. In Pd-decorated Al nanocrystals, photocatalytic hydrogen desorption closely follows the antenna-induced local absorption cross-section of the Pd islands, and a supralinear power dependence strongly suggests that hot-carrier-induced desorption occurs at the Pd island surface. When acetylene is present along with hydrogen, the selectivity for photocatalytic ethylene production relative to ethane is strongly enhanced, approaching 40:1. These observations indicate that antenna−reactor complexes may greatly expand possibilities for developing designer photocatalytic substrates. PMID:27444015
Heterometallic antenna-reactor complexes for photocatalysis.
Swearer, Dayne F; Zhao, Hangqi; Zhou, Linan; Zhang, Chao; Robatjazi, Hossein; Martirez, John Mark P; Krauter, Caroline M; Yazdi, Sadegh; McClain, Michael J; Ringe, Emilie; Carter, Emily A; Nordlander, Peter; Halas, Naomi J
2016-08-01
Metallic nanoparticles with strong optically resonant properties behave as nanoscale optical antennas, and have recently shown extraordinary promise as light-driven catalysts. Traditionally, however, heterogeneous catalysis has relied upon weakly light-absorbing metals such as Pd, Pt, Ru, or Rh to lower the activation energy for chemical reactions. Here we show that coupling a plasmonic nanoantenna directly to catalytic nanoparticles enables the light-induced generation of hot carriers within the catalyst nanoparticles, transforming the entire complex into an efficient light-controlled reactive catalyst. In Pd-decorated Al nanocrystals, photocatalytic hydrogen desorption closely follows the antenna-induced local absorption cross-section of the Pd islands, and a supralinear power dependence strongly suggests that hot-carrier-induced desorption occurs at the Pd island surface. When acetylene is present along with hydrogen, the selectivity for photocatalytic ethylene production relative to ethane is strongly enhanced, approaching 40:1. These observations indicate that antenna-reactor complexes may greatly expand possibilities for developing designer photocatalytic substrates.
Samuel E. Bays; Rodolfo M. Ferrer; Michael A. Pope; Benoit Forget; Mehdi Asgari
2008-02-01
The sodium fast reactor is under consideration for consuming the transuranic waste in the spent nuclear fuel generated by light water reactors. This work is concerned with specialized target assemblies for an oxide-fueled sodium fast reactor that are designed exclusively for burning the americium and higher mass actinide component of light water reactor spent nuclear fuel (SNF). The associated gamma and neutron radioactivity, as well as thermal heat, associated with decay of these actinides may significantly complicate fuel handling and fabrication of recycled fast reactor fuel. The objective of using targets is to isolate in a smaller number of assemblies these concentrations of higher actinides, thus reducing the volume of fuel having more rigorous handling requirements or a more complicated fabrication process. This is in contrast to homogeneous recycle where all recycled actinides are distributed among all fuel assemblies. Several heterogeneous core geometries were evaluated to determine the fewest target assemblies required to burn these actinides without violating a set of established fuel performance criteria. The DIF3D/REBUS code from Argonne National Laboratory was used to perform the core physics and accompanying fuel cycle calculations in support of this work. Using the REBUS code, each core design was evaluated at the equilibrium cycle condition.
Liquid bridges in complex geometries: Equilibrium shape metamorphosis using electrowetting
NASA Astrophysics Data System (ADS)
Baratian, Davood; Cavalli, Andrea; van den Ende, Dirk; Mugele, Frieder
2015-11-01
The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. We investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces. Using electrowetting, we control the contact angle and thereby manipulate the shape and the equilibrium position of aqueous drops in ambient oil. In the absence of contact angle hysteresis and buoyancy, we find that the equilibrium shape is given by a truncated sphere, prior to filling the wedge corner, at a position that is determined by the drop volume and the contact angle. At this position, the net force between drop and the surfaces vanishes. The effect of buoyancy gives rise to substantial deviations from this equilibrium configuration which we discuss it as well. We elegantly show how the geometric constraint and electrowetting can be used to position droplets inside a wedge in a controlled way, without mechanical actuation. The Netherlands Organization for Scientific Research (NWO).
Meeting on flows of granular materials in complex geometries
Passman, S.L.; Fukushima, E.; Evans, R.E.
1994-11-01
The International Energy Agency Fossil Fuel Multiphase Flow Sciences Agreement has been in effect since 1986. The traditional mechanism for the effort has been information exchange, effected by the inclusion of scientists in annual Executive committee meetings, by exchange of reports and papers, and by visits of scientists to one another`s institutions. In a sequence of informal meetings and at the 1993 Executive committee meeting, held in Pittsburgh, US in March 1994, it was decided that more intensive interactions could be productive. A candidate for such interactions would be specific projects. Each of these would be initiated through a meeting of scientists in which feasibility of the particular project was decided, followed by relatively intense international co-operation in which the work would be done. This is a report of the first of these meetings. Official or unofficial representatives from Canada, italy, japan, mexico, the United Kingdom, and the US met in Albuquerque, New Mexico, US, to consider the subject Flows of Granular Materials in Complex Geometries. Representatives of several other countries expressed interest but were unable to attend this meeting. Sixteen lectures were given on aspects of this topic. It was decided that a co-operative effort was desirable and possible. The most likely candidate for the area of study would be flows in bins and hoppers. Each of the countries wishing to co-operate will pursue funding for its effort. This report contains extended abstracts of the sixteen presentations and a transcription of the final discussion.
NASA Astrophysics Data System (ADS)
Tseng, Chien-Fu; Tsai, Tsung-Yen; Huang, Yen-Hsiu; Lee, Ming-Tsang; Horng, Ray-Hua
2015-12-01
In this study a numerical simulation was carried out to analyze the transport phenomena in a vertical type metal organic chemical vapor deposition (MOCVD) reactor for Gallium Nitride (GaN) growth. The simulated results were compared and validated by experiment. The effects of showerhead design and chamber height are investigated and discussed. It was found that, by properly adjusting the height of the chamber, both the growth rate and film uniformity could be significantly improved. This is attributed to the suppression of the thermal and mass transfer boundary layers by the injection flow of reacting gas mixtures, as well as the confined vertical vortices caused by the geometry of the reduced space. However, inappropriate design of the distance between the showerhead and the susceptor can result in uneven distribution of the organic source in the vicinity of the substrate surface resulting in an uneven growth rate of the GaN film. Consequently, there exists an optimal chamber height that will give the best growth rate and uniformity to the GaN film as discussed in this study. This study provides comprehensive insight into the transport phenomena of GaN growth that includes coupled heat and mass transfer as well as chemical reactions. The results provide important information in a succinct format and enable decisions to be made about the showerhead and the geometrical design and size of a vertical MOCVD reactor.
Implicit Multigrid Solutions for Compressible Flows in Complex Geometries.
NASA Astrophysics Data System (ADS)
Wang, Lixia
Two implicit multigrid algorithms for the two and three dimensional compressible Euler equations have been developed in this dissertation. First, a diagonal implicit multigrid method is developed for solving a finite-volume approximation to the Euler equations in which the dependent variables are stored at the cell vertices. The spatial derivatives in the two dimensional Euler equations are approximated using a conservative cell-vertex finite volume formulation. Artificial dissipation is provided by adding an adaptive blend of second and fourth differences of the solution to maintain stability and accuracy. A Diagonal Alternating Directional Implicit method is used to advance the solution in time. Rapid convergence to a steady-state solution is achieved with local time stepping and the multigrid algorithm. Results for the transonic flow past the NACA 0012 airfoil are presented to verify the accuracy and efficiency of the scheme. Second, the development of an efficient and flexible multiblock/multigrid Euler solver and its application to realistic engineering problems are presented. A cell-centered finite volume method with a multigrid implementation of the Diagonal Alternating Direction Implicit algorithm is used to solve the Euler equations. A fully conservative inter-block boundary condition, which permits the passage of discontinuities across block boundaries with minimum distortion of the solution, is developed for cases in which the grid lines at the inter-block boundaries can be completely continuous or discontinuous. Information is exchanged between blocks by using surface arrays, which contain all the data needed to update the inter-block boundary conditions. Results demonstrate the feasibility of using the present multi -block/multigrid approach to solve flow problems involving complex geometries. Two dimensional results for several types of grids and various free stream conditions have been presented to verify the accuracy and computational efficiency of
Implicit multigrid solutions for compressible flows in complex geometries
NASA Astrophysics Data System (ADS)
Wang, Lixia
Two implicit multigrid algorithms for the two and three dimensional compressible Euler equations are developed. First, a diagonal implicit multigrid method is developed for solving a finite-volume approximation to the Euler equations in which the dependent variables are stored at the cell vertices. The spatial derivatives in the two dimensional Euler equations are approximated using a conservative cell-vertex finite volume formulation. Artificial dissipation is provided by adding an adaptive blend of second and fourth differences of the solution to maintain stability and accuracy. A diagonal alternating directional implicit method is used to advance the solution in time. Rapid convergence to a steady-state solution is achieved with local time stepping and the multigrid algorithm. Results for the transonic flow past the NACA 0012 airfoil are presented to verify the accuracy and efficiency of the scheme. Second, the development of an efficient and flexible multiblock/multigrid Euler solver and its application to realistic engineering problems are presented. A cell-centered finite volume method with a multigrid implementation of the diagonal alternating direction implicit algorithm is used to solve the Euler equations. A fully conservative interblock boundary condition, which permits the passage of discontinuities across block boundaries with minimum distortion of the solution, is developed for cases in which the grid lines at the interblock boundaries can be completely continuous or discontinuous. Information is exchanged between blocks by using surface arrays, which contain all the data needed to update the interblock boundary conditions. Results demonstrate the feasibility of using the present multiblock/multigrid approach to solve flow problems involving complex geometries. Two dimensional results for several types of grids and various free stream conditions have been presented to verify the accuracy and computational efficiency of the method. The application of
Methods of treating complex space vehicle geometry for charged particle radiation transport
NASA Technical Reports Server (NTRS)
Hill, C. W.
1973-01-01
Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.
SIMULATING BIOCHEMICAL SIGNALING NETWORKS IN COMPLEX MOVING GEOMETRIES.
Strychalski, Wanda; Adalsteinsson, David; Elston, Timothy C
2010-01-01
Signaling networks regulate cellular responses to environmental stimuli through cascades of protein interactions. External signals can trigger cells to polarize and move in a specific direction. During migration, spatially localized activity of proteins is maintained. To investigate the effects of morphological changes on intracellular signaling, we developed a numerical scheme consisting of a cut cell finite volume spatial discretization coupled with level set methods to simulate the resulting advection-reaction-diffusion system. We then apply the method to several biochemical reaction networks in changing geometries. We found that a Turing instability can develop exclusively by cell deformations that maintain constant area. For a Turing system with a geometry-dependent single or double peak solution, simulations in a dynamically changing geometry suggest that a single peak solution is the only stable one, independent of the oscillation frequency. The method is also applied to a model of a signaling network in a migrating fibroblast. PMID:24086102
NASA Astrophysics Data System (ADS)
Liu, James Chien-Chih
The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li_2BeF_4 (Flibe) jets encircles the reactor's central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. Xrays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket--a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers. The work here presents a numerical method called the Transient Shockwave Upwind Numerical Analysis Method for ICF (TSUNAMI). It is a tool for analyzing two-dimensional blast venting in the HYLIFE reactor. TSUNAMI relies on the assumptions of adiabatic and ideal gas behavior by the vapor and immobile liquid to simplify the problem of two-phase shock propagation to a problem of single phase gas dynamics in a fixed, complex geometry. To validate the accuracy of the numerical method, experimental data for comparison was obtained from the Liquid Jet Array Shock Tube (LJAST). The experiment provided transient pressure data for gas shocks impacting an array of solid cylinders and an array of liquid jets with similar geometry to the HYLIFE blanket. The comparisons showed
Chien-Chih Liu, J.
1993-12-31
The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li{sub 2}BeF{sub 4} (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.
Overture: Object-Oriented Tools for Application with Complex Geometry
Brown, D.; Henshaw, B.; Quinlan, D.
1999-05-31
The Overture framework is an object-oriented environment for solving partial differential equations in two and three space dimensions. It is a collection of C++ libraries that enables the use of finite difference and finite volume methods at a level that hides the details of the associated data structures. Overture can be used to solve problems in complicated, moving geometries using the method of overlapping grids. It has support for grid generation, difference operators, boundary conditions, data-base access and graphics. Short sample code segments are presented to show the power of this approach.
Coil Designs for Novel Magnetic Geometries to Cure the Divertor Heat Flux Problem for Reactors
NASA Astrophysics Data System (ADS)
Pekker, M.; Valanju, P.; Kotschenreuther, M.; Wiley, J. C.; Strickler, D.
2004-11-01
Coil designs are developed for novel magnetic divertor geometries with a second axi-symmetric x-point and flux expansion region along the separatrix. Adjacent posters describe how these lead to spreading of heat flux and the possibility of stable, complete detachment to overcome serious physics and engineering problems in reactors. The principal feasibility issue is creating, with simple coils, additional X-points on the separatrix without extensively deforming the magnetic field in the main plasma. For the spherical tokamak NSTX, we show that adding one or two poloidal coils suffices to create a divergent flux at the divertor, i.e., a new x-point. The currents and forces for the extra coils are small. We also modify ARIES ST design to show reactor feasibility. Optimized coil designs for PEGASUS, ARIES RS/AT, and a modular ITER retrofit are also being developed. For our calculations we used self consistent code FBEQ, which was used to design NSTX. We also use NCSX tools for optimization of designs with competing physics and engineering constraints.
Theory of diffusion-influenced reactions in complex geometries.
Galanti, Marta; Fanelli, Duccio; Traytak, Sergey D; Piazza, Francesco
2016-06-21
Chemical transformations involving the diffusion of reactants and subsequent chemical fixation steps are generally termed "diffusion-influenced reactions" (DIR). Virtually all biochemical processes in living media can be counted among them, together with those occurring in an ever-growing number of emerging nano-technologies. The role of the environment's geometry (obstacles, compartmentalization) and distributed reactivity (competitive reactants, traps) is key in modulating the rate constants of DIRs, and is therefore a prime design parameter. Yet, it is a formidable challenge to build a comprehensive theory that is able to describe the environment's "reactive geometry". Here we show that such a theory can be built by unfolding this many-body problem through addition theorems for special functions. Our method is powerful and general and allows one to study a given DIR reaction occurring in arbitrary "reactive landscapes", made of multiple spherical boundaries of given size and reactivity. Importantly, ready-to-use analytical formulas can be derived easily in most cases.
Theory of diffusion-influenced reactions in complex geometries.
Galanti, Marta; Fanelli, Duccio; Traytak, Sergey D; Piazza, Francesco
2016-06-21
Chemical transformations involving the diffusion of reactants and subsequent chemical fixation steps are generally termed "diffusion-influenced reactions" (DIR). Virtually all biochemical processes in living media can be counted among them, together with those occurring in an ever-growing number of emerging nano-technologies. The role of the environment's geometry (obstacles, compartmentalization) and distributed reactivity (competitive reactants, traps) is key in modulating the rate constants of DIRs, and is therefore a prime design parameter. Yet, it is a formidable challenge to build a comprehensive theory that is able to describe the environment's "reactive geometry". Here we show that such a theory can be built by unfolding this many-body problem through addition theorems for special functions. Our method is powerful and general and allows one to study a given DIR reaction occurring in arbitrary "reactive landscapes", made of multiple spherical boundaries of given size and reactivity. Importantly, ready-to-use analytical formulas can be derived easily in most cases. PMID:27241805
Equilibrium between Different Coordination Geometries in Oxidovanadium(IV) Complexes
ERIC Educational Resources Information Center
Ugone, Valeria; Garribba, Eugenio; Micera, Giovanni; Sanna, Daniele
2015-01-01
In this laboratory activity, the equilibrium between square pyramidal and octahedral V(IV)O[superscript 2+] complexes is described. We propose a set of experiments to synthesize and characterize two types of V(IV)O[superscript 2+] complexes. The experiment allows great flexibility and may be effectively used at a variety of levels and the activity…
Boundary treatments for 2D elliptic mesh generation in complex geometries
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents a boundary treatment method for 2D elliptic mesh generation in complex geometries. Corresponding to Neumann- Dirichlet boundary conditions (sliding boundary conditions), the proposed method aims at achieving orthogonal and smooth nodal distribution along irregular boundaries. In ...
NASA Astrophysics Data System (ADS)
Roy, Olivier; Mahaut, Steve; Casula, Olivier
2002-05-01
In many industrial sectors, as nuclear and aircraft, the main part of ultrasonic non destructive testing is carried out using contact transducers. Among others, the cooling piping of French pressurized water reactor comprises many welding components with complex geometry which lead to degraded inspection performances; loss of sensitivity due to unmatched contact on irregular surface, beam distortions, uncovered area. To improve the performances of such inspections, the French Atomic Energy Commission (CEA), supported by the safety authorities (IPSN), has developed a new concept of contact phased array transducer. Its radiating surface is flexible to optimize the contact, while the characteristics of the transmitted beam (orientation and focal depth) are preserved thanks to a delay law optimizing algorithm. This computation requires the actual positions of the elements, so an instrumentation is coupled to the transducer to measure its radiating surface distortions. Thus, this smart flexible transducer becomes self-adaptive. Recent studies have been made to obtain further performances improvements of this system, including instrumentation development and a new phased array design allowing to generate both longitudinal and shear waves beams. Inspections have been performed on a specimen containing artificial defects under a realistic profile, with an adaptive mode to compensate the effect of the irregular profile. Experimental results show the ability of this system to detect and characterize defects under irregular profiles, using longitudinal or shear waves.
A coupled multi-block solution procedure for spray combustion in complex geometries
NASA Technical Reports Server (NTRS)
Chen, Kuo-Huey; Shuen, Jian-Shun
1993-01-01
Turbulent spray-combusting flow in complex geometries is presently treated by a coupled implicit procedure that employs finite-rate chemistry and real gas properties for combustion, as well as the stochastic separated model for spray and a multiblock treatment for complex geometries. Illustrative numerical tests conducted encompass a steady-state nonreacting backward-facing step flow, a premixed single-phase combustion flow, and spray combustion flow in a gas turbine combustor.
Solar proton exposure of an ICRU sphere within a complex structure Part I: Combinatorial geometry
NASA Astrophysics Data System (ADS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2016-06-01
The 3DHZETRN code, with improved neutron and light ion (Z ≤ 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.
Solar proton exposure of an ICRU sphere within a complex structure Part I: Combinatorial geometry.
Wilson, John W; Slaba, Tony C; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A
2016-06-01
The 3DHZETRN code, with improved neutron and light ion (Z≤2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency. PMID:27345203
Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry
NASA Technical Reports Server (NTRS)
Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
The 3DHZETRN code, with improved neutron and light ion (Z (is) less than 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.
Generation of unstructured grids and Euler solutions for complex geometries
NASA Technical Reports Server (NTRS)
Loehner, Rainald; Parikh, Paresh; Salas, Manuel D.
1989-01-01
Algorithms are described for the generation and adaptation of unstructured grids in two and three dimensions, as well as Euler solvers for unstructured grids. The main purpose is to demonstrate how unstructured grids may be employed advantageously for the economic simulation of both geometrically as well as physically complex flow fields.
Geometry and quadratic nonlinearity of charge transfer complexes in solution: a theoretical study.
Mukhopadhyay, S; Pandey, Ravindra; Das, Puspendu K; Ramasesha, S
2011-01-28
In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO∕S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, β(HRS) and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases.
Geometry and quadratic nonlinearity of charge transfer complexes in solution: A theoretical study
Mukhopadhyay, S.; Ramasesha, S.; Pandey, Ravindra; Das, Puspendu K.
2011-01-28
In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, {beta}{sub HRS} and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases.
Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2015-01-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.
Acoustic scattering from phononic crystals with complex geometry.
Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J
2016-05-01
This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.
Titanium "constrained geometry" complexes with pendant arene groups.
Dureen, Meghan A; Brown, Christopher C; Morton, Jason G M; Stephan, Douglas W
2011-03-28
The synthesis of the proligands C(5)Me(4)HSiMe(2)N(H)R) (R = CMe(2)Ph 1, 2-C(6)H(4)Ph 2) was accomplished via a straightforward salt metathesis reaction of the appropriate lithium amide and ClSiMe(2)(C(5)Me(5)H). Generation of the dilithio salt and reaction with TiCl(3)·(THF)(3) followed by oxidation gave C(5)Me(4)SiMe(2)N(C(6)H(4)Ph)TiCl(2) (3) in low yield. In contrast, deprotonation of 1 and 2 and reaction with (Me(2)N)(2)TiCl(2) afforded C(5)Me(4)(SiMe(2)NR)Ti(NMe(2))(2) (R = CMe(2)Ph 4, 2-C(6)H(4)Ph 5), respectively, in good yields Treatment with MeI gave the analogs C(5)Me(4)(SiMe(2)NR)TiI(2) (R = CMe(2)Ph 6, 2-C(6)H(4)Ph 7). Reduction of 7 with potassium graphite afforded C(5)Me(4)(SiMe(2)NC(6)H(4)Ph)Ti 8. Treatment of 6 and 7 with MeMgBr afforded C(5)Me(4)(SiMe(2)NR)TiMe(2) (R = CMe(2)Ph 9, 2-C(6)H(4)Ph 10). Complexes 9 and 10 in combination with the activator [Ph(3)C][B(C(6)F(5))(4)] catalyzed the polymerization of styrene and ethylene. Copolymerization was also investigated. While the catalyst derived from 10 showed poor activity, compound 9 showed markedly higher activity than 10 and (C(5)Me(4))SiMe(2)(NtBu)]TiMe(2). PMID:21298170
Extension of RAPTOR-M3G to r-θ-z Geometry for Use in Reactor Dosimetry Applications
NASA Astrophysics Data System (ADS)
Hunter, Melissa A.; Longoni, Gianluca; Anderson, Stanwood L.
2009-08-01
The RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3-D Geometries) is a new deterministic radiation transport code that was originally developed for x-y-z geometry. The development of the r-θ-z version of RAPTOR-M3G and its application to determine ex-vessel neutron dosimetry responses in the cavity of a typical 2-loop pressurized water reactor is presented. The neutron dosimetry responses determined from RAPTOR-M3G and TORT 3-D r-θ-z calculations are compared to actual measured responses.
NASA Astrophysics Data System (ADS)
Vyawahare, Vishwesh A.; Nataraj, P. S. V.
2013-07-01
In this paper, we report the development and analysis of some novel versions and approximations of the fractional-order (FO) point reactor kinetics model for a nuclear reactor with slab geometry. A systematic development of the FO Inhour equation, Inverse FO point reactor kinetics model, and fractional-order versions of the constant delayed neutron rate approximation model and prompt jump approximation model is presented for the first time (for both one delayed group and six delayed groups). These models evolve from the FO point reactor kinetics model, which has been derived from the FO Neutron Telegraph Equation for the neutron transport considering the subdiffusive neutron transport. Various observations and the analysis results are reported and the corresponding justifications are addressed using the subdiffusive framework for the neutron transport. The FO Inhour equation is found out to be a pseudo-polynomial with its degree depending on the order of the fractional derivative in the FO model. The inverse FO point reactor kinetics model is derived and used to find the reactivity variation required to achieve exponential and sinusoidal power variation in the core. The situation of sudden insertion of negative reactivity is analyzed using the FO constant delayed neutron rate approximation. Use of FO model for representing the prompt jump in reactor power is advocated on the basis of subdiffusion. Comparison with the respective integer-order models is carried out for the practical data. Also, it has been shown analytically that integer-order models are a special case of FO models when the order of time-derivative is one. Development of these FO models plays a crucial role in reactor theory and operation as it is the first step towards achieving the FO control-oriented model for a nuclear reactor. The results presented here form an important step in the efforts to establish a step-by-step and systematic theory for the FO modeling of a nuclear reactor.
NASA Astrophysics Data System (ADS)
Díaz Lantada, Andrés; de Blas Romero, Adrián; Chacón Tanarro, Enrique
2016-06-01
In our work we present the complete development process of geometrically complex micro-vascular shape-memory polymer actuators. The complex geometries and three-dimensional networks are designed by means of computer aided design resources. Manufacture is accomplished, in a single step, by means of laser stereolithography, directly from the computer-aided design files with the three dimensional geometries of the different actuators under development. To our knowledge, laser stereolithography is applied here for the first time to the development of shape memory polymer devices with complex geometries and inner micro-vasculatures for their activation using a thermal fluid. Final testing of the developed actuators helps to validate the approach and to put forward some present challenges.
Geometry optimization of molecular clusters and complexes using scaled internal coordinates
NASA Astrophysics Data System (ADS)
Maslen, P. E.
2005-01-01
Scaled internal coordinates are introduced for use in the geometry optimization of systems composed of multiple fragments, such as solvated molecules, clusters, and biomolecular complexes. The new coordinates are related to bond lengths, bond angles and torsion angles by geometry-dependent scaling factors. The scaling factors serve to expedite the optimization of complexes containing outlying fragments, without hindering the optimization of the intramolecular degrees of freedom. Trial calculations indicate that, at asymptotic separations, the scaling factors improve the rate of convergence by a factor of 4 to 5.
Numerical simulations of cell interactions under shear flows in complex geometries
NASA Astrophysics Data System (ADS)
Peng, Gaozhu
2005-11-01
The receptor-mediated leukocyte adhesion and rolling on endothelium under shear flows are of crucial importance in governing a range of cell functions: inflammatory response, lymphocyte homing, and sickle cell vascular occlusion. In vivo, an endothelium-lined blood vessel lumen has a non-flat irregular complex geometry presented to blood flows, and adherent leukocytes can lead to further geometry complexity. This geometry factor can have a prominent impact on the mechanics and hemodynamics of cell interactions and adhesions in high endothelial venules, non-uniform capillaries and post-capillary expansions to name a few. In this work, a ghost-cell immerse boundary/front tracking method is presented to examine the physiological role of the blood vessel geometry in microcirculation. Motions of deformable blood cells are computed via a multiphase front tracking method. Boundary conditions for arbitrary geometries are enforced through a high-order ghost cell immersed boundary method. The current method is validated and used to explore the potential roles of vessel geometry in modulating hemodynamics and kinetics of 2d/3d cell interactions, in particular leukocyte adhesion and accumulation.
Two-Dimensional x-y and r-z Geometry Multigroup Transport Code System for Large Toroidal Reactors.
1980-06-16
Version: 00 Although TRIDENT-CTR is a follow-on code to TRIDENT, it has incorporated several features that make it significantly different. It can handle a wide range of irregular geometric domains in both x-y and r-z geometries. However, it was principally designed to solve shielding and blanket problems for large toroidal reactors. TRIDENT-CTR is a two-dimensional, x-y and r-z geometry, multigroup, neutral particle transport code. The use of triangular finite elements gives it the geometric flexibilitymore » to cope with the nonorthogonal shapes of many toroidal designs. The code is capable of handling a wide variety of problems having irregular domains in both x-y and r-z geometries.« less
Two-phase flow in complex geometries: A diffuse domain approach
Aland, S.; Voigt, A.
2011-01-01
We present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. We combine the diffuse domain method for solving PDEs in complex geometries with the diffuse-interface (phase-field) method for simulating multiphase flows. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. The method is straightforward to implement using standard software packages; we use adaptive finite elements here. We present numerical examples demonstrating the effectiveness of the algorithm. We simulate multiphase flow in a driven cavity on an extended domain and find very good agreement with results obtained by solving the equations and boundary conditions in the original domain. We then consider successively more complex geometries and simulate a droplet sliding down a rippled ramp in 2D and 3D, a droplet flowing through a Y-junction in a microfluidic network and finally chaotic mixing in a droplet flowing through a winding, serpentine channel. The latter example actually incorporates two different diffuse domains: one describes the evolving droplet where mixing occurs while the other describes the channel. PMID:21918638
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-10-01
X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.
A Tightly Coupled Particle-Fluid Model for DNA-Laden Flows in Complex Microscale Geometries
Trebotich, D; Miller, G H; Colella, P; Graves, D T; Martin, D F; Schwartz, P O
2004-11-18
We present a stable and convergent method for the computation of flows of DNA-laden fluids in microchannels with complex geometry. The numerical strategy combines a ball-rod model representation for polymers tightly coupled with a projection method for incompressible viscous flow. We use Cartesian grid embedded boundary methods to discretize the fluid equations in the presence of complex domain boundaries. A sample calculation is presented showing flow through a packed array microchannel in 2D.
Pandey, Ravindra; Ghosh, Sampa; Mukhopadhyay, S; Ramasesha, S; Das, Puspendu K
2011-01-28
We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, β(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D=I(2ω,X,X)/I(2ω,Z,X) and D(')=I(2ω,X,C)/I(2ω,Z,C) in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, β(HRS), and the value of macroscopic depolarization ratios, D and D('), are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical β(HRS), D and D(') values as a function of the geometry of the complex. The calculated β(HRS), D, and D(') values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30° is observed. Thus, we have demonstrated in
Cobalt(II) complex with new terpyridine ligand: An ab initio geometry optimization investigation
NASA Astrophysics Data System (ADS)
Ciesielski, Artur; Gorczyński, Adam; Jankowski, Piotr; Kubicki, Maciej; Patroniak, Violetta
2010-06-01
Structural parameters of a complex formed between Co(II), and a terpyridine ligand were investigated using the unrestricted Becke three-parameter hybrid exchange functional combined with the Lee-Yang-Parr correlation functional (B3LYP) with the LANL2DZ, 6-31G(d,p), and 6-31G++(d,p) basis sets applied for geometry optimizations. The computations reveal that frequently used methods, which take into consideration primary and secondary interactions, can often be efficient in optimizing structural geometries of systems based on organic molecules and transition-metal ions.
Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries
NASA Astrophysics Data System (ADS)
Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen
2016-09-01
The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs.
Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries.
Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen
2016-01-01
The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131
Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries
Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen
2016-01-01
The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131
Metric Projective Geometry, BGG Detour Complexes and Partially Massless Gauge Theories
NASA Astrophysics Data System (ADS)
Gover, A. Rod; Latini, Emanuele; Waldron, Andrew
2015-11-01
A projective geometry is an equivalence class of torsion free connections sharing the same unparametrised geodesics; this is a basic structure for understanding physical systems. Metric projective geometry is concerned with the interaction of projective and pseudo-Riemannian geometry. We show that the BGG machinery of projective geometry combines with structures known as Yang-Mills detour complexes to produce a general tool for generating invariant pseudo-Riemannian gauge theories. This produces (detour) complexes of differential operators corresponding to gauge invariances and dynamics. We show, as an application, that curved versions of these sequences give geometric characterizations of the obstructions to propagation of higher spins in Einstein spaces. Further, we show that projective BGG detour complexes generate both gauge invariances and gauge invariant constraint systems for partially massless models: the input for this machinery is a projectively invariant gauge operator corresponding to the first operator of a certain BGG sequence. We also connect this technology to the log-radial reduction method and extend the latter to Einstein backgrounds.
Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).
Surprising Coordination Geometry Differences in Ce(IV)- and Pu(IV)-Maltol Complexes
Lawrence Berkeley National Laboratory; Raymond, Kenneth; Szigethy, Geza; Xu, Jide; Gorden, Anne E.V.; Teat, Simon J.; Shuh, David K.; Raymond, Kenneth N.
2008-02-12
As part of a study to characterize the detailed coordination behavior of Pu(IV), single crystal X-ray diffraction structures have been determined for Pu(IV) and Ce(IV) complexes with the naturally-occurring ligand maltol (3-hydroxy-2-methyl-pyran-4-one) and its derivative bromomaltol (5-bromo-3-hydroxy-2-methyl-pyran-4-one). Although Ce(IV) is generally accepted as a structural analog for Pu(IV), and the maltol complexes of these two metals are isostructural, the corresponding bromomaltol complexes are strikingly different with respect to ligand orientation about the metal ion: All complexes exhibit trigonal dodecahedral coordination geometry but the Ce(IV)-bromomaltol complex displays an uncommon ligand arrangement not mirrored in the Pu(IV) complex, although the two metal species are generally accepted to be structural analogs.
XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-08-01
X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.
Subramanian, K R; Thubrikar, M J; Fowler, B; Mostafavi, M T; Funk, M W
2000-01-01
We present a technique that accurately reconstructs complex three dimensional blood vessel geometry from 2D intravascular ultrasound (IVUS) images. Biplane x-ray fluoroscopy is used to image the ultrasound catheter tip at a few key points along its path as the catheter is pulled through the blood vessel. An interpolating spline describes the continuous catheter path. The IVUS images are located orthogonal to the path, resulting in a non-uniform structured scalar volume of echo densities. Isocontour surfaces are used to view the vessel geometry, while transparency and clipping enable interactive exploration of interior structures. The two geometries studied are a bovine artery vascular graft having U-shape and a constriction, and a canine carotid artery having multiple branches and a constriction. Accuracy of the reconstructions is established by comparing the reconstructions to (1) silicone moulds of the vessel interior, (2) biplane x-ray images, and (3) the original echo images. Excellent shape and geometry correspondence was observed in both geometries. Quantitative measurements made at key locations of the 3D reconstructions also were in good agreement with those made in silicone moulds. The proposed technique is easily adoptable in clinical practice, since it uses x-rays with minimal exposure and existing IVUS technology. PMID:11105284
Yarden, Tohar S; Joselevich, Ernesto
2010-11-10
We present a new approach for the creation of nanowires with well-defined complex geometries by electrodeposition onto self-organized single-walled carbon nanotubes. The concept is demonstrated by generation of continuous Au nanowires with various geometries, including parallel arrays, serpentines, and coils. The generality of this approach is further illustrated by synthesizing Bi(2)Te(3) nanowires. Our concept of "drawing with nanotubes" offers to combine different material properties with complex geometries on the route to new functional nanosystems.
Groundwater Storage Dynamics in High Elevation Meadows Affected By Complex Aquifer Geometry
NASA Astrophysics Data System (ADS)
Ciruzzi, D.; Lowry, C.
2014-12-01
The Sierra Nevada represents a cascading hydrologic cycle where snowpack, meadow aquifers, and streams are all hydrologically connected. Monitoring the water balance within high elevation meadows is vital in order to effectively quantify watershed scale storage dynamics, which support meadow ecological communities as well as downstream users. In this case, much of the San Francisco, CA water supply originates from the seasonally released snowmelt from high elevation meadows to downstream reservoirs. In previous studies of high elevation meadows, the water mass balance was closed under the assumption that the meadow sediment was spatially uniform in thickness. Here, complex aquifer geometry was identified in Tuolumne Meadows, CA from a high-resolution ground-penetrating radar survey. This new geometry was compared to the previous geologic model of high elevation meadow aquifers using numerical models simulating both current and future snowmelt scenarios. In addition, the impact of variability in meadow sediment and slope were evaluated to quantify storage properties of representative Sierra Nevada meadow types. Results demonstrate that the previous aquifer geometry model significantly overestimates both the spatial and temporal volumetric storage and release of groundwater to streams. These implications are noteworthy for ecosystem restoration and water supply strategies that aim to rectify water supply to and from these meadows especially when considering drought scenarios. In order to move forward and effectively and efficiently monitor the seasonal volume of water stored within the Sierra Nevada, complex aquifer geometry within high elevation meadows must be considered.
Cartesian grid simulations of gas-solids flow systems with complex geometry
Dietiker, Jean-Francois; Li, Tingwen; Garg, Rahul; Shahnam, Mehrdad
2013-02-01
Complex geometries encountered in many applications of gas–solids flow need special treatment in most legacy multiphase flow solvers with Cartesian numerical grid. This paper briefly outlines the implementation of a cut cell technique in the open-source multiphase flow solver—MFIX for accurate representation of complex geometries. Specifically, applications of the Cartesian cut cell method to different gas–solids fluidization systems including a small scale bubbling fluidized bed with submerged tube bundle and a complete pilot-scale circulating fluidized bed will be presented. In addition to qualitative predictions on the general flow behaviors inside each system, quantitative comparison with the available experimental data will be presented. Furthermore, some results on extending the current cut-cell technique to Lagrangian–Eulerian simulations will be presented.
Spectral element-Fourier method for unsteady conjugate heat transfer in complex geometry flows
NASA Astrophysics Data System (ADS)
Amon, Cristina H.
1995-04-01
A spectral-element Fourier method (SEFM) is presented for the direct numerical simulation of forced convective heat transfer and conjugate conduction/convection in transitional internal flows in complex geometries. The SEFM is employed for the spatial discretization of the unsteady, incompressible, three-dimensional Navier-Stokes and energy equations. The resulting discrete equations are solved by a semi-implicit method in time treating explicitly the convection operator and implicitly the remaining pressure and viscous contributions. This methodology is illustrated by performing direct numerical simulations to investigate forced convective heat transfer in supercritical self-sustained oscillatory flows and conjugate effects in multimaterial domains. Highly unsteady flows in complex geometries are considered, including modified channels with periodic inhomogeneities such as spanwise rectangular and triangular grooves encountered in electronic equipment and compact heat exchangers.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.
1984-01-01
A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.
Galano, Annia; Narciso-Lopez, Marcela; Francisco-Marquez, Misaela
2010-05-13
Water complexes involving methanol, ethanol, formaldehyde, formic acid, acetone, ammonia, acetylene, ethylene, chloroethene, trichloroethene, 1,1,1-trichloroethane, hydroxyl radical, and hydroperoxyl radical have been studied. Enthalpies, entropies, and Gibbs free energies of association have been estimated, as well as the concentrations of the complexes under lower-troposphere conditions. The influence of the relative air humidity on the complexation processes has been analyzed. The association processes yielding water complexes of methanol, ethanol, formic acid, ammonia, acetone, hydroxyl radical, and hydroperoxyl radical were found to be more exothermic than that of the water dimer. General trends for the reactivity of the studied water complexes, compared to those of the corresponding free species, are proposed based on global reactivity indexes. The previously reported increased reactivity of the (*)OOH self-reaction, when there is water present, has been explained. The IR spectra of the complexes have been analyzed and compared with those of the free species. PMID:20394451
McGarry, Conor K.; Chinneck, Candice D.; O'Toole, Monica M.; O'Sullivan, Joe M; Prise, Kevin M.; Hounsell, Alan R.
2011-04-15
Purpose: The aim of this study is to compare the sensitivity of different metrics to detect differences in complexity of intensity modulated radiation therapy (IMRT) plans following upgrades, changes to planning parameters, and patient geometry. Correlations between complexity metrics are also assessed. Method: A program was developed to calculate a series of metrics used to describe the complexity of IMRT fields using monitor units (MUs) and multileaf collimator files: Modulation index (MI), modulation complexity score (MCS), and plan intensity map variation (PIMV). Each metric, including the MUs, was used to assess changes in beam complexity for six prostate patients, following upgrades in the inverse planning optimization software designed to incorporate direct aperture optimization (DAO). All beams were delivered to a 2D ionization chamber array and compared to those calculated using gamma analysis. Each complexity metric was then calculated for all beams, on a different set of six prostate IMRT patients, to assess differences between plans calculated using different minimum field sizes and different maximum segment numbers. Different geometries, including CShape, prostate, and head and neck phantoms, were also assessed using the metrics. Correlations between complexity metrics were calculated for 20 prostate IMRT patients. Results: MU, MCS, MI, and PIMV could all detect reduced complexity following an upgrade to the optimization leaf sequencer, although only MI and MCS could detect a reduction in complexity when one-step optimization (DAO) was employed rather than two-step optimization. All metrics detected a reduction in complexity when the minimum field size was increased from 1 to 4 cm and all apart from PIMV detected reduced complexity when the number of segments was significantly reduced. All metrics apart from MI showed differences in complexity depending on the treatment site. Significant correlations exist between all metrics apart from MI and PIMV for
Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries
NASA Astrophysics Data System (ADS)
Yellowhair, Julius; Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.
2014-09-01
Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling nonconventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.
Luo, Hu-Ping; Al-Dahhan, Muthanna H
2012-04-01
Photosynthetic microorganisms have been attracting world attention for their great potential as renewable energy sources in recent years. Cost effective production in large scale, however, remains a major challenge to overcome. It is known to the field that turbulence could help improving the performance of photobioreactors due to the so-called flashing light effects. Better understanding of the multiphase fluid dynamics and the irradiance distribution inside the reactor that cause the flashing light effects, as well as quantifying their impacts on the reactor performance, thus, are crucial for successful design and scale-up of photobioreactors. In this study, a species of red marine microalgae, Porphyridium sp., was grown in three airlift column photobioreactors (i.e., draft tube column, bubble column, and split column). The physical properties of the culture medium, the local fluid dynamics and the photobioreactor performances were investigated and are reported in this part of the manuscript. Results indicate that the presence of microalgae considerably affected the local multiphase flow dynamics in the studied draft tube column. Results also show that the split column reactor works slightly better than the draft tube and the bubble columns due to the spiral flow pattern inside the reactor.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Kim, Yong-Jun; Yi, Hong-Liang; Xie, Ming; Tan, He-Ping
2016-08-01
The natural element method (NEM) is extended to solve the polarized radiative transfer problem in a two-dimensional scattering medium with complex geometries, in which the angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by the Galerkin weighted residuals approach. The Laplace interpolation scheme is adopted to obtain the shape functions used in the Galerkin weighted residuals approach. The NEM solution to the vector radiative transfer in a square enclosure filled with a Mie scattering medium is first examined to validate our program. We then study the polarized radiative transfer in two kinds of geometries filled with scattering medium which is equivalent to a suspension of latex spheres in water. Three sizes of spheres are considered. The results for non-dimensional polarized radiative flux along the boundaries and the angular distributions of the Stokes vector at specific positions are presented and discussed. For the complex geometry bounded by the square and circular object, numerical solutions are presented for the cases both with Lambertian (diffuse) reflection and with Fresnel reflection. Some interesting phenomenon are found and analyzed.
2012-01-01
Background Experiments in silico using stochastic reaction-diffusion models have emerged as an important tool in molecular systems biology. Designing computational software for such applications poses several challenges. Firstly, realistic lattice-based modeling for biological applications requires a consistent way of handling complex geometries, including curved inner- and outer boundaries. Secondly, spatiotemporal stochastic simulations are computationally expensive due to the fast time scales of individual reaction- and diffusion events when compared to the biological phenomena of actual interest. We therefore argue that simulation software needs to be both computationally efficient, employing sophisticated algorithms, yet in the same time flexible in order to meet present and future needs of increasingly complex biological modeling. Results We have developed URDME, a flexible software framework for general stochastic reaction-transport modeling and simulation. URDME uses Unstructured triangular and tetrahedral meshes to resolve general geometries, and relies on the Reaction-Diffusion Master Equation formalism to model the processes under study. An interface to a mature geometry and mesh handling external software (Comsol Multiphysics) provides for a stable and interactive environment for model construction. The core simulation routines are logically separated from the model building interface and written in a low-level language for computational efficiency. The connection to the geometry handling software is realized via a Matlab interface which facilitates script computing, data management, and post-processing. For practitioners, the software therefore behaves much as an interactive Matlab toolbox. At the same time, it is possible to modify and extend URDME with newly developed simulation routines. Since the overall design effectively hides the complexity of managing the geometry and meshes, this means that newly developed methods may be tested in a realistic
A Numerical Algorithm for Complex Biological Flow in Irregular Microdevice Geometries
Nonaka, A; Miller, G H; Marshall, T; Liepmann, D; Gulati, S; Trebotich, D; Colella, P
2003-12-15
We present a numerical algorithm to simulate non-Newtonian flow in complex microdevice components. The model consists of continuum viscoelastic incompressible flow in irregular microscale geometries. Our numerical approach is the projection method of Bell, Colella and Glaz (BCG) to impose the incompressibility constraint coupled with the polymeric stress splitting discretization of Trebotich, Colella and Miller (TCM). In this approach we exploit the hyperbolic structure of the equations of motion to achieve higher resolution in the presence of strong gradients and to gain an order of magnitude in the timestep. We also extend BCG and TCM to an embedded boundary method to treat irregular domain geometries which exist in microdevices. Our method allows for particle representation in a continuum fluid. We present preliminary results for incompressible viscous flow with comparison to flow of DNA and simulants in microchannels and other components used in chem/bio microdevices.
NASA Astrophysics Data System (ADS)
Coetzee, André; Kisters, Alexander
2016-05-01
Dolerites in the Karoo Basin of South Africa commonly represent kilometre-scale, interconnected saucer-shaped structures that consist of inner sills, bounded by inclined sheets connected to stratigraphically higher outer sills. Based on information from over 3000 boreholes and mining operations extending over an area of ca. 500 km2 and covering a > 3 km vertical section from Karoo strata into underlying basement rocks, this paper presents the results of a 3D modelling exercise that describes the geometry and spatial relationships of a regional-scale saucer complex, locally referred to as the number 8 sill, from the Secunda (coal mine) Complex in the northern parts of the Karoo Basin. The composite number 8 sill complex consists of three main dolerite saucers (dolerites A to C). These dolerite saucers are hosted by the Karoo Supergroup and the connectivity and geometry of the saucers support a lateral, sill-feeding-sill relationship between dolerite saucers A, B and C. The saucers are underlain and fed by a shallowly-dipping sheet (dolerite D) in the basement rocks below the Karoo sequence. The 3D geometric strata model agrees well with experimental results of saucer formation from underlying feeders in sedimentary basins, but demonstrates a more intricate relationship where a single feeder can give rise to several split level saucers in one regionally extensive saucer complex. More localised dome- or ridge-shape protrusions are common in the flat lying sill parts of the regional-scale saucers. We suggest a mode of emplacement for these kilometre-scale dome- and ridge structures having formed as a result of lobate magma flow processes. Magma lobes, propagating in different directions ahead of the main magma sheet, undergo successive episodes of lobe arrest and inflation. The inflation of lobes initiates failure of the overlying strata and the formation of curved faults. Magma exploiting these faults transgresses the stratigraphy and coalesces to form a ring
NASA Astrophysics Data System (ADS)
Pastore, Z.; Church, N. S.; Fichler, C.; McEnroe, S. A.
2015-12-01
The Seiland Igneous Province (SIP) is the largest complex of mafic and ultramafic intrusions in northern Fennoscandia, with an exposed area of more than 5500 km2. The SIP (ca 560-570 Ma) is located within the Kalak Nappe Complex, a part of the Middle Allochthon of the North Norwegian Caledonides. Reinfjord is one of the ultramafic complexes of the SIP. It was emplaced during three magmatic events in a time span of 4 Ma and consists in a cylindrically zoned complex with a dunite core (Central Series) surrounded by wehrlite, lherzolite and olivine-rich pyroxenite dominated series (Upper and Lower Layered Series). Olivine cumulates with various amounts of pyroxenes (mostly clinopyroxenes) compose the main lithological units of the intrusion. Layered gabbros and sedimentary garnet gneiss hosting the intrusion are respectively found mainly on eastern/southern and western sides of the ultramafic complex. Within the Reinfjord complex is a promising Ni-Cu-and a PGE reef deposit of high economic interest. High-resolution aeromagnetic and ground magnetic surveys were completed in 2014 in Reinfjord. Here, we developed a magnetic model for the Reinfjord complex integrating petrophysical data (density, magnetic) from samples collected in the field (2014/15) and 4 drill cores (up to 390m) with ground magnetic and helicopter data (SkyTEM survey). The magnetic data have been processed and both measured TMI and calculated vertical gradients data have been used for modelling. The combination of different datasets and the petrophysical properties for surface and core samples allowed the estimation of the geometry, depth and magnetisation of the magnetic sources contributing to, and refining the geological interpretation of the Reinfjord ultramafic intrusion. A 3D model (Model Vision) of the geometry of the ultramafic intrusion is presented.
Algebrodynamics over complex space and phase extension of the Minkowski geometry
Kassandrov, V. V.
2009-05-15
First principles should predetermine physical geometry and dynamics both together. In the 'algebrodynamics' they follow solely from the properties of biquaternion algebra B and the analysis over B. We briefly present the algebrodynamics over Minkowski background based on a nonlinear generalization to B of the Cauchi-Riemann analyticity conditions. Further, we consider the effective real geometry uniquely resulting from the structure of B multiplication and found it to be of the Minkowski type, with an additional phase invariant. Then we pass to study the primordial dynamics that takes place in the complex B space and brings into consideration a number of remarkable structures: an ensemble of identical correlated matter pre-elements ('duplicons'), caustic-like signals (interaction carriers), a concept of random complex time resulting in irreversibility of physical time at macrolevel, etc. In partucular, the concept of 'dimerous electron' naturally arises in the framework of complex algebrodynamics and, together with the above-mentioned phase invariant, allows for a novel approach to explanation of quantum interference phenomena alternative to recently accepted wave-particle dualism paradigm.
Innovation Study for Laser Cutting of Complex Geometries with Paper Materials
NASA Astrophysics Data System (ADS)
Happonen, A.; Stepanov, A.; Piili, H.; Salminen, A.
Even though technology for laser cutting of paper materials has existed for over 30 years, it seems that results of applications of this technology and possibilities of laser cutting systems are not easily available. The aim of this study was to analyze the feasibility of the complex geometry laser cutting of paper materials and to analyze the innovation challenges and potential of current laser cutting technologies offer. This research studied the potential and possible challenges in applying CO2 laser cutting technology for cutting of paper materials in current supply chains trying to fulfil the changing needs of customer in respect of shape, fast response during rapid delivery cycle. The study is focused on examining and analyzing the different possibilities of laser cutting of paper material in application area of complex low volume geometry cutting. The goal of this case was to analyze the feasibility of the laser cutting from technical, quality and implementation points of view and to discuss availability of new business opportunities. It was noticed that there are new business models still available within laser technology applications in complex geometry cutting. Application of laser technology, in business-to-consume markets, in synergy with Internet service platforms can widen the customer base and offer new value streams for technology and service companies. Because of this, existing markets and competition has to be identified, and appropriate new and innovative business model needs to be developed. And to be competitive in the markets, models like these need to include the earning logic and the stages from production to delivery as discussed in the paper.
A new mixed basis Navier-Stokes formulation for incompressible flows over complex geometries
NASA Astrophysics Data System (ADS)
Murali, Avinaash; Rajagopalan, R. G.
2016-02-01
Numerical modeling of complex geometries necessitates the use of curvilinear body fitted coordinates. This article proposes a novel mixed basis formulation of the governing conservation equations for general curvilinear non-orthogonal grids with the physical covariant velocity as the primary solution variable. This results in an algorithm which has many advantages of orthogonal equations. The conservation equations written in this form retains the diagonal dominance of the pressure equation. The newly formed conservation equations are solved on a structured grid using the SIMPLER algorithm and are shown to converge well for non-orthogonal grids. Standard K-ɛ model is used for the turbulence closure.
KIVA3. A KIVA Program With Block-Structured Mesh for Complex Geometries
Amsden, A.A.; Menon, R.G.
1993-03-01
KIVA3 is a computer program for the numerical calculation of transient, two and three-dimensional, chemically reactive flows with sprays. It is an extension of the earlier KIVA2, and uses the same numerical solution procedure and solves the same set of equations. KIVA3 differs in that it uses a block-structured mesh with connectivity defined through indirect addressing. The departure from a single rectangular structure in logical space allows complex geometries to be modeled with significantly greater efficiency because large regions of deactivated cells are no longer necessary. Cell-face boundary conditions permit greater flexibility and simplification in the application of boundary conditions.
KIVA3. A KIVA Program with Block-Structured Mesh for Complex Geometries
Amsden, A.A.
1993-03-01
KIVA3 is a computer program for the numerical calculation of transient, two and three-dimensional, chemically reactive flows with sprays. It is an extension of the earlier KIVA2, and uses the same numerical solution procedure and solves the same set of equations. KIVA3 differs in that it uses a block-structured mesh with connectivity defined through indirect addressing. The departure from a single rectangular structure in logical space allows complex geometries to be modeled with significantly greater efficiency because large regions of deactivated cells are no longer necessary. Cell-face boundary conditions permit greater flexibility and simplification in the application of boundary conditions.
NASA Astrophysics Data System (ADS)
Gulik, Volodymyr; Tkaczyk, Alan Henry
2014-06-01
An optimization study of a subcritical two-zone homogeneous reactor was carried out, taking into consideration geometry, material, and economic parameters. The advantage of a two-zone subcritical system over a single-zone system is demonstrated. The study investigated the optimal volume ratio for the inner and outer zones of the subcritical reactor, in terms of the neutron-physical parameters as well as fuel cost. Optimal geometrical parameters of the system are suggested for different material compositions.
Hertrick, A.K.; Bryan, W.J.; Dorogy, G.M.; Hopkins, R.J.; Riddell, R.A.; Schwirian, E.R.
1984-11-01
Comparisons of analytical and experimental results are presented for the fluid jetting resulting from the existence of small gaps between parallel flow regions with dissimilar hydraulic characteristics. The experiment simulates the baffle gaps between a nuclear reactor core and the peripheral region around it, called the barrel-baffle region. Baffle gap fluid velocities are measured by a technique in which the only disturbance to the gap flow is a small pressure tap in the gap wall. The analysis uses an iterative, hydraulic network approach and is shown to yield good results when compared to the measured gap jet velocity and pressure drop distributions.
An adaptive multifluid interface-capturing method for compressible flow in complex geometries
Greenough, J.A.; Beckner, V.; Pember, R.B.; Crutchfield, W.Y.; Bell, J.B.; Colella, P.
1995-04-01
We present a numerical method for solving the multifluid equations of gas dynamics using an operator-split second-order Godunov method for flow in complex geometries in two and three dimensions. The multifluid system treats the fluid components as thermodynamically distinct entities and correctly models fluids with different compressibilities. This treatment allows a general equation-of-state (EOS) specification and the method is implemented so that the EOS references are minimized. The current method is complementary to volume-of-fluid (VOF) methods in the sense that a VOF representation is used, but no interface reconstruction is performed. The Godunov integrator captures the interface during the solution process. The basic multifluid integrator is coupled to a Cartesian grid algorithm that also uses a VOF representation of the fluid-body interface. This representation of the fluid-body interface allows the algorithm to easily accommodate arbitrarily complex geometries. The resulting single grid multifluid-Cartesian grid integration scheme is coupled to a local adaptive mesh refinement algorithm that dynamically refines selected regions of the computational grid to achieve a desired level of accuracy. The overall method is fully conservative with respect to the total mixture. The method will be used for a simple nozzle problem in two-dimensional axisymmetric coordinates.
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
A Method for Flow Simulation About Complex Geometries Using Both Structured and Unstructured Grids
NASA Technical Reports Server (NTRS)
Debonis, James R.
1994-01-01
A computational fluid dynamics code which utilizes both structured and unstructured grids was developed. The objective of this study was to develop and demonstrate the ability of such a code to achieve solutions about complex geometries in two dimensions. An unstructured grid generator and flow solver were incorporated into the PARC2D structured flow solver. This new unstructured grid generator capability allows for easier generation and manipulation of complex grids. Several examples of the grid generation capabilities are provided. The coupling of different grid topologies and the manipulation of individual grids is shown. Also, grids for realistic geometries, a NACA 0012 airfoil and a wing/nacelle installation, were created. The flow over a NACA 0012 airfoil was used as a test case for the flow solver. Eight separate cases were run. They were both the inviscid and viscous solutions for two freestream Mach numbers and airfoil angle of attacks of 0 to 3.86 degrees. The Mach numbers chosen were for a subsonic case, Mach 0.6, and a case where supersonic regions and a shock wave exists, Mach 0.8. These test case conditions were selected to match experimentally obtained data for code comparison. The results show that the code accurately predicts the flow field for all cases.
Yokuda, Satoru T.; Poloski, Adam P.; Adkins, Harold E.; Casella, Andrew M.; Hohimer, Ryan E.; Karri, Naveen K.; Luna, Maria; Minette, Michael J.; Tingey, Joel M.
2009-05-11
The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom during slurry-transport operations. Pressure drops across the fittings of the test pipeline were measured with differential pressure transducers, from which the critical velocities were determined. A WTP prototype flush system was installed and tested upon the completion of the pressure-drop measurements. We also provide the data for the overflow relief system represented by a WTP complex piping geometry with a non-Newtonian slurry. A waste simulant composed of alumina (nominally 50 μm in diameter) suspended in a kaolin clay slurry was used for this testing. The target composition of the simulant was 10 vol% alumina in a suspending medium with a yield stress of 3 Pa. No publications or reports are available to confirm the critical velocities for the complex geometry evaluated in this testing; therefore, for this assessment, the results were compared to those reported by Poloski et al. (2008) for which testing was performed for a straight horizontal pipe. The results of the flush test are compared to the WTP design guide 24590-WTP-GPG-M-0058, Rev. 0 (Hall 2006) in an effort to confirm flushing-velocity requirements.
NASA Astrophysics Data System (ADS)
Mejdoubi, Abdelilah; Brosseau, Christian
2006-03-01
Currently, there is a great interest in tailoring the polarization properties of composite materials with the goal of controlling the dielectric behavior. This paper reports finite-difference time-domain (FDTD) modeling of the dielectric behavior of two-dimensional (2D) lossless two-phase heterostructures. More specifically, we present extensive results of 2D FDTD computations on the quasistatic effective permittivity of a single inclusion, with arbitrarily complex geometry (regular polygons and fractals), embedded in a plane. The uniaxial perfectly matched layer-absorbing boundary condition is found adequate for truncating the boundary of the 2D space because it leads to only very small backreflections. The effectiveness of the method is demonstrated by the variety of geometries modeled, i.e., regular polygons and fractals, and permittivity contrast ratios which allows us to distinguish between effects of surface fraction and effects of morphology. Our calculations show that geometrical effects can give rise to significant modifications of the surface fraction dependence of the permittivity. The results are compared with Maxwell-Garnett (MG) and symmetric Bruggeman (SBG) formulas. As expected the effective permittivity in the situations considered here deviates from the MG and SBG results at high surface fractions and/or high permittivity ratios between the inclusion and the host medium. In addition, the results show that a two-phase composite containing a fractal-boundary inclusion, e.g., Koch's snowflake, can have a permittivity which is several tens of percent lower between the first and the fourth iteration of the structure at a fixed perimeter-to-surface ratio. This feature is consistent with the fact that as the surface fraction becomes higher, the inclusion rough boundaries dominate the overall geometry. We believe that simplified modeling such as the modeling done here can serve as a useful purpose in understanding the interplay between the structure and
NASA Astrophysics Data System (ADS)
Norbisrath, Jan Henrik
geometry here has little influence on cementation factors, and instead porosity is the main control on m in mudrocks. Cementation factors are crucial for estimates of oil-in-place and water saturation in a wireline application, and a slight change of (assumed) cementation factor can change the interpreter's evaluation from dry hole to discovery. Therefore, accurate determination of cementation factors is a critical task in formation evaluation, similar to accurate estimates of permeability. To achieve this goal, this dissertation utilizes a new approach of using complex resistivity spectra (CRS) to assess the pore geometry and its resulting electrical and fluid flow properties. Specifically, frequency dispersion of complex resistivity in the kHz range is used as input for a new model to predict cementation factor and permeability in a wide variety of core plug samples. The underlying concept that relates CRS to flow properties is that both are related to pore geometry. CRS are linked to pore geometry by interfacial polarization effects at the fluid-rock boundary that control the phase and amplitude shift of an applied alternating current. Larger interfacial area results in higher phase shifts, but also indicates a more intricate pore structure that often results in lower permeability and higher cementation factors. The findings from this dissertation imply that (1) the CRS prediction method greatly improves estimates of cementation factors and permeability in carbonate, dolomite, and mixed siliciclastic rocks, (2) there are at least four distinct microporosity types in carbonate rocks, which have great impact on cementation factors and permeability, (3) nanopore geometry has a small impact on electrical flow properties in mudrocks where the main control on cementation factors is porosity, and (4) all sedimentary limestone and mixed carbonate-siliciclastic rocks have power law pore size distributions.
Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Wang, Meng; Gedeon, David
2005-01-01
A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
J. B. Briggs; R. E. Rothe
1999-06-14
About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a ''tree'') having long, thin arms (or ''branches'') extending up to four directions off the column. Arms are equally spaced from one another in vertical planes, and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves with each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.
Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution
Rothe, Robert Emil; Briggs, Joseph Blair
1999-06-01
About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.
Shock-induced flow resonance in supersonic jets of complex geometry
NASA Astrophysics Data System (ADS)
Raman, Ganesh
1999-03-01
Jets with complex shock-cell structures exist in numerous technological applications. This paper describes a fundamental study of shock-induced flow resonance (commonly referred to as "jet screech") in supersonic jets with spanwise nonuniform shock-cell structures. Experiments that involve flow visualization and detailed mapping of the near field reveal unsteady aspects of shock-induced flow resonances, mode transitions, and directivity of the radiated noise. The following important results about the role of spanwise nonuniform shock-cells emerged: (1) It is possible to have two coexisting, independent feedback loops at nonharmonically related frequencies and different spanwise modes. (2) The same type of spanwise asymmetric mode was produced by two entirely different source configurations. (3) Nozzle geometry significantly altered the intensity and directivity of screech and broadband shock noise. The results presented here provide considerable insight into the fluid dynamics and acoustics of jets with spanwise oblique shock-cell structures and provide grounds for believing that shock-induced noise can be controlled by tailoring nozzle geometry.
Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements
NASA Astrophysics Data System (ADS)
Talebi, Hossein; Saputra, Albert; Song, Chongmin
2016-08-01
While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.
Aerodynamic Design of Complex Configurations Using Cartesian Methods and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.
2003-01-01
The objective for this paper is to present the development of an optimization capability for the Cartesian inviscid-flow analysis package of Aftosmis et al. We evaluate and characterize the following modules within the new optimization framework: (1) A component-based geometry parameterization approach using a CAD solid representation and the CAPRI interface. (2) The use of Cartesian methods in the development Optimization techniques using a genetic algorithm. The discussion and investigations focus on several real world problems of the optimization process. We examine the architectural issues associated with the deployment of a CAD-based design approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute nodes. In addition, we study the influence of noise on the performance of optimization techniques, and the overall efficiency of the optimization process for aerodynamic design of complex three-dimensional configurations. of automated optimization tools. rithm and a gradient-based algorithm.
NASA Astrophysics Data System (ADS)
Candel, A.; Gadow, R.
2009-12-01
For high process reproducibility and optimized coating quality in thermal spray applications on complex geometries, atmospheric plasma spraying and high-velocity oxygen fuel torches are guided by advanced robot systems. The trajectory of the torch, the spray angle, and the relative speed between torch and component are crucial factors which affect the coating microstructure, properties, and, especially, the residual stress distribution. Thus, the requirement of high-performance thermally sprayed coatings with narrow dimensional tolerances leads to challenges in the field of robot-assisted handling, and software tools for efficient trajectory generation and robot programming are demanded. By appropriate data exchange, the automatically generated torch trajectory and speed profile can be integrated in finite element method models to analyze their influence on the heat and mass transfer during deposition. Coating experiments assisted by online diagnostics were performed to validate the developed software tools.
Accurate calculation of conductive conductances in complex geometries for spacecrafts thermal models
NASA Astrophysics Data System (ADS)
Garmendia, Iñaki; Anglada, Eva; Vallejo, Haritz; Seco, Miguel
2016-02-01
The thermal subsystem of spacecrafts and payloads is always designed with the help of Thermal Mathematical Models. In the case of the Thermal Lumped Parameter (TLP) method, the non-linear system of equations that is created is solved to calculate the temperature distribution and the heat power that goes between nodes. The accuracy of the results depends largely on the appropriate calculation of the conductive and radiative conductances. Several established methods for the determination of conductive conductances exist but they present some limitations for complex geometries. Two new methods are proposed in this paper to calculate accurately these conductive conductances: The Extended Far Field method and the Mid-Section method. Both are based on a finite element calculation but while the Extended Far Field method uses the calculation of node mean temperatures, the Mid-Section method is based on assuming specific temperature values. They are compared with traditionally used methods showing the advantages of these two new methods.
Doppler mapping of an alternating-sign flow with complex geometry using optical coherence tomography
Proskurin, S G; Potlov, A Yu; Frolov, S V
2014-01-31
The method of sign-sensitive mapping of the given range of velocities in a flow with complex geometry based on the principles of optical coherence tomography is described. To produce an alternating-sign flow, the 1% aqueous intralipid solution and the tilted capillary entry with the contraction coefficient 4:1 are used. The mapping is controlled using two parameters, the value of one specific velocity (OSV) for mapping and the accuracy of its determination. The structure image and two OSV images (for positive and negative direction of motion) are obtained as a result of selecting and processing the relevant parts of the signal spectrum. The final image is a result of summing these three images and can be used as a Doppler equivelocity contour map. (radiation scattering)
Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements
NASA Astrophysics Data System (ADS)
Talebi, Hossein; Saputra, Albert; Song, Chongmin
2016-10-01
While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.
Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy
Kim, Dae-Hyeong; Ghaffari, Roozbeh; Lu, Nanshu; Wang, Shuodao; Lee, Stephen P.; Keum, Hohyun; D’Angelo, Robert; Klinker, Lauren; Su, Yewang; Lu, Chaofeng; Kim, Yun-Soung; Ameen, Abid; Li, Yuhang; Zhang, Yihui; de Graff, Bassel; Hsu, Yung-Yu; Liu, ZhuangJian; Ruskin, Jeremy; Xu, Lizhi; Lu, Chi; Omenetto, Fiorenzo G.; Huang, Yonggang; Mansour, Moussa; Slepian, Marvin J.; Rogers, John A.
2012-01-01
Curved surfaces, complex geometries, and time-dynamic deformations of the heart create challenges in establishing intimate, nonconstraining interfaces between cardiac structures and medical devices or surgical tools, particularly over large areas. We constructed large area designs for diagnostic and therapeutic stretchable sensor and actuator webs that conformally wrap the epicardium, establishing robust contact without sutures, mechanical fixtures, tapes, or surgical adhesives. These multifunctional web devices exploit open, mesh layouts and mount on thin, bio-resorbable sheets of silk to facilitate handling in a way that yields, after dissolution, exceptionally low mechanical moduli and thicknesses. In vivo studies in rabbit and pig animal models demonstrate the effectiveness of these device webs for measuring and spatially mapping temperature, electrophysiological signals, strain, and physical contact in sheet and balloon-based systems that also have the potential to deliver energy to perform localized tissue ablation. PMID:23150574
Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy.
Kim, Dae-Hyeong; Ghaffari, Roozbeh; Lu, Nanshu; Wang, Shuodao; Lee, Stephen P; Keum, Hohyun; D'Angelo, Robert; Klinker, Lauren; Su, Yewang; Lu, Chaofeng; Kim, Yun-Soung; Ameen, Abid; Li, Yuhang; Zhang, Yihui; de Graff, Bassel; Hsu, Yung-Yu; Liu, Zhuangjian; Ruskin, Jeremy; Xu, Lizhi; Lu, Chi; Omenetto, Fiorenzo G; Huang, Yonggang; Mansour, Moussa; Slepian, Marvin J; Rogers, John A
2012-12-01
Curved surfaces, complex geometries, and time-dynamic deformations of the heart create challenges in establishing intimate, nonconstraining interfaces between cardiac structures and medical devices or surgical tools, particularly over large areas. We constructed large area designs for diagnostic and therapeutic stretchable sensor and actuator webs that conformally wrap the epicardium, establishing robust contact without sutures, mechanical fixtures, tapes, or surgical adhesives. These multifunctional web devices exploit open, mesh layouts and mount on thin, bio-resorbable sheets of silk to facilitate handling in a way that yields, after dissolution, exceptionally low mechanical moduli and thicknesses. In vivo studies in rabbit and pig animal models demonstrate the effectiveness of these device webs for measuring and spatially mapping temperature, electrophysiological signals, strain, and physical contact in sheet and balloon-based systems that also have the potential to deliver energy to perform localized tissue ablation. PMID:23150574
Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.
Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A
2016-06-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. PMID:27345204
Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2016-06-01
A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.
Design of experiments and springback prediction for AHSS automotive components with complex geometry
NASA Astrophysics Data System (ADS)
Asgari, A.; Pereira, M.; Rolfe, B.; Dingle, M.; Hodgson, P.
2005-08-01
With the drive towards implementing Advanced High Strength Steels (AHSS) in the automotive industry; stamping engineers need to quickly answer questions about forming these strong materials into elaborate shapes. Commercially available codes have been successfully used to accurately predict formability, thickness and strains in complex parts. However, springback and twisting are still challenging subjects in numerical simulations of AHSS components. Design of Experiments (DOE) has been used in this paper to study the sensitivity of the implicit and explicit numerical results with respect to certain arrays of user input parameters in the forming of an AHSS component. Numerical results were compared to experimental measurements of the parts stamped in an industrial production line. The forming predictions of the implicit and explicit codes were in good agreement with the experimental measurements for the conventional steel grade, while lower accuracies were observed for the springback predictions. The forming predictions of the complex component with an AHSS material were also in good correlation with the respective experimental measurements. However, much lower accuracies were observed in its springback predictions. The number of integration points through the thickness and tool offset were found to be of significant importance, while coefficient of friction and Young's modulus (modeling input parameters) have no significant effect on the accuracy of the predictions for the complex geometry.
An Automated Approach to Very High Order Aeroacoustic Computations in Complex Geometries
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Goodrich, John W.
2000-01-01
Computational aeroacoustics requires efficient, high-resolution simulation tools. And for smooth problems, this is best accomplished with very high order in space and time methods on small stencils. But the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewslci recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that are located near wall boundaries. These procedures are used to automatically develop and implement very high order methods (>15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.
Arabi, Alya A; Becke, Axel D
2012-07-01
The deficiency of conventional density-functional theory (DFT) in properly describing van der Waals (vdW) (especially dispersion-bound) complexes has been extensively addressed in the past decade. There are now several new methods published in the literature that are capable of accurately capturing weak dispersion interactions in complexes at equilibrium geometries. However, the performance of these new methods at non-equilibrium geometries remains to be assessed. We have previously published [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 6, 1081 (2010); A. D. Becke, A. A. Arabi, and F. O. Kannemann, Can. J. Chem. 88, 1057 (2010)] that the functional PW86+PBE+XDM for exchange + correlation + dispersion, respectively, is a highly accurate functional for general thermochemistry and vdW complexes at equilibrium geometries. Here, we show that this nonempirical, except for two parameters in the dispersion damping part, functional also performs well for vdW complexes at compressed and stretched intermonomer separations. The mean absolute relative error (MARE) is 9.4% overall for vdW complexes in the "S22×5" database incorporating compressed and stretched geometries [J. Rezac, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011)]. Our largest MARE on the S22×5 database is 13.3% on the compressed geometry set.
NASA Astrophysics Data System (ADS)
Arabi, Alya A.; Becke, Axel D.
2012-07-01
The deficiency of conventional density-functional theory (DFT) in properly describing van der Waals (vdW) (especially dispersion-bound) complexes has been extensively addressed in the past decade. There are now several new methods published in the literature that are capable of accurately capturing weak dispersion interactions in complexes at equilibrium geometries. However, the performance of these new methods at non-equilibrium geometries remains to be assessed. We have previously published [F. O. Kannemann and A. D. Becke, J. Chem. Theory Comput. 6, 1081 (2010), 10.1021/ct900699r; A. D. Becke, A. A. Arabi, and F. O. Kannemann, Can. J. Chem. 88, 1057 (2010), 10.1139/V10-073] that the functional PW86+PBE+XDM for exchange + correlation + dispersion, respectively, is a highly accurate functional for general thermochemistry and vdW complexes at equilibrium geometries. Here, we show that this nonempirical, except for two parameters in the dispersion damping part, functional also performs well for vdW complexes at compressed and stretched intermonomer separations. The mean absolute relative error (MARE) is 9.4% overall for vdW complexes in the "S22×5" database incorporating compressed and stretched geometries [J. Rezac, K. E. Riley, and P. Hobza, J. Chem. Theory Comput. 7, 2427 (2011), 10.1021/ct2002946]. Our largest MARE on the S22×5 database is 13.3% on the compressed geometry set.
Along-strike complex geometry of subduction zones - an experimental approach
NASA Astrophysics Data System (ADS)
Midtkandal, I.; Gabrielsen, R. H.; Brun, J.-P.; Huismans, R.
2012-04-01
Recent knowledge of the great geometric and dynamic complexity insubduction zones, combined with new capacity for analogue mechanical and numerical modeling has sparked a number of studies on subduction processes. Not unexpectedly, such models reveal a complex relation between physical conditions during subduction initiation, strength profile of the subducting plate, the thermo-dynamic conditions and the subduction zones geometries. One rare geometrical complexity of subduction that remains particularly controversial, is the potential for polarity shift in subduction systems. The present experiments were therefore performed to explore the influence of the architecture, strength and strain velocity on complexities in subduction zones, focusing on along-strike variation of the collision zone. Of particular concern were the consequences for the geometry and kinematics of the transition zones between segments of contrasting subduction direction. Although the model design to some extent was inspired by the configuration along the Iberian - Eurasian suture zone, the results are also of significance for other orogens with complex along-strike geometries. The experiments were set up to explore the initial state of subduction only, and were accordingly terminated before slab subduction occurred. The model wasbuilt from layers of silicone putty and sand, tailored to simulate the assumed lithospheric geometries and strength-viscosity profiles along the plate boundary zone prior to contraction, and comprises two 'continental' plates separated by a thinner 'oceanic' plate that represents the narrow seaway. The experiment floats on a substrate of sodiumpolytungstate, representing mantle. 24 experimental runs were performed, varying the thickness (and thus strength) of the upper mantle lithosphere, as well as the strain rate. Keeping all other parameters identical for each experiment, the models were shortened by a computer-controlled jackscrew while time-lapse images were
Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices
NASA Astrophysics Data System (ADS)
Semkow, T. M.; Bradt, C. J.; Beach, S. E.; Haines, D. K.; Khan, A. J.; Bari, A.; Torres, M. A.; Marrantino, J. C.; Syed, U.-F.; Kitto, M. E.; Hoffman, T. J.; Curtis, P.
2015-11-01
A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm-3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid.
A novel porous Ffowcs-Williams and Hawkings acoustic methodology for complex geometries
NASA Astrophysics Data System (ADS)
Nitzkorski, Zane Lloyd
Predictive noise calculations from high Reynolds number flows in complex engineering geometry are becoming a possibility with the high performance computing resources that have become available in recent years. Increasing the applicability and reliability of solution methodologies have been two key challenges toward this goal. This dissertation develops a porous Ffowcs-Williams and Hawkings methodology that uses a novel endcap methodology, and can be applied to unstructured grids. The use of unstructured grids allows complex geometry to be represented while porous formulation eliminates difficulties with the choice of acoustic Green's function. Specifically, this dissertation (1) proposes and examines a novel endcap procedure to account for spurious noise, (2) uses the proposed methodology to investigate noise production from a range of subcritical Reynolds number circular cylinders, and (3) investigates a trailing edge geometry for noise production and to illustrate the generality of the Green's function. Porous acoustic analogies need an endcap scheme in order to prevent spurious noise due to truncation errors. A dynamic end cap methodology is proposed to account for spurious contributions to the far--field sound within the context of the Ffowcs--Williams and Hawkings (FW--H) acoustic analogy. The quadrupole source terms are correlated over multiple planes to obtain a convection velocity which is then used to determine a corrective convective flux at the FW--H porous surface. The proposed approach is first demonstrated for a convecting potential vortex. The correlation is investigated by examining it pass through multiple exit planes. It is then evaluated by computing the sound emitted by flow over a circular cylinder at Reynolds number of 150 and compared to other endcap methods, such as Shur et al. [1]. Insensitivity to end plane location and spacing and the effect of the dynamic convection velocity are computed. Subcritical Reynolds number circular cylinder
Analysis of complex faulting: Wavelet transform, multiple datasets and realistic fault geometry
NASA Astrophysics Data System (ADS)
Ji, Chen
This thesis presents the studies of two recent large and well-recorded earthquakes, the 1999 Hector Mine and Chi-Chi earthquakes. A new procedure for the determination of rupture complexity from a joint inversion of static and seismic data was first developed. This procedure applies a wavelet transform to separate seismic information related to the spatial and temporal slip history, then uses a simulated annealing algorithm to determine the finite-fault model that minimizes the objective function described in terms of wavelet coefficients. This method is then applied to simultaneously invert the slip amplitude, slip direction, rise time and rupture velocity distributions of the Hector Mine and Chi-Chi earthquakes with both seismic and geodetic data. Two slip models are later verified with independent datasets. Results indicate that the seismic moment of the Hector Mine earthquake is 6.28 x 1019 Nm, which is distributed along a "Y" shape fault geometry with three segments. The average slip is 1.5 m with peak amplitudes as high as 7 m. The fault rupture has an average slip duration of 3.5 sec and a slow average rupture velocity of 1.9 km/sec, resulting in a 14 sec rupture propagation history. The rise time appears to be roughly proportional to slip, and the two branches of "Y" shape fault rupture together. The Chi-Chi earthquake is the best-recorded large earthquake so far. Its seismic moment of 2.7 x 1020 Nm is concentrated on the surface of a "wedge shaped" block. The rupture front propagates with a slow rupture velocity of about 2.0 km/sec. The average slip duration is 7.2 sec. Four interesting results are obtained: (1) The sinuous fault plane strongly affects both spatial and temporal variation in slip history; (2) Long-period peak slip velocity increases as the rupture propagates; (3) The peak slip velocity near the surface is in general higher than on the deeper portion of the fault plane as predicted by dynamic modeling [e.g., Oglesby et al., 1998]; and (4
Samardak, Alexander; Anisimova, Margarita; Samardak, Aleksei; Ognev, Alexey
2015-01-01
The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5-30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices.
Anisimova, Margarita; Samardak, Aleksei; Ognev, Alexey
2015-01-01
Summary The paper presents a method for the high-resolution production of polymer nanopatterns with controllable geometrical parameters by means of a single-spot electron-beam lithography technique. The essence of the method entails the overexposure of a positive-tone resist, spin-coated onto a substrate where nanoscale spots are exposed to an electron beam with a dose greater than 0.1 pC per dot. A single-spot enables the fabrication of a nanoring, while a chain of spots placed at distance of 5–30 nm from each other allows the production of a polymer pattern of complex geometry of sub-10 nm resolution. We demonstrate that in addition to the naturally oxidized silicon substrates, gold-coated substrates can also successfully be used for the single-spot nanopattering technique. An explanation of the results related to the resist overexposure was demonstrated using Monte Carlo simulations. Our nanofabrication method significantly accelerates (up to 10 times) the fabrication rate as compared to conventional lithography on positive-tone resist. This technique can be potentially employed in the electronics industry for the production of nanoprinted lithography molds, etching masks, nanoelectronics, nanophotonics, NEMS and MEMS devices. PMID:25977869
An immersed boundary computational model for acoustic scattering problems with complex geometries.
Sun, Xiaofeng; Jiang, Yongsong; Liang, An; Jing, Xiaodong
2012-11-01
An immersed boundary computational model is presented in order to deal with the acoustic scattering problem by complex geometries, in which the wall boundary condition is treated as a direct body force determined by satisfying the non-penetrating boundary condition. Two distinct discretized grids are used to discrete the fluid domain and immersed boundary, respectively. The immersed boundaries are represented by Lagrangian points and the direct body force determined on these points is applied on the neighboring Eulerian points. The coupling between the Lagrangian points and Euler points is linked by a discrete delta function. The linearized Euler equations are spatially discretized with a fourth-order dispersion-relation-preserving scheme and temporal integrated with a low-dissipation and low-dispersion Runge-Kutta scheme. A perfectly matched layer technique is applied to absorb out-going waves and in-going waves in the immersed bodies. Several benchmark problems for computational aeroacoustic solvers are performed to validate the present method.
NASA Astrophysics Data System (ADS)
Osawa, Yasuo
New powerful parallel computational tools are developed for 3D simulation of unsteady wake flows with complex geometries and fluid-structure interactions. The base method for flow simulation is a finite element formulation for the Navier-Stokes equations. The finite element formulation is based on the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin (PSPG) techniques. These stabilization techniques facilitate simulation of flows with high Reynolds numbers, and allow us to use equal-order interpolation functions for velocity and pressure without generating numerical oscillations. A multi-domain computational method is developed to simulate wake flow both in the near and far downstream. The formulations lead to coupled nonlinear equation systems which are solved, at every time step, with the Newton-Raphson method. The overall formulation and solution techniques are implemented on parallel platforms such as the CRAY T3E and SGI PowerChallenge. Two phases of vortex shedding for flow past a cylinder is simulated to verify the accuracy of this method. The Enhanced-Discretization Interface Capturing Technique (EDICT) is utilized to simulate wake flow accurately. Fluid-structure coupling solution method based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation is applied to simulate a parachute behavior in the unsteady wake.
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries
Gruber, Mathias F.; Johnson, Carl J.; Tang, Chuyang; Jensen, Mogens H.; Yde, Lars; Hélix-Nielsen, Claus
2012-01-01
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries.
Gruber, Mathias F; Johnson, Carl J; Tang, Chuyang; Jensen, Mogens H; Yde, Lars; Hélix-Nielsen, Claus
2012-01-01
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428
A shallow-flow model for the propagation of tsunamis over complex geometries and mobile beds
NASA Astrophysics Data System (ADS)
Conde, D. A. S.; Baptista, M. A. V.; Sousa Oliveira, C.; Ferreira, R. M. L.
2013-10-01
A distinguishable feature of overland tsunami propagation is the incorporation of solids within the flow column, either sediment from the natural environment or remains from built infrastructure. This article describes a 2DH (two-dimensional horizontal) mathematical model particularly suited for tsunami propagation over complex and dynamic geometries, such as river and estuarine mobile beds. The discretization scheme is based on a finite-volume method using a flux-splitting technique featuring a reviewed Roe-Riemann solver, with appropriate source-term formulations to ensure full conservativeness. The model is validated with laboratory data and paleo-tsunami evidence. As a forecasting application, it is applied to a tsunami scenario in the Tagus estuary, an effort justified by the numerous catastrophic tsunamis that are known to have struck this location over the past two millennia. The obtained results show that, despite the significant differences in Lisbon's layout and morphology, a 1755-like tsunami would still inflict a devastating impact on this major city.
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries.
Gruber, Mathias F; Johnson, Carl J; Tang, Chuyang; Jensen, Mogens H; Yde, Lars; Hélix-Nielsen, Claus
2012-01-01
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer.
NASA Astrophysics Data System (ADS)
Pointon, T. D.
2008-10-01
A second-order, exact charge-conserving algorithm for accumulating charge and current on the spatial grid for electromagnetic particle-in-cell (EM-PIC) simulation in bounded geometry is presented. The algorithm supports standard EM-PIC exterior boundary conditions and complex internal conductors on non-uniform grids. Boundary surfaces are handled by smoothly transitioning from second to first-order weighting within half a cell of the boundary. When a particle is exactly on the boundary surface (either about to be killed, or just created), the weighting is fully first-order. This means that particle creation and particle/surface interaction models developed for first-order weighting do not need to be modified. An additional feature is the use of an energy-conserving interpolation scheme from the electric field on the grid to the particles. Results show that high-density, cold plasmas with ωΔt˜1, and Δx/λ≫1, can be modeled with reasonable accuracy and good energy conservation. This opens up a significant new capability for explicit simulation of high-density plasmas in high-power devices.
KIVA-3: A KIVA program with block-structured mesh for complex geometries
Amsden, A.A.
1993-03-01
This report describes the KIVA-3 computer program for numerical calculation of transient, two- and three-dimensional chemically reactive fluid flows with sprays. KIVA-3 is an extension of the earlier KIVA-II, uses the same numerical solution procedure, and solves the same set of equations. The full generality of KIVA-II has been retained; thus KIVA-3 is applicable to laminar or turbulent flows, subsonic or supersonic flows, and single-phase or dispersed two-phase flows. KIVA-3 differs from KIVA-11 in that it uses a block-structured mesh with connectivity defined through indirect addressing. The departure from a single rectangular structure in (i,j,k) logical space allows complex geometries to be modeled with significantly greater efficiency than was previously possible because large regions of deactivated cells are no longer necessary. Cell-face boundary conditions permit greater flexibility and simplification in the application of boundary conditions. This report discusses those features of KIVA-3 that differ from KIVA-II, the input required from a mesh generation preprocessor, and the output provided to a graphics postprocessor. Basic pre and post-processors are included in the KIVA-3 package, and are also described.
Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach
Chen, Ying; Lowengrub, John S.
2014-01-01
We develop a mathematical model of tumor growth in complex, dynamic microenvironments with active, deformable membranes. Using a diffuse domain approach, the complex domain is captured implicitly using an auxiliary function and the governing equations are appropriately modified, extended and solved in a larger, regular domain. The diffuse domain method enables us to develop an efficient numerical implementation that does not depend on the space dimension or the microenvironmental geometry. We model homotypic cell-cell adhesion and heterotypic cell-basement membrane (BM) adhesion with the latter being implemented via a membrane energy that models cell-BM interactions. We incorporate simple models of elastic forces and the degradation of the BM and ECM by tumor-secreted matrix degrading enzymes. We investigate tumor progression and BM response as a function of cell-BM adhesion and the stiffness of the BM. We find tumor sizes tend to be positively correlated with cell-BM adhesion since increasing cell-BM adhesion results in thinner, more elongated tumors. Prior to invasion of the tumor into the stroma, we find a negative correlation between tumor size and BM stiffness as the elastic restoring forces tend to inhibit tumor growth. In order to model tumor invasion of the stroma, we find it necessary to downregulate cell-BM adhesiveness, which is consistent with experimental observations. A stiff BM promotes invasiveness because at early stages the opening in the BM created by MDE degradation from tumor cells tends to be narrower when the BM is stiffer. This requires invading cells to squeeze through the narrow opening and thus promotes fragmentation that then leads to enhanced growth and invasion. In three dimensions, the opening in the BM was found to increase in size even when the BM is stiff because of pressure induced by growing tumor clusters. A larger opening in the BM can increase the potential for further invasiveness by increasing the possibility that additional
NASA Astrophysics Data System (ADS)
Yazdani, Alireza; Deng, Mingge; Caswell, Bruce; Karniadakis, George Em
2016-01-01
We demonstrate how the quality of simulations by Dissipative Particle Dynamics (DPD) of flows in complex geometries is greatly enhanced when driven by body forces suitably tailored to the geometry. In practice, the body force fields are most conveniently chosen to be the pressure gradient of the corresponding Navier-Stokes (N-S) flow. In the first of three examples, the driving-force required to yield a stagnation-point flow is derived from the pressure field of the potential flow for a lattice of counter-rotating line vortices. Such a lattice contains periodic squares bounded by streamlines with four vortices within them. Hence, the DPD simulation can be performed with periodic boundary conditions to demonstrate the value of a non-uniform driving-force without the need to model real boundaries. The second example is an irregular geometry consisting of a 2D rectangular cavity on one side of an otherwise uniform channel. The Navier-Stokes pressure field for the same geometry is obtained numerically, and its interpolated gradient is then employed as the driving-force for the DPD simulation. Finally, we present a third example, where the proposed method is applied to a complex 3D geometry of an asymmetric constriction. It is shown that in each case the DPD simulations closely reproduce the Navier-Stokes solutions. Convergence rates are found to be much superior to alternative methods; in addition, the range of convergence with respect to Reynolds number and Mach number is greatly extended.
Møller's Energy-Momentum Complex for a Spacetime Geometry on a Noncommutative Curved D3-Brane
NASA Astrophysics Data System (ADS)
Radinschi, I.; Grammenos, T.
2008-05-01
Møller’s energy-momentum complex is employed in order to determine the energy and momentum distributions for a spacetime described by a “generalized Schwarzschild” geometry in (3+1)-dimensions on a noncommutative curved D3-brane in an effective, open bosonic string theory. The geometry considered is obtained by an effective theory of gravity coupled with a nonlinear electromagnetic field and depends only on the generalized (effective) mass and charge which incorporate corrections of first order in the noncommutativity parameter.
Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G
2014-11-18
We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable
Nyadong, Leonard; Mapolelo, Mmilili M; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G
2014-11-18
We present laser desorption atmospheric pressure photochemical ionization mass spectrometry (LD/APPCI MS) for rapid throughput analysis of complex organic mixtures, without the need for matrix, electric discharge, secondary electrospray, or solvents/vaporizers. Analytes dried on a microscope slide are vaporized in transmission geometry by a laser beam aligned with the atmospheric pressure inlet of the mass spectrometer. The laser beam initiates a cascade of reactions in the region between the glass slide and MS inlet, leading to generation of reagent ions for chemical ionization of vaporized analyte. Positive analyte ions are generated predominantly by proton transfer, charge exchange, and hydride abstraction, whereas negative ions are generated by electron capture or proton transfer reactions, enabling simultaneous analysis of saturated, unsaturated, and heteroatom-containing hydrocarbons. The absence of matrix interference renders LD/APPCI MS particularly useful for analysis of small molecules (<2000 Da) such as those present in petroleum crude oil and petroleum deposits. [M + H](+) and M(+•) dominate the positive-ion mass spectra for olefins and polyaromatic hydrocarbons, whereas saturated hydrocarbons are observed mainly as [M - H](+) and/or M(+•). Heteroatom-containing hydrocarbons are observed predominantly as [M + H](+). [M - H](-) and M(-•) are the dominant negative ions observed for analytes of lower gas-phase basicity or higher electron affinity than O2. The source was coupled with a 9.4 T Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) to resolve and identify thousands of peaks from Athabasca bitumen heavy vacuum gas oil distillates (400-425 and 500-538 °C), enabling simultaneous characterization of their polar and nonpolar composition. We also applied LD/APPCI FTICR MS for rapid analysis of sodium and calcium naphthenate deposits with little to no sample pretreatment to provide mass spectral fingerprints that enable
Complex geometry of the subducted Pacific slab inferred from receiver function
NASA Astrophysics Data System (ADS)
Zhang, Ruiqing; Wu, Qingju; Zhang, Guangcheng
2014-05-01
In recent years, slab tear has received considerable attention and been reported in many arc-arc junctures in Pacific plate subdution zones. From 2009 to 2011, we deployed two portable experiments equipped with CMG-3ESPC seismometers and the recorders of REFTEK-130B in NE China. The two linear seismic arrays were designed nearly parallel, and each of them containing about 60 seismic stations extended about 1200 km from west to east spanning all surface geological terrains of NE China. The south one was firstly set up and continually operated over two year, while the north deployment worked only about one year. By using the teleseismic data collected by these two arrays, we calculate the P receiver functions to map topographic variation of the upper mantle discontinuities. Our sampled region is located where the juncture between the subducting Kuril and Japan slabs reaches the 660-km discontinuity. Distinct variation of the 660-km discontinuity is mapped beneath the regions. A deeper-than-normal 660 km discontinuity is observed locally in the southeastern part of our sampled region. The depression of the 660 km discontinuity may be resulted from an oceanic lithospheric slab deflected in the mantle transition zone, in good agreement with the result of earlier tomographic and other seismic studies in this region. The northeastern portion of our sampled region, however, does not show clearly the deflection of the slab. The variation of the tomography of the 660-km discontinuity in our sampled regions may indicate a complex geometry of the subducted Pacific slab.
Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries
Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo
2015-05-15
Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less
Phase-field simulations of GaN growth by selective area epitaxy from complex mask geometries
Aagesen, Larry K.; Thornton, Katsuyo; Coltrin, Michael E.; Han, Jung
2015-05-21
Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. The model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. The model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.
Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries
Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; Thornton, Katsuyo
2015-05-15
Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks and processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.
Computations of Viscous Flows in Complex Geometries Using Multiblock Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Ameri, Ali A.
1995-01-01
Generating high quality, structured, continuous, body-fitted grid systems (multiblock grid systems) for complicated geometries has long been a most labor-intensive and frustrating part of simulating flows in complicated geometries. Recently, new methodologies and software have emerged that greatly reduce the human effort required to generate high quality multiblock grid systems for complicated geometries. These methods and software require minimal input form the user-typically, only information about the topology of the block structure and number of grid points. This paper demonstrates the use of the new breed of multiblock grid systems in simulations of internal flows in complicated geometries. The geometry used in this study is a duct with a sudden expansion, a partition, and an array of cylindrical pins. This geometry has many of the features typical of internal coolant passages in turbine blades. The grid system used in this study was generated using a commercially available grid generator. The simulations were done using a recently developed flow solver, TRAF3D.MB, that was specially designed to use multiblock grid systems.
An interactive approach to surface-fitting complex geometries for flowfield applications
NASA Technical Reports Server (NTRS)
Dejarnette, Fred R.; Hamilton, H. Harris, II; Cheatwood, F. Mcneil
1987-01-01
Numerical flowfield methods require a geometry subprogram which can calculate body coordinates, slopes, and radii of curvature for typical aircraft and spacecraft configurations. The objective of this paper is to develop a new surface-fitting technique which addresses two major problems with existing geometry packages: computer storage requirements and the time required of the user for the initial set-up of the geometry model. In the present method, coordinates of cross sections are fit in a least-squares sense using segments of general conic sections. After fitting each cross section, the next step is to blend the cross-sectional curve-fits in the longitudinal direction using general conics to fit specific meridional half-planes. For the initial setup of the geometry model, an interactive, completely menu-driven computer code has been developed to allow the user to make modifications to the initial fit for a given cross section or meridional cut. Graphic displays are provided to assist the user in the visualization of the effect of each modification. The completed model may be viewed from any angle using the code's three-dimensional graphics package. Geometry results for the modeling of the Space Shuttle and a proposed Aeroassist Flight Experiment (AFE) geometry are presented, in addition to calculated heat-transfer rates based on these models.
NASA Astrophysics Data System (ADS)
Rapaka, Narsimha R.; Sarkar, Sutanu
2016-10-01
A sharp-interface Immersed Boundary Method (IBM) is developed to simulate density-stratified turbulent flows in complex geometry using a Cartesian grid. The basic numerical scheme corresponds to a central second-order finite difference method, third-order Runge-Kutta integration in time for the advective terms and an alternating direction implicit (ADI) scheme for the viscous and diffusive terms. The solver developed here allows for both direct numerical simulation (DNS) and large eddy simulation (LES) approaches. Methods to enhance the mass conservation and numerical stability of the solver to simulate high Reynolds number flows are discussed. Convergence with second-order accuracy is demonstrated in flow past a cylinder. The solver is validated against past laboratory and numerical results in flow past a sphere, and in channel flow with and without stratification. Since topographically generated internal waves are believed to result in a substantial fraction of turbulent mixing in the ocean, we are motivated to examine oscillating tidal flow over a triangular obstacle to assess the ability of this computational model to represent nonlinear internal waves and turbulence. Results in laboratory-scale (order of few meters) simulations show that the wave energy flux, mean flow properties and turbulent kinetic energy agree well with our previous results obtained using a body-fitted grid (BFG). The deviation of IBM results from BFG results is found to increase with increasing nonlinearity in the wave field that is associated with either increasing steepness of the topography relative to the internal wave propagation angle or with the amplitude of the oscillatory forcing. LES is performed on a large scale ridge, of the order of few kilometers in length, that has the same geometrical shape and same non-dimensional values for the governing flow and environmental parameters as the laboratory-scale topography, but significantly larger Reynolds number. A non-linear drag law
Slater, C.O.
1990-07-01
Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.
Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining
J. A. Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman
2005-09-01
The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.
Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo
2016-01-01
In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts. PMID:27069801
Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo
2016-01-01
In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.
Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo
2016-01-01
In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts. PMID:27069801
Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13
Richard P. Wells
2007-03-23
This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.
Ganesh, P Sankar; Gajalakshmi, S; Abbasi, S A
2009-03-01
Vermicomposting of the pre-composted leaf litter of acacia (Acacia auriculiformis) was studied in reactors of identical volume but with surface area: height ratios varying from 4 to 250. In separate sets of experiments with these reactors, epigeic earthworm species Eudrilus eugeniae and anecic earthworm species Lampito mauritii were employed at densities of 75 and 150 adult animals per litre of reactor volume. The results reveal that greater the surface area: volume ratio of the reactor, higher is the vermicast output in terms of vermicast output per animal; the more densely populated reactors were comparatively under-productive. Even as the vermicast production remained consistently high in all the reactors, there was significant earthworm mortality throughout the course of the experiments and the worms who survived, steadily lost weight with time. A detailed investigation of the possible causes revealed that, whereas the C:N ratio of acacia compost was comparable with that of other substrates; the polyphenols and lignin content were much higher. Studies by other authors on leaf litter consumption by earthworms in natural or man-made forests have indicated that leaf litter rich in polyphenols and lignin are not preferred by most species of earthworm. This may perhaps be the reason for the high rate of mortality and weight loss in earthworms forced to feed upon acacia in the experiments conducted by the authors. PMID:19026533
A geometry-based adaptive unstructured grid generation algorithm for complex geological media
NASA Astrophysics Data System (ADS)
Bahrainian, Seyed Saied; Dezfuli, Alireza Daneh
2014-07-01
In this paper a novel unstructured grid generation algorithm is presented that considers the effect of geological features and well locations in grid resolution. The proposed grid generation algorithm presents a strategy for definition and construction of an initial grid based on the geological model, geometry adaptation of geological features, and grid resolution control. The algorithm is applied to seismotectonic map of the Masjed-i-Soleiman reservoir. Comparison of grid results with the “Triangle” program shows a more suitable permeability contrast. Immiscible two-phase flow solutions are presented for a fractured porous media test case using different grid resolutions. Adapted grid on the fracture geometry gave identical results with that of a fine grid. The adapted grid employed 88.2% less CPU time when compared to the solutions obtained by the fine grid.
Dahl, Eric W; Szymczak, Nathaniel K
2016-02-24
6,6''-Bis(2,4,6-trimethylanilido)terpyridine (H2Tpy(NMes)) was prepared as a rigid, tridentate pincer ligand containing pendent anilines as hydrogen bond donor groups in the secondary coordination sphere. The coordination geometry of (H2 Tpy(NMes))copper(I)-halide (Cl, Br and I) complexes is dictated by the strength of the NH-halide hydrogen bond. The Cu(I)Cl and Cu(II)Cl complexes are nearly isostructural, the former presenting a highly unusual square-planar geometry about Cu(I) . The geometric constraints provided by secondary interactions are reminiscent of blue copper proteins where a constrained geometry, or entatic state, allows for extremely rapid Cu(I)/Cu(II) electron-transfer self-exchange rates. Cu(H2 Tpy(NMes))Cl shows similar fast electron transfer (≈10(5) m(-1) s(-1)) which is the same order of magnitude as biological systems.
Dahl, Eric W; Szymczak, Nathaniel K
2016-02-24
6,6''-Bis(2,4,6-trimethylanilido)terpyridine (H2Tpy(NMes)) was prepared as a rigid, tridentate pincer ligand containing pendent anilines as hydrogen bond donor groups in the secondary coordination sphere. The coordination geometry of (H2 Tpy(NMes))copper(I)-halide (Cl, Br and I) complexes is dictated by the strength of the NH-halide hydrogen bond. The Cu(I)Cl and Cu(II)Cl complexes are nearly isostructural, the former presenting a highly unusual square-planar geometry about Cu(I) . The geometric constraints provided by secondary interactions are reminiscent of blue copper proteins where a constrained geometry, or entatic state, allows for extremely rapid Cu(I)/Cu(II) electron-transfer self-exchange rates. Cu(H2 Tpy(NMes))Cl shows similar fast electron transfer (≈10(5) m(-1) s(-1)) which is the same order of magnitude as biological systems. PMID:26822857
Lewis, Mike
2015-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Mike Lewis
2014-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Mike Lewis
2013-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
mike lewis
2011-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Mike Lewis
2012-02-01
This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015
Holmes, Forest Howard
2015-11-01
The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”
NASA Astrophysics Data System (ADS)
Landry, C. J.; Prodanovic, M.; Eichhubl, P.
2015-12-01
Mudrocks and shales are currently a significant source of natural gas and understanding the basic transport properties of these formations is critical to predicting long-term production, however, the nanoporous nature of mudrocks presents a unique challenge. Mudrock pores are predominantly in the range of 1-100 nm, and within this size range the flow of gas at reservoir conditions will fall within the slip-flow and early transition-flow regime (0.001 < Kn < 1.0). Therefore, flow-rates will significantly deviate from Navier-Stokes predictions. Currently, the study of slip-flows is mostly limited to simple tube and channel geometries, but the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Here we present a local effective viscosity lattice Boltzmann model (LEV-LBM) constructed for flow simulation in the slip- and early-transition flow regimes, adapted here for complex geometries. At the macroscopic scale the LEV-LBM is parameterized with local effective viscosities at each node to capture the variance of the mean free path of gas molecules in a bounded system. The LEV-LBM is first validated in simple tube geometries, where excellent agreement with linearized Boltzmann solutions is found for Knudsen numbers up to 1.0. The LEV-LBM is then employed to quantify the length effect on the apparent permeability of tubes, which suggests pore network modeling of flow in the slip and early-transition regime will result in overestimation unless the length effect is considered. Furthermore, the LEV-LBM is used to evaluate the predictive value of commonly measured pore geometry characteristics such as porosity, pore size distribution, and specific solid surface area for the calculation of permeability. We show that bundle of tubes models grossly overestimate apparent permeability, as well as underestimate the increase in apparent permeability with decreasing pressure as a result of excluding topology and pore shape from calculations.
A Complex-Geometry Validation Experiment for Advanced Neutron Transport Codes
David W. Nigg; Anthony W. LaPorta; Joseph W. Nielsen; James Parry; Mark D. DeHart; Samuel E. Bays; William F. Skerjanc
2013-11-01
The Idaho National Laboratory (INL) has initiated a focused effort to upgrade legacy computational reactor physics software tools and protocols used for support of core fuel management and experiment management in the Advanced Test Reactor (ATR) and its companion critical facility (ATRC) at the INL.. This will be accomplished through the introduction of modern high-fidelity computational software and protocols, with appropriate new Verification and Validation (V&V) protocols, over the next 12-18 months. Stochastic and deterministic transport theory based reactor physics codes and nuclear data packages that support this effort include MCNP5[1], SCALE/KENO6[2], HELIOS[3], SCALE/NEWT[2], and ATTILA[4]. Furthermore, a capability for sensitivity analysis and uncertainty quantification based on the TSUNAMI[5] system has also been implemented. Finally, we are also evaluating the Serpent[6] and MC21[7] codes, as additional verification tools in the near term as well as for possible applications to full three-dimensional Monte Carlo based fuel management modeling in the longer term. On the experimental side, several new benchmark-quality code validation measurements based on neutron activation spectrometry have been conducted using the ATRC. Results for the first four experiments, focused on neutron spectrum measurements within the Northwest Large In-Pile Tube (NW LIPT) and in the core fuel elements surrounding the NW LIPT and the diametrically opposite Southeast IPT have been reported [8,9]. A fifth, very recent, experiment focused on detailed measurements of the element-to-element core power distribution is summarized here and examples of the use of the measured data for validation of corresponding MCNP5, HELIOS, NEWT, and Serpent computational models using modern least-square adjustment methods are provided.
Cisneros, Anselmo T.; Ilas, Dan
2012-01-01
The Advanced High Temperature Reactor (AHTR) is a 3400 MWth fluoride salt cooled high temperature reactor (FHR) that uses TRISO particle fuel compacted into slabs rather than spherical fuel pebbles or cylindrical fuel compacts. Simplified methods are required for parametric design studies such that analyzing the entire feasible design space for an AHTR is tractable. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations in depletion analysis and equilibrium depletion analysis methods to analyze systems with multi-batch fuel management schemes. This paper presents three elements of significant novelty. First, the reactivity-equivalent physical transformation (RPT) methodology usually applied in systems with coated particle fuel in cylindrical and spherical geometries was extended to slab geometries. Secondly, based on this newly developed RPT method for slab geometries, a methodology that uses Monte Carlo depletion approaches was further developed to search for the maximum discharge burnup in a multi-batch system by iteratively estimating the beginning of equilibrium cycle composition and sampling different discharge burnups. This iterative equilibrium depletion search (IEDS) method fully defines an equilibrium fuel cycle (keff, power, flux and composition evolutions across space and time), but is computationally demanding, although feasible on single-processor workstations. Finally, an analytical method, the non-linear reactivity model, was developed by expanding the linear reactivity model to include an arbitrary number of higher order terms to extrapolate single-batch depletion results to estimate the maximum discharge burnup and BOEC keff in systems with multi-batch fuel management schemes. Results from this method were benchmarked against equilibrium depletion analysis results using the IEDS.
Cisneros, Anselmo T.; Ilas, Dan
2013-01-01
The Advanced High-Temperature Reactor (AHTR) is a 3400 MWth fluoride-salt-cooled high-temperature reactor (FHR) that uses TRISO particle fuel compacted into slabs rather than spherical or cylindrical fuel compacts. Simplified methods are required for parametric design studies such that analyzing the entire feasible design space for an AHTR is tractable. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations in depletion analysis and equilibrium depletion analysis methods to analyze systems with multi-batch fuel management schemes. This paper presents three elements of significant novelty. First, the Reactivity-Equivalent Physical Transformation (RPT) methodology usually applied in systems with coated-particle fuel in cylindrical and spherical geometries has been extended to slab geometries. Secondly, based on this newly developed RPT method for slab geometries, a methodology that uses Monte Carlo depletion approaches was further developed to search for the maximum discharge burnup in a multi-batch system by iteratively estimating the beginning of equilibrium cycle (BOEC) composition and sampling different discharge burnups. This Iterative Equilibrium Depletion Search (IEDS) method fully defines an equilibrium fuel cycle (keff, power, flux, and composition evolutions) but is computationally demanding, although feasible on single-processor workstations. Finally, an analytical method, the Non-Linear Reactivity Model, was developed by expanding the linear reactivity model to include an arbitrary number of higher order terms so that single-batch depletion results could be extrapolated to estimate the maximum discharge burnup and BOEC keff in systems with multi-batch fuel management schemes. Results from this method were benchmarked against equilibrium depletion analysis results using the IEDS.
Brunet, Edouard; Ajdari, Armand
2006-05-01
We set up an analytical framework that allows one to describe and compute streaming effects and electro-osmosis on an equal footing. This framework relies on the thin double layer approximation commonly used for description of electroosmotic flows, but rarely used for streaming problems. Using this framework we quantitatively assess the induction of bulk streaming current patterns by topographic or charge heterogeneities on surfaces. This too also permits analytical computation of all linear electrokinetic effects in complex microfluidic geometries, and we discuss a few immediate applications. PMID:16803036
NASA Astrophysics Data System (ADS)
Rakhmanov, Vitaly V.; Kulikov, Dmitry V.
2014-08-01
Possibility of use of a refractive-index-matching method for flow investigation by LDA method in models of the fire chambers of complex geometry is shown. The technique of flows investigation by LDA method is developed. The given technique can be successfully applied in leading branches of a thermal and hydropower engineering, in case of need of flows diagnostics in models of devices with the complex geometry.
Waychunas, G.A.; Fuller, C.C.; Davis, J.A.; Rehr, J.J.
2003-01-01
X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to "fingerprint" comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES
Sienicki, J.J.; Spencer, B.W.; Squarer, D.
1984-01-01
An analysis has been performed of corium sweepout behavior in the ANL/EPRI CWTI-series reactor material experiments involving the gas pressure-driven injection of molten corium into the reactor cavity region of a 1:30 scale mockup of a PWR containment. A computer model was developed to calculate the sweepout versus retention of corium and water from the cavity. The model consists of hydrodynamics and freezing calculations describing the pressure-driven two-phase flow of corium, water, steam and gas out of the cavity, freezing of corium upon structural surfaces, and levitation of corium within the cavity by the vessel blowdown gas jet. The model has had good success predicting the disposition of corium for the available CWTI tests, indicating retention in the cavity of between 40 and 70% of the injected corium masses. For conditions representative of the TMLB' sequence in the reactor system, the model predicts essentially complete sweepout of corium from the full-scale cavity region before the dispersive forces arising from the blowdown of the primary system have decayed. However, this large sweepout does not imply that the swept out material would deliver its energy directly to the containment atmosphere.
Christy, R.F.
1961-07-25
A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.
Szilard, L.
1963-09-10
A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)
Polukeev, Alexey V; Marcos, Rocío; Ahlquist, Mårten S G; Wendt, Ola F
2016-03-14
The hydride iridium pincer complex [(PCyP)IrH2] (PCyP=cis-1,3-bis[(di-tert-butylphosphino)methyl]cyclohexane, 1) reveals remarkably solvent-dependent hydride chemical shifts, isotope chemical shifts, JHD and T1(min), with rHH increasing upon moving to more polar medium. The only known example of such behaviour (complex [(POCOP)IrH2], POCOP=2,6-(tBu2PO)2C6H3) was explained by the coordination of a polar solvent molecule to the iridium (J. Am. Chem. Soc. 2006, 128, 17114). Based on the existence of an agostic bond between α-C-H and iridium in 1 in all solvents, we argue that the coordination of solvent can be rejected. DFT calculations revealed that the structures of 1 and [(POCOP)IrH2] depend on the dielectric permittivity of the medium and these compounds adopt trigonal-bipyramidal geometries in non-polar media and square-pyramidal geometries in polar media. PMID:26880293
Plunkett, Pat; Hu, Jonathan; Siefert, Christopher; Atzberger, Paul J.
2014-08-07
We develop stochastic mixed finite element methods for spatially adaptive simulations of fluid–structure interactions when subject to thermal fluctuations. To account for thermal fluctuations, we introduce a discrete fluctuation–dissipation balance condition to develop compatible stochastic driving fields for our discretization. We also perform analysis that shows our condition is sufficient to ensure results consistent with statistical mechanics. We show the Gibbs–Boltzmann distribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and multigrid to generate fields with O(N) computational complexity. Our stochastic methods provide an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To demonstrate in practice our stochastic computational methods, we investigate within channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles depends on location. Furthermore, our methods extend the applicability of fluctuating hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics and for domains that have complex geometries relevant in many applications.
Plunkett, Pat; Hu, Jonathan; Siefert, Christopher; Atzberger, Paul J.
2014-11-15
We develop stochastic mixed finite element methods for spatially adaptive simulations of fluid–structure interactions when subject to thermal fluctuations. To account for thermal fluctuations, we introduce a discrete fluctuation–dissipation balance condition to develop compatible stochastic driving fields for our discretization. We perform analysis that shows our condition is sufficient to ensure results consistent with statistical mechanics. We show the Gibbs–Boltzmann distribution is invariant under the stochastic dynamics of the semi-discretization. To generate efficiently the required stochastic driving fields, we develop a Gibbs sampler based on iterative methods and multigrid to generate fields with O(N) computational complexity. Our stochastic methods provide an alternative to uniform discretizations on periodic domains that rely on Fast Fourier Transforms. To demonstrate in practice our stochastic computational methods, we investigate within channel geometries having internal obstacles and no-slip walls how the mobility/diffusivity of particles depends on location. Our methods extend the applicability of fluctuating hydrodynamic approaches by allowing for spatially adaptive resolution of the mechanics and for domains that have complex geometries relevant in many applications.
NASA Astrophysics Data System (ADS)
Tauriello, Gerardo; Koumoutsakos, Petros
2015-02-01
We present a comparative study of penalization and phase field methods for the solution of the diffusion equation in complex geometries embedded using simple Cartesian meshes. The two methods have been widely employed to solve partial differential equations in complex and moving geometries for applications ranging from solid and fluid mechanics to biology and geophysics. Their popularity is largely due to their discretization on Cartesian meshes thus avoiding the need to create body-fitted grids. At the same time, there are questions regarding their accuracy and it appears that the use of each one is confined by disciplinary boundaries. Here, we compare penalization and phase field methods to handle problems with Neumann and Robin boundary conditions. We discuss extensions for Dirichlet boundary conditions and in turn compare with methods that have been explicitly designed to handle Dirichlet boundary conditions. The accuracy of all methods is analyzed using one and two dimensional benchmark problems such as the flow induced by an oscillating wall and by a cylinder performing rotary oscillations. This comparative study provides information to decide which methods to consider for a given application and their incorporation in broader computational frameworks. We demonstrate that phase field methods are more accurate than penalization methods on problems with Neumann boundary conditions and we present an error analysis explaining this result.
Tintelnot, M; Andrews, P
1989-03-01
An approach is described which makes use of X-ray structural data from enzyme-ligand complexes in order to obtain information for application in receptor modelling. The atomic surroundings of five different ligand functional groups were determined for all complex structures recorded in the Brookhaven Protein Data Bank. These atomic surroundings were then superimposed with respect to the atoms of the functional groups of the ligands in order to obtain clouds of neighbouring atoms. General principles were sought to describe the orientation or favoured position of groups or atoms around those functional groups when bound to a macromolecule. Some simple conclusions and leads for further modelling were thus derived.
Issues Related to Cleaning Complex Geometry Surfaces with ODC-Free Solvents
NASA Technical Reports Server (NTRS)
Bradford, Blake F.; Wurth, Laura A.; Nayate, Pramod D.; McCool, Alex (Technical Monitor)
2001-01-01
Implementing ozone depleting chemicals (ODC)-free solvents into full-scale reusable solid rocket motor cleaning operations has presented problems due to the low vapor pressures of the solvents. Because of slow evaporation, solvent retention is a problem on porous substrates or on surfaces with irregular geometry, such as threaded boltholes, leak check ports, and nozzle backfill joints. The new solvents are being evaluated to replace 1,1,1-trichloroethane, which readily evaporates from these surfaces. Selection of the solvents to be evaluated on full-scale hardware was made based on results of subscale tests performed with flat surface coupons, which did not manifest the problem. Test efforts have been undertaken to address concerns with the slow-evaporating solvents. These concerns include effects on materials due to long-term exposure to solvent, potential migration from bolthole threads to seal surfaces, and effects on bolt loading due to solvent retention in threads. Tests performed to date have verified that retained solvent does not affect materials or hardware performance. Process modifications have also been developed to assist drying, and these can be implemented if additional drying becomes necessary.
Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries
NASA Astrophysics Data System (ADS)
Yazdani, Alireza; Karniadakis, George
2014-11-01
Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly in regions of flow stagnation, recirculation and reattachment is significantly important in formation of thrombi. For example, haemodynamic micro-environment can have effects on thrombosis inside the atherosclerotic plaques and aneurysms. To study these effects, we have developed and validated a model for platelet aggregation in blood flow using Dissipative Particle Dynamics (DPD) method. In this model platelets are considered as single DPD particles interacting with each other via Morse potential once activated. We assign an activation delay time to each platelet such that they remain passive during that time. We investigate the effect of different geometries on platelet aggregation by considering arterial stenosis at different levels of occlusion, and aneurysms of different shapes and sizes. The results show a marked increase in platelet aggregation within the boundaries of deceleration zone by increasing the degree of stenosis. Further, we observe enhanced platelet margination and wall deposition in the presence of red blood cells.
Evaluation of 2D shallow-water model for spillway flow with a complex geometry
Technology Transfer Automated Retrieval System (TEKTRAN)
Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...
Dreij, Kristian; Chaudhry, Qasim Ali; Jernström, Bengt; Morgenstern, Ralf; Hanke, Michael
2011-01-01
A general description of effects of toxic compounds in mammalian cells is facing several problems. Firstly, most toxic compounds are hydrophobic and partition phenomena strongly influence their behaviour. Secondly, cells display considerable heterogeneity regarding the presence, activity and distribution of enzymes participating in the metabolism of foreign compounds i.e. bioactivation/biotransformation. Thirdly, cellular architecture varies greatly. Taken together, complexity at several levels has to be addressed to arrive at efficient in silico modelling based on physicochemical properties, metabolic preferences and cell characteristics. In order to understand the cellular behaviour of toxic foreign compounds we have developed a mathematical model that addresses these issues. In order to make the system numerically treatable, methods motivated by homogenization techniques have been applied. These tools reduce the complexity of mathematical models of cell dynamics considerably thus allowing to solve efficiently the partial differential equations in the model numerically on a personal computer. Compared to a compartment model with well-stirred compartments, our model affords a more realistic representation. Numerical results concerning metabolism and chemical solvolysis of a polycyclic aromatic hydrocarbon carcinogen show good agreement with results from measurements in V79 cell culture. The model can easily be extended and refined to include more reactants, and/or more complex reaction chains, enzyme distribution etc, and is therefore suitable for modelling cellular metabolism involving membrane partitioning also at higher levels of complexity.
High performance parallel computing of flows in complex geometries: II. Applications
NASA Astrophysics Data System (ADS)
Gourdain, N.; Gicquel, L.; Staffelbach, G.; Vermorel, O.; Duchaine, F.; Boussuge, J.-F.; Poinsot, T.
2009-01-01
Present regulations in terms of pollutant emissions, noise and economical constraints, require new approaches and designs in the fields of energy supply and transportation. It is now well established that the next breakthrough will come from a better understanding of unsteady flow effects and by considering the entire system and not only isolated components. However, these aspects are still not well taken into account by the numerical approaches or understood whatever the design stage considered. The main challenge is essentially due to the computational requirements inferred by such complex systems if it is to be simulated by use of supercomputers. This paper shows how new challenges can be addressed by using parallel computing platforms for distinct elements of a more complex systems as encountered in aeronautical applications. Based on numerical simulations performed with modern aerodynamic and reactive flow solvers, this work underlines the interest of high-performance computing for solving flow in complex industrial configurations such as aircrafts, combustion chambers and turbomachines. Performance indicators related to parallel computing efficiency are presented, showing that establishing fair criterions is a difficult task for complex industrial applications. Examples of numerical simulations performed in industrial systems are also described with a particular interest for the computational time and the potential design improvements obtained with high-fidelity and multi-physics computing methods. These simulations use either unsteady Reynolds-averaged Navier-Stokes methods or large eddy simulation and deal with turbulent unsteady flows, such as coupled flow phenomena (thermo-acoustic instabilities, buffet, etc). Some examples of the difficulties with grid generation and data analysis are also presented when dealing with these complex industrial applications.
A Parallel Cartesian Approach for External Aerodynamics of Vehicles with Complex Geometry
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.
2001-01-01
This workshop paper presents the current status in the development of a new approach for the solution of the Euler equations on Cartesian meshes with embedded boundaries in three dimensions on distributed and shared memory architectures. The approach uses adaptively refined Cartesian hexahedra to fill the computational domain. Where these cells intersect the geometry, they are cut by the boundary into arbitrarily shaped polyhedra which receive special treatment by the solver. The presentation documents a newly developed multilevel upwind solver based on a flexible domain-decomposition strategy. One novel aspect of the work is its use of space-filling curves (SFC) for memory efficient on-the-fly parallelization, dynamic re-partitioning and automatic coarse mesh generation. Within each subdomain the approach employs a variety reordering techniques so that relevant data are on the same page in memory permitting high-performance on cache-based processors. Details of the on-the-fly SFC based partitioning are presented as are construction rules for the automatic coarse mesh generation. After describing the approach, the paper uses model problems and 3- D configurations to both verify and validate the solver. The model problems demonstrate that second-order accuracy is maintained despite the presence of the irregular cut-cells in the mesh. In addition, it examines both parallel efficiency and convergence behavior. These investigations demonstrate a parallel speed-up in excess of 28 on 32 processors of an SGI Origin 2000 system and confirm that mesh partitioning has no effect on convergence behavior.
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin; Sikora, J. G.; Sankaran, S. N.
2001-01-01
Polymer Matrix Composite (PMC) hydrogen tanks have been proposed as an enabling technology for reducing the weight of Single-Stage-to-Orbit reusable launch vehicles where structural mass has a large impact on vehicle performance. A key development issue of these lightweight structures is the leakage of hydrogen through the composite material. The rate of hydrogen leakage can be a function of the material used, method of 6 fabrication used to manufacture the tank, mechanical load the tank must react, internal damage-state of the material, and the temperatures at which the tank must operate. A method for measuring leakage through a geometrically complex structure at cryogenic temperature and under mechanical load was developed, calibrated and used to measure hydrogen leakage through complex X-33 liquid-hydrogen tank structure sections.
Fast laser systems for measuring the geometry of complex-shaped objects
NASA Astrophysics Data System (ADS)
Galiulin, Ravil M.; Galiulin, Rishat M.; Bakirov, J. M.; Vorontsov, A. V.; Ponomarenko, I. V.
1999-01-01
The technical characteristics, advantages and applications of an automated optoelectronic measuring system designed by 'Optel' company, State Aviation University of Ufa, are presented in this paper. The measuring apparatus can be applied for industrial development and research, for example, in rapid prototyping, and for obtaining geometrical parameters in medicine and criminalistics. It essentially is a non-contact and rapid scanning system, allowing measurements of complex shaped objects like metal and plastic workpieces or parts of human body.
Pure Rotational Spectrum and Molecular Geometry of AN Isolated Complex of Imidazole and Urea
NASA Astrophysics Data System (ADS)
Blanco, Susana; Mullaney, John C.; Medcraft, Chris; Walker, Nick; Legon, Anthony
2016-06-01
The investigation of the dynamics of biomolecules is crucial to understand biological processes. For this purpose, the initial research investigations on the conformational behavior of isolated biomolecules should go one further step by investigating the structure and conformation of complexes formed in supersonic jets by different biomolecules to model the interactions which take place in biological media. In this work, the imidazole-urea complex formed in a supersonic expansion has been investigated by using microwave spectroscopy. In parallel, the conformational space of the complex has been explored with ab initio calculations. The broadband microwave spectrum (8-18GHz frequency interval) has been recorded using a Chirped Pulse Fourier Transform Microwave spectrometer (CP-FTMW). The solid sample was formed by mixing pure samples of imidazole and urea within a solid copper matrix, and was vaporized using the second harmonic of a pulsed Nd:YAG laser. The analysis of the experimental data in the light of the theoretical predictions has allowed the unambiguous identification of the observed conformers in the microwave spectrum.
Roman, W.G.
1961-06-27
A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.
Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool
NASA Astrophysics Data System (ADS)
Meylan, S.; Vimont, U.; Incerti, S.; Clairand, I.; Villagrasa, C.
2016-07-01
Several DNA representations are used to study radio-induced complex DNA damages depending on the approach and the required level of granularity. Among all approaches, the mechanistic one requires the most resolved DNA models that can go down to atomistic DNA descriptions. The complexity of such DNA models make them hard to modify and adapt in order to take into account different biological conditions. The DnaFabric project was started to provide a tool to generate, visualise and modify such complex DNA models. In the current version of DnaFabric, the models can be exported to the Geant4 code to be used as targets in the Monte Carlo simulation. In this work, the project was used to generate two DNA fibre models corresponding to two DNA compaction levels representing the hetero and the euchromatin. The fibres were imported in a Geant4 application where computations were performed to estimate the influence of the DNA compaction on the amount of calculated DNA damage. The relative difference of the DNA damage computed in the two fibres for the same number of projectiles was found to be constant and equal to 1.3 for the considered primary particles (protons from 300 keV to 50 MeV). However, if only the tracks hitting the DNA target are taken into account, then the relative difference is more important for low energies and decreases to reach zero around 10 MeV. The computations were performed with models that contain up to 18,000 DNA nucleotide pairs. Nevertheless, DnaFabric will be extended to manipulate multi-scale models that go from the molecular to the cellular levels.
Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries
NASA Astrophysics Data System (ADS)
Popinet, Stéphane
2003-09-01
An adaptive mesh projection method for the time-dependent incompressible Euler equations is presented. The domain is spatially discretised using quad/octrees and a multilevel Poisson solver is used to obtain the pressure. Complex solid boundaries are represented using a volume-of-fluid approach. Second-order convergence in space and time is demonstrated on regular, statically and dynamically refined grids. The quad/octree discretisation proves to be very flexible and allows accurate and efficient tracking of flow features. The source code of the method implementation is freely available.
Bergslien, D.; Rye-Larsen, M.; Jenssen, A.I. )
1996-01-01
Sand remobilization played a major role in generating the high relief mounded geometries that trap oil in the early Tertiary reservoirs at Balder Field in Norwegian North Sea blocks 25/10 and 25/11. The thick massive submarine-fan sandstones were shed from the East Shetland Platform and deposited from high density turbidity currents. These thick massive sandstones lie in the distal portions of the fan system on the northwestern margin of the Utsira High. An intricate interaction between deposition and soft sediment deformation processes generated the complex cluster of thick mounded sand geometries comprising the Balder oil field. Slumping, sliding and sand remobilization with associated sand injections into overlying shales were the dominant deformation processes that mainly occurred during the early Eocene. The field is comprised of three reservoirs, the Paleocene Heimdal and Hermod Formations and the Early Eocene Balder Formation. The sandstones, which have excellent reservoir properties, share a common pressure system and oil-water contact. This is probably related to the soft-sediment deformation and associated sand injections establishing cross-stratal communication.
Bergslien, D.; Rye-Larsen, M.; Jenssen, A.I.
1996-12-31
Sand remobilization played a major role in generating the high relief mounded geometries that trap oil in the early Tertiary reservoirs at Balder Field in Norwegian North Sea blocks 25/10 and 25/11. The thick massive submarine-fan sandstones were shed from the East Shetland Platform and deposited from high density turbidity currents. These thick massive sandstones lie in the distal portions of the fan system on the northwestern margin of the Utsira High. An intricate interaction between deposition and soft sediment deformation processes generated the complex cluster of thick mounded sand geometries comprising the Balder oil field. Slumping, sliding and sand remobilization with associated sand injections into overlying shales were the dominant deformation processes that mainly occurred during the early Eocene. The field is comprised of three reservoirs, the Paleocene Heimdal and Hermod Formations and the Early Eocene Balder Formation. The sandstones, which have excellent reservoir properties, share a common pressure system and oil-water contact. This is probably related to the soft-sediment deformation and associated sand injections establishing cross-stratal communication.
TRIFL: A design tool for modeling complex magnetically insulated transmission line geometries
Mix, L.P.; Mendel, C.W. Jr.; Seidel, D.B.; Rosenthal, S.E.
1996-12-31
Vacuum power flow in modern high-power pulsed accelerator transmission lines requires field stresses at the conductors that are so high that negative surfaces become space-charge-limited electron emitters. The performance of these lines can be calculated using two- and three-dimensional, time-dependent, particle-in-cell electromagnetic codes such a TWOQUICK and QUICKSILVER. Extensive design of complex systems using these simulation codes would be extremely expensive and, perhaps, impossible for many of the new pulsed power systems being planned. An analytic model has been developed which predicts the behavior of magnetically insulated transmission lines. The model uses flow impedance parameters with an expanded set of Telegrapher`s equations to calculate radial currents in the transmission lines. This model has been implemented in a code, TRIFL (TRIple-equation-FLow model), on workstations and PC`s and allows one to do detailed designed studies on systems far too complex for similar treatment using a PIC code. TRIFL has been used to design hardware for the PBFA-X accelerator and to analyze PBFA-X data.
Finite-Source Modeling to Constrain Complex Fault Geometry of the South Napa Earthquake
NASA Astrophysics Data System (ADS)
Wooddell, K. E.; Dreger, D. S.; Huang, M. H.
2015-12-01
The August 24, 2014 South Napa Mw6.0 earthquake ruptured to the north along the West Napa fault, producing strong shaking in the deep sediments (~1000 m) of the Napa Valley. Aftershock locations define the roughly north-northwest striking fault plane, but details regarding the dip of the fault and the strike of the northernmost section of the fault remain less certain. Preliminary inversions based on the inversion of broadband data from the BDSN, PBO GPS, and InSAR observations show a 13 km long rupture initiating at a depth of 11 km and propagating unilaterally to the northwest and up-dip (Dreger et al., 2015), however this kinematic finite-source model assumes a single planar fault. Field reconnaissance and LiDAR imaging reveals a complex system of sub-parallel faults at the surface. The main western branch, which had the largest surface offsets, shows a marked change in strike approximately 9 km north of the epicenter (Bray et al., 2014). In addition, there is evidence of surface offsets on eastern branches of the West Napa fault system (Bray et al., 2014). Whether this complexity persists, or how the faults may link at depth, is an open question. However, based on the limited preliminary dataset of Dreger et al (2015), we conclude that the fault dip is nearly vertical. In this study we investigate complex fault models that account for changing strike, and en echelon west dipping faults that may join at hypocentral depth by means of finite-source inversion of regional broadband, local strong-motion and GPS and InSAR geodetic data sets. We build on the data set used in the prelimary model of Dreger et al, (2015) by incorporating local strong motion waveform data as well as the static displacement dataset of Funning (2015). For the strong motion data, we incorporate stations located on "rock" (Vs30 > 700 m/s). Green's functions for the "rock" stations are computed with a modified Gil7 model to account for the lower velocity in the upper 30 meters. Preliminary
Rudd, Kevin E; Leonard, Kevin R; Bingham, Jill P; Hinders, Mark K
2007-03-01
Although many technologies exist for inspecting piping systems, they are most successful on straight pipes and are often unable to accommodate the added complexities of pipe elbows, bends, twists, and branches, particularly if the region of interest is inaccessible. This paper presents a numerical technique based on the elastodynamic finite integration technique for simulating guided elastic wave propagation in piping systems. Comparisons show agreement between experimental and simulated data, and guided wave interaction with flaws, focusing, and propagation in pipe bends are presented. These examples demonstrate the ability of the simulation method to be used to study elastic wave propagation in piping systems which include three-dimensional pipe bends, and suggest its potential as a design tool for designing pipe inspection hardware and ultrasonic signal processing algorithms.
Reservoir stratal geometry within a Pleistocene shelf-edge lowstand complex
Tesson, M. ); Allen, G.P. )
1993-02-01
A grid of 3000 km of high resolution seismic profiles on the Rhone continental shelf (SE France) indicates the existence of a regional sediment wedge which extends from the mid-shelf to the continental slope. This wedge is interpreted as a lowstand complex accumulated during the latest Pleistocene glacial period. It attains a thickness of 150 m. at the shelf break, onlaps landward onto a regional unconformity, and forms an overall regressive system which has resulted in the progradation of the slope by more than 15 km. The wedge is composed of several seaward prograding mud and sand units which represent successive episodes of shoreface progradation. These units attain a thickness of 20-80 m at the shelf break and can be correlated regionally. Each is bounded by an upper transgressive ravinement surface, a lower downlap surface, and onlaps updip onto a regional unconformity within the wedge. Each unit constitutes a separate reservoir related to a coastal progradation of several tens of km. During progradation, each unit was affected by episodic small-scale relative sea level falls, which resulted in unconformities and reservoir discontinuities within the prograding clinoforms. Seaward tilting of the shelf occurred between each regressive unit, thereby creating accommodation for the succeeding unit. The interaction between high frequency glacio-eustatic cycles and the isostatic shelf tilting resulted in a complex pattern of coastal onlaps. The landward onlap termination of the individual units forms both landward and seaward stepping patterns. Each unit, therefore constitutes either a parasequence or a type 2 depositional sequence, depending on the location of the hinge line and the amplitude of sea level change.
Griffin, Joanna L.; Bowler, Matthew W.; Baxter, Nicola J.; Leigh, Katherine N.; Dannatt, Hugh R. W.; Hounslow, Andrea M.; Blackburn, G. Michael; Webster, Charles Edwin; Cliff, Matthew J.; Waltho, Jonathan P.
2012-01-01
Experimental observations of fluoromagnesate and fluoroaluminate complexes of β-phosphoglucomutase (β-PGM) have demonstrated the importance of charge balance in transition-state stabilization for phosphoryl transfer enzymes. Here, direct observations of ground-state analog complexes of β-PGM involving trifluoroberyllate establish that when the geometry and charge distribution closely match those of the substrate, the distribution of conformers in solution and in the crystal predominantly places the reacting centers in van der Waals proximity. Importantly, two variants are found, both of which satisfy the criteria for near attack conformers. In one variant, the aspartate general base for the reaction is remote from the nucleophile. The nucleophile remains protonated and forms a nonproductive hydrogen bond to the phosphate surrogate. In the other variant, the general base forms a hydrogen bond to the nucleophile that is now correctly orientated for the chemical transfer step. By contrast, in the absence of substrate, the solvent surrounding the phosphate surrogate is arranged to disfavor nucleophilic attack by water. Taken together, the trifluoroberyllate complexes of β-PGM provide a picture of how the enzyme is able to organize itself for the chemical step in catalysis through the population of intermediates that respond to increasing proximity of the nucleophile. These experimental observations show how the enzyme is capable of stabilizing the reaction pathway toward the transition state and also of minimizing unproductive catalysis of aspartyl phosphate hydrolysis. PMID:22505741
NASA Astrophysics Data System (ADS)
Bailey, B.; Stoll, R., II; Miller, N. E.; Pardyjak, E.; Mahaffee, W.
2014-12-01
Plants cover the majority of Earth's land surface, and thus play a critical role in the surface energy balance. Within individual plant communities, the leaf energy balance is a fundamental component of most biophysical processes. Absorbed radiation drives the energy balance and provides the means by which plants produce food. Available energy is partitioned into sensible and latent heat fluxes to determine surface temperature, which strongly influences rates of metabolic activity and growth. The energy balance of an individual leaf is coupled with other leaves in the community through longwave radiation emission and advection through the air. This complex coupling can make scaling models from leaves to whole-canopies difficult, specifically in canopies with complex, heterogeneous geometries. We present a new three-dimensional canopy model that simultaneously resolves sub-tree to whole-canopy scales. The model provides spatially explicit predictions of net radiation exchange, boundary-layer and stomatal conductances, evapotranspiration rates, and ultimately leaf surface temperature. The radiation model includes complex physics such as anisotropic emission and scattering. Radiation calculations are accelerated by leveraging graphics processing unit (GPU) technology, which allows canopy-scale problems to be performed on a standard desktop workstation. Since validating the three-dimensional distribution of leaf temperature can be extremely challenging, we used several independent measurement techniques to quantify errors in measured and modeled values. When compared with measured leaf temperatures, the model gave a mean error of about 2°C, which was close to the estimated measurement uncertainty.
Wang, Yu-Long; Feng, Meng; Tao, Xian; Tang, Qing-Yun; Shen, Ying-Zhong
2013-01-01
The lanthanum(III) complexes tris(3,5-diphenylpyrazolato-κ(2)N,N')tris(tetrahydrofuran-κO)lanthanum(III) tetrahydrofuran monosolvate, [La(C(15)H(11)N(2))(3)(C(4)H(8)O)(3)]·C(4)H(8)O, (I), and tris(3,5-diphenyl-1,2,4-triazolato-κ(2)N(1),N(2))tris(tetrahydrofuran-κO)lanthanum(III), [La(C(14)H(10)N(3))(3)(C(4)H(8)O)(3)], (II), both contain La(III) atoms coordinated by three heterocyclic ligands and three tetrahydrofuran ligands, but their coordination geometries differ. Complex (I) has a mer-distorted octahedral geometry, while complex (II) has a fac-distorted configuration. The difference in the coordination geometries and the existence of asymmetric La-N bonding in the two complexes is associated with intramolecular C-H...N/O interactions between the ligands.
Effects of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors
Boudier, G.; Gicquel, L.Y.M.; Poinsot, T.J.
2008-10-15
The power of current parallel computers is becoming sufficient to apply large eddy simulation (LES) tools to reacting flows not only in academic configurations but also in real gas turbine chambers. The most limiting factor in performing LES of real systems is the mesh size, which directly controls the overall cost of the simulation, so that the effects of mesh resolution on LES results become a key issue. In the present work, an unstructured compressible LES solver is used to compute the reacting flow in a domain corresponding to a sector of a realistic helicopter chamber. Three grids ranging from 1.2 to 44 million elements are used for LES and results are compared in terms of mean and fluctuating fields as well as of pressure spectra. Results show that the mean temperature, reaction rate, and velocity fields are almost insensitive to the grid size. The RMS field of the resolved velocity is also reasonably independent of the mesh, while the RMS fields of temperature exhibit more sensitivity to the grid, as expected from the fact that most of the combustion process proceeds at small scales. The acoustic field exhibits a limited sensitivity to the mesh, suggesting that LES is adapted to the computation of combustion instabilities in complex systems. (author)
Influence of tailored MLI for complex surface geometries on heat transfer
NASA Astrophysics Data System (ADS)
Neumann, H.; Mayrhofer, R.; Richter, T.
2015-12-01
Complex, non-developable surfaces require a tailored multi-layer insulation (MLI) for lowest heat load. The most experiments showing the heat transfer through MLI are performed under quasi-ideal conditions determining the principle insulation quality. But the surface to be insulated in real cryostats implies feed-throughs and other non-developable surface parts. The thermal performance of MLI is degraded significantly at cutting points. To investigate this degrading effect a LN2-filled cylinder with a diameter of 219 mm and a length of 1820 mm was insulated with MLI and the heat load was measured by means of calorimetry. In addition the heat load to an insulated cylinder with eighteen branches was measured. Both cylinders have the same surface of 1.37 m2 for a comparison of the results. This article describes the experiments with different ways of tailoring the MLI for the cylinder with branches and discusses their results. It was shown that the cutting points at the branches have a significant degrading influence on the thermal performance of MLI.
Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration
J'Tia Patrice Taylor; David E. Shropshire
2009-09-01
Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated
NASA Astrophysics Data System (ADS)
Ciruzzi, Dominick M.
. In order to test this hypothesis, this research first identified complex aquifer geometry controlled by bedrock depths from a ground-penetrating radar field campaign in Tuolumne Meadows, CA. This research then quantified the hydrogeologic impacts of a uniform sediment thickness model against a variable sediment thickness model under scenarios that simulated different high elevation meadows by incorporating ranges of hydraulic conductivity and topographic gradient. These scenarios also tested different stream flow and recharge rates, which simulated different volumes of snowpack. Results imply that bedrock geometry impact both the timing and magnitude of volume of groundwater (i.e. active storage) retention as well as release to streams and vegetation under both current and future snowpack simulations. In most cases, a uniform thickness meadow overestimated volume of groundwater retained from recharge and released to the stream both spatially and temporally. In doing so, volume of surface water transferred to downstream users was also overestimated. These overestimations are significant and, depending on the type of meadow, can miscalculate the water supply to San Francisco by several days worth of water. This research also indicated a reduction of up to 70% water supply from these meadows as a result of future decreases in snowpack. Spatially within the meadow, a uniform thickness model further overestimated volume of groundwater nearest to bedrock outcrops. This suggested that a uniform thickness model did not successfully identify spatially vulnerable regions on the meadow scale. This research concludes that efficient and effective monitoring and management of the water to and from these ecosystems must consider the substantial impacts of complex aquifer geometry.
NASA Astrophysics Data System (ADS)
Kulikov, S. A.; Prikhodko, V. I.
2016-07-01
The paper presents an overview of works on the creation of data acquisition and data storage systems, which have been carried out in the Department of the IBR-2 spectrometers complex (DCS) of the Frank Laboratory of Neutron Physics (FLNP) over the past 15 years (before, during, and after the modernization of the IBR-2 reactor). These systems represent a unified set of identical (from the viewpoint of hardware) modules limited in type but functionally complete, wherein distinctions in parameters, functional capabilities, encoding, correction and preliminary data processing procedures specific to each spectrometer are realized on the level of microprograms, electronic tables, and integrated software control system.
Goto, Takehito; Ogawa, Makoto
2015-06-17
Synthetic saponite containing a photosensitizing metal complex, tris(2,2'-bipyridine)ruthenium(II)), in the interlayer space was complexed with anatase nanoparticles to obtain transparent hybrid film photocatalyst. The catalyst film was mounted in a flow reactor device to catalyze such photocatalytic reactions as the decomposition of aqueous acetic acid and N-alkylation of benzylamine with ethanol. PMID:26029789
Evans, Robert M.
1976-10-05
1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.
Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.
2009-01-21
The implosion dynamics of wire array loads of complex geometry, such as nested cylindrical and planar wire arrays, is significantly affected by the uneven current distribution between the array wires, which was considered previously in the Wire Dynamics Model (WDM) simulations. The novel Wire Ablation Dynamics Model (WADM) extends the formalism of the original WDM by including the dynamics of wire ablation. The WADM simulations demonstrate that the implosions of the arrays with higher masses are more ablation dominated. The WADM simulations of the implosions dynamics of nested wire arrays have been performed for the short pulse (100 ns) and long pulse (220 ns) regimes at COBRA generator. Another factor that affects the result of the trade between the ablation and implosion time scales is the form of the current pulse, which can be very different from the classical sine-square shape. The predictions of the array implosion times by the WADM are in very good agreement with the recent experiments at the COBRA and Zebra facilities.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Ma, Yu; Yi, Hong-Liang; Tan, He-Ping
2013-11-01
A meshless method called as the natural element method (NEM) is developed for solving radiative heat transfer problem in 3D complex enclosures filled with an absorbing, emitting and scattering medium. The boundary surfaces are supposed to be opaque, diffuse as well as gray. The shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The NEM solutions dealing with the radiative heat transfer with or without conduction are validated by comparison with some cases reported by the literature. Furthermore, the radiative heat transfer in cubic enclosures with or without an inner hollow sphere, cylinder and elliptical cylinder is also examined to demonstrate the applicability of the present method towards various three-dimensional geometries. For pure radiative transfer, both the cases of radiative non-equilibrium and radiative equilibrium are investigated. For combined conduction and radiation heat transfer, effects of various parameters such as the conduction-radiation parameter, the scattering albedo, the extinction coefficient, and the boundary emissivity are analyzed on the temperature distributions.
Lukomski, Tomasz
2016-08-01
This paper introduces a method for an ultrasonic imaging with a phased array based on a wave migration algorithm. The method allows for imaging layered objects with lateral velocity variations such as objects with a complex geometry or layers that are not perpendicular to the array's axis. The full-matrix capture ensures that there is enough information to reconstruct an image even when the wave indication angle is large. The method is implemented in a omega-k domain. The proposed algorithm is first tested in a single simulation of a concave object with side drilled holes under the concave surface. For evaluating the algorithm's performance three experiments are presented: one with a tilted object (surface not perpendicular with respect to the array axis) with side drilled holes and two experiments of an object with concave surface and two artificial defects under it. The results presented in the paper verify that the proposed method reconstructs images from the data gathered with the phased array.
Liu, J. Chien-Chih
1993-10-01
The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of failing molten lithium or Li{sub 2}BeF{sub 4} (Flibe) jets encircles the reactors central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel.
Kufareva, Irina; Stephens, Bryan S.; Holden, Lauren G.; Qin, Ling; Zhao, Chunxia; Kawamura, Tetsuya; Abagyan, Ruben; Handel, Tracy M.
2014-01-01
Chemokines and their receptors regulate cell migration during development, immune system function, and in inflammatory diseases, making them important therapeutic targets. Nevertheless, the structural basis of receptor:chemokine interaction is poorly understood. Adding to the complexity of the problem is the persistently dimeric behavior of receptors observed in cell-based studies, which in combination with structural and mutagenesis data, suggest several possibilities for receptor:chemokine complex stoichiometry. In this study, a combination of computational, functional, and biophysical approaches was used to elucidate the stoichiometry and geometry of the interaction between the CXC-type chemokine receptor 4 (CXCR4) and its ligand CXCL12. First, relevance and feasibility of a 2:1 stoichiometry hypothesis was probed using functional complementation experiments with multiple pairs of complementary nonfunctional CXCR4 mutants. Next, the importance of dimers of WT CXCR4 was explored using the strategy of dimer dilution, where WT receptor dimerization is disrupted by increasing expression of nonfunctional CXCR4 mutants. The results of these experiments were supportive of a 1:1 stoichiometry, although the latter could not simultaneously reconcile existing structural and mutagenesis data. To resolve the contradiction, cysteine trapping experiments were used to derive residue proximity constraints that enabled construction of a validated 1:1 receptor:chemokine model, consistent with the paradigmatic two-site hypothesis of receptor activation. The observation of a 1:1 stoichiometry is in line with accumulating evidence supporting monomers as minimal functional units of G protein-coupled receptors, and suggests transmission of conformational changes across the dimer interface as the most probable mechanism of altered signaling by receptor heterodimers. PMID:25468967
Kufareva, Irina; Stephens, Bryan S; Holden, Lauren G; Qin, Ling; Zhao, Chunxia; Kawamura, Tetsuya; Abagyan, Ruben; Handel, Tracy M
2014-12-16
Chemokines and their receptors regulate cell migration during development, immune system function, and in inflammatory diseases, making them important therapeutic targets. Nevertheless, the structural basis of receptor:chemokine interaction is poorly understood. Adding to the complexity of the problem is the persistently dimeric behavior of receptors observed in cell-based studies, which in combination with structural and mutagenesis data, suggest several possibilities for receptor:chemokine complex stoichiometry. In this study, a combination of computational, functional, and biophysical approaches was used to elucidate the stoichiometry and geometry of the interaction between the CXC-type chemokine receptor 4 (CXCR4) and its ligand CXCL12. First, relevance and feasibility of a 2:1 stoichiometry hypothesis was probed using functional complementation experiments with multiple pairs of complementary nonfunctional CXCR4 mutants. Next, the importance of dimers of WT CXCR4 was explored using the strategy of dimer dilution, where WT receptor dimerization is disrupted by increasing expression of nonfunctional CXCR4 mutants. The results of these experiments were supportive of a 1:1 stoichiometry, although the latter could not simultaneously reconcile existing structural and mutagenesis data. To resolve the contradiction, cysteine trapping experiments were used to derive residue proximity constraints that enabled construction of a validated 1:1 receptor:chemokine model, consistent with the paradigmatic two-site hypothesis of receptor activation. The observation of a 1:1 stoichiometry is in line with accumulating evidence supporting monomers as minimal functional units of G protein-coupled receptors, and suggests transmission of conformational changes across the dimer interface as the most probable mechanism of altered signaling by receptor heterodimers.
Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.
2012-01-01
In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic
NASA Astrophysics Data System (ADS)
Chigullapalli, Sruti
Micro-electro-mechanical systems (MEMS) are widely used in automotive, communications and consumer electronics applications with microactuators, micro gyroscopes and microaccelerometers being just a few examples. However, in areas where high reliability is critical, such as in aerospace and defense applications, very few MEMS technologies have been adopted so far. Further development of high frequency microsystems such as resonators, RF MEMS, microturbines and pulsed-detonation microengines require improved understanding of unsteady gas dynamics at the micro scale. Accurate computational simulation of such flows demands new approaches beyond the conventional formulations based on the macroscopic constitutive laws. This is due to the breakdown of the continuum hypothesis in the presence of significant non-equilibrium and rarefaction because of large gradients and small scales, respectively. More generally, the motion of molecules in a gas is described by the kinetic Boltzmann equation which is valid for arbitrary Knudsen numbers. However, due to the multidimensionality of the phase space and the complex non-linearity of the collision term, numerical solution of the Boltzmann equation is challenging for practical problems. In this thesis a fully deterministic, as opposed to a statistical, finite volume based three-dimensional solution of Boltzmann ES-BGK model kinetic equation is formulated to enable simulations of unsteady rarefied flows. The main goal of this research is to develop an unsteady rarefied solver integrated with finite volume method (FVM) solver in MEMOSA (MEMS Overall Simulation Administrator) developed by PRISM: NNSA center for Prediction of Reliability, Integrity and Survivability of Microsystems (PRISM) at Purdue and apply it to study micro-scale gas damping. Formulation and verification of finite volume method for unsteady rarefied flow solver based on Boltzmann-ESBGK equations in arbitrary three-dimensional geometries are presented. The solver is
NASA Astrophysics Data System (ADS)
Chan, M. A.; Wang, Y.
2015-12-01
Diagenetic records of fluid flow are underutilized proxies of water and environmental conditions in sedimentary rocks on Earth as well as Mars. The terrestrial iron-oxide records can be highly varied from faint wisps of coloration, to heavily cemented masses and layers. Other than vein cements, concretionary forms are some of the most prominent, yet enigmatic records. Concretions can have various mineral cement compositions with sizes that can span three orders of magnitude from mm, to cm, and m scales, in remarkably consistent, common spheroidal forms. Concretion geometries and banding may indicate directions and timings of fluid flow and precipitation, but deciphering the origins can be difficult with limited analytical tools. Definite complexities are the possibilities of: 1) overprinted events in an open system; 2) the role of organics in the nucleation and precipitation of authigenic minerals; and 3) multiple fluids, pathways, or processes that may produce similar-looking end products. In near-surface environments, likely any water since the Proterozoic has contained microbial life, and thus it seems highly probable that microbes play a significant role in the precipitation of diagenetic minerals due to the interactions of the biosphere and geosphere. However, recognition of ancient biosignatures that may have poor preservation potential remains a challenge. Iron oxides are particularly common, valuable indicators of near-surface iron cycling and are recognizable because the visual coloration. Our recent studies in Jurassic sandstones indicate preserved records of fingering at the interface of two immiscible fluids. The integration of geochemical self-organization models and field data provides new insights to understanding diagenetic fluid compositions, their relative densities, and flow direction flux and movement. These studies can have valuable implications and applications for understanding past fluid flow history, and reservoir characterization for CO2
Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge
2011-01-01
This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly "coupled" as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a "zero" or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy. PMID:22346569
Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge
2011-01-01
This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly “coupled” as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a “zero” or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy. PMID:22346569
Brosed, Francisco Javier; Aguilar, Juan José; Guillomía, David; Santolaria, Jorge
2011-01-01
This article discusses different non contact 3D measuring strategies and presents a model for measuring complex geometry parts, manipulated through a robot arm, using a novel vision system consisting of a laser triangulation sensor and a motorized linear stage. First, the geometric model incorporating an automatic simple module for long term stability improvement will be outlined in the article. The new method used in the automatic module allows the sensor set up, including the motorized linear stage, for the scanning avoiding external measurement devices. In the measurement model the robot is just a positioning of parts with high repeatability. Its position and orientation data are not used for the measurement and therefore it is not directly "coupled" as an active component in the model. The function of the robot is to present the various surfaces of the workpiece along the measurement range of the vision system, which is responsible for the measurement. Thus, the whole system is not affected by the robot own errors following a trajectory, except those due to the lack of static repeatability. For the indirect link between the vision system and the robot, the original model developed needs only one first piece measuring as a "zero" or master piece, known by its accurate measurement using, for example, a Coordinate Measurement Machine. The strategy proposed presents a different approach to traditional laser triangulation systems on board the robot in order to improve the measurement accuracy, and several important cues for self-recalibration are explored using only a master piece. Experimental results are also presented to demonstrate the technique and the final 3D measurement accuracy.
NASA Astrophysics Data System (ADS)
Greene, Patrick T.; Eldredge, Jeff D.; Zhong, Xiaolin; Kim, John
2016-07-01
In this paper, we present a method for performing uniformly high-order direct numerical simulations of high-speed flows over arbitrary geometries. The method was developed with the goal of simulating and studying the effects of complex isolated roughness elements on the stability of hypersonic boundary layers. The simulations are carried out on Cartesian grids with the geometries imposed by a third-order cut-stencil method. A fifth-order hybrid weighted essentially non-oscillatory scheme was implemented to capture any steep gradients in the flow created by the geometries and a third-order Runge-Kutta method is used for time advancement. A multi-zone refinement method was also utilized to provide extra resolution at locations with expected complex physics. The combination results in a globally fourth-order scheme in space and third order in time. Results confirming the method's high order of convergence are shown. Two-dimensional and three-dimensional test cases are presented and show good agreement with previous results. A simulation of Mach 3 flow over the logo of the Ubuntu Linux distribution is shown to demonstrate the method's capabilities for handling complex geometries. Results for Mach 6 wall-bounded flow over a three-dimensional cylindrical roughness element are also presented. The results demonstrate that the method is a promising tool for the study of hypersonic roughness-induced transition.
NASA Astrophysics Data System (ADS)
Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik
2014-09-01
Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.
Delcey, Mickaël G.; Freitag, Leon; González, Leticia; Pedersen, Thomas Bondo; Aquilante, Francesco; Lindh, Roland
2014-05-07
We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 Å at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e.g., 0.032 Å with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 Å for S{sub 0} and 0.11 Å for T{sub 1}, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry.
Sanna, Daniele; Ugone, Valeria; Lubinu, Giuseppe; Micera, Giovanni; Garribba, Eugenio
2014-11-01
The coordination modes and geometry assumed in solution by the potent antitumor oxidovanadium(IV) complexes formed by different flavonoids were studied by spectroscopic (Electron Paramagnetic Resonance, EPR) and computational (Density Functional Theory, DFT) methods. A series of bidentate flavonoid ligands (L) with increasing structural complexity was examined, which can involve (CO, O(-)) donors and formation of five- and six-membered chelate rings, or (O(-), O(-)) donors and five-membered chelate rings. The geometry corresponding to these coordination modes can be penta-coordinated, [VOL2], or cis-octahedral, cis-[VOL2(H2O)]. The results show that, at physiological pH, ligands provided with (CO, O(-)) donor set yield cis-octahedral species with "maltol-like" coordination when five-membered chelate rings are formed (as with 3-hydroxyflavone), while penta-coordinated structures with "acetylacetone-like" coordination are preferred when the chelate rings are six-membered (as with chrysin). When both the binding modes are possible, as with morin, the "acetylacetone-like" coordination is observed. For the ligands containing a catecholic donor set, such as 7,8-dihydroxyflavone, baicalein, fisetin, quercetin and rutin, the formation of square pyramidal complexes with (O(-), O(-)) "catechol-like" coordination and five-membered chelate rings is preferred at physiological pH. The determination of the different coordination modes and geometry is important to define the biotransformation in the blood and the interaction of these complexes with the biological membranes.
Effects of reactor decontamination complexing agents on soil adsorption-column studies
Serne, R. Jeffrey; Lindenmeier, Clark W.; Cantrell, Kirk J.; Owen, Antionette T.
1999-12-01
The effects of picolinate, an organic ligand used to decontaminate nuclear reactor cooling systems, in leachates generated from shallow-land burial (SLB) of low-level nuclear wastes (LLW) on soil adsorption was determined. Using batch adsorption tests and varying the concentration of picolinate, the adsorption tendencies of two metals [Ni(II) and U(VI)] and the ligand were measured as a function of solution pH. We found that when total metal concentrations were fixed at 10^-5 M, picolinate at ligand-to-metal [L:M] ratios $10 did significantly reduce adsorption of Ni but even at a L:M ratio of 100 there was no effect on U(VI) adsorption. These results are compared with data on other metals in the presence of picolinate and for metal adsorption in the presence of EDTA. We conclude that picolinic acid is less of a threat than EDTA in waste leachates to reduce metal adsorption (increase mobility) and that picolinate concentrations must reach or exceed 10^-4 M for the most impacted metals (i.e., those that form the very strongest complexes with picolinate). There are no leachate data on these decontamination agents for the common burial technique (disposal of de-watered resins in high integrity containers) that can be used to evaluate potential hazards of these organo-radionuclide complexes.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent
2012-01-01
Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce
INL Reactor Technology Complex Out-of-Service Buried Piping Hazards
Douglas M. Gerstner
2008-05-01
Idaho National Laboratory (INL) Reactor Technology Complex (RTC) buried piping and components are being characterized to determine if they should be managed as hazardous waste and subject to the Hazardous Waste Management Act /Resource Conservation and Recovery Act (RCRA). RTC buried piping and components involve both active piping and components from currently operating nuclear facilities, such as the Advanced Test Reactor (ATR), and inactive lines from facilities undergoing D&D activities. The issue exists as to the proper methods to analyze and control hazards associated with D&D activities on facilities collocated with existing operating nuclear facilities, or future collocated facilities being considered with the resurgent nuclear industry. During initial characterization activities, it was determined that residual radioactive material in several inactive RTC lines and components could potentially exceed hazard category (HC) 3 thresholds. In addition, concerns were raised as to how to properly isolate active nuclear facility piping and components from those inactive lines undergoing RCRA actions, and whether the operating facility safety basis could be impacted. Work was stopped, and a potential inadequacy in the safety analysis (PISA) was declared, even though no clear safety basis existed for the inactive, abandoned lines and equipment. An unreviewed safety question (USQ) and an occurrence report resulted. A HC 3 or greater Nuclear Facility/Activity for the buried piping and components was also declared in the occurrence report. A qualitative hazard assessment was developed to evaluate the potential hazards associated with characterization activities, and any potential effects on the safety basis of the collocated RTC operating nuclear facilities. The hazard assessment clearly demonstrated the low hazards associated with the activities based on form and dispersiblity of the radioactive material in the piping and components. The hazard assessment developed
NASA Astrophysics Data System (ADS)
José Ramón, Mª; Pueyo, Emilio L.; Briz, José Luis; Caumon, Guillaume; Fernández, Óscar; Ciria, José Carlos; Pocovi, Andrés; Ros, Luis H.
2013-04-01
Three-dimensional reconstructions of the underground involve the integration of discrete and heterogeneous datasets and have significant socio- economic implications. The problem arises when there are limited data to build 3D models or when deformation processes are complex; these reasons inspired the development of restoration methods to validate subsurface reconstructions. The restoration is based on the application of simple geometric (or mechanic) laws that help reduce the uncertainty and increase geomodel accuracy. Apart from mechanical approaches, geometric methods are based on the initial assumption of global conservation of volume during deformation in addition to the paleo-horizontality of the stratigraphic horizons in the undeformed stage. The problem is that the bedding plane cannot be used as a three-dimensional reference system, because a single vector defines it and additional constraints are required. This is particularly important when dealing with complex structures, such as non-cylindrical structures and the superposition of non-coaxial geometries. In this context, paleomagnetism (known in both the deformed and undeformed stages) can contribute to building a more complete reference system and to reducing the uncertainty in restoration processes. The use of paleomagnetism in restoration tools was suggested in the early 1990's and only a few quantitative map-view applications have been developed since then. In this contribution, we introduce the two first surface restoration methods that use paleomagnetic vectors as a primary reference. The first one is a simple geometric approach based on the piecewise restoration of a triangulated surface into which paleomagnetic variables can be easily incorporated. It is valid for complexly folded structures. The surface is modelled by a mesh and the method starts from a pin-element. Triangles are laid flat and then fitted together to minimize distances between common vertices and paleomagnetic error. However
NASA Technical Reports Server (NTRS)
Fabanich, William
2014-01-01
SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.
NASA Technical Reports Server (NTRS)
Fabanich, William A., Jr.
2014-01-01
SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.
Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V
2015-01-01
Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes. PMID:25062896
SUBBAIAH, K. V.
2001-10-01
Version 01 GUI2QAD is an aid in preparation of input for the included QAD-CGPIC program, which is based on CCC-493/QAD-CGGP and PICTURE. QAD-CGPIC is a Fortran code for fast neutron and gamma-ray shielding calculations through various shield configurations defined by combinatorial geometry specifications. Provision is available to interactively input the geometry and view the same in three dimensions with arbitrary rotations along x,y,z axis. The salient features of the present package include: a) Handles off centered multiple identical sources b) Axis of cylindrical sources can be parallel to any of the axes. c) Provides plots of buildup factors (ANSI-1990) and material cross sections d) Estimates dose rate for point source-slab shield situations e) Interactive input of CG geometry with 3D view and rotation f) Fission product decay power computation and plots for source term calculations. g) Provision to read and graphical 1y display picture input file.
2001-10-01
Version 01 GUI2QAD is an aid in preparation of input for the included QAD-CGPIC program, which is based on CCC-493/QAD-CGGP and PICTURE. QAD-CGPIC is a Fortran code for fast neutron and gamma-ray shielding calculations through various shield configurations defined by combinatorial geometry specifications. Provision is available to interactively input the geometry and view the same in three dimensions with arbitrary rotations along x,y,z axis. The salient features of the present package include: a) Handles offmore » centered multiple identical sources b) Axis of cylindrical sources can be parallel to any of the axes. c) Provides plots of buildup factors (ANSI-1990) and material cross sections d) Estimates dose rate for point source-slab shield situations e) Interactive input of CG geometry with 3D view and rotation f) Fission product decay power computation and plots for source term calculations. g) Provision to read and graphical 1y display picture input file.« less
Krabbe, J G; de Boer, A R; van der Zwan, G; Lingeman, H; Niessen, W M A; Irth, H
2007-04-01
Electrospray ionization mass spectrometry was used to investigate complex formation of different metal complexes in a continuous-flow ligand-exchange reactor. A computer program was developed based on normal equilibrium calculations to predict the formation of various metal-ligand complexes. Corresponding to these calculations, infusion electrospray mass spectrometric experiments were performed to investigate the actual complex formation in solution. The data clearly show good correlation between the theoretically calculated formation of metal-ligand complexes and the experimental mass spectrometric data. Moreover, the approach demonstrates that the influence of the pH can be investigated using a similar approach. Indirectly, these infusion experiments provide information on relative binding constants of different ligands towards a metal-ion. To demonstrate this, a continuous-flow ligand-exchange detection system with mass spectrometric detection was developed. Injection of ligands, with different affinity for the metal-ion, into the reactor shows good correlation between binding constants and the response in the ligand-exchange detection system. Additional information on the introduced ligand, and the complexes formed after introduction of the ligand, can be obtained from interpretation of the mass spectra.
NASA Astrophysics Data System (ADS)
Codiga, Daniel L.
2012-12-01
The density field in Narragansett Bay (NB), a northeast U.S. estuary with complex geometry that suffers hypoxia, is described and related to driving factors using monthly means from time series observations at 9 sites during late spring to early fall 2001-2009. Stratification (deep-shallow density difference) is dominated by salinity and strongest (4-7 kg m-3 in late spring) near rivers in the north and east. Shallow horizontal density gradients are about 0.2 kg m-3 km-1; deep densities have minor spatial and seasonal variations. Geographic structure in density, and its inter-annual anomalies, is weaker than expected based on the complex geometry and large size relative to the internal deformation radius. Inter-annual variability is primarily driven by river flow and weakly influenced by winds, contrasting nearby systems (Chesapeake Bay, Long Island Sound), likely due to reduced fetch and/or unfavorable alignment with prevailing winds. Stratification response to river flow follows 2/3 power scaling despite that the theory omits important NB attributes (complex geometry, depth-varying horizontal gradients). Contrasting other systems (Delaware Bay, San Francisco Bay), horizontal gradients are at least as responsive to river forcing as theoretical 1/3 power scaling; depth-dependent horizontal gradients or finite basin constraint of intrusion length may be responsible. Bay-wide inter-annual variations in seasonal hypoxia correlate with late spring stratification, though stratification peaks in the north and east with hypoxia most severe in the north and west. Long-term response of stratification, and thus its role in hypoxia, to climate-driven increases in river flow and temperatures will be dominated by the former.
Holomorphic Parabolic Geometries and Calabi-Yau Manifolds
NASA Astrophysics Data System (ADS)
McKay, Benjamin
2011-09-01
We prove that the only complex parabolic geometries on Calabi-Yau manifolds are the homogeneous geometries on complex tori. We also classify the complex parabolic geometries on homogeneous compact Kähler manifolds.
Halime, Zakaria; Kieber-Emmons, Matthew T; Qayyum, Munzarin F; Mondal, Biplab; Gandhi, Thirumanavelan; Puiu, Simona C; Chufán, Eduardo E; Sarjeant, Amy A N; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I; Karlin, Kenneth D
2010-04-19
The nature of the ligand is an important aspect of controlling the structure and reactivity in coordination chemistry. In connection with our study of heme-copper-oxygen reactivity relevant to cytochrome c oxidase dioxygen-reduction chemistry, we compare the molecular and electronic structures of two high-spin heme-peroxo-copper [Fe(III)O(2)(2-)Cu(II)](+) complexes containing N(4) tetradentate (1) or N(3) tridentate (2) copper ligands. Combining previously reported and new resonance Raman and EXAFS data coupled to density functional theory calculations, we report a geometric structure and more complete electronic description of the high-spin heme-peroxo-copper complexes 1 and 2, which establish mu-(O(2)(2-)) side-on to the Fe(III) and end-on to Cu(II) (mu-eta(2):eta(1)) binding for the complex 1 but side-on/side-on (mu-eta(2):eta(2)) mu-peroxo coordination for the complex 2. We also compare and summarize the differences and similarities of these two complexes in their reactivity toward CO, PPh(3), acid, and phenols. The comparison of a new X-ray structure of mu-oxo complex 2a with the previously reported 1a X-ray structure, two thermal decomposition products respectively of 2 and 1, reveals a considerable difference in the Fe-O-Cu angle between the two mu-oxo complexes ( angleFe-O-Cu = 178.2 degrees in 1a and angleFe-O-Cu = 149.5 degrees in 2a). The reaction of 2 with 1 equiv of an exogenous nitrogen-donor axial base leads to the formation of a distinctive low-temperature-stable, low-spin heme-dioxygen-copper complex (2b), but under the same conditions, the addition of an axial base to 1 leads to the dissociation of the heme-peroxo-copper assembly and the release of O(2). 2b reacts with phenols performing H-atom (e(-) + H(+)) abstraction resulting in O-O bond cleavage and the formation of high-valent ferryl [Fe(IV)=O] complex (2c). The nature of 2c was confirmed by a comparison of its spectroscopic features and reactivity with those of an independently prepared
NASA Astrophysics Data System (ADS)
Jansen, Laurens; Block, Ruud
1981-07-01
An analysis is made of the most stable geometry and the energy of interaction for the chlorine dimer, on the basis of a model which was previously used for interpreting hydrogen bonding in the dimers (HF)2 and (H2O)2 and the molecular complex HFṡH2O. In the model, an analogy is assumed between the phenomenon of indirect exchange (''superexchange'') in ionic solids with paramagnetic cations and weak binding energies (≊1 kcal/mole) of molecular complexes. First-order exchange perturbation theory and an ''effective-electron'' description of the system are employed. The model predicts a nonplanar structure lacking a center of symmetry. The dimerization energy is estimated to lie between 1.4 and 2.0 kcal/mole. Agreement with experimental information is analyzed. We also briefly discuss the dimer (F2)2.
ERIC Educational Resources Information Center
Caglayan, Gunhan
2016-01-01
This qualitative research, drawing on the theoretical frameworks by Even (1990, 1993) and Sfard (2007), investigated five high school mathematics teachers' geometric interpretations of complex number multiplication along with the roots of unity. The main finding was that mathematics teachers constructed the modulus, the argument, and the conjugate…
Surface transport in the Ria de Vigo - Transport barriers in a tidal estuary with a complex geometry
NASA Astrophysics Data System (ADS)
Huhn, F.; von Kameke, A.; Montero, P.; Allen-Perkins, S.; Venancio, A.; Pérez-Muñuzuri, V.
2012-04-01
We study the submesoscale surface transport in the Ria de Vigo, NW Spain, an estuary with tidal and wind-driven circulation, analyzing the output of the coastal model MOHID with state-of-the-art Lagrangian methods, and comparing the results to drifter experiments. We extract Lagrangian Coherent Structures (LCS) as ridges in fields of the Finite-Time Lyapunov Exponent (FTLE) that can be identified with transport barriers. The LCS reveal the fundamental structure of the modelled circulation in the estaury that is a superposition of the tidal inflow and outflow, the wind-driven currents and the long-term drift on the shelf. In the Ria de Vigo, LCS are attached to prominent coastal boundaries, as islands or capes, indicating that the geometry of the flow patterns is dominated by bathymetry. Although the vertical flow which is not represented in the horizontal surface flow can be important at the coast, the found transport patterns can be seen as the surface footprint of the 3D circulation in the estaury. Comparing the trajectories of real surface drifters from four deployments to the computed transport barriers in different typical meteorological sitiations, we find that the drifter trajectories are in agreement with the different coherent water masses predicted by the model. The knowledge of the global transport patterns of water masses in this highly populated coastal region is indispensable for the assessment of the fate of contaminations, like possible oil spills or released waste water, but also for biological studies that deal with the drift of eggs and larvae of fish and other marine species, or investigate plankton blooms.
NASA Astrophysics Data System (ADS)
Carlson, Henry Andrew
1995-01-01
Chapter 1: An algorithm has been developed which extends the scope of spectral methods to include solution of non-canonical channel flows arising from more complicated wall geometries, providing an accurate tool for the investigation of flows over three-dimensional surfaces which move in time. Through a time-dependent, curvilinear transformation a general domain is mapped to one which permits spectral representation of the solution and preserves exact boundary conditions. Static and dynamic tests of one-dimensional flow over a perturbed wall confirm the accuracy of the time-dependent transformation. Results from a higher Reynolds number simulation of separated flow behind a three-dimensional Gaussian protuberance match well with a solution from Mason and Morton (1.27). Chapter 2: Direct simulation of laminar flow over a rising obstacle (an actuator) reveals the presence of vortical structures identical to those found in flow over a stationary obstacle, intensified and stretched by the upward velocity of the boundary. Following deceleration of the actuator (to a stationary position) this amplification leads to one vortex shedding event. Three obstacle shapes are analyzed--one is streamwise symmetric, two skew-symmetric. The symmetric actuator is also raised into a higher Reynolds number flow and at half-speed into the low Reynolds number flow. Results indicate that the time scale of the transient is independent of Reynolds number, depending primarily upon the rising time of the actuator and to a lesser degree its shape. Chapter 3: Direct simulations facilitate an investigation of smart skin control in a turbulent boundary layer (with drag reduction as the goal). The test bed is a minimal flow unit, containing one pair of coherent structures in the near wall region: a high- and a low-speed streak. The controlling device consists of an actuator, Gaussian in shape and approximately twelve wall units in height, which emerges from one of the channel walls. Raising the
Szigethy, Geza; Raymond, Kenneth
2010-04-22
A series of bis(3-hydroxy-N-methyl-pyridin-2-one) ligands was synthesized, and their respective uranyl complexes were characterized by single crystal X-ray diffraction analyses. These structures were inspected for high-energy conformations and evaluated using a series of metrics to measure co-planarity of chelating moieties with each other and the uranyl coordination plane, as well as to measure coordinative crowding about the uranyl dication. Both very short (ethyl, 3,4-thiophene and o-phenylene) and very long ({alpha},{alpha}{prime}-m-xylene and 1,8-fluorene) linkers provide optimal ligand geometries about the uranyl cation, resulting in planar, unstrained molecular arrangements. The planarity of the rigid linkers also suggests there is a degree of pre-organization for a planar coordination mode that is ideal for uranyl-selective ligand design. Comparison of intramolecular N{sub amide}-O{sub phenolate} distances and {sup 1}H NMR chemical shifts of amide protons supports earlier results that short linkers provide the optimal geometry for intramolecular hydrogen bonding.
NASA Astrophysics Data System (ADS)
de Zelicourt, Diane; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit
2008-11-01
Image-guided computational fluid dynamics has recently gained attention as a tool for predicting the outcome of different surgical scenarios. Cartesian Immersed-Boundary methods constitute an attractive option to tackle the complexity of real-life anatomies. However, when such methods are applied to the branching, multi-vessel configurations typically encountered in cardiovascular anatomies the majority of the grid nodes of the background Cartesian mesh end up lying outside the computational domain, increasing the memory and computational overhead without enhancing the numerical resolution in the region of interest. To remedy this situation, the method presented here superimposes local mesh refinement onto an unstructured Cartesian grid formulation. A baseline unstructured Cartesian mesh is generated by eliminating all nodes that reside in the exterior of the flow domain from the grid structure, and is locally refined in the vicinity of the immersed-boundary. The potential of the method is demonstrated by carrying out systematic mesh refinement studies for internal flow problems ranging in complexity from a 90 deg pipe bend to an actual, patient-specific anatomy reconstructed from magnetic resonance.
NASA Technical Reports Server (NTRS)
Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney
2014-01-01
Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.
Lacaze, Guilhem; Oefelein, Joseph
2015-03-01
Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.
Seo, Jung Hee; Mittal, Rajat
2010-01-01
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129
NASA Astrophysics Data System (ADS)
Tatavalli Mittadar, Nirmal
Plasma etching uniformity across silicon wafers is of paramount importance in the semiconductor industry. The complexity of plasma etching, coupled with lack of instrumentation to provide real-time process information (that could be used for feedback control), necessitate that optimal conditions for uniform etching must be designed into the reactor and process recipe. This is often done empirically using standard design of experiments which, however, are very costly and time consuming. The objective of this study was to develop a general purpose efficient design strategy that requires a minimum number of experiments, and can handle complex constraints in the presence of uncertainties. Traditionally, Response Surface Methodology (RSM) is used in these applications to design experiments to determine the optimal value of decision variables or inputs. We demonstrated that standard RSM, when applied to the problem of plasma etching uniformity, has the following drawbacks (1) inefficient search due to process nonlinearities, (2) lack of converge to the optimum, and, (3) inability to handle complex inequality constraints. We developed a four-phase Efficient Design Strategy (EDS) based on the DACE paradigm (Design and Analysis of Computer Experiments) and Bayesian search algorithms. The four phases of EDS are: (1) exploration of the design space by maximizing information, (2) exploration of the design space for feasible points by maximizing probability of constraint satisfaction, (3) optimization of the objective and (4) constrained local search. We also designed novel algorithms to switch between the different phases. The choice of model parameters for DACE predictors is usually determined by the Maximum Likelihood Estimation (MLE) method. Depending on the dataset, MLE could result in unrealistic predictors that show a peak-and-dip behavior. To solve this problem we developed techniques to detect the presence of peak-and-dip behavior and a new scheme based on Maximum a
Computational synthetic geometry
Sturmfels, B. )
1988-01-01
This book deals with methods for realizing abstract geometric objects in concrete vector spaces. It considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It appears that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems, a variety of symbolic algorithms are discussed, and the methods are applied to obtain mathematical results on convex polytopes, projective configurations and the combinatories of Grassmann varieties.
NASA Astrophysics Data System (ADS)
Wang, P.; Fröhlich, J.; Maas, U.
Lean premixed combustion is employed to reduce emission, but can exhibit undesired effects such as lean blow-off and thermo-acoustic resonance. To cope with these, burners with strong swirl are utilized for flame stabilization. In the resulting complex flow system, flow instabilities are observed in both experiments and simulations. To date, large eddy simulation (LES) is becoming a widely used approach for understanding the properties of turbulent flow phenomena. However, LES of lean premixed combustion still constitutes an open challenge. Many turbulent combustion modeling methods have been developed for LES of such flows [1, 2]. Two types of them are the thickened flame (TF) model [3] and the flame surface density (FSD) model [4]. However, none of these models is ideal and suitable for all kinds of flame configurations. A detailed comparison was made between the TF and FSD by Lin et al. [5] for freely propagating premixed flames in homogeneous isotropic decaying turbulent fields, and qualitative agreement between them was found. In the present work, the performances of the two cited turbulent combustion models, TF and FSD, in simulating the lean premixed swirl flames in an industrial gas trubine model combustor is compared against the well-documented experiment data obtained by Meier et al. [6].
CellGeo: A computational platform for the analysis of shape changes in cells with complex geometries
Tsygankov, Denis; Bilancia, Colleen G.; Vitriol, Eric A.; Hahn, Klaus M.
2014-01-01
Cell biologists increasingly rely on computer-aided image analysis, allowing them to collect precise, unbiased quantitative results. However, despite great progress in image processing and computer vision, current computational approaches fail to address many key aspects of cell behavior, including the cell protrusions that guide cell migration and drive morphogenesis. We developed the open source MATLAB application CellGeo, a user-friendly computational platform to allow simultaneous, automated tracking and analysis of dynamic changes in cell shape, including protrusions ranging from filopodia to lamellipodia. Our method maps an arbitrary cell shape onto a tree graph that, unlike traditional skeletonization algorithms, preserves complex boundary features. CellGeo allows rigorous but flexible definition and accurate automated detection and tracking of geometric features of interest. We demonstrate CellGeo’s utility by deriving new insights into (a) the roles of Diaphanous, Enabled, and Capping protein in regulating filopodia and lamellipodia dynamics in Drosophila melanogaster cells and (b) the dynamic properties of growth cones in catecholaminergic a–differentiated neuroblastoma cells. PMID:24493591
NASA Astrophysics Data System (ADS)
Mendez, Simon; Gibaud, Etienne; Siguenza, Julien; Nicoud, Franck; Acsiom-I3M Team
2013-11-01
Numerical simulation of flows of vesicles, capsules and cells is a growing field (Misbah 2012). With the objective of understanding the complex fluid-structure interactions involved in such flows, studying microcirculation and suspension rheology or improving drug vectorization, numerous research groups have developed numerical methods to compute the dynamics of deformable objects like capsules and red blood cells, composed by a drop of liquid enclosed by a membrane. However, the most mature methods rely on boundary integrals, the use of which is allowed by the Stokes flow hypothesis: boundary integral method (BIM) is thus an efficient tool to study microfluidics and microcirculation. In some flows, in particular in some medical devices, the Reynolds number may be high, which precludes the use of the BIM. In this talk, we will show how the immersed boundary method can be implemented in an unstructured finite-volume solver to tackle such flows of deformable objects. The method will be detailed and specific attention will be devoted to the validation of the solver, in particular in 2D, where reference results are scarce. Finally, applications of the method to flows of isolated cells will be shown.
Irwin, P L; Pfeffer, P E; Doner, L W; Sapers, G M; Brewster, J D; Nagahashi, G; Hicks, K B
1994-03-18
The inclusion complexes of cyclomaltohexaose (alpha-CD), cyclomaltoheptaose (beta-CD), cyclomaltooctaose (gamma-CD), and polymerized beta-CD (beta-CDn) with chlorogenic acid (CA), the major substrate of apple fruit polyphenol oxidase (PPO), were studied with regard to pH, ionic strength, and temperature in model buffer systems and apple juice. The thermodynamics of CD.CA inclusion complex formation, which were studied in solution using UV spectrophotometry, displayed enthalpy-entropy compensation typical of processes driven by solvation phenomena. We also found that the apparent association constants (K) of the CD.CA equilibrium were relatively insensitive to pH for beta-CD, compared to alpha- and gamma-CDs, but were subject to substantial enhancement at low ionic strengths. The beta-CD.CA inclusion complex was also characterized for binding geometry and stoichiometry at 9.4 T and 25 degrees C in 0.05 M Na phosphate buffer by 1H NMR spectroscopy. A 1:1 stoichiometric ratio for the complex was found using the method of continuous variations. 1H Spin-lattice relaxation and chemical-shift data indicate that the phenolic ring of CA docks within the cavity of beta-CD. The Ks for beta-, alpha-, and gamma-CD determined in apple juice, which contains a mixture of PPO substrates, were found to correlate with PPO activity-related data. Apple juice, treated with beta-CDn, did not brown until CA was added back. These latter findings strongly argue that the mechanism for inhibition of juice browning with cyclodextrins was mainly due to the binding of PPO substrates and not some other means such as enzyme inactivation via sequestration of Cu2+ by CDs. PMID:8194069
Ma, Xiao; Lin, Chen-Sheng; Hu, Sheng-Min; Tan, Chun-Hong; Wen, Yue-Hong; Sheng, Tian-Lu; Wu, Xin-Tao
2014-06-01
To investigate how the central metalloligand geometry influences distant or vicinal metal-to-metal charge-transfer (MMCT) properties of polynuclear complexes, cis- and trans-isomeric heterotrimetallic complexes, and their one- and two-electron oxidation products, cis/trans-[Cp(dppe)Fe(II)NCRu(II)(phen)2CN-Fe(II)(dppe)Cp][PF6]2 (cis/trans-1[PF6]2), cis/trans-[Cp(dppe)Fe(II)NCRu(II)(phen)2CNFe(III)-(dppe)Cp][PF6]3 (cis/trans-1[PF6]3) and cis/trans-[Cp(dppe)Fe(III)NCRu(II)(phen)2CN-Fe(III)(dppe)Cp][PF6]4 (cis/trans-1[PF6]4) have been synthesized and characterized. Electrochemical measurements show the presence of electronic interactions between the two external Fe(II) atoms of the cis- and trans-isomeric complexes cis/trans-1[PF6]2. The electronic properties of all these complexes were studied and compared by spectroscopic techniques and TDDFT//DFT calculations. As expected, both mixed valence complexes cis/trans-1[PF6]3 exhibited different strong absorption signals in the NIR region, which should mainly be attributed to a transition from an MO that is delocalized over the Ru(II)-CN-Fe(II) subunit to a Fe(III) d orbital with some contributions from the co-ligands. Moreover, the NIR transition energy in trans-1[PF6]3 is lower than that in cis-1[PF6]3, which is related to the symmetry of their molecular orbitals on the basis of the molecular orbital analysis. Also, the electronic spectra of the two-electron oxidized complexes show that trans-1[PF6]4 possesses lower vicinal Ru(II) → Fe(III) MMCT transition energy than cis-1[PF6]4. Moreover, the assignment of MMCT transition of the oxidized products and the differences of the electronic properties between the cis and trans complexes can be well rationalized using TDDFT//DFT calculations. PMID:24771667
NASA Astrophysics Data System (ADS)
Roche, Vincent; Jolivet, Laurent; Guillou-Frottier, Laurent; Tuduri, Johann; Bouchot, Vincent; Beccaletto, Laurent; Lahfid, Abdeltif
2016-04-01
The eastern Mediterranean region is one of the most promising geothermal areas, with more than 250 geothermal fields discovered in Turkey (Parlaktuna, 2013), in a region of active tectonics and volcanism. Although the potential of these deep geothermal resources has not been systematically investigated yet, the geothermal activity of the western Turkey area is the most recent signature of the high heat flow (120-140 mW/m²; Aydin, 2005, from Teczan, 1995). Based on Turkish data, 2084 MWt are being utilized for direct applications and most of the energy originates from the Menderes Massif (Baba et al., 2015). This large-scale thermal anomaly at the surface is correlated to a long wavelength east-west increase of surface heat flow that could reflect the thermal state of Aegean subduction zone at depth. In order to better understand and characterize the possible connections between large-scale mantle dynamics and surface processes in space and time, we study the structure and thermal evolution of the Menderes Massif. Both the acceleration of the Aegean extension in the Middle Miocene and the recent escape of Anatolia have been proposed to result from several slab tearing events, the first one being located below western Turkey and the Eastern Aegean Sea. These events have triggered the formation of metamorphic complexes with contrasted exhumation P-T paths. While the extension in the Aegean domain is well-characterized with high-temperature domes in the center and east, the succession of several metamorphic events in the Menderes Massif and their significance in terms of geodynamics is still debated. Hence, the exhumation history is key to understanding the temporal and spatial distribution of the thermal signature of the Hellenic slab and its tearing/detachment. The Menderes Massif displays a large variety of metamorphic facies, from the Barrovian type metamorphism in the Eocene (the Main Menderes Metamorphism) to the coeval (?) HP-LT metamorphism on the southernmost
2011-01-01
Cells are highly complex and orderly machines, with defined shapes and a startling variety of internal organizations. Complex geometry is a feature of both free-living unicellular organisms and cells inside multicellular animals. Where does the geometry of a cell come from? Many of the same questions that arise in developmental biology can also be asked of cells, but in most cases we do not know the answers. How much of cellular organization is dictated by global cell polarity cues as opposed to local interactions between cellular components? Does cellular structure persist across cell generations? What is the relationship between cell geometry and tissue organization? What ensures that intracellular structures are scaled to the overall size of the cell? Cell biology is only now beginning to come to grips with these questions. PMID:21880160
Waychunas, G.A.; Fuller, C.C.; Davis, J.A.
2002-01-01
"Two-line" ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10-5 to 10-3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(0.2) A?? and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) A?? and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) A?? in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further
NASA Astrophysics Data System (ADS)
Hullo, J.-F.; Thibault, G.; Boucheny, C.
2015-02-01
In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".
NASA Astrophysics Data System (ADS)
Daehne, A.; Travelletti, J.; Malet, J.-P.; Corsini, A.; Ronchetti, F.
2009-04-01
Bedrock geometry drastically influences the kinematic deformation pattern of slow-moving landslides exhibiting some flow characteristics. The development of extension and compression zones within the landslide body is largely controlled by the geometry (crests, bumps, hollows) and roughness of the topography covered by the moving mass. A challenge to progress in the forecast of such type of landslides is to precisely define 3D geometrical and geomechanical models. The objective of this work is to present a methodology for 3D geometrical modelling of the landslide structure, and to discuss the main possible errors in integrating multi-source and multi-resolution data in the modelling. The methodology is presented through the analysis of three landslides with similar geomorphological features (e.g. flow-like geomorphology) and development patterns (retrogression of the crown, roto-translational failures of the upper part, and translational movements in the lower part), and for which an extensive dataset of geophysical, geotechnical and geomorphological information is available. The three cases studies are the complex Valoria earth-slide-flow located in the Northern Apennines, the Super-Sauze and La Valette mudslides in the French South Alps. All three landslides are predominantly developed in a clay-shale soil formation. First, interpretation of the multi-data information, their resolution and accuracy is presented for the landslides. Second, a procedure to construct 3D geometrical models of the landslides is proposed (by using the Rockware's Rockworks geological modeller) and the influence of the interpolation algorithms is discussed. It is demonstrated that the model uncertainty is strongly depending on the density and distribution of the input data which vary for the three landslides. The quality of several geometrical models is then compared; a best-fit is achieved by using available geological and geomorphological site interpretation.
ERIC Educational Resources Information Center
Desseyn, H. O.; And Others
1985-01-01
Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…
NASA Astrophysics Data System (ADS)
Flikweert, A. J.; Zimmermann, T.; Merdzhanova, T.; Weigand, D.; Appenzeller, W.; Gordijn, A.
2012-01-01
A concept for high-rate plasma deposition (PECVD) of hydrogenated microcrystalline silicon on moving substrates (dynamic deposition) is developed and evaluated. The chamber allows for substrates up to a size of 40 × 40 cm2. The deposition plasma is sustained between linear VHF electrodes (60 MHz) and a moving substrate. Due to the gas flow geometry and the high degree of source gas depletion, from the carrier's point of view the silane concentration varies when passing the electrodes. This is known to lead to different growth conditions which can induce transitions from microcrystalline to amorphous growth. The effect of different silane concentrations is simulated at a standard RF showerhead electrode by intentionally varying the silane concentration during deposition in static mode. This variation may decrease the layer quality of microcrystalline silicon, due to a shift of the crystallinity away from the optimum. However, adapting the input silane concentration, state-of-the-art solar cells are obtained. Microcrystalline cells (ZnO : Al/Ag back contacts) produced by the linear VHF plasma sources show an efficiency of 7.9% and 6.6% for depositions in static and dynamic mode, respectively.
NASA Astrophysics Data System (ADS)
Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.
2016-04-01
A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (adjustable supermirror curvature) and the compact size (only 0.5 m long). We have simulated the neutron transport across the entire guide system. We present a detailed computer characterization of the existing device, along with the study of the factors mostly influencing the future improvement. We have optimized the simulated prototype as a function of the neutron wavelength, accounting also for all relevant features of a real instrument like the non-reflecting side edges. The results confirm the "chromatic" displacement of the focal point (flux density maximum) at fixed supermirror curvature, and the ability of a variable curvature to keep the focal point at the sample position. Our simulations are in excellent agreement with theoretical predictions and the experimentally measured beam profile. With respect to the possibility of a further upgrade, we find that supermirror coatings with m-values higher than 3.5 would have only marginal influence on the optimal behaviour, whereas comparable spectrometers could take advantage of longer focusing segments, with particular impact for the thermal region of the neutron spectrum.
Lisa Harvego; Brion Bennett
2011-11-01
U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.
Haridas, Ajit; Suresh, S; Chitra, K R; Manilal, V B
2005-03-01
A novel high-rate anaerobic reactor, called "Buoyant Filter Bioreactor" (BFBR), has been developed for treating lipid-rich complex wastewater. The BFBR is able to decouple the biomass and insoluble COD retention time from the hydraulic retention time by means of a granular filter bed made of buoyant polystyrene beads. Filter clogging is prevented by an automatic backwash driven by biogas release, which fluidizes the granular filter bed in a downward direction. During filter backwash, the solids captured in the filter are reintroduced into the reaction zone of the reactor. The reaction zone is provided with a mixing system, which is independent of the hydraulic retention time. The performance of a laboratory-scale BFBR was studied for the treatment of dairy effluent, chosen as a model complex wastewater. The dairy effluent was not pre-treated for fat removal. The BFBR was operated over 400 d and showed greater than 85% COD removal at 10 kg COD/(m3/d). The COD conversion to methane in the BFBR was essentially complete. The BFBR performance improved with age, and with feed containing 3200 mg COD/l, the treated effluent had 120 mg COD/l and no turbidity. The hold-up of degradable biosolids, including scum, inside the BFBR was estimated using starvation tests. When load is increased, scum accumulates inside the BFBR and then decays after undergoing change from hydrophobic to hydrophilic. This is explained as the accumulation of fat solids, its conversion to insoluble long chain fatty acids and its further solubilization and degradation. PMID:15766954
Haridas, Ajit; Suresh, S; Chitra, K R; Manilal, V B
2005-03-01
A novel high-rate anaerobic reactor, called "Buoyant Filter Bioreactor" (BFBR), has been developed for treating lipid-rich complex wastewater. The BFBR is able to decouple the biomass and insoluble COD retention time from the hydraulic retention time by means of a granular filter bed made of buoyant polystyrene beads. Filter clogging is prevented by an automatic backwash driven by biogas release, which fluidizes the granular filter bed in a downward direction. During filter backwash, the solids captured in the filter are reintroduced into the reaction zone of the reactor. The reaction zone is provided with a mixing system, which is independent of the hydraulic retention time. The performance of a laboratory-scale BFBR was studied for the treatment of dairy effluent, chosen as a model complex wastewater. The dairy effluent was not pre-treated for fat removal. The BFBR was operated over 400 d and showed greater than 85% COD removal at 10 kg COD/(m3/d). The COD conversion to methane in the BFBR was essentially complete. The BFBR performance improved with age, and with feed containing 3200 mg COD/l, the treated effluent had 120 mg COD/l and no turbidity. The hold-up of degradable biosolids, including scum, inside the BFBR was estimated using starvation tests. When load is increased, scum accumulates inside the BFBR and then decays after undergoing change from hydrophobic to hydrophilic. This is explained as the accumulation of fat solids, its conversion to insoluble long chain fatty acids and its further solubilization and degradation.
Electrochemical flow-reactor for expedient synthesis of copper-N-heterocyclic carbene complexes.
Chapman, Michael R; Shafi, Yarseen M; Kapur, Nikil; Nguyen, Bao N; Willans, Charlotte E
2015-01-25
An electrochemical flow-cell for highly efficient and selective generation of Cu(I)-N-heterocyclic carbene complexes under neutral and ambient conditions is reported. The feasibility of the flow-cell is demonstrated through the electrochemical synthesis of [Cu(IMes)Cl] and subsequent in situ flow directly into hydrosilylation reactions, with equal efficiency to the purified catalyst.
Linguistic geometry for autonomous navigation
Stilman, B.
1995-09-01
To discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, we develop a formal theory, the Linguistic Geometry. This paper reports two examples of application of Linguistic Geometry to autonomous navigation of aerospace vehicles that demonstrate dramatic search reduction.
Atmospheric Dispersion of Sodium Aerosol due to a Sodium Leak in a Fast Breeder Reactor Complex
NASA Astrophysics Data System (ADS)
Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.
Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model does not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions.
Christy, R.F.
1958-07-15
A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.
NASA Astrophysics Data System (ADS)
Scarlat, Raluca Olga
This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling
B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber
2013-09-01
This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar; Zyczkowski, Karol
2007-12-01
Preface; 1. Convexity, colours and statistics; 2. Geometry of probability distributions; 3. Much ado about spheres; 4. Complex projective spaces; 5. Outline of quantum mechanics; 6. Coherent states and group actions; 7. The stellar representation; 8. The space of density matrices; 9. Purification of mixed quantum states; 10. Quantum operations; 11. Duality: maps versus states; 12. Density matrices and entropies; 13. Distinguishability measures; 14. Monotone metrics and measures; 15. Quantum entanglement; Epilogue; Appendices; References; Index.
Mike Lewis
2013-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.
Mike Lewis
2012-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.
NASA Astrophysics Data System (ADS)
Scarlat, Raluca Olga
This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling
Sternat, M.; Beals, D.; Webb, R.; Nichols, T.
2010-06-09
Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. The
Takahashi, Toru; Ohtsuka, Kei-Ichirou; Tomiya, Yoriyuki; Iki, Nobuhiko; Hoshino, Hitoshi
2009-09-01
CE reactor (CER), which was developed as a tool for direct measurement of the dissociation kinetics of metal complexes, was successfully applied to the complexes of Escherichia coli ssDNA-binding protein (SSB) with ssDNA. The basic concept of CER is the application of CE separation process as a dissociation kinetic reactor for the complex, and the observation of the on-capillary dissociation reaction profile of the complex as the decrease of the peak height of the complex with increase of the migration time. The peak height of [SSB-ssDNA] decreases as the migration time increases since the degree of the decrease of [SSB-ssDNA] through the on-capillary dissociation reaction is proportional to the degree of the decrease of the peak height of [SSB-ssDNA]. The dissociation degree-time profiles for the complexes are quantitatively described by analyzing a set of electropherograms with different migration times. Dissociation rate constants of [SSB-ssDNA] consisting of 20-mer, 25-mer and 31-mer ssDNA were directly determined to be 3.99x10(-4), 4.82x10(-4) and 1.50x10(-3)/s, respectively. CER is a concise and effective tool for dissociation kinetic analysis of biomolecular complexes.
Reactor System Transient Code.
1999-07-14
RELAP3B describes the behavior of water-cooled nuclear reactors during postulated accidents or power transients, such as large reactivity excursions, coolant losses or pump failures. The program calculates flows, mass and energy inventories, pressures, temperatures, and steam qualities along with variables associated with reactor power, reactor heat transfer, or control systems. Its versatility allows one to describe simple hydraulic systems as well as complex reactor systems.
Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...
Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar
2013-01-01
The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain.
Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar
2013-01-01
The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain. PMID:24527652
Visuospatial Working Memory in Intuitive Geometry, and in Academic Achievement in Geometry
ERIC Educational Resources Information Center
Giofre, David; Mammarella, Irene C.; Ronconi, Lucia; Cornoldi, Cesare
2013-01-01
A study was conducted on the involvement of visuospatial working memory (VSWM) in intuitive geometry and in school performance in geometry at secondary school. A total of 166 pupils were administered: (1) six VSWM tasks, comprising simple storage and complex span tasks; and (2) the intuitive geometry task devised by Dehaene, Izard, Pica, and…
Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly
2012-07-01
Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4π and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ∼8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose
Veshchev, E. A.; Goncharov, P. R.; Ozaki, T.; Sudo, S.; Lyon, J. F.
2006-10-15
Energy and angle-resolved measurements of charge exchange neutral particle fluxes from the plasma provide information about T{sub i}, as well as non-Maxwellian substantially anisotropic ion distribution tails due to neutral beam injection (NBI) and ion cyclotron radio frequency (ICRF) heating. The measured chord integral neutral flux calculation scheme for the Large Helical Device magnetic surface geometry is given. Calculation results are shown for measurable atomic energy spectra corresponding to heating-induced fast ion distributions from simplified Fokker-Planck models. The behavior of calculated and experimental suprathermal particle distributions from NBI and ICRF heated plasma is discussed in the context of the experimental data interpretation.
A One-group, One-dimensional Transport Benchmark in Cylindrical Geometry
Barry Ganapol; Abderrafi M. Ougouag
2006-06-01
A 1-D, 1-group computational benchmark in cylndrical geometry is described. This neutron transport benchmark is useful for evaluating reactor concepts that possess azimuthal symmetry such as a pebble-bed reactor.
ERIC Educational Resources Information Center
Cukier, Mimi; Asdourian, Tony; Thakker, Anand
2012-01-01
Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…
Auchtung, Jennifer M; Robinson, Catherine D; Farrell, Kylie; Britton, Robert A
2016-01-01
The commensal microbiome plays an important role in the dynamics of Clostridium difficile infection. In this chapter, we describe minibioreactor arrays (MBRAs), an in vitro cultivation system that we developed that allows for C. difficile physiology to be assayed in the presence of complex fecal microbial communities. The small size of the bioreactors within the MBRAs allows for dozens of reactors to be run simultaneously and therefore several different variables can be tested with limited time and cost. When coupled with experiments in animal models of C. difficile infection, MBRAs can provide important insights into C. difficile physiology and pathogenesis. PMID:27507346
Blau, P. J.; Qu, J.; Lu, R.
2016-09-21
One significant concern in the operation of light water nuclear reactors is the fretting wear damage to fuel cladding from flow-induced vibrations. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. Furthermore, the multi-stage model accounts for oxide layers and wear rate transitions. Our paper describes themore » basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.« less
NASA Astrophysics Data System (ADS)
Blau, P. J.; Qu, J.; Lu, R.
2016-09-01
Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact.
Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S
2015-01-01
The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater.
Daumann, Lena J; Tatum, David S; Andolina, Christopher M; Pacold, Joseph I; D'Aléo, Anthony; Law, Ga-lai; Xu, Jide; Raymond, Kenneth N
2016-01-01
A series of 10 tetradentate 1-hydroxy-pyridin-2-one (1,2-HOPO) ligands and corresponding eight-coordinated photoluminescent Eu(III) and Sm(III) complexes were prepared. Generally, the ligands differ by the linear (nLI) aliphatic linker length, from 2 to 8 methylene units between the bidentate 1,2-HOPO chelator units. The photoluminescent quantum yields (Φtot) were found to vary with the linker length, and the same trend was observed for the Eu(III) and Sm(III) complexes. The 2LI and 5LI bridged complexes are the brightest (Φtotxε). The change in ligand wrapping pattern between 2LI and 5LI complexes observed by X-ray diffraction (XRD) is further supported by density functional theory (DFT) calculations. The bimodal Φtot trends of the Eu(III) and Sm(III) complexes are rationalized by the change in ligand wrapping pattern as the bridge (nLI) is increased in length.
Kondrashina, Y.G.; Mustafina, A.R.; Devyatov, F.V.
1995-07-01
The stability and structure of dysprosium (III) benzoate and aminobenzoate complexes are estimated pH-metrically and magnetooptically in water and water-80 vol% DMSO (DMFA) mixtures. The factors responsible for the structural and stability changes that take place upon transition from water to water-organic solvents are discussed.
Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.
2014-01-01
organic compounds, stable isotopes, and radionuclides. Water samples from both wells indicated that concentrations of tritium, sulfate, and chromium were affected by wastewater disposal practices at the Advanced Test Reactor Complex. Most constituents in water from wells USGS 140 and USGS 141 had concentrations similar to concentrations in well USGS 136, which is upgradient from wells USGS 140 and USGS 141.
Frustrated Order on Extrinsic Geometries
Mbanga, Badel L.; Grason, Gregory M.; Santangelo, Christian D.
2012-01-03
We study, numerically and theoretically, defects in an anisotropic liquid that couple to the extrinsic geometry of a surface. Though the intrinsic geometry tends to confine topological defects to regions of large Gaussian curvature, extrinsic couplings tend to orient the order along the local direction of maximum or minimum bending. This additional frustration is generically unavoidable, and leads to complex ground-state thermodynamics. Using the catenoid as a prototype, we show, in contradistinction to the well-known effects of intrinsic geometry, that extrinsic curvature expels disclinations from the region of maximum curvature above a critical coupling threshold. On catenoids lacking an “inside-outside” symmetry, defects are expelled altogether above a critical neck size.
Combinatorial Geometry Printer Plotting.
1987-01-05
Picture generates plots of two-dimensional slices through the three-dimensional geometry described by the combinatorial geometry (CG) package used in such codes as MORSE and QAD-CG. These plots are printed on a standard line printer.
Manekar, Pravin; Biswas, Rima; Urewar, Chaitali; Pal, Sukdeb; Nandy, Tapas
2013-11-01
In the present study, the feasibility of a bioengineered two-stages sequential batch reactor (BTSSBR) followed by filtration-adsorption process was investigated to treat the agrochemical effluent by overcoming factor affecting process stability such as microbial imbalance and substrate sensitivity. An air stripper stripped 90% of toxic ammonia, and combined with other streams for bio-oxidation and filtration-adsorption. The BTSSBR system achieved bio-oxidation at 6 days hydraulic retention time by fending off microbial imbalance and substrate sensitivity. The maximum reduction in COD and BOD by heterotrophic bacteria in the first reactor was 87% and 90%, respectively. Removal of toxic ammoniacal-nitrogen by autotrophic bacteria in a post-second stage bio-oxidation was 97%. The optimum filtration and adsorption of pollutants were achieved at a filtration rate of 10 and 9 m(3)m(-2)h(-1), respectively. The treatment scheme comprising air stripper, BTSSBR and filtration-adsorption process showed a great promise for treating the agrochemical effluent.
Wade, Elman E.
1979-01-01
A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.
ERIC Educational Resources Information Center
McDonald, Nathaniel J.
2001-01-01
Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…
Foucault, Heather M; Bryce, David L; Fogg, Deryn E
2006-12-11
Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.
Goura, Joydeb; Brambleby, Jamie; Topping, Craig V; Goddard, Paul A; Suriya Narayanan, Ramakirushnan; Bar, Arun Kumar; Chandrasekhar, Vadapalli
2016-05-31
Through the use of a multi-site compartmental ligand, 2-methoxy-6-[{2-(2-hydroxyethylamino)ethylimino}methyl]phenol (LH3), the family of heterometallic, trinuclear complexes of the formula [CoLn(L)2(μ-O2CCH3)2(H2O)3]·NO3·xMeOH·yH2O has been expanded beyond Ln = Dy(III) to include Gd(III) (), Tb(III) (), Ho(III) () and Er(III) () for , and (x = 1; y = 1) and for (x = 0; y = 2). The metallic core of these complexes consists of a (Co(III)-Ln(III)-Co(III)) motif bridged in a bent geometry resulting in six-coordinated distorted Co(III) octahedra and nine-coordinated Ln(III) monocapped square-antiprisms. The magnetic characterization of these compounds reveals the erbium and terbium analogues to display a field induced single-ion magnetic behavior similar to the dysprosium analogue but at lower temperatures. The energy barrier for the reversal of the magnetization of the CoTb(III) analogue is Ueff ≥ 15.6(4) K, while for the CoEr(III) analogue Ueff ≥ 9.9(8) K. The magnetic properties are discussed in terms of distortions of the 4f electron cloud.
Goura, Joydeb; Brambleby, Jamie; Topping, Craig V; Goddard, Paul A; Suriya Narayanan, Ramakirushnan; Bar, Arun Kumar; Chandrasekhar, Vadapalli
2016-05-31
Through the use of a multi-site compartmental ligand, 2-methoxy-6-[{2-(2-hydroxyethylamino)ethylimino}methyl]phenol (LH3), the family of heterometallic, trinuclear complexes of the formula [CoLn(L)2(μ-O2CCH3)2(H2O)3]·NO3·xMeOH·yH2O has been expanded beyond Ln = Dy(III) to include Gd(III) (), Tb(III) (), Ho(III) () and Er(III) () for , and (x = 1; y = 1) and for (x = 0; y = 2). The metallic core of these complexes consists of a (Co(III)-Ln(III)-Co(III)) motif bridged in a bent geometry resulting in six-coordinated distorted Co(III) octahedra and nine-coordinated Ln(III) monocapped square-antiprisms. The magnetic characterization of these compounds reveals the erbium and terbium analogues to display a field induced single-ion magnetic behavior similar to the dysprosium analogue but at lower temperatures. The energy barrier for the reversal of the magnetization of the CoTb(III) analogue is Ueff ≥ 15.6(4) K, while for the CoEr(III) analogue Ueff ≥ 9.9(8) K. The magnetic properties are discussed in terms of distortions of the 4f electron cloud. PMID:27180723
ERIC Educational Resources Information Center
Lyublinskaya, Irina; Funsch, Dan
2012-01-01
Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…
Euclidean Geometry via Programming.
ERIC Educational Resources Information Center
Filimonov, Rossen; Kreith, Kurt
1992-01-01
Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability and compares it to…
Numerical Simulation of Two-Phase Flow in Severely Damaged Core Geometries
Meekunnasombat, Phongsan; Fichot, Florian; Quintard, Michel
2006-07-01
In the event of a severe accident in a nuclear reactor, the oxidation, dissolution and collapse of fuel rods is likely to change dramatically the geometry of the core. A large part of the core would be damaged and would look like porous medium made of randomly distributed pellet fragments, broken claddings and relocated melts. Such a complex medium must be cooled in order to stop the accident progression. IRSN investigates the effectiveness of the water re-flooding mechanism in cooling this medium where complex two-phase flows are likely to exist. A macroscopic model for the prediction of the cooling sequence was developed for the ICARE/CATHARE code (IRSN mechanistic code for severe accidents). It still needs to be improved and assessed. It appears that a better understanding of the flow at the pore scale is necessary. As a result, a direct numerical simulation (DNS) code was developed to investigate the local features of a two-phase flow in complex geometries. In this paper, the Cahn-Hilliard model is used to simulate flows of two immiscible fluids in geometries representing a damaged core. These geometries are synthesized from experimental tomography images (PHEBUS-FP project) in order to study the effects of each degradation feature, such as displacement and fragmentation of the fuel rods and claddings, on the two-phase flow. For example, the presence of fragmented fuel claddings is likely to enhance the trapping of the residual phase (either steam or water) within the medium which leads to less flow fluctuations in the other phase. Such features are clearly shown by DNS calculations. From a series of calculations where the geometry of the porous medium is changed, conclusions are drawn for the impact of rods damage level on the characteristics of two-phase flow in the core. (authors)
Fermi, E.; Zinn, W.H.; Anderson, H.L.
1958-09-16
Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.
NASA Technical Reports Server (NTRS)
Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.
1989-01-01
The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.
Noncommutative Geometry and Physics
Connes, Alain
2006-11-03
In this very short essay we shall describe a 'spectral' point of view on geometry which allows to start taking into account the lessons from both renormalization and of general relativity. We shall first do that for renormalization and explain in rough outline the content of our recent collaborations with Dirk Kreimer and Matilde Marcolli leading to the universal Galois symmetry of renormalizable quantum field theories provided by the renormalization group in its cosmic Galois group incarnation. As far as general relativity is concerned, since the functional integral cannot be treated in the traditional perturbative manner, it relies heavily as a 'sum over geometries' on the chosen paradigm of geometric space. This will give us the occasion to discuss, in the light of noncommutative geometry, the issue of 'observables' in gravity and our joint work with Ali Chamseddine on the spectral action, with a first attempt to write down a functional integral on the space of noncommutative geometries.
ERIC Educational Resources Information Center
Chern, Shiing-Shen
1990-01-01
Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)
Proof in Transformation Geometry
ERIC Educational Resources Information Center
Bell, A. W.
1971-01-01
The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)
ERIC Educational Resources Information Center
Emenaker, Charles E.
1999-01-01
Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)
mike lewis
2011-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.
Lewis, Mike
2015-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.
Mike Lewis
2014-02-01
This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.
Reactor Design from a Stability Viewpoint.
ERIC Educational Resources Information Center
Perlmutter, D. D.
1978-01-01
This course uses stability as a central theme around which to organize a wide range of reactor concerns. This approach brings together the subject matter of catalyst particles with that of well-stirred vessels and tubular reactor geometry. (Author/BB)
Induced geometry from disformal transformation
NASA Astrophysics Data System (ADS)
Yuan, Fang-Fang; Huang, Peng
2015-05-01
In this note, we use the disformal transformation to induce a geometry from the manifold which is originally Riemannian. The new geometry obtained here can be considered as a generalization of Weyl integrable geometry. Based on these results, we further propose a geometry which is naturally a generalization of Weyl geometry.
Software Geometry in Simulations
NASA Astrophysics Data System (ADS)
Alion, Tyler; Viren, Brett; Junk, Tom
2015-04-01
The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).
2005-01-01
The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and onmore » top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.« less
Lambda modes of the neutron diffusion equation in hexagonal geometry
Barrachina, T.; Ginestar, D.; Verdu, G.
2006-07-01
A nodal collocation method is proposed to compute the dominant Lambda modes of nuclear reactor core with a hexagonal geometry. This method is based on a triangular mesh and assumes that the neutronic flux can be approximated as a finite expansion in terms of Dubiner's polynomials. The method transforms the initial differential eigenvalue problem into a generalized algebraic one, from which the dominant modes of the reactor can be computed. The performance of the method is tested with two benchmark problems. (authors)
Energy deposition in STARFIRE reactor components
Gohar, Y.; Brooks, J.N.
1985-04-01
The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry.
Fanning, T. H.; Nuclear Engineering Division
2010-06-04
A specification is proposed for an initial transient benchmark analysis of the China Experimental Fast Reactor design based on the analysis capabilities of the SAS4A/SASSYS-1 code. For the initial benchmark, a single-channel protected transient overpower accident is defined. Reactivity feedback coefficients will not be required and simplified material properties are recommended. This report also describes the data required for developing the modeling input. This data includes assembly geometry, reactor power distributions, kinetics and decay heat data, and material properties. Comparisons of benchmark results will take place at a future SAS4A/SASSYS-1 training meeting planned to occur at Argonne National Laboratory. Future benchmark specifications will be planned to expand upon this initial model to include more complex reactivity feedback models, material properties, additional assembly geometry, and primary and intermediate coolant systems.
Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit
Merzari, E.; Shemon, E. R.; Yu, Y. Q.; Thomas, J. W.; Obabko, A.; Jain, Rajeev; Mahadevan, Vijay; Tautges, Timothy; Solberg, Jerome; Ferencz, Robert Mark; Whitesides, R.
2015-12-21
This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.
Uckan, N. A.; Jaeger, E. F.; Santoro, R. T.; Spong, D. A.; Uckan, T.; Owen, L. W.; Barnes, J. M.; McBride, J. B.
1983-08-01
This report summarizes the results of a recent ELMO Bumpy Torus (EBT) reactor study that includes ring and core plasma properties with consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. Within this operating window, physics and engineering systems analysis and cost sensitivity studies indicate that reactors with <..beta../sub core/> approx. 6 to 10%, P approx. 1200 to 1700 MW(e), wall loading approx. 1.0 to 2.5 MW/m/sup 2/, and recirculating power fraction (including ring-sustaining power and all other reactors auxiliaries) approx. 10 to 15% are possible. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters. These include, but are not limited to, the use of: (1) supplementary coils or noncircular mirror coils to improve magnetic geometry and reduce size, (2) energetic ion rings to improve ring power requirements, (3) positive potential to enhance confinement and reduce size, and (4) profile control to improve stability and overall fusion power density.
A sectional coupling approach for the simulation of multi-phase reacting flow in a bent reactor
Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.
1996-04-01
Multi-phase reacting flows of a bent fluidized catalytic cracking (FCC) reactor have been simulated using the ICRKFLO code. A new sectional coupling approach has been developed to handle the complex geometry, which divides the bent reactor into two sections and computations are performed for the two sections successively. The computational results show that the ICRKFLO incorporated with the new sectional coupling approach can predict product yields very well compared with experimental data and can be used to identify critical processes and parameters which may be modified to improve the quality and quantity of the FCC products.
Pisano, Luisa; Várnagy, Katalin; Timári, Sarolta; Hegetschweiler, Kaspar; Micera, Giovanni; Garribba, Eugenio
2013-05-01
Systems formed using the V(IV)O(2+) ion with tridentate ligands containing a (O, N(arom), O) donor set were described. Examined ligands were 3,5-bis(2-hydroxyphenyl)-1-phenyl-1H-1,2,4-triazole (H2hyph(Ph)), 4-[3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl]benzoic acid (H3hyph(C)), 4-[3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl]benzenesulfonic acid (H3hyph(S)), and 2,6-bis(2-hydroxyphenyl)pyridine (H2bhpp), with H3hyph(C) being an orally active iron chelator that is commercially available under the name Exjade (Novartis) for treatment of chronic iron overload arising from blood transfusions. The systems were studied using EPR, UV-Vis, and IR spectroscopies, pH potentiometry, and DFT methods. The ligands bind vanadium with the two terminal deprotonated phenol groups and the central aromatic nitrogen to give six-membered chelate rings. In aqueous solution the main species were the mono- and bis-chelated V(IV)O complexes, whereas in the solid state neutral non-oxido V(IV) compounds were formed. [V(hyph(Ph))2] and [V(bhpp)2] are hexacoordinated, with a geometry close to the octahedral and a meridional arrangement of the ligands. DFT calculations allow distinguishing V(IV)O and V(IV) species and predicting their structure, the (51)V hyperfine coupling constant tensor A, and the electronic absorption spectra. Finally, EPR spectra of several non-oxido V(IV) species were compared using relevant geometrical parameters to demonstrate that in the case of tridentate ligands the (51)V hyperfine coupling constant is related to the geometric isomerism (meridional or facial) rather than the twist angle Φ, which measures the distortion of the hexacoordinated structure toward a trigonal prism. PMID:23581472
Treshow, M.
1961-09-01
A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.
Daniels, F.
1959-10-27
A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.
NASA Astrophysics Data System (ADS)
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
Students Discovering Spherical Geometry Using Dynamic Geometry Software
ERIC Educational Resources Information Center
Guven, Bulent; Karatas, Ilhan
2009-01-01
Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
Differential geometry based multiscale models.
Wei, Guo-Wei
2010-08-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are
Tonneson, L.C.; Fox, G.J.
1996-04-01
There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.
Hammond, R.P.; King, L.D.P.
1960-03-22
An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.
Advanced geometries and regimes
Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.
2013-07-26
We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.
Spacetime and Euclidean geometry
NASA Astrophysics Data System (ADS)
Brill, Dieter; Jacobson, Ted
2006-04-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.
ERIC Educational Resources Information Center
Cooper, Brett D.; Barger, Rita
2009-01-01
The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…
ERIC Educational Resources Information Center
Hartz, Viggo
1981-01-01
Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)
Teaching Geometry with Tangrams.
ERIC Educational Resources Information Center
Russell, Dorothy S.; Bologna, Elaine M.
1982-01-01
Geometry is viewed as the most neglected area of the elementary school mathematics curriculum. Tangram activities provide numerous worthwhile mathematical experiences for children. A method of constructing tangrams through paper folding is followed by suggested spatial visualization, measurement, and additional activities. (MP)
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
ERIC Educational Resources Information Center
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
ERIC Educational Resources Information Center
Martin, John
2010-01-01
The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.
Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740
ERIC Educational Resources Information Center
Case, Christine L.
1991-01-01
Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)
ERIC Educational Resources Information Center
KLIER, KATHERINE M.
PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…
Max Data Report Jet Stability versus Inlet Geometry
Lomperski, S.; Bremer, N.
2015-09-01
This document describes experiments investigating the effect of inlet geometry on the flow field within a glass tank where two jets mix and impinge upon the lid. The setup mimics the outlet plenum of a fast reactor where core exit flows of different temperatures can mix in ways that induce thermal cycling in neighboring structures.
NASA Astrophysics Data System (ADS)
Prástaro, Agostino
2008-02-01
Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.
Geometry of discrete quantum computing
NASA Astrophysics Data System (ADS)
Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung
2013-05-01
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.
An introduction to Minkowski geometries
NASA Astrophysics Data System (ADS)
Farnsworth, David L.
2016-07-01
The fundamental ideas of Minkowski geometries are presented. Learning about Minkowski geometries can sharpen our students' understanding of concepts such as distance measurement. Many of its ideas are important and accessible to undergraduate students. Following a brief overview, distance and orthogonality in Minkowski geometries are thoroughly discussed and many illustrative examples and applications are supplied. Suggestions for further study of these geometries are given. Indeed, Minkowski geometries are an excellent source of topics for undergraduate research and independent study.
The Geometry of Quasar Outflows
NASA Astrophysics Data System (ADS)
Ganguly, Rajib
2012-10-01
Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.
Interactive rendering of dynamic geometry.
Ponchio, Federico; Hormann, Kai
2008-01-01
Fluid simulations typically produce complex three-dimensional (3D) isosurfaces whose geometry and topology change over time. The standard way of representing such "dynamic geometry" is by a set of isosurfaces that are extracted individually at certain time steps. An alternative strategy is to represent the whole sequence as a four-dimensional (4D) tetrahedral mesh. The iso-surface at a specific time step can then be computed by intersecting the tetrahedral mesh with a 3D hyperplane. This not only allows the animation of the surface continuously over time without having to worry about the topological changes, but also enables simplification algorithms to exploit temporal coherence. We show how to interactively render such 4D tetrahedral meshes by improving previous GPU-accelerated techniques and building an out-of-core multi-resolution structure based on quadric error simplification. As a second application, we apply our framework to time-varying surfaces that result from morphing one triangle mesh into another. PMID:18467764
Nebeck, H.E.
1986-08-01
The MAZE mesh generator represents an arbitrary two dimensional region of space as an ordered collection of quadrilateral elements. Each element is defined by its four corner points (nodes) and an integer material number. Models are created by subdividing the region(s) of interest into one or more PARTS and specifying the element distribution in each part. Then, parts can be merged together to form the meshed representation of the entire region. Applying boundary conditions and describing material properties completes the model construction process. This activity takes place in three distinct phases: phase I-define geometry, subdivide regions into elements; phase II-refine geometry, establish interface and boundary conditions; phase III-describe material properties. This work presents explanations and examples of the phase I commands, along with an overview of the MAZE mesh generation process.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Inflation from quantum geometry.
Bojowald, Martin
2002-12-23
Quantum geometry predicts that a universe evolves through an inflationary phase at small volume before exiting gracefully into a standard Friedmann phase. This does not require the introduction of additional matter fields with ad hoc potentials; rather, it occurs because of a quantum gravity modification of the kinetic part of ordinary matter Hamiltonians. An application of the same mechanism can explain why the present day cosmological acceleration is so tiny.
Freezing in confined geometries
NASA Technical Reports Server (NTRS)
Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.
1992-01-01
Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.
Fraas, A.P.; Mills, C.B.
1961-11-21
A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS_{3}/CFT_{2} correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS_{3} whose kinematic space is two-dimensional de Sitter space.
Integral geometry and holography
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less
Quackenbush, C.F.
1959-09-29
A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.
Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis
Wilson, Paul; Evans, Thomas; Tautges, Tim
2012-12-24
This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well
Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C
Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.; Qualls, A. L.
2015-05-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.
Geometry for the Secondary School
ERIC Educational Resources Information Center
Moalem, D.
1977-01-01
A sequential but non-axiomatic high school geometry course which includes Euclidean, transformation, and analytic geometry and vectors and matrices, and emphasizes the invariance property of transformations, is outlined. Sample problems, solutions, and comments are included. (MN)
Wigner, E.P.
1958-04-22
A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.
Metcalf, H.E.; Johnson, H.W.
1961-04-01
BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.
Hista, J. C.
1984-09-18
Reactor building comprising a vessel shaft anchored in a slab which is peripherally locked. This reactor building comprises a confinement enclosure within which are positioned internal structures constituted by an internal structure floor, a vessel shaft, a slab being positioned between the general floor and the internal structure floor, the vesse
Digital computer operation of a nuclear reactor
Colley, Robert W.
1984-01-01
A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.
Digital computer operation of a nuclear reactor
Colley, R.W.
1982-06-29
A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Karoutas, Zeses; Berndt, Markus
2016-06-29
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
NASA Astrophysics Data System (ADS)
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Karoutas, Zeses; Berndt, Markus
2016-10-01
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuel rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid-structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.
Computer-Aided Geometry Modeling
NASA Technical Reports Server (NTRS)
Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)
1984-01-01
Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.
Teaching of Geometry in Bulgaria
ERIC Educational Resources Information Center
Bankov, Kiril
2013-01-01
Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar; Zyczkowski, Karol
2006-05-01
Quantum information theory is at the frontiers of physics, mathematics and information science, offering a variety of solutions that are impossible using classical theory. This book provides an introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. After a gentle introduction to the necessary mathematics the authors describe the geometry of quantum state spaces. Focusing on finite dimensional Hilbert spaces, they discuss the statistical distance measures and entropies used in quantum theory. The final part of the book is devoted to quantum entanglement - a non-intuitive phenomenon discovered by Schrödinger, which has become a key resource for quantum computation. This richly-illustrated book is useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied. The first book to focus on the geometry of quantum states Stresses the similarities and differences between classical and quantum theory Uses a non-technical style and numerous figures to make the book accessible to non-specialists
NASA Astrophysics Data System (ADS)
Amaya-Ventura, G. A.; Rodríguez-Romo, S.
2012-02-01
A few of the applications of the Lattice Boltzmann Method have been used to model the complex bioelectrochemical phenomena presented here; cyclic voltammetry of electrically assisted enzyme reactions for one instance, and complex chemical reactions with simultaneous momentum, heat and mass transfer as another example. In the first case, we reproduce experimental data and predict new results (not feasible of being obtained by other numerical methods); the evolution of the diffusion boundary layer, which is important information from the numerical viewpoint to design reactors. As second, our model of non isothermal electrochemical enzyme reactor with a complex chemical-thermohydrodynamics involves an enzyme reaction taking place over two parallel rectangular enzyme immobilized electrodes, within a Rayleigh-Bénard convection system, a multifaceted subject not yet studied simultaneously. Realistic velocity, temperature, and concentration profiles as well as the corresponding Faradaic currents for different geometries and heating settings are provided, showing the goodness of our approach.
Williams, Pharis E.
2007-01-30
Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.
Moore, R.V.; Bowen, J.H.; Dent, K.H.
1958-12-01
A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.
A linguistic geometry for space applications
NASA Technical Reports Server (NTRS)
Stilman, Boris
1994-01-01
We develop a formal theory, the so-called Linguistic Geometry, in order to discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, and apply them to different systems. This research relies on the formalization of search heuristics of high-skilled human experts which allow for the decomposition of complex system into the hierarchy of subsystems, and thus solve intractable problems reducing the search. The hierarchy of subsystems is represented as a hierarchy of formal attribute languages. This paper includes a formal survey of the Linguistic Geometry, and new example of a solution of optimization problem for the space robotic vehicles. This example includes actual generation of the hierarchy of languages, some details of trajectory generation and demonstrates the drastic reduction of search in comparison with conventional search algorithms.
Correa, Diego H.; Silva, Guillermo A.
2008-07-28
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Critique of information geometry
Skilling, John
2014-12-05
As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.
Optically defined mechanical geometry
NASA Astrophysics Data System (ADS)
Barasheed, Abeer Z.; Müller, Tina; Sankey, Jack C.
2016-05-01
In the field of optomechanics, radiation forces have provided a particularly high level of control over the frequency and dissipation of mechanical elements. Here we propose a class of optomechanical systems in which light exerts a similarly profound influence over two other fundamental parameters: geometry and mass. By applying an optical trap to one lattice site of an extended phononic crystal, we show it is possible to create a tunable, localized mechanical mode. Owing to light's simultaneous and constructive coupling with the structure's continuum of modes, we estimate that a trap power at the level of a single intracavity photon should be capable of producing a significant effect within a realistic, chip-scale device.
Quantum groups: Geometry and applications
Chu, C.S.
1996-05-13
The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge.
Magnetism in curved geometries
NASA Astrophysics Data System (ADS)
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-09-01
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
Magnetism in curved geometries
NASA Astrophysics Data System (ADS)
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-09-01
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
Hessian geometry and the holomorphic anomaly
NASA Astrophysics Data System (ADS)
Cardoso, G. L.; Mohaupt, T.
2016-02-01
We present a geometrical framework which incorporates higher derivative corrections to the action of N = 2 vector multiplets in terms of an enlarged scalar manifold which includes a complex deformation parameter. This enlarged space carries a deformed version of special Kähler geometry which we characterise. The holomorphic anomaly equation arises in this framework from the integrability condition for the existence of a Hesse potential.
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1970-01-01
The theory used in FASTER-III, a Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries, is outlined. The program includes the treatment of geometric regions bounded by quadratic and quadric surfaces with multiple radiation sources which have specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors. It can also calculate minimum weight shield configuration meeting a specified dose rate constraint. Results are presented for sample problems involving primary neutron, and primary and secondary photon, transport in a spherical reactor shield configuration.
Fermi, E.
1960-04-01
A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.
Anderson, H.L.
1960-09-20
A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.
ERIC Educational Resources Information Center
Kenney, C. N.
1980-01-01
Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)
Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.
1959-03-24
A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.
Miller, H.I.; Smith, R.C.
1958-01-21
This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.
Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.
1959-02-17
Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.
Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.
1962-10-23
A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)
Landscape as a model: the importance of geometry.
Holland, E Penelope; Aegerter, James N; Dytham, Calvin; Smith, Graham C
2007-10-01
In all models, but especially in those used to predict uncertain processes (e.g., climate change and nonnative species establishment), it is important to identify and remove any sources of bias that may confound results. This is critical in models designed to help support decisionmaking. The geometry used to represent virtual landscapes in spatially explicit models is a potential source of bias. The majority of spatial models use regular square geometry, although regular hexagonal landscapes have also been used. However, there are other ways in which space can be represented in spatially explicit models. For the first time, we explicitly compare the range of alternative geometries available to the modeller, and present a mechanism by which uncertainty in the representation of landscapes can be incorporated. We test how geometry can affect cell-to-cell movement across homogeneous virtual landscapes and compare regular geometries with a suite of irregular mosaics. We show that regular geometries have the potential to systematically bias the direction and distance of movement, whereas even individual instances of landscapes with irregular geometry do not. We also examine how geometry can affect the gross representation of real-world landscapes, and again show that individual instances of regular geometries will always create qualitative and quantitative errors. These can be reduced by the use of multiple randomized instances, though this still creates scale-dependent biases. In contrast, virtual landscapes formed using irregular geometries can represent complex real-world landscapes without error. We found that the potential for bias caused by regular geometries can be effectively eliminated by subdividing virtual landscapes using irregular geometry. The use of irregular geometry appears to offer spatial modellers other potential advantages, which are as yet underdeveloped. We recommend their use in all spatially explicit models, but especially for predictive models
Vernon, H.C.
1959-01-13
A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.
Anderson, C.R.
1962-07-24
A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)
Breden, C.R.; Dietrich, J.R.
1961-06-20
A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.
Design analysis of the upgraded TREAT reactor
Bhattacharyya, S.K.
1982-01-01
The TREAT reactor, fueled by a dilute dispersion of fully enriched UO/sub 2/ in graphite, has been a premier transient testing facility since 1959. A major Upgrade of the reactor is in progress to enhance its transient testing capability in support of the LMFBR safety program. The TREAT Upgrade (TU) reactor features a modified central zone of the core with higher fissile loadings of the same fuel, clad in Inconel to allow operation at higher temperatures. The demanding functional requirements on the reactor necessitated the use of unique features in the core design which, in turn, presented major calculational complexities in the analysis. Special design methods had to be used in many cases to treat these complexities. The addition of an improved Reactor Control System, a safety grade Plant Protection System and an enhanced Coolant/Filtration System produces a reactor that can meet the functional requirements on the reactor in a safe manner.
Adu-amankwa, B.; Constantinides, A.; Vieth, W.R.
1981-11-01
Penicillium duponti enzyme was immobilized on reconstituted collagen by macromolecular complexation, impregnation, and covalent crosslinking techniques. The immobilization of the enzyme on collagen has a twofold purpose: 1) providing a protein microenvironment for the proteolytic enzyme; and 2) extending the useful life of the enzyme once immobilized on the collagen matrix. Two types of collagen were used, one produced by the United States Department of Agriculture and the other produced by FMC. The USDA collagen contained unhydrolyzed telopeptide linkages and required pretreatment to reduce collagenaselike activity of the enzyme. Activity analysis of the immobilized enzyme complex showed that membranes with enzyme loading less than 10 mg enzyme/gram of wet membrane in the reactor were dimensionally stable. The degree of crosslinking was an important parameter. Membranes with structural openings up to three times the initial dry thickness were found to be the maximum limit for controlled release of enzyme from the collagen membrane during enzymatic reaction. Higher activities and better stability of the enzyme in collagen membrane were found for covalent crosslinking of the enzyme to treated collagen films. The hydrolysis of soybean vegetable protein with the immobilized enzyme in a recycle reactor at enzyme loading of 7 mg/gram of wet membrane at 40 degrees Celcius, pH 3.4, produced 56.5% of soluble protein in 10 hours. The production is equivalent to 1.84 hours total contact time between the substrate and the immobilized enzyme. The average productivity based on a stable enzyme activity and 20 grams of dry membrane was 329 mg of protein/h/mg of active enzyme immobilized. The productivity of the free enzyme in a batch reactor was 62.5 mg protein/h/mg enzyme. (Refs. 14)
Grebe, J.J.
1959-07-14
High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.
Automated Design and Optimization of Pebble-bed Reactor Cores
Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry
2010-07-01
We present a conceptual design approach for high-temperature gas-cooled reactors using recirculating pebble-bed cores. The design approach employs PEBBED, a reactor physics code specifically designed to solve for and analyze the asymptotic burnup state of pebble-bed reactors, in conjunction with a genetic algorithm to obtain a core that maximizes a fitness value that is a function of user-specified parameters. The uniqueness of the asymptotic core state and the small number of independent parameters that define it suggest that core geometry and fuel cycle can be efficiently optimized toward a specified objective. PEBBED exploits a novel representation of the distribution of pebbles that enables efficient coupling of the burnup and neutron diffusion solvers. With this method, even complex pebble recirculation schemes can be expressed in terms of a few parameters that are amenable to modern optimization techniques. With PEBBED, the user chooses the type and range of core physics parameters that represent the design space. A set of traits, each with acceptable and preferred values expressed by a simple fitness function, is used to evaluate the candidate reactor cores. The stochastic search algorithm automatically drives the generation of core parameters toward the optimal core as defined by the user. The optimized design can then be modeled and analyzed in greater detail using higher resolution and more computationally demanding tools to confirm the desired characteristics. For this study, the design of pebble-bed high temperature reactor concepts subjected to demanding physical constraints demonstrated the efficacy of the PEBBED algorithm.
On fast reactor kinetics studies
Seleznev, E. F.; Belov, A. A.; Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F.
2012-07-01
The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)
Combinatorial geometry domain decomposition strategies for Monte Carlo simulations
Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.
2013-07-01
Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)
Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca
2010-07-01
This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.
Planetary Image Geometry Library
NASA Technical Reports Server (NTRS)
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Research reactors - an overview
West, C.D.
1997-03-01
A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.
Investigating Fractal Geometry Using LOGO.
ERIC Educational Resources Information Center
Thomas, David A.
1989-01-01
Discusses dimensionality in Euclidean geometry. Presents methods to produce fractals using LOGO. Uses the idea of self-similarity. Included are program listings and suggested extension activities. (MVL)
Graph-based representation for multiview image geometry.
Maugey, Thomas; Ortega, Antonio; Frossard, Pascal
2015-05-01
In this paper, we propose a new geometry representation method for multiview image sets. Our approach relies on graphs to describe the multiview geometry information in a compact and controllable way. The links of the graph connect pixels in different images and describe the proximity between pixels in 3D space. These connections are dependent on the geometry of the scene and provide the right amount of information that is necessary for coding and reconstructing multiple views. Our multiview image representation is very compact and adapts the transmitted geometry information as a function of the complexity of the prediction performed at the decoder side. To achieve this, our graph-based representation (GBR) carefully selects the amount of geometry information needed before coding. This is in contrast with depth coding, which directly compresses with losses the original geometry signal, thus making it difficult to quantify the impact of coding errors on geometry-based interpolation. We present the principles of this GBR and we build an efficient coding algorithm to represent it. We compare our GBR approach to classical depth compression methods and compare their respective view synthesis qualities as a function of the compactness of the geometry description. We show that GBR can achieve significant gains in geometry coding rate over depth-based schemes operating at similar quality. Experimental results demonstrate the potential of this new representation.
Asynchronous event-based hebbian epipolar geometry.
Benosman, Ryad; Ieng, Sio-Hoï; Rogister, Paul; Posch, Christoph
2011-11-01
Epipolar geometry, the cornerstone of perspective stereo vision, has been studied extensively since the advent of computer vision. Establishing such a geometric constraint is of primary importance, as it allows the recovery of the 3-D structure of scenes. Estimating the epipolar constraints of nonperspective stereo is difficult, they can no longer be defined because of the complexity of the sensor geometry. This paper will show that these limitations are, to some extent, a consequence of the static image frames commonly used in vision. The conventional frame-based approach suffers from a lack of the dynamics present in natural scenes. We introduce the use of neuromorphic event-based--rather than frame-based--vision sensors for perspective stereo vision. This type of sensor uses the dimension of time as the main conveyor of information. In this paper, we present a model for asynchronous event-based vision, which is then used to derive a general new concept of epipolar geometry linked to the temporal activation of pixels. Practical experiments demonstrate the validity of the approach, solving the problem of estimating the fundamental matrix applied, in a first stage, to classic perspective vision and then to more general cameras. Furthermore, this paper shows that the properties of event-based vision sensors allow the exploration of not-yet-defined geometric relationships, finally, we provide a definition of general epipolar geometry deployable to almost any visual sensor. PMID:21954205
Asynchronous event-based hebbian epipolar geometry.
Benosman, Ryad; Ieng, Sio-Hoï; Rogister, Paul; Posch, Christoph
2011-11-01
Epipolar geometry, the cornerstone of perspective stereo vision, has been studied extensively since the advent of computer vision. Establishing such a geometric constraint is of primary importance, as it allows the recovery of the 3-D structure of scenes. Estimating the epipolar constraints of nonperspective stereo is difficult, they can no longer be defined because of the complexity of the sensor geometry. This paper will show that these limitations are, to some extent, a consequence of the static image frames commonly used in vision. The conventional frame-based approach suffers from a lack of the dynamics present in natural scenes. We introduce the use of neuromorphic event-based--rather than frame-based--vision sensors for perspective stereo vision. This type of sensor uses the dimension of time as the main conveyor of information. In this paper, we present a model for asynchronous event-based vision, which is then used to derive a general new concept of epipolar geometry linked to the temporal activation of pixels. Practical experiments demonstrate the validity of the approach, solving the problem of estimating the fundamental matrix applied, in a first stage, to classic perspective vision and then to more general cameras. Furthermore, this paper shows that the properties of event-based vision sensors allow the exploration of not-yet-defined geometric relationships, finally, we provide a definition of general epipolar geometry deployable to almost any visual sensor.
Combinatorics, geometry, and mathematical physics
Chen, W.Y.C.; Louck, J.D.
1998-11-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Combinatorics and geometry have been among the most active areas of mathematics over the past few years because of newly discovered inter-relations between them and their potential for applications. In this project, the authors set out to identify problems in physics, chemistry, and biology where these methods could impact significantly. In particular, the experience suggested that the areas of unitary symmetry and discrete dynamical systems could be brought more strongly under the purview of combinatorial methods. Unitary symmetry deals with the detailed description of the quantum mechanics of many-particle systems, and discrete dynamical systems with chaotic systems. The depth and complexity of the mathematics in these physical areas of research suggested that not only could significant advances be made in these areas, but also that here would be a fertile feedback of concept and structure to enrich combinatorics itself by setting new directions. During the three years of this project, the goals have been realized beyond expectation, and in this report the authors set forth these advancements and justify their optimism.
Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.
1958-09-01
This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.
Shape optimization of a sodium cooled fast reactor
NASA Astrophysics Data System (ADS)
Schmitt, Damien; Allaire, Grégoire; Pantz, Olivier; Pozin, Nicolas
2014-06-01
Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth.(1, 2) Usual optimization methods for core conception are based on a parametric description of a given core design(3).(4) New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints.(5, 6) First studies show that these methods could be applied to sodium cooled core conception.(7) In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a get realistic core layout. Its caracteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas.
Program for the Analysis of Reactor Transients
2002-01-29
This program is designed for use in predicting the course of and consequence of nondestructive accidents in research and test reactor cores. It is intended primarily for the analysis of plate type research and test reactors and has been subjected to extensive comparisons with the SPERT I and SPERT II experiments. These comparisons were quite favorable for a wide range of transients up to and including melting of the clad. Favorable comparisons have also beenmore » made for TRIGA reactor pulses in pin geometry. The PARET/ANL code has been used by the RERTR (Reduced Enrichment Research and Test Reactor) Program for the safety evaluation of many of the candidate reactors for reduced enrichment.« less
Zinn, W.H.
1958-07-01
A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.
Metcalf, H.E.
1957-10-01
A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.
McCarty, Perry L.; Bachmann, Andre
1992-01-01
A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.
Fortescue, P.; Nicoll, D.
1962-04-24
A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)
Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John
2009-03-10
A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.
Wigner, E.P.; Young, G.J.
1958-10-14
A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.
Geometry of solar coronal rays
NASA Astrophysics Data System (ADS)
Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.
2016-02-01
Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field
Young, G.
1963-01-01
This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors
Fermi, E.; Szilard, L.
1957-09-24
Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.
Wigner, E.P.; Weinberg, A.W.; Young, G.J.
1958-04-15
A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.
GPS: Geometry, Probability, and Statistics
ERIC Educational Resources Information Center
Field, Mike
2012-01-01
It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…
Lobachevsky's Geometry and Research of Geometry of the Universe
NASA Astrophysics Data System (ADS)
Brylevskaya, L. I.
2008-10-01
For the first time N. I. Lobachevsky gave a talk on the new geometry in 1826; three years after he had published a work "On the fundamentals of geometry", containing all fundamental theorems and methods of non-Euclidean geometry. A small part of the article was devoted to the study of geometry of the Universe. The interpretation of geometrical concepts in pure empirical way was typical for mathematicians at the beginning of the XIX century; in this connection it was important for scientists to find application of his geometry. Having the purpose to determine experimentally the properties of real physical Space, Lobachevsky decided to calculate the sum of angles in a huge triangle with two vertexes in opposite points of the terrestrial orbit and the third -- on the remote star. Investigating the possibilities of solution of the set task, Lobachevsky faced the difficulties of theoretical, technical and methodological character. More detailed research of different aspects of the problem led Lobachevsky to the comprehension of impossibility to obtain the values required for the goal achievement, and he called his geometry an imaginary geometry.
Guiding chemical pulses through geometry: Y junctions.
Qiao, L; Kevrekidis, I G; Punckt, C; Rotermund, H H
2006-03-01
We study computationally and experimentally the propagation of chemical pulses in complex geometries. The reaction of interest, CO oxidation, takes place on single crystal Pt(110) surfaces that are microlithographically patterned; they are also addressable through a focused laser beam, manipulated through galvanometer mirrors, capable of locally altering the crystal temperature and thus affecting pulse propagation. We focus on sudden changes in the domain shape (corners in a Y-junction geometry) that can affect the pulse dynamics; we also show how brief, localized temperature perturbations can be used to control reactive pulse propagation. The computational results are corroborated through experimental studies in which the pulses are visualized using reflection anisotropy microscopy. PMID:16605643
Heterogeneous Transmutation Sodium Fast Reactor
S. E. Bays
2007-09-01
The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.
CRC handbook of nuclear reactors calculations. Vol. II
Ronen, Y.
1986-01-01
This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume II: Monte Carlo Calculations for Nuclear Reactors. In-Core Management of Four Reactor Types. In-Core Management in CANDU-PHW Reactors. Reactor Dynamics. The Theory of Neutron Leakage in Reactor Lattices. Index.
Irradiation Facilities at the Advanced Test Reactor
S. Blaine Grover
2005-12-01
The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.
Wende, Charles W. J.
1976-08-17
A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.
Carleton, John T.
1977-01-25
A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.
Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.
1959-10-27
BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.
Gogate, Parag R; Patil, Pankaj N
2016-10-01
Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.
Wigner, E.P.
1962-12-25
A reactor is described comprising a plurality of horizontal trays containing a solution of a fissionable material, the trays being sleeved on a vertical tube which contains a vertically-reciprocable control rod, a gas-tight chamber enclosing the trays, and means for conducting vaporized moderator from the chamber and for replacing vaporized moderator in the trays. (AEC)
Anderson, H.L.
1958-10-01
The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.
Gogate, Parag R; Patil, Pankaj N
2016-10-01
Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation. PMID:27573503
Wigner, E.P.
1960-09-27
A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.
Sequencing batch biofilm reactor: from support design to reactor operation.
Matos, M; Alves, C; Campos, J L; Brito, A G; Nogueira, R
2011-07-01
The aim of this work was to improve the overall understanding of sequencing batch biofilm reactors (SBBRs) from support selection (biofilm formation) to reactor operation (carbon and nitrogen removal). Supports manufactured with different materials and geometries were tested in 2.5 L SBBRs and it was observed that biofilm accumulation was favoured on the supports that presented a higher internal surface area. The geometry of the supports and the hydrodynamic conditions established in the SBBRs seemed to play a more important role in biofilm formation than the thermodynamic interaction, expressed as free energy of adhesion (deltaG), between the support material and the biomass. The support that presented the highest biofilm accumulation per unit of surface area (DupUM) was used in a 28 L SBBR and it was observed that, along a typical SBBR cycle, time profiles of nitrogen compounds showed the typical behaviour of nitrification and denitrification reactions. During the fill phase (without aeration) acetate was simultaneously consumed in biomass growth and denitrification. Immediately after the beginning of the aeration phase (without influent addition), acetate was depleted from the liquid phase and stored as poly-beta-hydroxybutyrate that was later on used in the growth of biomass, owing to the high oxygen concentration in the reactor.
Quantum Consequences of Parameterizing Geometry
NASA Astrophysics Data System (ADS)
Wanas, M. I.
2002-12-01
The marriage between geometrization and quantization is not successful, so far. It is well known that quantization of gravity , using known quantization schemes, is not satisfactory. It may be of interest to look for another approach to this problem. Recently, it is shown that geometries with torsion admit quantum paths. Such geometries should be parameterizied in order to preserve the quantum properties appeared in the paths. The present work explores the consequences of parameterizing such geometry. It is shown that quantum properties, appeared in the path equations, are transferred to other geometric entities.
NASA Astrophysics Data System (ADS)
Belogurov, S.; Berchun, Yu; Chernogorov, A.; Malzacher, P.; Ovcharenko, E.; Semennikov, A.
2011-12-01
Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. An original set of tools has been developed for building a GEANT4/ROOT compatible geometry in the CATIA CAD system and exchanging it with mentioned MC packages using GDML file format. A Special structure of a CATIA product tree, a wide range of primitives, different types of multiple volume instantiation, and supporting macros have been implemented.
Froman, D.K.
1959-02-24
Power generating nuclear reactors of the homogeneous liquid fuel type are discussed. The apparatus utilizes two identical reactors interconnected by conduits through heat exchanging apparatus. Each reactor contains a critical geometry region and a vapor region separated from the critical region by a baffle. When the liquid in the first critical region becomes critical, the vapor pressure above the fuel is increased due to the rise in the temperature until it forces the liquid fuel out of the first critical region through the heat exchanger and into the second critical region, which is at a lower temperature and consequently a lower vapor pressure. The above reaction is repeated in the second critical region and the liquid fuel is forced back into the first critical region. In this manner criticality is achieved alternately in each critical region and power is extracted by the heat exchanger from the liquid fuel passing therethrough. The vapor region and the heat exchanger have a non-critical geometry and reactivity control is effected by conventional control rods in the critical regions.
NASA Astrophysics Data System (ADS)
Silva, Lucyane C.; Faria, Roberto B.
2007-05-01
The oscillating reaction bromate-oxalic acid-acetone-Mn(II)-sulfuric acid was observed for the first time in a CSTR at 20 °C. Depending on the bromate concentrations and flow rate, the system showed large amplitude oscillations, two kinds of mixed mode oscillations, quasiperiodicity and bursts of large amplitude oscillations, all mapped in a phase diagram. More complex behavior was favored at low bromate concentrations. The system without acetone was discovered to oscillate too, but the more complex patterns were not seen, indicating that acetone is implied in their formation.
A transient, quadratic nodal method for triangular-Z geometry
DeLorey, T.F.
1993-06-01
Many systematically-derived nodal methods have been developed for Cartesian geometry due to the extensive interest in Light Water Reactors. These methods typically model the transverse-integrated flux as either an analytic or low order polynomial function of position within the node. Recently, quadratic nodal methods have been developed for R-Z and hexagonal geometry. A static and transient quadratic nodal method is developed for triangular-Z geometry. This development is particularly challenging because the quadratic expansion in each node must be performed between the node faces and the triangular points. As a consequence, in the 2-D plane, the flux and current at the points of the triangles must be treated. Quadratic nodal equations are solved using a non-linear iteration scheme, which utilizes the corrected, mesh-centered finite difference equations, and forces these equations to match the quadratic equations by computing discontinuity factors during the solution. Transient nodal equations are solved using the improved quasi-static method, which has been shown to be a very efficient solution method for transient problems. Several static problems are used to compare the quadratic nodal method to the Coarse Mesh Finite Difference (CMFD) method. The quadratic method is shown to give more accurate node-averaged fluxes. However, it appears that the method has difficulty predicting node leakages near reactor boundaries and severe material interfaces. The consequence is that the eigenvalue may be poorly predicted for certain reactor configurations. The transient methods are tested using a simple analytic test problem, a heterogeneous heavy water reactor benchmark problem, and three thermal hydraulic test problems. Results indicate that the transient methods have been implemented correctly.
Computational Modeling of Multiphase Reactors.
Joshi, J B; Nandakumar, K
2015-01-01
Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling.
Computational Modeling of Multiphase Reactors.
Joshi, J B; Nandakumar, K
2015-01-01
Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling. PMID:26134737
Instability of supersymmetric microstate geometries
NASA Astrophysics Data System (ADS)
Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E.
2016-10-01
We investigate the classical stability of supersymmetric, asymptotically flat, microstate geometries with five non-compact dimensions. Such geometries admit an "evanescent ergosurface": a timelike hypersurface of infinite redshift. On such a surface, there are null geodesics with zero energy relative to infinity. These geodesics are stably trapped in the potential well near the ergosurface. We present a heuristic argument indicating that this feature is likely to lead to a nonlinear instability of these solutions. We argue that the precursor of such an instability can be seen in the behaviour of linear perturbations: nonlinear stability would require that all linear perturbations decay sufficiently rapidly but the stable trapping implies that some linear perturbation decay very slowly. We study this in detail for the most symmetric microstate geometries. By constructing quasinormal modes of these geometries we show that generic linear perturbations decay slower than any inverse power of time.
Geometry Genetics and Evolution
NASA Astrophysics Data System (ADS)
Siggia, Eric
2011-03-01
Darwin argued that highly perfected organs such as the vertebrate eye could evolve by a series of small changes, each of which conferred a selective advantage. In the context of gene networks, this idea can be recast into a predictive algorithm, namely find networks that can be built by incremental adaptation (gradient search) to perform some task. It embodies a ``kinetic'' view of evolution where a solution that is quick to evolve is preferred over a global optimum. Examples of biochemical kinetic networks were evolved for temporal adaptation, temperature compensated entrainable clocks, explore-exploit trade off in signal discrimination, will be presented as well as networks that model the spatially periodic somites (vertebrae) and HOX gene expression in the vertebrate embryo. These models appear complex by the criterion of 19th century applied mathematics since there is no separation of time or spatial scales, yet they are all derivable by gradient optimization of simple functions (several in the Pareto evolution) often based on the Shannon entropy of the time or spatial response. Joint work with P. Francois, Physics Dept. McGill University. With P. Francois, Physics Dept. McGill University
Leone, María J.; Fernandez Slezak, Diego; Cecchi, Guillermo A.; Sigman, Mariano
2014-01-01
Theories of expertise based on the acquisition of chunk and templates suggest a differential geometric organization of perception between experts and novices. It is implied that expert representation is less anchored by spatial (Euclidean) proximity and may instead be dictated by the intrinsic relation in the structure and grammar of the specific domain of expertise. Here we set out to examine this hypothesis. We used the domain of chess which has been widely used as a tool to study human expertise. We reasoned that the movement of an opponent piece to a specific square constitutes an external cue and the reaction of the player to this “perturbation” should reveal his internal representation of proximity. We hypothesized that novice players will tend to respond by moving a piece in closer squares than experts. Similarly, but now in terms of object representations, we hypothesized weak players will more likely focus on a specific piece and hence produce sequence of actions repeating movements of the same piece. We capitalized on a large corpus of data obtained from internet chess servers. Results showed that, relative to experts, weaker players tend to (1) produce consecutive moves in proximal board locations, (2) move more often the same piece and (3) reduce the number of remaining pieces more rapidly, most likely to decrease cognitive load and mental effort. These three principles might reflect the effect of expertise on human actions in complex setups. PMID:24550869
Leone, María J; Fernandez Slezak, Diego; Cecchi, Guillermo A; Sigman, Mariano
2014-01-01
Theories of expertise based on the acquisition of chunk and templates suggest a differential geometric organization of perception between experts and novices. It is implied that expert representation is less anchored by spatial (Euclidean) proximity and may instead be dictated by the intrinsic relation in the structure and grammar of the specific domain of expertise. Here we set out to examine this hypothesis. We used the domain of chess which has been widely used as a tool to study human expertise. We reasoned that the movement of an opponent piece to a specific square constitutes an external cue and the reaction of the player to this "perturbation" should reveal his internal representation of proximity. We hypothesized that novice players will tend to respond by moving a piece in closer squares than experts. Similarly, but now in terms of object representations, we hypothesized weak players will more likely focus on a specific piece and hence produce sequence of actions repeating movements of the same piece. We capitalized on a large corpus of data obtained from internet chess servers. Results showed that, relative to experts, weaker players tend to (1) produce consecutive moves in proximal board locations, (2) move more often the same piece and (3) reduce the number of remaining pieces more rapidly, most likely to decrease cognitive load and mental effort. These three principles might reflect the effect of expertise on human actions in complex setups.
Grebe, J.J.
1959-12-15
A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.
Treshow, M.
1958-08-19
A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.
Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.
1959-02-01
A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.
Wade, E.J.
1958-09-16
This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.
Leverett, M.C.
1958-02-18
This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.
Lewis, Warren R.
1978-05-30
A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.
Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.
1961-12-01
An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)
Long, E.; Ashby, J.W.
1958-09-16
ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.
Anderson, J.B.
1960-01-01
A reactor is described which comprises a tank, a plurality of coaxial steel sleeves in the tank, a mass of water in the tank, and wire grids in abutting relationship within a plurality of elongated parallel channels within the steel sleeves, the wire being provided with a plurality of bends in the same plane forming adjacent parallel sections between bends, and the sections of adjacent grids being normally disposed relative to each other.
Grebe, J.J.
1961-01-24
A core structure for neutronic reactors adapted for the propulsion of aircraft and rockets is offered. The core is designed for cooling by gaseous media, and comprises a plurality of hollow tapered tubular segments of a porous moderating material impregniated with fissionable fuel nested about a common axis. Alternate ends of the segments are joined. In operation a coolant gas passes through the porous structure and is heated.
Intersecting solitons, amoeba, and tropical geometry
Fujimori, Toshiaki; Nitta, Muneto; Ohta, Kazutoshi; Sakai, Norisuke; Yamazaki, Masahito
2008-11-15
We study the generic intersection (or web) of vortices with instantons inside, which is a 1/4 Bogomol'nyi-Prasad-Sommerfield state in the Higgs phase of five-dimensional N=1 supersymmetric U(N{sub C}) gauge theory on R{sub t}x(C*){sup 2}{approx_equal}R{sup 2,1}xT{sup 2} with N{sub F}=N{sub C} Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (N{sub F}=N{sub C}=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortex charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C*){sup 2}. The Wilson loops in T{sup 2} are related with derivatives of the Ronkin function. The general form of the Kaehler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.
Discovering Structural Regularity in 3D Geometry
Pauly, Mark; Mitra, Niloy J.; Wallner, Johannes; Pottmann, Helmut; Guibas, Leonidas J.
2010-01-01
We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point- or mesh-based models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis. PMID:21170292
Ruano, W.J.
1957-12-10
This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.
Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies
NASA Astrophysics Data System (ADS)
Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.
2006-01-01
A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.
Design of a 25-kWe Surface Reactor System Based on SNAP Reactor Technologies
Dixon, David D.; Hiatt, Matthew T.; Poston, David I.; Kapernick, Richard J.
2006-01-20
A Hastelloy-X clad, sodium-potassium (NaK-78) cooled, moderated spectrum reactor using uranium zirconium hydride (UZrH) fuel based on the SNAP program reactors is a promising design for use in surface power systems. This paper presents a 98 kWth reactor for a power system the uses multiple Stirling engines to produce 25 kWe-net for 5 years. The design utilizes a pin type geometry containing UZrHx fuel clad with Hastelloy-X and NaK-78 flowing around the pins as coolant. A compelling feature of this design is its use of 49.9% enriched U, allowing it to be classified as a category III-D attractiveness and reducing facility costs relative to highly-enriched space reactor concepts. Presented below are both the design and an analysis of this reactor's criticality under various safety and operations scenarios.
Multigroup Reactor Lattice Cell Calculation
1990-03-01
The Winfrith Improved Multigroup Scheme (WIMS), is a general code for reactor lattice cell calculations on a wide range of reactor systems. In particular, the code will accept rod or plate fuel geometries in either regular arrays or in clusters, and the energy group structure has been chosen primarily for thermal calculations. The basic library has been compiled with 14 fast groups, 13 resonance groups and 42 thermal groups, but the user is offered themore » choice of accurate solutions in many groups or rapid calculations in few groups. Temperature dependent thermal scattering matrices for a variety of scattering laws are available in the library for the principal moderators which include hydrogen, deuterium, graphite, beryllium and oxygen. WIMSD5 is a succesor version of WIMS-D/4.« less
Wulff, W.
1990-01-01
A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs.
Computer simulation of FCC riser reactors.
Chang, S. L.; Golchert, B.; Lottes, S. A.; Petrick, M.; Zhou, C. Q.
1999-04-20
A three-dimensional computational fluid dynamics (CFD) code, ICRKFLO, was developed to simulate the multiphase reacting flow system in a fluid catalytic cracking (FCC) riser reactor. The code solve flow properties based on fundamental conservation laws of mass, momentum, and energy for gas, liquid, and solid phases. Useful phenomenological models were developed to represent the controlling FCC processes, including droplet dispersion and evaporation, particle-solid interactions, and interfacial heat transfer between gas, droplets, and particles. Techniques were also developed to facilitate numerical calculations. These techniques include a hybrid flow-kinetic treatment to include detailed kinetic calculations, a time-integral approach to overcome numerical stiffness problems of chemical reactions, and a sectional coupling and blocked-cell technique for handling complex geometry. The copyrighted ICRKFLO software has been validated with experimental data from pilot- and commercial-scale FCC units. The code can be used to evaluate the impacts of design and operating conditions on the production of gasoline and other oil products.
The Bell states in noncommutative algebraic geometry
NASA Astrophysics Data System (ADS)
Beil, Charlie
2014-10-01
We introduce new mathematical aspects of the Bell states using matrix factorizations, non-noetherian singularities, and noncommutative blowups. A matrix factorization of a polynomial p consists of two matrices ϕ1, ϕ2 such that ϕ1ϕ2 = ϕ2ϕ1 = p id. Using this notion, we show how the Bell states emerge from the separable product of two mixtures, by defining pure states over complex matrices rather than just the complex numbers. We then show in an idealized algebraic setting that pure states are supported on non-noetherian singularities. Moreover, we find that the collapse of a Bell state is intimately related to the representation theory of the noncommutative blowup along its singular support. This presents an exchange in geometry: the nonlocal commutative spacetime of the entangled state emerges from an underlying local noncommutative spacetime.
ERIC Educational Resources Information Center
Hogerton, John F.
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…
Pennell, William E.; Rowan, William J.
1977-01-01
A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.
Creutz, E.C.
1959-10-27
A reactor fuel element comprised of a slug of fissionable material disposed in a sheath of corrosion resistantmaterial is described. The sheath is in the form of a tubular container closed at one end and is in tight-fitting engagement with the peripheral sunface of the slug. An inner cap is insented into the open end of the sheath against the slug, which end is then bent around the inner cap and welded thereto. An outer cap is then welded around its peripheny to the bent portion of the container.
Long, E.; Ashley, J.W.
1958-12-16
A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.
Implementing NCNP's 21st century geometry capability: requirements, issues, and problems
Martz, Roger L; Goorley, John T
2009-01-01
A new geometry capability has been implemented in MCNP that permits the existence of an unstructured mesh with its legacy Constructive Solid Geometry (CSG) capability to form a hybrid geometry. This new feature enables the user to build complex 3-D models with Computer Aided Engineering (CAE) tools, such as Abaqus, and perform a neutronics analysis on the same geometry mesh that is used for thermo-mechanical analyses. This paper will present an overview of the issues and problems encountered in implementing the requirements for the hybrid geometry capability in MCNP.
Movement Timing and Invariance Arise from Several Geometries
Bennequin, Daniel; Fuchs, Ronit; Berthoz, Alain; Flash, Tamar
2009-01-01
Human movements show several prominent features; movement duration is nearly independent of movement size (the isochrony principle), instantaneous speed depends on movement curvature (captured by the 2/3 power law), and complex movements are composed of simpler elements (movement compositionality). No existing theory can successfully account for all of these features, and the nature of the underlying motion primitives is still unknown. Also unknown is how the brain selects movement duration. Here we present a new theory of movement timing based on geometrical invariance. We propose that movement duration and compositionality arise from cooperation among Euclidian, equi-affine and full affine geometries. Each geometry posses a canonical measure of distance along curves, an invariant arc-length parameter. We suggest that for continuous movements, the actual movement duration reflects a particular tensorial mixture of these canonical parameters. Near geometrical singularities, specific combinations are selected to compensate for time expansion or compression in individual parameters. The theory was mathematically formulated using Cartan's moving frame method. Its predictions were tested on three data sets: drawings of elliptical curves, locomotion and drawing trajectories of complex figural forms (cloverleaves, lemniscates and limaçons, with varying ratios between the sizes of the large versus the small loops). Our theory accounted well for the kinematic and temporal features of these movements, in most cases better than the constrained Minimum Jerk model, even when taking into account the number of estimated free parameters. During both drawing and locomotion equi-affine geometry was the most dominant geometry, with affine geometry second most important during drawing; Euclidian geometry was second most important during locomotion. We further discuss the implications of this theory: the origin of the dominance of equi-affine geometry, the possibility that the brain
Conventionalism and integrable Weyl geometry
NASA Astrophysics Data System (ADS)
Pucheu, M. L.
2015-03-01
Since the appearance of Einstein's general relativity, gravitation has been associated to the space-time curvature. This theory introduced a geometrodynamic language which became a convenient tool to predict matter behaviour. However, the properties of space-time itself cannot be measurable by experiments. Taking Poincaré idea that the geometry of space-time is merely a convention, we show that the general theory of relativity can be completely reformulated in a more general setting, a generalization of Riemannian geometry, namely, the Weyl integrable geometry. The choice of this new mathematical language implies, among other things, that the path of particles and light rays should now correspond to Weylian geodesies. Such modification in the dynamic of bodies brings a new perception of physical phenomena that we will explore.
Quantum geometry and gravitational entropy
Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan
2007-05-29
Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.
CRC handbook of nuclear reactors calculations. Vol. III
Ronen, Y.
1986-01-01
This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume III: Control Rods and Burnable Absorber Calculations. Perturbation Theory for Nuclear Reactor Analysis. Thermal Reactors Calculations. Fast Reactor Calculations. Seed-Blanket Reactors. Index.
RSRM Propellant Grain Geometry Modification
NASA Technical Reports Server (NTRS)
Schorr, Andrew A.; Endicott, Joni B.; McCool, Alex (Technical Monitor)
2000-01-01
This document is composed of viewgraphs about the RSRM propellant grain geometry modification project, which hopes to improve personnel and system safety by modifying propellant grain geometry to improve structural factors of safety. Using techniques such as Finite Element Analysis to determine blend radii required to reduce localized stresses, and ballistic predictions to ensure that the ballistics, ignition transient and Block Model have not been adversely affected, the project hopes to build and test FSM-10 with a new design, and determine flight effectivity pending successful test evaluation.
Geometry, topology, and string theory
Varadarajan, Uday
2003-07-10
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Geometry of generalized depolarizing channels
Burrell, Christian K.
2009-10-15
A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.
SAR imagery in non-Cartesian geometries
NASA Astrophysics Data System (ADS)
Dendal, Didier
1995-11-01
The subject of the reported work is the improvement of geometrical models for a SAR scanning in pushbroom, spotlight, scansar or bistatic imaging modes. This research has been motivated by the planetary cornerstone mission of ESA's long term program for European Space Science ('rendezvous' with a comet, and fly-bys of asteroids). In this specific context, the synthetic aperture radar is destined for an important role, but the rules and standard backgrounds of the Cartesian geometry are no longer justified. Several new techniques are proposed to handle with an optimal precision the data relative to celestial bodies with a complex geometry (coherent and non-coherent imagery). On the basis of a mathematical rigor (singleness of solutions, convergence of processes, biunivocity of transformations and generalizations), a lot of scenarios are discussed with key relations established (plane and spherical models, bodies with a symmetry of revolution and general bodies, specific sensor(s) trajectories as fly-bys or flight into orbit with the possibility of an approaching probe). The four methods developed are the tomographic analogy of radar principles (only known, previously, in the usual case of a straight line flight at constant altitude over a plane surface) and Hilbertian techniques for a direct adaptation to the scanned surface geometry, an automated autofocusing which enhances the contrast resulting from a Cartesian reconstruction and the coordinates transformation where the real space is converted into a fictitious space where Cartesian algorithms are fully rigorous. Beyond the fact that an interpolation step is often unavoidable, the major conclusion of the research is that all the prospected techniques are complementary and that the choice between the methods has to be made according to geometry, objectives and time requirements (reconstruction on board or not). In particular, coordinates transformation techniques are worthy of commendation in the case of plane
Hybrid adsorptive membrane reactor
NASA Technical Reports Server (NTRS)
Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)
2011-01-01
A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.